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INTRODUCTION

Recently some attention has been devoted to the problem of
finding statistical mechanical models for Brownian motion.

Hemmer!, Rubin?, and Turner?® have studied the motion of a heavy
particle in an assembly of coupled harmonic oscillators with nearest
neighbour interaction. They found that for a sufficiently large mass,
the motion of the heavy particle in the one dimensional assembly is
almost that of a free Brownian particle. As pointed out by Toda? and
Hori® the heavy particle rigorously performs Brownian motion only
in the limit as its mass M and the force constant a characterizing
the nearest neighbour interaction, both tend to infinity in such a way
that the ratio a/M? remains finite.

On the other hand, Kac, Mazur and Ford® have shown that for
particles of equal mass, any particle will perform Brownian motion
in the ’’heat bath’’ consisting of all other particles if the harmonic
interactions are of a very special (long range) type. In fact, Brownian
motion may then only be rigorously obtained in the limit as a '’cut
off frequency’’, limiting the spectrum of normal modes frequencies,
tends to infinity. It was also shown that if in this type of assembly
any particle is acted upon by an arbitrary external force, then its
motion becomes that of a Brownian particle in this field of force.

All the above mentioned results refer to systems with an infinite
number of particles.

In this thesis we study the general motion of a particle in an
harmonic oscillator assembly. In particular we obtain the conditions
under which this particle will perform Brownian motion.

In chapter I we solve formally the equations of motion of the
particle of interest, in the presence of an arbitrary external force
acting on it. With the aid of this solution we rewrite the equations
of motion in a form which bears a structural resemblance to the Lange-
vin equation.

We also study the statistics of the particle in an initially condi-
tional canonical ensemble, which describes the randomness of the
remaining particles of the assembly (heat bath).

In chapter II we first discuss the model of Kac, Mazur and Ford.
We then proceed to study the general motion of the particle of interest
in the case that its mass is infinitely large. We find the conditions
under which it performs Brownian motion. The mass M of the particle
of interest and the time t have to tend to infinity in such a way 7=t/M
remains infinite. Then Brownian motion is obtained, provided that the
interactions satisfy some very general requirement, independent of



10

their precise form: the spectral density G(w 2) of eigenvalues @ of
the interaction matrix has to be proportional to @~} for w—0.

We also study the motion of a heavy particle when this condition
is not satisfied.

A generalization of our results to system of D dimensions is
presented.

In chapter III we analyze the quantum mechanical behaviour of an
infinitely heavy particle.

As is shown in chapter II there are two classically equivalent
procedures for taking the limit M—®, Quantum mechanically they
are not equivalent.

We obtain for both cases a ’Langevin operator equation’’ for the
heavy particle in the presence of an arbitrary external force. They
differ in the quantum mechanical correlation function for the ''random
force operator’’. The solution of the Langevin operator equation is
studied for the case that a linear external force is applied to the
heavy particle.

Finally we obtain the form of the position distribution function
of the heavy particle at an arbitrary time.
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CHAPTER I.

DYNAMICS AND STATISTICS OF A PARTICLE IN HARMONIC
OSCILLATOR ASSEMBLIES

1. Introduction.

In the present chapter we shall study the dynamical and statis-
tical properties of a particle coupled to a system of 2N harmonic
oscillators,

In section 2 we give a formal solution of the equations of motion
for the particle of interest, in the presence of an arbitrary external
force acting on that particle only. With the help of this solution, we
then rewrite the equations of motion i1n a form which bears a struc-
tural resemblance to the Langevin egquation describing Brownian
motion of a particle in the presence of an external force,

In section 3 we introduce a statistical element by assuming the
""medium’’, consisting of the 2N oscillators to be initially in ’’ther-
mal equilibrium with respect to the particle of interest’’, i.e. we
describe the medium initially with a conditional canonical distribu-
tion function. It should be stressed that this is the only assumption
of a statistical nature that we shall make throughout our investigation.
The previously derived Langevin-type equation is then interpreted as
a stochastic equation containing a stochastic force. The covariance
of this force is obtained from the momentum autocorrelation function
of the particle of interest in the absence of an external force.

Finally, in section 4 we discuss some general properties of this
momentum autocorrelation function.

2. Dynamics of a particle coupled to a harmonic system.

Let us consider a one dimensional system of 2N+1 particles
interacting with harmonic forces, The Hamiltonian of the system is

v 1k %%
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where f.lk, Py and Xy denote the mass, momentum and displacement of
the k-th particle, respectively. We take

fork £0
= M. (2.2)

M =] '

The equations of motion corresponding to the Hamiltonian (2.1) are

9H(0)
fck = = pk/Mk (2.3)
apk
QH(0)
p'k e =—EAijj . . (2.4)
Exk j

In order to insure conservation of the total momentum of the sys-
tem, we must have, according to (2.4)

ZA  =0. (2.5)

We now proceed to solve the equations of motion. To this end we
make the following canonical transformation
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In terms of these variables the Hamiltonian becomes
B. x! (2.7)
where the symmetric matrix B)k is defined by

By = MM A . (2.8)

From (2.5) we find that B has to satisfy the following condition

™M

M%2 N
M Djk =0 (2.9)

The equations of motion corresponding to the Hamiltonian (2.7)
are

!

X =Py (2.10)

P = = = Byx, (2.11)
J

The solutions of these equations are

X (t) = Z(cos Bt x (0) +Z (B% . sin B%Y), p,(0)  (2.12)
j J

and




1 i 3 11 1 y .
where (cos B##t), etc. are defined by their series expansions
Using (2.6) we find the solutions in terms of the original variables

(2.15)

is acted upon by an
a potential,

Then the Hamiltonian of the system is

(2.17)




In particular

Differentiating th

S

uation with respect to time one finds
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: % ik Y % cin %
py(t) = -(B”.sinB”t);,p,(0) — M”? 2 (B”.sinB”t), p (0) —

jfo

_MLS b7 1Y%
M T(B.COSB 2t)oJ I\.xj’ X (0) + F(xo(t)) -

t
— [ dt [B%.sinB%(t—t )], F(x,(t)) .
0

Eliminating po(ﬂ) from (2.20) and (2.21) we then obtain
Po(t) = F(xg(1) = —¥(t)py(t) +E(t) +

t
+ [dt [y(t) = y(t—t)] [cos B%(t—t )], Flx,(t))
0

where the time dependent '’friction coefficient"”y(t) is given by

(B%.sin Bl/zt)oo d :
y(t) = :_Fln (cos B%t)

. 1
%
(cos B ”oo

00’

and the force E(t) by

E(t) =:\1'/2k5.#0 {7(t) (cosB*%t),, — (B%.sinB%1t)y, }p, (0) —

—~ M# 5.* {7(t) (B%.sinB% 1)y, +(B.cosB%1),, }(x, (0)—x,(0)) .
k$+0

(2.21)

(2.22)

(2.23)

(2.24)
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Here we have used (2.9). We note that E(t) is independent of the
external force I"!xn), and depends only on the initial state of the
'medium’’ consisting of the 2N particles of unit mass. In fact, it
depends only on the initial values of their momenta and their dis-

placements relative to the zeroeth particle.

3. Stochastic motion of the zeroeth particle.

Let the initial momentum ;,;O(m and displacement xﬂ(m be speci-
fied. Furthermore we take the medium to be in '‘thermal equilibrium
with respect to the zeroeth particle’’ at t = 0, i.e. we assume that
it may be described by the non-stationary canonical distribution

function

!
, -
f = e P! (31
where 8 = (k. T)™!, and
G %S VA ( )
H =2 Yp2+4% = X—X-) A (x —x (3.2)
= 2 I ; ( : 5
k 40 k j,k 40 j 0 j& Yk 0
which in view of (2.2) and (2.8) may also be written as
q! S 12 <2 Vb - ¥ 2 e
A =2 %p, +%2 (x—x)B K(x -X.) (3.3)
k 40 j k#0 e '

Then E(t) given by (2.24) is seen to be a sumvariable of Gaussian
random variables, and thus a Gaussian random process.

§

We define the momentum aurocorrelation function o (t) of the

zeroeth particle in a system for which 'r(.\'o\ =0, as

p(t) Jgompotm : (3.4)
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where po(t) is given by equation (2.15), and where the bar denotes
an average taken over the stationary canonical ensemble with dis-
tribution function

f0) _ B0 (3.5)
Here H'®) is given by (2.1). Combining (2.15) and (3.4) we find that
plt) = B M (cos B%t) (3.6)

which relates p(t) to the (0,0) matrix element of (cosBV‘

Recalling the fact that E(t) is independent of F(x.) (cf. the dis-
cussion after equation (2.24)), we have according to t?]e equation of
motion (2.22) with F(xo) =0

E(t) = py(t) + ¥ () py (1) .

From this equation we obtain

0 2
E(ty) E(ty+t) = — {po (t \po ty +t) )} +( ty ) {po(to)po(t0+t)}

Bt Bto

32
B {py(ty) pylty 1)} + (1) ¥ty +1) py(ty) pylty+t) +

3
{r(te) = vto t 0} 5= {pgltg) py(ty*t)} -

By averaging the left hand side of this equation over the initial dis-
tribution function (3.1) we obtain the autocorrelation function of E(t).
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However, as is seen from (2.24), E(t) does not depend on pO(O), and
we can replace the average over the initial distribution (3.1) by an
average over the stationary distribution (3.5). We then obtain using
(3.4) and the stationarity of (3.5)

e YA
<E(t ) E(t, ) > = E(tO)F,(toﬂ) :—3—12 o(t) ty(ty)y(t,+t) p(t) +
3
+{~/(to)—-y(to+t)}_a—t p(1) . (3.9)

Thus, in an initial ensemble described by (3.1), the statistical be-
haviour of the zeroeth particle can in principle be determined from
equation (2.22). This equation must be interpreted as a stochastic
equation. The stochastic force E(t) is a Gaussian process with co-
variance given by (3.9),

We note that equation (2.22) bears at structural resemblance to
the Langevin equation for Brownian motion of a particle in the pre-
sence of an external force

p(t) — F(x(1)) = =yp(t) + E. (. (3.10)

Here 7y isthe friction constant, and EL(t) the Gaussian random force
with covariance

ELMQE, (t,4) = 28 My s(t) , (3.11)

where M is the mass of the Brownian particle and &(t) is the Dirac
delta function.

However (2.22) with the covariance (3.9) will reduce to (3.10)
with the covariance (3.11), if and only if the following equality holds

(cos B"*noo el (3.12)
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Indeed, 7¥(t) is then no longer time dependent, but has the constant
value 7y, as follows immediately from (2.23), and as a consequence
the last term on the right hand side in (2.22) would then vanish,
whereas the covariance (3.9) reduces to (3.11).

In the following chapter we shall establish the conditions under
which the equality (3.12) holds. At the same time we shall then
obtain an explicit expression for the friction constant v in terms of
the interaction matrix A. But first we shall discuss in the next sec-
tion some general properties of the quantity (cos B%t)oo' which is
according to (3.4) and (3.6) essentially the momentum autocorrelation
function.

4, Properties of the momentum autocorrelation function.

[Let U be the matrix that diagonalizes the symmetric matrix B,
with eigenvalues cuﬁ (k =-N,...,N). Then

B-Ul u2.0

2 2

where w “ is the diagonal matrix with elements WL

(3.6) we can therefore write

From equation

BM™ p(t) = (cos B%t),, -2 |Upo |2 cos @ t. (4.2)

For a system with a finite number of particles this function, a
finite sum of periodic functions, is an almost periodic function. This
means that any value which is once achieved, will be achieved an
infinite number of times.

Let us, for the sake of simplicity, consider the case that M = 1
and IUkO |2 -n"!, withn = 2N + 1. Then we have

1 1
Bp(t) = — 2 cos w, t=—h(t) .
n k n




(3% )
p—t

Let L(q) be the average frequency with which a value g is achie-
a1 ' ’\)

ved by h(t). For large N, Kac® has shown that

. 2w - ‘742
L(bn%) = 0 g b (4.4)
T
where
2 ! Y 1 5)
@ = - Lo (,,':\
0 n k
and where it is assumed that
e 4
lin — 2wy =0, (4.6)
n B

and that the frequencies w, are rationally independent.

On the other hand, starting from a formula given by Slaterlo,
Mazur and Montroll}! have shown that in the case that (n—q) is small
and n large

(73} I — O
W P
L(q = -8 ( )% (n—1)~ 1 (an) (4.7)
273/2 me
where
a—-1 . q
O e R S (4.8)
n-—1 n
Consider a value of Bol(t) = r:'l':l(t) in the range (- bn™% . bn%)

'

(b~ 0 (1)). The average frequency of recurrence for this value of Bp(t)
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is given by (4.4), whereas the average frequency corresponding
to values of Bp(t) = a (0 < a < 1) is given by (4.7). Thus, for the
limit as N tends to infinity, the recurrence frequency for values in
a range outside (-bn'l/‘, bn~%), i.e. for values of a~ 0(1), becomes
very small, while the frequency for values inside the range is of the
order of @ 4

In other words, when N is very large, the mean recurrence time
(which is inversely proportional to the mean recurrence frequency)
for values outside the range (-bn'%, bn=%2) is very large compared
with the available observation times, and there occurs an apparently
irreversible trend towards ’'equilibrium’’. In this case the systen
will remain near "'equilibrium’’ most of the time. Only when N is
infinite, will the system rigorously tend to equilibrium and remain
there. In this case the range (-bn~%, bn~%) shrinks to zero, and p(t)
vanishes as t tends to infinity; po(ﬂ and po(ﬂ) then become indepen-
dent of each other.

The case of what we shall call a perfect system (M = 1) has
explicitly been studied for two different types of harmonic interac-
tions between the particles. The first one is a system with nearest
neighbours interactions, in which one has!?

mk . 1

: I 2
wk=wL|sm—n—,, IJOkl =;, (4.9)

where @y is the maximum frequency of the system. The momentum
autocorrelation function in this case takes the form

COS(Cb Lt sin ——'\ . (4-1n\

N

In the limit as N tends to infinity let @= kn”!

and do = 7in~!., Then

ow

r 2 s ol ) ;
J cos(u)Lt sin@) do = JO(L‘)LU , (4.11)
0

/." ,)(t\ = 77
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T

where J is the Bessel function of order r.

Secondly, Kac, Mazur and Ford® obtained for a system with
special long range forces between the particles that (cf. Ch. II
section 2)

'

ot) =B 1e™” It (4.12)

Since we have shown in the preceding section that the zeroeth
particle will perform Brownian motion if and only if p(t) is of an
exponential form, it follows from (4.11) and (4.12) that the first
system does not give rise to Brownian motion for the zeroeth particle,
wheras the second one does.

As for the case of a non perfect system (M { 1), Rubin? found
taking M = 2 and nearest neighbours interactions that

p() = 2871 (@ ) J (@, 1), (4.13)

so that for this system one does not obtain Brownian motion for the
zeroeth particle.

For very large M with nearest neighbours interactions, however,
the behaviour of p(t) becomes approximately exponential, as was
shown by Hemmer! and Rubin? ;

pt) ~ e~?L It |/m +R(|t]|,M) . (4.14)

The rest term R can be made to vanish by taking the limit N —=, But
then p(t) reduces to a constant according to (4.14).

Takeno and Horis, following a suggestion given by Toda* have
shown, however that the exponential form of p(t) may be rigorously
obtained from (4.14) by a double limiting procedure: M —, W, =,
w; /M = 7y finite.

In the next chapter we shall present an alternative limiting pro-
cedure which yields the desired exponential behaviour. Moreover,
our analysis will not be confined to the case of nearest neighbours
interactions.
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CHAPTER II.

BROWNIAN MOTION

1. Introduction.

In this chapter we study the conditions under which the particle of
interest labeled by the number O will perform Brownian motion.

In section 2 we consider the case that the zeroeth particle is of
unit mass, i.e. all the particles in the system are equal. As has been
shown the particle then behaves as a Brownian particle for a very
special interaction®.

In section 3 we analyze the case that the mass M of the particle
of interest is infinitely large. We show that as the time t and the
mass M both tend to infinity in such a way that their ratio remains
finite, the heavy particle performs Brownian motion provided that
the interactions satisfy some very general requirement, independent
of their precise form: Brownian motion is obtained only if the spec-
tral density \.'S(u:?‘) of eigenvalues w? of the interaction matrix is
proportional to @' for w=0. (This is the case, for instance, for
nearest neighbours interactions in one dimension). We also study the
motion of a heavy particle when this condition is not satisfied.

In section 4 we generalize our results to systems of higher di-
mensionality. In particular we study the case of a simple cubic lat-
tice.

In section 5 we give an explicit example of an interaction matrix
A such that a heavy particle will perform Brownian motion for any
dimension.

Finally it is shown that the limit in which Browhian motion is
obtained, corresponds to the ‘'weak coupling’’ limit taken in the
derivation of the master equation by perturbation techniques7'8 <

2. Brownian motion of a particle of unit mass.

In this section we consider the case that M=1, i.e. all the par-

ticles of the system are equal. In this case, we have according to
(I.2.8)

(2.1)




Consider

@ L)
5= f dwcoswt {B(AV2 - “))}00 = »J_ dwcoswt Sl((‘u)

—0 -

where the spectrum Sl(w) is given by

S, (w) =% {8(A% — w) + 8 (A% +w)}

1 00 *

Using the following representations of the 8-functions

§A%-w) = L im Im [A% — (w +i€) 1]}
e—‘

S(A%+w) = — 7‘_711% Im [A% +(w +i€) 1]}
e=0 +

where I is the unit matrix, equation (2.3) may be written as

ooll@ +i€)?)

Sy(@) = lim 7 Im (@ +i€) Q

Q(z?) = (A-z%1)"!

the resolvent of the matrix A.
So far we have not made any specific assumption concerning the
interaction matrix A. Let us suppose that Ajk is defined as follows

A, = 37 Jdo8(6) UK (2.8)

ey

In order to insure that A is a symmetric, positive semi-definite
matrix with the property (I.2.5), we take {(6) to be a positive, even
function with f(0)=0. The matrix A then has the property that

Ajk . AIJ-k|'




be bounded and p

mw
- 1
& VA i
e (ZeY e j —_—
00 2m p 2
f =

sume now that f(&) is defined as follows:

:/“’”Sf,rL Yytg“b-z

Making the transformation of variables

X = Yytgl

and taking the limit 6, = 7/2 (w; =9, we find that

7. , for 6, !
with |8| < m/2.
- <o
T'he resolvent ‘.(»(m(?, ) then becomes
~ oy = d \ l y
‘ﬂﬂ(/ ) = = J al ) 2 o 2 - —

in

>wise monotonic.
v N '] l//

section 4 of chapter I, in order that(cosA”t)

s to zero as t tends to infinity, or equivalently,

00

order that
this point take the limit of an

.
rom (2.8) it may be shown that as N tends to infinity, Qoo may

(2.10)
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Cembining (2.6) and (2.14) we obtain
1

Sl(w) 3 A e

o w? +,),2

which yields when introduced into (2.2)

(cos A%t)y, = eVl (2.16)

From (2.16) it then follows, as has been showed in the preceding
chapter that the zeroeth particle performs Brownian motion (cf. the
discussion after (I.3.11)).

We note the resemblance between the limit 6’L =71/ 2, or w; —®as
taken above, and the limit M =®, w, =%, “L/M = 7 finite, proposed
by Toda for a heavy particle in a system with nearest neighbours
interactions (cf. the end of ch. I). In both cases a ''cut of’’ frequency
tends to infinity and the forces between the particles therefore also
tend to infinity.

If first order corrections in wz_l to the above results are taken into
account, the Brownian motion is only obtained inasmuch as time

intervals of the order w'l'_l are neglected and inasmuch as w; > %

3. Brownian motion of a heavy particle.

We now turn to the case that the mass M of the zeroeth particle
is larger than the mass of all other particles. From now on we shall
call the zeroeth particle the heavy particle.

We proceed to investigate under what conditions the momentum
autocorrelation function of a heavy particle will fall off exponentially
in time.

To this end we write

@

(cos Bl/zt)00 = (cos M 8%7)00 = [ decoswT { S(MB” — "“)}00
-0
@

= [ dwcoswT Syy(@)
-




and where the spectrum S,,(w) is given by

Syl@) = % {8(MB” — w) + S(MB% +w)},, . (3.3)

The new time scale 7 defined by equation (3.2) has been intro-
duced to enable us to study the motion of a particle in the limit as
M tends to infinity. (In the original time scale an infinitely heavy
particle will not react at all to the interaction with the medium).

Using the representations of the &-functions as given by equa-
tions (2.4) and (2.5), equation (3.3) may be written as

1 1 w +i€ 2
SM(w) = lim Im = — (@ +ig) ROO(( ) s [ (3.4)
E~0O + M2 M
with
R(z?) = (B — 241)”! (3.5)

the resolvent of the matrix B.

We now proceed to establish a connection between the (0,0) ma-
trix elements of the resolvent B and the resolvent A (as defined by
(2.7)). Equation (I.2.8) may be written in matrix form as

B=M% A.M*%, (3,6)
or equivalently,
M% .B=A.M%, (3.7)

Here the matrix M is diagonal and has elements Mk Sk , with Mk
given by (I.2.2). Solving equations (2.7) and (3.5) for A and B, res-
pectively, and inserting the obtained expressions into equation (3.7)
we find that
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M%. R-! +2%) = (Q! +2%1). M™% . (3.8)

Multiplying equation (3.8) from the right by R and from the left by
Q, and taking the (0,0) matrix element, we then obtain, using (I.2.2)

M Qq4(22)

Ryof2?) = - (3.9)
1 + 22 (1-M) Qq4(2?)

We therefore have the relation

2
hlAim zM™! QOo (—:7-)
li . Rigalnto), = . (3.10
s =2 Rl e

2
1 -z lim z M™! Qoo(':?')
M =>

This result is completely general, valid for any matrix A. We now
assume that Ajk is of the form (2.8). In the limit as N tends to infi-
nity, Qoo(zz) is then given by equation (2.10)

B 1
Qooz®) = 5 [ d6 —— (3.11)
o £(8) ~ z*

Making the change of variables

2 -

u £(6) , (3.12)
equation (3.11) becomes

‘o
Quolz®) = o= [ du —— . (3.13)
~un ! A2

Here g(u) is the positive frequency spectrum of normal modes for the
case that all masses, including the mass of particle 0, are equal.
We may also say that (2u)'1 g(u) = G(uz) is the spectrum of eigen-
values A=u? of the matrix A. uy is the frequency corresponding to
the maximum eigenvalue )\O = u_é. We have defined g(u) in such a

way that



1

-ug u - z/M u +z/M

(3.15)

In conformity with the physical ideas underlying the phenomenologi-
cal theory of Brownian motion, we shall study the expressions ob-
tained in the limit as M tends to infinity.

Using the fact that if Im z>0 3

1
lim ——— =P (L) tins(u), (3.
M-® u¥z/M

w
—
N
—

where P denotes the principal value, we find from equation (3.15)

2
z

lim zM"! Qpol Z5) = 25/ dug(u) in8(u) = i % q(0). (3.17)

M =
Combination of (3.10) and (3.17) yields

g i%9(0)
lim 712_ 2 Roo(Zp) = ———. (3.18)
M =@ : 1 — i%q(0)z

Therefore, S\y(@) as given by equation (3.4) becomes in this limit

Y
lim Sy(w)= S(w) =L — (3.19)
R 2 + w2
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v = Y%q(0) .

From equation (3.1) we obtain

1 —
lim (cos B/zt)OO = lim (cos M B%ﬂoo = e 7lT|. (3.21)
M= © t- @ M =
t/M =171

Therefore in this limit the heavy particle performs indeed Brownian
motion (cf. Ch. I, section 3).

It should be stressed that we have assumed g(0) = (2qu(uZ))u 20
where G(u?) is the spectrum of eigenvalues of the matrix A to be a
non vanishing finite quantity. The matrix A may be otherwise com-
pletely arbitrary. Thus as should be expected, the detailed speciti-
cation of the ''medium’! is not essential for the limiting Brownian
motion type behaviour of a heavy particle. In fact, the one dimensio-
nal system with nearest neighbours interactions discussed by Hemmer,
Rubin, Takeno and Hori is just a special case satisfying the above
requirements. We shall come back in the final section to the discus-

sion of the various limits taken in the derivation of the Langevin
equation.

We now consider in more detail the case that g(u) vanishes at
the origin. In that case the average motion of the infinitely heavy
particle is singular on the time scale (3.2). Let us therefore instead
of (3.2) introduce the time variable

1}
T = t/M‘/2 -
We then have
w

(cos B%t) o = (cos M#B%7) = [ dw cos w78}, (w) (3.23)

where

S;‘A(w) = lim Im
€ =0 *+




On the other

lowing result fo

and with (3.

2

matrix R(z“) is given by (3.5).

of (3.10)

hand, we have from

<
<
-
—
(2]
v
=
o=
i~
@
p
&
—
—
~
v

% DN
l D)
) — iu g(u)
-U
z Qool ) =

is finite for spectra behaving in the
chu|™,n21+e,(e>0).

'
Combining (3.24), (3.25), (3.27) and (3.28) we
r Sy,

(w):

o
%]
vi

-
£

23) for the limiting

(3.9) we

neighbourhood of

behaviour of (cos

ow




\/

lim (cos Bt

M= ® t—®

)OO

'
V2
t/M T

We thus note that for the case lim u™g(u) =
u=0 +

the average motion of the heavy particle appears to be periodic with
frequency @,. This result should not be interpreted to imply that the
motion of the heavy particle in the infinite ''heat bath’’ is then purely
reversible. In fact, we found that on the more compressed time scale
(3.2), the momentum outﬂcorrolatx on function p ( 7) has already relaxed
to zero, for J' 7 # 0. Therefore our result implies that on the time

cale 7= t/M”% the motion of a very heavy I .orllcl will appear to be
re"rr"'ble, and that the characteristic time ) I decay of the
momentum <:Jutoccrrelu!icn function are very much Ic than the
characteristic time of an oscillation :g'l. This corresponds, as it were
to highly underdamped oscillation of the heavy particle. We shall
discuss, in this connection in section 6 Rubin’s result for the motion
of a heavy particle in a 3-dimensional cubic lattice with nearest
neighbours interactions. For such a s\ m the relevant quantity g(u)
behaves as cu? near the origin. We shall first, ho wever , generalize

our resul s of higher dimensio

t
We also note at the formulae given were not sufficient to esta-

blish the ll:r:;!mr;; behaviour of the heavy partic for the case that
lim u™g(u)=b>0, (0<n £1).

u -0+

4, Motion of a heavy particle in a D-dimensional system.

and is labeled with a
ponents k, are integers such that -N
We therefore have (2N +1)- particles

of the sys




is a D-dimen 1al tensor, We de e by A the D(2N+1)"
13 5
X 1atr element 3 L = ]" N8 We taks
M for o}
o MLy k #
k
LA A\
(4.2)
Ve Y
Proceeding in same way used to derive (1.2.22) we now obtain
- — vy (t).p_(t) +E (t) 4
t ) (s <
4+ | 1! {If(fi—\"’ sy ) [ B-;_‘/‘ X )) {1 )
)

with

d

the external f

"he expression for the force E (t) is analogous to (1.2.24). H
Vi ke % ;
B..=(M_M_)"?A (4.5)
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L
/24
N

00

Note that the matrix element (cos B and ther
dimensional tensors.

To insure conservation of total momentum, A has to satisfy

M
=
"
LM
o0}
]
o
o
~J

Equation (I.3.9) for the covariance of the stochastic force E (t) be-
comes

=4k = 32
<E (tg) E (tgtt)> = —— p(t) ty lty) - plt) » v(t, +1) +
;}:2

with

p(t) = B~ M (cos B%t)

—-— |

00
and ¥, the transpose of y.
Equation (3.I) now becomes
Yy al3 t _Y%2 a8 o caf A 0
(cos BA) - (cos MB%7%8 - [ dwcos w7SY (@).| (4.10)
00 00 - o :

: afl;. v
Here 7= t/M, and the spectrum S (@) is given by

w +i €
$%8 (w) = lim Im —, (@ +i€)RZE (—)?) (4.11)
g ™ 00 M2




Defining

Q(z2) =(A - 22 1),

equation (3.10) becomes

2 2 2
lim % R__ (25 =lim zM?Q_ (%) * {I -z lim zM™' Q__(Z)}
M-o M" g M M = oo M M =@ oo M
(4.14)

Generalizing (2.8) to D-dimensions, we now define the interaction
matrix as follows

1 o - g =
A%P . Jou I 1,5(0) €200 "84 0 (4.15)
ik (277)[j L7 !

where @ denotes the vector (!.'.'l,...,.‘.?D). In order to insure the sym-

metry and reality of A%Z , £(6) has to satisfy
i

(6) = 17, (6) = 4, (=6) (4.16)

—

where f* denotes the complex conjugate of f. In other words, (&) is
an hermitian matrix; its real part is an even function of _f:, and its
imaginary part is odd. Furthermore we take f (@) to be a bounded,
positive semi-definite matrix with £(0) = 0.

From (4.13) and (4.15) we find, in the limit as N tends to infinity
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Q28 (22) = —

- o3 dg{f(g)-zzl}a; (4.17)

Let U (€) be the unitary which diagnolizes the hermitian positive

definite matrix f (@), and let QV (@) be the positive eigenvalues.
Then

e -

£(6) = U(6) * Q(6) - U(8) (4.18)

2 -

where @ (€) is the diagonal matrix with elements ¢ , (€). Inserting
equation (4.18) into (4.17) we get

1

” - = = Y = -
Qgg(z% " (2m)P ﬁ:l J...]d6 Ua, (6){0,(6) - 2%} IU*V

ath | |

Now let us change variables according to

and call JV (u) the Jacobian of the transformation. Equation (4.19)
becomes
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Wwhere the spectral density matrix qaﬁ(ul) is given by

(2'TT)D-1 v=I1 AT

D mw 1 * —
[ dPhuul, (@) I,00) Ug, () . (4.22)

We have defined gaﬁ(ul) to be an even function of u, . In equation

-

(4.21) vy = max (max QT’(E’), max QIZ/’(Z?), ves, Max Qg’(f}) )« Proceeding

as we did in deriving equation (3.17), we find that

2
Z
lim zM1Q%8 () =i (y )R

e

M = oo M2
with
(y"h) *R - % ¢®40).
From (4.14) and (4.23), we then find

22

z
lim — R__ (

M- M2 00 M2

) wd it oM =gyt

and from equations (4.10), (4.11) and (4.25),

lim (cos Bl/’t)_,__ =lim (cos M Bl/z'r)_._‘ se lTI

M= ® t—o 00 M- 00
t/M =T

.23)

4.25)
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From the properties of A it may be shown that qaﬁ(u) is a sym-
metric, positive matrix. It follows therefore from equation (4.24) that
y~! is also a symmetric positive matrix and has D positive eigen-
values.

From equation (4.5) and (4.26) we find

lim My (7) =y, (4.27)
M —~®

so that equation (4.3) becomes asympotically the Langevin equation
in D dimensions

The covariance of the Gaussian random force E (7) is found by com-
bining (4.8), (4.9), (4.26) and (4.27)

E(r, +7) > = 28y 8 (). (4.29)

lim M <E (1,
M =

o)

Thus, in this limit the heavy particle will indeed perform Brow-
nian motion in D dimensions.

The D positive eigenvalues of y represent the characteristic
friction constants of the system. Note that we must impose the con-
dition that these eigenvalues are finite, non vanishing quantities.
Orin other words, that the matrix g(0) with elements a®B(0) is positive
definite. This last condition generalizes the condition stated in sec-
tion 3 for the Brownian motion in a one-dimensional system.

For the case that the particles are placed in a simple cubic lat-
tice we use the symmetry property that
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where T is the matrix corresponding to a rotation of 7/2 around any

lattice direction, taking the equilibrium position of the heavy particle
as origin. From eguation (4.13) we find that the resolvent Q has to

satisfy

TR = IR e [ (4.31)
o) B Ik ik
and in particular the (0,0) matrix element
i o D S R 0 L (4.32)
00 00
which implies that Q___ is of the form
00
Q% - Q.. 8 ,4- (4.33)
00 00 ‘
- . A X 7 A
(The matrix A is also of the form A% = A_- (3a3, so that the Hamil-
00 ik !

tonian of the system is then the sum of D independent and equal

""one degree of freedom per lattice point’’ Hamiltonians.)
Using equations (4.23) and (4.33) we now find that

~~1yapB -1 ¢
(y i =Y baﬁ-

On the other hand we have (cf. equation (4.21))

(4.34)




42

where g(u) = 2u G(uz); G(uz) is the spectrum of eigenvalues A = u?
of the matrix with elements A___ .
jk

From equations (4.24), (4.34), and (4.35) it follows that

Y = 2/q4(0) , (4.36)

which is equivalent to the result in the one dimensional case: the
heavy particle will now perform Brownian motion in a D dimensional
isotropic system (there is only one characteristic friction constant)
if g(0) is a non vanishing, finite quantity. In a cubic lattice with
nearest neighbours interactions this is only true for D = 1. It is how-
ever possible to find classes of matrices A for which 0 < g(0)< :
the corresponding systems therefore exhibit the Brownian motion
type behaviour for a heavy particle. In the next section we give an
example of such a matrix A.

If on the other hand g(0) vanishes and if lim u™ g(u) = ¢ > 0.
-0+
(n 2 1 + €), the result obtained in this case fgr the one dimensional

system will hold (cf. the end of section 3).

5. Example of an interaction giving rise to Brownian motion in D
dimensions.

As an example, consider a simple cubic lattice with

D
= 2
{0y < () =% 1)1 (1—e'v|5a|),0<v<00

a=2

In this case the Jacobian of the transformation (4.20) is given by




and the friction constant by

Y = 2/9(0) = 2v% {%(arc tg (1—™ "% .;r/4)"1}P-1

which is finite for any D.

The interaction matrix A_ (h =j-k) corresponding to (5.1) is
h

] : 2 : : ih1
' A_‘ _ {2775 v (;__)/2 e-hl/llv' [¢“(l//2(77 __?_)) +
| h  (2mP B30 v
¢ ihl i'n1 ihl D
tAWAm + —)) = p( —— ) ~ B—)] } I {2n8; -
2v 2u % 207 a=2 %
2 h
= [1-(-)%e*7]}. (5.4)
hZ+V2
| Here ¢ (x) is the error integral defined by
b 4
$(x) =%, [ e™* dx (5.5)

— In this case the range of the '’'central part’’ of the interaction
(h:(hl,O,...,O) is different from the range of the non central part
(0,0,4e:,h404.,0). Examples in which these ranges do no differ, but
which do nevertheless lead to Brownian motion in D dimensions may
also be constructed.

6. Conclusions.

To conclude this chapter we wish to make the following remarks.
It has been shown that Brownian motion may occur in an infinite
assembly if the mass M of the heavy particle tends to infinity, to-
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gether with the time t, in such a way that t/M remains finite. This
limit is equivalent, at least for a'’free’’ particle (i.e. if V(xo)-:-O)
to the limit proposed by Toda for the case of an assembly with nea-
rest neighbours interactions .Indeed, Toda’s limit implies that the
normal mode frequencies tend to infinity as M, so that therefore the
characteristic times Tk for the assembly behave as M'l. Thus the
ratio t/Ty tends also to infinity as M. We have achieved the same
result by taking Tk constant and letting t tend to infinity as M.

We also wish to remark that the limit t =©, M —-® , t/M f{inite is
equivalent to the weak coupling limit taken in the derivation of e.q.
the master equation by perturbation techniques’*®. To demonstrate
this consider the Hamiltonian (1.2.7.)

!

! !
HO Zlp 2 +% % x By x .
k ik
Using (I.2.8.) and (1.2.2.) we may also write
HO _Hy +AV,

with the ''unperturbed Hamiltonian’’

!

k

I I
l'v
Y X Ajk Xy

j,k$0

HO - p
k

and with the ""perturbation’’, the interaction between the heavy partic-
le and the heat bath, given by

Vaxt {Z AOJX;+'/:M'V’A Yo

j40

'
00%0
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\

The ""coupling constant’! A in (6.2) is
(6.5)

Now, to compute from a Hamiltonian of the general form (6.2) any
macroscopic quantity or equation in the weak coupling limit, means’ 8
to take the limit A—0, t =®, in such a way that A2t remains finite.
As we see from (6.5) this is precisely the limit in which we have
obtained Brownian motion of the heavy particle. Thus as, e.qg. in the
derivation of the master equation, the weak coupling limit corresponds
to a Markoffian behaviour.

Finally we note that Rubin’s result? for a 3-dimensional cubic
lattice with nearest neighbours interactions is in agreement, if proper-
ly interpreted, with our results. In fact, in a 3-dimensional cubic
lattice with nearest neighbours one has lim u?2g(u) = ¢>0. Thus ac-

u—0 +
cording to our results (cf. the end of section 4 and the end of sec-
tion 3, no Brownian motion is obtained for the heavy particle, which
performs strongly underdamped oscillations. According to Rubin, the
motion of the particle is almost that of a Brownian harmonic oscillator.
However, inspection of his formula (see reference 2, formula (75))
shows that the apparent friction constant [ is very much smaller than
the frequency of oscillation of the damped oscillator @, and their
ratio B/w tends to zero as M™%. Thus in a rigorous limit, Rubin’s
result is in agreement with ours.






CHAPTER III.

QUANTUM MECHANICAL MOTION OF A HEAVY PARTICLE
IN HARMONIC OSCILLATOR ASSEMBLIES.

1. Introduction.

In this chapter we study the quantum mechanical behaviour of
an infinitely heavy particle coupled to a harmonic system.

In section 2 we obtain the '’Langevin operator equation’’ for the
heavy particle, in the presence of an arbitrary external force acting
on it.

Whereas classically there were two equivalent procedures for
taking the limit M—® , quantum mechanically they are not equivalent.
The difference lies in the expressions for the covariance of the
stochastic operator E(t).

For the initial state of the system ,we now prescribe the initial
average values of the position and momentum operators of the heavy
particle. The rest of the system is, as in the classical case, assumed
to be initially in ’'thermal equilibrium with respect of the heavy
particle’’.

In section 3 we solve explicitly the Langevin operator equation
in the case that the heavy particle is acted upon by a linear force.
Furthermore we discuss the dispersion of the position operator as
a function of time.

In section 4 we find that the position distribution function for
the heavy particle is Gaussian at any time.

2. Derivation of the Langevin operator equation.

In chapter I we found that the classical motion of the heavy
particle coupled to a system of harmonic oscillators is described by
the Langevin-type equation (1.2.22). In the guantum mechanical case
we get an identical equation with the ‘difference that it should be
interpreted as an operator eguation. Indeed, the Heisenberg form of
the gquantum mechanical equations of motion for the operators Xy and

p, are




where [a, b] denotes the commutator of a and b. Here the Hamil-

4

tonian H is given by

X
Py
RS 5 e \
H =% o +/‘J < <j’\ka‘ “\("0)’ (2.3)
E\'Lk ¢

where V(x,) is the external potential applied to the heavy particle.

Using the fact that

L 21 o F I\ ~ A\
[xk, pz] =2ihd, b, (2.4)
and
o 1 - ik o o. ) 2.5)
l’Y)"n , P = ITA(XJCkn + X k! o (2.5)

we find from (2.1), (2.2) and (2.3) that

k = :L')k/l\tx (2-6)
p. =-2A x, +8 F(
Py = : A Xyt 0! (KC), (2.7)

where the force operator F'(xﬁ) is defined as

1
)] (2.8)

[p,

, Vi(x

F(x.) =

0

0
ih
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From equations (2.6) and (2.7) we can now proceed as we did in
chapter I, and obtain the operator equation.

0) — M3 (B%.sin B"1)g, Miix, (0) +

polt) = M*% 3 (cos B%t) 0kV'k Xk

Ap (
I Okk k

+ ['dt’ [cos BA(tt)] 4o Flx,(t)) - (2.9)
0

From this equation we find, with the aid of (2.6)
o 1 = 1
Xq (t) + v F(XO) = — }’(t)xo(t) + QE(t) +

+ ftdt' {y(t) — y(t—t)} [cos B%(t—1t")]
0

0o F(xo(t)),  (2.10)

where 7y(t) and B are given by (1.2.23) and (I.2.8), respectively.
The operator E(t) 1s given by

E(t) = M*% szo {7(t)(cos B%t),, — (B%. sin B%t),, } p,(0) —

‘/=>_;ie {7(t)(B*. sin B%t),, + (B. cos B%t),, } (x, (0)—x,(0)) . (2.11)

For the initial state of the heavy particle we cannot assign de-
finite values to both displacement and momentum, because of the
uncertainty principle. We may, however, choose a wave packet such
that the initial expectation values of the displacement and momentum
operators are prescribed:

<x,(0)> =R (2.12)

<p0(0)> =A =MV
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It may be verified that the wave function

) = (2mo ') exp { - } (2.14)
h 4o

Y x

0

will secure the correct initial expectation values. The initial dis-
persions then are

<x2(0) — < x,(0)> %> - o (2.15)
2 2 h?

< p2(0) = < po(0)>2> = — (2.16)
4o’

so that the wave packet has a minimum spread

h?
< x2(0) — < x,(0)> 2> <p2(0) — <py(0)> 2> = — . (2.17)
4
The rest of the system is assumed, as in the classical case, to
be initially in ‘’thermal eguilibrium with respect to the heavy parti-
cle’’, i.e. we assume that at t = 0, the (non-stationary) density matrix,
in position representation, of the whole system is given by

n ' + -BH’ Rt '
() = ) Wlxg) o P T B0 —xp = x, +x) (218
withn =2N +1,
' 2 S
B -2 of AT 0 = xg) Aple xo) | (2.19)

and where ¢’ is a normalization constant.
The brackets in (2.12), (2.13) and (2.15)-(2.17) may now also be
interpreted as averages over the initial ensemble (2.18).
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Let us now define, for the purpose of calculating the covariance
of the operator E(t) in the initial non-stationary ensemble (2.18) (cf.
also chapter I, section 3), the quantum mechanical autocorrelation
function p(t) of the heavy particle in the absence of an external force
as

p(t) = {py(ty) » pylty +1)}, (2.20)

where p,(t) is given by (2.9) with F(x,) = 0, and {a,b} =% (ab + ba).
The bar denotes an average taken over the stationary ensemble des-
cribed by the density matrix

-0
f(Ox™,x") = cePH " 7 8(x! — x) (2.21)
]
where
p2
HO) 2% 3 = HhZ XA x, . (2.22)
k

In Appendix C we show that the covariance of the operator E(t)
may be written as

2
3
<{E(ty), E(ty +1)}> = {E(t,), E(t, +t)} = =Rl
d
+(ty) Yty +1) o) +(¥(ty) — ¥ty +1) — pl(t) (2.23)
ot

In the classical case there are two eqguivalent alternatives for taking
the limit M—®, The first one is to change to a new time scale 7= t/M,
and the other one is to change the interaction matrix A to M2A. How-
ever, these two approaches are not equivalent in the quantum mechani-
cal case, as we now proceed to show.
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i) Consider the first case. We change to the new time scale
T=t/M. (2.24)

Then, as was shown in chapter II, section 3

[+ 4]
(cos B/’t _j dwcoswt §, (w 0 | dwcos w TS (w) . (2.25)

- -

where S (cu') is given by (II.3.4).
In the limit as the number of particles tends to infinity, and as
M—® (see formula (II.3.19)) we have

1 Y
lim §,(@) = = ——— , (2.26)
M- T 242
and therefore
lim  (cos B%t)y, = eIl (2.27)
M-, t—00
7=t/M

Here 7y is given by (II.3.20).
In Appendix B we show that the quantum mechanical momentum

autocorrelation function is given by

1 fi BHBY%
2

— p(t) = [Bl/‘. coth . COS B%t] 00 * (2.28)

This may also be written as

cos wt Sl(w)

1 n h © Bhw
o
A i

| dwwcoth

s o]
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bil fm w Bhw
= dw — coth cos @ ’rSM (w)
2 - M 2M
8! o CoSs W T
pre— y‘_ @ = I[j-l e-’y’Tl
T 2 ' (2.29)
- 0 ')/ +CU2

where use has been made of (2.26). We note that (2.29) is just the
classical momentum autocorrelation function.
Combining (1.2.23), (2.10), (2.27) and (2.29) we find that

1 - 1
7) +— F(xo('r)) - —'yxo (7) += E(7) , >0 (2.30)

% () * 5 M

with the covariance of the operator E(7) given by

1
lim ﬁ<{E(TO),E(TO+T)}>=25'175(T), (2.31)

M=

as follows from (2.23), (2.27) and (2.29).

ii) If we now keep the original time scale and change the interaction
matrix A to MZA, we then find that

(cos MB%t),, — e 7|l (2.32)
M-
and from (2.28)
: (1) i [MB* th AHMB* MB%t]
- 0 = - 2, PSS TL SN 24
W re > co > cos 00

@ ﬁﬁw
J dw w coth

cos wt SM(w)
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Bhw
@ coth
ny @

-

Here we have used (2.26). The explicit value of p/(t) is!3

-nl‘r|/7'q

’yl'r‘ cot MY Tyt = 2 o
7 n=1 nz—(}”rq)z

Bh

/
<

o (2.35)

Therefore, in this case we find from (2.10), (2.23), (2.32) and (2.33)

tnat

32
<{E(t)), Elt,*)}> = — — p'(t) +¥? p'(1) . (2.37)
ot?

We note that in the classical case we were furthermore able to
show that in the initial conditional canonical ensemble, E(t) is a
Gaussian random process. We did not succeed, in general, in obtaining
a quantum analog of this statement. We shall therefore instead first
study in the next section the Langevin operator equation for the
case of a linear external force, and then in section 4 discuss for this
particular case the full time dependent distribution for the displace-
ment X«
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3. Solution of the Langevin operator equation in the case of a linear
external force.

The Langevin equations (2.30) and (2.36) obtained in the preceding
section, may in principle be solved for any external force F(xo).
However, in practice, this is only possible, as in the classical case
for linear forces:

We shall now study the two cases considered in section 2.

@

S

i) In this case equation (2.30) becom

- :;O(O) x,(0) sin vy7T
x(T) :e"z'yT[xO(O) cos vyT +( + ) ] +
* 04 2 v
1 ﬂ'rl = VA ('T 'T') l A
+ J dr' e2Y\T=T sin vy(r—7') — E(7") , (3.3)
VY o M
where we have taken
, 2

(3.4)

and
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Using (2.12) and (2.13) and the fact that the average value of
E(7) vanishes, we find that

sin vyT

v
lim <x,(7)> =e”77[R cos vy T +(— +%R) 1, (3.6)
Y

M—®

which is the classical value.
Using (2.15), (2.16), (3.3) and (3.6) we obtain for the dispersion

; 2
sin vyT
< xg(’r) — <x0('r)> 2> _e77{0o'(cos V’)’T+]//2——y—) +
v
h2 9
+ ———————— sin py7} +
1 ~ -~ / 1
ot o Td”f’J e VT HTY) gin vyr'sin vyr'< {E(7) E(T")}>
M2y 2y2 g 0
(3.7)
Taking
o' = Mlo (3.8)

and using (2.31) we find that

; 2
- sin vyT
lim M< xg'("r) SR < XO(T) >2> _ e 77 {o(cos vyT+
M—@ 2v
h? BT ~YT, 1 2
+ sinzv}/'r}+—(l—e7/ (1 ¥~ Bin*vyr +
4o Y2 v? »< 2v

+ — sin vyTcosvyT)} . (3.9)
v




57

We note that except for the first bracket in the right hand side, this
result is the classical one. The first bracket is due to the fact that
there is an initial uncertainty in the position and momentum of the
heavy particle. For times 7>> 1 /7, we have

,[3'1
lim M<xZ(7) — <x4(1)>%> - — , (3.10)
M- ;

which is the classical equipartition value.

ii) In this case the dispersion of x,)(t) is given by

: 2
sin vyt
lim M< xg(t) —-< xo(t)> 25> _e 7Y {o(cos V')/7'+—y-
M—® 2v
«hz
+ ———— sin2yyt} +1(t) , (3.11)
4o 'yz v?2
where o' is given by (3.8), and where
t _t
I(t) = [ dt [ at e AV ) gin vyt'sin vyt"
v2y2 0
1 -
X = <{E@") , ERt")} > . (3.12)
Changing to the variables
L=t + i, n=t—=1t', (3.13)

I(t) becomes with the aid of (2.37)
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1 -t b =L o S
I(t) = —— () df | dn+t+J di | dn) sin% vy (L + )
2v 2 y"‘ 0 0 t 0
1 ¥ .7‘
x sinbvy({— 1) e 275 {— : p'(n) + 'yzp’(n)} . (3.14)
om*

Performing the integrations and using (2.33) and (2.34) we find that

,-/flll\‘l)
w coth
2 2 hy (o 2
lim M<xg(t) — <x4(t)>*> =— | dw =
o 297 % \2\2 % 2
M= - (7 R VA
h o : 1
- (cotmrT,) e A% sin“yyt +— sinvyt cosvyt) +
21('}2 2)/’ v
. sin vyt h
te A {z,?(cos vyt + ) + sin2 V')’t} +
2v 40 v2 2
+0(7a), t20. (3.15)

Here Tt given by (2.35), is a new characteristic time which repre-
sents a quantum mechanical effect.

In the derivation of (3.15) we have taken k = 0(l) and Ty K 1/7.
This situation still may correspond to very low temperatures.

We see that for t >> T the time dependence in (3.15) is essential-
ly classical.

For times t > 1/7 the dispersion (3.15) becomes

Lhw
w coth
hy (.md’
o = — J aw
eq 29T e (kf)’2— !_1)2)2 +,>/?. [:L,_?.
h sinh (v7y £h) hy 2

2v7y cosh(vy Bh) — cos(% 7y Bh)
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where § (z) is the Riemann function. The second equality holds if
k =0 (1) and T L 1/7%. (The exact value of the integral is computed
in Appendix D).

The expression (3.17) is the quantum mechanical equipartition
value for the displacement Xq
In the classical limit (R = 0, or S~ 0)

AN : PR T
- B =% (k'}’z w C()2)2 +,),2 w 2 Bk')’z Bk q
(3.18)

Consider now the case that the heavy particle is weakly coupled
to the harmonic assembly, lm the sense that y— 0, k= ® and « k72
finite. Then vy— K Y = k”. From formula (D.11) of Appendix D we
then find

il Bh k%
o = coth

eq
2K 2

: (3.19)

Let us now discuss in more detail the two main results (3.17)
n (3.19).

The fact that for t—® the quantum mechanical equipartition value
(3.17) is reached (as it should be) at the same time indicates that
one may not speak in this case of (a quantum mechanical) Brownian
motion in the usual sense: indeed this equipartition value contains
reference to the structure of the heath bath through its explicit depen-
dence on y.In the classical case this is not so (cf. equation (3.18)): it
is in fact one of the characteristics of Brownian motion that the
equipartition value is independent of the structure of the system, Of
course in an extended sense one might still speak of a quantum me-
chanical Brownian motion even in that case, since this motion is
described by a L.angevin operator equation.

On the other hand the result (3.19) shows that for weak coupling
(y=0, k=®, x = ky? finite) we may speak of a quantum mechanical
Brownian motion in a customary sense: the equipartition value is now
that of a single quantum oscillator and is independent of the structure
of the system.



60

4. Quantum mechanical distribution function for the displacement of
the heavy particle.

In this section we discuss the form of the quantum mechanical
distribution function of xo(t) in the case that a linear force Mkx, is
applied to the heavy particle. The Hamiltonian of the system may
then be written as

+% 2 x

Ve 5 Cix Xk o

where

Cpp = Apy *MK8 08, (4.2)

In an n-dimensional notation, the solutions corresponding to the Hamil-
tonian (4.1) are

p™(t) = a.p™0) +b . x"(0) (4.3)

(4.4)

]
1=
=
"
.
X
s
=)
+
0
o}
<L,
=)

where n =2N + 1, p® and x™ are n-dimensional vectors with compo-
nents p, and Xy respectively; a, b, ¢, d are nxn dimensional, time
dependent matrices.

Let fw(x“,p";t) be the Wigner distribution function of the system
at time t. It is defined byl‘1

2ip™.x"
£, (X™,p%it) = (mh)™ [dy” p(x™ +y", x" — y"it) exp (——— ) (4.5)
n
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where p(x",x'";t) is the coordinate representation of the density matrix
at time t, and

n

n n
P =i:pkxk, dy =';rdyk.

From (4.5) we obtain by inversion

p(x"x'™;t) = [ dp™fy, (%(x™ + x'™),p";t) exp { - L'(x—_:}- (4.6)
h

The position distribution function p(x";t) is given by the diagonal
part of the density matrix. From (4.6) we find that

p(x™it) = p(x", x";t) = [ dp™ £,(x",p%t) . (4.7)

The position distribution function for the heavy particle is

p(xqit) = [ dx™1p(x™;t) , (4.8)

where the integration is performed over all the x's except Xg*
On the other hand, the Wigner distribution function at time t may
be written in terms of its initial value as follows

f,(x%p™it) = [ dx'™ dp'™ £, (x'",p'™;0) P(x"",p"" | x™,p";t) (4.9)

where P(x’“,p'"]x",p",‘t) is the propagator of the Wigner distribution
function. For a system of harmonic oscillators, this propagator is
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known to be equal to the classical conditional probability density
in phase space (cf. Appendix A):

P(x'®,p™|x",p"it) = §(x"—d.x""—c.p™)é(p" —a.p'” =b .x""), (4.10)

where each 8 -function stands for a product of n & -functions,

Using (2.14) and (2.18) we find that the initial Wigner distribution
function is Gaussian, and therefore, according to (4.10) and (4.9),
fw(x",p";t) also. Thus we see from (4.7) that p(x";t) is Gaussian,
and finally from (4.8) that the distribution function for the position
of the heavy particle is normal.
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APPENDIX A

Consider a harmonic oscillator with the Hamiltonian

H=%P2+%w2Q?, (A.1)

and let ‘/’Ju(Q) and Eu denote the eigenfunctions and eigenvalues of H,
respectively:

HY,(Q) = E, ¥,(Q) . (A.2)

By definition the Wigner distribution function isl4

-1 2iPy
f¢(QP) =(7h)™! [dy p(Q +y, Q — y) exp ( ) (A.3)
f
with the density matrix o(Q’,Q) given by
1 (!) f<
p(Q,Q) == = ePE, y*(Q) ¥ .(Q) (A.4)
Z u=0 Lo K

and

(A.5)

Inserting in (A.4) the explicit eigenfunctions and eigenvalues of
the harmonic oscillator, we find
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p§0",Q) = ()% _ $ e ln +4)  py HQ 4O
x H,(a#Q') H,(o#Q) , (A.6)

where Hu are Hermite polinomials and
a=w/h. (A.7)

Using the abbreviations

a%Q =x, phow=8", (A.8)
equation (A.6) becomes] S
2(01.Q) = L (Zy% e X2 +x8)/2 § () yomt B H )y (H (x)
Z m =0 © n
1 a B!
Y 1 "2
e Yilx + x")2tgh'= -
e i St
B!
—Y% (x — x")% coth 5 ¥ (A.9)
or
Q1,Q) - = ( i A axp (= % 2 (Q + 0"2igh 2
e z = (—mmm )" — "4t =
# Z ' Jnhsinh Bhe ¥ %% .
w /%f(l)
~ %z Q- OB soth e ¥« (A.10)
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Inserting (A.10) into (A.3) and performing the integration, we
obtain for the Wigner distribution function

- Sha 1 1 Lha
£ (Q,P) = (7mh coth—— )" exp {—
’\ fl'L‘ 2

the fact that

where we have used

Z = (2 sinh

For the propagator of the Wigner distribution function P(Q',P’ Q,P;t)

we have the following expression (cf. ref. 16, egq. 2—35)

rr 21P'Y'"/% +r 1~
. )921' Y'/h K(Q!+Y"'
mh '

P(Q’,P'|Q,P;t) =

Q +Y:t)
K(Q! — Y'|Q = Y;t) e T2IPY/Rgy gyr  (A.13)

where K(Q"Q;t) is the propagator of the wave function, given by

KQ Qi) = = e BNy Q) ¢, (Q) . (A.14)

/J.:C‘

Comparing (A.4) and (A.14) we find that

K(Q'|Qit) = [Z(8) p(Q"Q:B) 4_sy/m - (A.15)
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and therefore, from (A.9) and (A.12) we get

K(Q'|Q:t) = (— — Y% S "2 o
(Q'|Q;t) (zmmmwt) exp { 7 (Q +Q"2 g =
PRl 7 O (A.16)
il 2

Inserting (A.16) into (A.13) we find that the propagator of the Wigner
distribution function is

PI

P(QllpllQ,Pit) =06(Q — Q'coswt — —sinwt) §(P — P'coswt +Qwsinwt).

w

(A.17)

We note that this is just the classical propagator in phase space.

For a system of n independent harmonic oscillators, and without
symmetrization of the wave function, the Wigner distribution function
and its propagator are just the product of the Wigner distribution
function and its propagator of each harmonic oscillator, respectively.
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APPENDIX B

We compute the quantum mechanical momentum autocorrelation
function p(t):

(0)
p(t) = Tr{py(ty) 4 pylty + £, (B.1)
where
(o) _ 1 -pHO (B.2)
Z
with
(0) pjz
1 1
H - j? Y FAT +/2ji X A”K X, (B.3)
and
ZveTef00, (B.4)

Let us perform the transformation

!

p; = M;l/’ Py X, = Mxk/2 X, o (B.5)
Then (B.l) and (B.3) become
p(t) = M Tr {py(ty) , pylty + )} £(°) (B.6)

and




Now, we change to normal coordinates,

n! -3 U P 30 | R.Q
Sl 2k S ‘kava" (B.9)

+1)} £0) (B.10)

with
HO - % 2P2 + 42 w2Q2 (B.11)
a
and
2 s R <\ |
W% 8ay= 3 Ug By Uy, - (B.12) 1
k \

It may be shown!” that the autocorrelation function can be written
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Tr{P,, (to), P, (t #)H(®)a [[PI P4 £, (Q',P ™t ; Q1" P4/miy 41)

dQ'"dP'"dQ' ®dp!/"

- f 6 0 6 o)
= [fPPU£.(Q" Pt Y cos { = ( : - . )}
GQI“ opm 6P an

P(Q'",P™| Q! P1f:t) QPP ™dQ! dP! ™ , (B.13)

Here  £,(Q",P"™;t:Q"" PI"™;t +1), £.(Q"™P™;t ), P(Q™P™ |
Q'™ P!"™:t) are the joint Wigner distribution function, the Wigner
distribution function and its propagator, respectively. The 6-symbol
denotes differentiation '‘to the left’’, We now integrate (B.13) by
parts, and recall the fact (cf. the end of Appendix A) that for the
Hamiltonian (B.11), the Wigner distribution function and its propa-
gator are products of single Wigner distribution functions and its
propagator, respectively. Using (A.11) and (A.17) we find that

8
h ‘/"hwu

TeiP_(t) Pt 0D 48 = @ coth

cosw t . (B.14)

va

Inserting (B.14) into (B.10), and using (B.12) we obtain that

/‘?hwy
oft) =M = Uo‘ — w_ coth cosw tU
2 v 2= v Ov
h BhB %

=M= [B*%.coth
2

. cos B%t] . (B.15)
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APPENDIX C
Consider
(0) pi
Y = ! = =
H k=0 2M, +/21,E¢0 () <isp) Ay (X = T
p2 !
o > 1 ) — 2,
Sy + = % pZ + A),szo (xj X,) Ajk (x, — %,)
2
Pg
=0 +H.
2M (&)

Transforming to coordinates

w > 1
a#O

P

ka® a

e
L3
i

k 40 (C.2)

S e UkaQ

a0 &

where U, is an element of the orthogonal matrix which diagnolizes
the matrix with elements Ajk (i,k # 0). (The Uka introduced here
should not be confused with the Ukaof Appendix B, which diagonalizes
the complete matrix Ajk). The Hamiltonian (C.1) then becomes

2

P

HO _ 2 + S (P2 +w? Q2), (C.3)
2M a#O & & %
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It should be noted that these @ s are not the normal modes of the
whole system. Indeed, the Q_(a 4 0) are functions of Xge
Calling

we may write (C.3) as follows

H(O) _ 5 %(P2 + w2 Q2),
#0 a a a

The canonical Wigner distribution function corresponding to the
Hamiltonian (C.6) is

(H(O)) 1 1 'Bhwa 2 2 ~2
R G S R (P2 +w2Q2))
1 2 h
S e'ﬁpo/2 [T exp{— tgh &a (P2 + w? Q%)}

; eBRG/ M ¢ (1)

where fw(H') is the canonical Wigner distribution function correspon-
ding to the Hamiltonian H'’. Here Z, Z’.0 and Z' are normalization
constants.

Let g be afunction dependent on p™~!, x"‘l-xo, where the excluded
coordinates are Py and Xg Consider



with u’i/(xo) given by (II1.2.14).
Since f\LH ) fw(xo,po) is the Wigner distribution function corres-
ponding to the initial ensemble (III.2.18), equation (C.8) implies that

In computing the covariance of E(t), we may therefore calculate
it as an average over the stationary canonical ensemble described
by (III.2.21). We can proceed as in the classical case to derive equa-
tion (II1.2.23) (cf. chapter I, section 3).
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APPENDIX D

Consider the integral

@ @ coth u w cosw t ® @ coth u w
I =] dw =% [ dw
- w? +2a?% w?cos26 + ot - w? +202wzc0526‘ +at
x (el®t + g7i%t) =h(I, +1), (D.1)

with t 2 0, and 0< @ <7 /2.
The integrals I, and I_ represent integrations along the entire
length of the real axis, of the functions

z coth uz
h, (z) = g =13t (D.2)

z4 +2a%2%c0s26 +a*

respectively.
The functions h,(z) have simple poles at the points
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Let C, denote the upper half of the circle ,zl = R, where R> a.
Integrating the function h (z) counterclockwise around the boundary
of the semicircular region, we have

R
F{ h(z) dz + [ h,(z) dz = 27i =R Res, (D.3)

Cs

where ZT Res is the sum of theresiduesof h (z) at the poles z =

iae*'?, inm/u (n = 1,2,..., <R).
It may be shown that
lim f h,(z)dz =0, fort 2 O. (D.4)
R—® ol
Therefore
= s (¢4}
I, = f h+(z)dz=2'mi+ Res (D.5)
-
Analogously
23 @
I = h.(z)dz=-27i =7 Res, (D.B)
- ®

where = Res is the sum of the residues of h_(z) at the poles z =

-iae “9, z =-inm/u(n =1,2,:.).
We obtain in a straightforward way
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Res h+(z) (at z = iae'w) = -Res h_(z) (at z = -iae"e)
) -1 -at -16 : -i8

= (41 sin 260) " e ™*® coth(ique™") (D.7)
Res h (z) (at z = ice‘e) ==-Res h_(2) (at z = -iaew)
1 10 16

= - (4i sin 208)7! et coth(ique'?) (D.8)

Res h (z) (at z = ilnl'n/u) = - Res h_(2) (at z =-i|n|ﬂ/u)

i nm e t/u
e (D.9)

w2 (nm)?* — 2 (aunm)?cos 2 6 + (au)?

Combining (D.1), (D.5) - (D.9) we find that

e 9tcesl  gin (2qucosf)sin(atsinf) +sinh(2ausiné )cos(atsiné)

I =
a?sin 26 cosh(2ausinf) — cos(2aucosf)
-nmt/u
22 (LY 3 e ; ; (D.10)
7" n=1 n%—= 2(aun/7)%cos26 + (au/m)*

witht2 0,0<86<7w/2
From (D.10) we then obtain




sinh (yv Bh)

- (Kj./?' - L:‘)')7 + ),? w* yzzz cosh(yv Sh) — cos (%ySBh)
,F‘T’l 2 @ T
- 2( )

2 ™=l m% _ m%(Bhy/2m)? (1-2k) +k2(Bhy/2m)4

For the case that Bk ¥/27 < 1 and k = 0(1
duces to

® ] -
2 —_ @ C (3) = 1-202 .
m=1 e

where ((z) is the Riemann function.

« (D.11)

), the sum in (D.11) re-

(D.12)

/
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SAMENVATTING

Het ontwikkelen van een statistisch mechanisch model voor de
Brownse beweging vormt het onderwerp van verschillende recente
onderzoekingen.

Hemmer, Rubin en Turner hebben de beweging onderzocht van
een zwaar deeltje in een systeem bestaande uit gekoppelde harmo-
nische oscillatoren met naaste buren-wisselwerking. Zij hebben laten
zien dat in een één-dimensionaal systeem een zwaar deeltje zich
min of meer als een vrij Browns deeltje gedraagt als de massa van
het zware deeltje maar groot genoeg is. Toda en Takeno en Hori
merkten op dat zuivere Brownse beweging slechts verkregen wordt
na een dubbele limietovergang waarbij zowel de massa M van het
zware deeltje als de koppelingsconstante a, die de naaste buren-
wisselwerking karakteriseert, oneindig groot worden, en wel op zo-
danige wijze dat de verhouding a./M2 eindig blijft.

Anderzijds hebben Kac, Mazur en Ford laten zien dat in een
systeem, geheel en al bestaande uit deeltjes van gelijke massa,
een willekeurig deeltje zich al Browns deeltje zal gedragen in het
"'warmtebad’’ dat gevormd wordt door de overige deeltjes, als de
harmonische wisselwerkingskrachten van een zeer speciale vorm
zijn (lange dracht). Voor een systeem van gelijke deeltjes kan men
zuivere Brownse beweging nl. alleen afleiden m.b.v. een limietover-
gang waarbij een '‘cut-off’’frequentie’’, die het frequentiespectrum
van de normaaltrillingen begrenst, oneindig groot wordt. Voorts bleek
de beweging van een deeltje dat een uitwendige kracht ondergaat
in deze limiet over te gaan in die van een Browns deeltje in hetzelfde
uitwendige krachtveld.

Bovengenoemde resultaten hebben steeds betrekking op systemen
bestaande uit oneindig veel deeltjes.

In. dit proefschrift wordt de beweging onderzocht van een deeltje
in een systeem bestaande uit harmonische oscillatoren, waarbij meer
in het bijzonder de voorwaarden worden afgeleid waaronder dat deel-
tje zich als een Browns deeltje gedraagt.

In hoofdstuk I wordt een forméle oplossing gegeven van de be-
wegingsvergelijkingen voor een bepaald deeltje dat een uitwendige
kracht ondergaat. M.b.v. deze oplossing worden de bewegingsverge-
lijkingen zo geschreven dat zij een structurele analogie met de Lange-
vin-vergelijking vertonen.

Tevens wordt, m.b.v. de statistische mechanica, het gedrag van
het deeltje onderzocht in een initidel conditioneel kanoniek ensemble

dat de random-verdeling van de overige deeltjes beschrijft (warmte-
bad).
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In hoofdstuk Il wordt eerst het model van Kac, Mazur en Ford
besproken, Vervolgens wcrdt de beweging van één bepaald deeltje
onderzocht in het geval dat de massa M van dat deeltje oneindig
groot wordt, waarbij de voorwaarden worden afgeleid waaronder het
zich als een Browns deeltje gedraagt. Wanneer men de massa M en
de tijd t oneindig groot laat worden, op zodanige wijze dat de ver-
houding 7T = t/M eindig blijft, verkrijgt men Brownse beweging, mits
de wisselwerking aan een zeer algemene voorwaarde voldoet, die
geen speciale beperkingen oplegt aan de gedetailleerde vorm van
de wisselwerking: de spectrale dichtheid G(w ?) van eigenwaarden
w van de wisselwerkingsmatrix dient evenredig te zijn met w"! voor
w— 0.

Ook het geval dat de spectrale dichtheid niet aan bovengencemde
voorwaarde voldoet wordt nader onderzocht.

In hoofdstuk IIl wordt een quantum mechanische analyse van het
gedrag van een oneindig zwaar deeltje gegeven.

Terwijl klassiek de limiet M—® op twee equivalente manieren
genomen kan worden, zoals bewezen wordt in hoofdstuk II, leiden deze
twee procedures quantum mechanisch tot verschillende resultaten.
Wel vindt men in beide gevallen voor het zware deeltje (dat de invloed
van een willekeurig uitwendig krachtveld ondergaat) een ’''Liangevin
operator-vergelijking’’, maar deze twee vergelijkingen verschillen
onderling in de quantum mechanische autocorrelatiefunctie van de
""random kracht-operator’’. De oplossing van de Langevin operator-
vergelijking wordt onderzocht voor het geval dat de op het zware
deeltje werkende uitwendige kracht lineair is.

Tenslotte wordt de vorm bepaald van de plaats-distributiefunctie
van het zware deeltje op een willekeurige tijd.
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Rubin’s statement that a heavy parti

ir cubic
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Chapter II of this thesis.

A particle initially described by a Gaussian wave function and
J

coupled to an assembly of oscillators initially in thermal equilibrium,

ly
will have a Gaussian position distribution function at any time.

Chapter III of this thesis.

) ! [1]

In deriving classical Brownian motion of a particle ma
coupled to a harmonic assembly, there are two equivalent procedures

for taking this limit: changing to a new time scale 7=t/M or enhancing

vi

1 s - 2 ~ 1 x A
the interaction matrix A to M“A. These two alternatives are not equi-
valent in the quantum mechanical case.

Chapter III of this thesis.

The quantum mechanical momentum autocorrelation functio

n
infinitely heavy particle, coupled to a harmonic assembly, becomes

: the classical function for the case (3 Kt<X 7, where T and T,
are a quantum mechanical characteristic time and the relaxation time,

respectively.

Vv

Contrary to their statement, Maradudin and Wallis do not compute
the true dielectric susceptibility. However this quantity may be ob-
tained from their result.

A.A. Maradudin and R.F.Wallis, Phys.Rev. 123, (1961), 777



VI

The mean phonon lifetime in a one-dimensional anharmonic lat-
tice with nearest neighbours interaction, to the lowest order approxi-
mation in the anharmonic force constant, is independent of the wave

number.

A.A. Maradudin and A.E. Fein. Westinghouse Research Laboratories
Scientific Paper 62-129-103 P.(1962) (Pittsburgh, Pensylvania)

VII

In order to verify the Onsager symmetry relations beyond reason-
able doubt, both the Soret and Dufour effects in dense media should

be measured.

VIII

For large values of Stdérmer’'s constant 7, Stérmer’s inner allowed
zone shrinks into the corresponding characteristic line of force of the

magnetic dipole.
C.Stérmer, Polar Aurora (Oxford University Press, 1955)

IX

The latitudes of the mirror points in a dipole field for values
of 7y larger than 2.5, as obtained from the differential equations of
motion agree with those obtained by the approximation of constant
magnetic moment.

H.C. Alfvén and C. F&lthammer, Cosmical Electrodynamics (Oxford Uni-
versity Press, 1963).

X

The only geographic coordinates of two geomagnetic equivalent
points in the dipole model which changed appreciably in the period
1845-1955, due to secular variation are the radius and the longitude.

XI

Messiah's derivation of the fact that the quantum number [, rela-
ted to the eigenvalues of the orbital angular momentum operator
[ (L +1) is an integer, is not satisfactory.

Ag.GMessiah, Quantum Mechanics (North-Holland Publ. Co. Amsterdam,

1962)
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