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CHAPTER I

OUTLINE

In i960 the first storage ring for colliding e e beams, with a

circumference of about h metres, was built in Frascati. At CEHN, experiments

with the LEP machine, which has a circumference of more than 27 kilometres,

should start at the end of the 80's. In the meantime, both the size and

complexity of the experiments have grown with the same speed, resulting in new

theoretical insights as well as an increasing need for methods to translate the

theoretical predictions into experimentally meaningful quantities. The Monte

Carlo simulation of scattering processes has turned out to be one of the most

successful ways to do this.

It is the purpose of this thesis to describe how this approach can be

applied to higher-order QED corrections to several fundamental processes. The

outline of this work is as follows. In chapter II a very brief overview of

the currently interesting phenomena in e e scattering is given. It is argued

that accurate information on higher-order QED corrections is very important

and that the Monte Carlo approach is one of the most flexible and general

methods to obtain this information. In chapter III we describe various

techniques which are useful in this context, and make a few remarks on the

numerical aspects of the proposed method. In the following three chapters we

apply this to the processes e e •*• y V (Y) and e e -»• qq^y)- In chapter IV we

motivate our choice of these processes in view of their experimental and

theoretical relevance. We give the formulae necessary for a computer

simulation of all quantities of interest, up to order a3. In chapters V and

VI we describe how this simulation can be performed using the techniques

mentioned in chapter III. In chapter VII we show how additional dynamical

quantities, namely the polarization of the incoming and outgoing particles,

can be incorporated in our treatment, and we give the relevant formulae for

the example processes mentioned above. Finally, in chapter VIII we present

some examples of the comparison between theoretical predictions based on Monte

Carlo simulations as outlined here, and the results from actual experiments.



CHAPTER II

INTRODUCTION

+ _
1. e e physics

Over the last decade many of the most important contributions to the

present-day understanding of elementary particles and their interactions have

come from experiments using colliding electron and positron beams. One very

obvious advantage of these experiments is that all the energy of the

colliding particles can be used to probe the interactions, in contrast to

experiments with only one beam, where only a small fraction of this energy

is available. Another one is that electrons and positrons are still pointlike

at even the highest available energies. Hence the collision products form a

clean signal as compared to collisions of hadrons, where many of the hadron

constituents do not interact and give a contamination of the final state.

As major qualitative successes e e scattering has established the

existence of two new quarks (c,b), a new lepton (t) and a new type of gauge

boson (gluon). Important quantitative results have been the precision tests

of QED, the measurement of R (the ratio between the cross section for hadron

production and the one for muon pair production) and of the strong coupling

constant o , the development of quarkonium spectroscopy, achievements in

the field of 2y physics, and a first determination of weak coupling constants

for a timelike momentum transfer

It is outside the scope of this thesis to go into any detail about the

present status of e e physics. Apart from searches for new and/or unexpected

phenomena, the investigations center around ohe study of three fundamental

interactions, and the possible theories describing them:

1. electromagnetic interactions, described by

- quantum electrodynamics (QED)

2. strong interactions, described by

- quantum chromodynamics (QCD)

- potential models for qq bound states

- models for the quark structure of hadrons

3. weak interactions, described by

- gauge models, all more or less similar to the "standard" model

8



( S U ( 2 ) X U ( 1 ) gauge theory of Glashow,-Weinberg and Salam with "brokengauge

' symmetry)

Ji, - different models for weak decays of hadrons.

Many reviews exist that give detailed information about accomplishments and

u prospects in any of these fields. We will restrict ourselves to a feature

/ common to all e e" experiments, that is, the necessity of taking into account

« radiative corrections.

2. Radiative corrections

Since in any e e~ process at least two charged particles are involved, it

is necessary to take into account the effect of the accompanying electro-
2)

magnetic fields. Indeed, it has been shown that the cross section for the

scattering of "bare" charges, without any emission of electromagnetic

radiation, is strictly speaking equal to zero.

Apart from the effects of vacuum polarization, radiative corrections are

' applied to a given process by letting an extra photon interact with the

charged particles present in the reaction. This photon may be virtual (i.e.

off mass shell) in which case it has to be emitted and absorbed during the

interaction, giving rise to a final state which is identical to that of the

lowest order process. In case it is real (massless), it will propagate into

the final state and may be detected as bremsstrahlung. In this way radiative

corrections affect all experimental distributions and it is necessary to

include them in a careful analysis of e e scattering experiments.

On the uther hond, radiative processes where hard bremsstrahlung is

emitted may be studied in their own right, without interpreting them as a

correction to some nonradiative process. For instance, hard photon emission

'i will act as a severe background to the study of quarkonium transitions and
h) + -

i the search for excited leptons ; as another example the process e e ->• Y V V

may be used as a accurate way of counting the number of neutrino types, while

' the "lowest order" process e e" -*• \>v is completely undetectable .

We will now describe the major qualitative features of radiative effects.
1. Ooevall magnitude

•• In a typical experimental situation a rough guess for A, the

magnitude of the radiative correction, is in first order of perturbation

" theory given by

2a ,_ ts_

e

~ ^ In [-%•) P , (2.1)
ir Sn2-' corr
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where contributions of higher order in a have been neglected. Here

a ~ 1/137 is the fine structure constant, s = UE2 is the square of the

centre-of-mass energy (E, being the beam energy), and m is the electron

mass. F is a quantity which is typically of order unity, but in some
corr

special situations it may become much larger (positive or negative). If

F is not strongly dependent on s, then also A is a smooth function of
s. Setting F = 1, we find that A varies between 8.5$ at /s~= 5 GeV

corr
and 11.7 Ï at /s~= 150 GeV .

2. Infrared divergencies

It is well known that for small energy k of the emitted photon the

bremsstrahlung cross section is proportional to 1/k. The resulting

divergence in the cross section can be regularized by giving the photon an

extremely small but finite mass X; the infrared divergence will then be

connected with terms in the cross section that go as In X. These terms
2)

are cancelled in all orders of perturbation theory by similar terms

with opposite sign that come from the virtual photon corrections. This

leads to the two following conclusions. In the first place, there is no

physically meaningful way to separate the virtual and real photon

corrections to a given process and any treatment will have to deal

simultaneously with the two contributions that, however, describe

different final states. Secondly, whereas the virtual photon corrections

are independent of the detailed experimental situation, the real photon

contribution diminishes as the allowed phase space for bremsstrahlung

becomes smaller, for instance if the bremsstrahlung can be detected with

greater precision. In that case the 0(a) correction may become large and

negative, and higher order corrections become important, leading to an

exponentiated form for the corrected cross section.

3. Collinear peaking behaviour

Apart from those situations where the lowest order cross section has large

peaks (if any), the multidifferential bremsstrahlung cross section will

in addition show high and narrow peaks whenever the bremsstrahlung photon is

emitted parallel to one of the incoming or outgoing charged particles. For

any such particle the bremsstrahlung cross section contains a factor

[(p+k)2 - m2] , where p and k denote the four-momenta of charged particle

and photon, respectively, and m is the mass of the charged particle, which

is taken to be small compared to the particle energy p°. Usually (p+k)2

will be much larger than m2 . If k is (nearly) parallel to p, however,

10



(p+k)2 will also be or order m2, leading to the forementioned peak in the

; cross section. For instance, if the bremsstrahlung is emitted by a

j 20GeV e~ beam, the cross section rises with a factor 5*107 when the

I angle between i. and p goes from 10 degrees down to 0. That the collinear

1 peaks and the infrared divergence from the last section are closely

related can be understood by making the following observation...The cross

i; section is a Lorentz-invariant quantity, and can be evaluated in any

i coordinate frame. The energy k° of the photon in the rest frame of the

i charged particle (i.e. the coordinate frame where p=0) is given by

'" k° . . = — f(p+k)2 - m2) . (1.2)
;. rest system 2m v * '

From the above we see that this quantity is of order m when p and k are

parallel in the lab system, so that the photon becomes soft if m becomes

small. For finite m the cross section will not display a singularity

in this situation, but a peak will occur leading to terms with lnm in the

integrated cross section, as can be seen in eq. (1.1).

3- Event generators

From the above it is clear that the magnitude of radiative effects

depends strongly on the allowed kinematical configurations, and therefore a

treatment of these effects has to include a careful analysis of the

experimental situation . Concerning this, three remarks are in order. In

the first place, the set of experimental cuts on the allowed phase space is_

usually far too complicated to allow for a fully analytic calculation of the

radiative effects, and usually one has to rely on numerical methods to obtain

the radiative correction. Simplifying the boundary conditions that describe

the cuts on phase space, in order to make an analytic treatment possible,

usually introduces into the result an error equal to or greater than.the

inaccuracy of a numerical integration with precise cuts.

Secondly, there are many quantities and distributions of interest, each

defined experimentally in a different way, and hence influenced by radiative

effects in a different way.

In the last place, with the increasing complexity of the detection

apparatus, it becomes also necessary to examine carefully how this apparatus

reacts to a given collision process: this is usually done by constructing a

computer simulation of the detector.

11
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In view of the above considerations it appears that the optimal way of

studying radiative effects in complicated experimental situations is not to

derive analytic or numerical expressions for the quantities of interest, but

rather to construct a computer simulation of the radiative process itself i.e.

an event generator. This is defined as a numerical program resulting in a set

of four-vectors (the momenta of the final-state particles) where the

probability for a given configuration of four-vectors to occur is given by

some theory (in our case, usually quantum electrodynamics). The advantages

of this approach are clear: it is conceptually very simple, and flexible in

the sen.e that a generated sample of events, i.e. sets of four-momenta, can be

used to simulate every quantity or distribution that is experimentally defined.

By counting the number of events that survive a given set of experimental cuts

one obtains a Monte Carlo estimate of the cross section. Also the generated

events can be used as input for a detector simulation.

The above holds not only for radiative processes but for most scattering

processes of interest: indeed, event generators have been constructed for

processes like jet fragmentation as well 7). However, the fluctuating

behaviour of bremsstrahiung cross sections requires a careful treatment both

of the probability distributions of interest and of the numerical problems

which may be encountered in generating these distributions.

References

1. F.M. Renard, "Basics of electron-positron collisions", (Editions

Frontilres, Gif-sur-Yvette, 1981)•

P. Duinker, lectures gi~en at the 18th International School uf

Subnuclear Physics at Erxce, Italy, 1980 (NIKHEF-H/81-O5)•

B. Wiik, lectures given at the 1981 Summer School of Theoretical Physics

at Les Eouehes, France.

2. F. Bloch and A. Nordsieck, Phys.Rev. §2 (1937) 5*+-

D.R. Yennie, S.C. Frautschi, and H. Suura, Ann.Phys. J_3 (19^1) 379.

3. See e.g.

R. Partridge et a l . , Phys.Rev.Lett. W.198O) 1150.

B. Wiik, talk given at the 1975 Int. Symp. on Lepton and Photon

Interactions at High Energies at Stanford, U.S.A.

12



k. See e.g.

R. Hollebeek, talk given at the 1981 Int. Dymp. on Lepton and Photon

Interactions at High Energies at Bonn, Germany.

J. Branson, ibidem.

5. L. Ma and J. Okada, Phys. Rev. Lett. Vj_ (1978) 287.

K.J.F. Gaemers, R. Gastmans and P.M. Renard, Phys. Rev. DijJ (1979) 16O.

G. Barbiellini, B. Richter and J.L. Siegrist, Phys. Lett. 106B (1981

6. K.J.F. Gaemers, Ph.D. thesis, Leiden,

F.A. Berends and R. Gastmans, in: Electromagnetic Interactions of Hadrons,

eds. A. Donnachie and G. Shaw, Plenum Publ. Corp., 1978.

7. P. Hoyer et al., Nucl. Phys. B161 (1979)

A. Ali et al., Phys. Lett. 93B (1980) 155.

R.D. Field and R.P. Feynman, Nucl. Phys. B136 (1978) 1.

B. Anderson et al., Z. Phys. C3 (1980) 223; Hucl. Phys. B135 (1978) 273.

13



CHAPTER III

REMARKS ON MONTE CARLO TECHNIQUES

1. Introduction

Having argued in the previous chapter that radiative processes can be

adequately studied using event generators, we will now proceed to give a

brief overview of the field of random-variable techniques, which are also

known as Monte Carlo methods. We will keep in mind the specific application

of these methods.

Therefore, we will not go into any mathematical detail. Moreover, we want

to illustrate the motivations behind our particular approach rather than give

an exhaustive, review of all existing methods.

This chapter is organized as follows. In section 2 we will formulate our

problem in terms of the generation of a multidimensional probability

distribution. In section 3 we will indicate several possible ways to solve

this problem. In the last section we will comment on some technical details

concerning generation of random numbers, numerical inversion, and numerical

stability.

On all the points neglected or only hinted at in this chapter, many good

monographs and reviews exist, for which we refer to refs. 1)

2. Multidimensional probability distributions

The problem under consideration can be formulated as follows: given an

N-dimensional space of variables x (denoting the set Xj,x2,...,x„), and a

probability distribution f(x), i.e. a nonnegative, real and integrable

function , construct an algorithm for obtaining a number of definite,

uncorre3ated values for x such that the probability that the components x^ lie

in the interval between y. and y-+dy. is given by f(y)dy dy2 ... dy„.

In ca?e the integrals over successive variables are known (preferably as

analytic expressions, although also numerical integrals can in principle be

used), the problem reduces to a set of one-variable problems as follows: we

*) We will only consider continuous distributions here. It is possible to

treat also discrete probability distributions in the same way, by interpreting

them as generalized (6) functions of a continuous variable.

1U



denote the set of successive integrals by

" J fN-1 (xl'"*'XN-2'XN-1 )dXN-1

up to

f1(x1) = Jf2(x15x2)dx2 , (3-1)

where all integrals run over the allowed range for the corresponding variable.

Now fj(xj) is a one-dimensional probability distribution for x.\, with the

use of which we generate a value for xj. Keeping xj fixed at this value,

f2(xi,X2) can be interpreted as a one-dimensional probability distribution for

X2- In this way we can successively generate x2,x3,.•.,x„. We should keep in

mind, however, that the form of the distribution for x, may depend in a

complicated way on the obtained values for x. , ,x. 1; only f,(x,) is free
1 it™ 1

of parameters in this sense. In the following we will assume that the

integrals f.,f„,...,f_ . are known, and concern ourselves with the one-variable

problem only.

3. Simulation techniques

In this section a- short description will be given of different methods to

generate values of x according to a one-dimensional probability distribution

f(x). We assume the existence of a random number generator, i .e. a source of

completely uncorrelated and equidistributed numbers between 0 and 1. We will

denote such numbers with the symbol n. To compare the different methods we

introduce the concept of efficiency of an algorithm, defined as the average

number of times a probability distribution (or i t s primitive) has to be

evaluated in order to obtain one random value for the variable. If in a

computer program this evaluation is the most time-consuming part of an

algorithm (for instance, if the function is very complicated), the efficiency

will be a direct measure of the speed of this program.

Before describing the different methods to generate probability

distributions, we would like to mention a feature of probability distributions

which is often useful, the superposition property : in order to generate x

according to f(x), we may split f(x) into a sum of probability distributions

h. (x) such that

15



f(x) = I h,(x) (3.2)
i

i

and generate an x value according to one of the h. , where the integrals
f ^
h.(x)dx are used as weights to determine the choice of h. in a random way.

The two basic methods for generating x between XQ and xi according to f(x)

!

are:

1. Rejection algorithm ("hit-or-miss" method)

ij For t h i s method we have t o know the mpjcimumf of f(x) in the in terval
i? m .
'i [XOJXI]. A value x is then generated as follows:
{.

i' ( i ) Using the random number generator , pick two numbers m and r\2
| between 0 and 1.I
£• (ii) Determine x and y as follows:
I
I X = X0 + (X

h y = n2fm . (3.3)r
; (iii) if y > f(x) go back to (i);

if y < f(x) accept the obtained value for x.

In words: choose random points in the smallest rectangle in which the

curve describing f(x) fits, and drop all points that happen to lie above

this curve.

It is immediately clear that the efficiency E will be:

x0

For smooth functions E can be of order 1; for sharply peaked functions, •;

however, E can be close to zero. An advantage of this method is, that it

can be trivially generalized to more dimensions, without needing the i'

integrals f2,... Jf]J_1. "H

2. Inversion algorithm -f

We define the cumulative distribution F(x) as

? a
F(x) = I dx'f(x') . (3.5) ;

x o J
Then the values for x can be generated by solving

16 :



F(x) = TiF(xi) (3.6)

for random n between 0 and V. By construction, this equation has one

solution in the interval [XQJXJ]. In words: the values of the cumulative

distribution F(x) are distributed uniformly if x is.distributed according to

f(x).

The efficiency of this method is given by

is where N is the number of evaluations of F(x) (or i ts inverse F )
i;

C necessary to solve eq. (2.5). There are two possibilities:

I (i) F~ is known analytically: in this case E=1 or \ (depending on

whether we have to calculate F(xj) or not).

(ii) F~ is not known analytically: we then have to rely on a numerical

method in order to solve the equation. The simplest and most

straightforward way to do this is by means of a binary search, using

the following algorithm: divide the interval [xo,Xi] in two equal

parts and determine in which part the root x of eq.. (3.6) lies by

evaluating F(L(XQ+XI)) • By iterating this procedure we can

determine the value of xwith (in principle) arbitrary precision.

The efficiency for such an algorithm is

where p is the desired number of significant decimals in x. More

sophisticated methods than binary search may, of course, give a

better efficiency for a given accuracy, but can also be more time-

consuming .

If F(x) is not known explicitly, the inversion algorithm-can still ̂e

used by approximating f(x) by a histogram and using the corresponding

cumulative histogram as an approximation of F(x); however the accuracy

of this procedure is limited, and it certainly is unreasonably slow for

secondary distributions as f2, ,f„ . where for every x a new series of

cumulative histograms would have to be set up.

The essence of the second method is that it uses a transformation of the

variable (from x to F(x) ) such that the distribution becomes uniform-. The more

sophisticated methods we will describe now show an application of the same

principle.

17



j; 3. Adaptive numerical algorithms (stratified sampling)

| These are used in programs that try to calculate multidimensional

I integrals numerically by optimizing the choice of the integration points.

s- This is usually done by dividing the integration region into subvolumes,

| and redividing or combining these subvolumes in such a way that every sub-

V volume will give the same contribution to the total integral (this is

f : I estimated by taking a few integration points inside each subvolume). This

i? process is iterated several times until the estimated error is below some

!;' desired level. Ideally, by that time the integration points are

l( distributed according to the function to be integrated, and can be used as

0 generated values for x. Several of such routines have been developed

'fy In principle these programs are suited for any probability distribution,

~t and their efficiency is approximately

where N is the number of iterations the program used to obtain the optimal ;

distribution of subvolumes. In practice, however, these programs are ' \

usually less sensitive to peaks in the function that do not run parallel

to a coordinate axis, or that are such that they can not be singled out

by a simple coordinate transformation. Also, since usually the sub- ,_[

integrals are not all equal, even if sufficiently many iterations have

; been taken to obtain the desired accuracy, the events are to be assigned 1

I a weight which depends on the integral over the subvolume they are in, and -J

> a rejection procedure as in 1) can then be used to obtain the events. -.<

\ This inevitably means a loss of accuracy; also, usually the maximum weight ~

j is either unknown or very large in comparison to the average weight.

' The above indicates that an adaptive routine will usually be less accurate '

as an event generator than when it is used for its original goal, namely •<,

f to calculate an integral. In the last case one would of course not have to •',":

I assign weights and reject part of the integration points. r1

; k. Importance sampling algorithm s

I This method aims at combining the rejection and the inversion method !

I while keeping the advantages of both. One has to find an approximant g(x)

; for the desired probability distribution f(x) which satisfies the following ; a

i conditions: '

t a) g(x) is also a probability distribution;

| b) the approximation must be good, i.e. the ratio f(x)/g(x) should not

f
f 18 :



,'• fluctuate too wildly;

"; c) the cumulative distribution G(x) of g(x) can be inverted without too

}; „ much trouble.

I If g(x).and G(x) can be found under the above conditions, we can generate

I x as follows:

| (i) generate x according to the distribution g(x), using the inversion

I1 method.

| (ii) assign to this value for x a weight w(x), defined as

! w ( x ) =i(xT- (3'10)

I The rejection algorithm is now applied to reject or accept the obtained

| value for x, using w(x) as a distribution. The maximum w of w(x) which

f has to be known can either be determined empirically, or derived from
j,

'; g(x) and f(x): the latter may be difficult in case g(x) and f(x) are very

: complicated.

This approach can easily be extended to more dimensions, in which case the

two following remarks are in order. In the first place, it is not

necessary to use a rejection algorithm for each generated x. ; it is as

efficient (and hence faster) to apply the rejection algorithm after having

s generated all components of x. Secondly, it can be useful to perform a

: transformation of variables Xj ,x2 Xj. ->- y1 ,y2,... ,y„ before

i approximating f(x); in that case, it is necessary to include the

, Jacobian ^(x^Xg, ,x~)/d(y1 ,y2,... ,y„) | into the definition of the

; weight function w(x).

The efficiency of this method is of course the product of the efficiencies

; of both steps as given in eqs. (3A,7). From this it follows that it is

i not wise to choose an approximation which is extremely simple but gives a

F bad weight distribution, or which is very good but takes a long time to

!" be inverted. If f(x) is sharply peaked, g(x) should have all the peaks

i both at their correct place and with the right magnitude within a

reasonable factor.

• An advantage of the above approach is that it has much room for optimizing
i

: either the speed of the algorithm or its numerical stability: also

; peaking behaviour which is difficult in the sense mentioned in the last

section can usually be treated; a drawback is, that it requires good

I understanding of the behaviour of f (x), and that for every new case a new

I set of approximants, cumulative integrals and algorithms to generate the

| variables must be constructed.
L 19



Of course there exist more methods than the ones given above. We

want to mention here the method of control variates and of antithetic variates.

Since these approaches explicitly introduce correlations between the random

variables (thus destroying their "randomness"), they are in our opinion less

suited for the direct simulation of physical events.

Since the late 19^0's (when the first serious work on Monte Carlo

techniques started) there has developed a whole arsenal of ways to generate

many distributions using clever, fast or elegant tricks that do not fall into

any of the mentioned categories. Many of them can be found in refs. 7)-

k. Some technical remarks

In this section we want to make several comments on more technical aspects

of the described methods for numerical simulation.

1) Random number generators

We have assumed the existence of a source of truly random numbers.
3)

However, the most extensive set of such numbers contains 2500000 values

which may still be rather limited for our purposes. Normally one uses

arithmetic algorithms which result in a completely determined sequence of

numbers (i.e. not at all random), where the relation between subsequent

numbers is such that for most purposes they appear to be uncorrelated.

The most widely used random number generator of this type is the so-called

multiplicative congruential generator ' which both has reasonable

"randomness" and is at the same time very simple: one multiplies a random

number with a fixed constant and usas the least significant decimals of

the result as the new random number . It has been shown, however, that

this type of algorithm suffers from one fundamental drawback: if the

subsequent (pseudo-)randqm numbers are divided into successive n-tuples

and these are interpreted as the coordinates of points in an n-dimensional

unit hypercube, all points will lie on a very limited number of parallel

planes in the cube . This regular behaviour can of course give rise to

unexpected correlations in the Monte Carlo results. For instance, in the

*) The quality of randomness and equidistribution of the numbers yielded by

this algorithm depend on the choice of the multiplier. There exist many

different statistical tests that, however, may not be conclusive: for instance,

none of these tests discovered the feature mentioned in the text.
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;•; case we will consider in the next, chapter a 5-dimensional phase space has to

% be generated:, if every random number from the generator would be used to

|- give precisely one phase space variable, all generated events would lie

I- on only 220 planes or less in this phase space, which would be easily

I k visible in a large part of this phase space. This number holds for a

} computer with a word length of 32 bits. If the points were truly randomly

ij) distributed, this number could be of the order of 10 , of which no effect

ff'^ could be seen,

t: One way out of this problem would be to generate groups of numbers at the same

!? time, and shuffling their order. Another method is used in the following part

jL of this thesis where not all random numbers that are generated are trans-

s; formed into phase space variables, owing to several rejection procedures.

|: This ensures a certain effective shuffling of the random number sequence.

! 2) Inversion

' As described before, the inversion method for generating distributions

[.. is a mapping of a random number into a variable by the inverse of the

: cumulative distribution. If the mapping is available as an analytical

: expression, it can be evaluated with great precision; in case we have to

invert numerically, the accuracy will usually be less. In particular,

: when the inversion is done by simple binary searching with n iterations,

; the possible results of the mapping are "quantized" into 2 discrete

v equidistant values. This may lead to a situation where a peak in the
i
;• cross section is (owing to the favourable statistics) seen to fall apart
• 6)

S into a series of parallel peaks . Use of either more iterations, or a

; more sophisticated inversion (e.g. using interpolation) will improve on

: such a situation.
I

3) Choice of variables

; As stated before, the bremsstrahlung cross section is sharply peaked as

' a function of the solid angles of the particle momenta. Due to this fact,

:. many events will occur for which the cosine of such an angle (which is the

phase-space variable, rather than the angle itself) lies very close to +1

I or -1. For instance, the distribution of the angle 8 of the photon with

. respect to one of the beam axes will show peaks near cos 6 = 1 and cos 8 = -1,

; with 50$ of the events having 1 - |cos e| < 3*10 , and 10$ of the events

t having 1- |cos8| < 5x10 (for K =15GeV). In such situations much

\ numerical 'accuracy may be lost in the calculation due to the fact that we

\ have a limited number of decimals available in a floating-point
\
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representation. The numerical stability of the generation of such

sharply peaking distributions can be considerably improved by taking for

the variable to be generated not |cos 8|, but 1 - |cos 6J which will be a

number close to zero and can be represented ¥ith a small exponent in

% floating-point notation.
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CHAPTER IV

PAIR PRODUCTION OF MUONS AMD QUARKS

1. Introduction

In the last two chapters it was argued that radiative processes can

conveniently be studied by using event generators, and the general methods

involved in Monte Carlo simulations were described. In this chapter, these

results will be applied to the processes of muon pair production and quark

pair production. There are several reasons for choosing these as an

illustration. In the first place, they are subject to intensive study. Many

of the important parameters of QCD, such as the strong coupling constant, the

number of quark colours and species, and the spin of the gluon are extracted

from quark production, and muon (or tau lepton) production is one of the

cleanest anu most straightforward ways to obtain information on the neutral

current sector of the electroweak interactions. In the second place, both

processes are described by exactly the same Feyntnan diagrams in the lower

orders of perturbation theory, and can therefore be treated the same way

(indeed, even gluon bremsstrahlung can be described in this way, at least up

to first order). Finally, they have all characteristic features of brems-

strahlung processes mentioned in chapter II. Of course there are many other

e e scattering processes of great physical interest, like Bhabha scattering

(e e~-s-e e~), photon pair production (e e~^>-yy), and the so-called two-

photon processes (e e"+e e~u u~, etc.). However, on the one hand these

processes have cross sections very different from muon production, which

would necessitate a different set of formulae, and on the other hand no

essentially new results on the technique of generating events would be

obtained. Therefore we do not deal with them here, but refer to the

literature.

The method which will be used to simulate the processes under consideration

will be that of importance sampling described in section 3 of the last chapter.

To do this, we need the following ingredients:

1. exact expressions for the cross section in all parts of phase space;

2. useful approximants to these exact, but generally complicated formulae;

3. a set of algorithms to generate events according to the approximations used;

h. a way of assigning weights to each generated event.
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f The rest of this chapter, in which we will discuss the first of these

\- points, is organized as follows: in section 2 the lowest order cross section
r,%- is given, and i t is shown how to describe either muon or quark production by
i'

v! changing the relevant parameters. In sections 3, 1* and 5 we treat the virtual

'{ corrections, and the contributions from soft and hard bremsstrahlung,

':> respectively.

Finally, some technical remarks are in order. In the first place we will

[,• throughout the following chapters assume that we are in the ultrarelativistic

'J limit, i.e. the masses of all fermions are assumed to be small'as compared to

;' their energies. However, masses are kept wherever their absence would cause

divergencies. For muons, this is completely justified at PETRA/PEP energies

already (m = 10b MeV, as compared to the typical energy E =18000 MeV). The

values of the light quark masses are rather uncertain (estimates ranging from

several to several hundred MeV), but are in any case small. The masses of

the heavier particles (tau lepton, m = 1TÖ2 MeV, charm and bottom quarks,

me~1500 MeV, mb~U500 MeV) are not really negligible, but their major

effect can be taken into account rather easily without a real change in the

results. In the second place, the expressions for the cross sections are

usually lengthy. Since we are interested in the structure of the formulae

rather than in their details, many of them have been listed in appendix A,

while in the text we concentrate only on those features which are relevant to

the Monte Carlo techniques. In the last place, wherever the word 'muon'

appears, the statement holds equally well for quarks.

2. Lowest order cross section

In this section the expressions for the pair production cross sections for

muons and quarks are given. As stated above these differ only in the values

of the occurring coupling constants and masses. In order to make a systematic

treatment possible we have normalized all weak coupling constants to the

electromagnetic charge of the relevant antiparticle and those charges to that

of the positron, so that this charge occurs as an overall factor everywhere.

The values of the couplings to the photon and the ZQ boson are arbitrary as

far as our treatment is concerned. Below we present a table of their values

in the simplest model for the electroweak interactions, the SU(2) X U ( 1 ) model

of Glashow, Weinberg and Salam (1) with only one Higgs doublet.

In this table, x = !* sin2e , and y = k sine cos9 , where 6 is the weak
w w w w

mixing angle. In principle, also the pair production of neutrinos can be

described with the following formulae, resulting in the process mentioned in
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Table 1. Coupling constants in the standard model

fermion electric weak vector weak axial
type charge Q coupling v _vector coupling a

e,W,T +1 (x-i)/y -1/y

U,c(,t) -2/3 (x-3/2)/y -(3/2)/y

d,s,b +V3 (x-3)/y -3/y

chapter II.

The remaining parameters of the neutral weak current, namely the mass and

width of the Zo boson, are also in principle free. In the standard model

mentioned above they are given by

OM

where , Nd, Nv are the number of types of leptons, up-quarks, down-

quarks and neutrinos, respectively, in which the ZQ can decay. At present,

good guesses are

** ~ 88.6 GeV , r ~ 2.5 GeV , . (U.2)

corresponding to a value for sin28 of about 0.23.

By suitable changes in the masses and couplings, also the hadronic

resonances J/$ and T can be described by the formulae given in the following;

however, the width of these resonances is typically much smaller, and

consequently the radiative corrections are usually such that higher orders- in

perturbation theory than the first have to be included in the treatment which

is not done here.

The lowest order matrix element is given by the two diagrams of fig. 1,

which represent the exchange of either a photon or a Zo boson in the s-channel.

In terms of spinors and propagators, we have



X(s)v(p+)(v+ay ü(q._)(v'+a'Y

z z z

Here p (p ) i s the four-momentum of the incoming positron (electron), q. (q. )

i s the momentum of the outgoing antimuon (muon), and s= ( p , + p )2 i s the t o t a l

invariant mass square of the system. Quantities with prime are connected with

the outgoing pa r t i c l e s , and those without one r e l a t e to the i n i t i a l s t a t e . I t

i s useful t o define the following currents:

= v(P+huu(p_)

= v(P +hVu(p_) (U.U)

If we do not consider par t ic le polarization ( i *e . , we average over the spins

of the e and e and sum over the spins of the u u ) the following re la t ions

hold:

IVV'I2 = IV-A'I2 = |A-V| 2 = |A-A'|2 = S 2 (1+COS 2 9)

(V-V')(A«A')* = (V'A')(A'V')* = 2s2cos8

(V«V')(V«A')* = (V'V')(A-V')* = (V'A'KA-A1)* = (A-V )(A-A' )* = 0 , (U.5)

where we have defined 6 as the polar angle of the positive muon with respect

to the e beam axis. If later on the effect of beam polarization is taken

into account, these products are the only quantities that are modified. We

have normalized the spinors such that ü(p)u(p) = 2m.

The differential crass section is given by

dgO = a2Q2Q'2

dfi (V-V) + x(s)((W+aA)-(v'VI+a'A1))

[A(s)(1-cose)2 + B(s)(i+cose)2]
dfi = di|>dcos8

A(s) = 1 +. 2(w' -aa ' )Re X(s) + ((v2+a2)(v '2+a l 2) - W a a ' ) |X (s) | 2

B(s) = 1 + 2(w'+aa')Ee X(s) + ((v2+a2)(V2+a'2) + Uw'aa ') |X (s) | 2 , (U

where if is the trivial azimuthal angle of the u around the beam, and the
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I

total cross section as a function of s is defined as

l-Q— [A(s) + B(s)] . (U.T)
3s

In the case of quark pair production we of course have to multiply a l l cross

sections with 3, accounting for the existence of three colour types of every

quark flavour.

t

3. Virtual corrections

The first of the higher-order contributions to muon pair production that

should be included are the virtual corrections, described by the set of all

Feynman diagrams that have the same initial and final state as the lowest

order process, and contain one closed loop. The complete set , consisting
*)

of some 90 diagrams in the standard model referred to in the previous

section, has been calculated in the literature (2). In this thesis we will,

however, restrict ourselves to a subset of 22 diagrams, namely those

containing an extra virtual photon, and the self-energy diagram of the virtual

photon that is exchanged in lowest order. There are several reasons for this.

In the first place, a complete calculation is clearly model dependent and may

therefore not be useful if for instance a comparison between different weak

interaction models is to be made. In the second place, the virtual

corrections, since they describe also a two-particle final state, only have

the effect of changing the angular dependence of the lowest-order cross

section (and, of course, the total cross section). It turns out that this

L modification results in an angular dependence which is a very complicated

., function, but nevertheless very smooth. Including the total weak effect does

| not change this. Also, for those regions where the complete weak corrections

have been calculated (that is, not close to the ZQ pole), their total

magnitude turns out to be rather small, and the QED corrections dominate (3).

In the last place, the set of corrections that are described below form a

gauge-invariant set and give a correction which is model-independent.

The various contributions have appeared many times in the literature (h),

and we will list them without any derivation. The precise expressions can be

found in appendix A.

*) The exact number of diagrams is, of course, dependent on the gauge used

which determines the absence or presence of diagrams with ghosts.
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fig. 1

iff. 3

fc. 2

fig. 5

fig- 7
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| | 1) Self energy diagrams (fig. 2)

H In our case these contributions vanish after renormalization since \

; the particles are on mass shell.
i-,

'";• 2) Vertex corrections (fig. 3)

i These are proportional to the lowest-order vertex, and can be
1 * written as a scalar function multiplying the lowest-order matrix

element:

/ M = e2M0[Q
2F(s,m2) + Q'2F(s,m2)] . (1+.8)

; "V"C 6 U

'• The function F(s,m2) is infrared divergent after renormalization, and

i can be regularized by giving the photon a small but finite mass X.

I
I 3) Vacuum polarisation diagrams (fig. 4)

| These describe the self-energy of the electromagnetic field due to

If virtual fermion loops, resulting in a change in the photon

V propagator of Eq. C+.3):

i . 2nnl ' I '
M = - ie V* (vv)n(B) . (U.9) :

"• v p s

The vacuum polarization Il(s) can be spl i t up according to the

f, different fermions that contribute: •"•

-) n (s ) = n e ( s ) + ^ ( s ) + nT(s) + nn(s) . (k . io) ;

;. Here the lepton contributions are known exactly because their masses • '

\ are known. The hadronic contribution ^(s) ('quark loops') can be «'
calculated by the following dispersion relations: i

Im IL(s) •

where >* denotes the principal value definition of the integral.

These relate the vacuum polarization to a. (s), the total cross

section for hadron production. This is probably the most accurate

method of determining IL (s) because of the uncertainties due to the

quark masses and the effects of confinement at these 'low' energies.

Indeed, the above relations can be used to estimate the masses of the

lighter quarks. The integral (U.11) can be numerically evaluated to

\ a precision of about Q.5% , the main uncertainty coming from the
i
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experimental data on the low-energy region (up to a value of E. of a

few GeV)(5).

k.1) Box diagrams with 2 photons (fig. 5)

Their contribution, which is ultraviolet finite but infrared

divergent, can he written as follows:

M

Y
M

YY

V [(Y1+2iTrV2)(Y-V') + (A1+2iirA2)(A-A')| ,L J

where Vj, V2, Ai, A2 are given in appendix A. It is these diagrams

that are (with the corresponding bremsstrahlung terms) responsible

for the main change in angular dependence, and give a forwarü-back-

ward asymmetry which at lower energies suppresses the effect of the

weak interactions on the asymmetry.

k.2) Box diagrams with one 2 0 and one photon (fig. 6)

For simplicity, we have kept from these only the part proportional

to the ZQ propagator. This part contains the infrared divergence,

and has moreover been calculated for the (slightly simpler) case of

J/iji exchange. The contribution to the matrix element reads:

M =zy x(s)((vV+aA)"(v'V'+alA' ))fi
zy

(U.13)

where again 6 is given in the appendix A.

Adding up all these corrections, we obtain for the virtual correction

to the matrix element:

M = M +-M + M + M (U. 11+)
v vc vp YY zy

and the contribution to the differential cross section reads

da
Ee MM°an dfi 32TT2S

which can be evaluated easily, using eq. (U.5).

Before turning to the bremsstrahlung contributions, we want to make a few

remarks. In the first place, the above expression is still (infrared)

divergent, which forces us to take bremsstrahlung into account. Secondly, the

angular dependence is smooth, except for the very forward and backward regions,

where sharp peaks occur due to the box diagrams. Since these, peaks are

only logarithmic (and hence integrable) they can still be interpreted as

probability distributions. In the last place, the total event rate is of

course altered by the above corrections. Carrying out an integration over fi
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is, however, not very easy and not even necessary, as we will see in the

next chapter.

k. Soft brems strahlu-ng

Apart from the virtual corrections it is, as we have seen, necessary to

include bremsstrahlung contributions as well, in order to cancel the infrared

divergences. The physical reason behind this mathematical argument is, that

since the photon is massless, always some amount of energy may be radiated
*)

off in any experiment with finite resolution . It is therefore natural to

divide the bremsstrahlung contribution into two parts, one from those photons

that go undetected in any experiment (i.e. their energy, and their effect on

the kinematics of the remaining particles is within experimental resolution),

and the other part containing those photons that can in principle be seen. In

this section we treat the first of these parts.

It is rather easy to obtain the matrix element for soft brems strahlung in

a very good approximation. This is done in two steps. By dropping the photon

four-momentum k wherever it appears in the numerator of the eight brems-

strahlung diagrams of fig. 7, it can easily be shown that the brems strahlung

matrix element is that of the lowest order, multiplied with an overall factor

containing the photon momentum and polarization. Some care has to be taken,

however, that the correct dependence of the ZQ propagator is kept, since a

small energy loss due to bremsstrahlung may cause a large change in this

propagator close to its peak (this effect is of course very important for

extremely narrow resonances like the J/ty or T, but even for the relatively

wide Zo resonance it cannot be neglected). In this way we can write for the

matrix element:

((vV+aA)-(v'VI+a1AI))(Qx(sl)Fp-Q
Ix(s)F(i) 1

p_»e

P " P *k

where s' =

q._"e %'t
(U.16)

is the energy in the ZQ propagator after bremsstrahlung

*) For an electron in an external field admitting bound states with finite

energy differences, the energy can in principle be measured with zero error.

In that case the Infrared problan is probably absent (7).
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radiation, and k , e are the photon momentum and polarization vector,

respectively. The photon polarization is, as is usual, assumed to be un-

detected. The second step consists of taking the square of the matrix element

(h.i6) and integrating it over the soft photon phase space, i.e. over all

solid angles and over energies up to some value Eo- The energy integral can

be split into two parts again. The first is the region up to some extremely

small value E , where the factorization holds with s'=s. In this region, we
s

again give the photon a small mass X. The second region is between Eg and Eo,

and here we have to take the dynamical effect of the ZQ propagator into

account, but the photon can be taken massless. The final result is given by

dfl 8s B(s)(i+cos8)2l ,

A(s) = <SQ + 2(w'-aa')Re
5

B(s) 2(w'+aa')Re

((v2+a2)(vl2+a'z) - 1+w'aa') |x(s) | 26 R ,
S

((v2+a2)(v'2+a'2) + Wv'aa') |X(s) \
 26*

where again the occurring quantities are further defined in appendix A.

Adding the virtual and soft bremsstrahlung contributions we obtain the

corrected cross section for those final states that simulate the elastic (ii H )

case. The cross sections are plotted in figs. 8 a,b,c for three different

energies. As can be seen, the angular distribution is rather smooth, and the

total event rate is down from the lowest order by a considerable amount if Ep

is small. Again, these results are similar to those for the narrow hadronic

resonances, with one difference: in the last case, the resonance width is

typically much smaller than EQ, and therefore the resonance falls either

completely inside or completely outside the soft photon region. In the case

of the ZQ, however, this is not true any more and a careful treatment of the

'tail effect' of the resonance is necessary (3,6).

Finally we want to comment on the inclusion of higher orders into the

correction. If no hard bremsstrahlung is taken into account, the correction is

clearly rather large and negative. The higher-order contributions from soft

bremsstrahlung can be estimated, for instance by using a coherent-state

formalism as in ref. (6). However, if we include the (positive) contribution

from hard bremsstrahlung, the total correction usually becomes rather modest,

removing the a priori need for a higher-order calculation. At values of s

equal to, or slightly less than, M the hard bremsstrahlung is virtually

absent, but for those energies the (still uncalculated) weak corrections are

32



Figs. 8

Differential cross section for niuon pair production in the soft region,

da/an is set out along the vertical axis against cose along the horizontal

axis. The cross sections are given in nanobarn. The various parameters have

the following values:

Mz = 88.6 GeV, rz = 2.5 GeV, Q = Q' = 1, v = v' = -0.01+75,

a = a' = -O.591*, E0 = 0.01 1^.

The solid line is the cross section for the lowest order (i.e. corresponding

to the diagrams of fig. 1 only), while the dashed line is the cross section

with the virtual and soft bremsstrahlung corrections.

It can be seen that the angular dependence of both cross sections is very

similar, except for very large values of |cos6|. This justifies the

approximation in eq.. (5).

\
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presumably larger than the higher-order QED corrections. In all, we see no

urgent need for including these corrections at the present stage of theory and

experiment.

5. Hard bremsstrahlung

In this last section we present the hard photon cross section, which is

given by the same diagrams (fig. 7) that also describe the soft photon

emission. Because now the energy and direction of the photon are measurable

quantities, the five-dimensional phase space cannot easily be reduced to a

two-dimensional one by integrating over the photon momentum, as was the case

for soft bremsstrahlung. Also, the choice of variables is more complicated

because the contributions to the hard photon cross section are not easily given

in one set of independent variables only. Since we are in any case not very

interested in analytical expressions for the various distributions (in view of

the remarks in section 3 of chapter II) we will postpone the choice of

variables until the next chapter, and concern ourselves here only with the

amplitude squared, summed and averaged over spins as before, which we call

the cross section for this moment..

The calculation of bremsstrahlung cross sections is rather complicated. In

the first place, there are usually several diagrams that contribute (in our

case 8, giving rise to 36 products to be evaluated). Because each diagram has

a different denominator, which is connected to the propagator of the radiating

particle, it is by no means straightforward to combine the different

contributions into a reasonable form. Moreover, in most cases there are many

invariant products of four-momenta in the problem, and it is not a priori clear

which set of them is best to express the cross section in. Indeed, it has

turned out (8) that choosing a 'minimal' set of independent invariants does not

give the simplest expression for the cross section for most single-brems-

strahlung processes that have been considered. Some time ago it was discovered

that the bremsstrahlung cross sections can be written in a simple and elegant

form, very similar to the soft photon cross section (9). Recently, a

formalism has been developed (10) which leads in a natural way to these simple

forms by calculating the amplitude rather than its square, thus avoiding the

necessity of combining many terms, and doing so for the various helicities of

the fermions and the photon (using a special gauge).

The cross s

invariants (3):

The cross section for e e" + y v~y can be written as follows in terms of
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2s ' 2
K

2
K

2

X - _ ( A ( s ' ) ( t 2 + f z ) + B(s ' ) (u 2
+ u ' 2 ) )

(A(s ' ) t2 + B(s')u2) - — ^ — (A(s ' ) t ' 2 + B(s ' )u ' 2 )
2 ' 2 2

I + Q ^ L J , , . , (A(s)( t2+t '2) + B(s)(u2+u'2))

!'] m2 m2 1
(A(s)t2 + B(s)u'2) - —£L- (A(s)t'2 + B(s)u2) j

2S2K2K | 2

K+K'

+ — + —

.) ( C(B,B' )( t2
+f2) +D(s,s')(u2+u'2))

- F(s,s'j(u2-u'2)) } ,

s = ( P + + P _ ) 2 t = (p+-q+)2 il = ( P + - I _ ) 2 K+ = P±
>l!;

s ' = (q++q_)2 t ' = (p_-q_)2 u ' = (p_-q+)2 *'± = <l±*k

C(s,s ' ) = 1 + (w ' -aa ' )Re (x(s) + X (s ' ) )+ ((v2+a2)(v l2+a'2) - Uw'aa') Re(X(s)x(s'f)

D(s,s ' ) = 1 + (w'+aa ')Re ( X ( B ) + X (s ' ) )+ ((v2+a2)(v t2+a'2) +1+VTW) Re(x(s)x(s'f)

E(s,s-) = 2 i r ( v a ' - v ' a ) ( J r | X ( s ' ) | 2 - ^ I x C s ) ! 2 ) +

^ 7
SS

i2)v 'a ' - ( v ' 2 + a ' 2 ) v a ) | x ( s ) | 2 | x ( s ' ) | 2

F ( B , B ' ) =7TTT Ua '+v 'a) ( ^ - | X ( s ' ) | 2 - ^ lx (s ) | 2 )
CSS . b a

+ -jjz§ï7 ((v2+a2) v ' a ' + ( v ' 2 + a ' 2 ) v a ) | x ( s ) | 2 | X ( s > ) | 2 , (U.18)

where E is the completely antisymmetric tensor, with e0123 = +1.

Here the various contributions can be easily recognized.' The cross section

splits naturally into initial state radiation, fina 1 state radiation, and the

interference between the two. The term with E originates because of the
uvpa

difference in complex phase between x(s) and x(s>). Since it has an overall

factor I"z and also vanishes in case any two particles are collinear, its effect

is very small. The effect of nonzero mass of the fermions can be seen in the
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occurrence of terms with m2, m2 which can, even in the ultrarelativistic limit,

not he neglected hecause of the double poles in the propagators.
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CHAPTER V

APPROXIMANTS AND EVENT GENERATION

1. Introduction

In the last chapter the first of the necessary ingredients to construct a

simulation program was given, namely the set of exact formulae. In this

chapter we will indicate how these exact expressions can be approximated in

order to allow for fast and accurate event generation, and describe possible

algorithms for doing so. It is clear that the specific method developed here

is not the only possible one. However, in practice all event generators for

processes like the one under consideration that make use of importance sampling

will run more or less along the lines sketched in the following.

As a first step it is necessary to deal with the infrared problem. The

conceptual difficulty arising here is that we have to connect two cross

sections describing different final states, of which only the sum has a

physical meaning. We can solve this by dividing the bremsstrahlung phase

space into two parts. The first part, where the photon energy is below a

c rtain value E Q , will be called the soft part. The second {hard) part

contains those events that have a photon energy between EQ and the maximum

desired energy E If EQ is small enough photons from the soft part will in

practice be undetectable, because their effect on the kinematics of the final

state ( acollinearity etc.) is negligible. To the total cross section in the

soft part is added the lowest-order cross section and the virtual corrections

to it. The first step in the generation of any event will be the choice of

one of the two parts, using the (approximate) total cross sections of both as

relative weights for this choice. If an event is chosen to lie in the soft

region, the photon energy is assumed to be zero, the event has elastic

kinematics and the angular distribution is given by the soft cross section.

In the other case, the event is generated according to the hard bremsstrahlung

cross section (cf. eq. (U.18) ). Prom this we see that EQ is restricted by

two conditions:

1) Eg must be so small that it is a good approximation to neglect the photon

momentum in the cross section and in the kinematics;

2) EQ must be so large that the soft cross section (both total and

differential) is positive everywhere.
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Usually a value of EQ = 0.01 E^ satisfies both restrictions. As an

illustration, this corresponds to a maximum acollinearity angle of the muon

tracks of 0.5°. Another approach would be to use an exponentiated form for

the cross section, where the dominant parts of higher order corrections are

taken into account by rewriting the cross section as follows:

F(EQ)) Ma(k° < E0) =

Here B is a constant and F(E O) is finite for vanishing Eo. In this way an

explicit division of phase space is avoided, since the cross section

vanishes if Eo goes to zero (1). However, such an exponentiation is only

really justified for infinitesimally small Eo, and it is therefore practically

impossible to incorporate measurable photon momenta into such a method without

biasing the generated events sample in some (complicated) way.

We now turn to the hard part. As will be seen in the next chapter, the

bremsatrahlung cross section is usually dominated by the initial-state and

final-state radiation, while the interference between the two is a minor

effect, and we drop it from eg., (lf.18) as a first step in the approximation.

Furthermore, it is seen that the initial state rs,diation peaks if the

angle between the photon and e or- e~ momenta is small, while the final state

radiation has its peak for small angles between the photon and u+ or u~.

Therefore the two contributions are most easily described (and generated) in

terms of different sets of variables. To this end we use the superposition

property: if an event is generated in the hard part of phase space, it will

be distributed according to one of the two cross sections. Again this is

determined using the two approximate total cross sections as relative weights.

We have now split the cross section into three pieces: soft part, initial

state radiation and final state radiation. For each of the three we must

construct an approximant, its successive integrals and total approximate

cross section, and a generation algorithm. For the respective pieces this is

done in the next three sections. The weights (which have to be assigned to

the events in order to obtain the exact distribution) are given in the next

chapter.

2. Soft part

In order to simulate the soft cross section it is necessary to know the
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total event rate in the soft part of phase space. The differential cross

section in this part is known as a one-dimensional distribution (if we do not

!' consider the trivial azimuthal angular dependence) but this is a complicated

': expression. It is of course possible to calculate its integral either

!; analytically or numerically, but it is easier to realize that a Monte Carlo

| simulation is equivalent to an integration, and the exact soft cross section

i is in fact calculated during the generation of events. It is therefore enough

.1 to use some estimate of the total soft cross section. The approximate

'i character of this procedure can be corrected for by a suitable factor in the

'; definition of the event weights. The final distribution will then be correct

no matter what the estimate was, but the efficiency will of course depend on

it. One method to obtain such an estimate is to keep from the virtual and soft

; bremsstrahlung corrections only the dominant (and preferably angle-independent)

terms. The estimated total cross section can then easily be calculated. For

instance, only the vertex corrections and the corresponding soft brems-

strahlung, and the vacuum polarization are-taken into account. Another

method is to numerically estimate the total cross section by evaluating the

differential cross section for a few values of cosö. The approximant becomes

, app o„es't

* i J (A<s>(1-°°^2 + B<->(i+co.e)*) , (5.2)

and the tota l cross section is

app est I c o \
a ** = a , (5-3)

where a is the estimated soft total cross section, and A(s), B(s) are

given in ecL. (U.6).

The generation of cos9 for a soft event is most easily done by using the

superposition property in order to generate either (1-cos8)2 or (1+cos8)2 with

relative probabilities A(s) and B(s). The distribution (1+x)2 can be generated

using analytic inversion:

x = 20
l/3 - 1 , (5.U)

where n is a random number equidistributed between 0 and 1, as in chapter II.

Since the approximant is a rather smooth function, we could of course also

use rejection to generate eos6 . The efficiency of such an algorithm will in

this case always lie between 1/3 and 2/3 so inversion is slightly better here.

The azimuthal angle is of course just a random number between 0 and 2ir.



[- 3. Initial state radiation

:' In this section we will give a treatment of the initial state radiation

, which can also be applied to other processes in which the final state is

•Jj formed by exchange of one particle (photon, ZQ boson, etc.). Since in such

i processes the part of the Feynman diagrams corresponding to the formation of

I the final state is unchanged if bremsstrahlung is emitted from the intial

Z state, it is logical to assume that the bremsstrahlung cross section is

| connected in some simple and process-independent way to that for the non-

; radiative process. This was first shown in ref. 2 for the total cross section

'* in the case of photon exchange. Later it was generalized to the case of

f multidifferential cross sections (3) and more general neutral currents (k).

« The connection between the lowest order and bremsstrahlung cross sections is

i; the following: let the lowest order cross section be given as follows:

I dCT0
I ~Z :r=*(s,e;t q») , (5.5)

where q1 q̂  are the momenta of the final state, evaluated in their

centre-of-mass frame, and e is the unit vector in the direction of v -v • Then

the cross section for bremsstrahlung from the ini t ial state is given by

dax ok°Q2 r
= —7— E.(k)f(s',e. ; q, ,... ,q ) +

(S'+2K_)2 m2s'

SJ-W
 = — Ö ± — - eo > ("5 6)

+ ~ +

where again q_x q^ are evaluated in their centre-of-mass frame, ku in the

lab frame, and e+ (e_) are the uni t vectors in the direct ion of p -p +k (p -p -k).

This can, of course, be expl ic i t ly verified in eq. (1*.18). Upon integrat ion

over a l l momenta q i , . . . ,qN-we obtain for the photon momentum dis t r ibut ion

iaJ ak°Q2

dk°dfi l*Tr2s g + S~ S '
Y

and for the photon spectrum

dOj aQ2
 s 1 + ( s ' / s ) z

The last two formulae are identical to the results in ref. 2.

1*1
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The above formulae provide us directly with a way to generate the initial

state radiation party in four steps.

1) Generate the photon energy according to eq. (5.8). Due to the

resonant structure of tJg(s) in our case, this function may be quite

involved. There is a peak for small values of k°, which is just the

onset of the infrared divergence. For values of s above M2, there
z

will also be a peak for those values of k° for which s' = s(i-k°/E. ) is

close to M2. Near the resonance, both peaks coincide, and the photon

spectrum falls off very rapidly. Although possible, it is neither

easy nor elegant to approximate the spectrum by a form that covers all

these possibilities. A better approach is to calculate analytically

the cumulative spectrum (which is given in appendix B) and invert it

numerically. This inversion can be speeded up considerably by applying

the following argument. During numerical inversion, the cumulative

spectrum is evaluated many times. The results can be stored in a table,

so that in the course of generating an event sample the inversion can

gradually be replaced by a search through this table, which can be made

very fast. This is of course only possible because the photon spectrum

is free of parameters in the sense of section 3 of chapter III. One

could also, of course, at the beginning of a generation run tabulate

the cumulative spectrum by using some adaptive one-dimensional routine

(in one dimension, ordinary quadrature is usually more accurate than

Monte Carlo quadrature). Both methods give us, as a side result, also

the exact value for the total cross section for initial state radiation.

2) Generate the photon solid angle. In the absence of polarization we

again have to worry only about the polar angle, which is distributed

according to eq. (5-7) • We can approximate this distribution by

da aQ2 1+(s'/s)z r

^ - - -•- -o0(s») H - + —
u [e+z e-z

= 1+2m|/s , (5.9)

and generate either (e-z)~ or (e+z)~ with equal probability. The

distribution (e-x)~ is generated analytically by

x = e - (e-1) (f^fj • (5.10)

To the generated value of z we now assign the following weight:
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2m2s
= =2 s'2 - 8K +K_ -

z+s'2] (5.11)

and we decide to keep the z value or to try again, depending on this

weight using the rejection algorithm. Also we decide which of the two

axes e or e we will choose to generate the muon momenta. The

probability of choosing e+ is given by the relative magnitude

We want to remark here that g+(k) or g (k) can actually become negative

when 1-|z| becomes very small. In that case it is no longer possible

to use them as probabilities. However, for such values of z the two

orientation axes e+ and e coincide so it is unimportant which one we

choose. We therefore leave out the mass terL\s (proportional to m ) in

g /(g++g ), so that the probability for orienting the event towards e+

is

g+(k) (2Eb-k°+k°z)
2

g+(k)+g_(k)
(5.12)

By taking for the azimuthal angle a random number in [0,2ir] we can then

construct the photon four-momentum, and the muon cm. frame.

3) Generate the muon momenta in their cm. frame, taking some arbitrary

axis for the beam direction. The muon solid angle is distributed

according to

dao(s ')
A(S')(1-COS6)2 + B(s')(1+cos6)2 , (5.13)

and can be generated in the same way as in thé soft part. It is

interesting to notice that the absence of beam polarization makes not

one azimuthal angle trivial, but two, as can be seen above.

h) Construct the four-momenta of the muons in the lab frame. To tni17- end

we rotate the 'beam axis' of the last step to either e+ or e , depending

on the choice made, ard then boost the resulting vectors back to the

lab frame.

The generation method outlined in this section is also .applicable to other

processes where the final state (without the bremsstrahlung photon) is formed

in the decay of one vector or axial vector particle (U). Moreover it is exact

if we restrict ourselves to purely initial state radiation. Since in the

process under consideration also radiation from other particles is taken into

1*3



account, we will nevertheless have to weigh also the events from this part.

k. Final state radiation

From eq. (-U. 18) it is seen that the cross section for final state

radiation can be obtained from that for initial state radiation by making the

substitution p+,p -t-t-q+i-q. • It is difficult, however, to make use of this

property to treat the final state radiation with a formalism similar to that

in section 3 since of course p+ and p are always fixed, while q+ and q are

unknown at first. Also, such a treatment would only be appropriate for this

particular process, so that no general formalism for final state radiatioc

would result anyway. Instead we shall use a more 'standard' approach.

As a first step in the approximation the mass terms (proportional to m2)

are dropped in the final state radiation part of eq. (U.18). By putting them

into the weight function they will be accounted for in the final result.

Secondly the symmetry of the cross section under the interchange p+,q,+ -f-»-p ,q.

is used to retain only the terms proportional to t2 and u'2 in the numerator,

with an extra overall factor of 2. When an event has been generated, we will

in one-half of the cases put ..q+-«-»-.-q. , k-«—k in the event, thus removing this

bias. With these two approximations the cross section is written as follows:

02

d5a_, = Q2Q'"*(A(s)(i-eose)2 + B(S)(1+COS8)2) —*— dr , (5.1*0

where the five-dimensional phase space element dr is given by

dr = d"»q+d1*q_d'tk6(<l2)6(a2)«(k2)8U0)e(q0)e(k0)6lt(p++p_-q+-q_-k)

= dl^dcos 6 d<f>d<f>

= £ dk°dq°= < dk°dc ; q° = 1 s'

= COS<£,- (5.15)

Here $ and ó are the azimuthal angle of q around the e beam, and of the

photon around q+, respectively. The two alternative forms for drt are both

used in the following. The expression for q^ in terms of k° and c assumes

the particles to be massless. It is described elsewhere (5) how justified

this assumption is.



As is seen from eq,. (5.1*0, the two azimuthal angles are in fact t r iv ia l

random numbers in [0,2w], while cos6 again obeys the lowest-order

distribution. It is generated in the same way as before. Upon integration

over these three variables, we obtain

3s
B(s))

K K'
— ao(s) (5-16)

I C + K _

For the invariants K^ and K1 two alternative expressions exist, that are

both exact up to order O

and

(5.17)Kl
+ = 2Eb(q0+k°-Eb+k°m2/s') ,

K ; = k°q°(e+-c ) ,

e = 1 + 2m2s/s'2 2m2/s . (5-18)

The first set allows for easy integration of the approximant, while the

second set is slightly better for purposes of variable generation. Using eq..

(5-17), we find for the photon spectrum

(5.19)

It is not difficult to derive the cumulative spectrum from this: i t is

given in appendix B. However, i t is unnecessary for the generation of k°,

because the spectrum has none of the complicated resonant properties for the

initial state radiation spectrum of eq.. (5.8). We can use the approximation

that the spectrum is described by 1/k°, and generate k° by the following

algorithm and weight function:

maxJ _ (5.20)

with ..very reasonable efficiency. E is again the maximum desired value for
m£L3C

the photon energy, as given in section 1.

After having generated k° we now know both e+ and e~ in eq. (5.18). The

generation of c is as follows: first the distribution
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1 / 1

8sk°

' , ' \
: -c e~+c '

y y

dk°de. (5-21)

is obtained by generating either (e -c )~ or (e~+c )~ with relative

probabilities given by

In ln

-1

respectively. By assigning the generated value for c a weight

V

we can finally obtain the distribution (5.16),

(5.22)

(5.23)

Before concluding this section we want to make the following remark. In

tns above treatment of final state radiation it is clearly essential that the

fermion (muon or quark) is massive in order to avoid all kinds of singularities.

Since the quark masses are unknown (and often assumed to be zero for the

lighter quarks) this could pose a problem. However, it is known (6) that for

quantities that are sufficiently inclusive, ail mass singularities (in our

case, logarithms with m^ in the argument) cancel against those of the virtual

corrections. Therefore, any experimentally defined quantity that is not

sensitive to the quark mass can be accurately simulated by the above methode,

when a (smallish) quark mass is introduced as a cutoff. On the other hand,

for a quantity that is sensitive to the quark mass, the simulation of massive

distributions is of course indispensible, in order to obtain a fit to the

quark mass. For these reasons we see no problem in the necessity of keeping a

finite mass. Finally, in the case of very massive particles, for which

O(m2/E?) cannot be totally neglected, the final state radiation spectrum will

not be changed very much, since it has no appreciable contribution from the

higher k° values where the mass becomes important. The effect on the initial

state radiation can of course be taken into account trivially by making the

appropriate changes in Og(s).

As stated in the introduction to this chapter, an event is chosen to lie

in one of the three parts mentioned. The relative probabilities for this are

the total (approximate) cross sections from these three regions. For the soft
est

part, this is the quantity a . For the initial state radiation, the

corresponding cross section is the integrated form of eq.. (5.8), while that

for the final state radiation is given by the integral over the spectrum

(5.19).

U6
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CHAPTER VI

EVENT WEIGHTS

1. Introduct ion

In this chapter the last part of our event generation method will he

discussed, namely the weighing procedure. If a generated event has teen

assigned a weight, it can he used in two ways. The first possibility is to

keep the event together with its weight in the further analysis. Then use is

made of every generated event, but events with extremely small or large

weights may cause loss of efficiency or large fluctuations in the result,

respectively. It is therefore desirable to have a reasonable weight

distribution. The second approach is to use the rejection method on the

weight, as indicated in chapter III. The accepted events are then

"unweighted", resulting in a more realistic event sample than in the first

case, which may be nice e.g. for purposes of studying the behaviour of

detection apparatus. However, since events are rejected, this method is

always less efficient than the first one. In the following, we will denote

by trial events those events that have been generated and to which a weight is

assigned, but which have not yet passed a rejection algorithm.

In studying the results of an importance-sampling event generator, the

weights of the trial events can be considered as stochastic variables. The

weight distribution n(w)dw is defined as the number of trial events that have

weight in the interval [w,w+dw]. Its first two moments are the total number of

trial events H and their total weight W, respectively:

rr
N = dw n(w)

0
Ill

W .= dw w n(w) .

0

(6.1)

Here wmisthe largest occurring weight, an important parameter. In the ideal

case where no approximations have to be made to generate events, the weight

distribution is just a 6 function around 1:

n(w) = N5(w-1) . (6.2)
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The number of trial events H that survive the rejection procedure is given
8.CC

N = W/w
ace m

(6.3)

From this we see that it is important to have w no', too large, and W/N not

too small, in order to obtain reasonable efficiency of the whole event

generator.

As mentioned before, the approximate cross sections for the given process

are assumed to be known. From these and the weight, distribution, the exact

cross section can be obtained by

exact
W
M approx

(6.U)

Since the weight distribution is known only after a sample of trial events has

been generated, we can also obtain it by comparing the number of trial events

wilh the number of accepted events:

ace
3 , = w a
exact JJ m approx (6.5)

2. Technical remarks

Before deriving the expressions for the weights in the three cases we have

considered, the following remarks are in order. In the first place, formally

the cross section da corresponding to a given event contains the infinitesimal

phase space element dr. Since we may use different expressions for the phase

space in the different cases of soft part, initial- state radiation and final

state radiation, the correct weight may not be just the ratio of the '

appropriate squared matrix elements, but could also contain a Jacobian, as

mentioned in chapter III. In the second place, one should be careful to take

the various exact and approximate expressions into account only in those parts

of phase space in which they are defined. In the present process this is not

a problem but situations may arise (as in Bhabha scattering) where the hard

bremsstrahlung phase space has to be split up in many overlapping regions. In

the third place sometimes functions have been generated for which the integral

was known exactly buy which were generated using a small approximation-

rejection loop, as was done for instance in eqs.(5.11, 20, 23). Those weights

have already been taken into account and should, of course, not be included

again in the trial event weight. In the last place, the technique of
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importance sampling allows one to make approximations not only in the exact

formulae with which one started, but also in the intermediate integration

steps. The corresponding weights should then also be included. As an

illustration, consider the two-dimensional distributions g(x,y) given by:

7 O < x < 1 , (6.6)

where f(y) is some function which is easy to generate, and both e(y) and EQ

are very small. The value for x can be generated as in eq.. (5-10 ) , and +he

distribution for y is then given by

1

p dxg(x,y) =f(y) In . (6.7)

*'•' J L eo+e(y)
 J

i: o

p.
I: This distribution may be hard to generate if e(y) is not simple. However, we
I- can generate y according to
; r 1 + E0 1
! f(y) In , . (6.8)

L e0 J

' and assign to the t r ia l a weight defined as

r 1+eo+e(y) "1 / f 1+e0 1
I w = In I / In j I (6.9)
t L eo+e(y) eo

: Notice that we could also have aproximated g(x,y) by

•; eU,y) - ^ - (6 .10)

But then the weight would have to be defined as

x+e0

w = (6.11)
x+eo+E(y)

which may fluctuate much more than the previous expression. This approach is

typically very useful when the peaking value of one variable is expressed in

terms of the other variables as a function which is not varying very much but

makes the integral, such as eq.. (6.7), hard to handle.

3. Soft part

The weight of a soft event is derived rather easily, since there is only

50
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i

one approximant to the cross section in this case, and the exact and

approximate expressions have the same phase space variables, so that no

Jacobian is necessary. The weight is given by

d2a +d 2a

^ 1

app

where d2a , d2a are the lowest order cross section plus virtual corrections

and the soft bremsstrahlung cross section, given by eqs. (U.15) and (H.17),

respectively. d2a is the approximate form given in eq. (5.2). Since the
; est
f total number of trial events in the soft region was proportional to c , it is
5, seen that this quantity will cancel exactly in the resulting cross section. One
h

v remark is in order here. The approximate cross section does not, in our case,

I exhibit the forward and backward singularities from the YY boxdiagrams of eq.

|- (U.12). Therefore, the soft event weight is strictly speaking not bounded or
I positive definite. However, the singularities are logarithmic and hence not
P

very strong, so that not many events will be produced at very large values of

|cos8|. Also, muon pairs are usually not detected at very forward or backward

angles (typically, |cos8| <0.98) so that a slight distortion of the event

sample due to these out-of-range event weights has no effect. For other

processes (Bhabha scattering etc.) where small-angle scattering is very

important, more care may be necessary.

h. Hard part ;

In this section the weights of hard bremsstrahlung events will be derived. •',

From eq. (1».18) it is seen easily what are the approximate cross sections that ^}'~,

were used to generate the events. In the first place, the initial state •••,;,

radiation part is given by the first two lines of eq. (1|.18). In the final V,

state radiation we neglected the mass terms (line h) and kept only the terms r|

in line 3. The two last lines were left out altogether. Since we used the <

same phase space variables for both initial state and final state .radiation, i

the possible expressions for the Jacobians cancel in exact and approximate 'j

cross section. Referring to the lines in eq. {U.18), the event weight is i

given by

Whard =
h a r d x 1 +x 2 +x 3
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where X. denotes the terms on line i. Notice that the various overall

factors can be left out. Again, we want to make several remarks. In the

first place, the two separate contributions to the approximate cross section

have been taken together here. This is necessary: the weight of an event is

linear as far as the exact cross section is concerned (i.e. the superposition

property holds), but it is not linear with respect to the approximate cross

section (since it appears in the denominator of the expression). Using either

one of the two approximants, but not both, would give wrong results. In the

second place, in the various cross sections no integration has been performed,

so that all peaks and cancellations are present (without being softened by

integration over some peaking variables). Hence one should be careful to

ensure the numerical stability of the expressions (cf. our remark at the end

of chapter III). This is especially necessary if very hard photons are taken

into account. In such situations the expression for q£ in terms of the photon

energy and the various angles may not be a good approximation, resulting in

imperfect cancellations between terms (the weight may even become negative).

One way out of this is to use the exact expression. Another possibility is to

give the particle momenta a mass by performing the following transformation:

p±' - (6.110

This transformation preserves all scattering angles but slightly modifies

the particle energies. It corresponds to an effective shift in EL of the

order of m2/E?, which is acceptable if this mass is not too large. After

calculating the weight, the inverse transformation can then be applied. The

third, and probably .best, method is to perform possible cancellations by hand,

by writing the cancelling quantities in variables vhich cancel explicitly,

also in a computer program with finite numerical accuracy.

5. The weight distribution: a posteriori .justification

As an illustration of the above, we present in this section a weight

distribution, obtained by generating 10000trial events in the manner described

in the last three chapters (fig. 9). As can be seen, the weights are

distributed in a way not very dissimilar to the ideal 6 distribution. It should
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also be noted that most of the higher and lower weight values belong to trial

events from the soft region. The hard photon events are very peaked near w=1 ,

while their weight is never larger than the theoretical bound of 2 (cf. the

remarks in ref. 3 of chapter IV).

We want to stress at this point that it is only by inspection of

distributions such as this one, that one can judge the efficiency and quality

of an event generating procedure. It is not essential to have a strong peak

around w=1, but the maximum weight should not be too much larger than the mean

weight. In case no maximum weight can be given, but the distribution has an

appreciable tail, it is almost sure that some doubtful approximation or

numerical operation has been performed. A large number of events around w=0

poses no essential problem, but will diminish the efficiency. Negative weights

should be avoided by all means, since they do not admit a statistical

interpretation.

T

fig. 9. Histogram of n(w). The event weights ave distributed

over 50 bins between 0 and 2. In this event sample,

only two trial events fall outside this range.
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CHAPTER V I I

POLARIZATION

1. Introduction
• •

In the previous chapters it was assumed that all occurring particles were

unpolarized, i.e. we have summed and averager! over all spin configurations.

However, spins do play a ctynamical role in turf sense that the cross sections

are usually different for different spin configurations, and measuring them can

give additional information on the interactions under consideration. The spins

of the incoming e e~ can in principle he influenced, which could for instance

he used to give a relative enhancement of the weak interaction over the electro-

magnetic one in certain parts of phase space. Indeed, many papers have been

published treating polarization effects on a variety of processes. We will again

restrict ourselves to the effect of beam polarization on muon (or quark) pair

production. The outline of this chapter is as follows: in section 2 transverse

beam polarization is introduced, and it is shown how arbitrary beam polarization

can be imposed on an event sample corresponding to unpolarized beams. Also an

efficient algorithm is outlined to impose transverse beam polarization.

In section 3 it is indicated how the polarization of final state particles

can be taken into account. Finally, the relevant formulae for muon and quark

pair production for transversely polarized beams are given in section h.

2. Beam polarization

It was realized already some time ago that in e e accelerators the

particles have a tendency to align their magnetic moments parallel to the

magnetic field and hence become transversely polarized. The degree of

polarization of a bunch of electrons (positrons) is defined as the difference

in the numbers of spins pointing in the two alternative directions (in this

case, the direction of the magnetic field, which is at right angles to the

beams). Ideally, i.e. in case there are no depolarizing effects (like beam

resonances) present, the degree of polarization P would increase as a function

of time up to the theoretical maximum value Po as follows:

P(t) = P0(i - exp(-t/t0)) P0 = 0.921»

t0 = 22 [ i y e V ] minutes (7.1)



.3)

where the polarization time tg is a machine-dependent quantity. The number given
• 2)

here holds for PETRA, and has comparable values for other large machines . After

a time of roughly tg, one could then perform polarization experiments. Due to

their very complicated structure, however, e e machines suffer from many

effects which may completely destroy the beam polarization. So far, only at

SPEAR transverse beam polarization has been seen in actual scattering processes"

None the less, much effort is being spent on obtaining polarization; by clever

manipulation of the beams it would then in principle be possible to obtain also

longitudinal polarization.

Since the electron is a spin-5 particle, its spin can assume two opposite

values along a fixed axis, for which we take the direction of the magnetic field,

assumed to be orthogonal to-the ring plane. The colliding e e system can there-

fore be considered as a combination of four distinct spin configurations

(up + up , up+down , down + up and down + down). The measured cross section is a

weighted sum over the different configurations:

da(P) = I ci(P)dai . ' (7.2)

The coefficients c.(P) are defined as the fraction of incoming e and e~ that

have spins in the configuration i , in an experiment where the beams have a

degree of polarization P (not necessarily transverse). From this i t follows

that the c^(P) are a partition of unity:

h
I c.(P) = 1 • (7-3)

It is easy to show that the polarizing weight w(P), defined as

w(P) = da(P)/da(O)

has a finite maximum, given by

w(P) < k .

(7.1*)

(7.5)

Depending on the degree of polarization P and possible symmetries in the inter-

actions which take place in the scattering process, such as CPT invariance, the

maximum may in practice even be smaller. Consequently, if we have generated an

event sample corresponding to the unpolarized cross section, we can modify i t so

that polarization is taken into account. This can be done by applying a rejection

algorithm as in chapter VI. In this way a certain number of events from the

sample will be lost. Notice, however, that once a sample of unpolarized events has

geen generated, we can use i t over and over to form samples corresponding to various

possible polarizations.; The above method to simulate beam polarization in a sample

of generated events is applicable to both transversely and longitudinally polarized
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•beams. For the case of transverse polarization, however, there is another algorithm

for imposing the polarization effect on the unpolarized event sample, without

throwing away any of the events. This is derived from the observation that

transverse polarization introduces a nontrivial dependence on the azimuthal

angle in the cross section. If we integrate over this angle, however, any

reference to the spin direction vanishes from the integral. Therefore, all

the other phase space variaties (energies and polar angles) must obey the same

distributions as in the unpolarized case (after the azimuthal angle has been

integrated over). The polarization can hence be implemented as follows:

- calculate the polarizing weight w(P) = da(P)/da(O) for a given event;

- pick a random number n between 0 and the maximum possible weight;

- if w(P) is larger than n, accept the event into the polarized event sample;

- if w(P)-is smaller than n, apply to the whole event a rotation around the

beam axis over an arbitrary angle in [0,2ir] , and try again.

In this way, the whole event sample is kept. It should be noted that, even if

P=0, the new event sample will in general not be identical to the old one,

since a number of events will have been rotated. Also, a given event sample

can be 'depolarized' by applying an arbitrary rotation around the beam.

3- Polarization of the final state

The helicities of the particles that are produced in e e collision are in

principle useful in extracting additional information on the interactions. This

is especially true for the weak interactions, where helicity measurements could

give very clean information on the right- or left-handedness of the weak gauge

bosons. At present, however, the possibilities of determining the helicities

are not very good. Only for T pairs the helicity distributions can be

determined in a statistical manner by examining the distribution of the decay

products. In this section we describe how the helicities can be assigned to

the produced particles after an event sample has been generated. In the

measured cross section all spin configurations of the final state are present:

da = l± dai

where da^ is the partial cross section corresponding to the configuration i.

The helicities of a given event are now determined by the following algorithm:

- calculate for a given event the different quantities da.;

- pick one of the spin configurations, using the da. as relative weights for

this choice.

It is important that all particles are assigned a helicity simultaneously;
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ïjf, choosing the helicities of different particles independently can lead to

s -1 incorrect correlations between the spins.

{5
; fe h. Cross sections for transversely polarized beams

Mit

In this last section we will present the cross sections for our example

process, muon/quark pair production. Owing to our explicit use of the four

currents defined in eq. (lt.l() i t becomes a trivial matter to include

polarization in the formulae for the Born cross section and the virtual photon

fs and soft bremsstrahlung corrections to i t . The loop integrals that had to be

f, calculated for section 3 of chapter IV do not depend on the spin of the

!;-' external l ines , and therefore the beam polarization is taken into account by

'p modifying the current products of eq. (U.5):

| |V-V'|2 = Iv-A'l2 = S 2 (1 + cos29 - P2sin29cos2$)

f |A-V'|2 = |A-A'|2 = S 2 (1 + cos28 + P2sin29cos2<(.)

| (V-V'HA'A1)* = (V-A'KA-V1)* = 2s2cos6

(V.V')(A-V')* = (V-A'HA-A1)* = P2i s2sin29sin21t1

; (V-V')(v-A')* = (A-v)(A-A')* = o (7.6)

where again P is the degree of polarization, and <j> is the azimuthal angle of

; the v around the beam. The direction of the positron spin is defined to

correspond to (f>=0. By inserting eq.. (7.6) instead of eq.. (U.5) into the

: expressions for the lowest order and virtual corrections (cf. eqs. ('t.6-15)),

; we obtain the formulae for the case of polarized beams. As an illustration we

give the expression for the Born cross section:

.,/ da o(P) a'

dfi 8s
A(s ) (1 -cos6) 2 + B ( S ) ( 1 + C O S 6 ) 2 + G(s)sin26cos2i)i

+ H(s)sin29sin2c(>

G(s) = -2PZ (1 + 2 w ' Re X ( s ) + ( v 2 - a 2 ) ( v ' 2 + a ' 2 ) | x ( s ) | 2 )

H(s) = ltP2av' Im x ( s ) . ( 7 .7 )

It is seen that two new terms occur in the cross section, one of them

depending on Ln x(s) . Therefore, the contribution of the soft brems-

strahlung will also contain such terms. Our approximation to the soft brems-

strahlung cross section is given by
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f:

da (P) a2Q2Q'2

—§ =
dB 8s

G(s) = -2

H(s) = hl

r
A(s) ( i -cos6) 2 + B ( S ) ( 1 + C O S 8 ) 2 + G(s)sin2ecos2i|)

+ H(s)sin26sin2$

2 w ' Re X (s )6* + ( v z - a 2 ) ( v ' 2 + a ' 2 ) | X ( s ) | 2 f i *

lm x(s)6~ (7.8)

where the occurring quantities 6 were already further.defined in appendix A.

Finally we have to calculate the cross section for hard bremsstrahlung. In

principle, this can also he obtained from the .'•ame helicity amplitudes that

were used to obtain eq. (^.18). The expression i'or the matrix element squared

is as follows:

^ s, (A(s')(t2+t-
2) + B(s' )(U2+U'2)

G(sf)(tu' cos2$++t'u cos2<J_) + H(s')(tu' sin2^+

f A (s ' ) t 1 2 + B(s')u'2 + G(s l)t'u'cos2* + H(s'H'u'sina.).

m2

m
— (A(s ' ) t2 + B(s')u2 + G(s')tucos2i() + H(s')tu sin2*

2K 2 S' 2

m (k»s) m
-S f j ( s ' ) t ' 2 + K(s')u'2) - - ^
2S I 2K2 2s

^ ï 7 (A(s)(t2+f2) + B(s)(u2+u'
2)

(J(s')t2 + K(s')u2

G(s)(tu' cos2(j> +t'u cos2if ) + H(s)(tu' sin2d)i+tlu si

n>2

(A(s)t '2 + B(s)u2 + G(s)t'u cos2(|)_ + H(s)t'u sin2i))_"

(A(s)t2 + B(s)u'2 + G(s)tu' cos2(̂  + H(s)tu' sin2((> )
+ J

D(s,s')(u2+u'2) + L(s,s ')(tu' cos 2i(i+ + t ' u cos2i|>_)

M(s,s')(tu' sin2(|i++t'u sin2((i_) J
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(S-S')M r
z z

2'K K JC'K'
e P^<<1° (E(s,s')(t2-t'2) - F(s,s')(u2-U '2))

2ss'
1-T N(s,s')((——+ - ^ V - - h - - " ^ ? ) (tu' sin 2<f> - f u sin2<)>
3S1 ^ \ K

+
K K K + K + K + K K /

j .

1
V:
I ) ' - .
P
1-
F,;

2(s-s')
K'+KL

+ 2ss ' R

2(s -s '

kt'vL sin2(|> Utu' sin2<()
' t t ' u u ' sin(* + <\> ) + +T + T - K'

.sMJf-^rY- -^"T - ~^T+ - M (tu' cos2*. - t ' u C0S2+ )
{ \K+K < <+ K+K+ K _ K _/

U t ' u cos2 ( j i U t u ' cos2<j i 1 1 1

J

J(s) = 2(av'-a'v) Re X(s) + 2(av(a'
2+v'2) _ a'v'(a2

+v
2))|x(s)|

2

K(s) = 2(av'+.a'v) Re X(s) + 2(av(a'
2+v'2) + a'v'(a2+v2)) | x(s)|

2

L(s,s') = -2P2^1 + w ' Re(X(s)+X(s')) + (v2_a2)(T.2+a,2) Re(x(s)x(s')

M(s,s') = 2P2av'Im (X(s)+X(s'))

N(s,s') = P2(a'v 3m(X(s')-x(s)] + 2v'a'(v2-a
2) Im(X(s')X(s)*))

R(s,s') = -P2aa'Re(X(s')-X(s)) . (7-9)

Here $ and correspond to the azimuthal angle of the y and \i around the

team, respectively. If the photon is collinear to any other particle, these

two angles differ ~tiy exactly 180°. Upon integration over the azimuthal angle

we recover the expression of eq. (k.18).

Notice in the above the occurrence of new terms which are proportional to

only one power of m and P. At large polar scattering angle of the photon

they can be neglected just like the mass terms that go with m2, and for zero

angle they vanish because of the overall factor of (k-s). However, they

cannot be neglected if the scattering angle is of the order of /m /E, , and

are therefore included in our expression.

For the case of pure QED, which can be obtained by setting X=0, the
h)

expression for hard bremsstrahlung was first obtained by Kuraev et al.
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CHAPTER VIII

APPLICATIONS

1. Introduction

We want t o f i n i s h our treatment of the Monte Carlo approach t o r a d i a t i v e

processes as presented in t h i s t h e s i s by giving an overview of the different-

applicat ions of t h i s method in p r a c t i c e . We have argued in the second chapter

tha t event generators are necessary due t o the fact (among other th ings) t h a t

a r e a l i s t i c experimental s i t ua t ion seldom allows for a general ly applicable

treatment. Therefore, the best i l l u s t r a t i o n s of the method are jus t thé

experimental r e s u l t s on the various d i s t r i b u t i o n s , compared t o t h e i r

axpectation as given by the computer 'simulation. Most of these have been made

public during the l a s t few major, conferences on high energy physics (1 ) . Some

of the r e s u l t s presented here do not concern themselves with muon or quark

pa i r production, but ra ther with t h e processes e e •+e e~ (y) and e e~-»-YY ( Y ) -

For these p rocesses , also event generators have been constructed operating on

the pr inc ip les out l ined in the previous chapters ( 2 ) . The other fi'eld where

event generators a re of prime importance, the hadrbnizat ion of quarks and

gluons into ordinary mat ter , i s u sua l ly t r ea ted in .a completely d i f ferent

manner. We w i l l not coment on any of those Monte Carlo r e s u l t s in t h i s t h e s i s .

We want t o make one remark concerning the presenta t ion of the r a d i a t i v e

correct ions i n t h e p ic tures given below. In p r i n c i p l e , the experimental da ta

can be compared d i r e c t l y to the correc ted pred ic t ion , e . g . the angular

distribution

da da0

— = (1+6) ,
an an

(8.1)

where daQ /dft is the nonradiative result , and S the radiative correction. In
this case, the events generated in the computer simulation have been processed
in the experiment analysis just like the real data. On the other hand, once
the radiative correction is known, one can also modify the experimental
distribution so that i t corresponds to the lowest order theoretical prediction,
by evaluating

da
(8.2)
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The comparison is then made between (8.2) and dag/dfi . It is the latter

approach which is often chosen if the lowest order distribution has some simple

and well-known form, like 1 + cos28 for QED muon pair production. Finally, the

data are drawn with error hars; the Monte Carlo results are either presented

as a histrogram or as a smooth curve, depending on whether so many events were

used in the prediction that their statistical uncertainty is negligible.

2. Theory versus nature: comparison by means of the Monte Carlo method

•In this section we will treat the different processes for which a computer

simulation of the radiative effects has turned out to be useful in the last few

years.

2.1. Beam luminosity

The process of Bhabha scattering (e e •+ e e ) has a cross section which

rises dramatically for very small scattering angles. Therefore, measurement

of this reaction is considered, the .best way to determine the beam luminosity,

simultaneously with the actual experiment. It is clear that a good under-

standing of the radiative effects are important here, because the luminosity

enters into al l other measured total cross sections. For specific and well-

determined experimental set-ups, the cross section has been calculated by

standard numerical integration (3). However, radiative Bhabha scattering has

a very complicated cross section just in this region, and an accurate

simulation is indispensable if a proposed luminosity measuring apparatus is to

be tested or designed. (The same holds .for a tagging system for two-photon

processes, where i t is in principle possible to go down to zero scattering

angle (k) ). As a result of careful simulation, discrepancies which existed

between the luminosity determination from small and wide angle Bhabha

scattering have disappeared (5).

2.2. Muon and tau pair production

. The cross sections for muon and tau pair production have now been measured

up to center-of-mass energies of about 37 GeV, resulting in no measurable

deviation from the QFD expectation. In fig. 10 the measured total cross

sections have been plotted as a function of energy. In figs. .11 and 12 the

angular distributions are given. In both results the QED effects have been

taken into account up to order a3, using event generators.

This has been done following eq. (8.2). Also weak interaction effects, on
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which we will come back later, have been eliminated, from the data. Extensive

discussions of these results and their interpretation as checks of QED are

given in refs. 6.

As stated in the previous chapter, the generation of T pair production is

complicated by the fact that the T particles decay and only the decay products

are measured. Their distribution is influenced by the x helicity. .To our

knowledge, this has not been taken into account in a computer simulation so

far.



51

'I

2,3. Bkabha scattering at large angles

This process is, due to its higher statistics, probably an even better

test of QED than those of the previous paragraph. In fig. 13 its angular

distribution is shown. The same comments hold as for 2.2, but now eq.. (8.1)

has been followed.

10s

eV—eV

33-376eV
(373Kevents)

MARKJ

-103

1.0

Fig. 13

2.k' Eleotroweak interference

The effect of weak interactions (mediated by the ZQ boson) has been

measured in muon and tau pair production and Bhabha scattering by subtracting

from the data sample the background expected on the basis of pure QED (of

course, also the quotient rather than the difference can be taken). Since the

ZQ resonance is still far above the presently available energies, these

effects manifest themselves in practice only in the angular distributions.

Since the higher-order QED contributions affect the angular distributions by
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approximately the same amount (but with opposite sign for the case of muons),

a very precise evaluation of these contributions is necessary. • For muon pair

production, the integrated forward-backward asymmetry has been determined to

t,e -7.7 + 2.1* % (DESY average) while the simple Glashow-Weiriberg-Salam model

(of, chapter IV) would give a values of -7.8?! . The corresponding value of

sin2e is .2U ±,07 (7). This result is not at all as accurate as can be

obtained in other experiments, but the q2=s value at which the weak mixing

angle has been measured is the highest reached so far.

In fig. ih an angular distribution for muon pairs is compared to the pure

QED expectation, using eq.. (8.2). The solid line is a fit to the data., while

the dashed line represents the 1 + cos28 behaviour expected for pure QED. In

15.0

sis
in

10.0

5.0

-1.0 -0.5

Fig. 14

0

cosë

0.5 1.0

-0.B -0.4 0.4 0.8

Fig. 15

this plot the data themselves where modified to eliminate the radiative

effects. In fig. 15 the distribution for muon pairs is shown, where the QED
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background has been subtracted. In fig. 16 similar pictures are given for

Bhabha scattering, but this time the data are divided by the numbers expected

from QED only. In these last two plots, eqs. (8.1) and (8.2) give the same

results.

c;

Dia
•o -a

1.6

1.4

1.2

1.0

0.8

0.6

1.4

1.2

1.0

0.8

0 6

1 A

1.2

1.0

0.8

0.6

JADE

cos 8

MARK J

I cos 91

PLUTO

Tfi
cos a

TASSO

.I' " "
-08 -04. 0.4 0.6 -0.8 -0 4 (j 0.4. 08

Fig. 16

2.5. Hard bremsstrahlung in leptonic processes

In case the bremsstrahlung photon is detected either by direct

observation or by inferring its presence from e.g. the acoplanarity of the

detected leptons, other quantities become observable, which themselves can

again be considered tests of QED. Most important among these are the

acollinearity (the angle made by the tracks of the muon pair or Bhabha pair,

which is zero in case no photon was radiated) and the acoplanarity (the same

angle, but now projected on the plane which goes through the interaction point

at right angles to the e e beams). An acollinearity distribution is shown for

Bhabha pairs in fig. 17, and an acoplanarity distribution for muon pairs in

fig. 18. It may be interesting to notice that the events with nonzero

acollinearity come mainly from bremsstrahlung by the incoming e e~. A nonzero

acoplanarity can only be caused by bremsstrahlunfe, at large angles to both
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incoming and outgoing particles. Its distribution is therefore poorly

described by the usual approximations, while trivial to obtain from an event

generator. The good agreement of the data with the QED prediction gives also

confidence in the differential cross sections mentioned in 2.. 1-H.

Hard bremsstrahlung events can also act as a background to nonstandard

processes of which an example will be given in 2.8.

2.6. Annihilation into photons

Another of the 'standard' QED processes is the annihilation of e e into

photons, mentioned in the introduction to this chapter. To lowest order in

perturbation theory, two photons will be produced. Since this process is not

influenced by weak or strong interaction effects in the next order in the

coupling constant, it is an exceptionally clean test of QED in an experiment

where neutral particles can be observed accurately. At LEP energies it may

therefore be a better process with which the luminosity is measured than that of

Bhabha scattering. The angular distribution is given in fig. 19, using eq. (8.1).
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The process e e -*• yYY can be interpreted as the hard brems strahlung contribution

to the two-photon annihilation. However, due to the fact that the three produced

particles are indistinguishable, the bremsstrahlung phase space becomes very

complicated for even a simple experimental setup (8). Also, the infrared

divergence now occurs for every situation in which one of the photons becomes soft.

These features make an integration over the cross section even more complicated

than for the other leptonic processes. As is shown in ref. 2, these problems are

circumvented in an elegant manner in the corresponding event generator. In fig.

20 the distribution of the energy of any of the three photons is shown for the

case all three are produced at large angles to the beams.
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2.7. Bremsstrdhlung in hadron •production

The value of R, the ratio of the total cross section for hadron

production to that for muon pair production, is one of the most important

numbers obtained from e e experiments, since i t directly measures the number

of quarks that can be produced at a given centre-of-mass energy. In searches

for new quarks i t is quite possible that the narrow resonance corresponding to

the S bound state of the quarks is missed by accident, but the increase in R

above threshold can hardly be missed, if the new quark has charge 2/3 (for

charge 1/3 quarks, the detection may be harder). Unfortunately, the accurate

measurement of R is quite difficult. One of the largest effects in the

measurement of R is that of hard bremsstrahlung from the init ial e e~, which

can easily be of the order of 20$ (9). Also any uncertainty in the beam

luminosity enters directly in the systematic error.

In fig. 21 the value of R is given over the presently attainable energy

range. The various resonances .and steps in R, which signal the excitation of
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new quark flavours can easily be seen.

Also of interest are the higher-order QCD corrections, which increase the

measured value of R by a fraction a. h + 0(a2) . The first of these
5 5

contributions is of the order of 6%, the second one of 2%. It is clear that

if the order a2 contribution is to be measured to any accuracy at a l l , the

second-order QED effects, which are estimated to be about 3%, have to be known

accurately as well.
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The most accurate determination of the QCD coupling constant a is not the
s

measurement of R, but rather the QCD equivalent of bremsstrahlung from the

final state, in which a gluon instead of a photon is radiated. Ideally, the

primordial quarks and the gluon decay into jets of hadrons, so that three jets

are seen in the bremsstrahlung case, versus two jets in case no gluon is

radiated. From the observed ratio of two- and three-jet events, the value of

a can be extracted. In practice, however, two- and three-jet events may
5 •

look quite similar, and also the distinction between the two is fundamentally

arbitrary. The usual method to distinguish two- and three-jet events is

therefore to characterize the topology of the hadronic event by one or more

simple numbers, obtained by processing the measured hadronic momenta in some

way. For this characterization of an event, a nearly infinite number of

possibilities have been proposed. The recognition of four-jet events (and

even higher) proceeds in the same way. The typical value of a obtained from

this kind of analysis is .1T± .01 + .03 (DESY average, 1981). In methods of

this kind, the QED effects enter in the following way. The initial e e

have, as stated above, a quite large probability of emitting a high-energy

photon. In that case, the produced hadrons will be boosted away from the

interaction point in some direction (usually the direction of the beams;

however, the assumption that this is always the case is not justified). A

real two-jet event may then start to look like a three-jet event, certainly

if the events are processed in order to obtain the characterizing numbers

mentioned before. In this way, ths number of three-jet events could for

instance be overestimated. To avoid this , one has to use an event generator

producing the correct amount of hard bremsstrahlung in a given direction, and

another to generate the production and decs1; of the quarks, gluons and

hadrons in the inertial frame resulting from the boost given by the hard

photon. A detailed description of how this is done is given in chapter V.

Extensive discussions of the analysis of hadronic events in order to obtain

a can for instance be found in ref. (10).

2.8. Excited leptons

Apart from measurement of the 'standard1 processes, much attention in

e e collisions focuses on the discovery of new, 'nonstandard' phenomena.

One of these is the existence of an excited state of leptons. Discovery of

such a state would be a major development in our understanding of matter since

i t would imply a substructure in the leptons for which no evidence has been

found at even the highest energies so far. Excited leptons would manifest

themselves probably as heavy particles with the same charge as the 'ground-state'
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leptons, and could decay into them toy photon emission. Experimental searches

have concentrated on excited partners of the electron and the muon. The best

way to see an effect of an excited electron is the observation of deviations

from QED in the process e e -*• YY» where the excited electron e would be

present with spacelike momentum in the t-channel. Consequently, the limits on

its mass (and coupling constant) are given by the experimental correctness of

QED for this process. Its existence is ruled out with high confidence at the

present energies (12).

The discovery of an excited muon u* is only possible in radiative

processes, the most likely of which are e e -»• u*u* -»• UVYY and e e •*iit[û - WY-

It is clear that a heavy background to processes of this kind will come from

the normal bremsstrahlung processes predicted by QED. Since there is no

reason to expect that the decay u •*• UY is very anisotropic, the photons

coming from the n events are probably seen best in quantities similar to the

acoplanarity of paragraph 2.5. The result of such an analysis is given in

fig. 22, where the invariant mass of any of the muons with the photon is

plotted. An excited muon would cause in this plot a peak around the value of

its rest mass. As can be seen, the plot exhibits no structure that cannot be
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explained by QED. At present, the existence of a n* is ruled out with good

confidence, unless i t s mass is very large or i ts coupling very small.

A detailed treatment of similar searches is given in ref. (11).

3. Prospects

In the previous section we treated several applications of event

generators for higher-order QED processes. In this section, some topics are

given for which a similar method not yet exists, but can be obtained following

the lines of this thesis.

3.1. Two-photon physios

For the process e e~ •*• e e~ X (X denoting a lepton pair, or hadrons),

theoretical interest has always been considerable. Recently accurate

experimental results have been obtained as well. Since the cross sections for

processes of this kind do not decrease with energy like those in the one-photon

channel, but instead rise logarithmically, they are expected to become more

and more important as the available energies increase. Due to their

complicated structure, the corresponding distributions are notoriously hard to

predict. At present, the best way in which events for these processes are

generated is by adapting a stratified-sampling Monte Carlo integration program

in the way outlined in section 2 of chapter III (12). As remarked there, this

approach has its drawbacks related to the weight distribution (cf. chapter VI)

so it would certainly be worthwhile to construct a real event generator for

this process. Special care would then be necessary because of the sharp

peaking of distributions, and the spectacular numerical cancellations which

sometimes occur in the cross section (a cancellation over 10 orders of

magnitude is frequently seen). In particular the regions of small but not

negligible scattering angles of the electrons (tagging mode) have to be

simulated accurately.

3.2. Radiative corrections to two-photon processes

Unavoidably, the higher-order contributions to the processes in 3.1 will

be important as soon as they are measured with reasonable accuracy. In

particular it can be expected that small changes in the scattering angle of

the e e due to bremsstrahlung can play an important role for measurements

with single or double tagging. So far, only part of the radiative corrections
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has been calculated, with very limited accuracy for the bremsstrahlung part

(13). The exact calculation of the complete virtual corrections (containing

many six-point loop integrals) and an accurate and fast event generation,

including the hard brems strahlung, vould be a very interesting and important

accomplishment in view of the important role that the two-photon processes are

expected to play in future e e~ physics.

3.3. Z~ohannel experiments

At LEP/SPC energies many scattering processes will become observable for

which the present-day cross sections are far too small to measure. For all

these processes, event generators including radiative corrections will

probably be very useful. We mention here two possibilities only:

a. Neutrino counting.

The process e e" -»• YZQ -»• yw, already mentioned in chapter II, is one

of the nicest ways to determine the number of (light) neutrinos, also

those that have charged leptonic partners that are too heavy to be

produced this way. This process can completely be simulated by the

initial state radiation formalism of chapter V. The most important

backgrounds to this process are Bhabha scattering and three-photon

annihilation. In fig. 23 these backgrounds are given as a function of

the scattering angle of the photon under the condition that the other

Fig. 23

particles are close enough to the beams to disappear from the detector

(see also refs. 5 of chapter II).
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In these pictures» the 'data points' are actually obtained using an

event generator. The error bars indicate the statistical uncertainty

on the Monte Carlo expectation, while the curve has been drawn

smoothly through the points.

b. Higgs production

The discovery of the Higgs boson (if it exists at all) will be one of

the most definite pieces of evidence for the Glashow-Weinberg-Salam

model of the electroweak interactions. The most probable channel for

its observation is e e •*• ZQ ->• ZQH -*• \i u H. Since the Higgs mass is

unpredicted, it will enter as a parameter in fits made in the various

distributions of the process e e~ -»• u V + (anything) (1U). These

distributions will of course be affected by the higher-order QED

contributions. At present, the initial state radiation has been

included (15)- As soon as the process is actually observed, also

final state radiation and the interference of the two will probably be

of interest.
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i'. Appendix A
^ - • -

I We give here the formulae describing the virtual and soft bremsstrahlung

|': corrections for muon pair production which were introduced in chapter IV.

- Since all of these, except the formulae for soft bremsstrahlung, have been

known for quite some time, no derivation is given, but instead we refer to

| the literature.

t
i'J Vertex correction (eq. 4.8)

f

In the ultrarelativistic limit, F has no imaginary part (1). X is the

infinitesimally small photon mass introduced in chapter IV.

I
|v Vacuum polarization (eq. 4.9)
r-

Im ni(s) = f Q| i = e.y.x . (A.2)

These formulae hold for any (light) fermion, so also quark masses could be

inserted here if they were known. See also ref. (1).

Box diagram with two photons (eq. 4.12)
n2a ln2b \ In a In

)

16TT2 I b \ b1» ^ I 1-c

1 t / ln2a ln2b \ In a In b

1 r / In a In b \ 2 1

A 2 = — ~ {-<=( — - — ) + — 1 \ (A-3>
i6irz *• v b 4 a!* ' 1-c2 '

where the quantities a, b and c are defined as

a = sin — , b = cos — , c = cos9 . (A.l()

See also ref. (2).
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Box diagram with one photon and one Z.Q (eq. 4.13)

! ( r (s-M2)2+M2r2n
Re 6 = 4 -2 ln(r-) In

ZY Uir2 I * L M2X2 J
z

f( + 21n 2 b - 21n 2a + L i 2 ( a 2 ) - L i 2 ( b 2 )

I 1 /M r \
| üu 6ZY = — ln(J) arctanf-^J . (A.5)
I- z~
{/ The dilogaïitlai function Li 2(x) is defined as

Li2(x). = - jdy 1 ln(i-y) (A.6)
0

and has the following series expansion for x<1:

Li2(x) = I \ , L i 2 ( i ) = — . • (A.7)
k=1 k 6

In eq. (A.5) the arctan is defined to be continuous at s=M2, i .e .
z

-<» < x < 0 : T> < arctan(x) < n

0 < x < ~ : 0 < arctan(x) < |- . (A.8)

See also ref . (2) .
For completeness, we give here the expression for the interference of MQ
and M , as mentioned in eq. (1+.15):

Re MQM* = e ^ Q— x ( Q Q ' I A ! Be((V«V')(A«A')*) + 2irA2 Im^V'V' )(A-A' )*) 1

+ |V-V' |2 [Q2F(s,m2) + Q ' 2 P( 3 ,m 2 ) - -VRe n(s) + QQ'V,l
L e W e ' 1J

+ |x(s)|2 | (vV+aA)-(v'V'+a'A«)|2 [Q2F(s,m2) + Q l2F(s,m2) + QQ' Re 6 1
L e y zy j

+ Re((vV+aA).(v'V'+a'A')(V«V')*)[2Re X(s) (Q2F(s,m2) + Ql2F(s,m2))

- \ Re x(s) Re n(s) - -y Da x(s) Im n(s)

+ QQ'(vxRex(s) + 2irV2Im X(s)+Re 6z Be x(s) - In ^ lnx(s)) ]

+ üa((W+aA).(v'V-.a'A')(V«V')*]j-2Imx(s)(Q2F(s,m|)
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+ — Dn x(s) Re n(s) - - y Re x(s) lm n(s)
e* e '

- QQ'fV! lm X(s)-2uV2Re x(s) + Re ó„ Ibn x(s) + Im & Re X(s))
ZY ZY J

+ Re((vV+aA)'(v'V'+a'A')(A*A') ) Q Q ' ( A ! Re x(s) + 2itA2 ün x(s))

+ lm ((vV+aAMv'V'+a'A'KA.A1) ) Q Q ' ( - A 1 lm x(s)+2irA2 Re x(s)) \ (A.9)

Soft bremsstrahlung (eq. 4.17)

In
2 E°

irQ - ¥ l n -2+iln-T-^\ + — Q'2 -r In2 T + ̂ ln — —r-
e e u y

n2a - 21n2t - Li2(a
2) + Li2(t

2^ QQ'

6s * Bi (a

where
(]

}b = In

= arctan I I - arctan [-•*•)

V Y / \ Y/
= 1 _• M2/s

z

Y = Mzrz/s .

m
' ln(f) .

(A.10)

(A.11)

In eq. (A.11) the arctan is defined to be continuous at EQ=CEL , i.e.

- o o < x < 0 : - Z. < arctan(x) < 0

0 < x < °° : 0 < arctan(x) < ̂  . (A.12)

The expression (A.10) was f i r s t introduced in ref. (3) . Before concluding

t h i s appendix, we want t o remark that i t i s essential that the correct branches
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for the two occurring arctangents are chosen. For very narrow resonances l ike

the J/41 the two can be identified up to a constant, but for the ZQ th i s i s not

the case any more. Since in the soft bremsstrahlung formulae the arctangent

function is the dominant part of the contribution for values of s just above

M , any error here wi l l result in a grossly overestimated soft photon effect .

As an example, a l l formulae occurring in ref. {h) are completely correct , but

the numerical r e su l t s for da /dP. differ greatly from our f igs . 8.
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Appendix B

In th i s appendix the formulae for the t o t a l approximate hard photon cross

sections are given. For i n i t i a l s t a t e radiat ion, we obtain upon integrating

eq. (5.8):

daT

F i(x) = h j lnx - ln( i -x) + h2x + h3 ln((x-£)2 + yz) + h^arctanfU-e) / y) .

(B.1)

The coefficients h. are defined as follows:
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hi = 2(1 + (C 2C+C 3 ) /U 2+Y 2 ) )

h 2 = - ( 1 + C2 + C 3 )

- C/ (C 2+Y 2 ) ) + =

hu = C2Y(I - 2/U2+Y2)) + C3l(2q/(C2+Y2) - 2 - y - U
2 +

with the quantities ? and y as in appendix A, and

V = 1-5

c2 = 2w'

c3 = (v2+a2)(v l2+a'z) .

For final state radiation, we obtain

(B.2)

(B.3)

F (x) = In (4-) (21nx - 2.x - ^x2) - 2Li2(x)
IE4"

y

+ (f - 2x + lx 2 ) lnd-x) + J x - | x 2

where the dilogarithm Li2 was also introduced in appendix A.

(B.U)
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SAMENVATTING

:; Gedurende de laatste tien jaar hebben experimenten met "botsende electron-

":; positron bundels een vooraanstaande rol gespeeld in de studie van elementaire

?\ deeltjes. Niet alleen hebben zij het bestaan van nieuwe deeltjes vastgesteld,

| waaronder de twee nieuwe quarks, het gluon en het x-lepton, maar ook is het
1?

f mogelijk gebleken via deze weg gedetailleerde quantitatieve informatie te ver-

fi krijgen omtrent de wisselwerkingen tussen de deeltjes. Met name kunnen theo-

f. rieën omtrent electromagnetische en zwakke wisselwerkingen enen; ij ds, en sterke

t! wisselwerking anderzijds, beproefd worden tot op zeer kleine afstanden.

i\. Sinds de introductie van de grootste e e machines (PETRA, PEP) is een

T begin gemaakt met het nauwkeurig meten van kleine maar uiterst belangrijke ef-

i fecten (zoals de voor-achterwaartse asymmetrie in muon paar productie, en de

observatie van drie-jet events in hadron productie) waaruit direct informatie

kan worden afgeleid omtrent de fundamentele natuurwetten en hun eventuele

samenhang in een geünificeerde veldentheorie.

Bij de analyse van dergelijke experimenten is een grondige kennis van de

resultaten, die men kan verwachten op grond van de theorie, van essentieel

belang. Met name de hogere-orde bijdragen tengevolge van de quantum-electro-

dynamica (QED), die vaak van dezelfde orde van grootte zijn als de te meten

nieuwe effecten, dienen op een correcte wijze in rekening te worden gebracht.

In dit proefschrift wordt uiteengezet hoe men de hogere-orde QED bijdragen,

de zgn. stralingscorrecties, op een uiterst elegante en conceptueel eenvoudige

wijze in de analyse van het experiment kan introduceren. Hiertoe wordt gebruik

gemaakt van de techniek van Monte Carlo simulaties. Deze methode, die bij uit-

stek geschikt is voor het bestuderen van stochastische processen (waarbij de

afzonderlijke gebeurtenissen onvoorspelbaar zijn, maar de kans op het optraden

I van een gebeurtenis nauwkeurig bepaald is), werd in deze vorm slechts in be-

perkte mate gebruikt voor het simuleren van e e botsingen. Met name het pro-

bleem van de stralingscorrecties stelt aan de simulatie hoge eisen, zowel wat

betreft de exacte vorm van de na te bootsen waarschijnlijkheidsverdeling

j (waarbij aanmerkelijke numerieke complicaties kunnen voorkomen), als aan de te

volgen strategie.

: In het proefschrift wordt een algemene techniek ontwikkeld om dit soort

•- problemen aan te pakken. Als illustratie wordt een algorithme ontwikkeld om de

processen van muon paar-produktie en quark paar-produktie te simuleren. Tevens

wordt een eenvoudige methode beschreven om dezelfde processen te bestuderen in

\ het geval dat de e e bundels transversaal gepolarizeerd zijn.
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Met "behulp van de beschreven technieken kunnen computerprogramma's ontwik-

keld worden die de botsingsprocessen nabootsen door op een stochastische manier

waarden van energie en impuls van de in de botsing geproduceerde deeltjes te

geven tt, n waarschijnlijkheid die de stralingscorrecties insluit. Het is

dan mog_j .'.<. een groot aantal van deze sets van energieën en impulsen ("events")

Le verzamelen. Daarna kunnen deze op precies dezelfde wijze geanalyseerd wor-

den als in het werkelijke experiment. Het voordeel van deze methode is dat ze

uiterst flexibel i s : elke grootheid die experimenteel gedefinieerd kan worden,

kan in principe berekend worden uitgaande van dezelfde verzameling events.

In het laatste hoofdstuk worden enkele resultaten van de vergelijking tus-

sen experiment en theorie gegeven. Uit het feit dat de betreffende voorspel-

lingen alle gebaseerd zijn op simulatieprogramma's geconstrueerd volgens de in

dit proefschrift aangegeven lijnen, blijkt het succes van de Monte Carlo me-

thode als een van de meest hanteerbare en accurate methodes om tot experimenteel

toegankelijke consequenties van de theorie te komen.
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Cc

i ,

STELLINGEN

1. De Miura transformatie, voor de oylindrische Korteweg - de Vries verge-

lijking "by trial and error" gevonden door Nakamura, kan zonder trial

and error direct worden afgeleid uit de eerder door hemzelf aangegeven

Backlund transformatie.

A.Nakamura, Journ.Phys.Soc.Japan k9 (1980) 2380

A.Nakamura, Phys.Lett. 82A (1981) 111

2. De door Bedeaux en Mazur gebruikte methode om de stabiliteit van statio-

naire oplossingen van het zogenaamde "hot spot" model te bestuderen,

kan gegeneraliseerd worden voor niet-stationaire oplossingen. Op grond

hiervan mag men aannemen dat discrepantie tussen numerieke en analytische

resultaten voor dit model niet kunnen worden verklaard uit het bestaan

van periodieke oplossingen met zeer kleine limietcykels.

D.Bedeaux en P.Mazur, Journ.Stat.Phys. 2k (1981) 215 en Physica 105A

(1981) 1

3. De wijze waarop Shuler en Mohanty het tellen van roosterbindingen in

irreducibele roosterfragmenten toepassen ter berekening van de effectieve

diffusieconstante voor random wandelingen op roosters met vallen is onjuist.

K.E.Shuler, Physica 95A (1979) 12

K.E.Shuler en U.Mohanty, La Jolla preprint, te publiceren in Proc.North

Atl.Ac.Sci.

U. Het verband tussen "infrarode" en "collineaire" divergenties in rem-

stralingsprocessen kan op eenvoudige wijze worden aangetoond.

Hoofdstuk I van dit proefschrift
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5. De nauwkeurigheid van de zogenaamde Weiszacker - Williams benadering in

twee-foton processen kan geschat worden door de bijdragen te vergelijken

van termen die in deze benadering worden meegenomen en van verwaarloosde

termen. Hieruit blijkt dat voor lage invariante massa van het fotonpaar

iedere overeenkomst t ..ssen de voorspellingen op grond van deze benadering

en het exacte resultaat berust op toeval.

6. In e e~ botsingsprocessen waarin het electron-positronpaar annihileert in

één virtueel foton kan de differentiële botsingsdoorsnede voor het proces

waarin het e e~ paar een remstraüigs foton uitzendt op eenvoudige wijze

worden uitgedrukt in de differentiële botsingsdoorsnede voor het proces

zonder remstraling. Deze behandelingswijze kan zonder meer worden over-

genomen voor het geval dat het electron-positronpaar annihileert in een

Z Q boson.

7- Zij p de impuls van een klassiek vrij puntdeeltje met massa m, en zij

E(|p|) de corresponderende energie, waarvoor in de limiet van kleine p

asymptotisch geldt: E(|p|) = E(0) + |p| /(2m). Laten E(|p|) en p worden

opgevat als de componenten van een vector in een vierdimensionale vector-

ruimte V. Laat (E(0),0) overgevoerd worden in (E(|p|),p) door een matrix

M(p) waarvoor geldt:

1) M(p) laat elke vector (0,q.) invariant waarvoor p.q = 0;

2) M(p) voert (E(|p|), -p) over in (E(0),0);

3) voor reële x vormt de verzameling van alle M(xp) een groep.

Dan is de enige reële symmetrische bilineaire vorm op V, die invariant is

onder alle M(p), op een schaaltransformatie na gelijk aan de Minkowski

metriek.

Het botsingsproces waarin e e" annihileren in W fotonen wordt beschreven

door If! Feynman diagrammen die elk IJ-1 propagatoren van een virtueel elec-

tron bevatten. Bij verwaarlozing van de electronmasja heeft elke propa-

gator een singulariteit binnen de fysische faseruimte. Wanneer een gegeven

propagator in een gegeven diagram divergeert is dit minstens ook het geval

voor alle propagatoren tussen de eerstgenoemde en een van de uitwendige

fermionlijnen in dat diagram.



if-

9. Zij f(x) een positieve functie en laten zowel f als de eerste twee

afgeleiden continu zijn. Om de integraal van f numeriek te benaderen

wordt het integratiegebiéd opgesplitst in een groot aantal intervallen

waarbij in elk interval f(x) benaderd wordt door een lineaire uitdrukking.

Men kan de intervallen kleiner kiezen daar waar f(x) groter is, zodat elk

interval eenzelfde bijdrage tot de integraal levert. De opvatting dat

deze benaderingswijze nauwkeuriger is dan die waarbij alle intervallen

even groot gekozen worden is onjuist.


