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PREFACE

Over the years random-walk models have been extensively and successfully 
applied in many fields ranging from solid-state physics and polymer chemistry 
to photosynthesis, economics and the social sciences. The motives for the 
choice of a random-walk model to describe a particular empirical situation may 
vary considerably, but even so, the approaches followed for different 
applications are built on the same formalism.

Random-walk theory has its roots in the 17th- and 18th-century analysis 
of games of chance [1,2]. Its underlying concepts have played an important 
role in the early studies of Brownian motion and diffusion [3,4;cf.5] and have 
been instrumental in the development of the basic principles of nonequilibrium 
statistical mechanics [6;cf.2]. In the past fifty years random walks have 
emerged as a significant tool for the understanding of a variety of transport 
processes occurring in physical systems. In mathematics random walks occupy a 
place as a special class of Markov chains [7] and have become an important 
element of modern probability theory. The field has reached a high level of 
mathematical sophistication due to the interplay with Fourier analysis, 
generating-function techniques, potential theory and ergodic theory [8,9].

For a recent historical account of the subject the reader is referred to 
the review paper by Montroll and Shlesinger [2]. A very thorough and complete 
treatment of the mathematical foundations of random-walk theory has been laid 
down in the monograph by Spitzer [8]. A wide range of applications is discus
sed in the book by Barber and Ninham [10] and in the review paper by Weiss and 
Rubin [11]. Also, for an overview of the present state of the art the reader 
may find it useful to browse through the proceedings of the symposium on 
random walks that was held in Gaithersburg (Maryland, USA) in 1982 [12].

The formulation of a random walk as a statistical problem per se is a 
product of the early 20th century [13,14]. A random walk in discrete space and 
time may be defined as follows. Consider an infinite d-dimensional lattice L 
with points

X := a1..........Xd) - l1^ + ... + 1% , JlleZ, , (1)

where {e^.... ed} is a set of independent unit vectors. Suppose that a walker
starts at a given point Xq and makes a succession of random steps on L,



10

visiting a random sequence of points

^2* *** (2)

such that the successive displacements X -£ , n=0,l,2,... are independent 
and identically distributed random variables with a given probability distri
bution

pU) , AeL. (3)

In other words, the probability p(X+X*) for the walker when finding himself 
on X to make a step to X' is independent of previous steps (the history of the 
walk) and depends only on the difference Jl'-Jt:

pCW) = p(0*A*-JO =: p(A'-A) , X,X'eL. (A)

The function p : L ->• is the single-step probability distribution function 
and has the properties

pU) > 0 , EA€LpU) = 1. (5)

This defines a random walk on L. Characteristic in the definition are the 
independence of the steps and the translation invariance of the transition 
probabilities as expressed by Eq.(4). Similar definitions may be given for a 
random walk in continuous space and/or time [2,5,11]. We shall be concerned 
only with the discrete case.

The aim of random-walk theory is, in short, to study the probability laws 
that govern the various properties associated with the walk as a function of 
the number of steps. Typical questions which are addressed are, for instance: 
(1) What is the asymptotic form of the probability distribution for the 
position of the walker in the limit of a very large number of steps? (2) What 
is the probability that the walker in the course of his walk returns to his 
starting point, or similarly, reaches an arbitrary point in a specified subset 
of L? (3) What is the probability distribution for the number of distinct 
points visited by the walker in a given number of steps? The answers to these 
questions will generally depend on the dimensionality and structure of L and 
on the detailed properties of p, such as range, symmetry, existence of
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moments, etc.

Since the 1960's a new branch of random-walk theory has developed in 
which the object of study carries the name of a random walk in a random medium 
(or random environment). Here the random-walk problem is generalized by 
allowing the transition probabilities to be (static) random variables them
selves, i.e., the set of probabilities {p(Ji.-*-A*)} ^ is determined by a 
given (joint) probability distribution. In this case p(JL-vJl') depends both 
on i and V, so that there is no longer translation invariance as in Eq.(4). 
This is sometimes expressed by saying that the medium or lattice itself is 
random (disordered, inhomogeneous). Thus there are now two types of randomness 
in play: randomness in the walk and randomness in the medium (the lattice), 
and so the problem is one of a doubly random nature. In the general case the 
transition probabilities between different pairs of points may be correlated.

Models of a random walk in a random medium have been used to describe a 
variety of transport processes occurring in random physical systems, i.e., 
systems with structural disorder on a microscopic scale. Examples are: 
transfer of excitations in photosynthetic membranes, diffusion of vacancies or 
selfinterstitials in deformed metals, electrical conductivity in random- 
resistor networks, hopping conductivity in amorphous semiconductors, and 
diffusion of particles in composite materials such as alloys (see e.g. Refs- 
11,12 and 15). Since completely pure (ordered, homogeneous) systems are rather 
rare in nature and most physical systems are structurally random in some form 
or other, it is not surprising that a lot of attention has been given to 
understanding the role of randomness in such systems in general. Transport 
processes are an important class of phenomena in this field.

A rich variety of models of the above type have been investigated in the 
past 20 years. These include models with lattices containing scatterers, 
traps, anisotropy points, pausing points, open and closed columns, etc. A 
selection of papers devoted to various areas in this field are listed in 
References 16-39. It will be clear that, because of the random character of 
the transition probabilities, the questions which are addressed here are in 
general much harder to handle than those which are encountered in standard 
random-walk theory. A typical problem arising in this context is that certain 
powerful techniques, such as Fourier analysis and generating-function 
techniques, turn out to be fruitless because of the lack of translation 
Invariance. Many fundamental questions therefore still remain open. To mention
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two: (1) Under what conditions is the behaviour of a random walk on a lattice 
with a given type of impurity diffusion-like? (2) If it is diffusion-like, 
then under what conditions does the diffusion constant depend only on the 
density of impurities and not on their arrangement? The new techniques which 
have been developed over the years to deal with these types of problems have 
made the field especially lively from a theoretical point of view. Another 
interesting aspect is that certain results which have been found are of a 
somewhat unexpected nature, so it turns out, the randomness inherent In these 
models leading to new types of behaviour which seem to run against plain 
intuition. This situation makes careful and systematic techniques, as opposed 
to approximative techniques, sometimes indispensable.

In this thesis we shall be mainly concerned with trapping problems, i.e., 
we shall study models of a random walk on a lattice with points where the walk 
may come to an end (traps, absorbers, sinks). Trapping problems have a long 
history and many properties have, in some form or other, been discussed in the 
literature (see e.g. Refs.11,12,29-36). The model that we shall investigate is 
the following. We consider again an infinite d-dimensional lattice L and let a 
certain fraction of Its points act as traps. We assume a given joint probabi
lity distribution for the positions of the traps (which in principle may 
allow for correlations between the trap positions) with a given trap density 
q>0. Next we consider a random walk that starts at a given point and proceeds 
according to a given single-step probability distribution p satisfying Eqs.(4) 
and (5), as in the original random-walk problem. The walk continues until a. 
trap is hit and the walk ends. In the following we shall study the case of 
perfect traps, where absorption is certain, but also consider the extension 
that is obtained by letting the traps be imperfecty i.e., by allowing the 
walker, whenever stepping on a trap, to remain free with a given probabi
lity T)<1 and to continue his walk as prescribed (q is the "escape" parameter). 
For many applications this extension is necessary (see e.g. Refs. 40 and 41).

In the sequel much of our attention will focus on a detailed study of the 
following two quantities:

f = the total probability that the walker
is trapped, (6)

<n> ■ the average number of steps made until
trapping (given that this happens), (7)
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and related quantities. The question to be settled is how these quantities 
depend on L, d, ^ , q, p and q.

Trapping models are relatively easy because the traps do not influence 
the walk "spatially". The transition probabilities are random only in the 
sense that whether or not at a given stage the walker continues his walk 
depends on the character of the point he finds himself on. Our model with q 
arbitrary is a special case of the general problem formulated above, with the 
transition probabilities taking the values

. qp(A'-A) , if A is a trap,
pu-r) - { (8)

p(A'-A) , if A is not a trap.

Note that when A is a trap, ^p( A->A') = q < 1.

In Chapter 1 we begin with a study of the case where the trap distribu
tion is periodic, i.e., the traps are placed in such a way that the lattice 
can be divided into identical finite blocks ("unit cells") each of which 
contains traps and nontrapping points at identical positions (in other words, 
there is a fixed repeating trap pattern). The shape and structure of the 
blocks will be arbitrary. Also the single-step distribution p will be arbi
trary. The periodic case is the easiest and f and <n> can be calculated 
exactly. We also consider mixtures of different types of imperfect traps, each 
with a different escape parameter. Models with two types of imperfect traps 
are of particular interest in the theory of photosynthesis [40,41]. Our 
results are an extension of earlier work by Montroll (for perfect traps) [30]. 
In this Chapter we further allow the walker to have a fixed probability e<l 
per step to disappear from the lattice. This is put in with the aim of 
application of our results to fluorescence experiments conducted with 
photosynthetic bacteria [42,43]. This extension will be dropped in the 
subsequent Chapters.

In Chapter 2 the case of a random trap distribution is investigated, 
where each point of L has probability q to be a trap independently of the 
character of other points. This case is considerably harder and only few 
rigorous results are known from the literature (except in d=l) [29-31,44,45]. 
We consider several classes of random walks of varying dimensionality and 
derive a systematic asymptotic expansion in the trap density for <n>. For most 
random walks this expansion is accurate up to relatively high densities. (We 
also show that for the random case f=l for all q, p and q, provided p(0)<l.) A
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large part of the analysis in this Chapter centers on a careful study of the 
probability distribution for the number of points the walker visits a given 
number of times in a given number of steps, i.e., the "amount" and "degree of 
occupancy of space covered by the walk. Again, we also consider (random) 
mixtures of different types of imperfect traps. Our results are an extension 
of earlier work by Rosenstock (for perfect traps in the limit as q+0 ) [29]. 
(See also Refs.32-36.)

For many physical applications the assumption of a periodic or a random 
trap distribution is not so realistic and too much of an idealization of 
physical reality. For more general trap distributions, however, little is 
known in detail. In Chapters 3 and 4 we attempt to approach the problem as 
generally as seems possible and allow ¥ to be completely arbitraryt assuming 
only that ¥ is translation invariant, i.e., the trap distribution is such
that, loosely speaking, two trap configurations which can be obtained from 
each other by a translation have equal probability. Thus the lattice is
inhomogeneous, but it is assumed to be statistically homogeneous. This pro
perty restores part of the translation invariance that was lost by randomizing 
the transition probabilities, and will be seen to play a crucial role in the 
analysis. Physically this assumption amounts to assuming that the system is 
homogeneous on a macroscopic scale. Our approach is different from that
followed in the previous Chapters in that, instead of a lattice consisting of
traps and nontrapping points, we now consider a lattice that consists of 
points of two colours, black and white, and on this lattice a random walk that 
is independent of the colours. The aim of this approach is partly to simplify 
the discussion; as we shall see, the model can be directly applied to the 
original trapping problem by identifying one of the colours with an imperfect 
trap. Thus ¥ now plays the role of a colour distribution. We investigate the 
statistical properties of the sequence of consecutive colours encountered by 
the walker. More in particular our attention will focus on the following set 
of quantities:

f^ = the total probability that at least (9)
1+1 black points are visited; i>0;

<ni> = the average number of steps made between the ith (10)
and the (i+l)st visit of a black point (given that 
these take place); i>0.
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The successive subwalks over white points ending with a visit to a black point 
we c$H "the successive runs". In Chapter 3 we derive a number of exact 
relations, which are valid for arbitrary p. In Chapter 4 these relations are 
used to calculate the f^, and further to derive a set of rigorous inequalities 
for the <ni> (the average lengths of the successive runs) under the assumption 
that the random walk is symmetric, i.e., p(Jl) = p(-jQ for all A. The origin of 
these inequalities and their "sharpness" are discussed at length, as well as 
the role that IP and p play in the final results. In the calculations a number 
of interesting problems arise which are solved by using certain theorems from 
ergodic theory. Here again the translation invariance of (f plays a crucial 
role. Our results are especially interesting because they have a number of 
unexpected aspects, which come to light as a result of the exact approach that 
is followed in the analysis.

As noted earlier, the colour model can be directly applied to the 
original trapping problem by identifying one of the colours, e.g. black, with 
an imperfect trap. In particular it is easily seen from Eqs.(6) and (7) that

f " f0 Zi>l ^^fi-l fi)‘ (ID

<n> = <nQ> + (12)

Because of its somewhat abstract set-up the colour model can be applied to a 
few other physical problems as well. Actually, this was part of the reason why 
we investigated the model; however, we shall not pursue other applications 
here. In addition, we feel that the colour model is interesting in its own 
right. Because the random walk is independent of the colours, an appropriate 
name for the model would be a random walk in a random scenery, rather than in 
a random environment. The former expression is sometimes used in the litera
ture to allude to the independence of random walk and medium (though in a 
somewhat different context) [46,47].

The thesis will be concluded with a list of some additional results for 
the colour model (without derivation or discussion) and a few conjectures, 
which we feel are worth investigating. It might be added that throughout the 
thesis the emphasis is on mathematical rigour and that many of the results 
which we present have sprung from the wish to approach the problem as 
generally as seems possible. Especially Chapters 3 and 4 were felt as a 
"voyage of discovery".
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Chapter I

Random walks with "spontaneous emission" on lattices 
with periodically distributed imperfect traps

This Chapter has appeared as a paper in Physica H-2A (1982) 523-543
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RANDOM WALKS WITH ‘SPONTANEOUS EMISSION’ ON 
LATTICES WITH PERIODICALLY 
DISTRIBUTED IMPERFECT TRAPS

W.Th.F. den HOLLANDER and P.W. KASTELEYN 

Instituut-Lorentz voor Theoretische Natuurkunde, Nieuwsteeg 18, 2311 SB Leiden,
The Netherlands

We study random walks on d-dimensional lattices with periodically distributed traps in which 
the walker has a finite probability per step of disappearing from the lattice and a finite probability 
of escaping from a trap. General expressions are derived for the total probability that the walk 
ends in a trap and for the moments of the number of steps made before this happens if it does 
happen. The analysis is extended to lattices with more types of traps and to a model where the 
trapping occurs during special steps. Finally, the Green’s function at the origin G(0;z) for a finite 
lattice with periodic boundary conditions, which enters into the main expressions, is studied more 
closely. A generalization of an expression for G(0;1) for the square lattice given by Montroll to 
values of z different from, but close to, 1 is derived. 1

1. Introduction

Random walks on lattices containing traps can serve as a model for various 
processes occurring in molecular crystals, ionic crystals, polymers and pho
tosynthetic units1,2). In the simplest case one assumes a certain distribution of 
traps over the lattice and one supposes that the walker steps on this lattice 
according to a given step probability distribution until he arrives at a trap and 
ends his walk. Properties of such walks have been studied by several 
authors3,4).

In some applications the walk represents the migration of a molecular 
excitation which can at any time disappear spontaneously through the emis
sion of a photon. This phenomenon can be taken into account in the 
random-walk model by introducing a fixed probability for the walker not to 
survive a step5'6).

In other applications it is required to take into account the phenomenon, 
well known in photosynthesis7), that an excitation can, with a certain prob
ability, escape from a trapping site and resume its migration.

It is easy to extend the theory formally so as to incorporate spontaneous 
emission and/or trap imperfection*-10). The effects of these extensions and
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their interplay have, however, not been investigated in detail (except in one 
dimension8)).

In this paper we study some of these effects for a model with periodically 
distributed traps as introduced by Montroll2 3). We consider an infinite lattice, 
divided into identical unit cells each of which contains one trapping point at a 
fixed position. A walker carries out a random walk on this lattice subject to 
the extended conditions mentioned above. For this model we study in 
particular the total probability of trapping and the first and second moment of 
the number of steps made before trapping. For the calculation of such 
quantities it suffices to consider a single unit cell with periodic boundary 
conditions.

After having given the formal analysis in section 2, we show in section 3 
how these quantities can be built up in a simple manner from quantities 
referring to a unit cell without a trap. In section 4 we consider lattices with 
different types of imperfect traps. Models with two types of imperfect traps 
are important in the theory of photosynthesis11). In section 5 we study the 
problem where trapping can occur not at a specific point but during a specific 
step. Section 6, finally, is devoted to a closer analysis of the Green’s function 
at the origin, which plays a central role in the preceding sections, and to a 
discussion of some numerical results.

2. General formalism

Consider a d-dimensional simple cubic lattice Lof mx---xm = md = N 
points on which periodic boundary conditions are imposed and a special point 
l* in L to be called the trap. Suppose that a walker W, starting from a 
given point 4, executes a random walk on L in which at any step the 
probability of a displacement by a vector l is p(£), with 2<eLp(0 = 1- Suppose 
further that whenever W is at t* there is a fixed probability 1 -17 that W is 
trapped (i.e. that the walk ends) and a probability 17 that W remains free and 
continues the walk as prescribed. If 17 = 0 (17 > 0) the trap is called perfect 
(imperfect).

Note that the case £0 = l* is not excluded (as is done by some authors). 
Note also that ‘pausing’ at the trap is possible when p(0)>0, but that the 
probability of trapping is supposed to be independent of the number of steps 
spent at the trap (which makes the trapping process Markovian).

We denote the probability that after n steps W is at l and still free by P„(0> 
suppressing the dependence on N, l*, and 17. According to our assumptions
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P„(£) satisfies the following recurrence relation:

p„+i(o= 2 p(^-nPn(o+T)P«-np„(n (2.D

for all n s* 0, with initial condition P0(£) = .
Finally suppose, in addition, that with every step the walker has a prob

ability e < 1, independent of the walk performed, to disappear from the lattice 
(‘spontaneous emission’).

Now consider the probability T„ that W is trapped after exactly n steps. 
Obviously, since W has to ‘survive’ until trapping,

Tn = (l-€r(l-T,)Pn(n. (2.2)

If we define the generating function

P((;z): = 2J z"P<iM (2.3)
n =0

and write (1 -rj)P({*;z) = :/(z), then the probability / that W is eventually 
trapped, the average (n), the second moment (n2), etc. of the number of steps 
made before this happens (if it does happen) are given by

/=£t„ = [/(z)];.,., (2.4)
n =0

<»l> = r,i'>‘Tn=/-,[(z^)k/(z)] (k = 1,2,...). (2.5)

The function /(z), which we shall call ‘the generating function for trapping’ 
and always write down with its argument z, can be found by solving P(£*; z) 
in the usual manner in terms of the Green’s function for the lattice and the 
walk chosen. From eq. (2.1) it follows that

PU;z)- z 2 Pu- nP((';z) = Sr/a— zp((— n(l - V)P((*;z). (2.6)

Let G(£;z) be the Green’s function defined by

G(.r,z)-z'Zp((-OG((';z) = 8l0, C€L, (2.7)
r

then P(£;z) satisfies the equation

P(l; z) = G(t - *0*,z) - {G{1 - t*; z)- 8„.}( 1 - t|)P(**; z). (2.8)

Substituting l — t* and solving eq. (2.8) for P(£*;z) we find the following



23

expression for /(z):

G(l* - l0;z)
71 j G(0;z) + r)/(l — tj)'

As is well known, the solution of eq. (2.7) is

G(<?;z) = N"'2 
6 l-zp(0)’

(2.9)

(2.10)

where the summation runs over 6 = 2ir(kh ..., kd)/m with k, = 0, 1,..., m - 1 
(i = 1,..., d) and where p(0) is the structure function of the walk:

p(0):=Sei,'#p(O. (2.11)
(

Although we have considered only walks on simple cubic lattices, the results 
derived can be applied to other lattices as well since there is no restriction on 
the function p(() (cf. ref. 3).

Up to now the walk has been supposed to start at a given point £0. If we 
now assume that the walk can start with equal probability at any point of L, 
eq. (2.9) is to be replaced by

/(z) = {N( 1 - z)[G(0 ;z) +VG- V)]y\ (2.12)

which is obtained by averaging eq. (2.9) over tQ, using the relation

£ G(^;z) = (l-z)-'. (2.13)
(

The results thus obtained constitute the formal solution of the problem 
stated in the introduction. The study of /, (n), (n2) etc. as functions of the 
parameters N, e and 17 is seen to reduce to that of G(0;z) as a function of N 
and z. The dependence on 17 is simple: evidently, allowing imperfect traps 
does not substantially complicate the trapping problem. Why this is so will 
become more clear in the next section in which we present an alternative 
derivation.

In some applications of the model one is interested in the process of 
spontaneous emission rather than in that of trapping. The statistics of this 
process is equally well contained in the generating function /(z). Let En be 
the probability that W disappears from the lattice after exactly n steps. Then 
clearly, En = e(l - e)"Qn, where Q„:= 2,*,. P„(fl + r)Pn(t*). From eqs. (2.8) 
and (2.13) it follows that the generating function Q(z):= 2^=02" Qn is equal to 
{l-/(z)}/(l-z).
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k

3. Alternative solution

Since the walks in which we are interested all end in the trap at C* they can 
be divided into one subwalk running from the starting point t0 to t* and a 
number of subwalks starting and ending at C*. Because of the Markovian 
character of the trapping process these subwalks are independent and it is a 
simple matter to combine them to a ‘composite’ walk passing through l*. 
Since the subwalks themselves do not pass through C*y they can be treated as 
walks made in the absence of the trap: it is only in combining them that the 
variable tj characterizing the trap comes into play. Conceptually this is a 
simplification.

We define

f0: - probability that W, starting at reaches the trap (= 1 if tQ = C*)\ 
/,:= probability that W, having escaped from the trap, returns to it;

/*:= probability that W, having escaped from the trap, is eventually 
trapped.

Note that /0 and f\ do not depend on tj, whereas /« does.
Now when the walker disappears from the lattice he is lost for trapping. 

Since this loss can happen either before or after l* is reached, the total 
probability that W is not trapped is

l-/= l-/o + /ot|(l-/.). (3.1)

To find /* we apply the same argument to walks starting at C*:

1-/*= 1-/i + /itK1-/»). (3.2)

Combining eqs. (3.1) and (3.2) we can express / in terms of f0 and /,:

‘-V/ = / o i-yfi
(3.3)

By a similar reasoning we can express (n) in terms of the two averages <n)0 
and (n)i that correspond to f0 and /,. Thus,

(n) = (n)0+ r)fj(n)x, 

(n)oc = (rt)j + 7jfi(n)0

(3.4)

(3.5)

where tj/i is the probability that the walker escapes from the trap but returns 
to it again, and hence

vf i
1-t?/,

<">i.(n) = (n) 0 + (3.6)
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Higher moments can in principle be found in a similar way. This leads to 
increasingly more complicated expressions involving all the lower moments. 
For the second moment we find

(n2) = (n2)0+ rjft((n% + 2(n)0(n)x), 

(n% = (n2), + t]/i«h2)oo+ 2(n)i(n)„),

(3.7)

(3.8)

and hence
(n2) = (n\ + r^r(<n2), + 2(n)o(n (3.9)

The next step is to find expressions for /0, f\ and the corresponding first and 
second moments. This is essentially a first-passage problem on the lattice L 
without the trap. Hence /0, (n)0 and <n2)0 are given by eqs. (2.4) and (2.5) with 
/(z) replaced by

(3.10)

where F(£;z) is the generating function for first passage12)

(3.11)

Using this expression, we can write eq. (3.10) as

(3.12)

Similarly, fu <n)i and (n2)i are found after replacing /(z) by

(3.13)

The eqs. (3.3), (3.6) and (3.9) together with (3.12) and (3.13) can be shown to
imply the expressions for /, (n) and <n2> derived in section 2. However, they
give more details about the problem studied. Observe that, since € is arbi
trary, eq. (3.3) can also be considered as a relation between the generating 
functions /(z), /0(z) and /,(z).

If we now assume again that may with equal probability be any lattice 
point, the eqs. (3.3), (3.6) and (3.9) are formally not affected, but eq. (3.12) is 
to be replaced by

/o(z) = {N(l-z)G(0;z)}-1. (3.14)

For c = 0 (i.e. z = 1) the results simplify considerably. Writing3) 

G(0;z) = {N(l-z)}-1 + ^(0;z), (3.15)
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taking the limit z -> 1 and noting that 4>(0; 1) < » for N < one finds /0 = /, = 
1, <n)o= N<M0; 1), (n), = N, and hence / = 1 and

<n) = N4.(0;l) + ra-N. (3.16)
1 ~ 7)

The fact that (n), equals the number of points of L reflects the well-known 
theorem on the recurrence time in Markov chains12).

4. Lattices with more traps per unit cell

If, instead of one, more imperfect traps are present in L, the generating 
function for trapping can be found by a straightforward generalization of the 
methods used in sections 2 and 3. In the most general case each trap can have 
a different escape probability.

We first discuss the generalization of section 2. Suppose that there are t 
traps in L and that trap i is located at position U and has escape probability 
t]i(i = 1,...»t). If the walk starts at t0, eq. (2.8) is easily seen to generalize to

Pit; z) = Git - t0 ■ z) - 2 {G(( - l,; z) - S„,}(1 - Vi)P(t,; z), (4.1)
i = I

and if we now successively let i be lu... ,1, we get the following closed set 
of t equations:

2 { G,, + J- 8,1(1 - v,)Pi = G,o, (4.2)
i = l v. 1 Tjj J

where Gj,:= G(^ - l\ ;z), Gj0: = G(^ - 4;z) and P,:= P(^;z). Solving this set 
of equations we find the generating function for trapping at trap i to be

/1(z) = (l-r,,)Pi = ^, (4.3)

where G is the t x t-matrix

Gn +1 711 G12 ... gu
l-7]i

G21 Gn+-r^-- ■ G2i
1 ~v?

Gt2 Vt
l ~Vi-
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and G, is the matrix obtained from G by replacing, for fixed i, the ji'-elements 
by Gjo(j = 1,..., t).

Observe that the parameters 17, simply occur in the combination 17/(1 - tj,) 
added to G,j = G(0;z) on the diagonal. Eq. (4.3) generalizes a result by 
Montroll13) for perfect traps and, of course, eq. (2.9).

If the walk may with equal probability start at any lattice point, Gj0 is to be 
replaced in G, by {N( 1 - z)}"1 for all j. If, furthermore, we are not interested 
in the label of the trap at which the walk ends, we may sum /,(z) over i to 
obtain the total generating function for trapping

f(z) = i fXz). (4.4)
1 = 1

If one wants to have more information on the itinerary of the walker, one 
can follow the lines indicated in section 3, dividing the walk into subwalks. 
However, as the number of traps increases this soon becomes cumbersome. 
To illustrate the procedure we shall discuss one special case with two types of 
traps, which is relatively simple because of its symmetry. To define it we go 
back to the infinite lattice, divided into (identical) unit cells with one trap 
each, considered in the introduction.

Suppose now that the traps are of two types, with escape probabilities 17 
and t]', distributed in such a way that traps in adjacent unit cells are of 
different type (so that on the sublattice with lattice spacing m, which is 
formed by the trapping points, the two types alternate). This new lattice with 
traps is again periodic but on a larger scale.

To calculate the total probability of trapping / we next divide the lattice 
into new unit cells of (2m)d = 2dN points and consider one unit cell on which 
we impose periodic boundary conditions. This finite lattice, to be denoted by 
L, contains 2d'x traps of either type. Note that a smaller unit cell, with only 
one trap of either type, can be chosen, but this has the disadvantage of 
requiring less practical boundary conditions. For brevity we suppose at once 
that W may start with equal probability at any point of L. We define

/0: = probability that W reaches a trap or starts at a trap;

/2C/3): = probability that W, having escaped from a trap, reaches a trap of 
the same (other) type without having visited traps of the other 
(same) type.

To express / in terms of /o,/2»/3» V and 17' we proceed in the following way. We 
define

Pr(Pr):= probability that W visits r times a trap without being trapped and 
then reaches a trap with parameter 17(17')-
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The pr and p\satisfy the following recurrence relation, written in matrix form:

/Pf+A = (IlV f)V'\(Pr\ =.T/Pr 

\Pr+1/ V/3T? firi'/Kp'J ' \Pr

for all r 0, with initial conditions 

Po= Po — ifo-

(4.5)

(4.6)

The probability that W, having escaped from a trap, never reaches one 
anymore is 1 -/2 —A- Hence the total probability that W is not caught in a 
trap is

i-/ = i-/o+0-/2-/3)£07P, + Vp:)-
r=0

Using eqs. (4.5) and (4.6) one can write

2 (HP, + Tj'p'r) = (T, V) ST' (J) = (T, Tj')(E — T)“'( J),

where E is the 2x2 unit matrix, and it follows that

/=/„[i-(i-/2-/3) k^i + V)- 'nT),(/2-f3) 1
(l-7?/2)(l-T,'/2)-T,/3T]73J‘

(4.7)

(4.8)

(4.9)

It is clear from the definition that f0 is the same probability that is found 
from eq. (3.14) and that f2 + fi is equal to f\ obtained from eq. (3.13) (both /0 
and /1 referring to the original unit cell L). If we set 17 = tj', eq. (4.9) reduces 
to eq. (3.3).

Explicit expressions for the probabilities /2 and /3 can be obtained by 
solving a first-passage problem for sets of points on the lattice L without traps 
(cf. ref. 14) as follows. Let Gn(t) be the probability that W, having started at a 
chosen point 0 (the origin), is at ( after n steps. By definition, 
G(^;z):= 2“=02n Gn(0 is the Green’s function for L (not to be confused with 
that for L). For any set S C L and n > 0 let P„(0 be the probability that W, 
having started at 0, is at t after n steps without having ‘hit’ S at any 
intermediate step; let further Po(0 = 0 for all l. Clearly, since every walk 
from 0 to t either avoids S altogether or hits it for the first time at some step, 
we have for n > 0

gm = psm+ 2 E psM')G„-m(e-n■ (4.10)res m=o

For the generating function Ps(t;z):= 2“=0zn Pnifl it now follows that

G{1;z)- 8(0 =Ps(t\z)+'Z{G{l-l'\z)-8„}Ps(l'\ z). 
res

(4.11)
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For /£S this reduces to

G«?;z)-6„,= 2 G(<?-r;z)PV';z). (4.12)
res

If desired, Ps(£;z) can be solved from eq. (4.12) for £ES and then from 
eq. (4.11) for t&S. We shall, however, not consider (f£S. Note that eq. (4.12) 
closely resembles eq. (4.2) with all rjj equal to zero and S = {t\>..., £,}. The 
difference lies in the term 5^ in the left-hand side of eq. (4.12). Like the one in 
eq. (3.11) it arises from the fact that the start at 0 is not considered as a first 
visit to 0 (i.e. Po(0) = 0).

To find /2 and /3 we let S be the set of all trapping points in L, and OGS. 
Let further SA(SB) be the set of all points in L where traps of the same (other) 
type as the one at 0 are located (SA U SB = S). Then it is clear that

/2(z)= £ PsW;z), (4.13)

Hz) = 2 Ps(£;z). (4.14)
t<=SB

We define

Ca(z):= 2 GW;z), (4.15)

CB(z): = 2 GW;z). (4.16)
'esB

Because of translational symmetry we have E SA if £ and (' belong both 
to SA or both to SB but t-l'e.SB otherwise. Then, summing eq. (4.12) 
successively over all i 6 SA and over all t E SB, we obtain

Ca(z)/2(z)+ Ce(z)/3(z) = CA(z)- 1,
CB(z)/2(z) + CA(z)/3(z) = CB(z),

and hence

/2(z) 1 ci(z)-c«z)’

f - Gb(z)
/s(z) Ca(z)~ Cb(z)’

(4.17)

(4.18)

/2 and /3 follow by setting z = 1 - €, and / from (4.9),
Lattices with a more complicated pattern of traps of two types can of 

course be treated in a similar way as long as the pattern has a certain 
periodicity. Accordingly, the unit cell will be more complicated and actual 
calculation soon becomes unfeasible.
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5. Trapping during a step

An interesting variant of the models discussed so far is obtained if we 
suppose that the walker W can be trapped not while visiting a special point 
but while making a special step. The effect of this change in the trapping 
model is not, as one might expect, marginal.

For simplicity, as well as with a view to applications, we restrict ourselves 
to simple random walks, representing the possible steps by lines between 
nearest-neighbour points of L. Now suppose that there is one special line 
such that when W steps along this line (in either direction) there is a 
probability 1 - tj that he gets trapped (‘line trapping’). By a direct generaliza
tion of the type of calculations made in section 2 we find the generating 
function for trapping to be

/(z) = {N(l - 0(0;z) + ^ § ]}“. (5.1)

where we have averaged over all possible starting points of W and not 
counted the step during which W is trapped; c is the coordination number of 
L.

The corresponding expression for (n), obtained by substituting eq. (5.1) 
into (2.5), is not very transparent but becomes so in the limit €-»0. Using eq.
(3.15) we find

(n) = {N<H 0;l)-^} + ^=^' + r^^. (5.2)

This is to be compared with eq. (3.16) for ‘point trapping’.
First we note the appearance in eq. (5.2) of the factor \cN in the last term. 

This is evidently the average number of steps by which the walk is prolonged 
every time W ‘successfully’ traverses the trapping line and continues his walk 
starting from one of its endpoints. It is the total number of lines drawn in L 
and reflects again the theorem on the recurrence time in Markov chains 
mentioned in section 3.

More interesting is the term \{c — 1)N, which has no counterpart in eq.
(3.16) . To begin with, it is, unlike the first term, independent of the structure 
of L. Its origin lies in the fact that when W reaches for the first time an 
endpoint of the trapping line (which, for reasons of symmetry, can be seen to 
require on the average N<f>(0; 1)-^ steps), there is a probability (c - 1 )/c =: y 
that he does not step along it but prolongs his walk. Since in this case too W 
continues his walk starting from one of the endpoints, the average number of 
steps by which the walk is then prolonged is again |cN, which multiplied by y 
gives just the term considered.
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Secondly, this term can be of considerable numerical importance. For the 
s.c. d = 3 lattice we have </>(0; 1)« 1.5 for large N, while |(c - 1) = 5/2. For the 
b.c.c. and f.c.c. lattice and for lattices with d > 3 the difference is even more 
pronounced, and (n) is to a large extent determined solely by c and tj.

It is instructive to consider also what happens if W can only be trapped while 
stepping along the trapping line in one direction. In this case we find

(5.3)

the interpretation of which is obvious.
Thus it is clear that although ‘point trapping’ and ‘line trapping’ are closely 

related (especially for simple random walks), the difference between the two 
is sufficiently interesting to be stressed.

6. The function G(0;z)

We have expressed a number of quantities of interest in terms of the 
function G(0; z), which we shall henceforth denote by Gn(0;z) in order to 
display also its dependence on N, the number of lattice points in the unit cell 
(i.e. its dependence on the density of traps). From eq. (2.10) one can evaluate 
Gn(0;z) and its derivatives numerically for N not too large. In addition one 
can study the asymptotic behaviour of GN(0;z) for large N, but care is to be 
taken since the summand in eq. (2.10) has, for 6 = 0, a pole at z = 1.

If, for z close to 1, we expand Gn(0;z) in powers of 1 - z, we find that two 
regimes are to be distinguished, characterized by the product N( 1 - z)<t>N(0; 1) 
which, by eq. (3.15), is the ratio of the first two terms in the expansion in 
question. If this product is «1 the expansion is expected to make sense; if it is 
>\, however, one has to resort to other approximation methods.

Returning to the trapping model considered in sections 2 and 3, we see that 
the product N( 1 - z)</>N(0; 1) has a simple interpretation: it is equal to e times 
(n)o<=0); its order of magnitude largely controls the qualitative aspects of the 
walk in that it indicates whether or not the walker has an appreciable chance 
to reach the trap at all. For simple random walks Montroll3) has shown that, to 
leading order in N:

(1/6)N2 (d = 1)

<n>ST0)- bN log N (d = 2) 

cN (d 3* 3),

(6.1)

where b and c are lattice-dependent constants.
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From the expansion of GN(0;z) in powers of 1 — z we can get correspond
ing expansions in powers of € for the quantities of interest. This is straight
forward, but finding the asymptotic behaviour for large N of the coefficients 
in this expansion is in general far from easy.

To derive expressions for the relative standard deviations r, = 
((n2)i - (n)2j)U2l(n)i (i = 0, 1) to leading order we have to expand G*(0;z) up
to first order in 1 - z. On expanding

G*(0;z) = {N( 1 - z)}-' + <t>N - <M1 - z) + • • • , (6.2)

where we write </>N(0;l) = :</>N and </>/X0;l) = :</>*, it follows that for € = 0:

(n>0 = N(f>N, (n>! = N,

and

tJ = 1 -f 1 IN<f>N + 2<f>slN<t>s, (6.3)

t? = 2<f>s - 1 + 1/N. (6.4)

For the simple random walk on the linear chain and square lattice we have 
evaluated (f>N and 4>s.

For the linear chain it can easily be shown that </>N =(N2- 1)/6N 3) and 
<f>N= (N4- 20N2 + 19)/180N. This leads, for N->oo, to

To — 7/5, (6.5)

Ti — (1/3)N. (6.6)

For the square lattice no closed expressions can be obtained but one can 
derive asymptotic expressions, valid for large N, using the Euler-Maclaurin 
summation formula. The results are:

<t>N = a, log N + a2+ a3N 1 + a4N 2+•••, (6.7a)

</>/,= b\N + b2\og N + b2 + b4N_,+ b5N~2+ • • • (6.7b)

with

a i = IT f b,= 0.061871145451 ..

a2 = 0.195062532..., II (27r)-1,

a3 = -0.116964779..., 0.1347623119...,

a4 = 0.484065704 ..., h4 = 0.2005850758

IIw
-»

-o 0.4283683639....

Details of the calculation of </>* and a comment on Montroll’s result for </>n3)
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are given in the appendix. In this case it follows that for large N

tI = I + 2tt2b ,/log2 N, (6.8)

t2 — (2/7r) log N + 2a2 — 1 • (6.9)

Eq. (6.8) differs from the result obtained by Hatlee and Kozak15). Some errors 
seem to have slipped into their calculations; moreover they chose not to 
include the trapping point as a possible starting point, but the effect of this 
choice is of order N"1. By Monte-Carlo simulation, however, they correctly 
found that t0 is slightly larger than 1.

Observe that for both cases t0 is of order 1 whereas r, diverges as N -»oo; 
this divergence is related to the well-known fact that the simple random walk 
on the infinite one- or two-dimensional lattice is recurrent.

Fig. 1. Sketch of the behaviour of the quantities f0 and /, (a), (n)0 and (n), (b), r0 and r, (c) for 
the simple random walk on a square lattice of N points as functions of N for fixed «. The value 
of N* is such that log N* = 1 and marks the transition between the two regimes. The
dotted lines are the theoretical asymptotes for N-*<» and the dashed lines indicate the behaviour 
of the quantities for e = 0.
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For d 2* 3 so far no comparable results for large but finite N have been 
derived. It would require much hard labour to apply the Euler-Maclaurin 
summation formula to these cases. If N = co it is easily seen that to = 1 and 
t? = 2(px- 1 <oo.

We have not investigated the regime where N(1 - z)<£N(0; 1) > 1. In the 
limit N->co for z<l, however, Gn(0;z) tends to a d-fold integral, the 
behaviour of which for z close to 1 has been extensively investigated for 
d = 1,2, 312).

For the simple random walk on the square lattice we have evaluated 
Gn(0;z) numerically and computed /0, /1, <n)0, (n)u r0 and t, for a number of 
values of N (ranging from N = 2x2 to N = 22 x 22) and e (ranging from 
e = 10”5 to € = 10_1). The general qualitative behaviour of these quantities as a 
function of N for fixed € is sketched in fig. 1. This figure clearly shows the 
transition between the two regimes. An unexpected aspect is the non-mono
tonic behaviour of some of the quantities. In the intermediate region, as N 
increases, the influence of finite € becomes drastic: longer walks tend to be 
more and more cut off. Bearing this in mind and noting that we have only 
taken into account walks that end in the trap, one can readily understand the 
qualitative aspects of the figure.

7. Concluding remarks

In the trapping model considered in this paper it is assumed that the traps 
are placed periodically on the lattice. This enables one to divide the lattice 
into identical unit cells and to study the trapping on a single unit cell with 
periodic boundary conditions. However, systems to which one would like to 
apply the model will generally not show a strict regularity and traps will rather 
be more or less arbitrarily spread over the system. Therefore, a model with a 
random distribution of traps seems more realistic.

The random trapping model (RTM) is, however, far more difficult than the 
periodic trapping model (PTM), at least for d 2* 2. It is obviously related to 
other models with a random structure such as the percolation model and the 
random Ising model. So far, hardly any rigorous results have been obtained 
for the RTM, except in one dimension (see ref. 5 for a solvable model in more 
dimensions which has essentially one-dimensional features).

On the other hand, several authors have discussed approximative methods 
to deal with the RTM. Rosenstock4,6) has derived asymptotic expressions for 
/o and (n)o=0) valid for small q, where q is the density of traps. In the analysis 
of /0 the same ‘competition’ between e and the density of traps is encountered 
that we discussed in section 6. A comparison of Rosenstock’s expressions for
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(n)o<=0) with the corresponding ones of Montroll for the PTM (with N 
replaced by q_1) shows that for d s* 2 and q < 1 the RTM and the PTM do not 
differ substantially. Weiss16) has shown that for d = 3 corrections to Rosen- 
stock’s approximation are quite small for q <0.01. No other moments of the 
probability distribution of the number of steps before trapping than /0 and 
(n)o =0) have been studied explicitly.

The influence of imperfect traps in the RTM has received relatively little 
interest. This is a problem which cannot be treated by Rosenstock’s ap
proximation. Hemenger et al.8) have applied a different approximative 
method in the context of a master equation approach; their results, too, are 
restricted to small q.

Appendix

In this appendix we expand the Green’s function Gn(0;z) for a simple 
random walk on a square lattice of m x m = N points:

i m— 1 m-1
G»(0;2) = AX 2 {1 -|2(ck, + 

m k,=ok2=o

where ck: = cos(27rk/m) and 0< z < 1, up to first order in 1 - z. 
One of the summations can be readily carried out3), yielding

(A.l)

1 1 -4- vmGn(0;z) = ^ 2 (1 - \zcky\l -
m k=a 1 “ x k

m-1
2
k=0 * — k

1 „ ._ n /i _2\l/2i _-1

(A. 2)

where pk: = z(2- zck) , xk:= {1 -(1 -pQ fpk . We define a:=(l-z). For 
fixed k < m and a < 1:

2k2\ 1/2

and hence

(i) lim lim x T = e 2irk,
m-*oo a-*0

(ii) lim lim x™ = 0.
a-*0 m-*«

In the limit m a->0, ma = 7rc constant
m -2 ir(c2+fc2)«/2 
k ~c >

and it follows that for c < 1 the factor x* rapidly goes to zero with increasing 
k, so that in sums of terms containing this factor only the lowest few values of 
k contribute significantly. We therefore restrict ourselves to this regime.
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In expanding G,v(0;z), as given in eq. (A.2), in powers of a, we find, 
expressing ck in terms of crk:= sinfirk/m):

2ZCk) (1 pt) — {crk( 1 + (Tk) + (1 - 2crt)a2-cr|( 1 - a^o:4}’ 1/2

ICT,

and

1+*T
l~xmk

(k = 0)
ic (I + ,/" — \<rk3(l + (j£) 3/2(l — 2at)ct2 + ■ • • (k > 0)

(mar{l + 3(m‘-l)a2 —4V~ D(m2-4)a4+-- ■} (Jc = 0)

(1-a mky(, + T^)“^'(1 + <7&

where \k:= 1 + 2crk-2crk(l + at)'12. Hence 

Gmi0; 1 - a2) = (m«r! + + <Mm)}

-{------- 45m1-------+

2mA T 2 , n a +
(k>0)

where

= -j- 2 |W(1 + <rJ)_w(l - 2cr4t)(l m fc=i L \

!?]•

2AT_\
-AT/

CTk (1 + CTjc)
(1 — A1

(A.3)

(A.4a)

(A.4b)

Montroll) has derived an asymptotic expression for the zeroth order term 
<Km), valid for large m, using the Euler-Maclaurin summation formula in the 
form

itf&) = iSdyf{y)-^n^ + /(ir)] + 12 m‘
[f'w-rm

IT'

720m*u'"M-rm+ (A.5)

We proceed along the same line and derive an expression for the first order 
term. To this end we split the sum in eq. (A.4b) into several parts. First we 
write = S, + S2 with S,:= (2m)-,2r.“,W(l + at)~m(\ — 2crJ), so that S2 
consists of the terms containing \rk(= lima^oXk).
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A.l. Evaluation of S\

We find it expedient to split Si as follows:

S| = Jjj- 2 {<^(1 + crlTm-cr-k\\ + crlr"2-crk( 1 + c^)"3'2}

= : Sn + S12+ Sn

and to split Sn further into two parts to which we apply eq. (A.5):

(i) S^3{(l + ar,2-l+^ = i- '77
477 32m 320m

-3

+ •

k = l
+±V^V3=i< 1___M+ 1 4.( 1 -1

m & \m J \277J 1277/ 2rr3m \4773 14
144o) m

+ 3177:

181440 1277 / m

„,2 m-l
+ ^2k~\

™ k = l

The remaining sum over k can be evaluated by using a slightly different form 
of the Euler-Maclaurin formula. We find

2 k-} = a 3) 1 + 1 + • •

k=i 2m 2m 4m 12m

where £ is Riemann’s zeta function and £(3) = 1.202056903159... and hence

C £(3) 2 , 1 1377
" V 6tt 360m2 22680m

67ir3
2

The sum Si2 has been evaluated by Montroll:

77= - — log m - (— + y- log -
77 \77 2 77 77 /

43773

36m 10800m
3 +

where y is Euler’s constant: y = 0.5772156649----- For the sum Sn the
application of eq. (A.5) yields

Si3= “2~ Vk(l +crl)~m =--^z + 7^72 ++
277 12m 72m

so that, finally,

o £(3) 2 1 . / 1 . y . 1 , 2 \S, = —r m-----log m - y- + — + ^— log -—2 +
77 77 \377 77 Z77 77 /

7 77 . 1577773 .

360m 226800m'
(A.6)
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A.2. Evaluation of S2
Application of the Euler-Maclaurin formula to the sum

1 m-1 r4 s [O’ k3(l + or k)~3/2(l — 2(7 {)
1 — A (7k2(l + aj) 2mAT 1

(i-a")M

is not possible since A* depends on m not only through the ratio ttk/m. An 
expansion of S2 in powers of 1/m with closed expressions for the coefficients 
is therefore not found. Following ref. 3 we can, however, write these 
coefficients as quickly converging series in powers of e-2". Because of the 
symmetry relation <rk = om-k we replace SET,1 by 22 

Noting that Ak is the smaller root of the equation Ak + Akl = 2 - cos(27rk/m), 
we can derive

Ak - 79/trk\7 
315 \ m j + • • • )■

and hence

r-2-f, , 2(7Tk)3 1 / (nkf 2(7rk)\ 1
A‘-e l1+ 3 — +

. (79(irk)7 2(trk)8 , 4iirk)\ 1 . )
+ V"3lS 9 81 ) m*+ j' (A.7)

Using this expression for A" and expanding ok in powers of 7rlc/m we find, 
after going through a good deal of algebra:

S2= s2m2+So+S-2m 2+s_4m 4+---, 

where
lml2)

Sr = 2 Sr(k),
k-l

with

s2(k) = Afirk)' ek
d-ek)2 + 2(7rk)-3 ek

l~ek'

t/L\ — §. —i, + ^k) _ 4 €k _ . vS°(k) 3wk (r-eky 3(1 — ek)z 2( k)-1 gfc 
l-*k’

. /r.\ _ ® /_u\4 ^k(l + + Cfc) 24,1,3 £fc(l + £fc)•-*k)-f(rrk) (1_ei)4-------jW TTr^r

+ l5(7rk)2(1^)Z 15 *k j

(A.8)

(A.9)
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_ /i.x 16 , ,.x7 €k(l + llek + llej;+ «k) 112/_1.x6gk(l+4ek + e2k) 
Mk) = gT(7T#c) y—p 8T(irk) (1 - ek)4

I 404firfc’l3gfc*1 + g*? 
+ 105(7rk) (l-ek)J

838 / t\4 _
189(7rk) (1

ek 3 + 1577
ekY 945

(,7k)3 rr^-, 
1 “ «k

where ek:=e~2irk. Expanding these expressions in powers of ek, replacing the 
upper limit in eq. (A.9) by °° (thus neglecting terms of order e"”") and 
introducing

oo
/x(i, j): = y (7rk)‘ll e~2irkl for integer i and j, 

k. 1-1

we obtain
S2 — 4/x(—2,1) + 2/x(-3,0)

= 0.000880743626...,

s0 = |/x(1,2)-|mO, 1) 2/x( 1,0)

= 0.0121245076...,

s_2 = | /x(4, 3) -1 fi(3,2)+ /i(2,1) " /i(l, 0)

= 0.0506096631...,

16 112 . 404 ~ 838 n 1577 , m
S-4 = gj /i(7,4) “ “gj" Ai(6, 3) + /i(5,2) “ jg9 /*(4,1) - /x(3,0)

= 0.2127735741........ (A. 10)

Combining eqs. (A.3), (A.4b), (A.6) and (A.8) we find the expression for in 
eq. (6.7b).

Note that the values of a2, a3 and a4 in eq. (6.7a) differ from those given by 
Montroll3). In going through his calculation of a4 we found that in his eq. 
(B.31) a term, corresponding to the second term in the coefficient of m~4 in 
our eq. (A.7), is missing; for a2 and a3 we came to slightly different numerical 
values*. The fact that the values given by Montroll might not be entirely 
correct has already been observed by Sanders et al.17); they doubted, 
however, in particular the value of a3.

A comparison of the values of <f>N found from eq. (6.7a) for values of N 
from 14 x 14 to 22 x 22 with those obtained from direct numerical evaluation 
shows an agreement of 1 to 107 or better. For <f>N an equally good agreement is 
found. From the results we can even systematically estimate the next 
coefficients: a5«2.6, *>6“4.4. The values of ax through a5 and b 1 through b6 
strongly suggest that the series in eqs. (6.7a, b) are asymptotic.

* Wc remark in passing that the various series in powers of e~2w occurring in the derivation of 
eq. (6.7a) can also be written in terms of the n(i,j).
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Random Walks on Lattices with
Randomly Distributed Traps
I. The Average Number of Steps Until Trapping

W. Th. F. den Hollander* 1

For a random walk on a lattice with a random distribution of traps we derive an 
asymptotic expansion valid for small q for the average number of steps until 
trapping, where q is the probability that a lattice point is a trap. We study the 
case of perfect traps (where the walk comes to an end) and the extension 
obtained by letting the traps be imperfect (i.e., by giving the walker a finite 
probability to remain free when stepping on a trap). Several classes of random 
walks of varying dimensionality are considered and special care is taken to 
show that the expansion derived is exact up to and including the last term 
calculated. The numerical accuracy of the expansion is discussed.

KEY WORDS: Random walk; number of distinct lattice points visited; 
random trap distribution; perfect and imperfect traps; average number of steps 
until trapping.

1. INTRODUCTION

A random walk on a lattice with randomly distributed trapping points can 
serve as a model for various processes in photosynthetic systems, molecular 
crystals, ionic crystals, and organic solids. It is, for instance, well suited to 
describe the transfer and trapping of excitations in a photosynthetic 
membrane/u of charge carriers in an anisotropic molecular crystal in an 
electric field(2) and of electrons in an amorphous material.(3)

The model is defined as follows. Consider a ^-dimensional lattice L of 
which each point can be in either of two different states: with probability q it 
is a trap and with probability 1 — q it is a nontrapping point. The states of 
different lattice points are independent stochastic variables and are “frozen

1 Instituut-Lorentz voor Theoretische Natuurkunde, Nieuwsteeg 18, 2311 SB Leiden, The 
Netherlands.
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in.” Next, consider a random walk on L, starting at the origin 0 and 
proceeding according to a given probability distribution p: L -> IR for single 
steps (/?(/) >0, £/€L P(l)= 0* The walk ends when the walker steps on a 
trap.

Many authors have studied various properties of this random trap 
model.(4~24) Quantities on which interest has centered are: the probability for 
the walker to survive a given number of steps, the average number of steps 
made until trapping and the probability of return to the origin. In general 
these quantities depend on L, q and p. In this paper we shall be mainly 
concerned with the second quantity.

The random trap model is obviously akin to other models with a 
random structure, such as the percolation model and the random Ising 
model. In this respect it is a member of a class of models that have received 
much interest in recent years and that by their simple description but 
complicated nature have become a challenge to the theoretician. So far, only 
few rigorous results have been obtained for the random trap model(21,23) (see 
also Ref. 25), except in one dimension.*4,5,7,10,20* On the other hand, several 
approximative methods have been developed. With a few exceptions, the 
results obtained are valid for values of q that are either small or close to 
unity.

Rosenstock, who introduced the model in general terms in 1961,<4> was 
the first to find an expression, valid for q -* 0, for the average number of 
steps until trapping (n) for simple random walks.(14) He introduced a simple 
expression for the probability fn that the walker is not trapped after n steps 
and calculated (n) to leading order in q, using an approach that has become 
known as the Rosenstock approximation. Weiss(15) investigated fn more 
closely for a class of random walks in d = 3 and showed that the Rosenstock 
approximation is useful only if <7;^ 0.05. Zumofen and Blumen(17,18) went on 
to find better estimates of fn for random walks in d = 2 and 3. They also 
investigated the effect of long-range steps and did Monte Carlo simulations 
to test their results.

The authors mentioned all make use of some of the results obtained by 
Montroll and Weiss(3) and by Jain et a/.(26_31) for the probability distribution 
of the number of distinct lattice points visited in an n-step walk on the lattice 
without traps. Although the approach followed is essentially correct it is not 
exact, nor is it complete.

The aim of this paper is twofold. First, in Section 2 we derive an 
asymptotic expansion for (n) valid for small q, thus extending Rosenstock’s 
analysis. We consider several classes of random walks of varying dimen
sionality. We investigate the error that is involved in neglecting certain 
cumulants and take special care to show that the expansion derived is exact 
up to and including the last term calculated. Second, in Section 3 we extend



the results to imperfect traps, i.e., to traps where the walker has a finite 
probability to remain untrapped. We also briefly discuss the extension to 
several types of imperfect traps, each with a different trapping parameter. 
Models with two types of imperfect traps are of interest in photosynthesis.02*

Throughout the paper we assume, unless stated otherwise, that the 
random walk is aperiodic (in the sense of Spitzer, Ref. 33, p. 20) and that 
F > 0, where F is the probability of return to the origin in the absence of 
traps. Aperiodicity means that there is no proper sublattice of L to which the 
walk is confined. In terms of the structure function of the random walk 
defined by p(9) := ]T/eL eil m0p(l), 0E\Rd, aperiodicity is equivalent to the 
property that p{9) =1 iff 6 = 0 (mod 2n) (Ref. 33, p. 67). If the random walk 
is not aperiodic then there is a smallest sublattice L' of L (with dimension 
d' <1 d) to which the walk is confined. Since the distribution of traps in L' is 
obviously random and the random walk is aperiodic on L' the restriction 
imposed involves no loss of generality. The case F— 0 is trivial: one easily 
sees that then, e.g., for perfect traps/„ = (1 — q)n +1 and (n) = (1 — q)/q. We 
further assume that L is ^-dimensional hypercubic (L = Zd). This restriction 
is not serious either, as any random walk on a different type of (Bravais) 
lattice can be easily translated into a random walk on Zd.

An important classification of random walks is that into recurrent and 
transient random walks. In the former case G(0;l)=oo and F =
1 — G-,(0; 1) = 1,(34> in the latter G(0; 1) < oo and F < 1, where G(0; z) is 
the Green’s function of the random walk at the origin. All random walks 
with 3 or with J],gL |/|/?(/)< oo and £/6Llp(l)=t0 are transient 
(Ref. 33, pp. 33 and 83). An interesting subclass of transient random walks 
is that of strongly transient random walks for which G'(0; 1) < oo. This 
concept, which was first introduced by Port into the theory of Markov 
chains/35* plays an important role in the work of Jain el a/.(26_3,) All 
random walks with d^ 5 or with £/eL \l\2p(l) < oo and £/6L lp(l) =£ 0 are 
strongly transient.09*

Our results for (n) depend strongly on d and on the detailed properties 
of p. In the asymptotic expansions obtained coefficients occur that are 
related to the asymptotic behavior of G(0; z) for z -* 1 (and in a few cases 
also to the value of G(/; 1) for l=£ 0). For most classes of random walks this 
behavior is known from standard random-walk literature, for others we have 
extended known results.

A matter of particular convenience in the description of the random 
trap model is that some of its properties are easily expressed in terms of 
properties of the random walk in the absence of traps. This is an important 
simplification.
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2. PERFECT TRAPS

Consider an infinite efdimensional hypercubic lattice L with a random 
distribution of traps, and an arbitrary random walk p on L. If q is the 
probability that a lattice point is a trap, then the probability fn that the 
walker has not been trapped after n steps is given by(36)

/, = <(! -*)*■>. »>0 (2.1)

where Sn is the number of distinct lattice points visited by the walker and the 
average is over all walks of n steps on the lattice without traps. We assume 
q > 0. Clearly, fn is a monotone, nonincreasing function of n. In Ref. 21 it is 
shown that Sn-> oo with probability 1 as n-* oo, and hence/„-* 0, for all 
random walks except the degenerate random walk with p(0)=l. The 
average number of steps (n) before trapping is found from

<")= f «{/„-.-/,)= S fn (2-2)
n=1 n=0

(cf. Ref. 37, p. 213). The higher moments of n are expressed as similar sums.
In order to calculate (n) from Eqs. (2.1) and (2.2) one has to know the 

probability distribution of Sn for all lengths n of the walk. For general 
random walks this probability distribution is not known exactly, the 
difficulty lying in the fact that whether or not a step leads to a new lattice 
point generally depends on all previous steps. The average (Sn), however, 
can be found from the simple equation(5)

V z"(S„) = 1/(1 — z)2 G(0; z) (2.3)

where

"‘•W*' <2-4>zp(0)

is the Green’s function of the random walk and p(6) := £/eL ef/ep(0*
For large n the probability distribution of Sn exhibits a number of 

simple limiting properties. First of all, as mentioned before, for all 
nondegenerate random walks Sn~* oo with probability 1 as n-* oo. The 
asymptotic behavior for large n of (Sn) can be extracted from Eq. (2.3). 
Furthermore, for simple random walks with d > 2 Dvoretsky and Erdos(38) 
proved that the stochastic variables Sn satisfy the so-called weak law of large 
numbers:

lim P||S.-<S.)|/<J.>>«| = 0. for e > 0 (2.5)
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(where P stands for probability). They achieved this by showing that

Var SJ(Sn)2 0, /i-oo (2.6)

(Var Sn := (Si) — (Sn)2) and using the Chebyshev inequality. They further 
improved Eq. (2.5) by proving that SJ(Sn)-> 1, n -> oo, with probability 1 
(the strong law). Subsequently these results were generalized to arbitrary 
transient random walks by Spitzer, Kesten, and Whitman (see Ref. 33, p. 38) 
and to recurrent random walks in d = 2 by Jain and Pruitt.(29) For recurrent 
random walks in d — 1 the asymptotic behavior is in general more 
complicated(29) and Eqs. (2.5) and (2.6) do not hold.

Jain et a/.(26-31) have made a careful study of some further asymptotic 
properties of the probability distribution of S„. For example, they have 
shown that for random walks with d ^ 3 and for strongly transient random 
walks in d— 1 and 2, (Sn — («S„))/Var1/2 Sn converges to the normal 
distribution with mean 0 and variance 1 (the central limit theorem) if F > 0. 
For a large class of random walks they have calculated Var Sn to leading 
order in n and in addition obtained a bound for ((Sn — (Sn))A).

We shall use the various asymptotic results obtained for the probability 
distribution of S„ to derive an asymptotic expansion for (n) valid for small 
q. To this end we first apply the Euler-Maclaurin summation formula to
Eq. (2.2):

(2.7)

where f(n) is a suitably chosen function on [0, oo), to be specified later, 
which is equal to fn for integer n and has two continuous derivatives, /„ := 
limn_,oo fn a°d R is a rest term. To estimate the order of R we observe that/„ 
is positive, monotone and, by Eq. (2.4b) in Ref. 21, convex. Hence it is 
possible to choose f(n) also positive, monotone, and convex. It then 
follows<39> that R is of order /'(oo) —/'(0), where obviously/'(oo) := 
limrt^oo//(n) = 0. Since/! —/0 = 0(q) it is also possible to choose/(n) so 
that /'(0) = 0(q\ which then ensures that R = 0(q). We further have 
/0 = 1 — q and /«, = 0 (for nondegenerate random walks).

Next, to evaluate the integral in Eq. (2.7), we introduce the variable 
A := — log(l — q) and make the cumulant expansion

(2.8a)

(2.8b)
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where Knl := <S„>, Knl := Var Sn and KnJ(j>3) is theyth cumulant of Sn. 
Writing f(n) exp[—x(n)]> where x(rt) = x„ for integer h, changing the 
integration variable in Eq. (2.7) from n to x and noting that x(n) is 
monotone, we get

(2.9)

In order to find dn/dx we construct a systematic expansion in terms of 
A (for a given finite x) for the inverse function «(*) of *(«), valid for small A, 
by substituting into Eq. (2.8b) the asymptotic expressions for the cumulants 
of Sn, valid for large n, and considering n as a continuous variable. 
Substitution of this expansion into Eq. (2.9) yields an expansion for (n) in 
terms of A, the coefficients of which are standard-type integrals. If 
Znfn < oo for all A > 0, the coefficients in this expansion are finite. Finally, 
by expanding A in powers of q we find the desired expansion for (n).

Observe that we choose for f(n) the function that is obtained from 
Eq. (2.8b) by simply considering n as a continuous variable in the 
asymptotic expressions for the cumulants. It is not clear that in this way a 
function is obtained which has the properties required in Eq. (2.7). However, 
this presents no practical problem. Indeed, as an alternative for f(n) we may 
choose the function (1 — d)f[n] -f4/]nj +1 with A\=n—[n). This function 
does satisfy Eq. (2.7) with R =0 and, what is more important, it turns out 
that in each of the cases to be considered in the sequel this function is iden
tical with /(«) up to and including the order in A and n for which we shall 
use the cumulant expansion. Therefore f{n) gives us the correct result.

In the following we shall derive the asymptotic expansion for (n) up to 
and including the term of lowest order in q to which the second cumulant 
Var Sn contributes. If Eq. (2.6) holds this term is certainly not the leading 
term in q. Since only the leading term in n for Var Sn is known thus far we 
shall have to neglect all subsequent terms in the expansion of (n). For (S„), 
on the other hand, we can obtain as many terms in the expansion for large n 
as are required to carry out the derivation to the order indicated. This is 
accomplished by expanding (7(0; z) in terms of 1 — z, using Eq. (2.3) and 
applying a theorem due to Darboux(40-4I) (cf. Ref. 42, p. 140). In the 
following we shall need only those terms in the expansion of (Sn) to which 
the singularity of (7(0; z) at z— 1 contributes. Furthermore, since the 
asymptotic behavior for large « of the cumulants K^ withy > 3 is not known 
we shall also have to neglect contributions arising from these cumulants. 
However, it can be rigorously shown that if

((S„-<S„»;) ,A
<S„>'-VarS„ U’ oo, for all y> 3 .(2.10)
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such contributions are of higher order in q than the terms derived. In that 
case the expansion of <n) thus obtained is exact up to and including the last 
term calculated.

We mention here that Jain and Pruit(3l) have proved that for all random 
walks with d^ 3 and for a large class of strongly transient random walks in 
d— 1 and 2 (possibly all, but certainly those for which G"(0; 1) < oo; see 
Ref. 31, p. 117) ((Sn — (Sn)Y) = 0(Var2 Sn). Note that this does not follow 
from the central limit theorem. Together with Eq. (2.6) this establishes 
Eq. (2.10) for j = 4. It then follows from the Schwarz inequality that 
Eq. (2.10) holds also for j = 3, and from 1 < Sn < n + 1 and (£„) — 
(1 — F)n ~ n(34) that it holds for j > 4 likewise.

In the following we shall first consider the class of unbiased random 
walks with finite single-step variance, i.e., random walks for which p := 
£/€L W0 = 0 and m2 := £/6L K|2p(0 < 00 (finite mean-squared 
displacement per step). This includes, e.g., all random walks with p(l) = 
/?(—/) and with /?(/) > 0 on a finite subset of L. For this class p(d) = 
1 - \ Z,j Cijdfij + O(|0|2), 0-> 0, with cu := £/eL /,/,/>(/), ij= 1,..., d. The 
constants C/y- are finite, the matrix {C/;( is positive definite (Ref. 33, p. 74) 
and we define C2 :=det{C/7}. Random walks in this class are recurrent for 
d— 1 and 2, transient for d = 3 and 4 and strongly transient for d^ 5. The 
case d = 1 will have to be treated in a special way since neither Eq. (2.6) nor 
Eq. (2.10) holds in this case, so that the procedure sketched above cannot be 
followed. Furthermore, for d = 2, 3, and 4 we shall have to distinguish 
between the two subclasses with m3 := £/6L |/|3p(/) < oo and with m} = oo.

Subsequently we shall discuss other classes of random walks.

(i) d zz 1. For this special case we start from the exact result for the 
simple random walk

(n) = {\-q)/q1 (2.11)

derived by Montroll(7) (apart from the factor 1 — q, which is due to the fact 
that we allow the origin to be a trap). Equation (2.11) is one of the few exact 
results known thus far for (n). Crucial in the derivation of this result is the 
argument that the simple random walk starting in an interval between two 
traps is confined to this interval. If steps of two or more lattice spacings are 
allowed this argument is no longer valid and no exact result is known. We 
can, however, in this case determine the behavior of (n) for q-> 0 as follows. 
Jain and Pruitt(29) have proved that the probability distribution of SJ(Sn) 
converges for n -* oo to a limit distribution of which we merely note that it is 
independent of the random walk. They have also proved that (Skn)/(S„)*, 
k >2, converges to the kth moment of this limit distribution. Using this
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result, together with the fact that (S„) ~ C(8n/7r)1/2,<34) we readily find from 
Eqs. (2.1) and (2.2) that to leading order in q, (n) is a function of the 
product Cq. A comparison with Eq. (2.11) then yields

(n)~\/C2q2 (2.12)

(ii) d = 2. First we assume m3 < oo. Then it is easily shown that for
z -* 1

G(0;z) = -w, log(l — z) + w,w2 + o(( 1 -z)I/2) (2.13)

where w, = l/27rC and u2 is a constant that depends on further details of p 
and can take any value in (—oo, oo) depending on p. For a few random 
walks u2 has been calculated exactly*34,43*; e.g., for the simple random walk 
u2 = log 8. From Eqs. (2.3) and (2.13) it follows, as Henyey and Seshadri(43) 
have shown, that

<•?„> =
m, log un log* un + o{nl/2flog2 n) (2.14)

with ck := (—d/dx)k T ,(^)|x=2 if ls tlie gamma function) and log u :=u2. 
We shall need only the following terms:

<S„> =
ux log un 1 + +log un log un

j + 0(n/\og' n) (2.15)

with c, = 1 — y and c2 = (1 — y)2 -f 1 — ^7r2 (y is Euler’s constant).
Jain and Pruitt(29) have proved that Var Sn ~ Sn2K*C2n2/log4 n with 

K* := K + ^(1 — \n2) and K := —dx(\ —x + x2)~1 logx = 1.171953.... 
Using this together with Eq. (2.15) and following the procedure sketched 
earlier, we find after some algebra for (n) the expansion

log ^r)+log log (t) | loglog(M|K/g)
log («,«/?)

+
2 K

log(«,«/?) (2.16)

where the brackets are understood to contain only so-called slowly varying 
functions of q.

Thus far there are no results known for this case that establish 
Eq. (2.10) and thereby ensure that the higher cumulants of Sni i.e., the KnJ 
with j > 3 in Eq. (2.8b), cannot contribute to the order of the terms in 
Eq. (2.16). However, since Eq. (2.6) holds it is surely sufficient that
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({S„ — (Sn))J) = 0((Sn)J~3 Var3/2 Sn) for j> 3. As this relation holds for 
all random walks with p = 0 and m2 < oo both for d= 1 and for 3, 
which are strongly differing cases, it is not unreasonable to expect that it 
also holds for d =2. This, however, needs further investigation.

It is interesting to note that in the calculation of (n) the constants c, 
and c2 cancel and that only the constant K appears in the expansion. 
Moreover, the final result seems to suggest that for all random walks in this 
class the (slowly varying) function between the square brackets in Eq. (2.16) 
depends on q and p only through the combination \og{uxu/q). The product 

can take any value in (0, co) depending on p. Equation (2.16) makes 
sense only if q < w,u; however, for most random walks u{u is not a small 
number. For example, if Cij=C5ij it follows from Eq. (2.4) and the 
inequality 1 — Re p(9) < \ Cij9j9j that w,u > 7r/4.

If m3 = oo the expansion of (n) may differ from that given in 
Eq. (2.16), though not to leading order in q. In this case the term 
o((l — z),/2) in Eq. (2.13) is to be replaced by one of lower order in 1 — z, 
which in turn affects Eq. (2.14). If, however, p{9) — \ j Clj9i9j = 
o(|0|2/log210|), 9-* 0, it follows that this term is o(l/log(l — z)) and hence 
that the first three terms in Eq. (2.15) are unaffected and so is Eq. (2.16).

(iii) d = 3. For z -> 1 we have, if m3 < oo,

G(0;z) = w0 —w,(l -z),/2 + o((l -z)log(l - z)) (2.17)

where u0 = G(0; 1) = 1/(1 — F) < co and w, = 1/2,/27rC (see also Refs. 5 and 
34). For a few random walks u0 has been calculated exactly(34'44"48); e.g., for 
the simple random walk u0 = 1.516386.... Insertion of Eq. (2.17) into (2.3) 
leads to

(Sn) = Uo'n + 2n~ll2ulUQ2nU2 + o(log n) (2.18)

For this case Jain and Pruitt(28) have found that Var-S,,^ 
{(1 — F)*/2n2C2)n log n. Using this together with Eq. (2.18) we find

Since ((Sn — (Sn))4) = G(Var2 5n),(28) Eq. (2.10) holds and the terms 
occurring in Eq. (2.19) represent the correct expansion.

If m3 = oo this may affect Eq. (2.19), but only after the second term as 
a closer analysis shows.

(iv) d = 4 and d^ 5. For z -> 1 we have 

G(0;z) = w0 + H,(l-z)log(I-z) + M2(l-z) + o((l-z)3/2), d = 4 (2.20a)

G(0; z) = «0 - k2(1 -z) + 0(( 1 - z)3/2), d > 5 (2.20b)
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where u0 = (7(0; 1) = 1/(1 — F) < oo as before, but w, = 1/4nlC\ u2 is for 
d = 4 a constant that depends on further details of p, whereas u2 — 
G'(0; 1)< oo for 5. For d = 4, but not for d^ 5, we have assumed 
m3 < oo.

From Eqs. (2.3) and (2.20a,b) we deduce

(S„) = + log/7+{w0', + (y“i-w2)«o"2|+o(l/AZ,/2), tf = 4 (2.21a)

<5n)=w0-,/7+ {W-, + w2Wo-2} + 0(1/^,/2), (2.21b)

In Refs. 26 and 28 it is proved that both for d = 4 and for d^5 Var ~ 
{F( 1 — F) + 2a (w with 0 < a < oo. From a closer inspection of the 
derivation of this result it readily appears that

= v G2(/; 1)G(-/; 1)[C(0; 1)-G(-/; 1)]
U G3(0; 1)[G2(0; 1)-G(/; 1)G(-/; 1)|

This is shown in Appendix A. Using Eqs. (2.21a, b) and the asymptotic 
expression for Var5„, we then find

/ \ “oW =------uxu
Q

log (?) {l+(a,-w2)w0 + d = 4 (2.23a)

<«) = -- (1 +u2u0 1 - ula\ + •••, 
Q

</> 5 (2.23b)

Since again ({Sn - (S„))4) = 0(Var2 S„),(3I) Eq. (2.10) holds and the 
corrections to Eqs. (2.23a, b) are o(l).

For the simple random walk Montroll(34) has derived the following 
asymptotic series for u0 in powers of 1/2d:

, 1 3 12
“°=1+ ~2d+l2dy +

60 355
4~ +

(2dY (2 dy (2d) T + * (2.24)

In Appendix A we derive a similar series for u2 for 5:

2 12 78 570 4650
Ul~U + (2d)1 + (2d)3 + (2 dy + (2 d)5 +"'

and one for a for d > 4:

1 4 23 160 1294
(2d)1 + (2d)3 + (2d)4 + (2d)5 + (2d)6 +

(2.25)

(2.26)

From a numerical analysis of Eq. (2.4) for the simple random walk in d = 4 
we estimate that u0 = 1.239 ± 0.001 and u2 = 0.139 ± 0.001.
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If, for d — 4, m3 = oo this may have its effect on Eq. (2.23a), but only 
after the second term. If p{6) — 1 + \ — o(|0|2/l°g |0|), 0-»O,
Eq. (2.23a) is unaffected up to and including the term of order 1.

Equations (2.12), (2.16), (2.19), and (2.23a, b) are the results for (n) 
for small values of q for the class of unbiased random walks with finite 
single-step variance. We next consider random walks with m2 < oo and p i= 0 
(biased).2 Jain and Pruitt<29) have shown that all random walks in this class 
are strongly transient, regardless of the dimensionality. This property means 
that G'(0; 1) < oo and implies that (7(0; z) has the asymptotic form given by 
Eq. (2.20b). In addition, Jain and Orey(26) have proved that for all strongly 
transient random walks Var Sn ^ {F(l — F) + 2a] n. As mentioned earlier, 
{(Sn — (Sn))4) = 0(Var2 S„) for random walks with d^ 3 and for a large 
class of strongly transient random walks in d= 1 and 2, including those for 
which (7"(0; 1)< oo. By a straightforward generalization of the proof for 
G'(0; 1) < oo given in Ref. 29 it can be shown, using G(/; 1)< G(0; 1) for 
l=£0, that if p 0 and m2 < oo all the derivatives of G(0;z) at z = 1 are 
finite. It then follows that (n) is given by Eq. (2.23b) with u0,u2, and a 
related to the Green’s function through Eqs. (2.20b) and (2.22).

It remains to consider the class of random walks with m2 = oo. This is 
the hardest class (obs.: if m, = oo, /i is not defined and the terms “biased” 
and “unbiased” lose their meaning). If the random walk is strongly transient, 
which is always the case when d^ 5, (n) is, of course, given by Eq. (2.23b) 
(with the proviso mentioned before for d= 1 and 2). If not, a variety of 
asymptotic behavior may be expected depending on p (see Refs. 49 and 50 
for some interesting properties of random walks in this class). If the random 
walk is transient, which is the case when m, < oo and p =£ 0 (33) or when

3, it is clear that (Sn(1 — F)n and that, by Eq. (2.6), {n)^ujq. In 
Ref. 31 it is shown that when d > 3 Var Sn ~ (.F(l — F) -f 2a} n, except when 
d= 3 and £/gL G2(/; 1) G(—/; 1) = oo in which case a — oo and Var S„ = 
0(n log n).(28) Using Eq. (2.3) one then easily shows that (n) = ujq + o(ql/2) 
for d = 3 and (n) = ujq + o(log q) for d — 4. Higher-order terms in q can be 
obtained in both cases if the behavior of G(0; z) is known for z-> 1. For 
recurrent random walks in d = 1 and 2 with m2 = oo very little is known 
thus far about the probability distribution of Sn. This lack of knowledge bars 
a statement about the asymptotic behavior of {n).

Before concluding this section we remark the following. Consider a 
random walk p with /?(0) = 0 and the “scaled” random walk p' with 
p'(0) = p0 and /?'(/) = (1 - p0) p{l), l^ 0, for some 0 < p0 < 1, i.e., the 
random walk obtained from p by giving the walker at each step a probability
2 Part of the results in this section were presented in Ref. 23 (without a derivation). There are 

two misprints in that paper: on pp. 370 and 371 the word “asymmetric” should be replaced 
by “biased.”
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p0 to pause instead of proceeding. A simple argument shows that the 
averages <n) and {n)' for these random walks satisfy the relation (rt)' = 
(n)/( 1 — p0). Since this is an exact relation and independent of q it should be 
reflected to each order of q in the asymptotic expressions derived in this 
section. The reader may find it instructive to see how this comes about in 
each of the cases considered.

3. EXTENSION TO IMPERFECT TRAPS

Up to now we have been concerned with perfect traps. We shall now 
extend the results of the previous section to imperfect traps. Let the traps be 
such that the walker, when stepping on any one of them, has a probability t] 
to remain free (i.e., to continue his random walk) and a probability 1 — q to 
be trapped. Let again /„ denote the probability than the walker has not been 
trapped after n steps. It is clear that with this extension f„ can no longer be 
expressed in terms of the stochastic variable Sn alone. In the course of his 
walk the walker may return not only to nontrapping points but also to traps. 
In the latter case one or more “escapes” take place and to fit these into the 
description the multiplicity of the visits to traps must be taken into account.

Our first step is the statement that Eq. (2.1) generalizes to

/.= (no-j+^l «>o (3.i)
' k= 1 '

where Vl„k\ k= 1+ 1, is the number of distinct lattice points visited by 
the walker exactly k times (V(„k) = 0 for k > n + 1) and the average is over 
all walks of n steps on the lattice without traps. To see this, observe that if 
the walker visits a certain point k times, then if this point is not a trap he 
remains free at each of his visits, whereas if it is a trap he can only remain 
free by escaping k times. These two contingencies have probability 1 — q and 
qkq, respectively. To be still free after n steps the walker has to survive all 
visits made to traps. Since the trap distribution is random this implies 
Eq. (3.1).

We assume rj < 1. Just as in the case of perfect traps/, is monotone, 
nonincreasing in n and, by Eq. (3.3) in Ref. 21, convex. Since = Sn it
follows from Eq. (3.1) that f„(q, fj) </„((l - q)q, 0), so that /„-»() as 
n -* oo for all nondegenerate random walks. The average number of steps 
until trapping (n) is again given by Eq. (2.2).

To find (n) we require the knowledge of the joint probability distri
bution of the set of variables {V(k))lt\ for all lengths n of the walk. The 
variables V[k) are mutually correlated stochastic variables, the joint 
probability distribution of which is difficult to study in detail, except in some
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trivial cases, and about which so far not much is known. The averages 
(Fj/0), however, can be found from the simple equation

jr„ z"{v”k)) = 11 ~ g(^7) f~ '/(1 ~z)2c2(0;z) (3-2)

which was derived by Montroll and Weiss.(5)
To obtain an asymptotic expansion for (n) valid for small q we shall 

follow the approach developed in the previous section. We write

/„ = <*-""> (3.3)

with

</.== "i' X„Kk) (3.3a)
k= 1

Xk := log( 1 - q + rjkq) (3.3b)

and make the cumulant expansion of log/„. Note that

0 < 2, <X2 < ••• < An+I <X < oo (3.4)

(Note also that in the symbol Un we suppress the dependence on q and rj.) 
We are interested in the asymptotic behavior of (Un) and the cumulants of 
Un for small q and large n.

Using an ergodic theorem due to Kingman,(5,) together with Eq. (3.4), 
we prove in Appendix B that for an arbitrary random walk 
lim^oo n "1 (Un) =: C exists and

lim n~lUn = with probability 1 (3.5)
n -.co

This is the strong law for the stochastic variables Un. For recurrent random 
walks, since (7(0;l)=oo, we deduce from Eq. (3.2) that 
lim^^ n~l(Vlk)) = 0 for all k. Since 0 <(/„<A5n, by Eqs. (3.3a) and
(3.4), it follows from Eq. (2.4) that in this case £ = 0. For transient random 
walks, on the other hand, we have (V(k)) — Fk~l(\ —F)2n for fixed k and 
hence

£=(1 -F)2 V XkFk~l (3.6)

where we yse Eq. (3.4) and F)n to show that
lim/,_00rt“1 0 as k-* oo. In the latter case 0 < £ < oo.
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Equation (3.5) implies the weak law: lim,,..^ P\\n ~ lUn — £| > e] = 0, 
for e > 0. Since 0 < Un < X(n + 1) we have, for any e > 0, the bound 
Var Un < X2(n + 1)2/>[| Un — (Un)| > en] + e2n2 and with the weak law this 
leads to

lim n~2 Var Un = 0 (3.7)
n -.co

For recurrent random walks this result, as we shall see later, is not strong 
enough for our purpose. For transient random walks, however, it follows 
from Eq. (3.7) that

lim <(t/' 7,/o--— = O’ for all y > 2 (3.8)

where it is crucial that £ > 0 in Eq. (3.6). Observe that Eqs. (3.5), (3.7), and 
(3.8) hold for all 0 < q < 1 and 0 < q < 1.

We need Eq. (3.8) to calculate (n) for q-*0. By Eqs. (3.3a, b) 
((Un — (Un))J) is a power series in q that begins with qJ and has coefficients 
that are functions of n and q. Equation (3.8) implies, by a well-known 
theorem (cf. Ref. 37, p. 232), that for transient random walks these coef
ficients are all o(nJ) and therefore that the term of leading order in q in the 
asymptotic expansion of (n) is determined by the asymptotic behavior for 
q -* 0 and n -> oo of (Un) alone and that the cumulants of Un contribute only 
in higher order. Noting that 2*~(1 —rjk)q[ 1 + 0(q)\ uniformly in k and 
using Eq. (3.6), we find that (Un) = )(1 — ^)(1 — F)/(l — qF)) nq[ 1 -f 0(q)\ 
uniformly in n, and hence

<">=((,+7=7)7 (3-9)

Thus we have calculated the leading term of («) for transient random 
walks. To go further we need to know more about the joint probability 
distribution of {Fink)}k>l. To begin with, we need to know Var Un to leading 
order in q and n. This requires a calculation of the leading term in n of 
Co\(V{k), Fi*')):=<Ki*)Fi*',)-<Ki*,)<Ki*')> for all 1. To evaluate
(n) we must also extend the expansion of (Un) beyond the term of leading 
order in q and n. If we combine the first two terms in the cumulant 
expansion of log /„ we have, using Eqs. (3.3a, b),

(U„)- i Var Un^<l>(n)q-\y/(n)q2, q0 (3.10)
with
^):=V(i_,*)<K<*>) (3.10a)

k

V(n) := -V (I - qk)\V<«) + V (1 - i;*)(l - qk') Cov(V{k), F?,)) (3.10b)
k k,k'
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From Eq. (3.2) it follows that

oo
V
n-0

*>(») = I/O-*)2 G(°;2) + t^ (3.11)

and with Darboux’s theorem we can easily deduce from this equation an 
expansion for It is much harder to find if/(n). In Appendix C we
calculate y/(n) to leading order in n for random walks with 3 and for 
strongly transient random walks in d = 1 and 2. It is the work of Jain et 
al.(26_3,) that has inspired this calculation.

For strongly transient random walks we find

with

:= “o + I7/0 -n)

<j>{n) = v0ln + (iv0 1 + u2v0 2) + o(l) (3.12a)

v(n)~ 4(!4H n (3.12b)

(3.13a)

G2(/; 1)CH; 1)
|[g(0;1) + 14d -GH; i)|i

[0(0,',+1!,] c(0;1)+ i!,]r-
-<?(/; 1)G(-

-i\ d|

(3.13b)

This leads to the expansion

t -1 21 + u2v0 -v20a +
1 — t]F + (3.14)

which generalizes Eq. (2.23b). For random walks with // = 0 and m3 < oo in 
d = 3 and 4 we find

M0 =

\f/(n)

Vq ln + 2n~l/2ul Vo2n'/2 + o(log n\ d= 3
Vo'n + uxVq2 logrt + j^o ‘ + (ywi ~w2)Wo 2( + o(l/«I/2),

d = 4

(l/27r2uJC2)rt log n,

ho2(j^) + 2a]«,

</=3 

</ = 4

(3.15a)

(3.15b)

(3.16a)

(3.16b)
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and we arrive at

= WlU-» (-^-) +y«?yi*2log (”) + •••» d = * (3.17a)

(«) = y-wIy0_1 log (y)- jl ^{ux-u2)vqX+ •••,

rf = 4 (3.17b)

thus generalizing Eqs. (2.19) and (2.23a). For random walks in d = 3 and 4 
with m3 = oo similar expansions can be obtained if the behavior of G(0; z) 
for z -» 1 is known.

In Appendix C we further show that in all the cases considered above 
Var U„ ~ Var Sn for all 0 < q < 1 and 0 < rj < 1. This implies that the higher 
powers of q in (Un) — { Var Un each carry a coefficient that is G(Var Sn), so 
that their contribution to (n) is o(l). Finally, in Appendix D we prove that 
in all these cases {{Un — (Un))4) = 0(Var2 Un) (with a proviso for strongly 
transient random walks in d = 1 and 2 with G"(0; l)=oo). This in turn 
implies that Un satisfies an equation similar to Eq. (2.10) and ensures that 
the higher cumulants of Un also contribute only in higher order. Thus Eqs. 
(3.14) and (3.17a, b) are exact.

The generalization of Section 2 is now nearly complete and it remains 
to consider recurrent random walks. When d = 2, /j = 0 and m2 < oo it 
follows from Eqs. (2.13) and (3.2) that for fixed k

(Kk)) = n/ui ,0g2 un + 0(n/\og3 n) (3.18)

with the leading term independent (!) of k. By Eqs. (3.3a, b) 
(U„) = q[\ + 0(<7)| uniformly in n, with <j>(n) given by Eq. (3.10a), and
it follows from Eqs. (2.13) (provided m3 < oo) and (3.11) that

tj>(n) = —------+ (l -y~— 71 ) —\~~2—+0(n/\og3 n) (3.19)
Uj log un \ Uy 1 -q) ux log2 un

[see also Eq. (2.15)]. After some algebra we find

+ log log
log log(M,u/q) 

q / log(u,u/q)

_n___l
i -n ?

(3.20)

which generalizes Eq. (2.16). If also in this case Var Un ~ Var Sn for all 
0 < q < 1 and 0 < rj < 1, then it is clear that the contribution to (n) coming
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from Var U„ is 0(\/q log q) because Var Sn ~ n2/log4 n. We expect that it is 
possible to prove Var Un ~ Var Sn along the lines of Ref. 29 with the use of 
the analysis given in Appendix C. Unfortunately, even if this were known to 
hold still more information would be needed to exclude a contribution from 
the higher cumulants of Un of the order of the terms calculated. Thus, 
whether or not Eq. (3.20) is exact is an open question. Observe that 
(rt) — (n)n=0 ~ ?z/(l —rj)q, as for transient random walks [Eq. (3.9)).

For all other recurrent random walks with d = 2 the above argument 
carries through. The average <j>(n) behaves differently from Eq. (3.19) and 
(n) has a leading term of higher order in q than q~x log q, but to leading 
order in n, (V(nA)) is independent of k [because in Eq. (3.2) G(0;z)-+ oo as 
z-* 1) and one finds that (n) — (n)ri=0 ~ 77/(1 — rj)q in all cases.

For recurrent random walks in d = 1 very little can be said in general. 
Examples are easily found for which (n) — (n)n=0~ rj/(l — q)q does not 
hold. For example, for the simple random walk the average length of the first 
“run,” starting with the first and ending with the second visit to a trap, is 
\q~l — \ a \q~x and not q~x.

Before we conclude this section we briefly discuss a further extension of 
our model, viz. to the case of different types of imperfect traps. Suppose that 
each lattice point can be in either of t + 1 different states. With probability 
1 — q it is a nontrapping point and with probability p{q, i = 1,..., t, it is a trap 
with “escape” parameter 0 < < 1. The states of different lattice points are
again independent. The set {/>/}{_ 1 may be any set of probabilities with 

Pi — 1. This defines a random distribution of t different types of imperfect
traps.

A little reflection shows that Eq. (3.1) generalizes to

It is clear that this extension introduces no additional complications as it 
involves only a change in parameters. Therefore we can follow the same lines 
of reasoning as in the case of a single type of imperfect trap. The stochastic 
variable of interest is now

(3.22a)

with
(3.22b)

It is important to note that the inequalities (3.4) hold in this general case as 
well. They played an important role in the derivation of Eqs. (3.5) and (3.9). 
We list the main results without derivation.
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For transient random walks

(n)~v0/q, q-> 0 (3.23)
with

»ol />/[«<>+ «i/0 -'7/)]"1 (3.24a)
/

The correction terms follow again from Eq. (3.10). The generalization of 
0(n) is easy. Writing ^(/i; rj\ to display the dependence on tj in Eq. (3.10a), 
we see from Eqs. (3.22a, b) that <f>(n\ rj) generalizes to *u)- Thus, in
Eqs. (3.12a) and (3.15a, b) u0_1 is replaced by that given in Eq. (3.24a) and 
1>0-2 by

Wo1 ■='£,Piiuo+ «</(* -'7/)]'2 (3.24b)
l

leading to a replacement of uxVqX by u1v0Wq 2 in the two second terms in 
Eqs. (3.17a, b). Furthermore, in Eq. (3.20) rj/(\—rj) is replaced by 
HiPiVi/il —th) and the first three terms are unaffected. The generalization 
of y/(n) in Eq. (3.10) is not so easy. To find it one has to repeat a large part 
of the calculation given in Appendix C starting from Eqs. (3.22a, b). In 
particular, the generalization of Eq. (3.13b) is somewhat complicated.

4. DISCUSSION

First we discuss Section 2 which treated the case of perfect traps. In the 
cumulant expansion of log/„ [Eqs. (2.8a, b)] we have neglected the higher 
cumulants of Sn as well as certain higher-order terms in the expansion of 
(Sn) and Var Sn. To the sum (n) = £„/„, however, these neglected terms 
turn out to give additive corrections that are of higher order in q than the 
terms calculated. It is for this reason that Eqs. (2.8a, b) are well suited to 
find (n) for small q. On the other hand, to the individual fn the neglected 
terms give multiplicative corrections and therefore Eqs. (2.8a, b) are not 
suited to find fn for large n. What is worse, for any q > 0, no matter how 
small, the terms in Eq. (2.8b) blow up as n-* oo.

In this connection it is worth mentioning a strong result on the 
asymptotic behavior of fn for n-> oo found by Donsker and Varadhan(25) 
(see also Refs. 52-55). They proved that for aperiodic random walks, either 
with the property that 1 — p(0) —A(eo)\0\a, 6-* 0, where ee :=0/|0|, A is a 
strictly positive, bounded function, A(ee) = A(—ee) and 0 < a < 2, or with 
the property p = 0 and m2 < oo (in which case a = 2), the following holds 
for all X > 0:

lim n-d/M+a> log/„ = _2Q/(<,+Q) (4.1)
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where /? > 0 is a specified function of p. The derivation of this result is truly 
impressive and rather complex. There is no obvious connection between Eqs. 
(2.8a, b) and (4.1). These relate to two different regimes, one with n fixed 
and q -> 0, the other with n -* oo and q fixed, in which the behavior offn as a 
function of n is very different. From Eqs. (2.8a, b) one finds the behavior of 
fn for small n and q fixed. Since this determines ]T„/n for small q, Eqs. 
(2.8a, b) served well as a starting point. Equation (4.1) gives only the tail of 
fn. Thus it should be clear that one learns little from Eq. (4.1) about the 
asymptotic behavior of (w) for q-* 0. Equation (4.1) does, however, imply 
that (n) and all the higher moments of n are finite for all q > 0, a fact which 
we did not establish independently. It seems rather hard to find a suitable 
upper bound for fn to prove that (n) < oo for an arbitrary> nondegenerate 
random walk. This in contrast to the lower bound /„ > (1 —q){Sn\ which 
follows from Eq. (2.1) and Jensen’s inequality and which is the approx
imation to fn originally used by Rosenstock.(,4)

The asymptotic expansions found for {n) are valid for small q. How 
large the domain of ^-values is for which our results give a reasonable 
approximation to (n) depends, of course, on the coefficients in the expansion. 
For the class of random walks with p = 0 and m2 < oo the results are very 
accurate in most practical cases when d > 3 and q <. 0.05, the more so as d 
increases. For example, for the simple random walk and for q = 0.05 the 
relative contributions to (n) from the successive terms in the expansion are 
1:0.14:0.03 for d = 3, 1:0.04:0.04 for d = 4 and 1:0.06 for d= 5. For 
d =2 the situation is less favorable and the corresponding ratios are 
1:0.35:0.09:0.15. In most cases the expansion for d = 2 is useful only if
q<> 10-3.

It is interesting to compare Eq. (2.16) with the corresponding 
asymptotic expansion, derived by Montroll [see Ref. 56, Eq. (31)], for a 
strictly periodic distribution of traps (with N, the number of lattice points per 
trap, replaced by q~l), e.g., for the simple random walk. Except for the iden
tical leading terms, the two expansions are different in structure. Moreover, 
even for values of q as small as q— 10“20 the (n) is in the random case 10% 
larger than in the strictly periodic case, which is somewhat surprising.

For random walks with p =£ 0 and m2 < oo Eq. (2.23b) holds regardless 
of the dimensionality and in most cases it is accurate when q <, 0.05. For 
example, for the Bernoulli random walk in d = 1 with p( 1) = y, p(— 1) = 1 — y 
(4 < y < 1) we have G(0; z) = 1/[1 - 4y(l - y)z2]1/2, G(l; 1) = <7(0; 1) for 
/> 0 and (?(/; 1) = [(1 - y)/y\G(0; 1) for / < 0 (see Ref. 33, p. 8), so that 
u0 = l/(2y— 1), «2 = 4y(l — y)/(2y— l)3 and a= 1 — y and the ratio of the 
first two terms in Eq. (2.23b) is yq/(2y— 1).

If we ask, not for (n), but for the average number (S) of distinct lattice 
points visited by the walker before he is trapped, then the answer is very
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simple. Indeed, consider a given infinite walk on the lattice without traps 
with the property that there is an infinite sequence of step numbers 
m0 < mx < m2 < ••• at which a new point is visited (such that visits to old 
points occur at intermediate steps). Let Rn = 1 for n = m0, mx, and
R„ = 0 otherwise. Now, if this walk takes place on the lattice with traps, then 
the average under the random distribution of the number of distinct lattice 
points- that it visits before running into a trap is 5=1 + 

— q)Ro+R'+ +*n-1, where the 1 counts the origin. Obviously, 
mo = 0 and 5=1+ *m,(l - q) + *m|(l - q)1**-* + ••• = 1 + (1 - q) + 
(1 — q)2 + = q '. This is true for any walk with the required property.
But any nondegenerate random walk has this property with probability 1 (as 
Sn —► oo with probability 1) and hence we have the simple result

{S) = q~' (4.2)

Equation (4.2) can be shown to be related to the following asymptotic 
property, valid for all random walks except for recurrent random walks in 
d= I:

<««>“»"' (4-3)

Equation (4.3) follows from a combination of the asymptotic expansions for 
(5„) and (n) given in Section 2. The connection with Eq. (4.2) comes essen
tially from Eqs. (2.5) and (2.6), although it is somewhat involved. 
Equation (4.3) is identical with a property first noted by Shuler, Silver, and 
Lindenberg(57) for a strictly periodic distribution of traps (with q = N~l). In 
the latter case, however, Eq. (4.2) does not hold and an explanation of 
Eq. (4.3) is far from obvious. Moreover, in this case Eq. (4.3) is less general 
in that it does not hold for all transient random walks in d = 1.

Next we discuss Section 3, where we considered the extension that is 
obtained by introducing a finite probability for the walker to remain 
untrapped when stepping on a trap. With this extension the model was found 
to be significantly harder, but we were able to generalize the results in nearly 
all the cases considered in Section 2. We further extended the analysis to 
different types of imperfect traps. In this connection it is noteworthy that 
Eq. (3.23) can also be derived starting from a simple approximation. The 
average number of steps that the walker makes between his /th and (/+ l)th 
visit to a trap (given that these take place) is ^ 1/#, q-+ 0, for all i^ 1; this 
follows from Eq. (3.9). If the walker “escapes” from a trap there is a 
probability that he returns to that trap before hitting another one. As 
q->0 the probability of such a return tends to F and the approximation 
consists in assuming that the walker can never return to a trap other than 
through a sequence of such returns. By this approximation every new trap 
visited is with probability pt one with escape parameter rj{, independent of
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previous visits. This then enables one to derive Eq. (3.23) along the lines 
sketched in Section 4 of Ref. 58.

The approach followed in this paper to obtain the asymptotic expansion 
for (n) is systematic and exact. More work would be needed to estimate the 
error involved in approximating (n) by the terms derived, let alone to 
establish a possible convergence of the expansion. For this we do not yet 
have the means. For the case d = 2 with ju = 0 and m2 < oo the product w, u 
in Eqs. (2.16) and (3.20) is a very small number when the random walk is 
highly anisotropic [see, e.g., Ref. 34, Eq. (11.22)] and for q^uxu the 
expansion does not make sense, indicating that convergence is not a trivial 
matter.

We conclude this paper with the following reflection. If one compares 
the results of Section 2 and 3 one is struck by a remarkable similarity. It 
appears that nearly all the terms in the expansions for (n) found for 
imperfect traps can be obtained from the corresponding terms found for the 
perfect-trap case through a simple “recipe”: replace G(0; z) by G(0;z) + 
77/(1 — 77) in the analysis of Section 2 and leave G(/;z) for / 0 untouched.
In view of the way in which the parameter 77 comes into play in the analysis 
of Section 3, it is truly amazing that such a simple recipe exists [see in 
particular Eq. (3.13b)]. There are only two exceptions: in Eqs. (3.14) and 
(3.17b) an extra term —rjF/(\ — tjF) occurs that does not fit into this picture, 
indicating that the recipe is not exact. We checked Eq. (3.14) for the 
Bernoulli random walk in d= 1. Following the approach of Ref. 7 we 
calculated the exact average length of the first “run” (i.e., the subwalk 
between the first and the second visit to a trap) and found that (/i,) = 
q~l + 0(q). This is correctly predicted by Eq. (3.14), where the term 
between braces has an expansion in powers of 77 in which for the Bernoulli 
random walk the power 77 happens to drop out.

If one tries to understand why the recipe nearly works but not quite, one 
runs into a somewhat unexpected problem. Not only is the recipe not exact, 
as it is formulated above it is not even unambiguous. The reason for this is 
simply that the functions G(/;z) for different values of / are related. As an 
example take the simple random walk. If, instead of u0 = G(0; 1), we would 
have used the equivalent expression u0= 1 + (2d)~l £,/1 = 1 G{1\ 1), then our 
recipe obviously would have led to totally wrong answers. At first this 
objection may seem a bit pedantic, but a closer inspection reveals that it is a 
serious one and that until one manages to remove it there is little or no sense 
in trying to explain the situation. Still, the observed similarity is striking and 
there is no harm in trying to develop some feeling for it.

To that end consider once again the infinite lattice L. Suppose that we 
divide L into identical finite unit cells L and place identical imperfect traps 
at identical position /,. G L, / = 1,2,.... This gives us a periodic trap
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configuration on L. For the trapping problem it suffices to consider a single 
unit cell with periodic boundary conditions. Let the walker start from /0 6 L, 
let r/;„ denote the probability that he is trapped by trap i at step n and let 
//(z):= H?=oZnTl;n- A simple argument shows that

y
/

n
T^ fi(z) — G(lj — lQ\ z), j= 1,2,... (4.4)

|see Ref. 58, Eq. (4.2)], where now G(/;z) is the Green’s function for L. If 
we are not interested in the label of the trap at which the walk ends, we may 
sum //(z) over / to obtain Az) and the average number of steps
until trapping, given that trapping occurs, then follows from

<»> =/'(!)//(!) (4-5)

Equations (4.4) and (4.5) express the fact that for any arrangement of traps 
in L that does not include the starting point the recipe works in principle, at 
least in the form in which the equations appear here. If, however, the starting 
point is a trap it does not work. Yet, if we average over all possible starting 
points and use that ^TleL G(l\z)= 1/(1 -z), then we may replace the right- 
hand side of Eq. (4.4) by l/N(\ — z), where N is the number of lattice points 
in Z, and the recipe works again.

This example indicates a possible origin of the observed similarity and 
at the same time illustrates the limitations of the recipe. In the random trap 
model the unit cell is infinite and we have to average over all possible trap 
configurations, which makes the situation only more complicated. 
Apparently the recipe fails in this case (a failure which, incidentally, is not 
repaired if we exclude the origin from being a trap).

All in all, it appears that interesting, and possibly useful, connections 
lay hidden behind the relations derived.
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APPENDIX A

For strongly transient random walks (?(0; z) behaves for z -» 1 as given 
by Eq. (2.20b) with
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= (2*)~‘f d8t~ ■f"dodv-m\-' (Al)

= (2xy'f d0,- ■ f Md\\ -mv1 (A2)

[see Eq. (2.4)]. For the simple random walk Montroll(34) has derived the 
asymptotic series (2.24) for u0. We follow his approach and derive a similar 
series for u0 + u2. For the simple random walk p(6) = d ' £?=, cos (9,.. 
Using the identity s = Jj° dt te ”, we can write Eq. (A2) as

u0 + u2=\ due '[I0(t/d)\d (A3)
-'o

where /0(x) := 7r_1 Jo d6 exp(x cos 6) is the modified Bessel function of order 
0.(59) Substituting the expansion I0(x) = £*°=o (i*)V(*02 we find

“0 + U2=I+^ +
15

(2 df +
90

(2 dY +
630 5005

(2 dy + W+ (A4)

Subtraction of Eq. (2.24) leads to Eq. (2.25).
As mentioned in the text, for all strongly transient random walks and 

for a large class of random walks with 3 Var Sn ~ [F(l — F) + 2a]n. 
From the expressions given in Refs. 26 (p. 375), 28 (p. 374), and 31 (p. 99) 
it appears that

/To 1 -F,F_, 1 (A5)

where F, stands for the total probability that the walker reaches / from 0. 
The generating function for first passage in / is F(I; z) = [G(l\ z) — Sl0\/ 
G(0;z).(34> Noting that F, = F(l\ 1) we get for a the expression given in 
Eq. (2.22).

For the simple random walk it is easy to find for a an asymptotic 
expression similar to Eq. (A4). Indeed, using Eq. (2.4) we may write

G(/;l)=f <//*-' Y\lhm (A6)
■'o /=!

where Im{x) := n~11; d6 exp(x- cos 6) cos(m6), m E Z, is the modified Bessel 
function of order m, and if we substitute the expansion Im(x) = 
tt*)"£R.o dx)k/kHm + k)\9 m > 0, we can find an asymptotic series for 
G(l\ 1) for any /. Doing so for a few lattice points close to 0 and noting that 
G(l; \) = 0\(\/2d)llUl'] we readily find Eq. (2.26).
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APPENDIX B

To study Un it is convenient to write Eq. (3.3a) in the form

(bo
*>i />*

with //, := A, and nk := A* — Xk_,, k > 2. By Eq. (3.4) nk > 0 for all fc. To 
prove Eq. (3.5) we introduce stochastic variables := the number of 
distinct lattice points visited exactly k times on or between steps m and n 
(0 < m < «), and put

:= £ I (B2)
*>1 I</<*

By Eqs. (3.4), (Bl), and (B2) Un=XSn - W0n.
The variables Wmn have the following properties: (i) Wmn < Wml + Win 

for all m <i < n, (ii) the process {Wmn} is strictly stationary (i.e., the joint 
probability distributions of the sets and {Wm+ln+l} are identical),
(iii) (W0n) is finite and (WQn) > -An for some constant A and all n. This is 
easily seen by inspection; (i) follows from the fact that for any k the sum 
Hi<k v(mn satisfies the inequality while 0, (ii) is an immediate conse
quence of the independence of the individual steps in a random walk, and 
(iii) is trivial because 0 < A < oo and > 0 for all k.

Stochastic variables that satisfy (i)-(iii) are said to form a subadditive 
process and by an ergodic theorem of Kingman<5,) the (finite) limit

lim n-'lV0n = Z (B3)
n-*oo

exists with probability 1 and in mean, and (£) = infn>1 n~\yV0n) = 
lim^^ n~\W0n). The last equality follows from (i), by which (^r02n)< 
2<^o „>•

To prove Eq. (3.5) it remains to show that (^) with probability 1. 
From Eqs. (3.4) and (B2) one easily deduces that —A/ < WQn — Wln < A/ for 
any 0 < i < n and this implies that for a given i > 0

lim n~1Wln= lim n~1 W0n (B4)
n -too n -*oo

Equation (B4) means that for any given / > 0 the limit ^ depends on the walk 
only through the steps / + 1, / + 2,... and not through any of the previous 
steps (i.e., f is a so-called “tail” event). Since the individual steps are 
independent it follows from Kolmogorov’s zero-one law (see Ref. 60, p. 102) 
that £ is equal to a constant with probability 1 and hence f = (£) with
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probability 1, as asserted. Since Un = XSn — WQn and since it is known that 
\iTn„^con~lSn = \imn_con~l(Sn) (=1 — F) with probability 1 (Ref. 33, 
p. 38), this proves Eq. (3.5).

APPENDIX C

In this Appendix we consider the following two classes of random 
walks: (I) random walks in d= 3 with E,eL G2(/; I) G(-/; 1) = co; 
(II) random walks with 3 not in class I and strongly transient random 
walks in d = 1 and 2 (for all random walks in this class 
I]/6LG2(/;1)G(-/;1)<oo).(26-28-3,>

We calculate Var Un to leading order in q and n. We further calculate 
the term of order q2 in (Un) and show that Eqs. (3.12b) and (3.16a, b) hold. 
Finally we show that Var Un ~ Var Sn for all 0 < q < 1 and 0 < q < 1. We 
assume that the random walk is aperiodic and that F > 0.

We start from Eq. (Bl) and write

C/„= v (Cla)
k> 1

Var U„ = V ^t,Cov(5<«Sr) (Clb)
*.*’> i

where S{k) is the number of lattice points visited at least k times after n steps 
and nk = log(l — q + rjk~xq) — log(l — q + rjkq). Let ln denote the position of 
the walker at step n and consider the following indicator stochastic variables:

IIJl

N

A‘* ’ ^ ^ ^ {* L "b ^ ’ co}\{ r2 .•••» **} 1

• • i*;n •—

:=/[/,= ... = ....... i*};

>n: /,.=/,]

1, 1 </,<•••< /*, n > ik

A little reflection shows that

o</,< ■ • • </A<n
(C2)

(For k > n + 1 the sum in the right-hand side is empty.) We split S(k) into 
two parts:

S™ = y<*) + (C3)
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W[k) :=

and further split Y{k\ writing

k - 1
n*>=*<*>- v

x Z >■■■<>0</,< • • • </*<n
V

o </,<•• • < /*<n

y

with

1=1 0</,< • •-</|<n</| + i< • • • </*<oo

X(k): = V Z\k)
o </<«

(C3a)

(C3b)

z/r..(C4)

(C5)

where for fixed /

/</2< • • • </*<00
= /[after step / the walker returns to /, exactly A: — 1 times] (C5a)

The reason for choosing to split S{k) in this way lies in the two ine
qualities

(C6a)

X(k) - Y(k) < V W(" (C6b)
i=i

which, as we shall see in a moment, play a key role in the calculations. 
Equation (C6a) is not much deeper than the obvious inequality Slk+l) < Sik). 
To see that it holds, write = Z/j/2./2 Wl2.. substitute this
product into Eq. (C3b) and use < 1. To see that Eq. (C6b)
holds, use £„</1+1<.. .</*< oo 2/,. • •/* ^ -Ki

ln the following we shall calculate Cov(X(„k), X(nk )) to leading order in n. 
We shall show that Cow(X{k\ Xf1) for all pairs k,k' and the two sums 
(HkVk Var,/2 Xlk))2 and Zk.k'MkMk' Cov(*<*U<*'>) for all 0 < q < 1 and 
0 < rj < 1 are all of the same order in n and have the property that they grow 
faster than n in class I and proportional to n in class II. This will be seen to 
imply that in both classes

Cov(S<*>, S<r) ^ Cov(X[k\ Xr) (C7a)

Var1/2 S? = Z ^’Var,/2 (C7b)
k k
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and, with Eq. (Clb),

Var t/„ ~ V Mt/l'k Cov(X[k\ Xf') (C7c)

Our calculation will thus provide us with the leading order behavior in n of 
Var Un and also make it evident that Var Un ~ Var Sn (=Var5,JI,)) and 

Var,/2 Sik) ~ Var1/2 Sn. We shall need the latter two relations in 
Appendix D. To prove Eqs. (C7a, b) we use Eqs. (C6a, b) and a bound 
obtained for In Refs. 29 (p. 376) and 32 (p. 97) it is shown that in
class I (W'i 1)J)=0(n), while in class II (W/V)2) = o(n). This means that in 
both classes (W'iI>l) = o(Cow(Xik\ A"!,*'*)) for any pair k, k' and similarly for 
the two sums in the right-hand side of Eqs. (C7b, c). Equation (C7a) follows 
in two steps. First, by Eqs. (C6a, b) Var^fj/0 — Tj/0) < (k — l)z(IFj,1)2), and 
together with the Schwarz inequality this implies that Cov(yJl*), Y(k)) ^ 
Cov(X(„k\Xlnk,)). Second, by Eq. (C6a) Var^ - Yik)) < <^,)2> and hence 
Coy(S[k\ S{k'))^Co\(Yik\ Y{k>)\ leading to Eq. (C7a). Equations (C7b, c) 
do not follow straight from Eq. (C7a). They follow from a similar argument 
plus the fact that (k — \ )/ik < oo for all 0 < q < 1 and 0 < rj < 1.

Equation (C7c) is important because the right-hand side is easier to 
evaluate than the left-hand side. From now on we shall concentrate on the 
calculation of this right-hand side.

By Equation (C5)

Co\(Xlk\ Xik,)) = X Cov(Z-*), z;*,)) + V + af'k)) (C8)
1=0 j=1

with

:= V Cov(Zj*>, (C8a)
1 = 0

The first sum in Eq. (C8) is easy. Indeed, for k i= k' we have {Z\k)Z\k>)) = 0, 
by Eq. (C5a), and thus Cov(Z{*),Z}*')) = -<Z|*)><Z{*,)>. Furthermore, 
CovCZ!*1, Z\k)) = Var Z\k) = (Z\k)) - {Z\k))\ Since (Z\k)) = {Z(k)) = 
F*_1(l — F) this gives us

V Cov(Z/(*),Zi*'))= [Fk~\\ -F)dkk.-Fk-'Fk‘-'( 1 -F)2](n-f 1) (C9)
/=o

To write out the second sum in Eq. (C8) we define

T\k) := the number of the step at which the walker visits / for the 
k th time;

P{k\l) := the probability that the walker returns to 0 exactly k — 1 
times during steps 1,..., n and visits / at step n.
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In Eq. (C8a) Cov(Zj*\ Z(k)) = Cov(Z{0k), Z(k^)),j > /, and we write out

j-i *-i
(CIO)

with

where P, stands for probability with respect to the random walk starting in /. 
In Eq. (CIO) we sum over the position / = /,_,• of the walker at step j — i. If 
Z{f = 1 the walker returns to 0 exactly k — 1 times. Of these returns 
m = 0,...,k — 1 may take place during the first j — i steps. If Zjk_'j = 1 the 
walker returns to / exactly k' — 1 times after step j — i.

To find the probability Plnm+l)(0 IS convenient to introduce the 
generating function

CO

(Cl 2)

First we take 1 = 0. P(nm¥l)(0) is the probability that the walker returns to 0 
for the mth time at step n. A standard type of argument shows that therefore

p(/n+ D(q. z) = Fm(0; z), 1 (C13a)

and /*(,)(0; z) = 0, where F(0\z) is the generating function for first return to 
0. For /^ 0, on the other hand, ^im+,)(/) is the probability that the walker 
returns to 0 for the mth time at some step n' < n and in the remaining n — n' 
steps walks from 0 to / without returning to 0, arriving in / at step n and 
possibly visiting / at some earlier step. Now it is easily recognized that the 
probability for the latter event is equal to the probability that the walker 
after the remainig n — n' steps reaches / for the first time with returns to 0 
allowed. Therefore we have

/>(m+ ”(/; z) = Fm(0; z) F{1\ z), / # 0 (C13b)

where F(l\z) is the generating function for first passage in /.
Before we come to b{,k,k,) in Eqs. (CIO) and (C11) we return to 

Eq. (Clb). Our first aim is to find the term of leading order in q and n of 
Var Un. Noting that — (1 — q)qk~lq, q~* 0, we have

Var Un^</>nq\ q-* 0 (Cl 4)
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with

L ■= (1 - nf I 7,k-'r,k'-'Cov(S«\S“'>)

= (l-7)2 V ijW^Co v(*«\ *«■»)=:*; (Cl 5)

where we use Eq. (C7c). We shall calculate 0'. From Eqs. (C8)-(C 10) it 
follows that the generating function

r(z) := V *>; (Cl6)

is given by

f(z) =
(l-?)4 F(l-F)

(1-z)-2

+ 2(1 ^)2(1 -Z)-2 V ( V ^p(m+D(/;z)U 
/ \/n = 0 f '

V
fc.lFS i

(Cl 7)

The term with / = 0 in Eq. (Cl7) is easy. Indeed, by Eq. (C11) bQk,k) = 
Fk~'( 1 -F)5kk,-Fk-'Fk'-\ 1 — F)2 and using Eq. (C13a) we find that this 
term equals 2rjF(0; z)/(l — tjF(0; z)) times the first term in Eq. (Cl7). We 
may therefore write

(l-*)4f(l-F) ,f _n_2
(1 — rjF)2(l — rj2F)

(1-z)
1 +>yF(0;z) 
\-rjF(0‘,z) + 2 #"(z) (C18)

with

:=(l-^)2(l-z)-2
y_F\l1Z)_
fr0l-r,F{0-,z)

lrjk‘ ,&j***'> (Cl 8a)

where we use Eq. (Cl3b). It remains to find the double sum in Eq. (Cl8a). 
We shall need most of the rest of this appendix to calculate this sum.

Equation (C11) can be simplified a little bit. An easy calculation shows
that

with

4}*.*') = cj‘.*')_c|*-i.*’)> A:>2, *<*•*') = (C19)

c\kX) := P,(r*** < oo]P,[7'j*'-1) < oo,Ti*') = to]

-P,[Tlk) < oo, < oo, T}*'1 = oo ] (C 19a)
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Similarly,
c\k'k,) = d\k'k>) - djk'k’-l\ k' > 2, c(,k'X) = d\kA) (C20)

with

d\k'k>) := P\Pk) < oo, T\k>) < oo ] - P,[Pk) < oo ] P\Pk,) < oo ] (C20a)

From Eqs. (C19) and (C20) we get

v ,*-y -■*<*■* > = (i -ny v ^*-'17* -'(/;*■*'» (C21)

To evaluate the right-hand side we write

d\k'k,) = p\k'k>) + q\k'k>) - F_,Fk+k'~l (C22)

where we introduce the probabilities

p\k'k'] := Pt[p0k) < T\k'] < 00] (C23a)

q\k'k>) :=P,\T{k,) < Pk) < 00) (C23b)

and where Ft :=/*'(/; 1) is the total probability that the walker reaches / from 
0. To find p\k'k,) and q\k'k>) we derive a set of recursion relations in k and k' 
valid for / i= 0. Write

= < T\k>) < 00]

+ P,[P,k'-l) < Pk) < P,k,) < 00] (C24)

The first term factorizes into F/[7’oA:) < pk'~l) < 00] Pi\T\x) < 00] and is 
seen to be equal to Fp\k,k'~X). The second term factorizes into P,[P,k'~X) < 
P0k) < 00, P0k) < T\k']] P0\T\X) < 00 J, of which the first factor can be written 
as q\k,k ~ u — q\k,k'\ Together this gives

/>}*•*') = Fp\k'k'~X) + F^'-" - q\k'k>)i k' > 2 (C25a)

A similar reasoning shows that

<?!*’*') = Fp\k~x'k,) + F_l[p\k~x'k') - p\k'k,)), k > 2 (C25b)

To complete Eqs. (C25a, b) we also need to know p\k,x\ 1, and q\x,k ), 
k’ > 1. These probabilities are easily calculated. Indeed,

p\k' X) = Pl[P0k) <P,X) <od\

=pl[iy)<T]i\Ty)<x>\

X {/’oin0 < T\" < 00]}*-' P0\T\" < 00]

= {F-,-q\'A)\(F-p")'))k-' F„ 1 (C26a)
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and similarly

q\'-k )= \F-p\'-")k'F_„ k' > 1 

from which we deduce

with

Pi<*.!>

0.1) F-Ff-*F
\-F,F_,

F-F,F_
1 - F,F_

From Eqs. (C25a, b) it follows that the two sums

(C26b)

(C27a)

(C27b)

(C28a)

(C28b)

(C28c)

P,(tj):= V (C29a)
k.k‘> 1

6/(9):= X 17*''»/*'" (C29b)

satisfy the set of equations

(l-r,F)Pl = Il-(l-r,)FlQl (C30a)

= (C30b)

with
CO

iAn)rp\,'"/V-nX,) + Fl Y r,k-'q*-" (C3ia)
k= 1

CO

Jfa)~tf’lW-’lXi) + F-, I qk p\l'k ) (C31 b)
k’= 1

where Eqs. (C27a, b) are used. The two sums in Eqs. (C31a, b) can be found 
from Eqs. (C25b) and (C25a), respectively, with Eqs. (C27a, b) and 
(C28a, b, c). This leads to

Il = FlF_l/(\-tiF) 

J, = FF_,/(\-nF)

(C32a)

(C32b)



73

Substituting this into Eqs. (C30a, b) we can solve P,(q) and (?,(>/), and from 
Eqs. (C21), (C22), and (C29) we then get

k,k'> 1

-F)

(1 -IF)3 F,F-,

X 1*0 (C33)

Using Eq. (Cl8a), noting that F(l\ z) =\G(l\ z) — <5,o]/G(0; z) (34) and 
writing (7, :=(?(/;!) and (1 - rjF)/(\ - rj)(\ - F) = G0 + rj/(\ - rj) we 
finally arrive at

I Go + *7/(1 ~ V)]2{ [G0 + '//(l - V)]2 - C/G-,) 

X.-- G(/;Z),------— (C34)

l"(z) = (l-z)-2 V 
1*0

[G(0;z)+ >;/(! -r,)\

Equations (C18) and (C34) are exact expressions from which the coef
ficients j>'n in Eq. (Cl6) can be deduced. We are now ready to use Eq. (C15) 
and find the leading order behavior in n of <j>n. At this point we have to 
distinguish between the two classes of random walks I and II introduced 
earlier. Class II is the easiest one. Because in this class 
2/ei. G2(/; 1)G(—/; 1) < oo we deduce from Eq. (C34) that

<f>"(z)^a(\ -z)~\ z-1 (C35)

with a given by Eq. (3.13b). Equation (C.35) implies that the coefficients of 
</>"(z) have a leading order behavior in n that is an. With Eqs. (C14)-(C16) 
and (Cl8) this explains the term 2an in Eqs. (3.12b) and (3.16b). The first 
term in each of these equations is a sum of two contributions. One comes 
from the first term in Eq. (Cl8), the other from the term of order q2 in the 
expansion of (Un), which is

2 k> i
(i -v*W> =

1
2 (1-^X1-V/r)

by Eq. (3.2) and Darboux’s theorem. The two contributions become 
transparent in their combination.

Class I is harder. In this class £/6L G2(l; I) G(—/; 1) = oo and 
(1 — z)2 <f>"(z)-> oo as z-* 1. Since for transient random walks with 2 
G(/; 1) —► 0, |/| —» oo (Ref. 34, p. 281), we get from Eq. (Cl8)

#'(z)s2#"(z) 2(Go + TTt) 0 — z)~2 X! G,G_,G{I;z), 
\ 1 ” / 1*0

z -> 1

(C36)
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For random walks with d = 3, p = 0 and m2 < oo it is shown in Ref. 29 
(p. 379) that G,G_iG\ ^ (27rC)-2 logy, j-> oo, where G/ is the sum of 
the first y coefficients in the power series in z of G(/;z). With Eqs. 
(C14)-(C16) and (C36) this explains Eq. (3.16a).

It remains to show what we used earlier to prove Eqs. (C7a, b, c), viz. 
that Co\(Xik\ Xlk *) for all k and k\ and the two sums (£*.a*Varl/2 X(k))2 
and Hk.k'VkVk-Cov(Xlnk)iX(k')) for all 0 < q < 1 and 0 < >/ < 1, are all of the 
same order in n and have the property that they grow faster than n in class I 
and proportional to n in class II. This may be done as follows. We have 
calculated the sum rjk~1 rjk'~1 Cov(Xl„k\ X{k )) and found that it has the 
mentioned property for all 0 < rj < 1. Now with the analysis given above it is 
not hard to calculate also the sums £*z*_1 Var,/2 X(k) =:pn(z), 0 < z < 1, 
and Cov(*!,‘\ 0<z,,Zj<1. This is
straightforward but tedious and is left to the reader. One finds that pl(z) has 
the same asymptotic behavior in n for all z and so does pn(z,,z2) for all 
Z,,Z;. Writing X>*Var1/2 *!,*’ =-£r>, (l/r)|-<?/(l - q)\r(\ ~ >lr)PM) 
and Z^PkM*:Cov(X“\xr)=Z,r^AVrr'){-q/(l - 'll
(1 —rjr) pn(T]r,Jf ) and carrying out the summation over r one can then 
show that the two sums over k and k' have the required property, as 
asserted. (Note that by the Schwarz inequality {J^kpk Var,/2 X(k))2 > 
Hk.k’MkVk' Cov(X{nk), Xik,)).) From the result for pn(znz2) one further easily 
deduces (cf. Ref. 37, p.232) that also the individual Cov(X[k), X{k )) have 
this property. The attentive reader will observe that we do not really need 
Eq. (C7a). Nevertheless this equation stands at the basis of Eqs. (C7b, c), 
which we have used in the calculation of Var Un and shall need in the next 
appendix.

APPENDIX D

The purpose of this appendix is to prove that

{(Un - (Un))A) = 0(Var2 Un\ for all 0 < q < 1 and 0 < r] < 1 (D1)

for random walks in the classes I and II introduced in Appendix C, subject 
to the condition

(^<,,4) = 0(Var25n) (D2)

where is defined in Eq. (C3b). In Ref. 32, Eq. (D2) is proved for both 
classes, with the exception of random walks with d— 1 or 2 and 
G"(0;l)=oo (see Ref. 32, p. 117). For the latter subclass a proof of 
Eq. (D2) is not known.
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Let

t„ ■■= <5i*>»4)1/4/Var'/! S. (D3)
k

where fik and Slnk) are defined below Eqs. (Cla, b). We shall show that tn is 
bounded. By Minkowski’s inequality we have ((x + y)4)l/4 < 
(x4)l/4 + (y4)l/4 for any pair of stochastic variables x, y and hence by 
Eq. (Cla) <({/„ - (t/„))4)1/4 < I- <5'‘>»4),/4, so that

((tf.-wyx'jVar2^

Since Var £/„ ~ Var5„, the boundedness of /„ will imply Eq. (Dl).
We start from Eq. (C2) and write

c(*) _ V z°2/t+l “ _ • -ik;2n+ 1
0</,< • • • <i*<2n+ 1

0</, <---

+ I (D4)
n + 1 </,< • • • </*<2n + 1

with

k — I
n l(k) V V Z^ n •— 2-, 2- ^iv • *'Vi + i-4 • #*:2«+ I

1 = 1 0</,< • • • </,<n</| + |< • • • <ik<2n+ 1
(D4a)

R2:*>:= V
0</,< • • •</*<"

(D4b)

Obviously, 0<X;,</,+1<.- <(,<2» + i zi,+ 
zi,...it;n-zi1...i,.2»+i < and thus with EtE (C3b)

and 0<

v w<,'>
iTi

(D5a)

0 4R2„w< Kk) (D5b)

The two sums in Eq. (D4) are independent and have the same distribution as 
Sj*\ Hence, subtracting averages, we get

<(5«*>+1 - <Sfftl»‘>,/4 < [2<(S<*> - <5<*>»4> + 6 Var! S?']1/4

+ 2 V (»*l)4>1/4 (D6)
1=1



76

where we use Eqs. (D5a, b) and repeatedly apply Minkowski's inequality. In 
Ref. 32 it is shown that both in class I and in class II n ' Var Sn is 
asymptotically a monotone, nondecreasing and slowly varying function of n. 
Thus Var S2n +, ex 2 Var Sn and it now follows from Eqs. (C6a), (D2), (D3), 
and (D6) that there is a constant M < oo such that

<2-,/8/n + M, for all n (D7)

where we use that J^k/ik Var,/2 Sj/0 ~ Var1/2 S„ (which was shown in 
Appendix C) and that k/jk < oo for all 0 < q < 1 and 0 < ?/ < 1. [The 
number 2~,/8 in Eq. (D7) may be replaced by any number >2 1/4; it is 
chosen < 1 to suit the proof.]

We follow the line of reasoning in Ref. 32 (p. 114). Now there is a 
y < oo so large that 2_,/8 + (Af/y)< 1. Suppose that for some integer m we 
have tm>y. Then it follows from Eq. (D7) that (t2n+i //J < 2 " ,/8(/„//J+ 
(M/y) for n^m. This implies that anc* it follows by induction
that tn < lm for n in the subsequence of integers of the form n = 
2j(m + 1)— 1 =:nJtj > 0. Next, consider nJ_l <n < rij for some j. Trivially,

and through an argument similar to that given above we find that there are 
constants NXt N2 < oo such that

/„<Nttnj + N2, for all j (D8)

This proves the boundedness of tn for all n, and hence Eq. (Dl) subject to 
Eq. (D2), as asserted.

REFERENCES

1. R. M. Pearlstein, in Photosynthesis: Energy Conversion by Plants and Bacteria, Vol. I 
(Academic Press. New York, 1982), p.293.

2. H. Scher. S. Alexander, and E. W. Montroll, Proc. Natl. Acad. Sci. 77:3758 (1980).
3. G. Pfister and H. Scher, Adv. Phys. 27:747 (1978).
4. H. B. Rosenstock. J. Soc. Indust. Appl. Math. 9:169 (1961).
5. E. W. Montroll and G. H. Weiss, J. Math. Phys. 6:167 (1965).
6. M. Rudemo, SIAM J. Appl. Math. 14:1293 (1966).
7. E. W. Montroll. J. Phys. Soc. Japan Suppl. 26:6 (1969).
8. H. B. Rosenstock, Phys. Rev. 187:1166 (1969).
9. H. B. Rosenstock, J. Math. Phys. 11:487 (1970).

10. K. Lakatos-Lindenberg, R. P. Hemenger, and R. M. Pearlstein, J. Chem. Phys. 56:4852 
(1972).



77

11. R. P. Hemcnger, R. M. Pearlstein, and K. Lakatos-Lindenberg, J. Math. Phys. 13:1056 
(1972).

12. H. B. Rosenstock, SIAM J. Appl. Math. 27:457 (1974).
13. R. H. J. Fastenau, C. M. van Baal, P. Penning, and A. van Veen, Phys. Stat. Sol. 

A52:577 (1979).
14. H. 3. Rosenstock, J. Math. Phys. 21:1643 (1980).
15. G. H. Weiss, Proc. Natl. Acad. Sci. 77:4391 (1980).
16. H. B. Rosenstock and J. P. Straley, Phys. Rev. B 24:2540 (1981).
17. G. Zumofen and A. Blumen, J. Chem. Phys. 76:3713 (1982).
18. A. Blumen and G. Zumofen, J. Chem. Phys. 77:5127 (1982).
19. R. H. J. Fastenau, thesis. Delft (1982).
20. B. Movaghar, G. W. Sauer, and D. Wiirtz, J. Stat. Phys. 27:473 (1982).
21. W. Th. F. den Hollander and P. W. Kasteleyn, Physica 117A:179 (1983).
22. D. L. Huber, J. Stat. Phys. 30:345 (1983).
23. P. W. Kasteleyn and W. Th. F. den Hollander, J. Stat. Phys. 30:363 (1983).
24. A. Blumen and G. Zumofen, J. Stat. Phys. 30:487 (1983).
25. M. D. Donsker and S. R. S. Varadhan, Commun. Pure Appl. Math. 32:721 (1979).
26. N. C. Jain and S. Orey, Isr. J. Math. 6:1373 (1968).
27. N. C. Jain and W. E. Pruitt, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 16:279 (1970).
28. N. C.6 Jain and W. E. Pruitt, J. Analyse Math. 24:369 (1971).
29. N. C. Jain and W. E. Pruitt, in Proceedings of the Sixth Berkeley Symposium, (University

of California Press, Berkeley, 1971), p. 31.
30. N. C. Jain and W. E. Pruitt, Ann. Math. Statist. 43:1692 (1972).
31. N. C. Jain and W. E. Pruitt, J. Analyse Math. 27:94 (1974).
32. R. van Grondelle and L. N. M. Duysens, Plant Physiol. 65:751 (1980).
33. F. Spitzer, Principles of Random Walk (Van Nostrand, Princeton, 1964).
34. E. W. Montroll, Proc. Symp. Appl. Math. 16:193 (1964).
35. S. C. Port, J. Comb. Theory 2:107 (1967).
36. G. H. Weiss and R. J. Rubin, Adv. Chem. Phys. 52:363 (1982).
37. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1 (Wiley, New 

York, 1950).
38. A. Dvoretsky and P. Erdos, in Proceedings of the Second Berkeley Symposium 

(University of California Press, Berkeley, 1951), p. 353.
39. N. G. de Bruijn, Asymptotic Methods in Analysis (North-Holland, Amsterdam, 1961).
40. J. G. Darboux, J. de Math. 4:1 (1878).
41. J. G. Darboux, /. de Math. 4:377 (1878).
42. R. B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation (Academic 

Press, London, 1973).
43. F. S. Henyey and V. Seshadri, J. Chem. Phys. 76:5530 (1982).
44. E. W. Montroll, J. Soc. Indust. Appl. Math. 4:241 (1956).
45. G. S. Joyce, J. Math. Phys. 12:1390 (1971).
46. G. S. Joyce, J. Phys. C4:L53 (1971).
47. G. S. Joyce, J. Phys. A5:L65 (1972).
48. S. Ishioka and M. Koiwa, Philos. Mag. A37:5176 (1978).
49. J. E. Gillis and G. H. Weiss, J. Math. Phys. 11:1307 (1970).
50. B. D. Hughes, E. W. Montroll, and M. F. Shlesinger, J. Stat. Phys. 28:111 (1982).
51. J. F. C. Kingman, Ann. Probab. 6:883 (1973).
52. M. D. Donsker and S. R. S. Varadhan, Commun. Pure Appl. Math. 28:525 (1975).
53. P. Grassberger and I. Procaccia, Phys. Rev. A 26:3683 (1982).
54. P. Grassberger and I. Procaccia, J. Chem. Phys. 77:6281 (1982).



78

55. R. F. Kayser and J. Hubbard. Phys. Rev. Lett. 51:79 (1983).
56. E. W. Montroll, J. Math. Phys. 10:753 (1969).
57. K. E. Shuler, H. Silver, and K. Lindenberg, J. Stat. Phys. 15:393 (1976).
58. W. Th. F. den Hollander and P. W. Kasteleyn, Phvsica 112A :523 (1982).
59. M. Abramowitz and 1. A. Stegun, eds. Handbook of Mathematical Functions (Dover. 

New York. 1972).
60. J. L. Doob, Stochastic Processes (Wiley. New York. 1953).



Chapter III

Random walks on lattices with points of two colours
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RANDOM WALKS ON LATTICES WITH 
POINTS OF TWO COLOURS. I

W.Th.F. DEN HOLLANDER and P.W. KASTELEYN

Instituut-Lorentz voor Theoretische Natuurkunde, Nieuwsteeg 18, 2311 SB Leiden,
The Netherlands

This paper is concerned with random walks on lattices with two kinds of points, black and 
white. The colours of the points are random variables with a translation invariant, but otherwise 
arbitrary, joint probability distribution. The steps of the walk are independent of the colours. We 
study the stochastic properties of the length of the subwalk from the starting point to a first black 
point and of subwalks between black points visited in succession, and establish a number of exact 
relations. These relations can be applied to a trapping problem by identifying the black points 
with imperfect traps. An example is discussed.

1. Introduction

The theory of random walks on lattices with traps has developed into a 
well-established branch of random-walk theory. Calculations have been made 
on quantities such as the mean value and higher moments of the number of 
steps the walker makes before being trapped1"5), the probability that the 
walker returns to the starting point without having been trapped6) and the 
mean square displacement after a given number of steps (diffusion)7,8). One 
can extend the theory by letting the traps be imperfect, i.e. by allowing the 
walker to escape with finite probability when stepping on a trap9-13).

As a rule, the traps are assumed to be distributed either periodically or 
randomly over the lattice. Except for one dimension, rigorous results have 
been obtained only for periodic trap distributions. The case of a random trap 
distribution is much harder to treat and the results obtained are ap
proximations valid for trap concentrations that are either small or close to 
unity. Other trap distributions have not been studied, to the best of our 
knowledge.

The aim of this paper is to present a number of exact relations which are 
valid for all walks and for a large class of trap distributions, including the 
periodic and random distribution. In section 2 we temporarily disregard the 
effect of trapping and instead consider a random walk on a lattice with points 
of two colours, called black and white. The colours of the points are assumed
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to be random variables, distributed according to a joint probability dis
tribution which is translation invariant but otherwise completely arbitrary. 
The colours, once chosen, are considered to be frozen in and the steps of the 
walk are assumed to be independent of the colours. We study the stochastic 
properties of the length of the subwalk from the starting point to a first black 
point and of subwalks between successive visits to black points, and we 
establish a number of useful relations. These relations are applied in section 3 
by identifying the black points with imperfect traps. More applications will be 
presented in a subsequent paper. Section 4 is devoted to a discussion.

2. Exact relations

Consider an infinite d-dimensional lattice L. Suppose that the points of L 
are coloured “black” and “white” according to some joint probability dis
tribution More precisely, to each local configuration of black and white 
points (i.e. to each finite set of points ACL and each partition of A into a set 
of black points and a set of white points) a probability is attributed. If this is 
done in a consistent way, these probabilities determine a unique probability 
distribution for the infinite lattice (see ref. 14, p. 34).

We assume that & is translation invariant or, equivalently, that two local 
configurations obtained from each other by a translation have equal prob
ability. The probability that a given point / G L is black is then independent of 
/; we denote it by q and assume that q >0.

Simple examples are the following distributions: (i) the random dis
tribution, in which the colours of different points are independently and 
identically distributed; (ii) distributions obtained by choosing an arbitrary 
periodic configuration of black and white points on L (i.e. a configuration 
such that L can be divided into identical finite unit cells having identical 
local configurations) and assigning equal probability to all distinct configura
tions obtained from the given one by a translation; distributions of this type 
we call periodic; (iii) the uniform distribution where L is entirely black with 
probability q or entirely white with probability 1 - q; (iv) a (translation 
invariant) grand canonical distribution (Gibbs state) of a lattice gas of black 
points with a given interaction and chemical potential (see ref. 15, pp. 4.1 and 
5.1).

Now consider a random walk on L starting at the origin 0 and proceeding 
according to some probability distribution p for single steps, with 2/eL p(l) = 
1, which is independent of the colouring of L (and translation invariant as 
usual). We are interested in the walker’s visits to black points (“hits”), in
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particular in the stochastic properties of the number of steps made before the 
first hit and between successive hits. A subwalk between successive hits we 
call a run. Two black points hit in succession may or may not be identical.

We consider the following two stochastic processes:
(0) The process (n0, nh n2,...), where n0 is the number of steps made 

before the first hit (n0^0) and n,(z = 1,2,...) is the length of the ith run 
(n-, > 0); for convenience we call the subwalk to the first black point hit the 0th 
run;

(1) The process (0, n,, n2,...) obtained from (0) by the restriction that n0 be 
zero, i.e. that the origin be black.

These processes are based on the two independent probability distributions
and p for the colouring of the lattice and the single steps of the walk. They 

are both processes in a generalized sense in that the number of black points 
visited may be finite (i.e. only a finite number of runs is completed). Con
sequently, averages such as (n,-) should be understood as conditional averages 
given that the ith run is completed. Furthermore, averages in process 1 are in 
turn conditional averages in process 0 given that no = 0. Nevertheless we 
prefer to speak of 0 and 1 as separate processes; accordingly, we denote 
averages by ()0 and (),, respectively.

We shall show that the stochastic properties of either process can be 
expressed rigorously in terms of those of the other process. From this 
relationship we derive the following results:

A) In process 0, the probability that for the first time a black point is hit at 
step n0 is a monotonically decreasing function of n0.

B) In process 0, the probability f, that at least i + 1 black points are hit is, 
for all i > 0, equal to the probability /0 that at least one black point is hit. In 
process 1, the corresponding probabilities p, equal one. In other words, once 
the walker has hit a first black point he almost surely will hit arbitrarily many.

C) Process 1 is stationary; hence the stochastic variables n, are identically 
distributed in this process. Furthermore, <n,)j = f0q~l. More generally, each of 
the moments of H| in process 1 can be linearly expressed in terms of lower 
moments of n0 in process 0.

D) In process 0, the moments of n, with i > 0 can be expressed in terms of 
correlations in process 1: (nf)0 = («,«?+,)Jf0q~\k = 1,2,...).

The proof runs as follows. We define for i** 0, n^0 and n,>0(i= 1.
2,...):
Pnn}...n,:- the probability that a black point is hit at step n and that sub
sequently at least i runs, of lengths n,,... ,nh are completed;
FMj ni:=the probability that for the first time a black point is hit at step n 
and that subsequently at least i runs, of lengths nit...,nh are completed.
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(For i = 0 these symbols are to be replaced by P„ and Fn, respectively). 
Process 0 is described by the set of all probabilities F„ont...ni with i^O, 
process 1 by F0n, . . with i> 0.

Now the translation invariance of both and p entails a crucial property: 
Pnn, is independent of n (in particular, Pn = P0= q). To see this, observe 
that for P„n) (but not for Fnril „.) each point that can be reached from the 
origin in one step could equally well have been considered as the point from 
where the walk has started. Thus, for all n > 0, P„„tP„-iand hence

Pnnl..nl = Pon,...nr (2-0
This argument is easily written out in terms of the probability distributions @ 
and p.

If the walker hits a black point he either does so for the first time or there 
has been a last preceding hit. Hence, for n >0

= F„ +

Using eq. (2.1) we may write

(2.2)

Pnn|... Pon)... n; Pomn|... n,-‘
m = l

For n = 0

*0n i... Hi Pqh | ... rtf

(2.3a)

(2.3b)

Eqs. (2.3) are the basic equations from which we derive the properties A to D. 
A) From eq. (2.3a) it follows that for all n0>0

Fn0-1 n |... n( Pn^nj ...nt Pon0n\... nj ^

In particular for i = 0

Pn^-Fn^O.

(2.4a)

(2.4b)

(We remark in passing that a similar inequality does in general not hold for 
Pnl

To prove B to D we introduce the following generating functions:

fi(Zo,Zh ..., Z[)2) zo° 2 zJ'...Zi'Fnoni...ni, (2.5)
no=0 ni.........ni=l

Pl(z!,... »zi)*= 2 Z"1 . . . Z,-1 Pon,... n,Fo » (2.6)

(|zy| ^ 1, j = 0,..., 0- Using eqs. (2.3) and noting that P0 = q, we find 

q_1(l - z0)/o(zo) = 1 “ Pi(zo), (2.7a)
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and for i > 0

<1 '(1 - Zq)/i(Zo, Zi) = p,(z„..., z. ) - pl+,(z0, z,,..., z,). (2.7b)

The sets of generating functions defined by eqs. (2.5) and (2.6) contain all the 
information on the statistical properties of the two processes; eqs. (2.7) relate 
these properties and from them one can deduce relations between the 
moments of the n,.

B) The probabilities and p, are obtained from the generating functions
(2.5) and (2.6), respectively, by setting all arguments equal to one. Making this 
substitution in eqs. (2.7) and noting that /i^l<a>, we find by induction:

P. = 1 O' = 1,2,...). (2.8)

If instead we now set all arguments equal to one except z0 then, 
this result, eqs. (2.7) reduce to

on account of

q-'U - z0)/j(z0, 1 -pl+1(z0,!,...,!). (2.9)

Whenever a black point is hit, the probability that a next run is completed is, 
of course, l. It follows that for 0 z0^ 1

/i+1(z0,l)=s/i(z0,l,...,l), (2.10)

Pi«(z0, 1........1, l)*Pl+i(z0,l,...,l). (2.11)

Using eq. (?.9), we see that both these equations reduce to equalities. Then, 
by setting finally z0= 1, we find

/i = /o(* = 1,2___). (2.12)

C) The moments (nf)0 and (nf), (which are conditional averages given that 
the ith run is completed) are given by

<nf>o=/r,[(2'&)‘/'(2»........
(2.13)

<n?>, = Pr'[(z,-^jVxz,........ (2.14)

Setting z0 = 1 in eq. (2.7b) we find that

Pi(*........»Zi) = Pi-m(1,z1,...,zi). (2.15)

This equation expresses the stationary of process 1. From this it follows that 
(nf>, = (fi*),, for all i >0. From eq. (2.7a) we deduce

<«,),= f0q~l,

<Wi>i = /0q",(l + 2(n0>0)

(2.16)

(2.17)
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and similar relations in which (nj), is expressed in terms of the moments (nj)0 
with 0 j < k.

D) Differentiating eq. (2.7b) once with respect to z0 and k times with 
respect to z,(i > 0) we find

<^!t)o = <^1n?+1>1//oq-,. (2.18)

This completes the proof.
One can also easily derive a number of inequalities for the moments. We 

give two examples. Obviously, <n?>, ^(nt)l By combining this with eqs. (2.16) 
and (2.17) we get

(no)o^ i(foQ~l ~ I)- (2-19)

Also, noting that <n,n,+1>, n-+1), = <nf>, and using eqs. (2.17) and (2.18),
we find

<no>oH«n,>o-l), (2.20)

for all i > 0.
Eqs. (2.19) and (2.20) reduce to equalities for several special cases, e.g. for 

a ‘one-sided’ nearest-neighbour walk in d = 1 (with p(l) = 1) and a strictly 
periodic colour distribution (i.e. with one black point per unit cell). Therefore 
they represent the strongest bounds generally valid.

3. An application to lattices with traps

Suppose that the black points cohsidered in section 2 are traps charac
terized by a probability of escape 17, i.e. whenever the walker visits a black point 
there is a fixed probability 1 - tj that he is trapped (forever) and a probability 
17 that he remains free. If tj = 0 (tj > 0) the trap is called perfect (imperfect).

One is usually interested in the stochastic properties of process 0 modified 
by trapping. Let Tn be the probability that the walker is trapped after exactly 
n steps and let T(z) := 2".0 znTn be the generating function for trapping. Then 
a simple argument shows that

T(z) = (l-T,)j|T,'/l(z), (3.1)

where /,(z) is the generating function defined by eq. (2.5) with all arguments 
equal to z. Eq. (3.1) shows that in order to calculate T(z) one has to know all 
the functions /,(z) characterizing process 0.

Without knowing T(z) explicitly we can prove a simple result, namely that 
Tn is a monotonically decreasing function of n. Indeed, noting that T0 =
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<?(1 - t}) and using eqs. (3.1) and (2.7), we find

2 z"(T-< - TJ = q(l - t))- (1 - z)T(z) = q(l - r,)' V V'p.U), (3.2)
n~l f=l

with p,(z) defined in analogy with /,(z). Since the coefficients in each p,(z) are 
nonnegative it follows that

Tn_,-Tn^0, (3.3)

for all n > 0. A consequence of this inequality (which reduces to eq. (2.4b) for 
7) = 0) is that Tn■ = 0 implies that T„ = 0 for all n > n'. Conversely, if there are 
arbitrarily large values of n for which Tn > 0, then T„ > 0 for each n.

We further remark that, by eqs. (2.12) and (3.1), the total probability of 
trapping Tn equals f0 for all 17 < 1.

For process 1 modified by trapping a relation similar to eq. (3.1) can be 
written down and the results of section 2 can be carried over in a similar way.

4. Discussion

In section 2 we have introduced two stochastic processes and established a 
rigorous relationship between them. This relationship was then used to derive 
several properties of the separate processes. The results derived are valid for 
all types of lattices, all translation invariant colour distributions and all walks, 
and therefore are necessarily of a modest nature. Stronger results may be 
obtained as more specific assumptions are introduced. Examples will be given 
in subsequent papers. However, it is a challenge to see what can be derived 
without making such assumptions.

Process 0 is perhaps physically the more interesting one and some of its 
properties (almost exclusively the stochastic properties of n0) have, in some 
form or other, been discussed in the literature for the random distribution and 
for periodic distributions. In the latter case one usually considers what we call 
the black points as having fixed positions and one assumes that the walk may 
start with equal probability at any point of a unit cell. Obviously, this is 
equivalent to our assumption of a fixed starting point and a translation 
invariant colour distribution.

The properties of process 1 seem not to have received any attention thus 
far. One may conceive of physical situations which can be described by this 
process and we expect that actual applications can be found.

As was derived in section 2, process 1 is stationary. Process 0, on the other 
hand, is in general not stationary. Furthermore, both in process 0 and in 
process 1 the n, are in general not independently distributed (nor are the
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processes Markovian). This stems from the fact that different black points 
may have different ‘environments’. Conversely, it is the reason why the 
stochastic properties of the n,(i > 0) in process 0 are not identical to those in 
process 1, in other words why process 1 does not describe the runs in process 
0 made after the first black point has been hit. It is the correlation between 
successive runs that presents the great difficulty in studying the processes in 
detail.

In spite of the existing differences the processes 0 and 1 are, of course, 
similar in nature. Thus one may expect that under suitable circumstances 
(notably for d ^ 2 and q < 1) and for a large class of distributions, the effect 
of the zeroth run on subsequent runs in process 0 is relatively small and, 
consequently, that e.g. (n,)0 ~ (n,), = f0q~', i > 0.

The case of a strictly periodic distribution is special because there, 
obviously, all black points have the same environment. As a consequence, the 
n, are independent and the generating functions (2.5) and (2.6) factorize as 
follows:

/,(z0, zb ..., z.) = /0(zo)Pi(Zi)... Pi(Zi), (4.1a)

Pi(z i,... ,Zi) = p,(z,)... p,(Zi). (4.1b)

The set of equations (2.7b) reduces to eq. (2.7a) and both processes are 
completely described by /0(z0) or, alternatively, by Pi(z,). From eqs. (3.1), 
(4.1a) and (2.7a) we then find

T(z) = (l-7,)/0(2)[l-T,Pl(z)r' = /o(2)[l + T^q-|(l-z)/„(z)] , (4.2)

(cf. ref. 12, eq. (3.3)). Thus, in this case the extension to imperfect traps 
presents no difficulty at all.

We conclude the discussion by commenting on a few specific results.
(a) The monotonicity of Tn expressed by eq. (3.3) may seem to be some

what surprising. Neither for periodic distributions (where an explicit expres
sion for T(z) is known12)), nor for a random distribution (where at least for 
r) = 0 a formal expression for T(z) in terms of the number of distinct lattice 
points visited can be given5)) is this result otherwise obvious. It means that 
short walks are (equally or) more probable than long walks, no matter how 
small q is or how close to unity 17. Thus all distributions of T„ with a 
maximum (such as the one suggested in ref. 16 for strictly periodic dis
tributions and t] = 0) are excluded.

(b) Whereas p, always equals 1, /0 may take values in the interval [q, 1] 
depending on the particular choice of the probability distributions ^ and p. 
For example, in the uniform distribution, where L is entirely black with
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probability q or entirely white with probability 1 - q, obviously f0 = q for all 
walks. However, one can show that in almost all cases of physical interest 
/o=l.

For instance, in the case of a random colour distribution it suffices to 
exclude the degenerate walk where p(0)= 1 (i.e. the walker stays forever at 
0), since for all other walks the number of distinct lattice points visited goes 
to infinity with probability 1 as the number of steps increases. The latter 
statement may be proved as follows. If d > 1, suppose that there is a lattice 
point 17*0 such that p(l)> 0. Consider the line through 0 and I and the 
projection of the random walk on this line, parallel to some (d - l)-dimen- 
sional lattice plane containing 0 but not /. This projection is itself a (trans
lation invariant) non-degenerate random walk on a one-dimensional lattice L'. 
Clearly, the number of distinct points visited on L' is not larger than that 
visited on L. Hence, it is sufficient to give the proof for d = 1. In this case 
consider the event that the walker remains forever in an interval of length 
M < co. In order to do so he has to reverse his direction infinitely often, each 
time after at most M steps, chosen from a finite collection. Since each of 
these reversals has a probability bounded above by some constant CM < 1, the 
event has probability zero, which completes the proof.

In the case of a periodic colour distribution /0 equals 1 if the walk is 
aperiodic (in the sense of Spitzer, ref. 17, p. 20). This is easily extracted from 
the analysis given in ref. 2, using the fact that in terms of the structure 
function of the walk p(0) := 2J6L e'1 0p(l) aperiodicity is equivalent to p(0) = 
1 iff 6 = 0 (mod 2-7r); this equivalence is proved in ref. 17, p. 67. If the walk is 
not aperiodic, the walker can only visit points in a proper sublattice L0C L. In 
such a case f0 may be smaller than 1, but this is not necessarily the case. Since 
the walk is aperiodic on L0, it follows from the argument given above that 
1 — /o is equal to the probability that the entire sublattice L0 is white. To see 
this, it suffices to observe that if L0 is not white, it certainly contains some 
periodic configuration of black and white points. Examples are easily con
structed.

We shall discuss /0 for general distributions in a subsequent paper.
(c) The result (n,)i = /oq~\ for all i>0, is the direct generalization of a 

well-known result derived by Montroll for strictly periodic distributions (ref. 
18, eq. (III. 16)). A striking feature of our result is its generality: for all cases 
where /0= 1, (n,)l equals q~l independently of the dimension of the lattice and 
all further details of the walk and the colour distribution. In particular for the 
random distribution it is one of the rare exact results. Its simplicity is in sharp 
contrast with what may be found for (n^o. One can, for instance, easily find 
simple (though extreme) one-dimensional examples where (n,)0 takes any 
value > 1 for given q.
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Chapter IV

Random walks on lattices with points of two colours
II. Some rigorous inequalities for symmetric random walks

This Chapter has appeared as a paper in J. Stat. Phys. 39_ (1985) 15-52.
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Random Walks on Lattices with Points 
of Two Colors. II. Some Rigorous 
Inequalities for Symmetric Random Walks

VV. Th. F. den Hollander1 and P. W. Kasteleyn1

We continue our investigation of a model of random walks on lattices with two 
kinds of points, “black" and “white." The colors of the points are stochastic 
variables with a translation-invariant, but otherwise arbitrary, joint probability 
distribution. The steps of the random walk are independent of the colors. We 
are interested in the stochastic properties of the sequence of consecutive colors 
encountered by the walker. In this paper we first summarize and extend our 
earlier general results. Then, under the restriction that the random walk be sym
metric, we derive a set of rigorous inequalities for the average length of the sub
walk from the starting point to a first black point and of the subwalks between 
black points visited in succession. A remarkable difference in behavior is found 
between subwalks following an odd-numbered and subwalks following an even- 
numbered visit to a black point. The results can be applied to a trapping 
problem by identifying the black points with imperfect traps.

KEY WORDS: Random walks; inhomogeneous lattice; colored points; 
average length of successive runs; ergodic theorems; perfect and imperfect traps.

1. INTRODUCTION

In a previous paper"’ we have introduced a model of a random walk on a 
lattice of which the points can carry two different colors, “black” and 
“white.” The colors are (not necessarily independent) frozen-in stochastic 
variables. We have obtained rigorous results for a number of stochastic 
properties of the sequence of consecutive colors encountered by the walker 
while stepping through the lattice. The model may serve to describe certain 
transport processes in disordered media, such as the diffusion and trapping

1 Instituut-Lorentz voor Thcoretische Natuurkunde. Nieuwsteeg 18, 2311 SB. Leiden, The 
Netherlands.
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of “particles” in a medium with static traps. Our aim is to obtain results 
which are valid for a broad range of different types of diffusion and dis
order, and therefore we have kept the model as general as possible. In 
addition, this model is an example of a doubly stochastic process which we 
feel is interesting in its own right.

The definitions are as follows. Consider an infinite ^-dimensional lat
tice L and suppose that the points of L are colored black and white 
according to a given joint probability distribution &. & is assumed to be 
translation invariant. The probability that a given point /el is black is 
thereby independent of /; we denote it by q and assume that <7>0. Next 
consider a random walk on L, starting at the origin and proceeding 
according to a given probability distribution p for single steps. It is 
assumed that p is independent of the coloring of L (and translation 
invariant as usual).

A color distribution & may be defined by attributing probabilities to 
local configurations of black and white points, i.e., partitions of finite sub
sets of L into a set of black points and a set of white points with the colors 
of points outside the subset unspecified. If this is done in a consistent way, 
these probabilities determine a unique probability distribution for the 
infinite lattice (as is guaranteed by the so-called extension theorem; see 
Ref. 2, Vol. 2, p. 118). Two local configurations that are obtained from 
each other by a translation must be assigned equal probability in order to 
acquire translation invariance. & is otherwise completely arbitrary. Exam
ples are (see Ref. 1): (i) the random distribution; (ii) (translation-invariant) 
periodic distributions; (iii) the uniform distribution; (iv) (translation- 
invariant) grand canonical distributions (Gibbs states).

The step distribution p may be chosen to be any function p:L-+U 
with p(l)^0 and 'Z,eLp{l) = 1, where p(l) is the probability of a step over 
the lattice vector /; p assigns probabilities to the individual steps of the 
walker, independent of the colors by assumption and, of course, indepen
dent of previous steps.

We are interested in the walker's visits to black points, called “hits,” 
more in particular in the stochastic properties of the number of steps made 
before the first hit and between successive hits. A subwalk between suc
cessive hits we call a run and, for convenience, we call the subwalk to the 
first hit the zeroth run. In Ref. 1 we have considered the following two 
stochastic processes:

(0) The process (;i0, nlt n2,...)t where n, is the length of the /th run, 
/>0(/?o^0; n,> 1, /> 1).

(1) The process (0, n2i...) obtained from (0) by the restriction
that n0 be zero, i.e., that the origin be black.
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Both processes are entirely determined by the two independent 
probability distributions & and p. The number of black points visited may 
be finite, i.e., it may happen that only a finite number of runs is completed. 
Averages such as <n,> will, however, be understood as conditional 
averages given that the ith run is completed (i.e.. given that at least /+ 1 
black points are visited). Furthermore, averages in process 1 are in turn 
conditional averages in process 0 given that ;z0 = 0. Nevertheless, we prefer 
to speak of 0 and 1 as separate processes; accordingly we denote averages 
by <”->0and <-)i» respectively.

In Ref. 1 we have shown, using a simple “renewal-type” argument (of 
the type used, e.g., in Ref. 2, Vol. 1, Chap. 13) in combination with our 
assumption of translation invariance, that the stochastic properties of 
either process can be expressed rigorously in terms of those of the other. 
From this relationship we have derived several general properties. Here is a 
list of the main results:

A. In process 0 the probability that a first black point is hit at step n0 
is a monotone nonincreasing function of n0.

B. Let fit /'^ 0, be the probability that in process 0 at least the / th 
run is completed. Let ph / ^ 1, be the corresponding probability in 
process 1. Then

f, = fo, for all z> 1 (1.1)

p,= 1, for all /'^ 1 (1.2)

C. Process 1 is stationary: hence the stochastic variables ni are iden
tically distributed in this process. Furthermore, each of the moments of nx 
in process 1 can be linearly expressed in terms of lower moments of n0 in 
process 0. In particular,

<"i>i«/or' (1-3)

<»I>i=/o?“'(l + 2<no>o) (1-4)

D. In process 0 the moments of n, with /'^ 1 can be expressed in 
terms of correlations in process 1. In particular,

<«/>0= <«!«/+ I >l/<»l >1. '>1 (1-5)

E. In process 0 the following inequalities hold:

<'Jo>o^3</o4-1 “ H (I-6)

<»o>o^!K»/>o“ H for all /> 1 (1.7)
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In process 0 the /?, with /'^ 1 are in general not identically distributed. 
Furthermore, both in process 0 and in process 1 the lengths of the suc
cessive runs are in general correlated. This stems from the fact that different 
black points may have different “environments,” which is the reason why it 
is difficult to study the processes in detail. Process 0 is physically the more 
interesting one and has our main interest. Process 1 serves more or less as 
an “auxiliary” process.

The above remarks summarize the results of Ref. 1. The outline of this 
paper is as follows. In Section 2 we study the probability /0 in more detail. 
The result is:

F. In process 0

fQ= l -^[L is white] (1.8)

where L is the smallest sublattice of L to which the random walk is con
fined.

The results obtained thus far are valid for arbitrary L, and p and 
are therefore necessarily of a modest nature. Stronger results can be 
obtained as more specific assumptions are introduced. In Section 3, which 
constitutes the main part of the paper, we focus on one such specific 
assumption, viz. that the random walk is symmetric, i.e., that p(/) = p(-l) 
for all /. Under this assumption we derive the following set of inequalities, 
assuming (without loss of generality) that (a) the color distribution is 
extremal (i.e.. & cannot be decomposed into two distinct translation- 
invariant components), (b) the random walk covers the whole lattice (i.e., 
L = L), so that /0 = 1:

G. For the zeroth run in process 0

{noy^{\-q)2lq{\-X) (1.9)

where X := Probf/i, = 1 | n0 = 0] = q~] £ieLP(l) ^[0 and / are black].
H. For the higher runs in process 0 let A,: = — q~l. Then

A A A A ■■■ ^0

A,Z\J2\,A32\A4L AsZ\A61... (1.10)

We further show:

I. For periodic color distributions A,-+0 as / -♦ x-, exponentially 
fast, irrespective of the random walk. For general color distributions decay 
is expected to occur in most cases, but it may be slower than exponential.
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In Section 3.1 we first consider periodic color distributions. The unit 
cell of the periodic pattern will be completely arbitrary. The arguments 
used are essentially probabilistic and are based on simple matrix algebra. 
The derivation presented for this case will set the stage for the extension to 
arbitrary (translation-invariant) color distributions, which is given in Sec
tion 3.2 and requires the use of certain ergodic theorems. In Section 4 we 
apply our results by identifying the black points with imperfect traps. Sec
tion 5 is devoted to a discussion, including some examples and a few 
references to related results in the literature.

The reader who is not interested in the derivation of F-I may wish to 
skip Sections 2 and 3 and go straight to Section 4.

When in the following we speak of runs we shall mean runs in process 
0, unless stated otherwise. As in the previous paper, the assumption of 
translation invariance will play a key role in the calculations.

2. THE PROBABILITY f0

The probability /0 that the zeroth run is completed plays an important 
part in Ref. 1 and appears in many of the formulas. Of course, this 
probability may depend on L. and p. In this section we shall study f0 in 
more detail.

Let us use the symbol Pn(l) to denote the probability that the walker 
visits point / e L at step n. Let further

L+ : = { /e L: P„(l) > 0 for some /? ^ 0}

L+ is the set of all points that can be reached by the walker in a finite 
number of steps; it depends on p. We shall first prove that

f0= 1 -^[L+ is white] (2.1)

Proof. When L+ is white there are no black points that the walker 
can reach and the zeroth run cannot be completed («0=x). To prove 
Eq. (2.1) we must show that /?0<oc with probability 1 when it is given 
that L* contains a black point.

The plan of the proof is to use Eq. (1.2). Now Eq. (1.2) states that 
given that the origin is black the walker will with probability 1 hit 
arbitrarily many black points, or in other words, there exists with 
probability 1 an infinite sequence of steps at which the walker hits a black 
point. By the translation invariance of & it immediately follows that also 
the following is true: given that / is black there exists with probability 1 an 
infinite sequence of step numbers ko{=0)<kl<k2<..- such that lkj + l is
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black, where /„ stands for the point visited at step n. These step numbers 
are, of course, stochastic variables. It is important that the above statement 
is true for all le L.

Next, let /eL+ and let m be the smallest integer with />„,(/) >0. 
Assume that / is black and let m0( =0) < w, < m2 <... be the infinite 
sequence of the smallest elements of (kj)J>0 with the property that 

+1 — nij > m for all j. We define the following sequence of events: 
, y ^O, is the event {m,<x for i^j and lmj + m = ln)j + /}, or in other 

words, the event that the first j+ 1 step numbers in the sequence (my)y>0 
indeed exist and that the visit to /„, is followed by a visit to the black point 
lt)lj + / at the ;??th subsequent step. Clearly, the event E} has probability 
Pj = Pm(l)> 0, independent of j. Moreover, since mj+ , —m^m the events 
are independent. It follows from the second Borel-Cantelli lemma(2) that, 
as TjPj= oc, with probability 1 arbitrarily many among the events E} will 
occur.

We have now reached the following result: given that some point of 
L+ is black the walker will with probability 1 hit arbitrarily many black 
points. But, trivially, this implies that = contains a black point]
for all / ^ 0. Equation (2.1) is the special case for /' = 0 (note that from 
Eq. (1.1) we already knew that all the f are equal). This completes the 
proof. |

Equation (2.1) may be slightly strengthened. Let

L : = {leL: 1= T — l" for some /', /" e L + }

L is the smallest sublattice of L that contains L J‘ (see Ref. 3, p. 15); it is 
the lattice on which the random walk “actually takes place." In many cases 
L = L, but not in all. We shall now prove that

/0= l —^[L is white] (2.2)

Proof. Since L+ cl it follows that &\L is white] L+ is white]. 
To prove Eq. (2.2) we must show that the equality sign holds. To do so we 
shall again use the translation invariance of

The proof will depend on the following remarkable property. Let 
L' := {/*}, keZ, be any line of points in L, i.e.. lk = la + klb for some 
la. lhe L with lh 7*0. If L contains one black point then with probability 1 
it contains infinitely many. extending in both directions. Indeed, let 
ck : = ^[/A. is black, lk. is white for all k' > k]. Then we have .^[L' contains 
a black point and a white positive half-line] =X*€Zf*- Now obviously 
Y.kezck ^ L By the translation invariance of however. ck is independent 
of A' and so it must be that ck = 0. Hence = which proves that if
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L' contains one black point it contains with probability 1 infinitely many 
on the positive half-line k^O. For the negative half-line the argument, of 
course, runs the same. This proves the statement.

We shall use the above-mentioned property in combination with some 
elementary properties of the structure of L +. When L~ =L there is 
nothing to prove as then Eqs. (2.1) and (2.2) are identical. For the rest of 
the proof we shall therefore assume that L~ # I. We want to show that 
s/[L* is white]-^[I is white] =^[L + is white. L\L+ contains a black 
point] = 0.

Let us begin by specializing to the case d= 1. We may assume that 
Z = L( =Z), since it will be clear that there is no loss of generality in doing 
so. (Note that the degenerate random walk with /?(0) = 1 has L + =L = {0} 
and is therefore excluded by our assumption that L+^Z.) Let 
27 := [/6 L: p[l)> 0}. is the set of all finite sums of elements of £ (i.e., 
L+ is the additive semigroup generated by £). Suppose first that /?(/) = 0 
for /<0. Then all elements of L+ are nonnegative. Because L+ is not con
tained in any proper sublattice of Z, the greatest common divisor of the 
elements of £ is 1. This implies that leL+ for / sufficiently large, so that 
Z + contains a positive half-line. It now follows that &[L+ is white, Z\L + 
contains a black point] ^^[Z contains a black point and a white positive 
half-line] = 0, which is the required equality. When p{l) = 0 for />0 the 
result is’the same. When, finally, £ has both positive and negative elements 
it is readily seen that L* = Z, which is the trivial case excluded. This 
proves Eq. (2.2) for d= 1.

The proof for d^2 follows almost as a corollary. L~ may have a 
variety of forms depending on L and p, but since L and & are completely 
arbitrary there is again no loss of generality in assuming that L - L. To get 
the desired result it now suffices to observe that for any point leL there 
exists a line through / that has a half-line in common with Z* (this derives, 
in fact, from a simple group-theoretical properly). It follows that given that 
/ is black there are with probability 1 infinitely many black points in Z + . 
Since / is arbitrary this again implies that ^[L+ is white, Z\Z + contains a 
black point] =0, which completes the proof of Eq. (2.2). |

Equation (2.2) is a strong result: once it is known that there is some 
black point in Z it follows that with probability 1 some black point is hit. 
For recurrent random walks this is not surprising, for in this case always 
Z’ =Z and each point of Z* is hit with probability 1 (see Ref. 3, p. 19), 
but for transient random walks it is. It should be emphasized, however, 
that the generality of Eq. (2.2) is due entirely to the translation invariance 
of .^. The proof shows that Z is either white or contains infinitely many 
black points extending in all directions. This property explains some of the
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background of Eqs. (1.2) and (2.2). In Section 3.2 we shall take a closer 
look at the effect of the translation invariance on the coloring of L and 
show that with probability 1 an “asymptotic density" of black points exists.

From Eq. (2.2) it follows that in almost all cases of physical interest 
/o= 1. Indeed, when the random walk is aperiodic (in the sense of Spitzer, 
Ref. 3, p. 20) we have Z = Z (by definition), in which case f0= 1 if the 
possibility that L is white has zero probability. For the random dis
tribution /0 = 1 if only we exclude the degenerate random walk which has 
/o = q (in all other cases |Z| = cc). It will be clear that when L^L the 
problem is in a sense “ill posed" and, instead of one may then as well 
consider the restriction of & to Z, which is obviously translation invariant 
on Z.

Finally. Eq. (2.2) shows that cases with /0 < 1 are in a sense nothing 
but trivial extensions of cases with f0 = 1. Assume Z = L. If/0 < 1 there is a 
positive probability that Z is white, but then it is always possible to reduce 
the problem by writing 9 as the (unique) convex linear combination of two 
translation-invariant color distributions and viz. ^=/0^*' + 
(I -/0) with J>'[L is white] = 0 and &"\_L is white] = 1. Since we are 
interested in completed runs only, 9" is the “irrelevant” part that does not 
contribute to the averages in our model. on the other hand, covers all 
relevant events and thus one may reduce the problem by “scaling” & to 
This also explains why the probabilities q and /0 always appear in the com
bination f0iq: for we have the corresponding probabilities q' = q/fQ and 
/o' = /0//o= 1, and q is the “effective” probability that a point is black once 
the problem is reduced by scaling.

In the following we shall assume, for reasons which will become clear 
later, that ^[Z is black] = 0. By the same argument it will be clear that 
this minor restriction involves no loss of generality.

3. RIGOROUS INEQUALITIES FOR 
SYMMETRIC RANDOM WALKS

We shall henceforth center interest on the moments 
Whereas the probabilities / equal 1 for practically all choices of Z, and 
p, these moments depend strongly on this choice.

As observed in Ref. 1, one may derive from Eqs. (1.3)—(1.5), noting 
that </?y >, ^ </?,>; and </i,/i,+ i>i + ,7/+i>i = <«?>», the following
two inequalities mentioned in the Introduction:

0}o)o ^ i(fo9~ 1 — 1) 

<'Jo>o^?(<"/>o“ U> for all /^ 1

(3.1)

(3.2)

These equations reduce to equalities for a few special cases.
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With a simple scaling argument Eq. (3.1) may be slightly refined to 
obtain a stronger bound that depends on p\

<^>o^3(/o9_1-M/[1-P(0)] (3.1a)

Unfortunately, however, it does not seem easy to do better in general. No 
upper bound was found in Ref. 1. Furthermore, for the runs with number 

1 no lower bound was found. Here it should be noted that for any given 
q> 0 [and /?(0) fixed] one easily constructs simple (though somewhat 
extreme) examples where </i0>0 can ta^e arbitrarily large values or <«,)0 
can take any value > 1 for given /^ 1. Thus Eqs. (3.1a) and (3.2) are by 
nature weak. One may expect stronger results if one places restrictions on 

or on p, or both.
In the following we shall investigate the case where p is symmetric. We 

shall derive a set of rigorous inequalities which are valid for arbitrary 
(translation-invariant) color distributions. In Section 3.1 we first consider 
periodic color distributions. The extension to arbitrary color distributions 
is given in Section 3.2.

3.1. Periodic Color Distributions

We begin with some definitions. A periodic color configuration is an 
arrangement of black and white points in L such that L can be divided into 
identical finite unit cells (‘‘blocks'’) having identical (local) color con
figurations (in other words, there is a periodic pattern of colors). A trans
lation-invariant periodic color distribution is obtained by choosing an 
arbitrary periodic color configuration and assigning equal probability to all 
distinct configurations obtained from the chosen one by a translation. 
Examples are: (i) a strictly periodic distribution, where the black points 
form a sublattice of L and the (smallest) unit cell contains one black point; 
(ii) a /w/r-periodic distribution, where the (smallest) unit cell contains two 
black points.

Consider first an arbitrary random walk p on L. We shall find it con
venient to change our point of view in two ways. First, since we are not 
interested in the positions at which the walker hits the black points we 
shall consider the random walk as taking place on a single unit cell with 
periodic boundary conditions imposed. This unit cell we denote by L. 
Second, rather than sticking to our description with a fixed starting point 
for the walker and a translation-invariant color distribution, we shall fix 
the positions of the colors and, instead, allow the walker to start with equal 
probability at any point of L. The two descriptions are obviously 
equivalent; however, the latter description facilitates the discussion 
somewhat.
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Lei, then, N be the number of points in L, B = {/lv.., /,} <=■ L the^set of 
black points in Z(1 ^ / < N) and W=L\B the set of white points. L and 
the sets B and W are completely arbitrary. The results which we derive 
depend only on the existence of a unit cell. We may assume that t < N, i.e., 
that W is not empty, as otherwise the model is trivial. Of course, q = t/N.

(I) The Zeroth Run. The zeroth run plays a special role in that it 
may start either on a black or on a white point. If the walker starts in B 
then n0 = 0: if he starts in W then he can go through a succession of visits 
to points of W before hitting a point of B. We define

Pi,.: = probability of a step from / to /'; 1,1'eL

(taking into account the periodic boundary conditions!). Further, let 
P : = (Pir)u-e h- denote the (N-/) x (A:- /) matrix that has as elements the 
stepping probabilities between the white points. Of course, p depends on p 
as well as on the shape and the coloring of L.

Now the average </?0>0 can be expressed in terms of p as follows. Let

wn := probability that after n steps the walker has 
not yet hit a black point; n ^ 0.

In order not to hit B the walker must start in W and make steps between 
points of W only. Recalling that with probability A’’-1 the walker may start 
at any point of L, we therefore have

»„ = N~l I (/>"),,, n*0 (3.3)
/./' € W

We shall assume that /0= 1. (This condition will be removed later.) Then 
wn -+ 0 as n -> cc and by the monotonicity of w„

cr. X
<«0>0= I «(«',-! -»’.)= Z »•„ (3-4)

n ■= 1 n = 0

(see Ref. 2, Vol. 1, p. 265). Hence by Eq. (3.3)

<»o>o = ^-' I (1 +P + P1+■■■)„■ (3.5)
i.r e w

where 1 denotes the {N- t)x {N-1) unit matrix. Note that p does not 
include any steps from W to B that are needed by the walker to reach a 
black point. These steps will appear in the calculation at a later stage.

Obviously, X/ 6h•/>//• <1 f°r w- This property is expressed by
saying that the matrix p is substochastic. The condition f0 = 1 implies that
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strict inequality holds for at least one le W (as otherwise the walker could 
never escape from W once he had started in W\ and thus p is strictly sub
stochastic. Now it is well known that the eigenvalues of a (nonnegative) 
strictly substochastic matrix are all strictly smaller in modulus than unity 
(see, e.g.. Refs. 4 and 5). Since we shall need this property later we give the 
proof.

Proof. First assume that p is irreducible. Then the w'ell-know'n 
Perron-Frobenius theorem for nonnegative (square) matrices14'5’ states 
that p has a real eigenvalue /., >0 with the following properties:

(i) A, is nondegenerate and with it are associated strictly positive left
and right eigenvectors.
(ii) |A| ^ A, for any other eigenvalue A of p.
(iii) /-i ^ maX/e h-(£/• € wP/r) 2nd /.] ^ maX/ e «/(^/e wPir\

By (iii) one has A, ^ 1. However. A, = 1 is excluded, since if x := (a',)/6W/ is 
the left eigenvector associated with A, then A, = 1 would imply that

and hence, by (i), that w Pit - 1 for all leW. With (ii) this completes 
the proof for irreducible p. When p is reducible one can through a per
mutation of its rows and columns obtain a matrix of the form

>n 0 ~
J> 21 PZ 2_

where /?,, and p22 are square matrices and pu is either zero or irreducible. 
A repetition of the above argument shows that pn cannot have an eigen
value 1, and the proof is completed by induction. |

Thus it is seen that the condition f0= 1 entails that |A| < 1 for all 
eigenvalues A of p. This in turn implies that the inverse of 1 - p exists, so 
that we may write for Eq. (3.5)

<»o>o = *v J(M1 ~P) ' e) (3.6)

where e denotes the (Ar - r)-vector with all elements equal to 1 and (.,.) 
stands for the vector inner product. An important consequence of the 
existence of (1— p)~l is that <Uo)o<x-

So far we have not yet made any assumption concerning the random 
walk p. Even though Eq. (3.6) may not be a very suitable starting point for 
a detailed calculation of </i0>or serve us here t0 obtain a bound in
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the case of a symmetric random walk. Therefore we now, as promised, 
assume that p is symmetric, i.e.,

/?(/) = /?(—/), for all/el (3.7)

Equation (3.7) implies that the matrix p is symmetric (because a step and 
its reverse between any two points of L are equally probable by symmetry). 
Therefore all eigenvalues of p are real and it immediately follows that 1 — p 
is positive definite. This is the crucial property in the argument: we can now 
use a matrix inequality known as the Kantorovich inequality (see Ref. 6, 
p. 117 and Ref. 7, p. 69), which gives in our case

(eA\~ P)e)(e,(\- p)-' e)>(e,e)- (3.8)

and yields with Eq. (3.6)

<n0)0>(e,e)2/N{e,{l- P)e) (3.9)

The right-hand side of Eq. (3.9) is easy to evaluate. Indeed, we have 
(e, e) = N-t and {e, pe) = £/., € wp„- = A:- It + £/., eBPir* where now the 
probabilities of steps to and from black points appear as we use that 

lPn-= 1 for all /'gI and Xreip,r = 1 f°r /eL; the latter equalities 
follow from the condition ZulPU) = E Thus we finally arrive at

<«o>o> 0“ *)’/*( 1-*) (3.10)

with q = t/N and X := t~ 'Zt.rebPii••
The condition /0 = 1 is easily removed. As observed at the end of Sec

tion 2. cases with f0< 1 are trivial extensions of cases with /0= 1, and a 
simple scaling argument has made it clear that in the general case q should 
be replaced by q/f0. In our setting L may be partitioned into two sets S' 
and S" from which the walker has probability 1 and 0, respectively, to 
reach B. S' is a sublattice of I (or a union of sublattices), Be: S' and 
f0=\S'\/N. Because </i0>o is a conditional average given that the zeroth 
run is completed, only those walks that start from S' will contribute. S' 
takes over the role of L, /0' = 1, and q‘ = |i9|/!5"| =^//0- Hence the general 
result is

-\)2;f0q-x(\-X) (3.11)

Equation (3.11) is the first of a series of inequalities that are the object 
of this section. Note that the connection between process 0 and process 1, 
as seen in Eq. (1.4), reappears through X: X is the probability that /i, = 1 
given that /io = 0. Note further that X < 1. X depends on p as well as on the
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shape and the coloring of L. In all cases, however, X^ p(0) so that we 
have the weaker but simpler bound

<n0}0^(f0q-1 - \)2/f0q~l\_\ - p(0)-\ (3.12)

which is to be compared with Eq. (3.1a). Here only the variable q appears 
as prominent and the dependence on & and p has disappeared nearly 
altogether.

Equation (3.11) is stronger than Eq. (3.1a). When f0= 1 this is 
obvious for For q>{, on the other hand, note that X^l +
(I - q~ 1)[ 1 — p(0)] and hence <»0)o^ (1 — <7)/[l — p(0)]. Incidentally, the 
latter inequality is trivial.

For several special cases Eq. (3.11) reduces to an equality, e.g., for any 
unit cell and a random walk that is “indifferent” with respect to L, in the 
sense that from any point of L the probability of a jump to any other point 
is 1/(A;—1) [here/0= 1 and p{0) = 0]. An example is the case with L = Z, 
the strictly periodic distribution with q- 1/3 and the simple random walk 
(where steps to nearest-neighbor points have equal probability and other 
steps are not allowed). In the derivation of Eq. (3.11) we have used of p 
only its symmetry. Obviously, the translation invariance of p places 
additional restrictions on p (to be more specific, p is obtained from a cyclic 
stochastic matrix by deleting certain rows and columns). If this fact were 
exploited Eq. (3.11) could perhaps be strengthened further.

(II) The Runs with Number /^ 1. The runs with number i^ 1 
all start from a black point. This is, however, all that they have in common. 
As pointed- out earlier, the >i, are in general not independent nor are they 
identically distributed, to the effect that the moments </i,.>0 for different i 
fake different values.

To study </?,->o, 1. we shall make explicit use of the relations
between process 0 and process 1 established in Ref. 1. We define

<”/>o-/o<T\ i> 1 (3.13)

V,:= <ni»i-i>i-<Wi)i<W/+i)i. 1 (3.14)

With Eqs. (1.3) and (1.5) we have

d^vJfoq-' (3.15)

This relation says that the amount by which <«,)0 differs from f0q~l is 
directly related to the correlation of the runs 1 and i+ 1 in process 1. By 
studying y, we shall be able to get information about At. In particular, since 
f0q~x > 0 either A, and y, have the same sign or they are both zero.
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Process 1 is in a sense easier than process 0 because it is stationary. Also in 
process 1, however, the n, are in general not independent to the effect that 
the yh and hence the A„ are ^0. Note that in Eq. (3.13) the term f0q~l is, 
by Eq. (1.3), the average of n, in process 1 (!). Thus one could say that in 
process 0 the zeroth run, through its mere existence, has an effect on all 
subsequent runs. Note that <«;>0<x for all /> 1 by Eq. (3.2), as 
<"o>o<^- r f

(a) The First Fun. Let us consider the first run to begin with. Again 
we first assume that p is arbitrary and begin with some definitions:

T„(i - j) := probability for the walker, when starting from l, e B, 
to make a run of exactly n steps to /, 6 B\ n ^ 1;
Uj = I,-, /•

: = probability that in process 1 the first run
has length and the second run length n2. (3.16)

With these definitions we shall write out */,.
In process 1 the walker may start with probability /_I at any point of 

B and so x

Pni»: = t~' I Tni(i->j) Tn:U->k)
ij.k

From Eq. (3.16) we get

<"l"2>l= I "l”2 PntnJ Z Pnm

H|.h9 '

= /-' I S0SJtlt-' I T,jTjk
i.j.k - i.j.k

where we introduce

r,:=I T'U-j)
n

s0.= X j)
n

(3.17)

(3.18)

(3.19a)

(3.19b)

The probabilities Tijy itj = 1,..., t. form a matrix of what may be called 
“transition" probabilities between different “states": Ty is the total 
probability of a run from /, to /,. Because L is finite

X T,j= 1. for all / (3.20a)
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[See also Eq. (1.2).] Also the following is true:

£7^=1, for all j (3.20b)
i

This is seen by comparing the random walk p with the reversed random 
walk p obtained from p by defining p{l) = /?(-/), leL. For each n ^ 1 the 
probabilities Tn(i-*y')[/?] and Tn(i-* j)\_p~\ in Eq. (3.16), corresponding to 
p and p, are related as

Tn(i-+j)[p~\ = T„(j -/)[/>]

This gives r,y[/?] = 7],[/?], so that Eq. (3.20b) follows from Eq. (3.20a), 
which is valid for all p. In all cases therefore T: = (Ttj) is what is called a 
doubly stochastic matrix.

Using Eq. (3.20a) we may simplify Eq. (3.18) a little bit to

<"1»2>I = I S^Sj" (3.21)
i.j.k

The product <*»,),<w2>i, which is the second term of*/, in Eq. (3.14), is 
known from Eq. (1.3), but we shall want for it an expression similar to 
Eq. (3.21). Following a similar line of reasoning as above we get

<h1>1 = /-,X5,> (3.22a)
ij

I TiJSjk = r'Y.Sjk (3.22b)
i.j.k j.k

w'here we use Eq. (3.20b). Combining with Eq. (3.21) we thus arrive at

I (3.23)
i.j.k l i.j J

Now we are ready to use the symmetry of p, which will again be seen 
to be of crucial importance. From Eq. (3.7) it follows that p = p and hence 
that T and S := (5<y) are symmetric. Defining

Sr.~I.Sf, /= 1 1 (3.24)
j

and noting that by the symmetry also Sj = we may then write

V,-IS,}’ (3.25)
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Now the right-hand side of this equation has the pleasant property that it 
can be written as a sum of squares (!):

,',='-2Z (S,-S,)2 (3.26)
• <j

and it thus immediately follows that >’,^0 and, by Eq. (3.15), 4^0 or 
with Eq. (3.13)

(3.27)

This is the desired inequality for the first run.
The equality sign in Eq. (3.27) holds if and only if the S, in Eq. (3.24) 

are all equal. S, has a simple interpretation: it is the average length of a run 
starling from black point labeled i. When t= \ the sum in Eq. (3.26) is 
empty and the equality sign holds. This is the case of a strictly periodic dis
tribution. [Note that it follows from Eq. (3.23) that for this particular case 
Oh }0 = f0q-' also for asymmetric random walks; here the equality for 
general p is a well-known result found by Montroll(8'.] When t = 2 the sum 
in Eq. (3.26) is not empty; in this case, however, we have not only 
r„(l -2)= 7;(2- 1) by the symmetry of the random walk but also 
r„(l -» 1) = Tn(2->2) by the inversion symmetry of the unit cell, so that 
both Sl2 = S2l and SU = S22 hence S{ = S2 and again Oh >o =/o<?"1- This 
is the case of a pa/V-periodic distribution. When 3 we do in general not 
have equality (unless of course the arrangement of black points is strictly 
or pair-periodic on a smaller scale); equality then holds only for special 
choices of /?, L. and B.

(b) The Runs 2,3,.... Further inequalities follow from simple matrix 
algebra. Equations (3.13)—(3.15) serve as our starting point.

With arguments similar to those presented above it is found that 
Eq. (3.23) generalizes to

y, = r' l Slj(Tt-')imS,„„-lr''LsX, k>l .(3.28)
i.j.m.n t i.j )

Here the power 7*_l '‘bridges the gap" between the first and the (A-+ 1 )st 
run in the first term of Eq. (3.14). When we use the symmetry of the ran
dom walk this equation simplifies further to

>7. = /-1(j.(7*-,-/-,£)s) (3.29)

where s is the t vector with components 5., /'=1,...,/, as given by 
Eq. (3.24), E is the / x / matrix with all elements equal to 1 and (.,.) again 
denotes the vector inner product.
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To proceed we make the following observations.

(i) TE = ET = E by Eqs. (3.20a, b), so Tk~] and /“'£ have a com
mon base of eigenvectors. Hence each eigenvalue of Tk~x — t~xE is the dif
ference of the corresponding eigenvalues of Tk~x and t~xE.

(ii) Both T and E are symmetric and have real eigenvalues. By the
Perron-Frobenius theorem the eigenvalues of T fall in the interval 
[ —1. 1]. The largest eigenvalue is 1 (which may be degenerate if T is 
reducible) and one eigenvalue 1 corresponds to the eigenvector (1,..., 1). E 
has an eigenvalue / corresponding to the same eigenvector and a (r—1)- 
fold degenerate eigenvalue 0. Thus, when ••• -1 are
the eigenvalues of 7, the eigenvalues of 7*”1 — i~xE are 0 and the powers

I —k — 1 ‘2 >•••>
(iii) Because T and E are symmetric there exists a matrix O, which is 

orthogonal, such that 0(7*“1 — t~xE) 0~l - Dk~ \ with the diagonal 
matrix

When we now define u = Os we get from Eq. (3.29)

7k = r\u,Dk-'u) = r' £ Uftkr\ 1 (3.30)
i = 2

1 ^ -1

where the £/,• are the components of u.
From Eq. (3.30) a number of interesting inequalities can be deduced. 

We use Eq. (3.15), and read off for k odd:

(1) Ak^0; for k ^3 the Ak are either all =0 or all >0;
(2) Ak^A„, for all m>k (m both odd and even);
(3) Ak + Ak+ , ^0 and hence with (2): Ak ^ \ Ak+l\;
(4) When r2 ^ 1 and t, ^ — 1 then Ak -> 0 exponentially fast with k as 
k-* x. including the even-numbered runs.

Thus we have as a general result the set of inequalities

AyTzA^A^A^ ••• ^0, 

A^\A2\.A}^\Aa\.A^\A6 I,... (3.31)



109

Whereas the Ak for k odd display a “smooth” monotonic decay, sur
prisingly enough the even-numbered runs show no such general behavior. In 
fact, examples show that there is a rich variety (!) in behavior for A2kl 
depending on the choice of the colors in the unit cell and the step dis
tribution of the random walk. In some cases all A2k are positive, in others 
all are negative, but there exist cases where different signs occur. As an 
example for the latter situation, take for L a ring of six lattice points (the 
ring structure takes care of the periodic boundary conditions) with three 
black points, two of which are neighbors and the third at a nonneighboring 
position, and take for the random walk one with steps of probability 3/7 
over one lattice spacing and 1/14 over two. A straightforward calculation 
shows that for this particular example A2>A4> 0, whereas 
A6<A8< ••• <0.

In many cases one has the smooth behavior

Ai^A2^A3^A4^A5^ ^0 (3.31a)

From Eq. (3.30) it is clear that this will certainly occur in all cases where 
the eigenvalues of T are all ^0. From the so-called Gerchgorin theorem'9’ 
together with Eqs. (3.20a, b) it follows that the eigenvalues fall in the set

U {t 6 [ - 1. 1 ]: |r - J,| ^ 1 - T,} = [2(min T„) -1,1]
/ = i

For Eq. (3.31a) to hold it therefore suffices that Tu^ \ for all i. This is so, 
for instance, in the following two cases: (i) p{0)^|, irrespective of all other 
details; (ii) the simple random walk on any ring of points with any color 
arrangement that does not have two black points as neighbors.

In some cases where Eq. (3.31a) does not hold one encounters an 
oscillating decay of the type

-A2>A3^ -A4^A^ ^0 (3.31b)

This may appear, for instance, when there is some underlying symmetry in 
the arrangement of the colors and some of the £/, in Eq. (3.30) are zero. As 
an example consider a simple random walk on a ring of six points with 
three black points next to each other. One finds after a short calculation: 
Ak = (-{)k+\k> 1.

To classify the different types of behavior for the even-numbered runs 
one would need more detailed information about T and S. It turns out that 
this presents a very complicated problem, since in general little is known 
about these matrices in detail. Although Eqs. (3.31a, b) appear only as 
special cases of Eq. (3.31), examples tend to show that the monotonic
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decay and, to a lesser extent, the oscillating decay are predominant. In 
most cases the decay becomes asymptotically either monotonic or 
oscillating as k -* x.

A special situation occurs when t2 = 1 (and t/2 # 0): in that case the 
Ak do not decay to zero. This, however, is possible only when T is 
reducible, since when T is irreducible the eigenvalue 1 is always non- 
degenerate (see Ref. 5. p. 120). Irreducibilitv of T means that from each 
black point the walker can eventually reach all other black points (i.e., 
there are no disjoint sets of black points between which the walker cannot 
“cross over”). It will be clear that in the reducible case the problem is in a 
sense “ill posed” and can always be reduced to the irreducible case. In the 
latter case also the eigenvalue — 1 is nondegenerate. From the Gerchgorin 
theorem one sees that r,= — 1 can occur only when Tu = 0 for some i. By 
the irreducibility it can occur only when r„ = 0 for all i (see Ref. 5, p. 121). 
Together with the symmetry of the random walk the latter condition is so 
strong that it is fulfilled only in the trivial case where the walker cannot 
make any step between a black and a white point.

Finally, in Eq. (3.31) the equality signs hold in a few special cases, 
notably for the strictly and the pair-periodic distribution. (In the latter case 
U2 — 0 due to the symmetry.) A remarkable situation occurs when A j>0 
and Ak = 0 for k ^2. This happens when T has an eigenvalue zero and all 
other eigenvalues carry a coefficient zero. This may be illustrated by the 
following example: a ring of five points with three black points, two of 
which are neighbors and the third at the remaining nonneighboring 
position, and a random walk with steps of probability [ 1 -h (13)12]/l2 over 
one lattice spacing and [5 — (13)12]/12 over two. In this example T is not 
invertible (!) and. so to say, projects the Ak,k^ 2, onto zero, in the sense 
that for any given k ^ 2, but not for k = 1, the three black points each have 
probability 3 to be hit as the kth black point, which brings the result back 
to Eq. (1.3).

3.2. Extension to Arbitrary Color Distributions

So far we have only considered periodic color distributions. The fact 
that the unit cell of the periodicity was completely arbitrary makes one sus
pect that the results of the previous section may be generalized. As we shall 
see, this is indeed the case and the extension can be made to arbitrary 
(translation-invariant) color distributions. It turns out. however, that the 
extension is far from trivial. In fact, the approach followed in Section 3.1 
will serve only as a guide and on our way we shall encounter some new 
and interesting problems that have to be dealt with. Thus the extension is 
more than just a piece of formalism.
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In the general case there is no unit cell and we return to our original 
description with a fixed starting point for the walker (at the origin) and a 
translation-invariant color distribution. For simplicity we shall from now 
on assume that L = Zd: the arguments are easily generalized to arbitrary 
lattices.

(I) The Zeroth Run. Our aim is to generalize Eq. (3.10). Let 
& : = {B\ B<^L) be the set of all subsets of L. A color configuration in L 
will henceforth be identified with the set that consists of all the black points 
and 36 may therefore represent the set of all color configurations. For a 
given B let W : = L\B and let plB) := (/?(/' — /))/./•« m' be the matrix of step
ping probabilities between the white points. The set W is either finite or 
(countably) infinite. By the translation invariance, W is empty with 
probability 1 when it is finite (see Section 2). Since, however, we have 
assumed that 36\_L is black]=36[W is empty] =0, it follows that with 
probability 1 the matrix /7(B,is (countably) infinite.

Let /[£] e {0, 1} denote the indicator stochastic variable of the event 
E. A little reflection shows that instead of Eq. (3.5) we now have

<'io>o = /[0e HO X (1 +p'B' + pIB'2+ •••)</ (3.32)
/ 6 W

where the bar denotes the average over 36 with respect to 36 and 1 is the 
(countably) infinite unit matrix. Here we must again assume that/0=l. 
Because of the translation invariance we may choose instead of 0 any point 
of L as the starting point for the walker and we are therefore free to write

<«o>o = /[/e W\ £ (1 + piB) + p(B)2+ •”),/ for any/gL (3.33) 
re w

The powers of plB) are well-defined (see, e.g., Ref. 4, p. 161). It is not 
at all clear, however, whether or not the inverse of 1 — plB) exists with 
probability 1 and thus whether or not (n0)Q<cc. This is a problem not 
encountered in the periodic case. We shall return to this point in the dis
cussion.

We shall arrive at our result by a truncation method together with a 
suitable limit procedure. Let

Ln := J/g Z.: |/'| /= l,-» d}> n*0

and let p\B] be the truncation of p(B) obtained by deleting all rows and 
columns that correspond to white points outside L„, i.e., plnBl is the matrix
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:i i;

h a:
I

f

of stepping probabilities between the white points that fall in Ln. Clearly 
we have

0*0)0^ \Ln\ 1 1 IlleW]I[_reW-\(Vn°' + pl°' + p‘™+ ■■•)/
/./' 6

for any n (3.34)

where VnBi is the unit matrix of the same order as plnB\ i.e., of order 
\Lnn W\. To get Eq. (3.34) one first averages in Eq. (3.33) over / in Ln and 
then truncates p{B] (observe that the elements of p,B) are nonnegative). The 
advantage of Eq. (3.34) over Eq. (3.33) is not only that / and /' appear 
symmetrically but also that piB' is a finite matrix. Working with Eq. (3.34) 
we shall avoid some difficulties that are connected with infinite matrices 
(see, e.g., Ref. 4. Chap. 6) and that would, at least for our purpose, 
unnecessarily complicate the calculations.

As we shall see in a moment, the right-hand side of Eq. (3.34) is finite 
for all n. It is also monotone nondecreasing in n. We shall derive for this 
right-hand side an inequality valid for all n and then take the limit n -* cc 
to obtain the desired inequality for <fl0>o- For finite n there may be a 
positive probability that Lnn IV is empty, in which case p[B) is not defined. 
However, since the sequence (Ln)n7t0 is monotone and lim,,^ Ln = L it 
follows that lim„_ x &[Ln is black] = &[L is black], and as the latter 
probability is zero by assumption the probability that LnnW is empty 
tends to zero as n x.

If we exclude the degenerate random walk (/?(0) = 1), then because Ln 
is finite there is for all Be @ a step of positive probability that will bring 
the walker from a point inside LnnW (if not empty) to a point outside. 
Therefore p{nBi is for all B and n strictly substochastic so that the inverse of 
V„Bt — Pl„B) exists. Thus we may write for Eq. (3.34)

<«0>0»l Lm\-' I
l,r eL„r- W

= | Ln\-xWf\{VnB'-p™y'e'f')M for any n (3.35)

where e\B] is the vector of order Lnn W\ with all elements equal to 1. Note 
that the right-hand side of Eq. (3.35) is finite for all n.

Now we are ready to use the symmetry of the random walk. This 
property implies that for all B and n the matrix p[nB) is symmetric, so that 
V/tB' — p\B) is positive definite. The Kantorovich inequality gives

<«0>0> for all n (3.36)
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We proceed as follows. Let

ql„B]:= \L„n B\/\Ln\ (3.37a)

denote the fraction of black points in I„ for given B. We have (elnB\ e{B)) — 
\L„ n W\ and

KB\pl„B'el,B')= 1 P(l-n
/./ eL„r\ H'

= \L„n W\ — \L„r\B\ + £ p(I~r) + R'„B'
/./• e Lnr\ B

where

I I M/-n- £ £ />(/-/') (3.37b)
It L„ l eL„nB le L„r> W l i L„

plays the role of a rest term. Defining

X{B): = \LnnB\~l £ p(l-l') (3.37c)
/,/' e Lnr\ B

we thus get

<"o>o ^ (1 - qlnB))2/(qlnB)l 1 - m ~ \U -1W)* for all /i (3.38) 

Now we consider the limit n—> cc of Eq. (3.38). First we show that 

lim |LJ-1 = for all Be@ (3.39a)
n — rr.

Proof. By the symmetry of the random walk it follow's from 
Eq. (3.37b) that ^ TieL„ Z/-t l„ />(/-/') for all B. The latter sum does 
not depend on B. Let c„,:= 'Z,eU,]>m pV)> and Lm%n\= Ln\L„_mi
m<n (the “shell” of thickness m between the cubes Ln and L„_m). Then 
one writes

£ £ p(i-n= £ £ Pd-n+ £ £ p(‘-n
Ie L„ /' t Ln leL„.mltL„ Ie L„.n /'4 L„

^\Ln-Jcm+\LmJ

and for m fixed this gives

lim \Ln\-' \R{B)\ < lim \Ln\~l {\Ln_m\ cm+\Lnun\) = cm
n — x. n — X.

Noting that c„, -* 0 as m -* x one sees that Eq. (3.39a) follow's. |
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Having thus disposed of the rest term we are next faced with the 
question whether or not also the limits

q(B):= lim qlB' (3.39b)
n — •/.

and

lim X'„Bl (3.39c)
/I —* X.

exist. This is not immediately obvious. Indeed, it is easy to construct color 
configurations for which these limits do not exist. However, the translation 
invariance entails, as we shall show in a moment, that qlB) and XlB) exist 
with probability 1. This is weaker but enough for our purpose, and we can 
now safely take the limit in Eq. (3.38) to obtain

<»0>0>(l-?l5l)-/?'a,[l-^Sl]^ (3.40)

thus completing the generalization of Eq. (3.10).
The existence with probability 1 of the limits in Eqs. (3.39b, c) follows 

from an ergodic theorem for so-called (super )additive stochastic
processes"012'. Consider first Eq. (3.39b). For any finite set S^L let 
N(SB) := |Sn/?| denote the number of black points of B that fall in S. The 
random variable N(SB> has the following three properties:

(i) By the translation invariance the probability distributions of NiB) 
and Ar^l, are identical for all / 6 L, where S + l is the set obtained 
from S after a translation over / (“stationarity”).
(ii) For any two disjoint sets S' and S': NlsB^s. = N{SB) -f N{B\ for all 
BeJ9 (“additivity”).
(iii) 0s£ |5j. for all Be<% (“integrability”).

From a theorem by Pitt"01 (which is a generalization to higher dimensions 
of the well-known ergodic theorem of Birkhoff) it then follows that 
lim,, _ y |S„| _1 N{SB) exists with probability 1 for any sequence of finite sets 
(Sn)n>0 .such that lim„_y |SJ = oc, provided this sequence satisfies the 
following regularity conditions: (1) Sn^L„ for all n; (2) |.SJ/|Z.J is boun
ded from below; (3) Sn is convex in L for all n. Furthermore, under these 
conditions the limit does not depend on the sequence chosen. Obviously, if 
we choose Sn = L„ the regularity is guaranteed and this proves the existence 
with probability 1 of q[B\ In general q(Bi will be a stochastic variable.

Next consider Eq. (3.39c). For any finite set SaL we now define 
MiBl := Z/./ e.s^s p(l” / )• This random variable has properties similar to 
those of .V'/1. except that (ii) is replaced by the following:
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(ii)' For any two disjoint sets S and S': M{*\ for all
Be@ (“superadditivityM).

The existence with probability 1 of lim„_ x |SJ “1 MlsB' now follows from a 
generalization of Pitt's theorem due to Nguyen'111 (see also Akcoglu and 
Krengel(,2)j. By the regularity the limit is again independent of the 
sequence chosen. This proves the existence with probability 1 of q(B)X{B) 
and hence of X{B) (it is easy to prove that q(B)> 0 with probability 1 when 
B is nonempty). Also X{B) will in general be a stochastic variable.

Thus we have now firmly established Eq. (3.40). As we have seen, 
except for the translation invariance only the regularity of the sequence 

o is required. This is a very weak condition (which, incidentally, may 
still be slightly relaxed*121) and it is. of course, reassuring that we could 
have chosen instead of our Ln any other regular sequence of sets without 
affecting qlB) and X{B) [and Eq. (3.39a)]. Our choice of the cubes Ln is 
standard.

Equation (3.40) is the formal generalization of Eq. (3.10). The 
stochastic variables q[B) and X(B> are formally defined as limits, qlB> being 
the “asymptotic" density of black points corresponding to B and X(B) the 
“asymptotic" mean probability of a jump between two black points. In 
general, these limits will not be constant on not even with probability 1. 
The simplest example for this situation is a color distribution which is a 
convex linear combination of two periodic color distributions with different 
densities of black points. We know only that

.<*>■ (3.41a)

q(B)XlB) =/[0eZ?] £ p(I) =q Prob[/i, = 1 | wo = 0] =: qX (3.41b)

as may readily be shown.
In many cases of physical interest the limits qiB) and X{B) are constant 

with probability 1. These cases include all so-called extremal color dis
tributions, which are distributions that cannot be written as a convex linear 
combination of two different (translation-invariant) color distributions. 
This follows from the easily established fact that qiB) and XiB) are trans
lation invariant. Examples include all periodic distributions and all (trans
lation-invariant) grand canonical distributions with “short-range 
correlations", i.e., having the property that the colorings of any two finite 
blocks become independent as the blocks are separated to infinity (see 
Ref. 13, Chap. 11). The random distribution falls in the latter class. In such 
cases Eq. (3.40) reduces to Eq. (3.10) through Eqs. (3.41a, b), so that again 
we end up with

<»o>o >(l-q)2W-X) (3.42)
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To get this result we used f0= 1. When f0< 1 the generalization is, of 
course, given by Eq. (3.11).

In the random case obviously X= p(0) + ^[l - p{0)] and we get the 
result <//0)o^(l —^)^[1 —/?(0)]. This is precisely the bound which for 
this case was known already from other arguments (see, e.g., Ref. 14) and 
happens to be valid also for asymmetric random walks. The fact that the 
bound obtained here is not stronger is not at all surprising. In Ref. 14 we 
proved that for the random case </i0>o^U — q)/(l -F)q, where F is the 
(total) probability of return to the origin. Fean be arbitrarily close to /?(0) 
for lattices of large enough dimensionality, such that even within the class 
of symmetric random walks the lower bound obtained can be arbitrarily 
sharp.

(II) The Runs with Number 1. Our aim is to show that the 
inequalities in Eq. (3.31) remain valid in the general case. We shall not 
spell out the generalization in full detail but rather indicate the main parts 
of the proof.

First we introduce the analogs of Eqs. (3.19a, b) for given nonempty 
Be&:

VB\l-+ /') : = probability for the walker, when starting 
from le B. to make a run of exactly n steps 
to i e B\ n ^ 1; /, /' e B.

r,f':=Y.TlBKl^n (3.43a)
n

(3.43b)

In the following we shall assume that &[B is empty] = 0. The probabilities 
T{B\ /, /' e B, form a matrix TlB' of “transition” probabilities between the 
black points; T(B) is (countably) infinite with probability 1. For given leL 
let = [Be@:le B). By the translation invariance and by Eq. (1.2)

X = T r0B'^ = 1 for any given /
Ie B I = B

Since obviously X/ €5 FB1 ^ 1 for all le B and all Bethis shows that

X TlB' = 1 for all le B with probability 1 
r e b

(3.44a)
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A comparison of the random walk with its reversed counterpart shows that 
also

£ T\P' = 1 for all l' e B with probability 1 (3.44b)
le B

so that TiBi is with probability 1 doubly stochastic.
Using Eqs. (3.43a. b) and Eq. (3.44a) we write out

<»I "*♦!>.- I k> 1 (3.45)
ll.l2.l3eB

Next, using the translation invariance as well as the inversion symmetry of 
the lattice, we may write this in the following slightly different form:

<»■»*♦.>1- I (3.46)
ll.l2.l3eB

The proof is left to the reader. Then, defining

= I Sl*\ leB (3.47)
re B

and using the symmetry of the random walk, we get

<«,»*♦!>.= I Stf'ir'*-')„$•'*' (3.48)
leB

Together with Eqs. (1.3) and (1.5) this gives

<»t>o=/o''/[0efl] I k>\ (3.49)
leB

Equation (3.49) serves as the starting point for our calculation. In the 
following we shall assume that <n*>o< co for all k. We shall return to this 
point in the discussion.

To arrive at our result we again use a truncation method. Consider 
Eq. (3.49). By the translation invariance the point 0 may be replaced by 
any given point / and if we then average over / in Ln we get

Oh>0 = fo~' I J}',(r'*-,),S{.''" for any n (3.50)
leL„r>B l eLnB

The second sum runs over the black points in the whole lattice. To obtain a 
symmetric expression we first restrict this sum to Ln and then take the limit

i
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n -» cc. Let TlnB) be the truncation of T[B) obtained by deleting all rows and 
columns that correspond to black points outside Ln. Then

The equality sign is guaranteed by the fact that L„-> L monotonically in n.
We proceed by defining the following counterparts of 

Eqs. (3.13)—(3.14):

k ^ 1 (3.52)

(3.53)

Ak •= <«*><>-*,
Ik := (nlnk+ 1 ) 1>1~<'»1>| K,- k'z 11 nk + 1

where

(3-54)

Equations (3.52)—(3.54) differ from Eqs. (3.13)—(3.14) for reasons which 
will become clear later. It will be seen that in the periodic case 
k— f0q~] = so that the two sets of definitions coincide. Note that
Eq. (3.15) remains valid and thus we can again investigate Ak by looking at

Using Eqs. (3.15). (3.51). and (3.54) we write

where EiB' is the matrix with all elements equal to 1 of the same order as 
T[B\ i.e., of order \Lnr\B\. and s{B) is the vector with components S)B\ 
le Lnr\B. Now Eq. (3.55) is in form very similar to Eq. (3.29) and we shall 
use this fact to show that the yk satisfy exactly the same set of inequalities 
that were found in the periodic case. To that end let us write

k~ Ik (3.56)

with

..c£i ik ' — lim y'£ (3.57a)

Here it is important that the limit in Eq. (3.57a) exists with probability 1. 
This is a consequence of the ergodic theorems used below Eq. (3.40) (note
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that yk < 20, because <nk}0<co by assumption), both the translation 
invariance and the regularity of our sequence (Ln)„ playing again an 
essential role. We shall show that with probability 1 the following 
inequalities hold:

i > ..</ 
^ / 3

> ..(5) ■> ,,(*) > . 
^ / 5 ^ / 7 ^ >0

1/6 M (3.58)

Together with Eqs. (3.15) and (3.56) this will immediately yield the desired 
generalization of Eq. (3.31).

Proof. As announced, to prove Eq. (3.58) we shall exploit the close 
resemblance between Eqs. (3.29) and (3.57b). Now for all B and n the 
matrix T\B) is finite and, by the symmetry of the random walk, symmetric. 
Therefore we can imitate most of the argument that led from Eq. (3.29) to 
(3.30). The only difference is that, unlike T,B\ T[B) is not doubly stochastic, 
as is required to follow the argument. According to Eqs. (3.44a, b) the 
doubly stochastic property is recovered in the limit as n -* oc and we have 
somehow to use this fact in Eqs. (3.57a, b). This is a technical problem 
which may be solved as follows.

Let T'n[B) be the matrix obtained from T{B] by defining

r±i

i- I (7T)„-. /' = /
(3.59)

\ /-*/

i.e., by simply adding the “missing part” of the row sum ( = column sum) to 
the diagonal elements. Like TiB) this matrix is finite and symmetric, but by 
construction it is also doubly stochastic for all n. The point in introducing 
this matrix is that in the limit as n -> co we may, as we shall show in a 
moment, simply replace PB) by T'„(B) in Eq. (3.57b) without, affecting y[B). 
But then ylkBJ can be written in a diagonalized form which is similar to 
Eq. (3.30), T'JB) having all the properties required to copy the proof, and 
Eq. (3.58) can immediately be read off. The details are left to the reader.

It thus only remains to show that the substitution of T„{B) for TlB) is 
indeed justified, in other words, that

Hm IL,\-'(s'*\lT:(B \k — 1 n rjA- — l 3 0»^ = 0 for all k ^ 1

(3.60)



This is done as follows. For k = 1 there is nothing to prove, as then the 
term between the square brackets in Eq. (3.60) is zero. For k = 2 we use 
Eqs. (3.44a) and (3.59) to write

d2 = lim
n — ‘A

I s'r- ■
{ I rA

/€ L„^B V'e(L Ln)- B J

The following reasoning is similar in spirit to the one used to prove 
Eq. (3.39a). Let

FiB\ . _ I 7)?', I e B
re B.\r-i\

then for fixed m

lim lAT' I + lim \L„\~' £ S'*12'
/,"*x leLr.-nr*B n~:r- / g Lm_„ r\ B

By the translation invariance it follows that for any e>0

d2 ^ q SoBi2(£o%, + £)^° for all m

When we now let m -* x and observe that by Eq. (3.44a) 

lim C&: = 0 with probability 1 in
m — x

we find that

d2^eq Si0B)2*0 = eq(n]n2)l=ef0(n\}0

[see Eq. (3.48)]. Here we have applied the Lebesgue bounded convergence 
theorem (see Ref. 15, p. 110) to interchange the limit and the average, using 
the fact that the average in the right-hand side is finite by assumption. 
Since e is arbitrary this proves that d2 = 0.

The proof for k ^ 3 proceeds in a similar way. We first note that 
T'n[B'^ T(nB) + VnB) and write

We substitute this inequality into Eq. (3.60) and follow the same type of
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reasoning as before, using the translation invariance. After a little 
manipulation we then find that

The details are left to the reader. The boundedness of the moments implies 
that dk = 0 for all k. This proves Eq. (3.60) and hence Eq. (3.58). |

We have thus established the desired generalization of Eq. (3.31), 
except that it remains to identify k' in Eq. (3.54). Let

Y'n*':=\L„nB\-' £ SJSI (3.61)
/e L„r^B

then k takes the form

«=fol Km qlB'Y'r*
n — x

where Eq. (3.37a) is used. We already showed that the limit in Eq. (3.39b) 
exists with probability 1. The same ergodic theorems imply that also

YlB):= lim Y{B] (3.62)
n — cc

exists with probability 1 (note that qiB)> 0 with probability 1), so that we 
arrive at

K=fo‘ q'B)Y'B'~* (3.63)

Like qlB\ Y{B) will in general be a stochastic variable. A simple calculation 
shows that

^r^",=?5T^ = 9<«,>1=/„ (3.64)

Since q(B'^0 for all B we have

and therefore

(3*65)
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Thus our earlier bounds remain valid in the general case. For extremal 
color distributions qiB) and T8' are constant with probability 1 and the 
equality sign holds in Eq. (3.65).

The above calculation completes the generalization of the bounds 
obtained in Section 3.1. What seems harder than in the periodic case, 
though, is to determine under what conditions Ak -»0 as k x (it is not 
even obvious that Ak < x) and. if so, how fast. In the periodic case we 
found that the decay, if present, is always exponential in k. In the general 
case we expect this not to be so. The decay depends on the eigenvalues of 
VB) in the neighborhood of 1 and — 1, the spectrum of T[B) can have both 
a discrete and a continuous part and the decay, if present, may generally be 
slower than exponential. What also seems harder than in the periodic case 
is to find examples where the equality signs hold in Eqs. (3.31) and (3.42). 
For the first run, however, we note the following. Returning to Eq. (3.49) 
we have

<»,)o = (3.66)

which is the counterpart of Eq. (3.26) (note that <fl]>0-/o<7-1 can be 
written as a variance), and it follows that (nl)0 = f0q~} if and only if 
within the set of color configurations that include the origin the average 
length of the first run is constant with probability 1. This may be used to 
construct new examples of equality for the first run, but it will be clear that 
the restriction on the color distribution and the random walk is rather 
strong, showing that in general there will be strict inequality.

4. AN APPLICATION TO LATTICES WITH TRAPS

Suppose now that the black points are traps characterized by a 
probability of escape q, i.e., whenever the walker visits a black point there 
is a probability 1 - q that he is trapped (forever) and a probability q that 
he remains free (“escapes”). If q = 0 {q> 0) the trap is called perfect (imper
fect ). We assume that q < \ .

Let

T„ := probability that the walker is trapped after exactly 
n steps: n ^ 0.

In Ref. 1 it is shown that T„ is monotone nonincreasing in n for arbitrary 
L, and p. From Eq. (1.1) it may further be deduced that for all q the 
total probability of trapping/:= Tn equals/0. Thus by Eq. (2.2)/ = 1
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in almost all cases of physical interest. The average number of steps before 
trapping <//> := follows from

<«> = <"o>o+ I (4.1)
/> 1

Equation (4.1)‘shows that in order to calculate </i> one has to know all 
the moments

Our results in Section 3 give a lower bound for <w> for symmetric 
random walks. For perfect traps w'e have the bound given by Eq. (3.42) 
(assuming without loss of generality that /= 1 and that the trap dis
tribution is extremal):

<ny\„_0>(\-q)2/q(l-X) (4.2a)

From Eq. (3.31), using that , </!,■><,^kq~x for all k, we can further 
deduce that for imperfect traps </?) is prolonged by an amount

<fl>-<n>l,-o>7“ (4.2b)

Except for a few rather special cases, the equality sign in Eq. (4.2b) holds 
only for strictly and pair-periodic trap distributions.

5. DISCUSSION

In Ref. 1 and the present paper we have studied statistical properties of 
the sequence of consecutive colors encountered by a random walker on a 
lattice of which the points are colored black and white according to a 
translation-invariant joint probability distribution. The relevance of our 
results to trapping problems in particular will be evident. Trapping 
problems have a long history and many properties have, in some form or 
other, been discussed in the literature (see, e.g., Refs. 3, 16, and 17). 
Usually, however, the traps are assumed to be distributed either 
periodically or randomly over the lattice. Except in one dimension, little is 
known in detail for other trap distributions. Reference 1 and the present 
paper are an attempt to bring out some of the characteristic features of 
trapping problems in a more general setting.

Earlier Results for Traps. For periodic trap distributions an 
exact solution for </?> (see Section 4) was found in Ref. 18. The approach 
followed in that paper is a generalization of earlier work by Montroll,(,9) 
who derived an expression for </7>l„-o- The final result, however, appears 
in a form that is not very practical for analytical purposes unless the unit 
cell of the periodicity contains a very limited number of traps. To be more
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specific, when N is the number of points in the unit cell and r the number 
of traps, <w> is expressed in terms of / x / determinants of which the 
elements are Green's functions that are yV-fold sums depending on the 
positions of the traps and on the random walk. As an illustration of the dif
ficulties that one encounters in this context the fact may serve that we have 
been unable to rederive Eqs. (4.2a, b) for any unit cell with more than two 
traps starting from the results of Refs. 18 and 19. Thus in practice to get 
detailed results one should have recourse to the computer.

For the random distribution asymptotic expansions for <?i) valid for 
small q were obtained in Ref. 20 for several classes of random walks of 
varying dimensionality. Earlier work by Rosenstock(21) included a study of 
</7>|IJao for q -* 0. So far, only few rigorous results have been obtained for 
the random case, except in one dimension. On the other hand, several 
approximative methods have been developed, one more sophisticated than 
the other, all for values of q that are either small or close to unity (see, e.g., 
Refs. 16 and 17).

Higher Runs, Odd/Even Effect. In this paper we have centered 
interest on the probabilities/, and the moments <«,)0. A particularly strik
ing aspect of our results for the runs with number 1 is that for /' odd 
</7,)0 is always monotone in i whereas for /' even a variety in behavior is 
displayed depending on the choice of & and p. This difference must essen
tially come from our assumption of symmetry, but it is not intuitively 
obvious why then the odd-numbered runs should be so special. To get 
some feeling for the situation, let us look at the first few runs in some more 
detail. For the sake of the argument we consider a simple random walk on 
a large unit cell, with periodic boundary conditions, in which the black 
points occur in several large compact “clusters” surrounded by a large 
“sea” of white points. Now if all black points would have equal probability 
to be the starting point for the first run we would have <«,)0 = 

>j = ?-1 by Eq. (1.3), but obviously the probability in question differs 
for different black points: by the translation invariance black points that 
are on the edge of a cluster are much more likely to be hit first than others. 
On the other hand, by the symmetry the average length of a run starting 
from the edge of a cluster is larger than that of one starting from the 
interior. Together this leads to </?i >0 > ^~ The second black point hit is 
one that with a large probability lies either on the edge of a cluster or one 
layer deeper. This gives q~ 1 < </?:>0 < Oh >o- As more and more black 
points are visited, the “excess” in probability of points on the outer part of 
a cluster to be the next black point hit gradually “diffuses” into the cluster, 
so that <//,)0-+q~' monotonically as /-*x. When, instead of large 
clusters, we have clusters of small size, say, only one interior point and one
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boundary layer, then the following happens: after the first run the excess in 
probability of points on the edge is all transferred to the single interior 
point, so that now we get (kn2)o<q~l- By l^e symmetry this effect will be 
reversed by an extra run, so that again <«3)0>^_I etc. and the decay is in 
this case oscillating.

To illustrate this argument one may consider a simple random walk 
on a ring of arbitrary length with one compact cluster of black points of 
size M. An easy calculation shows that as M varies one gets the following 
types of behavior: (a) M = 1, 2: <W/>0 = ^“1 for all 1; (b) M =3: 
oscillating decay; (c) M = 4: </j, )0> q~\ equality for all other /'; (d) 
M^5: monotonic decay.

The extreme example considered above brings out the origin of our 
results for the runs with number i^\. More generally it will be clear that 
the bounds obtained all arise from the fact that (i) different black points 
may have different environments, (ii) black points in certain environments 
are more easily accessible than others, i.e., are favoured over others to be 
hit at a given stage in the process, (iii) those black points which are most 
easily accessible are also the ones from which a run takes longest, simply 
because they are surrounded by more white points. The “clumping'’ of 
black points, or to phrase it differently, the spatial fluctuation in local 
ordering of colors generally tends to increase the lengths of the runs and to 
favor monotonic behavior, but certain special conditions may cause a shor
tening of the even-numbered runs. It is interesting to note that the first run 
in a sense “sets the stage” for all the subsequent runs.

The bounds obtained for the runs with number 1 are probably 
fairly strong. In Eqs. (3.31) and (4.2b) the equality signs hold for all strictly 
and pair-periodic distributions, regardless of the random walk and the size 
of the unit cell, and so there is every reason to expect that the inequalities 
will be sharp in many other cases of physical interest. Moreover, in Ref. 20 
it is shown that for the random distribution </?> — <//>l», = o — >//(! ~tl) q as 
q -> 0 for a very large class of random walks, including all transient ran
dom walks (which include all aperiodic random walks with d'Z 3). Since q 
is arbitrary this implies that <«/)o — l/tf» 9 0, for so that
equality in Eqs. (3.31) and (4.2b) holds asymptotically in this case.

Zeroth Run. The zeroth run differs in character from all the sub
sequent runs and the bound obtained in Eq. (3.42) is in practice, unfor
tunately, not so strong. For strictly periodic distributions, for instance, it 
can be shown that the equality sign holds only for a very special type of 
random walk, which we have called “indifferent” with respect to the unit 
cell, and that for most other random walks the bound is numerically rather 
weak when the unit cell is large. Moreover, for the random distribution it is
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known that </i0>o- 1/(1 — F)q, q -* 0, for transient random walks, where 
F is the (total) probability of return to the origin (in the absence of traps), 
and thus for small q the bound is in this case “off’ by a factor 1/(1 — F).

Our result for the zeroth run becomes more transparent when we 
rewrite Eq. (3.42) as an inequality relating two conditional averages:

<"o!W> $*<",-! IBW> (5.1)

Here Eq. (1.3) is used and W (BW) is a condition on the first (two) 
color(s) encountered by the walker. Returning to our example of a simple 
random walk on a unit cell with clusters of black points, we see that 
Eq. (5.1) is quite clear: when the walker may start anywhere in the sea of 
white points it takes him longer to reach a black point than when he must 
first step on a black point, next step to a white point and then start to go 
for a black point, simply because in the latter case he starts next to a 
cluster. In the general case Eq. (5.1) comes from the fact that (i) different 
white points may have different environments, (ii) white points in certain 
environments are more easily hit from a black point than others, (iii) those 
white points which are most easily hit are also the ones from which a run 
takes shortest. This is very similar to what we listed earlier with respect to 
the behavior of the other runs. It now also becomes clear why our bound is 
not so strong when q is small: in the case of a strictly periodic distribution, 
for instance, black points do but white points generally do not have the 
same environment, and in particular when the unit cell is large (and hence 
</?0>0 large) this will have a substantial effect. Equation (5.1) tends to 
become better as q increases. Thus it remains a challenge for the zeroth run 
in particular to look for ways of obtaining a better bound. It is amusing to 
note that Eq. (5.1) reduces to an equality for all color distributions which 
are complementary to a strictly or pair-periodic distribution, i.e., obtained 
from the latter ones after changing black into white and vice versa. Note 
also that Eq. (3.42) is the only inequality obtained that depends explicitly 
on & and p.

Finiteness of Moments. A question which we have postponed so 
far is whether or not the averages that we consider are finite [see below 
Eqs. (3.33) and (3.49)]. For periodic distributions all moments are finite 
because of the finite size of the unit cell. For general distributions, however. 
Eq. (1.3) is exceptional in that (n,), is the only moment that is always 
finite, and there are examples where all other moments are infinite. In such 
cases the bounds obtained are. of course, trivial though still correct. (It is 
not hard to show that the moments <»,)0, U are either all finite or all 
infinite.) As an example, take a simple random walk on Z and let the color 
distribution be such that, loosely described, the lengths of white intervals
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between black points are independently and identically distributed. Let 
C{m) denote the probability that an interval has length m. We have 
X,„C(m)= l and mC(m) = q~\ but C is otherwise arbitrary. Follow
ing the approach of Ref. 19 it may then be shown that <;j0)0 =

(m} — ni) C(/?j)/6]F„, which can be made infinite by choosing C
such that #;i3C(»i) = x. It may further be shown that when C is such 
that nrC{m) = x, also all the next runs have infinite first moment. This 
example is, of course, highly special and it seems reasonable to expect that 
in most cases of physical interest the moments considered are finite. In par
ticular for the random distribution one should be able to establish 
finiteness for arbitrary random walk.

Assumptions Used. The assumption of symmetry of the random 
walk plays a crucial role in most of the present paper. Once the symmetry 
is dropped one may get “wildly varying’' results [see the remarks below 
Eq. (3.1a)] and each of the inequalities obtained may be seriously violated. 
To illustrate this let us consider a pair-periodic color distribution. It 
follows from Eqs. (3.20a, b) that Tn = T22 — 1-7'12= 1 — T2l. Since there 
are only two traps in the unit cell it further follows that 5,, = S22 (0 [see 
below Eq. (3.27)], and with Eqs. (3.13)—(3.15) and (3.28) this gives 
<«,•>o = <?-1 -k(Si2“ S2i)2(7'n - T\2y~\ /> 1 (assume f0= 1). Now for 
symmetric random walks Si: = S2i and <X>o = as found earlier. For 
asymmetric random walks, however, we have in general S{2^S2l, so that 
</7, >o<<Tl an^ when Tn j=- Tn also <>7,>0 < q~1 for all / odd. This is just 
the opposite of what we found in Eq. (3.31). Thus, for our bounds the sym
metry is necessary.

By the translation invariance of & and p the sequence of colors 
encountered by the walker is a stationary stochastic process. We have 
derived the results in Ref. 1 on the basis of this property alone, without 
referring to the detailed background of the process, i.e., without using the 
fact that the color sequence is actually constructed from a random walk 
taking place on a stochastically colored lattice. Therefore Eqs. (1.1)—(1.7) 
reflect only this stationarity and, viewed in retrospect, they could also have 
been derived starting from certain theorems on stationary stochastic 
processes known from the mathematical literature. The reader is referred to 
Breiman(221 (Chap. 6) and Berbee(23) (Chap. 3).

For the present paper the situation is quite different: in deriving our 
results we have made frequent use of properties of the underlying model 
such as lattice structure, existence of asymptotic density of black points, 
independence of successive steps of the walker, symmetry of steps and 
paths, etc. Therefore the various inequalities obtained in the present paper 
reflect more of the specific features of our model.
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To conclude the discussion it seems appropriate to ask: “How restric
tive are the basic assumptions in our model in view of actual applications?,, 
The model may be used to describe physical processes such as the diffusion 
and trapping of “particles" in a medium with static traps. In such processes 
the translation invariance enters as a very natural assumption: the system, 
though microscopically inhomogeneous, is assumed to be statistically 
homogeneous, and hence homogeneous on a macroscopic level. As to the 
symmetry, this assumption should be realistic for a system without external 
field, where the stepping probability distribution of the “particles’* is expec
ted to exhibit the symmetries of the underlying lattice structure.
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SOME ADDITIONAL RESULTS AND CONJECTURES

In this section we list a few additional results for the colour model 
(without derivation or discussion) and mention a few conjectures, which we 
feel are worth investigating. We take L and assume that is extremal, p 
is aperiodic and q>0 (so that f^=l for all i>0; see Chapter 4).

RESULTS:

I. For tP random and for arbitrary d, p, q and q the following inequalities 
can be shown to hold:

<n> i > '-q
'n-0 q(l-r) * (1)

<n> ~ <n> | > —— ,q»0 1-q q (2)

<n> 1-q q 1< ---— + —---- ,q(l-F) 1-q q (3)

where <n> is given by Eq.(4.1) of Chapter 4, F is the total probability for 
the walker to return to the origin, and r is the total probability for the 
walker to return to the origin without hitting a black point. Note that Eq.(3) 
only makes sense when F<1, i.e., when the random walk is transient (see 
Chapter 2). Eqs.(l) and (2) hold for more general tP » ln particular for all 

grand canonical distributions of a lattice gas of black points with attractive 
interactions.

II. Let Aj - <n1>0 - q*1, i>l, as in Eq.(l.lO) of Chapter 4. Under the 
condition that A1<® for all i it can be shown that for arbitrary and P:

iis T Ai ‘ °- (4)
III. Let wn = Prob[nQ>n] as in Eq.(3.3) of Chapter 4. When ? is periodic, 

either wn->0 exponentially fast as n+® or there exists some n' such that wn«0 
for n>n'. The latter occurs only in the exceptional case when the walker can 
never return to a white point without hitting a black one. When fP is 
nonperiodic the decay of wfl may be slower than exponential (see e.g. Eq.(4.1)‘ 
of Chapter 2). When p is symmetric the following exponential lower bound is
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valid for arbitrary j :

wn > w0 Cwi/wQ)n , n>0. (5)

After summation over n this immediately gives the bound for <nQ>Q that we 
derived in Chapter 4 (Eq.(1.9)).

IV. The sequence (Xq, X^, ^y ••• )» with Xfl the colour encountered by the 
walker at step n, is for arbitrary and p a stationary and ergodic 
stochastic process. By the well-known individual ergodic theorem this entails 
a number of interesting limiting properties; for instance:

, 1 n-1
lim — E I[X is black] = q with probability 1,
n-x» n m=0 m (6)

where I is the indicator random variable.

CONJECTURES:

I. Let Sn be the number of distinct points visited by the walker in n steps, 
and let Un and X be defined as in Eqs.(2.8a) and (3.3a,b) of Chapter 2. For 
arbitrary d, p, q and q:

Var Un < X2 Var SR , n>0. (7) 

This should hold in virtue of Eq.(3.4) of Chapter 2.

II. Let p(0)=0. For all n and n' the probability Prob[Sn<n'] has its maximum 
value when the random walk is simple and d=l. This would imply, by Eq.(2.1) of 
Chapter 2, that when tP is random’.

w < w [simple random walk, d=l], n>0. (8) n n

The right-hand side can be calculated exactly. Eq.(8) implies that for the 
random colour distribution all the moments of Hq are finite for arbitrary d 
and p (see Eq.(4.1) of Chapter 2, and section 5 of Chapter 4).
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III. When either ep is nonperiodic or p is such that F>0, then:

lira A = 0. (9)
i->-® i

In particular this would hold when p is symmetric (see Chapter 4).

IV. Let p be the simple random walk of arbitrary dimensionality. Among the 
colour distributions with a fixed value q=m“d, where m is some integer, the 

probability wn, for any fixed n, has its minimum value when the colour 
distribution is strictly periodic with a hypercubic unit cell of size m. This 
would imply that for arbitrary t| the average <n> in Eq.(4.1) of Chapter 4 is 
bounded below by the corresponding average for the strictly-periodic case, by 
Eqs.(3.4) and (4.2b) of Chapter 4. The latter average is known exactly (see 
Chapter 1). For d=l the proof of this conjecture is easy. The same bound will 
presumably hold for a large class of other random walks; however, it is not 
clear how large one should expect this class to be. It is, for instance, not 
enough to assume that p is symmetric, nor is it enough to assume that p has 
the full point symmetry of the lattice.
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SAMENVATTING

In dit proefschrift worden modellen bestudeerd van een stochastische 
wandeling op een puntrooster met stochastisch geplaatste vallen (absorberende 
punten). Het onderzoek vormt een bijdrage tot de studie van transportprocessen 
in systemen die structured wanordelijk zijn op microscopische schaal.

Een s.tochastische wandeling op een puntrooster is een stapproces tussen 
de punten van dit rooster, waarbij de achtereenvolgens gemaakte stappen 
onafhankelijke en identiek verdeelde stochastische variabelen zijn, met een 
gegeven stapwaarschijnlijkheidsverdeling. In de bestudeerde modellen start de 
wandeling op een gekozen punt en duurt voort totdat een val wordt bereikt en 
de wandeling stopt. Ook de posities van de vallen zijn stochastisch bepaald, 
volgens een gegeven ruimtelijke valwaarschijnlijkheidsverdeling. De modellen 
zijn derhalve van een dubbelstochastisch karakter. Bestudeerd worden, in het 
bijzonder, de totale vangstkans en het gemiddeld aantal stappen tot vangst, en 
onderzocht wordt in detail hoe deze beide grootheden afhangen van de gekozen 
waarschijnlijkheidsverdelingen. Naast het geval van perfecte vallen, waar 
vangst zeker is, wordt ook de uitbreiding beschouwd naar imperfecte vallen, 
van waaruit bij aankomst ontsnapping met zekere kans is toegestaan.

In hoofdstuk 1 wordt eerst het speciale geval bestudeerd waarbij de 
vallen periodiek op het rooster geplaatst zijn. Dit geval is relatief 
eenvoudig en kan exact worden aangepakt. In hoofdstuk 2 wordt vervolgens het 
geval van een random (ongecorreleerde) valverdeling onder de loep genomen. Dit 
geval is veel lastiger te behandelen en weinig exacte resultaten zijn hiervoor 
tot nu toe bekend. Voor verschillende klassen van stochastische wandelingen 
van verschillende dimensionaliteit wordt voor het gemiddeld aantal stappen tot 
vangst een systematische reeksontwikkeling in de valdichtheid afgeleid, die 
bruikbaar is voor relatief hoge dichtheden. De afleiding berust op een analyse 
van de waarschijnlijkheidsverdeling voor de aantallen roosterpunten die de 
wandeling in een gegeven aantal stappen een gegeven aantal keren bezoekt. De 
resultaten leiden tot een dieper inzicht in de structuur van het probleem en 
maken tevens duidelijk waar de verschillen met het periodieke geval liggen.

Valmodellen zijn veelvuldig onderzocht en hebben een breed gebied van 
toepassingen, waaronder bijvoorbeeld het onderzoek van de fotosynthese, van 
elektrische geleiding in legeringen en van diffusie van roosterfouten in 
vervormde metalen. Veelal wordt uitgegaan van een periodieke of random
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valstructuur. Voor de beschrijving van reSle fysische systemen is dit echter 
te zeer een idealisatie van de werkelijkheid. Het doel van dit proefschrift is 
mede ora na te gaan wat kan worden afgeleid voor meer algemene valverdelingen.

In hoofdstukken 3 en 4 wordt daartoe als uitgangspunt een model gekozen 
met een rooster bestaande uit punten van tweeSrlei kleur, verdeeld volgens een 
translatie-invariante, maar verder geheel willekeurige waarschijnlijkheids- 
verdeling, en op dit rooster een stochastische wandeling die niet door de 
kleuren wordt belnvloed. Deze aanpak heeft voor een deel tot doel de discussie 
van het probleem te vereenvoudigen. Het model kan direkt worden gebruikt voor 
het oorspronkelijke valprobleem door een van de kleuren, b.v. zwart, te 
identificeren met een imperfecte val. Daarnaast heeft het model nog enkele 
andere toepassingen (welke echter niet nader worden besproken). Bestudeerd 
worden de statistische eigenschappen van de reeks van kleuren die de wandelaar 
achtereenvolgens ontmoet. In hoofdstuk 3 worden eerst enkele exacte relaties 
afgeleid, die geldig zijn voor een willekeurige stochastische wandeling. In 
hoofdstuk 4 worden deze relaties gebruikt voor de afleiding van een aantal 
exacte ongelijkheden voor de gemiddelde lengte van de achtereenvolgens door de 
wandeling afgelegde etappen over witte punten eindigend met een bezoek aan een 
zwart punt, en wel onder de aanname dat de stapwaarschijnlijkheidsverdeling 
symmetrisch is. Dit geeft o.a. een exacte ondergrens voor het gemiddeld aantal 
stappen tot vangst in het valprobleem. Voor de afleiding worden wiskundige 
technieken uit de ergodentheorie gebruikt. De resultaten hebben een aantal 
verrassende aspecten, die vooral dankzij de exacte behandeling van het 
probleem aan het licht komen.

Terwijl de resultaten van hoofdstukken 1 en 2 vrij gedetailleerd zijn, 
zijn die van hoofdstukken 3 en 4 noodzakelijkerwijze bescheiden door de hoge 
graad van algeraeenheid. De hoop is dat deze resultaten een uitgangspunt kunnen 
vormen voor verdere studie van het valprobleem, dat in de hier beschouwde zeer 
algemene vorm tot nu toe in de literatuur vrijwel onbehandeld was gebleven.

De in dit proefschrift bestudeerde modellen maken deel uit van een grote 
klasse van verwante en in het algemeen zeer moeilijke modellen, die bekend 
staan onder de verzamelnaam van stochastische wandelingen in stochastische 
media. Systemen met een stochastische ruimtelijke structuur staan de laatste 
jaren erg in de belangstelling. Valmodellen, als beschrijving van bepaalde 
transportprocessen In deze systemen, behoren tot de meest eenvoudige en meest 
bestudeerde modellen In dit gebied.
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CURRICULUM VITAE

van Frank den Hollander, geboren te Voorburg op 1 december 1956.

Op verzoek van de Faculteit der Wiskunde en Natuurwetenschappen volgt 
bier een overzicht van mijn studie.

Na mijn eindexamen Atheneum B aan het Sint Maartenscollege te Voorburg 
begon ik in 1975 met mijn studie aan de Rijksuniversiteit Leiden. In januari 
1978 legde ik het kandidaatsexamen Natuurkunde en Wiskunde met bijvak 
Sterrenkunde af. Het doctoraal examen volgde met lof in november 1980. Tijdens 
het praktische gedeelte van mijn doctorale studie was ik werkzaam op het 
Kamerlingh Onnes Laboratorium in de werkgroep "Magnetische Resonantie en 
Relaxatie", o.l.v. Prof.dr.ir. N.J. Poulis. Het onderzoek voor mijn 
theoretische doctoraalscriptie verrichtte ik op het Instituut-Lorentz voor 
Theoretische Natuurkunde, o.l.v. Prof.dr. P.W. Kasteleyn. Hierbij werd een 
aanvang gemaakt met een onderzoek van stochastische wandelingen op roosters 
met vallen. Dit onderzoek werd voortgezet en uitgebreid na december 1980, toen 
Ik in dienst kwam bij de universiteit als wetenschappelijk assistent. Sinds 
medio 'april 1984 ben ik In dienst van de "Stichting voor Fundamenteel 
Onderzoek der Materie" (FOM) als wetenschappelijk medewerker. Een deel van de 
resultaten van het onderzoek is neergelegd in dit proefschrift. Naast mijn 
promotie-onderzoek heb ik samengewerkt met de vakgroepen Biofysica van de 
Rijksuniversiteit Leiden en de Vrije Universiteit te Amsterdam. In het 
onderzoek van de fotosynthese, dat In deze vakgroepen wordt verricht, vindt 
mijn promotie-onderzoek een belangrijke toepassing.

Aan het onderwijs droeg Ik bij door in het academisch jaar 1984/1985 een 
werkcollege te geven bij het college statistische fysica. Verder hielp ik bij 
het afnemen van tentamens en het geven van enkele colleges.

Tijdens mijn studie heb ik deelgenoraen aan een aantal conferenties en 
zomerscholen, te weten de NUFFIC zomerscholen over "Fundamental Problems in 
Statistical Mechanics" V en VI (Enschede, 1980 en Trondheim, Noorwegen, 1984), 
het "Symposium on Random Walks and Their Application to the Physical and 
Biological Sciences" (Gaithersburg, Maryland, USA, 1982) en de "Fifteenth 
IUPAP International Conference on Thermodynamics and Statistical Mechanics" 
(Edinburgh, Schotland, 1983). In het najaar van 1984 heb ik, in het kader van
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een Koninklijke/Shell Studlereis mij aangeboden door Shell Nederland BV, een 
bezoek gebracht aan het I.H.E.S. te Bures-sur-Yvette in Frankrijk en voorts 
een reis geroaakt langs aan een aantal wetenschappelijke instituten in de 
Verenigde Staten, waar ik een serie lezingen over mijn werk heb gegeven.

Vanaf 1 September 1985 zal ik voor een periode van vier jaar verbonden 
zijn aan de Technische Hogeschool Delft, in de vakgroep "Statistiek, 
Stochastiek en Operationele Analyse" van de Onderafdeling der Wiskunde en 
Informatica, als medewerker van Prof.dr. M. S. Keane.
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"Je ne suis qu'un artiste de vari£t§ et ne peux rien dire qui ne puisse etre 
dit de variety, car on pourrait me reprocher de parler de choses qui ne me 
regardent pas." (Leo Ferr§)
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STELLINGEN

(1) De hyperbolische relatie tussen bet fluorescentierendement en de fractie 
van reactiecentra in de fotochemisch actieve toestand, zoals die voor 
purperbacteri£n experimenteel gevonden werd door Vredenberg en Duysens, 
kan analytisch worden afgeleid uit het door Duysens voorgestelde 
matrixmodel. Essentieel daarbij is slechts dat de totale dichtheid van 
reactiecentra en het verlies op antennemoleculen klein zijn.

W.J. Vredenberg en L.N.M. Duysens, Nature 197 (1963) 355.
L.N.M. Duysens, in: Brookhaven Symposium in Biology _19_ (1967) 71.
W.Th.F. den Hollander en L.N.M. Duysens, Physiol. Veg. (verschijnt).

(2) De conclusie van Otten, dat de benaderingsmethoden gebruikt door 
Vredenberg en Duysens (1963) en door Duysens (1967) ter verklaring van de 
in stelling 1 genoemde hyperbolische relatie equivalent zijn, is fysisch 
weinig zinvol.

H.A. Otten, Proefschrift Leiden (1973).

(3) Weiss, Havlin en Bunde hebben laten zien dat de overlevingskans van een 
stochastische wandeling op een eindig rooster met periodieke 
randvoorwaarden en een valpunt asymptotisch exponentieel vervalt als 
functie van het aantal gemaakte stappen. Eenvoudig kan worden aangetoond 
dat hetzelfde type verval optreedt voor een willekeurig rooster met 
willekeurige randvoorwaarden en een willekeurig aantal valpunten. 
Essentieel daarbij is slechts dat het rooster eindig is.

G.H. Weiss, S. Havlin en A. Bunde, J. Stat. Phys. (verschijnt).
W.Th.F. den Hollander, J. Stat. Phys. (verschijnt).



De door Rosenstock gegeven berekening van de totale kans op terugkeer 
naar de oorsprong in een stochastische wandeling op een rooster met 
random geplaatste valpunten in de liraiet van kleine dichtheid van deze 
valpunten is op alle fronten incorrect.

H.B. Rosenstock, J. Math. Phys. U_ (1970) 487.

De drie door Shuler geformuleerde "Ansatze", die betrekking hebben op het 
asymptotische gedrag van een symmetrische stochastische wandeling tussen 
naaste buren op een kwadratisch rooster met stochastisch verdeelde "open" 
en "gesloten" kolommen, kunnen exact bewezen worden voor een willekeurige 
translatie-invariante extremale waarschijnlijkheidsverdeling van deze 
kolommen onder een conditie die lange-drachtscorrelaties tussen de 
kolommen uitsluit.

K.E. Shuler, Physica 95A_ (1979) 12.

Zij T een oneindige k-reguliere graaf en zij r de overdekkingsgraaf 
van T. Wanneer G(r) het gemiddeld aantal bezoeken aan de oorsprong is in 
een simpele stochastische wandeling op de punten van T, en G(r) hetzelfde 
gemiddelde voor r, dan geldt:

g(?) = (k~1)^k~2) + G(T).
k kZ

In tegenstelling tot hetgeen door Relchl wordt beweerd hebben interne 
rotatievrijheidsgraden van een vloeistof g§£n invloed op het leidende- 
orde lange-tijdsgedrag van de snelheidsautocorrelatiefunctie van een zich 
in deze vloeistof bevindend Browns deeltje.

L.E. Reichl, Phys. Rev. Lett. 49 (1982) 85.



(8) Het scenario voorgesteld door Holdom om het anomale ZQ-verval te 
verklaren kan de experimenteel daarbij gevonden hoekverdeling tussen het 
lepton en het foton niet verklaren. Dit manco wordt veroorzaakt door het 
ontbreken in de theorie van een propagatorstructuur.

B. Holdom, Phys. Lett. 143B (1984) 241.

(9) In het oorspronkelijke manuscript van Debussy’s twaalf 6tudes voor piano 
uit 1915 is een groot aantal schrijffouten geslopen. Het is opmerkelijk 
dat in geen van de latere edities die van dit werk zijn uitgegeven deze 
fouten gecorrigeerd zijn.

edities: Durand (1916), Broekmans & van Poppel (1969), Peters (1970).

(10) In het algemeen wordt Rodin beschouwd als de kunstenaar die de 
belangrijkste aanzet heeft gegeven tot de moderne beeldhouwkunst. Bij 
dit oordeel echter worden de vernieuwende eleraenten in de sculptuur van 
Degas te zeer ondergewaardeerd.

(11) In de theorie van stochastische wandelingen is elke dimensie bijzonder.

W.Th.F. den Hollander 
Leiden, 25 juni 1985





. . ■ ■ . ■. . ■ ■

* -

•-V- ;V 'm vVv:
• . ■ -

-•'V v
.* :• ’-C*, •

T'{'•• •- ■<>
a • ' mm mm

mjur. ■■' m.-.-

. mQ:} : ,
. ;• " . '

•i'

•.•."■IN.:. r-< i"
V5,

f .1' '

i'. v smm

■ ■ ; • - C>,

if
f) ':,r :Z - V.;:.; • ::i;

. v

■ .
.('v‘

HI
. .

irrv&i:

\ ■■ ■:

ifffc

lit
mm

'35#

■ .
•?.;V

• .j?

■

x- ' ... '•

• ■ ■■ •

■ • ... « • •. •’•■i: - •'•■: >■ ' ' .'••••'

■i mm't:
r- ;; .:-r\ ■

■ -

• • •••

?n >.<■

ill
,i'v: -f:

' .
■% \r; .vyv-v. - .

/ " vi;

mm mm

%i£f* •. • ; .

• :


	/Users/carlo/CZURImages/2017_08_29_18_12_58/image00001.jpg
	/Users/carlo/CZURImages/2017_08_29_18_12_58/image00002.jpg
	/Users/carlo/CZURImages/2017_08_29_18_12_58/image00003.jpg

