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Introduction

The macroscopic dielectric properties of a system are 

characterized by the dielectric susceptibility. This quantity is in 

general a tensor and relates (in the linear theory) the 

polarization field linearly to the electric Maxwell field. One 

speaks about spatial dispersion if the polarization in a certain 

point in space is not only related to the Maxwell field in the same 

point but also to that field in all other points of space by means 

of an integral relation. If the medium under consideration is 

homogeneous and infinite this is expressed by the fact that after 

Fourier transformation the polarization in a certain point in the 

wave number space is related linearly to the Maxwell field in the 

same point by means of a wave number dependent complex dielectric 

susceptibility.

Our aim is to derive this wave number dependent dielectric 

susceptibility tensor from the microscopic properties of the system, 

in this case a molecular crystal. An electric field acting on a 

single molecule induces a dipole moment distribution which is 

supposed to depend linearly (also with spatial dispersion) on the 

electric field by means of a molecular polarizability tensor. This

molecular polarizability tensor can be calculated quantum- 
12)mechanically. * We shall consider this quantity to be given. If 

the molecular crystal is subjected to a time dependent external 

electric field the effective field acting on a molecule consists of 

the external field and the secondary radiation fields of all 

molecules. The total microscopic polarization of the crystal thus 

induced can in the wave number space be written as sum over the 

reciprocal lattice in which each term is a product of an external 

susceptibility and the external field, both depending on the 

reciprocal lattice points. For a macroscopic description of the 

system one takes only into account those Fourier components of the 

polarization and the external field for which the wave number is 

lying in the first Brillouinzone. As a consequence only one term of 

the above mentioned reciprocal lattice sum survives and relates 

the polarization linearly to the external field for the same wave
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number. This yields the wave number dependent external susceptibility

of the crystal which from then on can be considered as homogeneous
2)

(though in general anisotropic). ' The phenomenological Maxwell 

theory provides the relation between this external susceptibility 

and the dielectric susceptibility from which an expression for the 

latter can be derived in terms of reciprocal lattice sums. In this 

derivation of the dielectric susceptibility we have only assumed that 

the external field is varying slowly over the intermolecular distance. 

No assumptions are made for the molecular radiation fields. The 

(formal) expression for the dielectric susceptibility can be worked 

out further by making a multipole expansion of the induced molecular 

dipole moment distribution. We shall investigate in how far it is 

permitted to break off this expansion.

The magnitude of the spatial dispersion (wave number dependence) 

of the dielectric susceptibility is given by the ratio between the 

smallest molecular distances or the molecular dimensions and the 

wave length of the macroscopic field. For optical wavelengths this 

ratio is small and spatial dispersion is a quantitatively small 

effect which can, however, give rise to qualitatively new effects. 

Thus e.g. the well known effect of optical activity (i.e. the 

rotation of the direction of polarization of linearly polarized 

light passing through a medium) is determined by the spatial 

dispersion of first order and so by the first order term in the 

expansion of the susceptibility in powers of the above mentioned 

ratio.

One can- distinguish between spatial dispersion which is a 

consequence of the finite intermolecular distances (spatial 

dispersion with respect to the lattice) and spatial dispersion 

which is a consequence of the finite molecular dimensions 

(molecular spatial dispersion). If one deals with simple Bravais 

lattices (chapters I and II) it follows from symmetry considerations 

that with respect to the lattice there is no spatial dispersion of 

odd order. For this case optical activity can only be a consequence 

of molecular spatial dispersion. For simple point dipole lattices 

we have calculated in chapter I the effect of second order spatial
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dispersion (with respect to the lattice) which results e.g. in the 

effect of optical anisotropy of cubic point dipole lattices. In 

chapter II we have taken into account the molecular spatial 

dispersion in first order. This means that we have in addition to 

the electric dipole moment also considered the electric quadrupole 

and the magnetic dipole moment of the molecules. This gives rise to 

optical activity but, moreover, it appears also to be of influence 

on the zero wave number dielectric susceptibility. In chapter III 

we consider composite lattices, especially composite point dipole and 

quadrupole lattices. In contrast with the simple lattice the 

composite lattice can also show first order spatial dispersion if 

the molecules are represented by point dipoles.

The expressions for the dielectric susceptibility in the 

various cases contain lattice sums which are slowly convergent.
4 5)

Following a method developed by Ewald ’ and later generalized by 
Nijboer and De Wette ^ each of these lattice sums is transformed 

into two rapidly converging lattice sums, one over the original 

lattice and one over the reciprocal lattice. These rapidly converging 

lattice sums can easily be calculated numerically for the various 

types of crystals. The calculation is performed for a few simple 

examples.
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I. FORMAL THEORY AND APPLICATION TO SIMPLE POINT-DIPOLE LATTICES

Synopsis

In this paper a general expression is given for the wave vector- and frequency-dependent 
dielectric-susceptibility tensor of a simple perfect lattice of fixed nonpolar molecules with given 
polarizability tensor. The general expression is applied to a lattice of point dipoles. For this 
point-dipole model the effect of second-order spatial dispersion is studied, especially for cubic 
lattices.

1. Introduction. In the present paper we shall give a general formal expression 
for the wave vector- and frequency-dependent dielectric-susceptibility tensor of a 
molecular crystal in terms of the polarizability tensor of the (nonpolar) molecules 
(section 2). These molecules are supposed to be identical, equally oriented and 
fixed at the lattice points of a Bravais lattice. We neglect lattice vibrations since 
for molecular crystals the influence of the molecular displacements on the dielec
tric properties is in general small. The small temperature dependence of the di
electric constant is sufficiently accounted for by the change of density (see, e.g., 
ref. 1). The molecular-polarizability tensor is assumed to be given. The wave vec
tor dependence (spatial dispersion) of the dielectric tensor is usually small in 
optics and is in crystals characterized by a parameter which is of order of the 
ratio between some characteristic length e.g. a lattice constant a and a distance / 
over which the fields in the crystal change. Although quantitatively small the 
effect of spatial dispersion gives rise to qualitatively different phenomena such as 
the well-known effect of optical activity (first order) and optical anisotropy of 
cubic crystals (second order).

The general formalism will be applied to a lattice of point dipoles (section 3). 
For this model the dielectric susceptibility is expressed in rapidly converging lat
tice sums involving gamma functions. In section 4 spatial dispersion is studied to 
second order. By the symmetry of the Bravais lattice with point dipoles there is 
no first-order spatial dispersion which means that the system is nongyrotropic
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(i.e., there is no optical activity). To Oth order we have exactly the result obtained 
earlier by Vlieger for isotropic point dipoles2). To second order spatial dispersion 
is especially investigated for cubic lattices. The corrections to the refractive in
dices for different directions of propagation of light are calculated and compared 
with the result of Lorentz3).

The assumption of sections 3 and 4 that we are dealing with a point-dipole 
lattice means that no spatial dispersion is taken into account with respect to the 
molecules themselves or equivalently that we have neglected in the molecular 
polarizability terms of order of the ratio of the effective diameter d of the mole
cules to /. Since in crystals d is of the same order as the lattice constant a it is 

! not very realistic to neglect terms of order dll and at the same time take into ac
count terms of order (a//)2. For nongyrotropic molecules, however, there is no 
contribution of first order in d\l so that the given results are valid for a lattice of 
nongyrotropic molecules with the assumption that d is sufficiently smaller than a 
so that d2 a2. In the next paper we shall apply the formalism of section 2 to 
the case that we also take into account spatial dispersion with respect to the 
molecules by means of a multipole expansion. To first order this will imply optical 
activity.

2. Formal theory. Consider an infinite three-dimensional simple perfect lattice 
(Bravais lattice) of identical equally oriented molecules at fixed positions Rt. The 
system is subjected to an arbitrary external electric field

Etxx (R, co) = J e,c)f Eext 0R, t) dt, (2.1)

of frequency co. The induced microscopic dipole-moment density Pl (.R, co) of the 
zth molecule is assumed to be linearly dependent on the effective field strength 
Efrt (R, co) acting on molecule i:

Pl (R, co) = J <s (R - Rl}R' - Rt; co) • E? (*', co) dR', (2.2)

where <y (r, rco) is the molecular polarizability. In the semiclassical method we 
use classical fields whereas the polarizability tensor is calculated quantum- 
mechanically4,5). The effective field acting on the zth molecule is given by:

Ef (.R, co) = EtxX (.R, co) - £ F (R - R', co) • Pj {R\ co) dRf
j*t

- J i [F (R- R\ co) - F+ (R - R', co)] • Pt (Rf, co) dR', (2.3)

where the second term is the field induced by the other molecules and the third 
term is the reaction field of the zth molecule. The retarded vacuum propagator of 
the electromagnetic field is given by

F (R, co) = -(VV + co2) e,(a,+IO)R/47ri?, (2.4)
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where R = |/?| and iO is an infinitesimal small positive imaginary number. We 
have chosen units such that the velocity of light is one. F+ (R, co) is the advanced 
propagator which is the adjoint of F (/?, co). The choice of the reaction field is in 
essence the same as the choice originally made by Dirac6,7) for a system of point 
charges. See also refs. 8 and 9. From eqs. (2.2) and (2.3) follows:

Pt (R, co) = J dfl'<y (R - Rl} R' - R(; co)

• (/?', a>) - £ J F (*' - R", co) - Pj (*", co) dR"
\ j*i

- J i [F (*' - R", co) - F+ (*' - R\ co)]-Pi (*", co) dR"j.

(2.5)
We assume that the molecules are not overlapping so that for each molecule, say 
the zth, we can choose a region gt containing this molecule and no others. This 
implies that <r (R - Rl} R' - Rt ; co) = 0 for R$gt so that Pl (R, co) = 0 for 
R$gi- From the symmetry property of a viz. au (r, r'; co) = aJt (r\ r; co)4) we 
also have a (R — Rt, R' — Rt; co) = 0 for R’ $gt. Now define8,9):

H, (R, R'; co) =
F (R - R', co) for R'^gt 

i [F (.R - R’, co) - F+ (R - R’, co)] for R' e gt
(2.6)

and further

P(R, co) = (*> *>). (2.7)

Then it follows with (2.5), (2.6) and (2.7) that

P (R, co) = J dR' £ a (R - Rt, R' - Rt; co) • £ext (*', co)
t

- SdlC'LaiR - R„R' - R, ;co)
t

•Jd/TH ,(R', R";co)-P(R\co). (2.8)

With the definitions

a (R, R'; co) = £ a (R - Rlt R' - J?,; co) (2.9)
i

and

(2.10)H„ («, R"; co) = Yi dfl'o (« - R„ R' - Rt; co) ■ H, (R', R"; co)
t

3



eq. (2.8) becomes

P(R, co) = J AR'a. (R, R - co) ■ £"' (R\ to)

-Jd£'H„ (£,£'; co)-P (R\co). (2.10

In operator notation this can be written as

P = «•£«* - Ha-P, (2.12)

with the formal solution

P = (l + H,)“x (2.13)

From the definition (2.9) of a and the fact that Hff [cf eq. (2.10)] can be written 
as

H„ (*, R", o>) = X h„ (R - R„ R" - R,; co), (2.14)
l

with

h. (*, R"; co) = | d£'(r (R, R'; oj) • H(=0 (R', R"', co), (2-15)

it follows that (see appendix A): (i) a and are periodic so that in k representa
tion

at (k, k’\co) = X a* (*, to) 6(k - k’ - kx), (2.16)
A

H. (*. ») « £ Hi (*, <o)6(k- k' - *,); (2.17)
A

and (ii)

aA (A:, ca) = (2-)3 ga (Ar, A: - Ar;; co), (2.18)

Hi (*, to) = (2ti)3 eh„ (A, £ - to), (2.19)

Here kx is a reciprocal-lattice vector and £> is the density such that q~1 = v is 
the volume of the unit cell of the lattice. The Fourier transform f(k, k') of f(R, /?') 
is defined as

/(*, A;') = (2-)" 3 J dR dR'f(R, R’) e~ikR e1*'*'. (2.20)
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Since products and inverses of operators as (2.16) and (2.17) have the same form 
in this representation the operator (1 + H,)"1 • a in (2.13) can be written as

[(1 + H,)-1. a] ft k'; co)

= ![(! + H.)-‘ • *]* (*, to) 6 (k - k‘ - kj. (2.21)
A

Thus we get for eq. (2.13):

P (At, to) = X [(1 + H„)-1 • ol]1 (k, to) • £«' (k - k„ to). (2.22)
A

Now we assume that Eext (k', co) # 0 only for k' in the first Brillouin zone, 
which is e.g. the case in optical experiments. This implies that in the sum of the 
r.h.s. of eq. (2.22) only one term survives. If we furthermore restrict ourselves to 
values of k lying in the first Brillouin zone this term is the k^ = 0 term so that

P (k, oj) = [(1 + H,)-1 • a]0 (*, a>) • (k, a>). (2.23)

It is this equation that should be used in the macroscopic, i.e., long wavelength 
description of the optical properties of a crystal. On the other hand we have for 
the macroscopic susceptibility

P (*, (o) = X (k, co) • (k, co) - F (k, co) • P (k, to)]

= X (^> co) * E (k, co), (2.24)

where E is the Maxwell field. Defining xcxt (k, co) by

P (kj co) = xcx‘ (k, co) • E<" (k, co), (2.25)

we obtain

X (*, co) = xexl (k, co) - [1 — F ft co) • xcxt ft co)]"1. (2.26)

By comparing eqs. (2.23) and (2.25) we get

Xext ft co) = [(1 + H,)-1 • a]0 ft co). (2.27)

Eq. (2.27) substituted into eq. (2.26) gives a formal expression for the macroscopic 
dielectric-susceptibility tensor x ft co) and the dielectric tensor z ft co) = x(k,co) 
-f 1 for a Bravais lattice of molecules with given polarizability a (r, r'; co). In the 
next section we shall investigate this susceptibility tensor for a lattice of point 
dipoles.

5



3. The dielectric-susceptibility tensor for a point-dipole lattice. Consider the case 
that the molecular polarizability a is given by

a (r, r'; co) = a°(co) 8{r) 8 (r - r'). (3-0

By (2.2) we get for the induced dipole-moment density of molecule i:

p, (R, co) = a°(a>) • 2j,efr (/?, co) <5 (tf - /?,). (3-2)

We then have a lattice of point dipoles, the induced dipole moment of molecule / 
being

PM = J Pi (R, w) d/? = a°(co) • F,eff (i?,, a>). (3.3)

For this model we can take for the region gt, containing molecule i and no 
others, a sufficiently small sphere of radius d centred at Thus we can define 
the propagator H/ (R, R'; co) by8)

H/ (Ry R'; co) e= H (R - R\ o)

fF (R-R',a>) for \R - R'\ > d,

U [F (R - R\ co) - F+ (R - R\ co)] for |R - R'\ < d.

With this definition we find from (2.9) and (2.10)

Ha CR, R"; co) = J dR ai (.R, /?'; co) • H (R' - R", co), (3.5)

or in operator notation

H„ = a-H. (3.6)

The expression (2.27) for the external dielectric susceptibility therefore becomes 
in this case

Xext (*, o>) = [(1 + a • H)-1 • a]0 (k, co). (3.7)

Now we have in the discrete representation introduced in appendix A [cf 
eq. (A.9)]

Hx(k,co) = H (k, co) 8Xt0. (3.8)

Furthermore it follows from eqs. (2.9) and (3.1) that

a (R, R';co) = a°(co) ^ 8 (R - Rt) 8 (R - R'), (3.9)
i
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so that with eq. (A.6) we get 

aA (k, co) = ga° (co). (3-10)

Using the product rule (A.4) we get for eq. (3.7)

x“* (*, e>) = I [(I + a ■ H)-1]* (k, co) • tx~x (k - klt co). (3.11)
A

With eq. (3.10) this becomes

(k, ft>) = £ [(1 + a ■ H)-‘]A (*, co) • Sa° (oo). (3.12)
A

The inverse operator (1 4- a • H)"1 with aA (k, co) = ga° (co) can easily be cal
culated (see appendix A). The result is [cf. eq. (A. 17)]:

[(1 + a • H)_1]a (k, w) = <5At0 - ^1 + go.0 (ft)) • Z H (k - kXi co)^-1

• go.0 (w) • H (k - kx, co). (3.13)

From eqs. (3.12) and (3.13) we get

Xext (k, w) = |1 + («) * Z H (k - kx, co)^-1 • pot0 (co). (3.14)

Here the symbol — 1 denotes simply tensor inversion.
Inserting (3.14) into (2.26) we get

X(k,co) = ( 1 + ga° (co) • Z H (k - kXf co) - g*° (co) • F (k, co)) ”1 • ga° (co).
V A 1 (3.15)

For the lattice sum appearing in eq. (3.15) we can write

e I H (* - kh co) = e E J H (R, co) e-‘<*-**>-* dR = X H (R„ co)
A A l

= X' F (*„ ») e-“’s' + 4- [F (R, m) - F+ (*, co)]R=0,
' (3.16)

where we have used the definition of H (R, co) and the equality10)

= X d (R-R,). (3.17)
A /

In eq. (3.16) and in the following Z! denotes a sum over all the lattice points of 
the infinite crystal except the (arbitrarily chosen) origin Rt = 0. Let us define

{>M (k, co) = Z' F(i?,,co)e",A,i?‘ - limp J F (R, co) e~lk'R dR
l d-*0 c(d)

+ i[F(R,co)~ F+(*>")]*=<,> (3.18)

7



where in the integral a small sphere of radius d around R = 0 is cut out. Then we 
have

X H (fc - kx, co) = M (*, co) + lim J F (R, co) e",A 'f dtf
A d-+0 £(d)

= M {k, co) + F (k, co) - i. (3.19)

Thus we get for eq. (3.15)

X (Ac, a>) = [1 — (co) + qol° (a>) • M (k, co)]"1 • £>a° (co). (3.20)

It is convenient to write (3.18) as

eM (*, co) = 1’ i [F (R„ co) + F+ (*„ co)] e’1**'
i

- )ime f i [F (/?, to) + F+ (/f, co)]e~“ *d«
d~* 0 t(d)

+ £i[F (R,,co)~ F+ (R,, co)] e~tk'K‘
l

- e J i [F (R, co) - F+ (A, co)] e_lt * dR. (3.21)

The last two terms of the r.h.s. of this equation can be written as

I' i [F (* - co) - F+ (* - kh co)] = i £' Im F (* - co), (3.22)
A A

since F is symmetric. Using the explicit form of F (A:, co) we have

Im F 0k, co) = i-fc-1 [(5 (k + co) - 6 (k - co)} (kk - co2), (3.23)

so that

I' Im F (ft - klt co) = i« X' —[<5 (I* - ftj + co) - <5 (|* - *,1 - co)]
A a \k - k;\

x [(k — kx) (k — kxj — co2}. (3.24)

For frequencies co smaller than the radius of the largest possible sphere in the 
first Brillouin zone with centre the origin this term vanishes since we have chosen k 
in the first Brillouin zone so that \k - kx| ^ co for k;, ^ 0. Even for frequencies 
in the u.v. region this condition for co is certainly fulfilled. The vanishing of the 
last two terms of the r.h.s. of eq. (3.21) and the corresponding contribution to the

8



dielectric tensor implies the well-known fact that the ideal dipole lattice does not 
scatter light of optical frequencies. Consequently we have

qM (*, co) = £' i [F (R„ co) + F+ (Rt, co)] e"1**'
i

-lime J i [F (R,oj)+ F+ (R, co)] t~xk’R dR. (3.25)
d-0 c(d)

From eq. (2.4) follows

i [F (/?, co) + F+ (R, co)] = — (VV + co2) [(cos coR)I4t:R] exp ( — 0/?). (3.26)

The factor exp ( — OR) which serves as a convergence factor and in which 0 is an 
infinitesimal small positive number [cf. also (2.4)] will in the following not be 
written explicitly. We can write M (k, co) in terms of rapidly converging lattice 
sums by using a method introduced by Nijboer and De Wette10). The trans
formation will be done in appendix B. The result is [cf. eq. (B. 13)]

4-£)M (k, co) - r (w + co2)
l

cos coRt
L V 2 a2 , *t J

+ 4-0 y (* - (* - *a) - «>2
* * I* - *J2 " '(I* - «)

. kk — co2 8- 47: ^
+ 4~q 71----- 7 [J(k,co) - \] + — + —Q, (3.27)

k2 - co2 3a3 3

where the functions J (k, co) and r(n, x) are defined by 

k - co /j _ a2 (A: + co)2\ ^aHk+0J)2/4nJ (k, co) =
2k

k + co 
2k

2x

j _ Q (& CO) ^ ^-a2(A:-0>)2/4jr

27:

and

(3.28)

f (n, x) s [1 II\n)] J e“' /"-1 dt. (3.29)
a:

M (k, co) as given by eq. (3.27) does not depend on the length a which serves as a 
“cut-off” parameter in the method of Nijboer and De Wette. In order to ensure 
the rapid convergence of both lattice sums a must be of the order of the lattice

9



constant. In the following we will choose

a3 = Q' (3.30)

In the next section we assume that ak 1 and aco < 1 and expand M (k, co) in 
powers of ak and aco up to second order.

4. Weak spatial dispersion. We now assume that co is an optical frequency such 
that aco -4. 1 and furthermore we assume that ak 4 1 which means that we con
sider weak spatial dispersion. If we expand M (k, co) in powers of ak and aco we 
have no odd-order terms in ak by the symmetry of the lattice and no odd-order 
terms in aco since M (k, co) = M (k, — co). So up to second order we can write

M (*, co) = M(0) + M"(e») + M(2)(*),

with

and

M"(a>) = a2co2Ji"

M(2)(Jfc) = a2kk:JP2\

(4.1)

(4.2)

(4.3)

«^(2) is a tensor of fourth rank. With the expansion (4.1) we can expand the 
susceptibility (3.20):

X (k, co) = x(0)(w) + X(2) (k, co),

with

Xi0\co) = [1 - ipa° (co) + pa° (co) • M(0)]"1 • ^a° (co)

and

X(2) (k, co) = -x(0)(co) • [M"(co) + M(2)(/fc)] • x(0)(co).

(4.4)

(4.5)

(4.6)

We shall treat successively the dielectric tensor to 0th order (section 4.1), to 2nd 
order (section 4.2) and the expansion of the inverse dielectric tensor (section 4.3).

4.1. The zeroth-order dielectric tensor. From eq. (3.27) we find to 0th 
order with use of eq. (3.30)

M(°) 1 - 3/t/Iti
*3

_ fltv'rfL 1 ~ 3i
47zt \2 ’ a2 J R*

- X' *,*| t'"*** + Y: kjcx e“fl2*A*/4n. (4.7)
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From eq. (4.5) we obtain the following expression for the dielectric tensor to Oth 
order

e°(a>) = x(0)(w) + 1

= [1 - $qol° (co) + qol° (co) • M(0)]-1

• [1 + (co) + oa° (co) • M(0)]. (4.8)

In combination with eq. (4.7) this is exactly the result obtained earlier by Vlie- 
ger2) for isotropic molecules [a°(a>) = <x°(a>)]. Note that his expression G is equal 
to our 4tcM(0). This result could have been obtained immediately by taking k = 0 
and to = 0 in eq. (3.25) giving the static dipole sum (47tg)_1 RJ2 (1 — 3Rfii). 
The convergence of this sum is ensured by the convergence factor or equivalently 
by summing over a sphere of volume V and taking V -+ oo (cf ref. 11). If we 
apply the method of Nijboer and De Wette (cf. appendix B) to this static dipole 
sum we obtain immediately eq. (4.7) which consists of strongly converging sums. 
For a cubic lattice the first term of the r.h.s. of eq. (4.7) vanishes by symmetry 
while the last two terms cancel so that M(0) = 0. Then we have

e°(co) = [1 - iQ*o (co)]"1 . [1 + fea° (co)].- (4.9)

If moreover the molecules are isotropic this becomes the Lorentz-Lorenz formula 
for the dielectric constant

e°(co) = [1 + $q<x° (cd)]I[ 1 - ie*° (co)]. (4.10)

4.2. The second-order dielectric tensor. From eq. (3.27) we can cal
culate the tensors M" and »///(2). By straightforward calculations we find*

4 t,m" = 2 - r i-f f (4. o + *A)
a Rk \2 a2 J

e'°J*Al/4"(1 - *A) +1'e-2"'*”(1 + *A) (4.in
a a2kx a

and in cartesian components

4*Jt^u = X' [kimWfW + KRXgtfx)]

+ X' Itift&tfa (kx) + (6J$k} + 8mJKK) c(kx).A; A A».A .A/A\

+ (filfimj + dtjdmt) d(kx)\ ~ i (dlidmj + (4.12)

* For a choice of a different from a = q~ 1,3 one should multiply the sums in l?-space in 
eqs. (4.11) and (4.12) with a factor (a3g)~l.



where

f(R) ^~r 
2 R

+ 2- — e 
a2

R2 -r-.R2/a2

a(k) a2k2 4~ Q-a2k2/4r>

ark2

b{k) — a2k2/4n 
c >

dk) = 2b (k).

d(k) = —a2k2/4r>

a2k2
(4.13)

In eqs. (4.11) and (4.12) we have denoted lattice points by R? in order to avoid 
confusion with the cartesian index i. So k] is the i component of the unit vector 
in the direction of the lattice vector Rx and similarly for kHence we get with 
eqs. (4.2), (4.3) and (4.6) for the expansion up to 2nd order of the dielectric tensor 
£ {k, co) = x (£> to) + 1 in cartesian components (with summation convention):

e,j (k, to) = s?/to) + e"j(co) + e\jy (k, co), (4.14)

where ef/co) is given by eq. (4.8),

*i» = -fl2to2 (e?k(co) - 6tk) Ml, [£° (co) - <5„] (4.15)

and

(*, to) = kmknanmiJ (to), (4.16)

with

ocnmlj(c>) = -a2 [£?k(to) - dlk] Mili, [*?/to) - 6tJ]. (4.17)

The fourth-order tensor ocnmlJ((o) should not be confused with the polarizability 
tensor. We have chosen the notation of ref. 12. The evaluation of e (k, co) for a 
particular type of lattice is now reduced to the numerical calculation of the strongly 
converging lattice sums M(0), M" and J({2).
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As an example we consider the case of a simple cubic lattice with isotropic 
molecules. For a cubic lattice the tensor J(" reduces to a scalar m" which is for 
a simple cubic lattice [with eq. (3.30)] given by

v 2*
* 3tfA

Here we have used the fact that

W' = 2-X,-^-erfc(^^)-Z'/ 2°2
T 3xR]

and that for a simple cubic lattice

= X'/Wtf) £(/?,)■
>■ X

For the dielectric tensor we then have

eu(k, to) = [e°(w) + c\u>)) 6U + k„,k„<x„mt] (co), 

where e°(co) is given by eq. (4.10) and where

(4.18)

(4.19)

(4.20)

(4.21)

c"(<u) = -a2co2 [e°(co) - l]2 m“ (4.22)

and

«n„,iAco) = -a2 [£» - \)2 J<™j. (4.23)

The tensor Jt^j (hence also <xnmlj) has in the case of a cubic lattice 2 independent 
components*. If we let the coordinate axes coincide with the three fourth-order 
axes of the cubic lattice we have

^ X XXX = t

^xxyy — ^yyxx — M 2 “ >

y/(2) _ y/(2> _ y/(2) _ y/<2)
t/fC xyxy — yxyx '/tl xyyx '/*t yxxy = m3

and the cyclic permutations xyz -> yzx -*■ zxy. (4.24)

The other components are zero by symmetry. The lattice sums can be computed 
to any desired accuracy; due to the strong convergence only a few points are

* In general one has 3 independent components for these lattices12). The relation m2 = — i/ni 
in eq. (4.24) is a consequence of the point-dipole model.
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sufficient to get a good result. We find for a simple cubic lattice

47WJ! = 0.3297, 4-m2 = -0.1648, 4*m3 = -0.6377 (4.25)

and from (4.18)

4-m" = 1.8915. <4-26)

Let us consider homogeneous normal waves in the crystal for which

k = n (k, co) cok, (4.27)

where n (k, co) is the complex refractive index in the direction of k. From the 
phenomenological theory (ch. 3 of ref. 12) follows the way in which this refractive 
index depends on the different directions of k. As a first example let us consider 
transverse waves propagating along an edge of a cube. One then finds the follow
ing dispersion relation independent of the polarization.

n2 = (e° +e")/(l -«i). (4-28)

Here and in the following

ocp = (o2ap = —a2co2 (e° — l)2 mp (p = 1, 2, 3). (4.29)

Using eqs. (4.22), (4.25), (4.26) and (4.29) and neglecting higher than second-order 
terms in aco eq. (4.28) can be written as

n2 = #?o + (■a2oj2l4iz) (wj - l)2 (0.1648/7? - 1.8915), (4.30)

where n\ — e°.
As a second example let us consider transverse waves propagating along a face 

diagonal of the cube. We then have the following dispersion relations depending 
on the polarization:
i) for transverse waves polarized perpendicular to the face plane:

n\ = (e° + £")/(! - 4); (4.31)

ii) for transverse waves polarized in the face plane:

n\ = (fi° + £")/(l - *'2 - i«0, (4.32)

where

a' = «i — a 2 — 2«3. (4.33)
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We then get with the numerical values (4.25) for the difference between the refrac
tive indices:

nx ~ Hi = 0.1106 (a2(o2liz) n0 (hq — l)2. (4.34)

Note that this difference does not depend on e" since this correction is isotropic 
in the cubic case. The results (4.30) and (4.34) have already been obtained by 
Lorentz3).

Finally we consider transverse waves propagating along a main diagonal of the 
cube. In this case we have the dispersion relation (independent of the polariza
tion)

n2 = (e° + «")/(! - *i - K) (4.35)

and with the numerical values (4.25) and (4.26)

n2 = «o — (a2co2/47t) (n\ - l)2 (0.4252*o + 1.8915). (4.36)

The same calculations can be done for the face-centred cubic and the body- 
centred cubic lattices. For the numerical values of mi, m2, m3 and m" we find for 
the f.c.c. lattice:

4tt mi = -0.5974, 4tc m2 = 0.2987,

4 tcw3 = -0.1827, 4tt #n" = 1.9255,

and for the b.c.c. lattice:

4 Tznti — —0.5893, 4ttm2 = 0.2946, 

4 -m3 = -0.1868, 4twi" = 1.9256.

4.3. Expansion of the inverse dielectric tensor. We can also consider 
the expansion of the inverse dielectric tensor £-1 (A, a>). This expansion is con
venient near dipole transitions where e°(co) may assume large values. Far away 
from transitions this expansion is equivalent to the expansion of £ (A:, a>). From 
eq. (4.14) follows:

E-i (A, co) = [£°(co)]“1 - [fiV)]"1 * e'W • [£0(ct>)]_1

- [fi0^)]-1 • £(2) {k, to) • [£°(o>)]-x, (4.37)
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where £"(g>) and e(2) (ky co) are given by eqs. (4.15), (4.16) and (4.17). In the case 
of isotropic molecules on a simple cubic lattice eq. (4.37) becomes

E~ 1 (*, o>) = —— + a2co2 (1-------—V

+ (l - —1—) a2kk:jr2\ 
\ «°(«))

(4.38)

where e°(a>) is given by (4.10).
Let the coordinate axes again coincide with the three fourth-order axes and let 

us consider transverse normal waves propagating in the crystal. For waves prop
agating along an edge of a cube we then have the following dispersion relation 
independent of the polarization12):

(1 In2) = (\le°) + a2(o2 (1 - 1/e0)2 (m" 4- n2m2). (4.39)

In general we have two solutions for n2 one of which is very close to e° while for 
the other solution the condition a2k2 1 is violated. However, near a dipole 
transition at frequency co,, for which we may assume that e° (without absorption) 
has the form e°(eo) = e00 — A(o*l(aj2 — cof) there can exist a second solution for 
which n2 is large but the condition a2k2 <€ 1 is still satisfied. Then we can neglect 
m" with respect to n2m2 and eq. (4.39) becomes:

(1 /n2) = (l/e°) + n2m2a2(o2 (1 — 1/e0)2. (4.40)

We have similar expressions for the other main directions in the cubic crystal. 
For waves propagating along a face diagonal, with D polarized perpendicular to
the plane:

Ob2) = 0b°) + n2m2a2co2 (1 - 1/e0)2 (4.41)

and polarized in the plane:

Ob2) = Ole0) + n2 (m2 + im) a2g>2 (1 - 1/e0)2. (4.42)

For waves propagating along one of the main diagonals of the cube:

(1/n2) = Ole0) + n2 (m2 + im) a2co2 (1 - 1/e0)2. (4.43)

In eqs. (4.42) and (4.43), m = mL — m2 — 2. Using the numerical values (4.25) 
we find m2 = —0.1648/47U, m2 + — 0.7202/47C and m2 + = 0.4252/47C.
We must distinguish between a positive coefficient of n2 in the right-hand sides
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of (4.42) and (4.43) and a negative coefficient in (4.40) and (4.41). In the first case 
spatial dispersion induces the appearance of an anomalous wave propagating in 
a frequency region where with the assumed form of £°(co) total internal reflection 
would occur if no spatial dispersion had been taken into account. In the second 
case there exists a region at the lower-frequency side of the dipole line where two 
waves may be propagating with the same frequency but with different refractive 
indices and thus different wave lengths12).

APPENDIX A

A.l. Discrete operator representation. In this appendix we shall give the rela
tion between the continuous k representation and the discrete representation for 
periodic operators i.e. operators A for which in the R representation A (R, R') 
= A (R + Rlf R' + Rt) for each lattice vector Rt. In the k representation a 
periodic operator A can be written as

A (k, k') = £ A\k) d (k - k' - kx), (A.l)
A

where kx is a reciprocal-lattice vector. Working on a function y this yields

(Ay,) (k) = j dk'A (k, K) W(k') = Y Ak) V>(k- kj, (A.2)
A

giving the relation between the continuous representation A (k, k!) and the dis
crete representation A\k). For a product of two periodic operators A and B we 
have

CAB) (k, k') = J dk" X A\k) 6 (k - k" - kx) £ Bx'(k") d {k" - k' - kx.)
A A'

= ZZA\k)Bx'(k - *J<5(* -k' -kx- kx)
A A'

= I Z A\k) B»~x (k - kx) 6 (k - k' - kj, 
a a

so that

(A.3)

(AB)l(k) = YAk)Bx-“(k-kJ. (A.4)

For the unit operator we have

m = aa>0 - r1 for ^ = 0>
Lo for kx * 0.

(A.5)
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A.2. A property of periodic operators. If the operator A is of the form A (R, R)
= X* a (R — Rt> R' — Ri) it can easily be shown that

Al(k) = (2^ea (k,k-kx), (A-6>

where p"1 = v is the volume of the unit cell of the lattice. From eq. (A.4) we see 
that for a product of two such operators:

(AB)1 (k) =e^a(k,k- kr) b(k - kx.,k- kx). (A 7)
X'

A.3. A property of diagonal operators. Suppose an operator H is diagonal in the 
k representation so that

H (k. k') = H(k) 6{k- k'). (A-8>

In this case

H\k) = H(k) «ii0, (A.9)

so that with (A.4):

(AH)1 (k) = £ A“(k) Hl-“ (k - kj

= X A“(k) H(k — k„) 6X„ = A\k) H(k-kJ. (A. 10)

If A is of the form (A.6):

(AH)1 (k) = (2tt)«' sa (k, k - kx)H(k- kx) (A-11)

A.4. Calculation of [(1 + a • H)"1]1 (*) = i\k) with a\k) = ga°. The inverse 
operator is defined by the equations

[f • (1 + a ■ H)f (k) = [(1 + a • H) • f]A (k) = 6X,0. (A. 12)

From eqs. (A.4), (A.10) and the fact that a\k) = pa0 is a constant, (3.10), we
have

[f • (1 + a • H)]f (*) = X m • [1 + a • H]*-" (k - k„)
M

= L m • + a1-" (k - k„) ■ H (k - *,)]
M

= f\k) + \{k). pa° • H (k - kx), (A. 13)
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where

f(*) = If \k). (A. 14)
X

So with eq. (A. 12),

= Sx.o ~ ef (ft) • 0t° • H (ft - *,) (A. 15)

and with (A. 14)

f(*) = (1 +ea°-lH(*-*,)j-1. (A. 16)

Thus we get

f;W = <5a.o - (1 + e«° ■ £ H (ft - ft,.))'1 ■ Q*° ■ H (ft - ft,). (A. 17)

The second equality of (A. 12) can be easily verified.

APPENDIX B

In order to express M (k, co) in rapidly converging lattice sums we write for 
eq. (3.25)

4tc^M (k, co) £' (VV + co2) C°SyR‘ j e~ik'Kl

r (w+ ,■) (|. ^L)^]

where

- lim 4~g J \ [F (R, co) + F+ (R, o>)] dfl,
d~* 0 c(d)

r{n,x) = [l/r(n)]f e r/” 1 dt = r («, x)ll\n)

and

(B.l)

(B.2)

y (n, x) s 1 - t(n, x). (B.3)

r(n) = r (/z, 0) is the gamma function and /’(«, x) is the incomplete gamma func
tion. We have introduced a “cut-off” parameter a which is of the order of the lat
tice constants. Since the function r(i, izR2/a2) is rapidly decreasing over a few 
lattice points the first term of the r.h.s. of eq. (B.l) is a rapidly converging lattice
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sum. The second term can be transformed into a rapidly converging lattice sum 
on the reciprocal lattice. If we use eq. (3.17) we can write

-r<vv + »*)[f (i,^

= J (W + a,*) |'y

-R, \ cos coR
R,

3 ~R2 \ cos
2 ’ a2

s (oR~\ e-ik-

K J d R

^ __ f.^_ T /3 ~R2 \ coscoi?"]]- ,Z FT,|(W + „•) (T, —) — (B.4)

where

ft3 umk-kx = im e-1*-**1-* d r.

The first term of the r.h.s. of eq. (B.5) can be easily calculated. The result is

(B.5)

(B.6)

For the Fourier transform in the second term we have by integration by parts

coRf /r7r7 / 3 t.R2 \ cos o e~ik*d R

hi 2\ i — i 3 t,R2 \ cos coR= (kk - co2) I y I —,------ I------------e1 “,Jfd R. (B.7)
2 a2 ] R

Using spherical coordinates we find by straightforward calculations

2::J y ^2, C-°^A e->k R dR = [Kk, co) + I{k, -co)],

with

I(k, co) = 0>
\___(\— a2 (k + ca)2 \
+ cu \ 2tz )

(k + ft))2 \ -a2 (k + a))2/47t

(B.8)

(B.9)
k + ft) V 2tz

in which & stands for “principal value’’.
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Substituting (B.6)-(B.9) into (B.5) we get for the second term of the r.h.s. 
of (B.l), since k and to are such that |k — kx\ > to for kx ^ 0:

lf(3 *Rr\ cos coRt ~]
L U’ a2 , ’ *i J

, h + , a* _ *j,
3fl3 A Ik - kx|2 - co2

+ 4^^

where

J (/c, co) =

kk -
k2 - co2

k -

7(fc, co), (BIO)

2k
w / j _ (A: + co)*1 \ ^_fl2(fc+£l))2/47r

2tc

k + v A _ Q2 (£ ~ co)2 ^ e_fl2(fc_a,)2/4^ 
2k V 2*

(B.l 1)

Furthermore we have

- lim | i [F (R,o>) + F+ (R, oi)]e"ik'R dR = -& —-----— + —.
d-o E(d) At2 — to2 3

From (B.l), (B.10) and (B.l2) we then obtain

4^(?M (k, 01) = (W + to2) £r ^P) C0SJ^-‘-j e~'k R'

(B.12)

. (k — kx) (k — ki) — to2 r... . . x+ 4^ X'v- j— Ad* - a>)
2 I* - *J2 - "2

. kk — (a2 .... . 8^ 4tt
+ 4wg —------- — [7(k, co) — 1] + + — g-

k2 - co: 3 fl3 3
(B.l 3)

Note that the poles of (k2 — a>2)-1 are cancelled by the zeros of J (k, co) — 1 in 
k = ±co. By the gamma functions we now have two rapidly converging lattice 
sums.
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II. FIRST-ORDER SPATIAL DISPERSION AND OPTICAL ACTIVITY

Synopsis

The general formal expression for the wavevector- and frequency-dependent dielectric sus
ceptibility tensor of a simple molecular crystal, derived in paper I, is applied to the case of a 
Bravais lattice with gyrotropic molecules. The dielectric susceptibility tensor is calculated with 
first-order spatial dispersion and from this an expression for the gyration tensor is derived. As 
an example the optical rotatory power is calculated for light propagating along the optical axis 
of a gyrotropic tetragonal crystal.

1. Introduction. In our previous paper1), in the following denoted by I, we 
have derived a general expression for the wave vector- en frequency-dependent 
dielectric susceptibility tensor of a simple perfect lattice of fixed nonpolar mole
cules with given polarizability tensor. The general expression was applied to a 
lattice of point dipoles. The electric dipole moment can be considered as the first 
term of a multipole expansion of the continuous dipole distribution of the mole
cules.

In the present paper we shall extend the application of the formal theory of I 
with the second term of this expansion (electric quadrupole moment and magnetic 
dipole moment), which ijieans that the ratio d/l of the linear dimensions of the 
molecule d and the length / over which the fields change appreciably, is not 
neglected but taken into account to first order (section 2).

In section 3 we derive the expression for the dielectric susceptibility tensor for 
the point dipole-quadrupole lattice. This tensor has the same form as the suscep
tibility of the point-dipole lattice, derived in I, but with the dipole polarizability a0 
now replaced by a structure- and ^-dependent tensor. The appearing lattice sums 
are transformed into rapidly converging sums. This susceptibility tensor is ex
panded in section 4 up to first order in dk. The zeroth-order term of this expan
sion is not exactly equal to the zeroth-order susceptibility calculated in I for the
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Joint-dipole lattice. The difference is that a0 has still a correction which is of 
)rder d2/a2 where a is a length of order of the lattice constants. From the first- 
5rder term we derive a general expression for the gyration tensor of optically 
ictive molecular crystals.

In section 5 we use the expression for the gyration tensor to calculate the optical 
rotatory power 0 for some special cases and compare 0 with the results of Hoek2), 
Maaskant and Oosterhoff3) and Terwiel and Mazur4) for fluids. In the isotropic 
sase the results are the same apart from statistical effects which have been neglected 
in the present paper: 0 is proportional to | (nl + 2), where n0 is the zeroth-order 
refractive index. In general we have additional terms for crystals. We find for 
example in the case of a tetragonal crystal that for light propagating along the 
optical axis the expression for 0 contains not only a term proportional to $ (n\ + 2), 
but also a term proportional to ^ (n\ + 2) (n\ - 1), where nL is the zeroth-order 
refractive index in that direction. Finally we give a discussion in section 6.

2. The multipole expansion. In paper I we have derived a general expression 
for the wavevector- and frequency-dependent dielectric susceptibility tensor 
X (k* cd) of an infinite molecular crystal in which lattice vibrations are neglected. 
In our model the crystal consists of identical, equally oriented molecules with 
given molecular polarizability, fixed at the lattice points of a Bravais lattice. If 
we define the external susceptibility xext (k, cd) by

P (*, co) = (k, a>) • (*, cd), (2.1)

in which P {k, cd) is the polarization and Eext (k, cd) is the external electric field, 
we can express the susceptibility x (k, cd) in terms of xext (k, oj) by the formula

X (k, cd) = Xext (k, cd) • [1 - F (*, cd) • xext (*, cd)]-1. (2.2)

F {k, co) is the retarded vacuum propagator of the electromagnetic field and is 
given by

F (*, CD) — \\Tzk~x [d (k + cd) — d (k — cd)] j (kk — cd2).
/ (2.3)

We have chosen units such that the velocity of light is unity. We note that all the 
information about, e.g., the refractive indices and the optical activity, charac
terized by the gyration tensor, is contained in the wavevector- and frequency- 
dependent dielectric-susceptibility tensor x (k, cd)5). We have derived in I that for
our model

Xext (k, cd) = [(1 + Hff)-1 • a]0 (k, cd). (2.4)
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The expression on the r.h.s. of eq. (2.4) is an operator product, the general form 
of which is

(AB)l(k) = £ A\k) B1-* (k - k„), (2.5)

so that

(ABf (k) = X A“(k) B->‘ (A - A„), (2.6)

see appendix A of I. The sums in eqs. (2.5) and (2.6) run over all lattice points k^ 
of the reciprocal lattice. The operator a;‘ (k, oj) in eq. (2.4) is related to the mole
cular polarizability as follows*:

*'■ (A, co) = (2-)3 otj (A, A - A;.; w), (2.7)

where q is the density and

<r (k, k'\ to) = (2::) -3 J <t (r, r'; co) e~ik'r e,A' '1r' dr dr'. (2.8)

Here cr (r, r'; a>) is the molecular polarizability tensor, relating the dipole-moment 
distribution of a molecule (say the ith at lattice point R,) linearly to the effective 
field acting on that molecule:

pl (R, co) = J <r (R - J?,, R' - R,; co) - £cff (£', w) dR'. (2.9)

Similarly

(fc, co) = (27t)3 Qha (k, k - kx; co), (2.10)

where (k, k'; co) is the Fourier transform of hff (R, R'; co) defined by

hff (R, R';co) = J dR"<r (R, R"; co) • H/=0 (R", R'; o). (2.11)

Here

H, (R, R'; co)
F (R — R', co) for R'£g„ 

i [F (R - R', co) - Fr (R - R', co)] for R' e g„

in which g( is a region in space containing molecule i and no others.
In principle the susceptibility is known if one knows the lattice, the form of 

the regions gt and the molecular polarizability <x (r, r'\ co). We shall now apply a
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multipole expansion3) to eq. (2.9) and write for the polarizability up to first order 
(in cartesian components with summation convention):

(r, r'\ co) = <s°p(co) <5(r) d (r - r') - fc^co) Vy [d(r) d (r - i*')l

- Pany(«) Vy [<5(r) d (r - !•')],

i

(2.13)

aafi(co) = Joyf} (r, r'; co) dr dr'. (2.14)

P*py(co) = Jcaf} (r, r'; co) r' dr dr'. (2.15)

Pafiy(co) = J cra/} (r, r'; co) ry dr dr' (2.16)

H
III

>h
i>

>

(2.17)
\ dr Jy \dr'Jy

The first two moments of the continuous dipole distribution of molecule / then 
are with eqs. (2.9) and (2.13):

/’«(") = M (R, to) dR = a°f(oj) E'p" (R,, co) + ^,(<0) V..£p'rf (R,,co), (2.18)

which is the electric dipole moment, and

gLfi(co) = SpI (R, co) (R - R,)p dR = pafiy(a>) E? (Rt, co), (2.19)

which is a combination of the electric quadrupole moment and the magnetic 
dipole moment. Usually these molecular eqs. (2.18) and (2.19) are the starting 
point for calculations on optical activity2-4). We can, however, immediately use 
eq. (2.13), which becomes by Fourier transformation:

a*., (k, koo) = (2-)-’ [«>) - i^,(co) k, + \/}aPy (co) k’y), (2.20)

in the general expression (2.2) with (2.4) for the dielectric susceptibility. In the 
rest of this paper we shall restrict ourselves .to a molecular polarizability of the 
form (2.20). This implies of course that the variation of the effective electric field 
over the diameter of a molecule is only taken into account up to first order in k' 
(i.e. the first spatial derivative of this field). This is certainly appropriate for the 
variation of the external electric field, it is less appropriate for the fields of the 
neighbouring particles. In the derivation of eq. (2.4) in paper I the only assump
tion is that the external electric field varies slowly over the molecular diameter. 
We shall therefore be able to calculate the corrections due to the linear terms in k
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and k' in eq. (2.20) to the zerolh-order result for the susceptibility [x (k = 0)]. It 
will turn out that in extreme cases (P and p' large) this correction is not neglige- 
able. We shall come back to this point in the discussion (section 6) where we 
also shall give an estimate of the order of magnitude of corrections due to higher- 
order terms in the multipole expansion.

The multipole expansion offers the advantage that we can choose for gt small 
spheres of radius b < cl around the centres of the molecules, so that for each i:

H, (/?, R';co) = H (R - R',co)

Hence

F (R — R\ co) for \R - R’\ > b,

\ [F (R - R', co) - Ff(R- R\ co)} for |R - R'\ ^ b.
(2.21)

K (R, R';co) = j d/T<r (R, R"; co) • H (R" - R', co), (2.22)

so that

HA (k, co) = ex'- (k, oj) • H (k - ky, co). (2.23)

As a consequence the expression (2.4) for the external susceptibility becomes:

Xcxt (k, co) = [(1 + a • H)"1 • a]0 (k, co). (2.24)

With expression (2.21) for H and with (2.7) and (2.20) for a we can calculate the 
dielectric susceptibility, which will be done in the next section.

3. The dielectric susceptibility of a point dipole and quadrupole lattice. Now we 
use the molecular polarizability tensor given by eq. (2.20) so that, using eq. (2.7), 
the operator a in eq. (2.24) is given by

(k, co) = QOilp (co) - igP'apy (co) ky + iQpaPy (co) (k - ky)y, (3.1)

or in tensor notation:

a;* (k, co) = pa0 (co) — igp' (a>) • k + ipP (a>) • (k — ky). (3.2)

With this expression for a we can calculate exactly the corresponding dielectric 
susceptibility. First we shall calculate the inverse operator (1 +a*H)_1 in 
eq. (2.24). Defining

fA (*, co) = [(1 + a • H)-1]a (k, co), (3.3)
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we obtain with eqs. (2.6) and (2.24):

X"' (*, co) = £ fA (k, co) • a-1 co). (3.4)
X

From def. (3.3) and eq. (2.5) then follows

IH*, co) ■ [<5A.„ + (a - H)*-" (*-*„, co)] = <5,.0. (3.5)

Since we have (see appendix A.3 of I)

H* (*, co) = H (*, co) <5;,o, (3-6)

eq. (3.5) can be written as

il (k, co) + Y f" (k, CO) • a"-" (* - k„, co) • H (* - co) = <5A,0. (3.7)

From eq. (3.2) follows that

a?'-*1 (A — Ap, co) = qol° (co) — igp' (co) • (k — Ap) + ipp (co) • (k - A;)

= a (A, co) + iop' (co) • kp - i^p (co) • Aa, (3.8)

where a (A, co) is defined as

a (A, w) = go.0 (co) — i^P' (co) • A + ipp (co) • A. (3.9)

Inserting eq. (3.8) into eq. (3.7) we obtain

fA (A, co) + f (A, co) • a (A, co) • H (A — Aa, co) + g (A, co) • H (A — A, , co)

- if (A, co) • eP (co): AaH (A - Aa, co) = <5Ai0, (3.10)

in which f (A, co) and g (A, co) are defined as

f(A,co) = £fA(A,co) (3.11)
x

and
g (A, co) = i £ fA (A, co) • gf (co) • Aa. (3.12)

x

The quantity f can be obtained by summing eq. (3.10) over 2, and g from eq. (3.10) 
by multiplying this equation on the right with i^P' (co) • Aa and then summing 
over 2. This yields:

f • (1 + a • A — D) + g • A = 1 (3.13)
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and

f • (a • D' + E) + g • (1 + D') = 0. (3-14)

All quantities depend on A and co, which will not always be written explicitly. 
The quantities A, D, D' and E are defined as

A(ft.co) = £H(/c — *A,co), (3'15)
A

D (*, co) = i X op (co): A;.H (k - co), (3-16)
a

D' (k, co) = i £ H (* - kx, co) • eP' (co) • klt (317)
A

E (k, co) = £ ep (co): k,H (k - co) • £>P' (co) • kt. (3-18)
A

From eqs. (3.13) and (3.14) we can solve f and g and so fA (k, co) is known from 
eq. (3.10). Now we are interested in the susceptibility, given by eq. (3.4). From
eqs. (3.2) and (3.9) follows that

a x (k — kki co) = a (k, co) + i^P' (co) • kx, (3.19)

so that with eq. (3.4) and defs. (3.11) and (3.12):

Xcxt (*, co) = f (A, co) • a (A, co) + g (A, co). (3-20)

From eqs. (3.13) and (3.14) we obtain

g = -f -(a - D' 4- E)-(l + D')"1 (3-21)

and

f = [i + a. A - D - (a - D' + E)*(l + D')'1 • A]"1. (3.22)

Using eqs. (3.20)-(3.22) we find after some calculations

X'" = [(1 + D') • (a - E)-‘ • (1 - D) + A]-1. (3.23)

With eq. (2.2) we finally obtain for the dielectric susceptibility tensor:

X (A, co) = {A (A, co) - F (A, co)

+ [1 + D' (A, oj)] • [a (A, co) - E (A, co)]~l • [1 - D (A, co)]}"1 •
(3.24)
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In I we have introduced a quantity M (A, co), defined as

M(M4 = f’ZF(i?,,ft))e‘w‘ - lim J F (R, co) e~lk'R dR
i d-0 c(d)

+ ip-1 [F (R, to) - Ff (R, a>)]R=0, (3-25>

where denotes a sum over all lattice points except an arbitrarily chosen origin 
Rt = 0, and where in the integral a sphere of radius d around the origin is ex
cluded. With this definition and with definitions (3.15) and (2.21) we have

A (A, co) = M (A', to) + F (A, co) - (3.26)

For a more detailed derivation see I where M (A, co) is expressed in terms ot 
rapidly converging lattice sums [cf. eqs. (1.3.27)—(1.3.29)]. Using eq. (3.26) the 
expression (3.24) for % (A, co) becomes:

X (A, co) = {1 + si (A, co) • [M (A, to) - i]}"1 • s/ (A, co), (3.27)

with

sJ (A, co) = [1 - D (A, co)]-1 • [a (A, co) - E (A, co)] • [1 + D'(A, co)]"1. (3.28)

This expression for x (A, co) has the same form as the susceptibility for a simple 
point-dipole lattice as found in I. The only difference is that oa° (co) is replaced 
here by the more complicated expression si (A, co) which is depending on the 
structure of the lattice.

The tensors D (A, co), D' (A, co) and E (A, co) defined by eqs. (3.16)—(3.18) con
tain the lattice sums

B (A, co) = ^ A;H (A - Ax, co) (3.29)

and

C (*, co) = X H (k - co). (3.30)

We can transform these sums into rapidly converging lattice sums in a similar 
way as we did with the sum H (A — A; , co) in I. Here we shall give the results 
and leave the details of the calculations to the appendix. For the sum B (A, co) 
we find:

B (A, co) = AM (A, co) - iAU + iN (A, co), (3.31)
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where U is the second-order unit tensor and where

N (A, co) -Q~l v (VV + co2) erfc
COS OjRx ~| -Ik-Rx4J

+ i X' (* - *;) —-----------------—---- — se (|/t - AJ, co)
A |k - kx\2 - co2

+ \k—-----— [S? (A, co) - 1],
A2 — co2

(3.32)

in which

<£(k a) = k ~ C° c~fl2<fc+^2/4- + k + M e-«* (*-<■»»/** (3.33)
’ 2k 2k

For the sum C (A', co) we find (in components):

Cijki (A, co) = kJcjMki (A, co) — JA/Aj<5fcJ + iktNJkl (A, co)

+ ikjNtki (A, w) + O ijkl (A, co),

in which

(*, w) = r1 r v,v, (vkv, + co2(5;
J [•*(**?) ^

(3.34)

-I t-Rj.

+ £' (A - *;V. (A - A,); (k ~ (* ~ **)[ ^
* ‘"V |A — Aa|2 — co2

x $£ (|A — AJ, co) + A,Aj
AfcAf - cx)2dki

A2 - co2
- [Se (A, co) - 1]

oa~
^■}7c + ffl2co2 + n4co4^ (^u<5k/ + + Sudjk)

- (laW + ± a*co*y,A,J- (3-35)

We have denoted the lattice points by Rx in order to avoid confusion with the 
suffix /. The expressions (1.3.27), (3.32) and (3.35) for the quantities M (A, co), 
N (A, co) and O (A, co) do not depend on the parameter a as can be checked by 
differentiation. This parameter a serves as a “cutoff” parameter and must be 
chosen of order of the lattice constants to ensure rapid convergence of all lattice 
sums. We can choose, e.g., a3 = q~x.
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Because of the inversion symmetry of the Bravais lattice and the reciprocal lat
tice, M (A, co) and C (A, co) are even functions of A whereas B {k, co) is an odd 
function of k. These quantities are all even functions of co. If we make an expan
sion of these tensors in powers of ak and aco, the main term of M (k, co) is of 
order 1, B (A, co) is of order k and a2C (k, co) is of order 1, all with corrections 
of second and higher orders in ak and aco. Furthermore we know that the com
ponents of p and p' are of order d with respect to the components of a0. For the 
quantities M (A;, co), D (k, co), D' (k, co) and E (k, co), appearing in expression (3.27) 
for the susceptibility, this means that M (k, co) is of order 1, D (k, co) and D' (k, co) 
are of order dk and E (A, co) is of order d2/a2 (to the extent to which qcl° is of 
order 1), all with corrections of at least second order in ak and aco relative to the 
leading term. We shall restrict ourselves to optical frequencies and small values 
of k, so that we can neglect the terms of order a2k2 and a2co2. We shall do this 
in the next section and investigate the dielectric susceptibility to first order in k 
(first-order spatial dispersion).

4. First-order spatial dispersion and optical activity. For an expansion of the 
dielectric susceptibility [eq. (3.27)] up to first order in k we only need the zeroth 
order of M (k, co) and E (A, co), and the first order of D (k, co) and D' (A, co), which 
we shall call respectively: M(0), E(0)(co), D(1) (k, co) and D'(1) (A', co). If we write

X(k,co) = xt0>(") + Xw(k,co) + - (4.1)

and

s/ (A, co) = «s/(0)(co) + tc/(1) (A, co) + •••, (4.2)

then it is easily derived from eq. (3.27) that to first order:

X(0\co) = [I + sf<°\co) • (M(0) - i)]~l • ^(0)(co) (4.3)

and

X(1) (A, co) = [1 + ^(0)(co) • (M(0) - i)]-1 • j^(1) (A, co)

• [1 + (M(0) - i) • J2/(0)(co)]_1. (4-4)

X(1> (A, co) and ,s/(1) (A, co) are linear in A. From eq. (3.28) we find for the expan
sion (4.2) of (A, co):

jtf(0)(co) = a(0)(co) - E(0)(co) (4.5)

and

^(1) (A, co) = D(1) (A, co) • [a(0)(co) - E(0)(co)]

- [a(0)(co) - E(0)(co)] • D'(1) (A, co) + a(1) (A, co). (4.6)
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From eq. (3.9) it follows that 

a(0)(w) = pa(0) (w) (4.7)

and

a(1) (k, co) = -iop' (co) • k + i£p (co) • k. (4-8)

We shall successively treat the susceptibility without spatial dispersion in sub
section 4.1 and with first-order spatial dispersion in subsection 4.2.

4.1. Dielectric susceptibility without spatial dispersion. The di
electric susceptibility in zeroth order in k is given by eqs. (4.3), (4.5) and (4.7). 
Inserting eqs. (4.5) and (4.7) into eq. (4.3) we obtain

X(0,(co) = {1 + [pa(0) (w) - E(0)(co)] • (M(0) - i)}"1

• [pa(0>(co) - E(0)(ft>)].

This equation has the same form as the equations for the susceptibility of a point- 
dipole lattice [eq. (1.4.5)], but with ga° (co) now replaced by get0 (co) — E( (co).
From eqs. (3.18) and (3.34) follows that

Eu (k, co) = g2fiikl (co) p'mJn(co) Clnkm (k, co). (4.10)

From eqs. (2.13)-(2.15) and a(J (r, r';co) = oJt (r\ r; co)3) follow «?/<*>) = *°ji(co) 
and p'mJn(co) = pJmn(co). So eq. (4.10) can be written as

Eu (k, co) = g2plkl (co) pJnw(co) Clnkm (k, co). (4.11)

Furthermore, from

Clnkm (k, co) = Cnlkm (k, co) = Cnlmk (k, co), (4.12)

follows

E,j(k,co) = Ej,(k,w). (4-13>

For E(0)(co) in eq. (4.5) we have

Elj\co) = 62Piu (co) Pjmnico) Clnkm (0, 0). (4-14)
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Clnkm (0, 0) follows from eqs. (3.33), (3.34) and (3.35). After some calculations
we find

oa3 \ ). R-a

Clntm(0,0) = -+ + 6,A. + M.J ~r (X' +-/W.) - +

ga3 /. Rl

4------7 Z" ~ZT ^#(^) R'iR'nR'kRt + Z a~k~?.a' k„kkk,„
pa3 ;. /?;

where

{<$ln£k/UP = <5j?k£ni + <5,kK„K,n + dnkR,Rm + d,mRnRk 

+ dnnfilRk + &kmRlRn'

f'(R) = — erfc (V + (- — 
4-7?3 V «/ V2 -/?2

-fi e -~R2/fl2

(4.15)

(4.16)

(4.17)

15a3
4-^

g'W = ----- r erfc ( -* — 1 + (----------- + 5 + 215 a2
2 -i*2

TxR2/a2 (4.18)

/i'(R) = erfc (-* R 
4 ~R3

+ (™ -EL +35 +\4— +4 — ] e-"Rll°2
V 2 -R2 a2 a4

(4.19)

and

aW) = e-'k'/4n. (4.20)

Furthermore £} = (RA),/\RA\ and = (A;)|/|A:;|.
Since for molecular crystals a (r, #*'; co) is supposed to be zero for |#*|, |r'| > \d, 

where d is of order of the linear dimensions of the molecules, we see from eqs. (2.14)- 
(2.16) that the ratios of the components of p and p' and the components of a0: 
Plot0 and p'lot0 are of order d. So the quantity E(0)(w) is a correction on pa° of 
order (d2la2) (got0)2, where a is of order of the intermolecular distance. Since this 
correction does not need to be small we have derived the explicit expression for 
E(0)((w). However, for a medium with an optical rotatory power (see next section) 
of 10 rad/cm or less at a wavelength of say 5 x 10-5 cm (as is the case for most 
optically active crystals), gp is of order 10“9 cm, if wc suppose that got0 is of
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order one. This means that the ratio (o/?/fl)2 (and therefore £(0)) is of order 10"2 
if a is of order 10"8 cm. In this case the correction E<0) in eq. (4.5) may be neg
lected. This correction is zero in the case that f$lJk = bdIJk where d,Jk is the per
mutation tensor. (We may think of molecules with random orientation, averaged 
over all orientations, as is the case in fluids2-4).) In this case the contribution E(0) 
vanishes by the symmetry properties of C (0, 0). For crystals with a higher optical 
rotatory power. E(0) is in general not small. In that case we may also expect con
tributions to x(0)(a>) arising from the higher-order terms in the multipole expan
sion (2.19) (see also section 6).

4.2. First-order spatial dispersion. Eqs. (4.4)-(4.8) determine the first- 
order spatial dispersion of the dielectric susceptibility. First we note that from 
definitions (3.16) and (3.17), the symmetry of H (A — Aa, co) and f$'lJk = ($jik it 
follows that D'lj (A, co) = (A, co). Together with the symmetry of a°(co) and
E(0)(co) then follows that ^/(1) (A, co) [eq. (4.6)] can be written as

^(,) (A, co) = Y (k, co) - YT (k, co), (4.21)

where

Y (k, co) = D(‘> (A, co) • .p/<0)(co) + iop (co) • k (4-22)

and YT (k, co) is the transpose of Y (A', co). From eqs. (3.16) and (3.31) we further
more obtain for D(1) (A, co):

D“> (k, o>) = igp (co): (AMl0> - - * • L). (4-23)

In this equation the fourth-order tensor L is defined by

iA - L = N(I)(A), (4,24)

where N(1)(A) is the first term in the expansion (3.32) of N (A, co), which is linear 
in A and in which terms of order a2co2 are neglected. Hence follows for Y (A, co) 
in cartesian components:

Yu(k, co) = iQpilm {km [<5„ +

<4-25)

Let us define

S(co) = 1 + (M(0) - i) • «s/(0)H, (4‘26>
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so that

ST(co) = 1 + s/(0)(co) • (M(0) - i). (4-27)

Then it follows from eqs. (4.4) and (4.21) that

(k, w) = 0U (A, to) - 0J, (A, to), (4.28)

where

= {[S»]-1'Y(t,«)-S-,W}u = SU‘M Yu( k, <o)Srj'(co).
(4.29)

Using eq. (4.25) we can write this as

0,j (A, to) = iy>u, (to) A,, (4.30)

with

y>ui(to) = Ski ‘(to) (to) - Skl ‘(to) Qf}knm (to) Llmnvs4™ (a>) SqJ\co). (4.31)

Thus we have found the first-order spatial dispersion term of the dielectric suscep
tibility and so of the dielectric tensor £ (A, to) = x (A, to) + 1. If we write for the 
expansion of the dielectric tensor:

etJ (A, to) = e\j\oj) + iy,j, (to) A,, (4.32)

then it follows with eq. (4.30) that yiji(co) is given by

ytjM = Vijfco) ~ Wfifa)- (4.33)

The gyration tensor g(a>) is now defined by

yui(to) = (5Ukgkl (to), (4.34)

where dlJk is the permutation tensor or Levi-Civita tensor. From eq. (4.33) and
the rule dlJkdpqk = dlpdJq — dlqdjp then follows

gkM = dijkV>tji(oj). (4.35)

Finally the fourth-order tensor L, defined by eq. (4.24), can be obtained from
eq. (3.32). The result is:

LUkl = (lfcfl3)r/W(M^f + M}*« + 6Jkm\)

- (1 lea') F sW *}*}*&}
A

+ X' a\kx) (fcxtfcjdkl + KfUiSj, + #£&,) - b\kx) £?£$#£?. (4.36)
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In this equation the functions/'^), g'(R) and a'(k) are given by eqs. (4.17), (4.18) 
and (4.20) whereas b'(k) is defined by

b\k) = 2(1 + a2k2!^) e"*2*2'4* (4.37)

Eqs. (4.35) with (4.31) give the general expression for the gyration tensor of a 
Bravais lattice with molecules with polarizability given by eq. (2.19). In the next 
section we shall treat some special cases in which the gyration tensor reduces to 
a simpler form.

5. Special cases. Consider the case of a cubic lattice with molecules for which 
the generalized polarizability tensors are:

Q*u (w) = a0(co) dtJ (5.1)

and

Qpijk (w) = b0(aj) dlJk. (5.2)

One might think of gyrotropic molecules with random orientation, averaged over 
all orientations. In this case

<’(«>) = e»&(«). (5.3)

as we saw at the end of subsection 4.1. As a consequence of eq. (5.2) the second 
term in eq. (4.31) vanishes since Llmnp = L,nmp as follows from eq. (4.36). Further
more the tensor S(co), defined by eq. (4.26) reduces to a scalar

S((o) = 1 - $a0 (co), (5.4)

since for a cubic lattice M(0) = 01). In the given case eq. (4.31) becomes

V>ui(u)
b0(co)

ijt> (5.5)
1 - }a0 (co)

so that we get for the gyration tensor [eq. (4.35)]:

Ski(<o) = b0H
1 - }a0 (co)

Jkuljl
2b0 (w) ^

-------------------  Okl
1 - i^o (")

(5.6)

From the phenomenological theory (see, e.g., refs. 5 or 6) then follows for the 
optical rotatory power (i.e., the rotation to the right, for an observer viewing 
the light beam in the direction opposite to the direction of propagation, of the

37



(5.7)

plane of polarization of linearly polarized light, measured in rad/cm):

= 2~2 2b0 (co)
2? 1 - ia0 (a,)’

where ?.0 is the vacuum wavelength. If we use eq. (4.3) for the zeroth-order suscep
tibility we get with eq. (5.1)

£(0)(ft)) = 1.+ M = n2t (5.8)
1 - («)

where n0 is the zeroth-order refractive index. Using eq. (5.8) we get for <j>\

4> = -(2iz2IX20) i (nl + 2) 2b0 (co). (5.9)

This expression agrees with the results obtained by Hoek2), Maaskant and Ooster- 
hoff3) and Terwiel and Mazur4) for fluids (when neglecting statistical effects). 
Note that we have 2b0 in eq. (5.9) instead of two different terms as in refs. 2, 3 
and 4 since we have used the symmetry property f$iJk =

As a second example we consider a tetragonal crystal of class 4 (or C4) in which 
the molecules are fixed on a cubic lattice. We shall calculate the optical rotatory 
power for light propagating along the optical axis of this uniaxial crystal. We 
shall choose the coordinate axes (right handed) along the edges of the cube such 
that the z axis (3) coincides with the 4th-order axis (which is the optical axis) of 
the crystal. From the symmetry properties of crystal class 4 follows that the third- 
order tensor y)iJk has the following nonvanishing components:

Wll3 = W223 — Wl 'y W131 = Wl32 — W2 5 ^31 1 = ^32 2 = W3 i

Vl 23 = ~V>213 = ty 132 = —^231 = tys'y ^312 = ~V)321 — V}6 \

V233 = VT (5-10)

Hence the gyration tensor gkl = [eq. (4.35)] has the following form:

(We ~ V*s V2 ~ V>3 0 \
W3 ~ W2 We ~ Ws 0 I , (5.11)

0 0 2y>4/

so that the symmetrical part gs of g, which is essential for the optical activity, 
can be written as

fg± 0 0\

g‘ = 0 gl 0 , (5.12)
V o o gJ

38



with

Si = V’6 - Vs (5.13)

and

*i, = 2V4 • (5-14)

From the phenomenological theory (see, e.g., ref. 5 or 6) follows that the optical 
rotatory power for propagation along the optical axis then is given by

♦ --(2 **/*&*„ (5-15)

where/0 is the vacuum wavelength. So we still have to calculate v4- From eqs. (4.31) 
and (5.10) follows

V’4 = V \23 = Skl1Qpk23 — SkllQpknniL3mnpstf(pq Sq2 • (5.16)

We can reduce this expression using the symmetry properties of the tensors ap
pearing in eq. (5.16). From the symmetry of crystal class 4 it follows that sym
metrical second-order tensors such as S and «s/(0) have the form

[Ti 0 0 \

1= 07,0 . (5-17>

\o o tJ
For our model of identical equally oriented molecules, the molecules must have 
the same symmetry elements as this crystal. This means that the nonvanishing 
components of the third-order tensor p are the following:

QP 113 — Qp223 = ^1 5 qP 1 3 1 = qP 232 = b2\

QP 311 = Q P322 = b$; Qp 123 = QP2 1 3 — b& '•>

qP 132 = —QP231 — b5; QP312 = ~QP32\ — bo Q P333 = ^7- (5.18)

The fourth-order tensor L only depends on the lattice, in this case a cubic lattice. 
For the given choice of axes the nonvanishing components of L therefore are. 
Tun = L2222 = T3333 = /,; and the components with indices equal in pairs 
(L„ 22, 1,331, etc.) are equal to /2. The consequence of the above symmetry 
properties is that eq. (5.16) becomes:

V123 = (bJSJ - (j/t0)/Si) h (bA + *5). (5,19)
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Furthermore it follows with eq. (4.26) that

Sx = 1 - Wi\ (5.20)

since for a cubic lattice M(0) = 0. With eq. (4.3) we have for the orthogonal com
ponent of the zeroth-order dielectric tensor:

e°L = [l+ f^i0,]/[l - i^i01]. (5.21)

Defining

•5 = nl, (5.22)

we have

1/Si = i (»i + 2); ^i0>/5x — »2 — I. (5-23)

so that eq. (5.19) becomes

V.23 = i (nl + 2) (b, - (nl - 1) 12 (bi + 6,)]. (5.24)

With eqs. (5.14) and (5.15) the optical rotatory power then is given by

4> = ~(2tt2/A?) i 0nl + 2) [2- 2 (ni - 1) /2 + *5)]. (5.25)

As to the quantity sii0) we remark that with eqs. (4.5) and (4.7) we have

=Qoc°±-Ei°\ (5.26)

From eqs. (4.14) and (5.18) and the fact that the nonvanishing components of 
the fourth-order tensor C are: Cnil = C2222 = Q333 = and all compo
nents with indices equal in pairs (C1122, etc.) are equal to c2, follows

El0> = C2 [(6, + i2)2 + (*4 + b5)2]. (5.27)

The numbers /x, /2, Cj and c2 can easily be calculated with the formulae (4.36) 
and (4.15). The numbers /t and /2 are dependent and so are ct and c2- From the 
definitions of C and L: (3.34) and (4.24) [or from the expressions (4.15) and (4.36)] 
one finds

U = —21 2 - 1 (5.28)

and

ci = ~2c2. (5.29)
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Using eqs. (4.15) and (4.36) we find the following values for the simple cubic (SC), 
the body-centered cubic (BCC) and the face-centered cubic (FCC) lattices:

SC: l2 = 0.1716,

BCC: /2 = -0.3146, (5-30)

FCC: l2 = -0.3019 

and, if we choose a such that pa3 = 1:

SC: a2c2 = -2.9681,

BCC: a2c2 = 0.9344, (5'31)

FCC: a2c2 = 0.7130.

So we can write for eqs. (5.25) and (5.27) in the case of a simple cubic lattice:

</> = — (2tr2/Ag) i (ini + 2) 2 [bt - 0.1716 (ni - 1) (fc4 + *s)] (532)

£±” = -2.9681 (1/a2) [(b2 + b2)2 + (b* + b5)2]. (5.33)

From these two equations we can make an estimate of the size of the correction 
.Ei0) if we know the order of magnitude of (j), as we did at the end of subsection 4.1. 
Furthermore we can also see that in the case that p has the form plJk = b0dukt 
bA= -bs = b0 and b{ = b2 = 0, so that then £i0) = 0 and the correction on (J) 

proportional to I2 [c/, eq. (5.25)] vanishes too.
Finally we consider the case that the molecules that constituted this tetragonal 

crystal now are oriented at random and an orientational averaging is performed 

a priori. In this case we can write2"4)

Qptjk = hQdlJk, (5.34)

with

b0 = 

and

q&°u — a0 dij,

with

d0 =

(5.35)

(5.36)

(5.37)
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From eq. (5.18) then follows

b0=H^ + b6-bs). (5.38)

We then have the isotropic case as treated in the beginning of this section. With 
eqs. (5.7) and (5.8) we find:

<t> = -(2r.2l?.20) i (n20 + 2) i (bt + b6- b5), (5.39)

in which n0 is given by

«o = (1 + ia0)l( 1 - ia0) (5-4°)

and

(2«? + ajj). (5.41)

Here a? and ajj are the two independent components of the tensor a0, which is 
of the form (5.17) in a coordinate frame with the z axis along the symmetry or 
fourth-order axis of the molecule.

6. Discussion. In this paper and in the previous paper we have calculated the 
susceptibility for a zero-temperature crystal with one molecule per unit cell. In 
both papers a multipole expansion was used for the polarizability of the mole
cules. In the first paper we only considered the lowest-order term in this expansion 
(point dipoles), whereas in the present paper we went to the next order. The use 
of the multipole expansion implies the assumption that the effective field acting 
on a molecule varies sufficiently slowly over the molecular diameter. Whereas 
this assumption is valid for the external field, within the context of the theory, it 
is certainly less appropriate for the contribution to the effective field due to the 
neighbouring molecules. We note that in the subsequent evaluation of the suscep
tibility it is only assumed that the external field varies slowly over the molecular 
diameter. It is clear that the multipole expansion will be correct if the higher- 
order multipoles are sufficiently small. By comparison of the results in the present 
paper with those obtained in paper I for the k = 0 susceptibility, it is now pos
sible to indicate explicitly how large the higher-order generalized polarizabilities 
[higher moments of the continuous polarizability o (#*, r')] are allowed to be. We 
can write the multipole expansion as (suppressing the frequencies):

o,j (k, k')
CO
z *
,n = 0

m.n i i it
UPl'"Pm*nKPx KPmKPn k' (6.1)

where am,n is a tensor of order m + n + 2 and summation convention is used. 
Then it turns out that in the equations from which the k = 0 susceptibility can
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be solved, the generalized polarizabilities gam,n are always contracted with the 
tensor sums kA ••• kxH {k?) of order m + n + 2. Since the components of 
cT*nY.xkx ••• kxH(kx) are dimensionless numbers of order one (which can be 
calculated in the same way as we did in the present paper for m + n — 1, 2), the 
convergence of the susceptibility of the crystal will be good if the components o 
oaw*"/o",+n approach zero sufficiently rapidly for m + n-* co. If one defines an 
“electromagnetic diameter’’ for m + n > 1:

= sup[(9K;’p„.„|)1/<"+")], (6-2)

the criterion for rapid convergence will be: de, a.
We shall now consider explicitly the contributions up to order (dc\la) • Then 

we must take into account generalized polarizabilities for which in + n — 0,1,2 
and take for the continuous polarizability:

a (k, k') = (2t:)-3 (a0 - ip' . k + ip • K - y : kk + y': kk' - y" : k'k'). (6.3)

For the zeroth-order susceptibility we then find

7.<0) = [1 + fea° + (?a0 • GT + G • oa(0) - E(0)) • (M(0) - i)]'1

• (ea° + ^a° • GT + G • oa - E(0)), (6.4)

which has the same form as the zeroth-order susceptibility of the point-dipole 
lattice (derived in paper I), but now with £>a° replaced by ^a°+^a° • GT+ G • £a0 
- E(0). In this formula

G = qy"; C (0, 0) (6.5)

and GT is the transpose of G. Furthermore E(0) and C (0, 0) are given by eqs.(4.14) 
and (4.15). Comparing result (6.4) with that of subsection 4.1, we see that we get 
an additional correction of order (de\la)2 on £0t° from octupole moments.

It is interesting to consider again the case of isotropic molecules on a cubic lat
tice. For isotropic molecules y" must be of the form (see, e.g., ref. 8).

y'L, = «,A„ + MU* + W*-) + “ d‘-Skmh
so that

, (6.7)Gu = (A + 2/x) (cj +2c2)du,

which is zero because of eq. (5.29): c, = — 2c2. Since in this case also 
we have only corrections on qa.0 of order a2oj2 which ca^ t>e n^ge?//e2' rp not 
isotropic case the multipole expansion is good even if Qpla an QY 
much smaller than one.
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Finally we note that we have a nonvanishing correction G in the anisotropic 
tetragonal case which we treated as an example in section 5. Then, for the proper 
choice of coordinate axes used in section 5, G has the form (5.17), where Gx 
an G„ can easily be expressed in terms of the nonvanishing components of y" 
and the number c2 [see eq. (5.31)].

APPENDIX

In this appendix we shall give the derivation of the rapidly converging expres
sions for the lattice sums B (Ac, co) [eqs. (3.31), (3.32)] and C (Ac, co) [eqs. (3.34), 
(3.35)]. Cf. also appendix B of I. First we have with eqs. (3.15), (3.26) and (3.29):

B (*, co) = *M (.k, co) + AcF (ik, co) - ikU - £ (Ac - kx) H (k - kx, co). (A.l)
x

With the definition (2.20) of H and using the equality

ele"*-* = £d(/f- Rx), (A-2)
X X

we can write for the last term on the r.h.s. of (A.l):

£(* - kx) H - kx, co) = -i£ J VH (R, co) AR
X X

A

A

- if"4 [VF (R, co) - VF+ (R, co)k=o- (A-3)
Defining

N' (*. co) = g-1 VF (Rx, co) e-1*** - lim J VF (R, co) e~“'* d*
X d-0 £(d)

+ g-4 [VF (R, co) - VF* (R, co)]R=„, (A.4)

we have for B (Ac, co):

B (A:, co) = AcM (it, co) + kF (it, co) - ikU

+ iN'(*, co) + limi J VF(«, co)e"‘* "di?
d-*0 e(d)

e(d)
= AtM (k, co) - + iN'(*,co) - lim i J VF (R, co) e~14'* dR.

(A.5)d~* 0
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The symbol f£(d) denotes integration over a sphere of radius d around R — 0 
whereas jc(d) stands for integration over the whole space excluding this sphere. 
As the next step we write N' (k, co) in the following form:

N# (*, co) = r1 T HVF (Rx, co) + VFt (Rx, co)] e"1*’^ 
a

- lim J i [VF (R, co) + VFf (R, co)] e-1* '' dR
d-0 c(d)

+ r1Ii[VF (Ri<m) - VFf (Rx, co)] e~u'K*

- .f i [VF (JR, co) - VFf(fl, co)]e'“'*dK. (A-6)

The last integral is taken over the whole space since 

£(<0
lim J i[VF(/f,c«) - V?HR, co)]e'“'*d* = 0.
d-0

With eq. (A.2) and (2.3) we can show that 

0-‘£HVF(*„co) - VFf (Rx, co)]
A

- Ji [VF (R, co) - VF’ (fl, co)] e-1*" dR

= rmVF (*,«>) - VFf (R, co)]e",(*"*A>’*dR 
a

= -i £' (* ~ *a) Irn F (A — co)
A

= i* r p - kx) {k - ^ - co2]
j |*-*aI

x ^ (|k - kx| -h co) — (5 (|/c — kk 1 - co)]. (A,7)

Cf. eqs. (1.3.21)—(1.3.24). For frequencies co smaller than the radius of the largest 
possible sphere in the first Brillouin zone with centre at the origin this expression 
vanishes since we have chosen k in the first Brillouin zone so that \k kk ^ co 
for kk # 0. For the first two terms on the r.h.s. of eq. (A.6) we use the formu a

i [F (*, co) + Ff (R, co)] = - (VV + co2) 1

and apply the method, introduced by Nijboer and De Wette ), as we did in I. 

For N' (k, co) we write:
r . ( 4. RA C0SC0i?A“l o-lk-Rx

N' (*. CO) = -e-1 L' V (VV + co2) |erfc — j J
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p-i £' V(W + (o2) K'v cos toRx 
4"*;.

-Ik-Fb.

- lim J i[VF(/?,w) + VF1 (/?, co)] e-,A /? d/?,
d-0 c(d)

where

erfc (a*) ee (2/%/-) f e~f2 d/
.X

and

erf (a) = (2/^/-) f e~*2 dr = 1 — erfc (x).

(A.9)

(A. 10)

(A. 11)

Since the function erfc (-*R?Ja) is rapidly decreasing over a few lattice distances 
the first term on the r.h.s. of eq. (A.9) is a strongly converging lattice sum. The 
second term can be transformed into a rapidly converging sum on the reciprocal 
lattice. If we use eq. (A.2) we can write:

(A. 12)

where FT3 [ ] means the 3-dimensional Fourier transform. For the first term on 
the r.h.s. of (A. 12) we find zero. For the second term we get after straightforward 
calculations:

-?PT-(v<vr + ‘“,['rf('*7)iS'i
= i Z (* - *,.) [(* - *a) (k - - a,2] FT

X

= •!'(*- *,)

k-kx

erf I r* —
R \ cos (oR
a 4 r.R k-kj.

(k - kx) (k - kx) - (o2
\k - kx\2 - co:

(Ik - kxI, co)

. kk — co2
+ i &>k------------ if (k, co),

k2 - co2
where

__ ^^ g-a2(fc + <o)2/4^ _j_ ^ ~F CO ^-a2(fc-£0)2/4rc
2k 2k

(A. 13)

(A. 14)
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Finally we have for the third term on the r.h.s. of eq. (A.9):

•lim J i- [VF {R, co) + VFr(/?, co)] e'1** dfl
d-*0 e(d)

c(d)

= — iA Re F (A, co) + lim f [VF (R, co) + VFf (R, co)] e' 6R

kk — ri\2 e(d)
i ------------  + lim f i[VF(R, a.) + VFt(R, «)] e-1*'* d/f. (A.15)

k~ — oy

Furthermore

c(d) £(d)
lim J J [VF (/?, co) + VFf(/?, co)] e-1** dfl = lim J' VF (K, co) e lkR6R. 
d-.o d-o (A.16)

Substituting the results (A. 12) with (A. 13) and (A.15) with (A. 16) into the r.h.s. 
of (A.9) we find:

± R>. \ cos coR?
N' (A, co) = -O"1 V(VV + co2)

+ i r <* - *,)

erfc
fl ) 4~RX

(k - k?) (k - kj) - co2

ik-R*

se{\k - Aa|,co)
\k - A';J2 - co*

t(d)

+ iA —--------— [<£ (A, oj) - 1] + lim J' VF (R, o>)
k2 — CO2 d-o

-Ik-R

Defining N {k, co) by
c(d)

N (A, co) = N' (A, co) - lim j VF (R, co) e'lk R dR

d R. 
(A. 17)

(A. 18)

we obtain from eq. (A.5) the expression (3.31) for B (A, co) with N (A, co) given by 
eq. (3.32).

For the derivation of eqs. (3.34) with (3.35) for CiJkl (A, co) we first write:

Ciju (A, co) = k,BJkl (A, o)) + kjBikl (A, co) - ktkjAu (A, co) 

+ I (A - A,), (A - A,), Hkl (A - A;., co), (A. 19)

or with eqs. (3.26) and (3.31)

C,m (A, w) = k,kjMkl (A, co) - ik,kjdkl + ik,NJkl (*, «) + 'Wn (*■ ")

- A,AjF*, (A, ») + !(*- *;■), (* - (* " ")•
a (A. 20)
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The transformation of £. (k - kx) (k - kj H (k - kx, co) is very similar to the 
transformation of (k - k;) H (k - kx, co) as we have done above. An im
portant difference is that the integral corresponding to the integral in eq. (A. 12) 
now gives a contribution viz.:

m VfVy(V,V, + <o2(5k/) erf
R \ cos coR
a / 4-R

e~lk R 6R

re-Qa5 LV 5
+ §a2co2 + — a*coA ) (dijdk, + dlkdJt + dndJk)

6~

- ( ia2w2 + — a4co4 ) d,jdkl (A.21)

By straightfonvard calculations, following the same line as in the derivation of 
B (k, co), we arrive at eqs. (3.34) and (3.35). Finally we remark that the trans
formation of M (k, co) in terms of rapidly converging lattice sums, which was 
done in I with the function TQ,-R2la2) can be done faster with the function 
erfc (r*Rla) = I'd, i:R2/a2). The results (1.4.7), (1.4.11) and (1.4.12) with (1.4.13) 
remain unchanged.
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III. COMPOSITE LATTICES

Synopsis

In this paper a general expression is given for the wave 

vector- and frequency-dependent dielectric susceptibility tensor 

of a composite perfect lattice with an arbitrary number of fixed 

nonpolar molecules with given polarizability tensor in a unit cell. 

The general expression is applied to a lattice of point dipoles 

and quadrupoles. The dielectric susceptibility tensor is in 

particular studied with first order spatial dispersion.

1 • Introduction

In a previous paper in the following denoted by I, we

have derived a general expression for the wave vector- and

frequency-dependent dielectric susceptibility tensor x(k,w)

a simple perfect lattice of fixed nonpolar molecules with given

molecular polarizability tensor. The formal theory was worked out

2)in detail for point dipole lattices. In a second paper , denoted 

hereafter by II, the theory was applied to point dipole and 

quadrupole lattices for which we considered especially the 0

and 1st order spatial dispersion.

In the present paper we shall extend the theory to the
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of composite lattices, i.e. Bravais lattices, with more than one 

molecule in a unit cell. In section 2 we shall develope the formal 

theory for the composite lattice in a similar way as it was done in 

paper I for the simple lattice. This theory is applied to the case 

of a composite dipole and quadrupole lattice in section 3. The 

formalism is a direct generalization of that of paper II section 3.

We consider the Oth and 1st order spatial dispersion of the dielectric 

susceptibility tensor for this point dipole and quadrupole lattice 

in section 4 and for the pure point dipole lattice in section 5.

2. Formal theory

Consider an infinite three-dimensional Bravais lattice in which

each unit cell (numbered with index i) contains N molecules

(numbered with index k). The lattice points are given by the vectors

, whereas the centres of the individual molecules are at the

positions ]L ^ = R^+r^. If this system is subjected to an external

electric field of frequency w: E (R,ui) , the induced microscopic

dipole-moment density p. , (R,to) of molecule i,k is given by (see also l ,k

I and II):

ok(R-Ri)k,R' ik;u)-E^k(R’ ,u)dR’ (2.1)

Here a^(r,r';w) is the molecular polarizability tensor of the kth 

molecule of a unit cell. The effective field acting on molecule 

i,k is given by

£-“(R,w) = Eext(S,ai)-
N f-t-

l l f(R-R\o>).p. (R\W)dR' 
jf i H=l' J ,X>
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(2.2)

N r*
I J F(k-R' ,w) •p^ ^(R' »w)d^1

Jl=l
ilk

-i|{F(l-R' ,oj)~F+ (R-R' ,w)}-pik(^' ,w)d$* .

The retarded vacuum propagator of the electromagnetic field is 

given by

£(R,oj) = -(VV+w2)el(a)+l0)R/4TiR. (2*3)

where R = |r| and iO is an infinitesimal small positive imaginary 

number. We have chosen units such that the velocity of light is one.

>■ X
F (R,w) is the adjoint of F(R,to). We assume that the molecules are 

not overlapping so that for each molecule, say molecule i,k, we can

choose a region g. k containing this molecule and no others. This
-*■ *

implies that a (R-R. , ,R'-R. , ;w)=0 for R l g. . so that 
k i,k i,K

Pi k(R,to)=0 for t i g.^ k. From the symmetry property of viz.

(ok>ij (r,r'Jto) = (\) ji.(r' »r»<*>) 3) we also have

1).a (R-R. ,R'-R. ;to)=0 for t' t g. ,. Now define w:K 1 j k 1 j k * i

and further

-r

F($-$',w) for R’ i g£^k

?(M,,io)-F+(M',w)J for R' e g£ ^
(2.4)

P(R,to) = l l k(R,w)-
i k=l ’

Then it follows with (2.1), (2.2), (2.4) and (2.5) that

-►ext?(!,») - fdS' l l ?k(S-l k.S’-Ri>kia1)-Sext(J'.“)
i k=l *

(2.5)
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-jdS' l ^ ?k(R-R.jk>R'-R.jkiu)-|dS" I. >k(R',S";u).f(S",o). (2.6)
1

With the definitions 

t . . N ->
;u) = l l a (R-R. ,R'-R. ;u)

i k=l K 1,lc 1>x

and

5a(R,R";u) = I JjdR' °k (*~h, k ’"^i ,k; ' “i .k 1 u)

eq. (2.6) becomes

?($,w) “ Jd$' 3(I,R,j(o)-EeXt(^,,a>)-|dt' Ha(^,i,;w)-?(R,aJ). 

In operator notation this can be written as

? = I-Eext-i ■?
a

with the formal solution

? - o+I0)_1.i.rxt
(cf. eqs. (2.11) - (2.13) in paper I).

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

Now evaluate the Fourier transform of H :a

S (k,k’;u>) = —l— (dR dR' H (R,R' ;w)e~lk‘Relk’ 

(2ir)J J 0

3 I I 5k(?.7";»)-5ikff"+iik,?*+i. k;»:
(2*)J i k-1J k 1,k X’k x’k

Xe-ik.reik’.r,d- d?, dpt e-i(k-k’)-Ri>k> (2.12)

where we have used eq. (2.8) and shifted the integration variables. 

Using the fact that
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(2.13)

where we have chosen

V°

and the definition
“f
ho,k<r*r':“) = jdr" ?k<?>?";u)'H0|k(;"+?k>?'+^k;u),

we find

i(Z,P;u) = -L_ l f fi k(?^'iu)e-i5,?ei5'-?'d? d?*
(2tt)j i k-l' a»k

-i(k-k') .r. N -*■ -ix»k - V V t ,t if.... Ne c k ' Ri ,k.
I l ha k(k,k' ;<*)). 
i k-1 a*

With the relati
. r>- ->“ik-R.

I e 1 = (2tt) p£6(£-k )

(2.14)

(2.15)

(2.16)

(2.17)

where k^ is a reciprocal lattice vector and p is such that 

P =v is the volume of the unit cell of the lattice, we finally 

obtain

Ha(k,k';o)) = (27r)3p^6(k-k'-kx)[ha^k(k,k-K;w) 

Similarly we find with eq. (2.7)

_iVrk (2.18)

a(k,k';u) “ (2tt)^p76 (k-kf-k. )£c. (k,k-k, )e 

X A k R
"ikx*rk

(2.19)

So, if we use the discrete representation introduced in appendix A 
-+ -*■

of X and define H^(ie,co) and a (Ic,a)) by

Ha(k,£’;w) = l5A(^,a))6(^k,-kx) 
A

and

(2.20)
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(2.21)a(k,k*;w) = £ aX(k,w)6(k-k'-k. ),
X A

we have
^ N •
S^(ic,w) =* (2tt)3p [ ha k(k,k-k^;w)e X k

a

and

-+•
"►X

k= 1

0 N -ik. • r,3 r -*■ *■ v Xkea (k,m) = (2n) p l ak(k,k-k ;w) 
k= 1

(2.22)

(2.23)

Now we can apply the same arguments as in section 2 of paper I. 

Under the condition that k lies in the first Brillouinzone and that 

Eex (^1>o))^0 only for £' in the first Brillouinzone we find for the 

macroscopic dielectric susceptibility

IciU (2.24)

with

+ext ,■+ N
X (k,m)

<1+V

(1+H

n x

0) 1#«j°(k,m)

(k,u))*a (k,uj). (2.25)

The result of section 2 of paper I is a special case of the above 

expressions viz. the case that we have one molecule in a unit cell 

(N“l) with rj=0.

In the rest of this paper we shall apply this general formalism

to some special cases of point multipoles. In those cases we can

take for the regions g. , small spheres of radius d centered at 
1,K+

R. , . Then we can define H. , (R,R';w) by

F(R-R’,w) for |$-R'|>d

si>k($,R,;w) = s^-i’.a) (2.26)
i|f(i-l' ,w)“f+(S-R’,a))j for |R-R’|<d.
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this definition eq. (2.6) remains unchanged but it follows from 

eqs. (2.7) and (2.8) that
-*■ , ->
H0(5,R";io) = IdR' 2(R,R,;(i))-H(R,-R,,,u)),

or in operator notation

3o - 3-3.

The expression (2.25) then becomes

XeXt(^,u)) (l+a-H) ^ *a (k,iu)

with aA(lc,u)) given by eq. (2.23) and

* "*■
3A(k,u) => H(^,ai)6x Q,

(2.27)

(2.28)

(2.29)

(2.30)

(see appendix A of paper I).

In the next section we shall evaluate this expression for a lattice 

in which each of the N molecules in a unit cell is considered as a 

point dipole-quadrupole.

3. The dielectric susceptibility for a composite point dipole and. 

quadrupole lattice

In the case of a composite point dipole-quadrupole lattice the
■+

molecular polarizability tensors a^(k,k';u) in eq. (2.23) are, in 

cartesian components, given by (cf. eq.(II. 2.20)):

aB

(3.1)

Equation (2.23) then becomes (in tensor notation)

a*0c,w) = p l {a^(w)-i8l(w),k+i? (w)* (k~ic )}e

. -*• 
"lkX*ril

(3.2)

£=1
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We shall use this expression in eq. (2.29) in order to evaluate 

-►ext/?- x .X (k,u) for this case.

First we define (cf. eqs. (II. 3.3) and .(II.3.4))

tX(k,w) = (1+crH) (3.3)fix _
J (k.«),

so that eq. (2.29) becomes:

(3.4)

As we have shown in paper II (cf. eq. (II.3.7)) fX(k,w) satisfies 

the equation

-* -*
(3.5)

-►ext
X (*.») “ l ?X(k,u)*a X(k-k ,io). 

X A

tX^,m)+^(^,U).^(« «).»(« ,«) = 6X Q.
y *

From eq. (3.2) follows that

aX y(£-ky,u) - p l (a^(w)-ii^(u) • (k-k^)+iBJl(u)) • (l^-^x)}'
-i(W,rt

N -i(fc -k ) *r„ N
= l a (k,aj)e

i(k -k )•r
X u/ Jt • r "ji , » v X y &+ip £ 3 (u>)*k e

*=1 fi.= l

N -► . -i(k -k ) *rn• r t , N T \ m' a-ip 2, B„(w)*k e ,
£=1

in which

(3.6)

a^Cl.w) = pa°(u) - ipl^u)*? + ip$£(u>)*k. (3.7)

Inserting eq. (3.6) into eq. (3.5) and using the definitions

-► -*■ i^ • r
f^Ck.w) = l fy(k,u)e y 1

y
and

g„(£»<*>) = i£ fy(k,w) • plS* (w) *k e
ifc • r ny i

(3.8)

(3.9)

we obtain the equation for ?X (£,(»>)
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l\k,w)+ £ f (k,w)-a (k,co)-H(^-k. ,uj)« 

A-l * *

N -*■ ■*■ -ik *r

+ I g^Ck.w)*H(^-kx,w)e

■ikx*rz

Jl=l

N -1- * * ~ikx'r* .
e 3 6x.o-" i [ ?£(k,oj)-pe^Ca)) :kxH(k-kx,w) (3.10)

ik * r
Multiplying eq. (3.10) with e m and summing over X (i> 

summing over the reciprocal lattice) we obtain

j <s,») • {&la+\ a >m(S >

-ik.•r.X Jim

where

-*■ -*■
m^»“) = l H(£-£x,(o)

X
-*■ X ^ 'ikx'rHn.

and

r = r — r .Jim Jl m

(3.11)

(3.12)

(3.13)

(3.14)

Multiplying eq. (3.10) on the right with ip^(u) ’^e 

and summing over X we furthermore obtain:

N
I

Jl=l

ik. *r X t

IV* A tn$.»)A >m(s>

(3.15)

where



(3.16)

and
-*■ •*■

(3.17)

Thus the two sets of equations(3.11) and (3.15) determine 
-* ->■
f^(k,oj) and g^(k,co). On the other hand we find from eqs. (3.2) and 

(3.4) together with the definitions (3.7), (3.8) and (3.9):

N
X6X (k»w) = l {t (k,a>) *a Oc,u)+g (k,u)} 

5,= 1 1 *

(cf. eq. (II.3.20)).

(3.18)

So x€Xt(^,u) is known if the sets of equations (3.11) and (3.15)

are solved. We are, however, interested in x(k,w) which is related 

-f0Xt ->*
to x. (k,w) by eq. (2.24). It is easily shown that we can write 

-*■
X(lc,w) in the form (cf. eqs. (II.3.26) and (II.3.27)):

X(£>w) - {^(k,u) • [a(£,w)-F0c,w)]+1} * ^(k,w) , (3.19)

with

<?(«,»> = ( l-xeXt(k,U)) *l(^,w) } 1 •xeXt(^»“) • 

Here we will choose (see eq. (3.12))

A(^,u) = = [H(k-?x,to).

(3.20)

(3.21)

It then follows from eqs. (II.3.15) and (II.3.26) that eq. (3.19) 

can be written as

X(k,w) = i^(k,w) * [5(5,0))-^]+ 1) * vf (k,w) ,
■>

where the tensor M(l£,a>) is defined by eq. (1.3.18). 

Now we can rewrite eq. (3.11) as

(3.22)
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(3.23)

N -*■ * ^

A-1 £ {<5Am+a£*^£>m-A)-Djljin}+J
£= 1

• ■-j.'VVV*

Defining

5p m(k»w) = A (k,a))-IOc,w)
*• x. ,m

and using eq. (3.18), eq. (3.23) becomes

N -*■ -+ ->■ -y n ■+ -> —£ ? *{6 +a •<$ -D }+ V g •($ = 1-X6X *A*
£ £m £ W£,m £,mJ £j8£ ^£ ,m

So, if we define 

. ->-ext -t,-\ —= <1_x ,s>

and

(3.24)

(3.25)

(3.26)

■?i _ 4-ext 5-1 £^ = 0-X -A) -g^

and multiply eqs. (3.25) and (3.15) on the left with 
-*• -*■

/, ->ext ->-.-1
U”X *A) we get

jAsAAA»> +

and

N N — It

- °-

(3.27)

(3.28)

(3.29)

0n the other hand from eqs. (3.18), (3.20), (3.26) and (3.27) it 

follows that

-ext £-1 N ^ + N - f
*■= (»-x I (?A*3A+g) = i

£-1 £=1 *
(3.30)

So by solving the sets of equations (3.28) and (3.29), instead
-*■

of the sets (3.11) and (3.15) we directly obtain the quantity A,



eq. (3.30), which appears in the expression (3.19) for the 
-+■

susceptibility tensor x* Note that for N=1 we can easily obtain from

eqs. (3.28) - (3.30) the result in paper II: eq. (II.3.28) where 
->• ->■

ft = ft^ D' = ft^ £ and E = (From eqs. (3.21) and (3.24)

follows that Q = 0).
x,

In a similar way as we obtained a set of equations determining 
-*■ -*
->■ m ->ext . . • •Jf'instead of x we can also find a set of equations determining

#
X directly. In order to do this we rewrite eq. (3.11) as follows 

N -+ ->•-*- N ->■ ->-

N
1 ■1 -►ext +

£= 1
F, (3.31)

where

-*■-*•
R

->■ -►.**• ■+ + i
= A. -F (= Q„ +A-F = Q„ +M~) ,m £,m x£,m x£ ,m 3' (3.32)

Defining

n s <>-x
-.ext (3.33)

and

-*ext -1 -*■ 
8Z = (1‘X •!•) -%t (3.34)

and multiplying eqs. (3.31) and (3.15) on the left with
"*■ -► ,., ->ext £x-l 

(1“X *F) we get

N -*■
l

£= 1 

and

« -r ~r -r -r N ~r

y 1"*{6 +a *R -ft } + y g"• R =1£, £ £m £ £, m l,mJ ££j8£ £,m

y ?"-{t -5; +e } + y g'**(6 +d' > = o.I* 0 0 o . - m 0 - m ^ ° 0. £m £m£-1 1 1 l,m £,m £=1 £

(3.35)

(3.36)
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Now we have

5 = (i-rxt-?)-i.|ext = o-rxt.|)-‘. ? -y -*■

£= 1

£=1
(3.37)

-*■
+ • "2,The advantage of the evaluation of^ in eq. (3.22) is that ^

is somewhat easier to calculate since the diagonal elements 5^^ 0(

Furthermore the form (3.22) is the same as the form of the

susceptibility of a simple point dipole lattice wheret^-pa » which

results in the Clausius Mosotti relation. We shall, however,

determine the susceptibility tensor here directly from the sets

equations (3.35) - (3-37). We can write the formal solution of

eqs. (3.35) and (3.36) as follows:

define

" Ya +:

so that
-y •y
X

XA = YVg£

N -*
l x„.

£=i

Equations (3.35) and (3.36) then become

N -*■ -y -y -y
7{xft • +?''* (6„ -D„ ) ) = 1^j £ £,m £ v £m £ ,m

(3.38)

(3.39)

(3.40)

and 

N
l

£-1
-y

From these equations?” can be eliminated.

(3.41)

Before we do so we first introduce a matrix notation:
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R^ m is represented by a 3Nx3N matrix R; is represented by a row

of tensors: x and is thus a 3x3N matrix. The row of unit tensors is 
-y

denoted by ji. The other quantities in eqs. (3.40) and (3.41) are

represented by matrices in a similar way. For a term like 

N -> -*■ -y -y
£ X«'Rp we then write x’R- So eqs. (3.40) and (3.41) become 

i 1 *■,m

Z-t* =1,

X- d+I')+l"- (irh - 0.

(3.42)

(3.43)

Here is the 3Nx3N unit matrix and

(a) = a 6 .^£,m £ to (3.44)

Furthermore we denote a column of tensors c„ by c so that „ i J —
N ■+ -y

5-1- IVv
£=1

(3.45)

(3.46)

The solution of eqs. (3.42) and (3.43) is now given by

I ■ {i-d+i') • (i-i)-' • d-i) .

-t ~i ^
where (M) is the inverse matrix of M, not to be confused with

•y
the matrix of inverse tensors M From eq. (3.45), choosing 

6,= X and £ = together with eqs. (3.39) and (3.46) we finally 

obtain

X - e - d-d+i)* (id"1 • (1-i) }_1 *e .
(3.47)

The result of paper II (eq. (II.3.24)) for one molecule in a 

unit cell can easily be obtained from eq. (3.47) by taking N=1 and
-y -y -y -y -y -+ ~y ~y -y -y -y -y

. -y -± -y -y -y, -y, -y ± -y -y -+,
using R . “ A-r, D . = D, D. . D D and E. = E, where A, D, D

-►*»* 11* 1 > *
and E are defined by eqs. (II.3.15) - (II.3.18).
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Finally we remark that the lattice sums in the various 

quantities can be expressed in rapidly converging lattice sums as 

we did in papers I and II. These lattice sums are: A. (k,u), 

defined by eq. (3.12) ,

54,m(5’u) =
X

-ik. *X &m

contained in D„ and D' , and . i ,m l,m

E £S'S5(S"'V“)
“ik. ’rrt X fi-m

XX

(3.48)

(3.49)

contained in E . Just as in paper II we can write
9. ,m

(cf. eqs. (,11. 3.26) , (II.3.31) and (II.3.34)):

^ m^,W^ = _(k,w)+F(k,u))-^,
£. ,m

(3.50)

(3.51)

and

l- kakBt^,m^>^Y6'Kk85va+ikc1tSi>’“)]BY6

+ ikgC 54,m(?*u)]aBY«-

In an almost analogous way as in the previous papers we derive 

that for £^m:

(3.52)

M <k,U) - -P 'l 2. , _ , / Ki COS UMX-, ^(VV+w ){erfc(/rr-)-v■£— >eR. cos 
a' 4ttR

JVrta

(k~k. ) (k~k. )-w -
i -A ,2
X | k-kx | -a)

"lkx’r£m



+ Br(klU)-i] 1
3

(3.53)

= -p I 2S , ,/Rncos coR-, -ik*R 
v(VV+co ) {erf c(/tt—)--. ■—}e a 4ttR JR.+r l fi-m

(k-k )(k-k ) ■ik, -r.
♦ ini-iy 'x x ■ x

IHI2-2
■^(|k-kx| ,u),

ii kk_“
.2 2k -co

E^(k,u)-l] (3.54)

and

32,m(S-“> ’ l ■££,■££. 2n r r , / RN cos coR-, -ik-R VV(VV+io ) {erf c(/ir—)——-—}e 
a 4ttR R. +r l S,m

• + + + (k-k ) (k-k )-co
<k-v <k-v—i k-kx i •-> ■

X I k-k^ I -w

-ik,•rX 5-m

+ SC 9?(k,u)-l] . (3.55)
k -co

The functioned?(k,co) is defined by eq. (A. 14) of paper II.

The cut off parameter a is some length of order of the lattice

parameters or the intermolecular distances. (See II, page 31).

Note that in the sums over R-space the origin R^=0 is included.

In the derivation of eqs. (3.53) - (3.55) we have used fi^m viz.
-*• -*■

by putting H(S.+r. ) = F(R.+rn ) for J#m. This is not true for 
l xm l xm

Jl=m. In that case we must use the derivations of papers I and II 

yielding M, N and 0: eqs. (1.3.27), (II.3.32) and (II.3.35). As 

already remarked at the end of the appendix of paper II we have 

used in eq. (1.3.27) a different cut off function.
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4. First order spatial dispersion and optical activity

In section 3 we gave an expression (3.47) for the k-dependent 

dielectric susceptibility tensor for a lattice with N point dipol 

and quadrupoles in a unit cell. Under the assumption that this 

k-dependence (spatial dispersion) is small we shall give in th 

section the result in Oth and 1st order. ^

According to eq. (3.46) we can write for the row of tensor )(

with

I 5 Er(l+£') * (E-a)~1 * (t-D) • (4-2)

As can be seen from their definitons, together with eqs. (3.48) - 

(3.55), the elements of the various quantities appearing in ? can

be expanded in powers of ak where ^ is the cut off parameter of

order of the lattice parameters or the intermolecular distances.

For values of k such that ak is small we can break off the

expansion after the first order term. For the first two terms of 

-*
e.g. D we shall write:

-+ -*-(0) ->(1) £ = dv '+D^ '

Thus we have up to first order:

c?<0>)-1-d(0))',I(1)-d(0V1.(T)~1 = (T(0)+T(1)) 1

with

|(0) .

(4.3)

(4.4)

(4.5)

and
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!(i> = i(1)+(k,(0>)-(I(0)-i(0))'1i(i)

- (14-(o>) • d(o) -i(o)) ■1 • d( 1} -i( 15) • d(o) 4co>) ■1 • (i-i(o) >
(4.6)

For the expansion of x> eq« (4. 1), we then have

f = !(o)40). i-(|(o))‘I-I-(ico))’,-I<0-4(0)) -l
(4.7)

and for the susceptibility x:

4 4(0) 4(1)
X = X +x » (4.8)

with

|(0)

and

(o)r1 (0) “>£• (fr ') -e= l (f^u;)
SL ,m= 1 SL,i

r\j ^

Using eq. (4.7) and the fact that ( see below)

we can write for (eq. (4-10))

JO) = -j(0).?O).4(0)T = _ ? 4(o)#4(i) 4(0)T
- ~ - Z,m=l 4 £*m ^

(4,9)

(4.10)

(4.11)

The superscript T stands for transposition of the (3-dimensional)

tensors. The meaning of the tilda is:
'U

^H tm \i,£*

So, for a product of two of such matrices:

■+■ 4- ->• ->■
•* ■+• t -+T -*T 

(A-B) = B -A .

5 T
The fact that T ^ = T^ can be

(4.12)

(4.13)

seen as follows. In the expression
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(4.5) for is R^0) = R(°^ which can be seen from the

definitions (3.32) and (3.12). It is a consequence of the fact

that the tensor H(k.) is symmetric and an even function of
A

so that only the even terms of the exponent in eq. (3.12) contribute

In the same way only the even terms of the exponent in def. (3.17)

contribute for k=0. Moreover 0^ = 0^ which follows from the

symmetry of the molecular polarizability tensor o^ so that 
•V / v T ->■
|(°)- . J(0)_ From the (see paper II page 33) symmetry property

t Zq W -(0)
of o follows also that pa. is symmetric so that = 4 *x- ^ x-
Finally we have D'which is a consequence of the

$ *
symmetry relation between 5' and £ and of the fact that in the 0th 

order term of (3.16) only the odd terms of the exponent contribute.

J(0) f • ,
In a similar way as we can derive the symmetry of T. we in

from eq. (4.6) that

J0)T = jj(D (4.14)

so that

?<” = ■*<*> and f<*> - 0.
£,m m,i,

-*•#
Applying this property to eq. (4.11) we obtain for x

+ ... ->• ->■
+0) _ t tTX = * - # »

with

(i).

_? |(o)S(oi(o)T

m<H
Because T^^is of first order in k we can write for 5

(4.15)

(4.16)

(4.17)
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(in cartesian components):

> „ = itfi „ k , 
ctB ragy Y

(A. 18)

from which we arrive at the gyration tensor in the same way as 

in section 4 of paper II (cf. eqs. (II.4.28)-(II.4.35)):

gY6 = WaS*’ (/"'9)

where 6^^ is the permutation tensor or Levi-Civita tensor.

Now the first order spatial dispersion of the dielectric 

susceptibility and therefore the optical activity is known if the 

positions of the N molecules in the unit cell, the structure of the
-> $

lattice and the values of ct„ and of each of the N moleculesl l
are known. The computation of the Oth and 1st order of the 

lattice sums and the matrix operations have to be carried out 

numerically. The calculations above are simplified by the fact

that the lattice sums (3.53) - (3.55) are even functions in aw.

. 2 2. .Since terms of order a w and higher can be neglected in this

first order theory one may put w=0 in those lattice sums.

In the next section we shall finally show how the expressions

reduce in the case of N point dipoles in a unit cell.

5. The susceptibility of a composite point dipole lattice

We obtain the susceptibility for the case of N point dipoles 

in a unit cell from the results of the foregoing sections by
* * X t

setting 3„ and equal to zero. This means that D„ , D’ andHi x, a jin a ,m
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E*,ra (eqs* (3*13)> (3-16) and (3.17)) become zero and a^ reduces 

to Pap (eq. (3.7)). The expression (3.47) for the susceptibility

then reduces to

X =■ !•[ !+(!r1]’1!- I CE-tS)"1]*;..
z ,m= 1

where now (cf. eq. (3.44))

(5.1)

= (5.2)

so that

v
Here (pa^) * is the inverse tensor of pa^. If we restrict 

ourselves again to Oth and 1st order spatial dispersion we get 

for the Oth and 1st order susceptibility:

(5.3)

i(0) ■! f<0) - ! [I(0)+<
£=1 Z,m=1

and

to) J ico).|d).i(0)T

For R^ and R^ we have with eqs. (3.32) and (3.50) 
£,m l,m

I<°> = S<o)A
l ,m Jljm 3

and

Jl ,m
;(1)

(5.4)

(5.5)

(5.6)

(5.7)

;(°) 
Z ,ra Z ,m

the Oth and 1st order terms of the lattice.

sum M. (eq. (3.53)). In these two sums we can neglect the 
Z ,m

2 2.10-dependence which is of order a to and higher. The result is then
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for Z J m

= fll i
Z ,m 4tt “

1-3RR{erf c(/tt—)

- IJL
R"2R e ^ >-&S| e

irR

R.+r„J i Jim

l XX

2. 2 
akA

4tt 1
COS <Vr£m)+3 (5.8)

and

50) = -it-
Z ,ra

SISsS

e- y4tt 4

ttR

ttR
R-3RRR r r #,Rt 2R a2, 
~{erf c(/ir—)H----  e }TN ^ 3 3

R +? + X {Wx(fr+ 7)kxe
i Am X

2, 2
a kx

4ir

e

2.2 
3 kx

4tt (5.9)

Here R = S/R and it. = k /k .
X XX

This result forms in fact the basis of the numerical calculations 

4)
of Endeman.

Finally we give here the Oth and 1st order susceptibility for 

a lattice with two point dipoles in a unit cell (N=2) for which 

case the explicit forms of and can eas^y be calculated.

For this simple case we have the following properties of the 

lattice sums:

*(o) = £<°) - i(°)JLRl,l R2,2 " M 3 ’ (5.10)
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(5.11)

where is given by eq. (1.4.7),

;(0)
1,2

Rn = = s(0)

R(1)
M

and

id)
Rl,2

2,1

R(1)R2,2

1 ,2
i 5 R(0)

R(1) = *d> 
R2,1 - R

We then have for x 

(
•2

(0) and x 0).

J(0> - x,(0) + J<0)

(5.12)

(5.13)

(5.14)

and

For 5<°> amd x^ we have

(2) m (2)

(0) -l
(B(0)-K )}

(i)

(2)

-1

(5.15)

(5.16)

, + +0 , f are the polarizabilities of the
in which aj = pctj and a2 - p«2 are uus Futa

two molecules.
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Samenvatting

De macroscopische dielectrische eigenschappen van een systeem 

worden gekarakteriseerd door de dielectrische susceptibiliteit. In 

het algemeen is deze grootheid een tensor die (in de lineaire 

theorie) het polarisatieveld lineair verbindt met het electrische 

Maxwell veld. Van ruimtelijke dispersie spreekt men als de 

polarisatie in een bepaald punt niet alleen afhankelijk is van het 

electrische Maxwell veld in hetzelfde punt, maar ook van dat veld 

in alle andere punten door middel van een integraalrelatie. Heeft 

men te maken met een homogeen oneindig medium dan komt dit tot 

uitdrukking in het feit dat, na Fourier transformatie, de polarisatie 

in een punt in de golfgetalruimte lineair afhangt van het 

electrische veld in hetzelfde punt middels een golfgetalafhankelijke 

complexe dielectrische susceptibiliteit.

Ons doel is nu deze golfgetalafhankelijke dielectrische 

susceptibiliteit af te leiden uit de microscopische eigenschappen 

van het systeem, in dit geval een moleculair kristal. In een af- 

zonderlijk molecuul wordt door het daarop werkende (effectieve) 

electrische veld een dipool moment verdeling geinduceerd die men 

lineair afhankelijk veronderstelt (ook met ruimtelijke dispersie) 

van het electrische veld door middel van een moleculaire 

polariseerbaarheidstensor. Deze moleculaire polariseerbaarheids- 

tensor kan kwantummechanisch berekend worden. Wij beschouwen deze 

grootheid als gegeven. Als op het moleculaire kristal een tijds- 

afhankelijk uitwendig electrisch veld werkt dan bestaat het 

effectieve veld dat op een molecuul werkt uit dit uitwendige veld en 

de stralingsvelden van alle moleculen. De totale microscopische 

polarisatie van het kristal die daar het gevolg van is, kan in de 

golfgetalruimte geschreven worden als een reciproke-roostersom 

waarvan iedere term het produkt is van een uitwendige susceptibili

teit en het uitwendige veld, beide afhankelijk van de reciproke 

roosterpunten. Voor een macroscopische beschrijving van het systeem 

beschouwt men slechts die Fouriercomponenten van de polarisatie en 

het uitwendige veld, waarvoor het golfgetal in de eerste Brillouin- 

zone ligt. Het gevolg is dat van bovengenoemde reciproke roostersom
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slechts een term overblijft die de polarisatie lineair verbindt met 

het uitwendige veld voor hetzelfde golfgetal. Dit geeft de golfgetal- 

afhankelijke uitwendige susceptibiliteit van het kristal, dat verder 

als horaogeen (zij het in het algemeen anisotroop) beschouwd kan 

worden. De fenomenologische Maxwell theorie levert de relatie tussen 

deze uitwendige susceptibiliteit en de dielectrische susceptibiliteit 

waaruit een uitdrukking voor de laatste afgeleid kan worden in 

termen van reciproke-roostersommen. In deze afleiding van de 

dielectrische susceptibiliteit hebben we slechts verondersteld dat 

het uitwendige veld langzaam varieert over een rooster afstand.

Voor de moleculaire stralingsvelden zijn geen veronderstellingen ge- 

maakt. De (formele) uitdrukking voor de dielectrische susceptibili

teit kan verder uitgewerkt worden door een multipoolontwikkeling te 

maken van de geinduceerde moleculaire dipoolmomentverdeling. Wij 

zijn nagegaan in hoeverre het afbreken van deze reeksontwikkeling is 

toegestaan.

De orde van grootte van de ruimtelijke dispersie (golfgetal- 

afhankelijkheid) van de dielectrische susceptibiliteit wordt bepaald 

door de verhouding tussen de moleculaire afmetingen of de mole

culaire afstanden en de golflengte van het macroscopische veld. Voor 

optische golflengtes is deze verhouding klein en is ruimtelijke 

dispersie een kwantitatief klein effect, dat kwalitatief echter tot 

nieuwe effecten aanleiding kan geven. Zo wordt bijvoorbeeld het 

bekende effect van optische activiteit (dat is de draaiing van de 

polarisatierichting van lineair gepolariseerd licht dat zich voort- 

plant door een medium) bepaald door de ruimtelijke dispersie in 

eerste orde, dus door de eerste orde term in de ontwikkeling van de 

susceptibiliteit naar machten van de bovengenoemde verhouding.

Men kan onderscheid maken tussen ruimtelijke dispersie die het 

gevolg is van de eindige moleculaire afstanden (ruimtelijke dispersie 

met betrekking tot het rooster) en ruimtelijke dispersie die het 

gevolg is van de eindige moleculaire afmetingen (moleculaire 

ruimtelijke dispersie). Heeft men te maken met enkelvoudige Bravais 

roosters (hoofdstuk I en II) dan volgt uit symmetriebeschouwingen 

dat er voor wat het rooster betreft geen ruimtelijke dispersie van
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oneven orde kan zijn. Voor dat geval kan optische activiteit slechts 

het gevolg zijn van moleculaire ruimtelijke dispersie. Voor enkel- 

voudige.punt dipool roosters hebben we het effect van de tweede orde 

ruimtelijke dispersie (met betrekking tot het rooster) berekend. Dit 

effect leidt bijvoorbeeld tot optische anisotropie van kubische 

punt dipool roosters. In hoofdstuk II hebben wij de moleculaire 

ruimtelijke dispersie in eerste orde in rekening gebracht. Dat wil 

zeggen dat wij naast het electrische dipool moment ook het 

electrische quadrupool moment en het magnetische dipool moment van 

de moleculen in rekening hebben gebracht. Dit leidt tot optische 

activiteit, maar blijkt bovendien ook van invloed te zijn op de 

susceptibiliteit voor golfgetal gelijk aan nul. In hoofdstuk III 

worden samengestelde roosters beschouwd, in het bijzonder samen- 

gestelde punt dipool en quadrupool roosters. In tegenstelling tot het 

enkelvoudige rooster kan het samengestelde rooster ook eerste orde 

ruimtelijke dispersie vertonen wanneer de moleculen slechts beschouwd 

worden als punt dipolen.

De uitdrukkingen voor de susceptibiliteit in de verschillende 

gevallen bevatten roostersoramen die langzaam convergent zijn. Volgens 

een methode, ontwikkeld voor Ewald en later gegeneraliseerd door 

Nijboer en De Wette, worden deze sommen elk omgezet in twee snel 

convergerende sommen, een over het rooster en een over het 

reciproke rooster. Deze snel convergerende rooster sommen kunnen 

voor elk kristal type gemakkelijk numeriek berekend worden. Wij 

hebben de berekeningen uitgevoerd voor een paar eenvoudige voor- 

beelden.
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STELLINGEN

Tn de nulde-orde dielectrische tensor van een niet-isotroop 
molcculair kristal kotnen bijdragen voor die afkomstig zijn van de 
hogcre-orde multipolen van de moleculen. Voor de bijdragen van de 
eerste- en tweede-orde multipolen kan worden aangetoond dat de 
vorm van de Lorentz-Lorenzformule daarbij in essentie behouden blijft.

Hoofdstuk II v^n dit proefschrift.

II. Bij de afleiding van de algemene formule voor de dielectrische 
susceptibiliteit van een moleculair kristal behoeft slechts 
verondersteld te worden dat het uitwendige electrische veld lang- 
zaam varieert over de eenheidscel van het kristal.

Hoofdstuk I en III van dit proefschrift.

III. Een oneindig puntdipool-quadrupoolrooster verstrooit geen licht met 
golfvector in de eerste Brillouinzone.

Hoofdstuk II van dit proefschrift.

IV. Voor het numeriek "oplossen" van een overbepaald stelsel lineaire 
vergelijkingen volgens de discrete Chebyshev-approximatie bestaat 
een adekwaat computerprogramma.

V. De door Ruelle afgeleide noodzakelijke voorwaarde voor het bestaan 
van een faseovergang in een eendimensionale Ising-ferromagneet 
waarvan de interactie afneemt met de afstand heeft een analogon in 
het percolatiemodel.

Ruelle, D. , Commun. Math. Phys. 9^ (1968) 153.

VI. Een aanzienlijke verfijning van het meteorologisch meetnet leidt 
niet tot een belangrijke verlenging van de termijn waarover de 
atmosfeer voorspelbaar is.

Lorenz, E.N. , Bull. Amer. Meteor. Soc. 50 (1969) 345.
Smagorinsky, J.S. , Bull. Amer. Meteor. Soc. 5j) (1969) 286.

VII. In de theorie van Peterson en Fixman over de viscositeit van
polymeeroplossingen wordt ten onrechte de variatie van het snel- 
heidsveld van de vloeistof over de afmetingen van het polymeer 
verwaarloosd.

Peterson, J.M. en Fixman, M. , J. Chem. Phys. 3.9 (1963) 2516.



VIII. Bij de beschrijving van molecuulvorming bij kathodeverstuiving 
door middel van recombinatie van onafhankelijk verstoven atomen 
dient men uit te gaan van de energieverdeling van de atomen binnen 
het rooster en niet van de experimenteel gemeten verdeling buiten 
het rooster.

Konnen, G.P. , Tip, A. en de Vries, A.E., Rad. Effects 26_
(1975) 23.

IX. Er zijn bezwaren aan te voeren tegen de in onderstaande artikelen 
gebruikte methode van ruimtelijke middeling.

Vlieger, J., Can. J. Phys. 49 (1971) 1384.
Sipe, J.E. en van Kranendonk, J., Phys. Rev. A9 (1974) 1806.
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