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INTRODUCTION

In the domain of linear, macroscopic electrodynamics the behaviour of

material bodies in an electromagnetic field may be characterized by such

material parameters as the generalized, wave vector and frequency dependent

dielectric tensor or the generalized, wave vector and frequency dependent

conductivity tensor. These parameters enable one to determine the

resulting electromagnetic field at any point in space and time when the

material system is subjected to an arbitrary external electromagnetic

field. It is the task of statistical mechanics to provide, in terms of the

microscopic properties of the system, expressions for these material

constants. The conventional way to obtain such expressions is to first

derive a statistical expression for the "external"susceptibility tensor

characterizing the current response of the system to an external electro

magnetic field and then to eliminate the external field by means of a

relation between the external field and the Maxwell field of the system.

One obtains in this way an expression for the conductivity tensor in terms

of the external susceptibility.

In the theory of optics * , one is interested in the behaviour of

material systems, when they are perturbed by fields which are generated

by external sources outside the material system ("light"). In particular

one studies the propagation of normal waves in material bodies

characterized by indices of refraction. In one such theory, the so-called

rigorous dispersion theory, the extinction theorem of Ewald and Oseen plays
3) . . .  . .an important role. Due to the principle of linear superposition the

total electric field inside the medium consists of the sum of the incident

wave and the induced wave. As the velocity of light in a medium is in
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general different from the velocity of light in vacuum, the incident light

has to be cancelled by the induced field. How this comes about is the

context of the extinction theorem. It states that the incident electric

field at any point inside the medium is cancelled ("extinguished") by the

electric field generated by the induced current density at the boundary of

the material substance. The method by which this theorem, together with

an expression of the index of refraction, is obtained in this theory, seems

to imply that the extinction of the incident wave should be understood on

the basis of microscopic considerations.

In this thesis we shall on the one hand attempt to elucidate the meaning

of the extinction theorem and on the other hand develop a method by means

of projection operator techniques which yields directly the required,

statistical expressions for the material parameters of the system.

In chapter I we derive, starting from the general solution of the

classical boundary-value problem for electromagnetic fields, formal

extinction theorems for the incident electromagnetic field. These

expressions are applicable to any medium and are nothing but general

identities. Introducing material equations the true extinction theorem of

the Ewald-Oseen type is derived for linear, isotropic, homogeneous media.

The importance of surface effects arising from discontinuities in the

material parameters is demonstrated. This analysis proves that the

extinction theorem is a consequence of the macroscopic Maxwell equations

together with constitutive relations. We may therefore infer that in the

traditional theories this theorem should rather be interpreted as a

consistency check with Maxwell's equations. In chapter II we show, in the

framework of linear response theory, that by means of projection operator

techniques an expression for the transverse part of the wave vector and

frequency dependent conductivity tensor can be found directly in terms of

the transverse part of a current current correlation function with a

modified propagator. From the structure of this expression Kramers-
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Kronig relations follow in a standard way. The fact that we were not able

to find an analogous expression for the longitudinal conductivity is

connected to the circumstance that there can be no general proof of Kramers-

Kronig relations for the longitudinal conductivity as was pointed out by

Martin. * ̂ It was also stressed by Martin that the failure of a physical

system to obey Kramers-Kronig relations should not be interpreted as a

breakdown of causality.

To compute the conductivity tensor we must include the electromagnetic

interactions between the particles. Their inclusion considerably

complicates all calculations. It is therefore common practice to employ
4)

self-consistent field methods as a first approximation. These methods

are based on the assumption that the conductivity tensor, which represents

the response to the total average electromagnetic field, may be obtained

by evaluating the response to an external electromagnetic field for a model

system with an effective Hamiltonian in which part of the electromagnetic

interaction is neglected. In the next approximation one then consider so-

called local field (Lorentz field) corrections. It is stated in the

litterature , that local field corrections are not important in plasmas.

It is not clear, whether such self-consistent field methods are reasonable

in the case of e.g. a molecular fluid. One of the attractive features of

the expressions for the electromagnetic transport coefficients in terms of

commutator correlation functions with a modified propagator is the

circumstance that they form a convenient starting point to study the

validity of the above mentioned self-consistent field methods.

In chapter III we derive so-called "inverse" extinction theorems from

the conventional linear response theory for material systems to an external

electromagnetic field. These inverse extinction theorems express the fact

that the induced current density and the total electric field at any point

inside a medium is equal to a current or field generated by the external

electric field at the boundary of the medium. Such inverse extinction
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theorems are also obtained directly from the phenomenological Maxwell

theory. Therefore, as in the case of the usual extinction theorem, these

relations are a consequence of the Maxwell equations together with

material equations. Together with the physical interpretation of these

relations, some aspects of the linear response theory for translationally

invariant systems are discussed. We also give an interpretation of the

commutator correlation functions in the linear response theory, i.e.

the 'external" susceptibilities, in terms of the macroscopic propagator

of electrodynamics and the conductivity tensor' of the medium.
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CH A PT E R  I

ON THE EXTINCTION THEOREM IN ELECTRODYNAMICS

Synopsis
Starting from the general solution of the classical boundary-value problem for

electromagnetic fields, formal extinction theorems for the incident electromagnetic
field are derived which are applicable to any medium and are nothing but general
identities. Introducing material equations, the true extinction theorem of the Ewald-
Oseen type is then derived from these identities for linear, isotropic, homogeneous
systems. The importance of surface effects arising from discontinuities in the material
parameters is demonstrated. This treatment establishes the intimate connection be
tween the classical boundary-value problem and the extinction theorem.

1. Introduction. The Ewald-Oseen extinction theorem was originally ob
tained within the frame work of the so-called rigorous dispersion theory L 2>3),
starting from an analysis of the integral equation for a linear, isotropic die
lectric of volume V, subjected to an external electric field t

£
P(rco) =  pa(co) [Ee (rco) -f- ƒ curl, curl, g(r | r'; k) P(r'w) dv']. (1.1)

*(r)

Here P(rm) is the polarization per unit volume at position r  and frequency
or, Ee(rco) the external (incident) electric field, a(co) the mean molecular
polarizability, p the density of the medium and g the scalar Green function

g i/t l r - r 'l
g(r\r';k) =  ——--------- with k  =  cole. (1.2)

47c|r — r |

In eq. (1.1) a small sphere centered around r  and bounded by s(r) is ex
cluded from the integration domain which is bounded by the surface E  of
the medium. Formula (1.1) is obtained from microscopic considerations. As

t All time-dependent quantities are Fourier-transformed in time, e.g. ,
+ o o

Ee(ra>) =  ƒ Ee(rt) e1®* d/.
—  OO

We use rationalized gaussian units throughout.
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shown by Rosenfeld2), effects of radiation damping and parts of density
fluctuations may be included in the definition of a.

It was now possible through a careful analysis of the integral equation to
derive the Lorentz-Lorenz formula for the index of refraction n of the
medium

(»2 — l)/(wa +  2) =  Jpa. (1.3)

At the same time the analysis yields the result

Eelrco) H---------------
v 1 T  £ 2( « 2 -  1)

X curlr curlr j  [P(r'o>) gn(r\r' \k)— g(r\r';k) P„(r')] dor =  0. (1.4)
E

The surface integral in (1.4) is performed over the boundary S  of the system.
The index n denotes the normal derivatives at the boundary in the outward
direction. Formula (1.4) expresses the fact that the external field Ee at any
point in the medium is cancelled by a field due to the polarization at the
surface of the medium. This “most remarkable feature of the analysis” 4)
which became known as the Ewald-Oseen “Ausloeschungssatz” 5), seemed
to imply that the extinction of the incident field should be understood on
the basis of the integral equation (1.1) and therefore on microscopic con
siderations.

It should be noted at this point that a statistical-mechanical treatment of
a system of interacting polarizable point particles (atoms, molecules) does
not yield the integral equation (1.1), but an equation containing additional
terms due to fluctuations of the molecular dipole moments. It has been
shown, however, that the analysis of the latter equation leads to a modified
Lorentz-Lorenz formula and again to the extinction theorem (1.4)®). For
optically active media, similar treatments have been given3» 7«8>9), leading
to a formula for the optical rotatory power and again to an extinction theo
rem. Again, therefore, it would seem that the extinction theorem is ob
tained ultimately on the basis of a microscopic analysis.

Recently Sein10), in an elegant note, has criticized this last point of view
and has shown that the extinction theorem is already contained in the
Maxwell equations and the material equations. Sein assumes both the
charge and current densities to be non-singular everywhere in the material
medium and outside the medium. He derives with the use of the Hertz
vector a general statement equivalent to a formal extinction theorem. From
this statement he derives for the case of a non-magnetic dielectric the usual
form of the Ewald-Oseen extinction theorem. However, the assumption of
non-singular charge and current densities is certainly too restrictive. Indeed,
even for a non-magnetic homogeneous, isotropic dielectric, there will be a
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surface-charge density due to the discontinuity of the dielectric constant at
the boundary of the medium, while for a medium which is also magnetic,
there will be in addition a surface-current density due to the discontinuity
of the magnetic permeability. Furthermore it would seem that a formulation
in terms of a Hertz vector is not the most transparant approach to the
problem, since this quantity cannot under all circumstances easily be elimi
nated in favour of physical charge and current densities.

In this chapter we pursue the ideas put forward by Sein and show that one
can indeed derive the extinction theorem entirely on the basis of the
Maxwell equations and the material equations. In doing so, we shall allow
the charge and current densities to be singular at the surface of the medium
and present the analysis entirely in terms of physical fields.

In section 2 we discuss the well-known classical boundary-value problem
for electromagnetic fields and their sources. This problem consists in ex
pressing the electromagnetic field at an interior point in terms of the values
of the electromagnetic field over an enclosing surface and the sources inside
this surface. At first, we represent the discontinuities at the boundary of
the system by a small transition layer in which the physical properties
change very rapidly but continuously.

The solution of the boundary-value problem is shown in section 3 to lead
to formal extinction theorems (identities) for the incident electromagnetic
field, thus showing the intimate connection between the classical boundary-
value problem and the extinction theorems.

The formal extinction theorems are cast into various forms by means of
transformation formulae collected in appendix A. These forms enable us to
discuss static problems and derive later on true extinction theorems of the
Ewald-Oseen type using the material equations characterizing the medium.
Finally, in section 3, we go over to real discontinuities at the boundary of
the system by a limiting procedure introducing in this way surface-charge
and surface-current densities.

In section 4 we introduce suitable material equations which describe
linear, homogeneous and isotropic media which are superconducting, con
ducting, dielectric, optically active and magnetic. We then derive the corre
sponding explicit form of the extinction theorem for the incident electric
field. For the case of a simple dielectric the general extinction theorem
reduces to the usual form of Ewald and Oseen (1.4). The case of a dielectric
with magnetic properties is also discussed.

Some conclusions that may be drawn from the treatment presented, are
discussed in section 5.

2. Maxwell’s equations and the classical boundary-value problem. We con
sider a material system, bounded by a regular closed surface E. The system
is acted upon by an external electromagnetic field with electric and mag-
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netic field vectors Ee(r<w) and Be(rco), where r is the three-dimensional po
sition vector and co the frequency. The coupling of the external electro
magnetic field and the material system gives rise to an additional electro
magnetic field. The total electromagnetic field at r, E(rco) and B(ra>) is a
solution of the Maxwell equations

curl E(rco)------- B(ra>) =  0,c

curl Blrco) -\------ E(rco) =  — /(ra>),
c c

(2.1)

(2 .2)

div E(rco) =  p(ra>), (2.3)

div B(rco) =  0, (2.4)

with I{ra>) and p(rco) the (total) current and charge densities, respectively.
We assume, as is usually done, that in a small transition layer located be
tween the regular surfaces 27“ just inside the material system and 27+ just
outside the material system, the source terms l{rco) and p(rco) change very
rapidly but continuously from their values at 27~ to zero at 27+.

The problem of expressing the electromagnetic field E(rco), B(rco) at an
interior point in terms of the values of E(rco) and B(ra>) over an enclosing
surface 5 and the sources inside S (within the volume £2 bounded by S)
constitutes the classical boundary value problem11). We follow the standard
procedure12) to obtain the solution. From the Maxwell equations (2.1)-(2.4)
we derive

i tu
-curl curl E(rco) -f- k2E(rco) c2

Z(r«),

and

—curl curl B(rco) +  k2B[r<o) = ------curl Z(reo),

(2.5)

(2 .6)

where k = <ojc.
To obtain the solution of eqs. (2.5) and (2.6), we introduce a tensor Green
function G(r|ro; k), which is a solution of the equation

—curl curl G(r | ro; k) +  A2G(r|ro; k) =  —d(r — fo) U, (2.7)

and obeys the Silver-Müller radiation conditions18)
lim [r x (curl) +  ikf] G(r | ro; k) =  0, (2.8)
r —*oo

and
|rG(r|ro;A)| bounded as r -*■ oo, (2.9)

u n ifo rm ly  with respect to the direction of r. In eq. (2.7) U denotes the unit
tensor.
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The radiation conditions (2.8) and (2.9) are the mathematical formulation
of the physical assumption, that at great distances from the material
sources the electromagnetic field generated by these sources represents
divergent travelling waves.

The Green function in eq. (2.7) is given by

G(r|r0; k) =  g(r|r0; £) U +  — grad grad g(r|r0; £), (2.10)

with
g(r |r0; k) =  e“ |r- ,*l/47u \r — r0|.

The electromagnetic field for a point ro inside 5 is now given by
(2.11)

!E(r0co) =  —  | G(r0|r; k)-l(r<o) dv

-I {[n(r) x curlB(rco)]*G(ro|r; k)

— [curlG(ro|r; k)]-[n{r) x E(rco)]}da, (2.12)
and

B(r0co) •ƒG(ro | r ; k) «curl I(rw) dv

I{[n(r) x curl B(rw)]*G(r0| r; k)

[curl G(r0|r; k)]-[n(r) x B(rco)]} d<r, (2.13)
in which n(r) is the outward normal on the surface S. The volume integrals
in eqs. (2.12) and (2.13) give the contribution to the electromagnetic field
from the sources inside 5; the surface integrals over S represent the contri
bution from all sources located outside S. If S recedes to infinity, the
volume integrals in eqs. (2.12) and (2.13) represent the electromagnetic
field generated by all the sources at finite distances which are the sources
of the material system, and the surface integrals in eqs. (2.12) and (2.13)
represent the external electromagnetic field Ee(roto) and Be(ro«w), generated
by sources at infinity. In that case we can write eqs. (2.12) and (2.13)

E(roco)

and

B(r0w)

1'
Ee(r0«>) +  —  | G(r0|r; k)-I(rco) dv,

■ƒ'Be(r0a>) H---- | G(r0|r; 6)-curl I{raj),

(2.14)

(2.15)

where the integrals are restricted to the volume V+ bounded by Z+.
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3. A formal “extinction theorem”. In  eqs. (2.12) and (2.13) S is an arbi
tra ry  regular surface. We m ay choose for this surface the surface E~. The
sources outside E~ are then sources a t infinity, needed to  generate the ex
ternal electromagnetic fields Ee(ro(o), Be(ro<o) and the sources located in
the transition layer between E~ and 27+ which belong to the m aterial system.
We obtain from eqs. (2.12) and (2.13), using eqs. (2.14) and (2.15) the
relations

where we have also used the Maxwell equation (2.1) and the relations (A.9)
and (A. 10), derived in appendix A.

The two relations (3.1) and (3.2) which are straightforward consequences
of the Maxwell equations m ay be interpreted as formal extinction theorem s:
they demonstrate indeed th a t the external fields a t a point inside the ma
terial system are equal to  a field generated by the fields (the tangential
components of E and B) a t the surface E~, as well as by the current density
in the transition layer. The reason th a t we have expressed in the above
relations the external fields in terms of surface integrals over Z~ rather
than  E+, is th a t we can now relate the true fields, set up a t the surface,
to  the current density a t the surface by means of the constitutive equations
for the medium. This will enable us to obtain the true extinction theorem
in the next section t. We could not have achieved this by choosing for our

t I t should be kept in mind that the relations (3.1) and (3.2) also hold, e.g., if there
is only a single point charge (or no charge at all) within the boundary Z~. We wish to
reserve the terminology “true extinction theorem” to the case where the electro
magnetic field E(rco), B(rco) satisfies within the medium a wave equation with a phase
velocity different from the phase velocity in vacuo, so that it becomes meaningful to
interpret relations (3.1) and (3.2) as describing the cancellation ("Auslöschung") of
the incident wave.

[curl G(r01 r ; £)] • [n(r) x JE(rco)]Ee(ro(o)

G(fo|r; k)-[n(r) x  B(rco)]\do

+  —  G(r0|r ;  k)‘I(ro)) dw =  0,
cz

(3.1)

and

[curl G(r01 r;*)MA(r) x « W JBe(ro«w)

G(r01r ;k )‘[n(r) x  E(r(o)]\do

[curl G(ro | r ; k)] • Z(rco) dv =  0, (3.2)

6



surface the surface E+ where the charge and current densities have fallen
off to zero. Our procedure will be to finally let the surfaces E~ and E+ ap
proach each other to form the surface E, thus going over to a real discon
tinuity. In this limit the contribution from the boundary layer will either
disappear or approach a finite value depending on whether or not surface
currents result from the discontinuities in the material parameters. It will
thus turn out that the transition layer may give rise to additional contri
butions to the classical Ewald-Oseen extinction theorem.

Before we carry out the program sketched above, we shall first transform
the relations (3.1) and (3.2) by means of the Maxwell equations and vector
identities and cast them into a form more suited for our purpose.

Indeed, using the definition (2.10) of G(ro|r; k) and Maxwell’s equations
(2.1)-(2.4) we obtain from (3.1) and (3.2) the alternative forms

JBe(r0tü) +  j  {E(ra>) n(r) -grad g(r0 \ r;k)
27-

— g{r01 r ; k)[n(r) «grad JE(rco) — n(r) div E(ra>)]} da
r ++ — ƒ g(r„\r\k) I(rm) dv +  ƒ [grad g(r0|r ;  &)] p{rm) dv =  0, (3.3)

and

ƒ{Be(r0cu) +  <[gradg(r0|r ; A)] B(ra))-n(r)

+  [n(r) x B(rco)] x gradg(r0|r ; k)
• >

-  —  g(ro I r ; k)[n{r) x E(ra>)] i d<r

2.

I[gradg{r0\r; A)] x I(rto) dv =  0. (3.4)

The necessary transformations are given in appendix A. The relations (3.3)
and (3.4) are particularly well suited for the discussion of static problems.

Next, since the field JBe(rco) satisfies the source-free equation

—curl curl Ee(rco) +  k2Ee(ra>) =  0, (3.5)

we obtain from relation (3.3)

Ee(roco) +  —  curl0curl0 | {E(ra>) n(r)-gradg(ro|r; k)

7



— g(ro | r; k)[n(r) «grad E(no) — n(r) div E(rco)]} da
2*

+  —  curl0curl0 f g(ro|r; k) I(rco) dn =  O,
® J

(3.6)

where the operation curl is performed with respect to ro. This last form of
our formal extinction theorem will be used for the derivation of the true
extinction theorem of the Ewald-Oseen type for the incident electric field.

Finally we let 27“ and 27+ approach the material surface 27. Then, e.g.,
formula (3.6) gets the form t

Ee(roa>) +  hm —— curl0curl0 Ï (E(rco) n(r)- gradg(ro\r;k)
2-̂ .2 k2 J

2-

—  g(ro|r; A)[n(r)-gradE(ra>) — n(r) div E(rco)]} d<r

H-----curl0 curl0 f  g(ro | r; k) Zg(ra>) da — 0, (3.7)

(3.8)

(3.7a)

where the surface current density IB is defined through 14)t
I(r<o) =  U(—F) i(rm) +  7g(r<u) |gradF| d(F).

t Eq. (3.7) is identical with the following equation

Ee +  curl0 curl0 ƒ  [Zn • grad g — gn • grad Z] da
2-

H----- curl0 curl0 I glB da,
“  I

where Z  is the Hertz vector. The transformations leading from (3.7) to the above
equation are somewhat lengthy but otherwise straightforward. Eq. (3.7a) without
the term involving the surface current is precisely Sein’s form of the formal extinction
theorem which he obtained assuming the charge and current densities to be non
singular. However, as stated before, the last term may in general not be neglected
since a surface current may exist as a consequence of discontinuities in the material
constants (cf. section 4). Moreover, (3.7a) is not the most convenient form for a formal
extinction theorem, since for a specific medium the Hertz vector cannot easily by
directly eliminated in favour of the charge and current densities at Z~.

t Eq. (3.8) has to be interpreted as the limiting form of the current density J(rco)
when the material layer between S~ and 2+ is squeezed to form a real discontinuity.
Thus Is is also defined through the limiting process.

Is
AF/(AF)

lim
AP--S.o lgrad.FI

where AF  is the difference in value of the function F  on the surfaces Z+ and S~.
The notation J(AF) indicates that the value of the current density I  in the boundary
layer will depend on the width of this layer. As stated before the existence of a finite
value for Is is related to discontinuities occurring in the material constants of the
medium (cf. section 4).
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Here F(r) =  0 defines the surface E, such that F(r) >  0 refers to points
outside E  and F(r) < 0  to points inside E.

U(F) is the Heaviside unit function defined as

and

m d U(F)
dF ‘

F(r) <  0,
F(r) >  0,

(3.9)

(3.10)

The quantity *(rto) represents the (finite) volume or bulk-current density.
In the following sections E~ will always denote the limit as the inner
surface approaches the boundary E.

Formula (3.3) will lead in the limit to an expression containing also a
surface-charge density defined in an analogous way.

4. The extinction theorem for linear media and non-static fields. In this
section we shall derive the extinction theorem for linear, homogeneous,
isotropic systems and non-static fields. To achieve this we have to relate
the electromagnetic field at the surface to the current density at the surface
by means of the material equations for the media. We write the induced
current density I{rw) as a sum of three terms, viz.

I(rm) =  Ic(ro>) — ia)P(fco) +  ccurl M(rm). (4.1)

Here Zc(r<w) is the current density of the free charges, P(rco) the polarization
of the bound charges and M(r<u) the magnetization of the bound charges.
The usual way of making this separation is by considering a special model
of the material. If one wishes to perform this separation independent of a
specific model, additional physical assumptions are required15).

We assume that the following constitutive relations hold:

Ic(rw) =  [ -  (A(co)li(o) +  <r(o>)] U (-F )  E~(r<o), (4.2)

P(ra>) mm [e(a>) -  1] U{-F) E~(rco) + in{w) U (-F )  B~(rw), (4.3)

and

M(ra>) mm - i v 2{(o) U(—F) E~{rw) +  [1 -  ^(w)"1] U (-F )  B-(r«), (4.4)

where A is the parameter for superconductivity, a is the conductivity, e
the dielectric constant, v\ and v2 are parameters for optical activity and
ft is the magnetic permeability. The function U(—F) has been introduced
into eqs. (4.2)-(4.4) as a formal way to indicate that the material constants
have a discontinuity at the boundary of the system. In eqs. (4.2)-(4.4) the
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functions E~(r(o) and B~(rm) are such that

E(rco) =  E~(reo)l
B(ra>) =  B~(rco) J when F(r) <  0. (4.5)

By means of the eqs. (4.2)-(4.4) *(r<u) and IB(rw) in eq. (3.8) become

i(no) =  —ift)[fieff(w) — 1] E~(rw)
+  co[vi(<u) -f v2{(o)] B~(rcu) +  c[l — /i(<w)-1] curl B~(rw),

and

/ g(r«>) =  icv2((o) ■gra^ | r| X E-(rm)Igrad F(r)|
grad F (r)

In eq. (4.6) we have used the abbreviation

,  v AM ,  i ,  v , ,  ,Bett{(o) = ------- -----1----- a(m) +  e(w).
C0 *  CD

(4.6)

(4.7)

(4.8)

The normal n(r), pointing from the region F <  0 into the region F >  0,
is given by

n(r) =  grad jF/|grad F\. (4.9)

Upon substitution into eq. (4.7) we obtain for the surface-current
density t

h(rco) =  icv2(<w) n(r) x E~(ru>) — c[l — ^(co)'1] n(r) x B~(rm). (4.10)

In accordance with the statement made in section 3, the surface-current
density results from discontinuities in the material parameters, i.e. formally
from the occurrence of the function U(—F) in eqs. (4.2)-(4.4).

Note that only the material parameters of the magnetization M(r<u) ap
pear in the formula for the surface-current density*. Eq. (4.6) may be con
sidered as a volume-material equation and eq. (4.10) as a surface-material
equation. Using eqs. (2.1) and (2.5) to eliminate the last term on the right-
hand side of eq. (4.6), the latter can be put into the form

ic2
i(rco) =  — icoa(<y) E~(rm)--------/3(<u) curl E-(rco), (4.11)

t  Usually the surface-current density is defined by (l/c)/s =  n x [B+ — B~] where
B+ is the magnetic field just outside the medium. Using the relation B = H  + M
and the condition that the tangential component of H  is continuous, one then arrives
also at a surface-current density as given by eq. (4.10).

t The material parameters occurring in eqs. (4.2) and (4.3) for the current I c and
the polarization P give rise to a surface-charge density.
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in which

a(co) =  £eff(ft>) /t(w) — 1, (4.12)

and
P(co) =  k\y\(m) +  v2((o)] fi(co). (4.13)

The electromagnetic properties inside the medium may also be character
ized by two indices of refraction »+(«w) and «-(tu), determining the phase
velocity for right-handed and left-handed circularly polarized waves re
spectively. We show in appendix B that n+(co) and n-(m) are related to the
parameters a(<w) and /9(cu) in the following way

n+n- — 1 =  a, (4.14)

and
Am =  n+ — n -  =  (S/k. (4.15)

Eq. (4.11) may now be inverted (c/. appendix B), using Maxwell’s equations
and also the relations (4.14) and (4.15) to yield

i ic
E~{rco) — — fi(n+, n-) i(ra>)------- / 2(m+, «-) curl i(rm), (4.16)

0)

in which the functions / i  and /2 are given by

fi(n+, n-) =

and

(n+n_ — 1)4- An2
(n+n- — l)2 — Aw2 ’

h (n +,«_)
A n

(n+n- — l ) 2 — Am2

(4.17)

(4.18)

The extinction theorem of the Ewald-Oseen type is now obtained, e.g. for
the electric field, by substituting eq. (4.16) into the formal extinction
theorem (3.7). We then obtain

Ee -f- —— curl0 curl0
k2 ƒ{ ' i c 1

—  /i* — i —r  h  curl i n .g radg
_ CO (O*

— gn • grad | —  f \ l  — i —  /2 curl f l ---- —gn div *1 da
co J  co J

+  —  curl0 curl0 [ gls d«r =  0,
co J

E

(4.19)

where we have also used the continuity equation (inside the medium)

—icop(rco) +  div i(reo) =  0. (4.20)
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At this point we should like to make the following remarks. Firstly, one
may not disregard a priori the possibility that an external (transverse)
electromagnetic field even in the case of a homogeneous (but finite) system,
can give rise to an electric field inside the medium, which has also a longi
tudinal component. According to the continuity equation (4.20) and eq.
(4.11) this can only happen if

a(o>) =  — 1. (4.21)

Excluding this possibility, the term with div i in the integrand of eq. (4.19)
vanishes. Secondly, we note that the extinction theorem can be expressed
entirely in terms of the induced volume-current density at Z~, the indices of
refraction and the material parameters appearing in the magnetization if
the surface-current density is eliminated by means of eq. (4.10) and subse
quently the fields E~ and B~ =  c(ico)-1 curl E~ using eq. (4.16). We illus
trate this for a non-gyrotropic (ri =  v2 =  0) system for which also A =  0,
a — 0. In this case eq. (4.10) reduces to

7g(ra>) =  —c[l — /u(<w)-1] ri(r) x B~(rco), (4.22)

and eq. (4.16) to
• j

E~(rco) = ------ — -U rn), (4.23)
co n & —  1

so that, using also eq. (2.1)

c 1
B-(fft))

ft)2 (»2 — 1) curl i(rw). (4.24)

Applying eqs. (4.22) and (4.24) to the extinction theorem (4.19) we obtain

i 1
0) &2(» 2 —  1)

-gn.grad/ —g(l

curl0 curl0 [fri.gradg

/i-1) n x curl f] d<r =  0. (4.25)

The last contribution to the surface integral arises entirely as a conse
quence of the singular current density at the surface.

If we now specialize to a non-magnetic (ji =  1) system, eq. (4.25) reduces
to the usual statement of the Ewald-Oseen extinction theorem

Ee(roo)) +
1

’ƒcurl0curl0 I [P(rco) n(r)-gradg(ro|r; k)
k2{n2 — 1)

E-
— g(r01 r; k) n{r)- grad P(rw)] d<r =  0,

since then Ia =  0, i — I =  —icoP in view of eqs. (4.1) and (4.22).

(4.26)
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5. Conclusions. The main conclusion to be drawn from the present ana
lysis is the following. The extinction theorem was derived originally within
the framework of a theory for the index of refraction. The emphasis in
such a treatment was on the calculation of the refractive index in terms of
molecular quantities. The extinction theorem was obtained as a by-product.
Since, as we have shown in agreement with the ideas put forward by Sein,
the extinction theorem is already contained in Maxwell’s equations and ma
terial equations for a specific medium, we may infer that in the traditional
theories this theorem should rather be interpreted as a consistency check
with Maxwell’s equations. This also implies that theories of the index of
refraction, in which the extinction theorem is not manifestly derived, but in
which Maxwell’s equations are satisfied, are equally satisfactory, since they
will contain the extinction theorem implicitly t. A theory of the latter type
is the linear response theory in statistical mechanics which yields suscepti
bilities containing true absorption in contradiction with theories based on
(1.1).

Note furthermore the importance of contributions from surface currents to
the extinction theorem. The existence of such terms demonstrates that the
separation of the total current into a polarization current and a magnet
ization current is not completely arbitrary any more. While in bulk e.g. the
magnetic properties may be completely accounted for by redefining the
dielectric constant [e.g. eqs. (4.11) and (4.12)], this is not true for the surface
current which contains the magnetic permeability /x separately [e.g. eq.
(4.10)]. This is the reason why in the extinction theorem (4.25), there occurs
not only the index of refraction of the system, but also again the permea
bility [i. Thus again, while for optically active systems the bulk current
(and the rotatory power) contains only the sum vi +  v2, the surface current
(and the extinction theorem) contains V2 characterizing the magnetization
separately17). Finally, it may be mentioned that the formal extinction theo
rems, (3.3) and (3.4), can also be used to discuss static problems.

In particular one may think of a perfect diamagnet, characterized by
ju = 0 and therefore B — 0 inside the medium. Eq. (3.4) then yields the
simple result, using also the fact that Ia =  cn x {B+ — B~) =  cn x H+
is finite and non-vanishing,

B*(r0, 0) — y  J [grad g(r01 r ; 0)] x / s(r, 0) do =  0, (5.1)
E

which illustrates the “extinction” of the applied magnetic field by the
surface current in the Meissner effect. Alternatively, we could have arrived

7 This point does not seem to be appreciated in general16).
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at a formula with the same physical content, using London’s equation for
a superconductor [c/. eq. (4.2)].

I(rco) =  -  U(—F) E-(rco),
1(0

(5.2)

which leads to

curl i(rco)
c

Ia =  0. (5.3)

Eliminating B from eq. (3.4) by means of eq. (5.3) gives

Be — ~  J [(curl i) • n grad f + ( n x  curl i) x grad g] da =  0, (5.4)
E~

expressing the fact that from this point of view Be is cancelled by the finite
current density at the surface.

The simple static problem considered here clearly demonstrates again
the connection between the boundary-value problem and the “extinction”
theorem.

APPENDIX A

In this appendix we give the transformation formulae we need to obtain
the alternative forms of the formal extinction theorems (3.3) and (3.4) from
the identities (3.1) and (3.2). To this end we use a version of Green’s theo
rem12) applied to E(rco) and g(ro|r; k), viz.

ƒ (JSP2g — gV2E) di> =  ƒ [(gradg) E-n — gn div E] da
V -  £ -

— ƒ [(grad g) x  (nx E) — gn x curl E] da, (A. 1)
E -

where V~ is the volume bounded by Z~.
Using the fact that

curlg(r01r;k)U — curlG(r0|r ; k), (A.2)

and writing

J (EV2g - g V 2E) d v =  ƒ [En• gradg - g n - gradE] d«r, (A.3)
V -  E -
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according to the usual form of Green’s theorem, we obtain from eq. (A.1)
the relation

ƒ [(curl G)• (n x  E) — G*(n x  cu rl£)] da
£-

=  — |  [En• grad g — gn*grad E
£-

— (gradg) E-n + gndivE  + L-(n x  curl £)] da, (A.4)

in which

L =  (1 Ik2) grad grad g. (A.5)

The volume integral in eq. (3.1) can be written, using the continuity equation

—iwp +  div ƒ  =  0, (A.6)

and Gauss’s theorem as

—  I G-Idv■J'
ICO

~c*
I-

A

' I
gl  dv — grad0 gp dv ----- grad0 gl- n  da.*ƒ• (A.7)

Making use of eq. (2.5), Stokes’s theorem and the fact that E~ is a closed
surface, it is easily shown that

(O
grad0 ƒ  gl-n  da +  grad0 j*g£• n  da

£ -  E -

+  -p - j  (« X curl E) -grad grad g — 0. (A.8)

Eqs. (A.4), (A.7) and (A.8), together with eq. (2.1) have been applied in
the derivation of eq. (3.3).

The Maxwell equation (2.2) yields the relation

I(n x  curl B) • G da

icorr iw ,, i
~  (ft X E)• G -|-----(n x  T)'G da. (A.9)

In the derivation of eq. (3.2) the relation (A.9) and the identity
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2+

c
1IG • curl I  dv
s -

2*

G x  I-n d a  — (curl G) • I  da. (A.10)

have been used. Again, using Stokes’s theorem and the fact that 27 is a
closed surface, one finds after straight-forward calculations

— j* (n x E)-Lda  =  grad0 j gB-nda. (A. 11)
2-  2-

Upon substitution of relation (A. 11) into eq. (3.2) we obtain, noting also
that, e.g.,

(curl G) • 7 =  (gradg) X I, (A. 12)

the formal extinction theorem (3.4).

APPENDIX B

For the sake of completeness we derive in this appendix the relations
(4.14) and (4.15). To this end we consider the differential equation for E~(r(o)

—curl curl E~(rm) -f- A2[l +  a(co)] E~(rw)
+  p(o>) curl E~(rco) =  0, (B.l)

which follows from eq. (2.5) when we eliminate I(rw) by means of eqs. (3.8)
and (4.11). We look for solutions of E~(rco) representing transverse plane
waves propagated in the z direction, viz.

E~[rm) = E~ (cu) elknz,
E~ (fco) =  Ey (<w) eltn*, (B>2)
E~{ra>) =  0.

Substitution into (B.l) jdelds two equations for E~{m) and Ey (cu). Setting
the coefficient determinant equal to zero gives the dispersion equation

(n2 _  1 _  a)2 =  (02/£2) „2. (B.3)
The roots of eq. (B.3) determine two values of the refractive index: n+
and n~ t.

t From two values ±  (w2)* we choose that one which corresponds to a wave propa
gated in the positive z direction. The choice of the n value with the other sign simply
corresponds to a change in sign of the direction of propagation.
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The solutions for the transverse plane waves are

+iEv(a>) = 0 ,  (B.4)

corresponding to a right-handed polarized wave with refractive index n+ and
£ - ( < » ) -  IE" (a>) =  0, (B.5)

corresponding to a left-handed circularly polarized wave with refractive
index Therefore n+ and »_ satisfy the equations

n* -  1 -  « =  (fi/k) n+, (B.6)

and

»1 -  1 -  a =  -  (fi/k) ti-, (B.7)

from which follow the eqs. (4.14) and (4.15) by addition and substraction.
When the medium is stable, the waves must be damped in the direction of
propagation. From this it follows that Im » 2 ^  0. In that case the
inequality

Im /J2(a>) ;> —2k2 Im a(a>), (B.8)

has to be satisfied by the material parameters a and p.
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Chapter II

PROJECTION OPERATORS AND THE TRANSVERSE ELECTRICAL CONDUCTIVITY TENSOR OF A

MATERIAL SYSTEM

Synopsis

Starting from a Hamiltonian describing non relativistic charged particles

with spin, the conventional linear response theory to obtain the

conductivity tensor of a many body system is reviewed. A projection

operator is then defined which yields the correct expression for the

transverse part of the conductivity tensor in terms of the transverse part

of a current current commutator correlation function with a modified

propagator. Furthermore one can show that a second projection operator may

be defined which yields the transverse part of the impedance for transverse

normal waves. The difficulties are discussed which arise if one attempts to

derive an analogous expression for the longitudinal conductivity.

1. Introduction. The conventional way to obtain a statistical mechanical

expression for the electrical, wave vector and frequency dependent

conductivity tensor of a many body system is to first derive a commutator

correlation function ("external" susceptibility tensor) expression for the

current response of the system to an external electromagnetic field.

Eliminating then the external field by means of a relation between the

external field and the average Maxwell field in the system, one obtains

an expression for the conductivity tensor in terms of the external

susceptibility tensor. This is the procedure followed e.g. by Kadanoff and
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Martin and elegantly reviewed in a subsequent paper by Martin.2  ̂On the

other hand expressions for wave vector and frequency dependent transport

coefficient in fluids, such as the viscosity, the thermal conductivity etc.

have been derived by means of projection operator techniques. ^  In this

chapter we show that a projection operator can be found which yields the

correct expression for the transverse part of the wave vector and frequency

dependent conductivity tensor. The transverse part of the conductivity

tensor is then directly defined as the transverse part of a current current

commutator correlation function with a modified propagator. It follows then

8imply that the real part and the imaginary part of the transverse

conductivity tensor satisfy the Kramers-Kronig relations. We were not able

to express in an analogous way the longitudinal part of the conductivity

tensor. We shall discuss this point in more detail in the last section of

this chapter.

In section 2 we define the Hamiltonian of a system of non-relativistic

point charges with spin in interaction with the radiation field and list

the relevant commutation relations. In section 3 we briefly review the

linear response theory for this system when it is subjected to an external

electromagnetic field. For consistency we show that the average fields and

sources (charge and current densities) in linear response satisfy Maxwell's

equations as should be expected. In section 4 we establish the connection

between the conductivity tensor and the response function of the current

density to an external electric field along conventional lines. In section

5 we then define a projection operator which enables us to express the

transverse part of the conductivity tensor as a modified current current

commutator correlation function. Finally in section 6 we define an alternat-

ive projection operator which allows to obtain an expression for the

impedance for transverse normal waves only, i.e. when the wave vector ic and

the frequency id satisfy the transverse dispersion relation in the medium.
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2. The Hamiltonian of the unperturbed system.

We consider a system of N point particles (electrons and nuclei)

labelled j - I, 2, . . . N with charges e ̂ , masses m j , spins Sj and

positions ?.. The particles are confined to a volume V and interact with

the electromagnetic field generated by all the charges and their motions.

The electromagnetic field is supposed to extend over all space.

The Hamiltonian of the non-relativistic particles and the electro

magnetic field is given by

H = H + H + H  + Ho p c s r
(2.1)

where

N (p. - a(r.))2
h = y — J-------- —̂
P 3-1 2m.

is the kinetic energy of the particles,

N e.e.
1  y i 3
2 i?j 4ir | r^-

is the static coulomb energy of the particles,

(2.2)

(2.3)

N e.
I - L~

j=l 2m. c
gjSj • curl a(rj)

is the spin energy in the non-relativistic approximation and

etr(r)2 + (curl a(r)},2

(2.4)

(2.5)

is the energy of the radiation field.

In eq. (2.5) the integration is performed over infinite space. In relation

(2.2) p. is the canonical conjugate momentum to r^, e r (r) the transverse

* Rationalized gaussian units are used throughout.
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component of the electric field»a(r) the vector potential of the electro

magnetic field in the radiation gauge i.e.

div a(r) - 0. (2.6)

e.
Finally, ---- g. is the gyromagnetic ratio of particle i and c the velocity

2m.c
of light in vacuo.

In the quantum mechanical case, the fundamental dynamical variables

satisfy the commutation relations

jr?,rj] - [p?.p[] - 0,

[r“,pê] - ik 6.. s“B,

[aa(?),ae(?')] - p rV ) , e tr6<?’)'

[ > a (? ) .« 8(? ')]  -  ihc6tra® (r-r '),

0,

(2.7)

(2.8)

(2.9)

(2.10)

and

if t« ..s“6YsY,ij i* (2.11)

with the convention, that the occurrence of identical greek indices implies

a summation over these indices. In relations (2.8) and (2.11) 6„,6aB

denote Kronecker deltas. In relation (2.10) 6tra®(r-r') denotes the

transverse Dirac delta function and is given by

3 3 1
StraB(?-?') = 6ae«(?-?’) + ------ -

. 3ra 3r8 4ir|r-r'|
The Levi-Civita tensor £aBY in formula (2.11) is defined

(2 .12)

Sa8Y
r 1
■ -1

<0

(2.13)
if o,6,y * 1,2,3, cycl.
if a,6,Y “ 2,1,3, cycl.
otherwise
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The operator for the total electric field is

e(r) = e (r) + e (r),

with

/“►v ,e (r) = - grad pm<r ’>
4ir | r-r' |

dv'.

The charge density operator p (r) is defined bvm J

pm (?) * j j  ej«(r-rj)-

The magnetic field operator is given by

b(r) “ curl a(r)

and the current density operator by

J(r) ” j  \ e.{r.6(r-r.) + 6(r-r.)r.} +' c # i i •u V* t •Jj-i 3 3 J
N e,
• J, gj curl

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

where

-v pj ~ T1 *(V
L •
J

J
(2.19)

is the velocity operator of particle j .

The Hamiltonian (2.1) yields for the electromagnetic fields, as canonical

equations of motion in the Heisenberg picture, the Maxwell-Lorentz

equations in operator form:

curl e(r,t) - - i  S(r,t),

curl S(r,t) - i  e(r,t) + -  j(r,t),

(2.20)

(2.21)

with

div e(r,t) - p (r,t)m (2.22)
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and

div S(r,t) - 0, (2.23)

with
t -Jb  t iL t

e(r,t) - e 0 e(r)e 0 = e 0 e(r), (2.24)

where L is the Liouville operator, and similarly for all other time

dependent operators occurring in the equations (2.20) - (2.23).

3. Linear response to an external electromagnetic field: the

macroscopic Maxwell equations.

We now assume that the system described in section 2 interacts with
f # #an external (classical) electromagnetic field characterized by a vector

potential Ae(r,t) and a scalar potential $e(r,t), with

lim it (r,t) - 0  (3.1)
t-*-« e

and

lim * (r,t) - 0. (3.2)
t >

The total Hamiltonian of the system is then

H - Hq + He(t) (3.3)

where Hq is defined by (2.1) and

&e<t) - - -  jdv j(r) • Xe(r,t) + jdv pm (r)*e(r,t). (3.4)

Here the term quadratic in the external vector potential X (r,t) has beene
neglected since we shall be interested only in the linear response of the

system described by H to the external field. We furthermore assume that

It is not necessarily implied, that the "external sources",

generating the external electromagnetic field, are located outside the

material system, but only that they are externally controlled.
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the system is in thermodynamic equilibrium before the external fields are

switched on and is described by a density operator p **’ which commutes with

Ho,pe<1, - 0. (3.5)

2 £\
According to standard procedure ’ we then find for the average electro

magnetic field E(r,t), B(r,t) in linear response to the external field

t
£(r,t) - Ê,(r,t) + <e(r)> + 4jr- jdT<f£(rtt-T)fHe(T)j: (3.6)

and

?(r,t) - 2e(r,t) + <£(?)> + 4g- |dT<jS(r,t-x),He(T)
— •D

Here brackets denote ensemble averaging e.g.

<?(?,t)> - Tr peq-e(r,t).

(3.7)

(3.8)

In the relations (3.6) and (3.7) we have allowed for persistent electric

and magnetic fields at t->—■».

The external fields E^Cr,t) and $e(r,t) are found from the external

potentials according to

E#(r,t) - - |  ie(r,t) - grad *e(r,t) (3.9)

and

ie(r,t) - curl Xe(r,t). (3.10)

Let us also consider the average charge and current densities p(r,t)

and 3(r,t). In linear response we find

t
p(r,t) - Pe(r,t) + <Pm(r )>  + 4j- J< jpB ( ? . t - x )  .He( t ) j>  (3 .11)

and
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w2(r)
J(r»t) - J (r,t) + <J(r)> ---2--- X (r,t) +

W fdT<|T(r,t-x),He(x) (3.12)

where

uJ(?) ■ i1
j - i  j  j

(3.13)

with to (r) the plasma frequency. The term with the plasma frequency (3.13)

arises from the fact that the current density operator in the perturbed

system given by

(3.14)

where j(r) is the current density operator of the unperturbed system

(equation 2.18), contains already a term linear in the external vector

potential.

In the relations (3.11) and (3.12) Pe(r,t) and 5 (r,t) are the

external charge and current densities which are the sources of the

external fields according to the Maxwell equations

curl ?e(r,t) - - i  t(r,t),

curl Se(?,t) - i  £e(r,t) + i  Je(?,t),

div “ Pe(*»fc)

(3.15)

(3.16)

(3.17)

and

div S (r,t) - 0. (3.18)

In agreement with equations (3.6) and (3.7) we have allowed for persistent

sources which generates the electric and magnetic field at t->-».
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The average quantities given in equations (3.6), (3.7), (3.It) and

(3.12) satisfy the macroscopic Maxwell equations

curl E(r,t) ■ - —  B(r,t), (3.19)

curl t(r,t) - £  É(r,t) + £  J(r,t) (3.20)

div f(r,t) - p(r,t) (3.21)

and

div B(r,t) “ 0. (3.22)

This is directly verified by noting that the external fields and

sources obey the Maxwell equations (3.15) - (3.18), using also the

equations (2.20) - (2.23), the commutation relations (2.7) - (2.11) and

the identity

which follows from the basic commutation relations (2.7) - (2.11).

In relation (3.23) U denotes the unit tensor.

From now on we shall restrict ourselves to the case that in equilibrium

there are no persistent charges or currents in the material system.

Let us next consider in more detail the induced current density

3. ,(r,t) (c.f. also ref. 2) and the electric field E(r,t) as linearind
functionals of the external electric field E (r,t). As shown by Kadanoff

I o)
and Martin ' 1 expression (3.12) for the induced current density is

gauge invariant. One can show that t}iis is also the case for the expression

(3.6) for the electric field. Therefore, without loss of generality we may

choose a gauge in which (r,t) = 0. For the induced current density

J. , (r,t) we then obtain from equation (3.12)ind

ihüi2(r)ó(r-r' )ff,< e(r,t),j(r',t) (3.23)

JLi£,t) A > , t )
c
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>t) > A ® ( r ’ ,T)." 1F Ï  | d T  j d v ’ < [ïa t f . t > . j6< r,,1
—O©

We introduce the commutator correlation function

(r.r'jx), - £ <jj(r,T),j(r',0)
JJ

(3.24)

(3.25)

into equation (3.24) and taking Fourier transforms with respect to time

of both members óf this equation we obtain, using also equation (3.9) with

*e(r,t) i 0,

J i n d ^ ’“ ^ ”  “  |dv' x(r,P ;u) • t (? ' ,(d ) (3.26)

w h e r e

J i n d ( ? ’u) “  fd t  ^  ^ ( * . t > . (3.27)

and

£ (r,oj) - [dt e*“t Ê (r,t). (3.28)

In equation (3.26) we have introduced the generalized "external"

susceptibility

X(r,r';iu)

in which

<o2
)L.(r,r';<j) - u2 (r)6(r-r')jLJJ p

5L.(r,r' ;W) X^r.r'jt)
31

(3.29)

(3.30)

and have restricted the integration to the volume V of the material system,
♦

s i n c e  x ( r »r  »“ ) v a n i s h e s  f o r  p o i n t s  r' o u t s i d e  V.
For the electric field f(r,t) we obtain from equation (3.6)
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(3.31)

E°(r,t) - E“(r,t) -

t
dT jdv' <fë“(r,t),je( r ' , x )  .1

ihc

We again introduce a commutator correlation function

'+tej
(r.r'jt) - £ < |i(r,T) ,j(r' ,0)j: (3.32)

and upon substitution of relation (3.32) into equation (3.'31) and Fourier

transformation in time, we obtain similarly to the induced current density

for the total electric field

£(r,u) - Êe(r,w) Idv' ?(*»*' }u) • Ee(r',w), (3.33)
V ej

where

ee

7 (r,r’;u) - fdt eiwt)? (r,r*;t). (3.34)
ej >Q ej

The integration in equation (3.33) may again be restricted to the volume V
♦

since x . (r ,r1;u) vanishes for all r' outside V.* Ïej

4. The generalized conductivity.

In the linear Maxwell theory the generalized conductivity o(r,r';<i)) is

defined as the coefficient relating the induced current density J..(r,u)

and the total electric field £(r,<i>) in the following way

^^(r.u) - jdv'a^.r' ;w) • t(r',w)• (4.1)
V
^ ̂  ^ “► * .

Knowledge of x(rfr,»w)# however, is sufficient to calculate a(r,r ;w).

For this purpose we use equations (3.26), (3.33) and (4.1) to obtain the

relation
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[dv" £(?,r";w) • {6(r"-r' )5 - ±  ? ( ? " , £ ' Ju.»J  UI

- -iu x(r,r’ ;u). (4.2)

Next we note that the relation

< curl curl e(r,t),J(r')j> + < e(r,t),j(r') > -

“ < - ̂ 7  j(r,t),j(r')j> (4.3)

is valid'due to the Maxwell-Lorentz equations (2.20) and (2.21).

Using the commutation relation

t(r),T(r’)J - cjcurl curl a(r),j(r')J -

“ jT(*).j(r')l - 0, (4.4)

and the identity (3.23) we obtain for equation (4.3)

- curl curl X (r,P ;m) + ? (r,r' ;u) -
«J c2 %

- - ^x(r,r';w). (4.5)

The solution of equation (4.5) is

X^(r,?•;<,)) -prjdv" 2(r|r";W) • x(P’,P}m), (4.6)

where we have restricted the integration to the volume V of the material

system, since »u>) vanishes for points r outside V.
♦

The tensor Green function G(r|r';n>) in the solution (4.6) is given by

i— |r-r'|-*■ *  2 C '
2(r|r';<i>) » grad grad) -— — —---. (4.7)

u 4ir | r - r ' |

Upon substitution of equation (4.6) into equation (4.2) we find
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V V

+  - ♦  o f

dv" o ( r ,r" ;ii) )  • + ÜL- jd v m 2 ( r " | r m ;m)

X(r"’ , r ’ ;<u) = -  iiDx(r,r';u). (4 .8 )

E quation (4 .8 )  p rov ides us w ith  th e  g e n e ra liz e d  c o n d u c tiv ity  of

an a r b i t r a r y  m a te r ia l  system  in  term s o f  th e  response fu n c tio n  x ( r , r 1 joj) ,
♦

We remark th a t  th e  c o n d u c tiv ity  o ( r , r '; i o )  s a t i s f i e s  th e  (g en e ra liz ed )

Onsager r e la t io n

aa ® ( r ,r ' ;u) ■ a®°(?* ,r ;u ) ) .

This fo llow s from th e  Onsager r e la t io n  s a t i s f i e d  by th e  e x te rn a l

s u s c e p t ib i l i t y  x ( r» r ';m )  namely

x (r,r';< i>) -  x ( r ' , r ; u i ) ,

im plied  by th e  tim e r e v e rs a l  in v a rian ce  of the  H am iltonian H and the
o

d e n s ity  o p e ra to r  p and th e  symmetry p ro p e r tie s  o f th e  te n so r  Green

fu n c tio n  G ( r |r ';u i ) .

In  an i s o t r o p ic ,  n o n -g y ro tro p ic , t r a n s l a t i o n a l ly  in v a r ia n t ,  w ith

re s p e c t to  space , system  we may w r i te  a f t e r  F o u rie r  transfo rm ing  w ith
*re s p e c t to  space

(4 .9 )

x (£,<d)  -  x t r ( k , w ) { 5  - ! - )  +  xV .u) ^ r
k2 k

and

? (J ,oj) -  a t r (k,u){U  -  + a* (k ,u )  %
k2 k2

In  th a t  case  we o b ta in , from eq u a tio n  ( 4 .8 ) ,

(4 .10)

(4 .11)

F o u rie r  transfo rm s w ith  re s p e c t to  space a re  d e fin e d  as e .g .

a(k,nO = dv o(r,u>)e - ik * r
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~  ®A(k,w) m  x*Xk,«){I ” ^(k.w)}-1 (4.12)

and

£  atr(k,<o) - xtrOc,w){l - (4.13)
“ ü>2-C2k2

tr i,
where o and a are respectively the transverse and longitudinal

conductivity. Relations (4.10) - (4.13) are those given by Martin. 2'

In the following section we shall derive an alternative expression for

the transverse conductivity directly in terms of a modified commutator

correlation function by means of a projection operator formalism. This

alternative expression suggests new approximation schemes for calculating

the transverse conductivity.

5. The transverse conductivity.

We define a conductivity tensor g(r,r';u)) which couples the induced

current density J . ^ r . w )  to the total transverse electric field ftr(r,u)

induced by a transverse external electric field through the relation

5ind(r'“> g(r,r’ ;<o) • ? tr(r’,w)dv

with the constraint

(5.1)

div Ee (r,u) - 0. (5.2)

In the relation (5.1) the integration is over all space.

In an isotropic, non-gyrotropic translationally invariant system, the

transverse external electric field can only induce a transverse Maxwell

41
The condition (5.2) allows to relate the longitudinal induced field

to the transverse induced field and therefore to express the induced

current density solely in terms of the transverse Maxwell field equation
(5.1).
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field, which in turn can only be coupled to a transverse induced current

density, so that the tensor g(r,r';(i)) then reduces to the scalar

transverse conductivity defined in equation (4.11). We shall prove that

the tensor g(r,r';u>) has the form

g(r,r';w)

- I {fdv"Ul J T T  p (5.3)

where the integration is over all space.

In relation (5.3) the modified commutator correlation function

g .. (r,r' ;üi) is given byTT

g_(r,r' ;w)TT j t f ) .
-ia-»>V -
e j(r') S ^ d T , (5.4)

where the projection operator P is such that P acting on an arbitrary

operator 0 is defined by

0< a(r),0 (5.5)

In the relation (5.5) the integration is over all space. Oneverifies
• • o *with equation (2.10) that P is idempotent: P » P.

In order to prove equation (5.3) we introduce besides the usual

commutator correlation function x..,(r,r';t) for two operators A(r) and
B(r) given by

Using the Kubo transform J the operator (5.5) can be written in a
3)form analogous to the projection operators introduced by Mori. It

then follows automatically that P is also hermitian with respect to a

properly defined scalar product.
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>. (5.6)j(r,r';t) - ̂  <jA(r), e ° B(r')

the modified commutator correlation function g*-(r9r v$tt) defined by

8AB(r*r 5T) " h

with the one-sided Fourier transforms of equations (5.5) and (5.6)

M
XAB(r,r';u) - ^.„(r.r’;T)e1WTdT

and

$») ^(r.r';t)el“TdT.

Using the operator identity

-i(l-P)L t -il t r -i(l-F)Lox -iLQ(t-T)
iPL e *

Ö

o o i -e + sx e

we can then write

« ^ o . r ' s t )  - x+i.(ro,r*;t) ♦ -  |dr
JJ JJ

dv L * < * 0 »*|T>je

37 x^,(r,r';t-T)

or taking one-sided Fourier transforms

g (r ,r’;u) - x (ro,r’;w) + —  dv g (ro,rj«) • x^r.r'5«>).
JJ JJ ‘ je *3

where we have also used the fact that

[*a(r> ,j(ï’) 0.

Upon substitution of equation (5.12) into the expression (3.26) for

induced current density ^(r,u) and using the relation

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

the
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(5 .14)—  X^.(r ,r ' ;u ))  -  X_t  ( r . r ' j u ) ,
a j e j

we o b ta in

■Jin d (V “,) * " » f dv' " “p(?o) 5(ro"r ' )5} * * . < * »  +
-i J J

+ i  jd v ' fdv g ( r# , r i« )  • J  ( ? , r ' ; W) • 2 (r';u>). (5.15)
; je  e j

Next we s u b s t i tu te  in to  th i s  l e s t  equa tion  th e  tra n sv e rse  p a r t  of

eq u a tio n  (3 .33)

r r '~(r,w ) -  e “ ( ? , üi) -  M d v ’ ^  ( r , r ' ; u )  • 2  ( r ' . w ) ,  (5 .16)^tlM -
e J

->-tr t ,
where Ee ( r ,u )  i s  th e  tra n sv e rse  p a r t  o f th e  e x te rn a l  e l e c t r i c  f i e l d

E ( r , u ) .  This lead s to  the  r e la t io n

^ in d (V u) "  "  fdv «L*(*«»*l“ ) * 2t r ( t .u )  "o ’j e

“  i  Jdv '  wp <? o) 6 ( ? o‘ ? >5} * J e ( ? *“ ) +

+ | dv ‘ 2*r (r ,ü i) . (5 .17)

Let us now c a lc u la te  th e  tim e d e r iv a t iv e  o f g ( r  , r ' ; t ) .  We f in d
j e

3 t 8-h -( r o , r ' ; t )  -  -  g ( r o>r ' ; t ) . (5 .18)

E quation (5 .18) fo llow s from eq u a tio n  (5 .7 )  w ith  A -  j  and B -  e and th e

f a c t  th a t

• £ ) , . ( * • > (5 .19)
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Similarly, we find that

9t 8 ^(ro,r';t) - 0, (5.20)

using also equation (2.20) and the commutator (2.10). The modified

commutator correlation function g , (r ,r';t) is thus seen to be constantJS 0
in time and therefore equal to its value at t-0. Due to the commutator

relation (5.13), we thus have

g^(?0,?'it) - 0. (5.21)

Using equations (2.21) and (5.21) we may therefore write for equation

(5.18)

3  “►  /■+ ->f r .•t'V<To»r ' 8-H-(ro’r !t)’3e J J
(5.22)

so that the one-sided Fourier transform of equation (5.22) becomes

i“8++(r0.r';‘»> - u2(?o)6(ro-r')5 + g (ro,r';w) - 0.
j e  *  j j

(5.23)

We now restrict ourselves to the case that the external electric field

is generated by a transverse external current density, so that condition

(5.2) holds. Then equation (5.17) reduces to equation (5.1) with

g(r,r' ;<»)) given by equation (5.3), which proves our assertion.

Thus the transverse conductivity for the homogeneous isotropic non-

gyrotropic medium may indeed be found directly from the modified

commutator correlation function g (r,r';M).
33

In the appendix we also explicitly show that the transverse

conductivity (5.3) has in terms of the transverse response function

X r(lc,w) precisely the form (4.13).
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6. The impedance for transverse normal waves.

In this section we give another example of the use of the projection

operator formalism developed in section 5* We define an impedance tensor

R(r,r ;w) which couples the total electric field E(r,u>) inside the medium

to the induced current density 3.nd(r,<u) through the relation

2(r,u) “ I S(r,r';w) • J ^ ^ r ' ,w)dv' (6.1)

with the constraint that the medium is acted upon by an external electric

field generated by external sources which are placed outside the material

system. In the relation (6.1) the integration is over the volume V of the

material system only.

We shall prove that the tensor R(r,r';to) has the fo’-̂

S(r,r' ;w) - ito
g^(r,r';m)

wp (r ' )
(6.2)

In relation (6.2) the modified commutator correlation function

g^.(r,r'ju) is given by
ee

*^(r.r'j») - f |<
ee

-i(l-P)L T
e(r),e e(r') iwx,; dr, (6.3)

where the operator F is such that P acting on an arbitrary operator 0 is

defined by

PO e(?)
»2(r)
P

• <p(r),0 >  e (6.4)

In relation (6.4) the integration is over the volume of the material
• • •  , # 2system. One verifies with equation (3.23) that P is idempotent: P = P.

£
The operator P is not hermitian with respect to the Mori scalar

3)product.
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In order to prove equation (6.2) we again introduce modified commutator

correlation functions and their one-sided Fourier transforms defined as

in equations (5.7) and (5.9) but now with F defined by relation (6.4).

Using the operator identity (5.10) we can then write

+  ,+ + , .  + , +  + , .
8 H ^ < V r ;t) “ x ^ ( r 0 .r';t) -
ej ej

t g^(r0,r;T)
dr dv

0 V

or taking one-sided Fourier transforms

f 7 X ti.<*.*,St-T) (6.5)

-*■ -*■ j 11 (r ,r;u) +
g^<Z0,r'iu>) - X (?0 .£ '»«) -  i* fdv — -------- L j r , ?•}*>).èj ej  ̂ u‘(r) jj

(6.6)

Let us now substitute equation (6.6) into formula (3.33) for the total

electric field. We find

2(r ,u) « J (r ,u) - — dv' g^.(ro,r';w) • Ée(r\u>)

+ dv'
g (r ,r;u)

dv-SS-1---- t̂f,r';u>) • *(?',-)•
„Hr) JJ

(6.7)

Substituting into this last equation formula (3.26) for the.induced

current density we finally obtain

E(ro>u) dv' {imfi(ro-r')U + g ^ r ^ r ' j u )  +
ej

+ iug^+(ro,r';u)} * ^(r'jw) +
ee

g (r ,t0
+ ^  idv* — 3. .(?»>.„HP) indp

We calculate now the time derivative of g.(r ,r';t). We find"" oee

(6.8)

37



(6.9)ft - - g (?o,?';t).
ee -*•*■ee

This follows from equation (5.7) with A - B ■ e and the fact that

jj(r),e(r') 0. (6.10)

Relation (6.10) is easily verified using equation (2.21) and the

commutator (2.9). Similarly we obtain

3 t M r0’t i0 " ' * ,(ro*r 5t) -eb ■ * *

8^*(r ,r;t)
- dv
V Up<r>

g (r,r';0).
Jb

(6-11)

Using equation (2.20) and the relation (3.23) it can be shown that the

right hand side of eq. (6.11) vanishes, so that

■ °-eb
(6.12)

We thus see that g 11 (r ,r';t) is constant in time and therefore equal to
eb

its value at t « 0. Due to the commutator (2.10) we thus have

g^(ro,r';t) - c curl' 6(ro-r')U.
eb

(6.13)

From equations (6.9), (6.13), together with the operator equation of

motion (2.21) we then find

it £~(V?,;t) “ «L**(ro.? 's t )  + c2 curl* curl' « (r  - r ' ) f f .
ee ej

so that the one-sided Fourier transform of equation (6.14) becomes

(6.14)

We restrict ourselves to frequencies u> different from zero.
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(6.15)!<») - ~ g^.(ro,r' ;w) - ̂  c2 curl' curl' 6(ro-r')Ü.
ee ej

This relation may be used to eliminate in eq. (6.8) the modified

commutator correlation function g (r,r';u) so that the expression for
■*T

the total electric field becomes

i(c ,u)) " ? (r ,u) - curl0 curl0 Ê (r ,w) +o e o uz e o

+ iw
g_(r

dy'
•}<*> 3ind(*’w)

- —  5 (r tw) + iu>a) e o* dv' -S2— ;----- 3ind(?’,*>.
<0*(?*) lnd

(6.16)

Therefore, if we restrict ourselves to the case that the external electric

field is generated by externally controlled sources which are located

outside the material system, equation (6.16), for r inside the material

system, reduces to equation (6.1) with R(r,r';(i>) given by equation (6.2).

This proves our assertion. In a translationally invariant, isotropic,

non-gyrotropic system with no externally controlled sources inside the

medium the transverse part of R(k,<o) can thus be used to calculate the

impedance for transverse normal waves and consequently also the index

of refraction.

It should be noted that the transverse conductivity tensor derived

in section 5 contains more information concerning the electromagnetic
-ip-+ .*► .

behaviour of the system than the transverse part of the tensor R(k,oi).

In the appendix we explicitly show that the inverse transverse part of

R(k,u) given by the Fourier transform of equation (6.2) is equal to the

transverse conductivity (4.13) only when k and m satisfy the dispersion

relation in the medium.
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7. Conclusions.

We have shown in the preceding sections by means of projection operator

techniques that the transverse part of the conductivity tensor may be

written as the transverse part of a current current commutator correlation

function with a modified propagator, eqs. (5.3) and (5.4). From the

structure of these equations Kramers-Kronig relations for the transverse

conductivity follow in a standard way. We have not been able to find

an analogous expression for the longitudinal part of the. conductivity

tensor. Indeed, had we found such an expression, we would have proved

Kramers-Kronig relations also for the longitudinal conductivity. As Martin

has shown, however, there can be no general proof of these relations for
2,7)the longitudinal conductivity. ’ The reason for this is connected with

the fact that commutation relations for the dynamical variables of the

radiation field have no analogy for the longitudinal fields. Our failure

to find a projection operator which permits to write the longitudinal

conductivity in a form analogous to the form obtained for the transverse

conductivity is a consequence of this situation. It may be expected,

however, that a projection operator can be found which yields the
£ - y

longitudinal conductivity a (1c,u) for sufficiently small values of fc, for

which the Kramers-Kronig relations are satisfied.

Expressions for the conductivity in terms of commutator correlation

functions with a modified time propagator should be of use for the

evaluation of this quantity. Indeed one should be able to find suitable

expansions for these expressions which e.g. in the case of plasmas would

lead in first order to expressions for the conductivity which are found

by treating the Maxwell field as an external field treated self

consistently and taking a Hamiltonian for the system which in the case

of the transverse conductivity contains only the coulomb interactions. We

shall study this problem in more detail in a subsequent paper.
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Appendix.

In this appendix we only consider translationally invariant, isotropic

non-gyrotropic material systems. For these media all Fourier transformed

tensors have the form

f(t,w) - Ttr(k,w){S - p }  + Tl(k,w) jjj, (A.1)

t»1T JL • •where T and T are respectively the transverse and longitudinal parts of
-►

the tensor t .

First wé will show that the transverse conductivity (5.3) in terms of

the transverse response function x has the form (4.13).

For the transverse part of relation (5.12) we find

g^(k,u) - x^(k,w) + g^(k.i»)x^(h»w)» (A-2)
TT TTJJ J J je ej

where we have used equation (5.14).

The transverse parts of equations (4.6) and (5.23) are respectively

X^(kf“>)ej
and

w2-c2k2 JJ
( x ^ ( h , u )  “  u 2 } (A. 3)

i“g^(k.u) “ “p - g^(k»“)'Je P JJ (A.4)

Inserting equations (A.3) and (A.4) into equation (A.2) we obtain

7: gtr(k,u) - xtr(k,w)(1)
J _ h>2xtr(k,u)

w2_c2k2

-1

(A. 5)

where gtr and x r ere the transverse parts of g and x eqs. (5.3) and

(3.29) respectively. It thus follows in view of equation (4.13) that

gtr(k,w) = otr(k,u). (A.6)
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Finally we show that thé inverse transverse part of the impedance
♦
R(k,u) is equal to the transverse conductivity atr(k,(o) when the wave

vector k and frequency to satisfy the dispersion relation in the medium.

For the transverse part of eq. (6.6) we find

g!I(k,w>
8^(k,w) - - iu ee‘•f , ~ X^(k,to) -

JJ

~ — --Cx^(k,to) - ti)2},
<o2-c2k2 j j ^

(A. 7)

where we have also used eq. (A.3).

The transverse part of eq. (6.15) is

iwg“ (k,to) - - g^(k,«) - ^  c2k2 .
ee ej

(A. 8)

Inserting equation (A.8) into eq. (A.7), also using eqs. (3.29) and

(4.13), we obtain

to2P
co tr /. t - ctr(k,to) to2-c2k2

— (to2-c2k 2+itiigtr(k,to) }+itootr(k,io)
to2

(A.9)

fcr  ̂| ^ ̂
Therefore R (k,<o) , the inverse of the transverse part of R(k,to)

which according to eq. (6.2) is equal to the left hand side of eq. (A.9),
tr

is not equal to a (k,to) for all k and to. Now the dispersion relation

in the medium for transverse normal waves is

-  atr(k,to) - -1 + .
w u2

(A.10)

Using the dispersion relation (A.10) in eq. (A.9) it thus follows that

Rtr(k,oo)-1 = - -
to2P

“  t r /i- \gJ_k(k,<o)
atr (k,<o) (A. 11)
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when k

normal

and iji satisfy eq. (A. 10), the dispersion relation for transverse

waves in the medium.
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Chapter III

ON INVERSE EXTINCTION THEOREMS IN ELECTRODYNAMICS

Synopsis

Inverse extinction theorems in electrodynamics are derived from the

conventional linear response theory for a material system to an external

electromagnetic field. Such inverse extinction theorems can also be

obtained directly from the phenomenological Maxwell theory.

1 2 )1. Introduction. The extinction theorem in electrodynamics '

expresses the fact that at any point inside a finite material system the

incident electric field is equal to ("cancelled" by) the field generated

by the total electric field at the boundary of the system or, if a

constitutive relation is introduced, equal to the field set up by the
3)current density at the boundary. Recently , attempts have been made to

obtain from the extinction theorem in the case of a molecular fluid a

linear response relation between the current density and the external

electric field. Since, as described in chapter I, linear response theory

which gives rise to average fields and sources satisfying Maxwell’s

equations, automatically also satisfies the extinction theorem, it is

interesting to investigate whether the response relations in such a theory

can also be written in a form which represents an inversion of the

extinction theorem.

In this chapter we show that the conventional linear response theory

to an external electromagnetic field indeed yields responses of that type.
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^  furthcmiorfi shown thAt sunilAr relations can 31 so b0 derived from
the phenomenological Maxwell theory, so that inverse extinction theorems,

as in the case of the usual extinction theorem, are a consequence of the

Maxwell equations together with a constitutive relation.

In section 2 we derive field equations for the response functions of
the induced current density and the electric field. With the use of these

field equations we show in section 3 that the induced current density and

the total electric field may be written in an alternative form in terms of

the external electric field at the boundary of the system. These new

expressions represent, so to say, an inversion of the conventional

extinction theorem in electrodynamics. In section 4 finally, we derive

these inverse extinction theorems from the phenomenological Maxwell theory.
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2. Linear response theory for a material system to an external electro

magnetic field.
•In chapter IX section 3 we have derived the following relations for

the average induced current density and the average electric field (c.f.

equations II.3.26 and II.3.33)

3 in d (r,(i>) -  -  ini jd v ' x ( r ,? '; « )  • I e ( r '  ,w) (2.1)
V

and

£ ( r ,u )  - E (r,to) - i  Idv' j? ( r , r '  jw) • I  (r '.oo ), (2.2)

in which Ee(r,w) was the external electric field and x(r,r';u) and
+ .+ +| t
X^.(r,r 5to) response functions defined as (c.f. equations II.3.29, II.3.13
ej

and II.3.34)

X(r,r';u) - —
to2

X++(r»r' ;w) - to2(r)6(r-r')U (2.3)

with

? • ;„ )  -  £  j< [ j ( ? ,T ) ,J ( ? ',0 ) ] > e i “TdT,

N e?
* « < r > *  *1 ^  « ( r - r . ) =m. ' j

j - i  j  J

(2.4)

(2.5)

and

X^(?,?';to) - i  |< e ( r ,x ) ,T ( r ' ,0) . i«T.>e at* (2.6)

It will now be shown that these response functions satisfy the following

Equations and sections of chapter II, referred to in this chapter,

will be preceded by the prefix II.
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field equations *)

ij- x(r,r';u) - - ^(r,r';u)curl'cïïrï' + x ^r . r '  ;uj)

and

(2.7)

—  X^(r,t'i^) - «(r-r')5 cfel’curl’ -c2 Ij
■ ~ X, ((r.g' >m)curl'cürl' + —  x^(r,r';w).

ee c2 ee

In equation (2.7) x.,(r,r'in) is defined as
je

(2.8)

J(r,t),e(r',0)V (r*r'S“) “ if
Je

and in equation (2.8) x (r.r' jui) as
ee

_ iuT.>e dt (2.9)

X^(r,r';u.) - g- <
ee '0

e(r,T),e(r',0) i(l)T .>e dr. (2.10)

For the derivation of the first field equation (2.7) we observe that

[j(r,0), curl'curl' e(r',-t) V+A J(r,0), —  e(r',-t)
l_ J C2

:|l(r,0), - —  j(r',-t)L  e2
(2.11)

where we have used the operator equation

For reasons of convenience we introduce the notion T(r)curl,

which has the following meanings

{i(?)cfel}“e - l 6Syv _L.T“V),
YV

where S®YV is the Levi-Civita tensor (c.f. II.2.13).
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(2.12)
| M  | »

curl curl e(r,t) + —  e(r,t) = ---- j(r,t),
c2 c2

obtained in the usual way from the equations (11.2.20) and (II.2.21).

From equations (2.8) and (2.11) we then obtain eq. (2.7) if we also use

the commutation relation

^(r.OXt^r' ,0) - c|}(r,0), curl'curl' a(r',0)j -

“ J(r,0),J(r,,0)J - 0, (2.13)

which follows from the basic commutation relations (II.2.7) ~ (71.2.11)

and the identity (II.3.23).

Finally, starting from the relation

e(r,0), curl'curl' e(r',-t)

e(r,0), - —  j(r' ,-t)
-

e(r,0), —  e(r' ,-t)|5_ c2 J

(2.14)

we find in a similar way equation (2.8). We note that equation (2.8)

reduces in the absence of matter (x t (r.r';u) = 0) to the field equation
t + «J 4>

of x,,(r,r*;w) for the free radiation field as it should. '
ee

3. Linear response to external fields as an inverse extinction theorem.

Let us now eliminate from the Kubo formula equation (2.1)

for the induced current density the generalized external susceptibility

X(r,r';u) by means of the field equation (2.7). We then get

Jind(r,u)) - (dv' n^(r,r';w)curl'<nlrl'} - —  )? (r,r';ai) •
“2 ij L je c2 je

• Je(r\o»). (3.1)

On the other hand the external field Ee(r,w) satisfies the field equation
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(3.2)- curl curl Ï (r,u) + —  ? (r,io) - - —  3 (r.w).
e c2 6 c2 e

Substitution of equation (3.2) into equation (3.1) leads to

3ind(r*u) " ~  dv'
“ ^

•

( ^ ( r . r ’ju)curl'curl'} • E (r',to) -
^ je e

“ ^(r^'lio) * curl'curl' E (r',u>) +
je e

+ ̂  |dv' ^.(r.r' ;u) • Je(r' ,u).
V je

(3.3)

Making use of Green's theorem for the vector E (r,<o) and the tensor-+■ e-►. #Xj,(r.r*;m). we finally obtain
je

Jind(''u> “ “ ̂  ,d0' (X^.(r»r' ;io)curl' } • {n(r') x E  (r',w)} +
- je

+ ^.(r.r'jio) • {n(r') x curl' 2 (r',w)}j +
ie -J

+ — dvu j r’ ^(r.r'lw) • Je(r',u) (3.4)-

in which the first integral on the right-hand side is over £, the closed
boundary surface of the material system and n(r) is the outward normal
on I.

In a similar way we obtain from the Kubo relation equation (2.2),
the field equations (2.8) and (3.2) and Green's theorem the following
relation for the total electric field E(r,u) for a point r inside V

E(r,w) - - —  [do' [tx (r,r';u)curl'} • (n(r') x E (r',u) +m2 i L e

+ ^.(r.r'jii)) • (n(r') x curl' 2e(r',(i>)}j +
ee -i
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+ ~ fdv' {̂ .(r.r'jaj) - 6(r-r')U} • ^(r'.u) (3.5)
V ee

and

ê(r,u) - Ee(r,u) + jj-jdv' x^r.r'jw) • 3e(r' fu) -
V

[da' n^Cr.r'juJcurl'} • {n(r') x E (r',u) +
u)2 > ez

♦ X^.(r.r'5(o) • {n(r') x curl’ ^(r',w)}
ee ,

(3.6)

for a point r outside V.
Note that equation (3.4) could also have been obtained directly from

■f
equation (3.5) using an equation for xee(r»r'jm) analogous to equation
(2.8) but involving differentiation with respect to the first argument.

Consider now the case that no "external" sources are located inside
the material. Then equations (3.4) and (3.5) reduce to

3ind(r,w) - [do' ^{x^(r,r,;u)ctïrl,) • (n(r') x ^ r ’.u) +
w2 ‘ >- jeI

+ x̂ r.r';#)) * (n(r') x cutl' ïe(r',w)}l (3.7)
je J

and

E(r,u) - - —  [do' [{x ^ rê.r'ittOctrl1} * (n(r') x i  (r',«) +u>2 > L tt eI
* x, ; (r.r1 ;m) • {n(r') x Burl' fe(r',w)}j. (3.8)

ee -*

These equations have so to say the form of an "inverse" extinction theorem.
In the usual extinction theorem the external electric field inside the
medium is "cancelled" by a field generated by the total electromagnetic
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field at the boundary of the material system, or, if constitutive relations

are introduced, by the current set up by the boundary. Here we see that

conversely the total electric field or the current inside the system is

equal to a field or a current generated by the external field at the

boundary.

Note that if the sources are removed to infinity and if we subsequently,

in the case of a homogeneous medium, take the limit of an infinite

material system, so that all commutator correlation functions become

translationally invariant, the surface terms in equations (3.7) and (3.8)

do not vanish if the medium is non absorptive or vanish if the medium is

absorptive. In the latter case since the total field can only vanish if

the induced electric field cancels the external field there therefore

still is a coupling between the medium and the external sources at

infinity, which is expressed by the equivalent equation (2.2).

It is furthermore possible to show that if all external sources are

located inside the médium, the boundary terms in equations (3.4) and (3.5)

vanish.

In both cases (external sources located only inside or only outside

the material system) all relevant information concerning the response of

the system is contained in the response function x(r»r'»«>)> or the
 ̂ -f

commutator correlation functions x , t (r.r' ;m), x , (r.r' ;u)- and x 1 (r.r1 ;ai) ,
Z + + *® je ej

which can be obtained from x(r,r';w) by means of field equations of the

type of equations (2.7) and (2.8). This completely justifies the

procedure of going to the limit of an infinite material system with

external sources located at finite domains in space in order to calculate

the commutator correlation functions and to derive subsequently the

optical behaviour of the medium. This is the usual procedure followed

e.g. by Martin.^ The idea that in order to deal with the optical

properties of a material system one must necessarily consider the system

to be finite, because "light (external sources at infinity) couples to
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the system through its boundary", and that therefore the response of the

system must be found through an inversion of the extinction theorem, is

obviously based on a wrong interpretation of the content of the extinction

special form of the classical boundary value problem of electromagnetic

theory, using the constitutive equations.

We have shown in this chapter that the conventional linear response

theory also automatically incorporates an inversion of the extinction

theorem. That these formal inverse extinction theorems do not indicate that

there is a coupling to the medium through the boundary is also clear from

the fact that in equations(3.4) and (3.5) the surface J may be any closed

surface containing the medium and not necessarily its boundary.

4. Inverse extinction theorems from Maxwell theory.

We shall finally show that the inverse extinction theorems derived in

section 3 from linear response theory can also be obtained, just as the

conventional extinction theorem, as a consequence of the Maxwell equations

together with a constitutive equation. To achieve this we start from the

field equation for the total electric field which is

theorem. As has been shown the extinction theorem is nothing but a

(r,d>) + 3  (r,u)}curl curl E(r,ti>) + (4.1)

We introduce the constitutive equation

| o(r,r';u) • ï(r',u) (4.2)

in which the conductivity tensor o(r,r';w) vanishes for all points

r,r' outside V, the volume of the material system. Substitution of

eq. (4.2) into eq. (4.1) gives
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(4.3)

o ( ^
- curl curl E(r,w) + jdv' {6(r-r')2 + i  o(r,r';u)} •

• ±  3 (? ,« ) ,
c2 e

where the integration in the second term is over all space. We solve

equation (4.3) with the help of a retarded tensor Green's function

G (r|r';w), which satisfies the equation

curl curl 2 (r|r';<o) + —  fdv" {6(r-r")2 + - a ( r,r";u)}
° c2 J W

Ga(r"|r';w) - - S(r-r')U. (4.4)

The solution of eq. (5.3) can now be written as

i(r,<o) - —  dv' 2o(r|r';id) • 3 (r',u).
c2 *

(4.5)

We note that the tensor Green's function 2^(r|r'jm) is the propagator in

macroscopic electrodynamics. Elimination of 3e(r,w), using eq. (3.2),

gives after partial integration

l(r,u) - fdv' 2 (r|r';u){curl'curl' - —  u) • E (r',u)
I  a  c2 e (4.6)

It follows from eq# (4#4) and the Onsager relation

aop(r,r';id) - aB“(r',r ;<o)6“/Ct (4.7)

that

2 (r|r'{w){curl'curl' - —  U} =
° c2

- 6(?-r')3 + —  fdv" 2Q(r|r";u) ?(?",?';u), (4.8)
c2 *

so that the integration in equation (4#6) may be restricted to the volume

V of the material system for points r inside the medium. Equation (4.6)
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can th u s be w r i t te n ,  u sing  eq u a tio n  (3 .2 )  and G reen 's  theorem , as

;<i>)curi'} • { n ( r ')  x E  (r ',w )>  +eS (r ,« ) -  -  jdo' p 0 (? |? '

I

+ 2  < r |r ';w )  • { n ( r ')  x c u r l '  Ï  ( r ',a i ) J

+ —  2a (r |r ';u )  • i e (r ' ,u ) .
c* V

(4 .9 )

Using th e  m a te r ia l eq u a tio n  (4 .2 ) we f in d  fo r  the  induced c u r re n t d e n s ity

3^n<j ( r ,u )  -  -  jd o ' [ ( jd v "  o ( r , r " ; u )  • <»o ( r " |r ';< o ) c u r l '}  *

I
• { n ( r ')  x ï e ( r ' , u ) }  +

+ jdv" o ( r ,r " ;w )  • <*a ( r"  |r '; w )  • { n ( r ')  x c u r l '  ^ ( r ' . u o H  +

+ jd v ' jd v "  o ( r , r " ;w )  • <»o ( r " | r ' ; u )  • j ^ ( r ' , u ) .  (4 .10)
c V

We now co n s id er th e  case  th a t  no e x te rn a l sources a re  lo c a te d  in s id e  th e

m a te r ia l .  Then eq u a tio n s (4 .9 )  and (4 .10) reduces to

<5Q( r  | r '  ; u ) c u r l '  * ( n ( r ' )  x ? # ( r ',u ) >  +l ( r , u )  -  -  Jdo '

I
+ <5a ( r |? '; w )  • ( n ( r ')  x c u r l '  l # ( r ' ,w ) ) l (4 .11)

and

J^ n(j(r,u )) ■ -  jd o ' Tdv" o ( r , r " ;u )  * <5o ( r " | r ' ; u ) c u r l !

I
• ( n ( ï ' )  x t  ( r '.rn )  + (dv" o ( r ,r " ; io )  • J „ ( r " | r ' ;« )

{ n ( r ')  x c u r l '  ^ ( £ ' , ( 1) ) ^ . (4 .12)
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The equations (4.11) and (4.12) represent again inverse extinction

theorems. They are here a consequence of the Maxwell equations together

with a material equation. If one furthermore establishes a connection

between the generalized susceptibilities, found on the basis of linear

response theory, and the propagator G , one can show that the inverse

extinction theorems (4.11) and (4.12) are equivalent to the analogous

expressions (3*8) end (3.7). This will be done in the eppendix*
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Appendix.

In this appendix w e  will give an interpretation of the commutator

correlation functions of linear response theory in terms of the
•+ •+

macroscopic propagator u and the material parameter a, proving at the

same time that the inverse extinction theorems derived in section 3 are

equivalent to those derived in section 4. For convenience w e  will use a

formal m a t r i x  notation w h i c h  is self explanatory. For the total electric

field w e  m a y  write

^  h .  . * j }2 ind e

where

i*| r-r'|*  ■* 2 C 1 1
G(r|r';u)) = (U + —  grad grad} — ----------

w 2 4ir | r - r ' |

is the vacu u m  propagator of electrodynamics.

O n  the other hand we  have (c.f. equation (4.5))

2-^2 3c2 ° e

and (c.f. equation (3.2))

(A. I)

(A. 2)

(A. 3)

E - 2  • 3  . (A.4)
e c2 e

Using the equations (A. 1), (A.3), (A.4) and the Onsager relation voor
♦
o eq. (4.7) we  find the relation

2  - 2  + —  2  o 2 .  (A.5)
« c2 0

Eliminating 3 ^  from (A.3) by means of (A.4) and comparing to eq. (2.2)

w e  obtain the identification
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ej
u2 X t—  G o
c2 a

where we have also used eq. (A.5).

In the same way it follows from equations (4.2), (A.3), (A.4) and

comparison with eq. (2.1) that

(A. 6)

-s- . ■+■■* 1 -*• 1X * —  o ----a G a.w c2 a (A. 7)

On the other hand we may write eq. (2.8) in the matrix form as

* ? iu>tY - Ü  ----X.
2ee cr

t u2 *G + —  G.
ej c2

(A. 8)

Upon substitution of equation (A.6) into equation (A.8) we obtain, also

using equation (A.5)

c2 0

Finally, we note, using time reversal invariance, that

c2 0

(A. 9)

(A.10)

It is now easily verified, using the above relations, that the inverse

extinction theorems derived in section 3 are equivalent to those in

section 4. Moreover we can give an interpretation of the commutator

correlation function in linear response theory in terms of the macroscopic
+ +

quantities G and o.
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SAMENVATTING

In de macroscopische theorie van het electromagnetisme kan het gedrag

van materiele lichamen in een electromagnetisch veld in lineaire benadering

gekarakteriseerd worden door materiaaIcons tanten, zoals de gegeneraliseerde

golfvector en frequentieafhankelijke diëlectrische tensor 'of de gege

neraliseerde golfvector en frequentieafhankelijke geleidingsvermogen—

tensor. Deze materiaalconstanten stellen ons in staat het resulterende

electromagnetische veld uit te rekenen in willekeurige ruimte—tijd—punten,

wanneer het materiële systeem bloot gesteld wordt aan een willekeurig uit—»
wendig electromagnetisch veld. Het is de taak van de statistische mechanica

om uitdrukkingen voor deze materiaalparameters te leveren in termen van

de microscopische eigenschappen van het systeem. Bij de conventionele

methode om zulke uitdrukkingen te verkrijgen, leidt men eerst een

statistische uitdrukking af voor de "uitwendige" susceptibiliteit, die de

stroomresponsie van het systeem op een uitwendig electromagnetisch veld

vastlegt. Vervolgens wordt het uitwendige veld geëlimineerd met behulp van

een relatie tussen het uitwendige veld en het Maxwell-veld in het systeem.

Men verkrijgt zodoende een uitdrukking voor het geleidingsvermogen als

functie van de uitwendige susceptibiliteit.

In de theorie van de optica stelt men belang in het gedrag van materiële

systemen, wanneer deze verstoord worden door licht. In het bijzonder is

men geïnteresseerd in de voortplanting van normale golven in het medium,

dat dan gekarakteriseerd wordt door brekingsindices. In een bepaald type

optische theorie, de zogenaamde "rigorous dispersion" theorie, speelt het

extinctietheorema van Ewald en Oseen een belangrijke rol. Ten gevolge van

het superpositieprincipe bestaat het totale electrische veld binnen een
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medium uit de inkomende golf en de geïnduceerde golf. Daar de snelheid van

het licht in een medium in het algemeen verschilt van de snelheid van het

licht in vacuüm, moet de inkomende golf uitgedoofd worden door het

geïnduceerde veld. Hoe dit in zijn werk gaat, is de inhoud van het extinctie-

theorema. Deze stelling zegt, dat het inkomende electrische veld in elk

punt binnen het medium uitgedoofd wordt door het electrische veld, dat

voortgebracht wordt door de geïnduceerde stroomdichtheid aan het oppervlak

van het materiële systeem. De manier waarop deze stelling afgeleid wordt,

schijnt te impliceren, dat de uitdoving van de uitwendige lichtgolf slechts

met behulp van microscopische beschouwingen begrepen kan worden.

In dit proefschrift zullen wij enerzijds trachten de betekenis van het

extinctietheorema te verduidelijken, anderzijds een methode ontwikkelen

met behulp van projectieoperatoren, die op directe wijze statistische uit

drukkingen geeft voor de materiaalconstanten van het systeem. Uitgaande

van de algemene oplossing van het klassieke randwaardeprobleem voor

electromagnetische velden, leiden we in hoofdstuk I formele extinctie

theorema' s af voor het invallende electromagnetische veld. Deze uitdruk

kingen zijn algemene identiteiten en kunnen gebruikt worden voor wille

keurige systemen. Het ware extinctietheorema van het Ewald-Oseen type

voor lineaire, isotrope, homogene media wordt daarna afgeleid door

materiaalvergelijkingen in te voeren. De belangrijkheid van oppervlakte-

effecten, veroorzaakt door discontinuïteiten in de materiaalconstanten,

wordt aangetoond. Deze afleiding laat zien, dat het extinctietheorema

reeds een gevolg is van de Maxwell-vergelijkingen en de materiaalverge

lijkingen. We mogen daarom vaststellen, dat in de gebruikelijke theorieën

deze stelling gezien moet worden als een uiting van het feit, dat de

theorie consistent is met de Maxwell-vergelijkingen. In hoofdstuk II laten

we zien hoe, met behulp van een projectieoperator-methode, in het raam van

de lineaire responsietheórie een uitdrukking voor het transversale deel

van de geleidingsvermogentensor gevonden kan worden in termen van het
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transversale deel van een stroom-stroom-correlatiefunctie met een

gemodificeerde propagator. Uit de structuur van deze uitdrukking volgen

onmiddellijk Kramers-Kronig relaties. De omstandigheid, dat we niet in

staat waren een analoge uitdrukking te vinden voor het longitudinale ge-

leidingsvermogen, staat in verband met het feit, dat er geen algemeen be

wijs van de Kramers-Kronig relaties gegeven kan worden voor het longitudi

nale geleidingsvermogen. De aanwezigheid van de electromagnetische inter

acties tussen de deeltjes maakt de berekening van het geleidingsvermogen

buitengewoon moeilijk. Het is daarom gebruikelijk om in eerste benadering

zelfconsistente veldmethoden aan te wenden. Deze methoden zijn gebaseerd op

de aanname, dat de geleidingsvermogentensor verkregen kan worden door de

responsie op een uitwendig electromagnetisch veld uit te rekenen voor een

model-systeem met een effectieve Hamiltoniaan, waarin gedeelten van de

electromagnetische wisselwerking zijn weggelaten. In een volgende benadering

beschouwt men dan de zogenaamde lokale veld— (Lorentz—veld) correcties.

Algemeen wordt aangenomen, dat lokale veldcorrecties niet belangrijk zijn

in plasma's. Het is niet duidelijk of zo'n zelfconsistente veldmethode

redelijk is in het geval van bijvoorbeeld een vloeistof bestaande uit

moleculen. Het is een van de aantrekkelijke kanten van de uitdrukkingen

voor de electromagnetische transportcoëfficiënten in termen van gemodi

ficeerde commitator-correlatiefuncties, dat deze een geschikt uitgangs

punt bieden om de geldigheid van de bovengenoemde zelfconsistente veld—

methoden te bestuderen.

In hoofdstuk III leiden we zogenoemde "omgekeerde" extinctietheorema's

uit de conventionele lineaire responsietheorie voor materiële systemen

in wisselwerking met uitwendige electromagnetische velden. Deze omgekeerde

extinctietheorema's drukken uit, dat de geïnduceerde stroomdichtheid en

het totale electrische veld in elk punt binnen een medium gelijk zijn aan

respectievelijk een stroom en een veld, die voortgebracht worden door het

uitwendige electrische veld aan de grens van het medium. Deze omgekeerde
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extinct ie cheer eria' s kunnen ook direct verkregen worden uit de fenomeno

logische Maxwell—theorie. Evenals in het geval van het klassieke extinctie—

theorema zijn deze relaties dus een gevolg van de Maxwell-vergelijkingen

-tezamen met een materiaalvergelijking. Tegelijk met de fysische inter

pretatie van deze relaties worden enige aspecten van de lineaire responsie-

theorie voor translatie—invariante systemen besproken.

Tenslotte geven we een interpretatie van de coMutator—correlatie-

functies der lineaire responsietheorie, d.w.z. de "uitwendige"

susceptibiTiteiten, in termen van de macroscopische propagator voor het

electrische veld en de geleidingsvermogentensor van het medium.
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