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1. INTRODUCTION

The Universe is continuously expanding and in its earliest phase the 

matter content was very dense and hot. In order to describe this brief but 

important epoch one needs to know how matter, or better the elementary 

particles, behave under these conditions. This is the subject of high- 

energy physics, which studies reactions of particles coming from an 

accelerator. In this thesis I study the interface of early cosmology and 

elementary particle physics. The reader must have quite some background, 

namely the standard cosmological model based on the General Theory of 

Relativity and the physics of elementary particles and their interactions, 

but excellent textbooks on these subjects are available, e.g. [1, 2].

In this introduction I briefly outline our present knowledge of high- 

energy physics (section 1.1) and cosmology (section 1.2), which lies at the 

basis of the subjects discussed further on. In section 1.3 I give an over 

view of the contents of this thesis and show how the chapters interrelate. 

Finally some recent developments will be reviewed in section 1.4 and some 

concluding remarks are presented in section 1.5. The reader is advised to 

reread these last two sections after having digested the main chapters of 

this dissertation.

Natural units will be used with h/2iT=c=k=l. Energy (= mass -
Q

temperature) is measured in units of GeV = 10 eV and the mass scale

— 1/ 2associated with Newton's constant G of gravity is Mp-^anc^ = G = 1.22 

lO1^ GeV. To get the familiar cgs units we have the following relations: 

lcm = 5.068 1013 GeV-1, lg = 5.610 1023 GeV, Is = 1.519 1024 GeV-1, IK =

8.617 10-14 GeV. The symbol ~ indicates an estimated value and 0(..) gives

the order of magnitude.



1,1 Elementary particles and Interaction

There are four types of interactions between elementary particles:

(1) the electromagnetic force;

(2) the weak force, which causes radioactive decay of a neutron into a 

proton, electron and antineutrino;

(3' ) the strong force, which binds the protons and neutrons together in the 

atomic nucleus;

(4) the gravitational force, which is so weak that an astronomical amount 

of particles is required to do something interesting, e.g. the solar 

system compared to an atom bound by the electric force.

The observed elementary particles are divided in two classes: hadrons 

and leptons. The crucial difference is that hadrons participate in the 

strong interaction, whereas leptons do not. This terminology also suggests 

that the hadrons are heavier than the (corresponding) leptons.

By now there is clear evidence that all hadrons are composed of more 

fundamental components: quarks. The hadrons are either baryons, which each 

contain three quarks, or mesons, which contain a quark and an anti-quark. 

The quarks have a new type of charge, called "colour1', on which operates a 

new interaction:

(3) the colour force, which should give as a sort of spill over the strong 

interactions (3') between hadrons.

This colour-force has a most peculiar property: at very small distances 

(«1 GeV-*) it is weak, but grows stronger over larger separations of the 

sources. This indicates the origin of the phenomenon of confinement: it is 

impossible to separate a hadron into isolated quarks.

The tool used to describe the elementary particles is Relativistic 

Quantum Field theory [2], which includes the effects both of Quantum
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Mechanics and of Special Relativity. Over the space-time manifold fields 

are defined, which describe the creation and annihilation of (anti) 

particles. These fields, defined at each space-time point, may carry sets 

of indices, on which certain symmetry transformations operate. This means 

that although the fields are changed accordingly, the physical content 

remains the same. The force between two particles may be thought to arise 

from the exchange of certain (other) particles, e.g. the photon is the 

carrier of the electromagnetic interaction between electrons and the gluons 

carry the colour force between quarks or themselves. More specifically 

gauge theories are used to describe the fundamental interactions (1-4) and 

the particles on which they operate. The quintessence of a gauge theory is 

the following: the theory is invariant when the fields, of the electrons, 

say, undergo a local (or gauge) transformation in some internal symmetry 

space; "local" means that the parameters of the transformation can be 

chosen arbitrarily in each space-time point; in order to have invariance 

there are spin-1 gauge fields, for example the photon field; these gauge 

bosons then are the carriers of the interaction. Recall that particles of 

(half-) integer spin have (Fermi-Dirac) Bose-Einstein statistics and are 

called (fermions) bosons.

For the gauge theories of the electromagnetic, weak and colour forces 

quantum effects can be calculated. These theories are characterized by the 

specific form of the gauge symmetry, which has the structure of a Lie 

group. U(N) is the group of the NxN unitary matrices and for SU(N) these 

matrices have unit determinant. The standard model is
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(1+2) electro-weak theory (Glashow-Weinberg-Salam model, (XJS) : 

symmetry group « U(l) a SU(2)

gauge bosons : W+, W , Z° (intermediate vector bosons)

Y (photon)

(3) Quantum Chromodynamics (QCD): 

symmetry group = SU(3)

gauge bosons : eight gluons g.

To specify the theory completely one must also give the representations of 

the matter fields under these symmetry groups: for the GWS model see table 

1 of Chapter 2, for QCD the quarks are in the vector (3) representation of 

SU(3).

The gauge bosons of electromagnetism and colour are massless. But the

intermediate vector bosons must be very heavy, of the order of 80 GeV. In

the GWS model this is achieved by the Higgs mechanism of spontaneous 

breaking of a local symmetry, which can be sketched as follows:

1) introduce scalar fields <j> into the theory;

2) the self interactions of these fields, described by a potential V( 4>), is 

very special: V( 4>) is invariant under the symmetry, but its minimum <}>=v 

is not;

3) for gauge theories this gives some gauge bosons a mass of order v; also 

fermions may get a mass - Xv from a Yukawa term XiJ>4>\J> in V(<t>,i|>), 

where X is a small coupling constant;

4) in the GWS model <p is a doublet under SU(2) and v ~ 300 GeV.

So far it has not been possible to quantize gravity, which is 

described classically by Einstein's General Theory of Relativity. For
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laboratory experiments with particle accelerators the gravitational force 

can be neglected. In the early Universe as described in this thesis we need 

only classical gravity to set the stage for the processes of the other 

interactions. In the following we only consider the forces (1, 2, 3).

All experiments (center of mass energy < 50 GeV) fit in the standard 

model, i.e. CWS and QCD. But is the standard model all there is? If not, 

what happens at interaction energies > v? There appear to be two 

alternative roads towards a more powsrful theory.

1) Grand Unification Theory (GUT). The catchwords are simplicity and 

straightforward extrapolation. One assumes that the Higgs mechanism of the 

GWS model is correct in its simple form and that the scalars <J> are

elementary. At an energy of - 100 GeV we know the effective interaction
2

strengths <x = g^/4t t , i=l,2,3, for the three gauge groups U(l), SU(2) and

SU(3), respectively. From the renormalization group theory we know how

the a^(E) evolve towards higher energy E and find that the three ou become

equal at My - 101J GeV! It is assumed that the "desert" between 10 and

1015 GeV is empty of new phenomena. This suggests that there is a GUT for

E > My with one simple gauge group G (> SU(5)), which is broken by a Higgs

mechanism with <f> = V - M_, to the smaller group U( 1) x SU( 2) x SU(3). Formin U

E < My the ct^ evolve away from their common value at E - My. In short, the 

three observed forces are the low energy remnant of one unified underlying 

force. GUTs may answer some open questions of the standard model, because 

the unified theory (G) sets constraints on its U( 1) x SU( 2) x SU(3) part. 

Also they make some spectacular predictions: proton decay and the physics 

of the very early Universe at temperatures T *'* My. For more details see 

Chapter 2 and references therein.

2) Compositeness. The catchword is "naturalness" [3]. The scenario 1) above 

required some miraculous fine-tunings in its symmetry breaking mechanism.
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It may be that the motivation for this will be found in the future. But

following the idea of "naturalness" one should allow only small parameters

if they are guaranteed to vanish under some symmetry, e.g. small fermion

mass by chiral symmetry. In this way one might be led to compositeness

models, where the Higgs scalar field $ is a collective excitation and also

the observed’ quarks and leptons are composed of more fundamental preons.

The dynamical mass scale of the new preon interactions Mpreoo. must be

above 10 GeV and one needs an unbroken (chiral) symmetry to keep the

composite quarks and leptons nearly massless. Alas there does :-c?: exist

(yet) a viable candidate model; for a review see [A], Anyway it is clear

that there would certainly be no "desert", but rather a jungle of strong

interaction phenomena and new particles at energies > M where the
& preon’

preons bind together.

Experiment must decide between these two alternatives, or others. If 

the Z were found with a mass precisely as predicted in the simple CWS 

model, the naive treatment of the symmetry breaking and the unification 

scheme would become much more plausible. Of course, direct evidence [5] for 

proton decay and/or a superheavy magnetic monopole associated with the 

breaking of G to some G'hU(I) at My, would confirm option 1). Similarly, 

new phenomena at energies of order 100 GeV would point towards option 2).

1.2 Cosmology

1.2.1 Standard model: Hot Big Bang

Cosmology studies the global structure and history of the Universe. 

The only force operating over these large distances is gravity. [Note that 

electric charges can be screened, but not so for gravity, where all the 

"signs" are equal or, in other words, the forces always attractive]. Hence
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we need to have some ideas on the gravitational force. Newton already tried 

to build an infinite, homogeneous and static Universe, but ran into the 

problem how to avoid gravitational collapse [6]. We now know that his 

gravitational potential was undefined, cf. section 15.1 of [1]. Only with 

Einstein's General Theory of Relativity (GTR), which incorporates the 

Newton theory, can we tackle the Universe. The Einstein field equations 

are, cf. [1],

R - \ yv gpv RX 8 t t GT yv (l)

R is the Ricci tensor build from the metric g , where y and v run from 1 y v &pv’

to 4, and describes the space-time curvature. is the energy-momenturn

tensor of the matter. Equations (1) relate the structure of the space-time 

manifold (lhs) to the energy content of the matter (rhs). The constant of 

proportionality is Newton's constant G, which measures the strength of the 

gravitational interaction. Of course, (1) looks deceptively simple: these 

are 10 (not 16 by yv-symmetry) non-linear differential equations.

While the Newton force law

G «jm2
F. — —

rrr 2

+
only gives the interaction between two sources at spatial positions r^ with 

masses (i=1,2), the Einstein equations (1) are global and thus more

appropriate to attack the structure of the Universe. [This is a trifle 

demagogic, instead of (2) I could have written down the Poisson equation]. 

Indeed in the year following the discovery of the field equations (November 

1915) Einstein was the first to study modern cosmology. It is well known 

that he introduced a term -Ag^v in the lhs of (D *n order to have a static 

solution. Later he dropped this cosmological constant as his "greatest

(r ■r2} (2)
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error", but see below for its renaissance.

Without this A term A. Friedmann (1922) found that the Unive 

expands with time t. For a homogeneous and isotropic space-time with scale

factor R(t) filled with an ideal gas (pressure p, density p) he deri 

from (1)

f dR. 2
(d^ + k 8irG 2 

pR (3a)

dt
3

R (R (P+P))- (3b)

R = “1» 0, +1 is the curvature constant for an open, Euclidean (flat) or 

closed Universe. (3a) describes the expansion, whereas (3b) is similar to 

the thermodynamic equation of energy conservation. We also need the 

equation of state

P = p(p). (3c)

For details see [1] .

Modern cosmology is based on (3) together with the following two 

observations:

1) E. Hubble (1929) found a (linear) relation between redshift and distance 

of far galaxies, which shows that the Universe indeed expands;

2) A. Penzias and R. Wilson (1965) discovered a Cosmic Background Radiation 

(CBR), which we now know to have a blackbody spectrum with TQ = 3K. For 

relativistic matter (p « p) and non-relativistic matter (p=0) we have from

(3) P . « R * 
rel

and -3
P « R .non-re1 Presently normal non-relativistic matter

is dominant, but in the early phase of the Universe (R smaller)

18



relativistic matter such as the photons of the CBR must have been dominant.

In this way one arrives at the Hot Big Bang model, where "hot" refers 

to the early relativistic phase. In this relativistic phase (3a) gives us 

R « - tg, which means that our presently expanding Universe started at

a certain moment tQ when matter was infinitely hot and dense (R=0): the Big 

Bang. See the next paragraph for a remark on this "singularity" at tQ. When 

the temperature of the Universe cooled to ^ 1 MeV nuclear reactions 

synthesized a large abundance of ^He. [Historically, G. Gamov and

collaborators predicted in 1948 from their nucleosynthesis calculation a

2 3 7low temperature CBR] . Also very specific abundances of H, He and Li 

arise in the model, which appear to agree with the observations [7] . Hence 

the Hot Big Bang model incorporates naturally the observed homogeneity and 

expansion of the Universe together with the radiation background and 

explains how the primordial abundances have originated.

1.2.2 Early Universe

Hopefully it is clear why we feel confident to explore the further 

consequences of the Hot Big Bang model, especially in the epoch far before 

nucleosynthesis. In 1970 Weinberg [1] could not really do this, because it 

was not clear how matter would behave at T ) 1 GeV, where nucleons would 

touch or even overlap, cf. our Part II. But in section 1.1 I discussed the 

recent advances in the field of elementary particle physics and the 

standard SU(3) x SU(2) x U( 1) model allows to trace the Universe back to 

temperatures < 100 GeV. Even earlier epochs can be investigated if the 

standard model is a remnant of a unified interaction. If on the other hand 

compositeness holds true then the precise history for T > Mpreon is 

unknown, compositeness theories being still in a rudimentary state.
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Before I give the highlights of the early Universe I nust introduce 

to the important physical processes that may occur. Notice that 

study the relativistic phase of the Universe, because there is 

local thermodynamic equilibrium nearly all the time, which allows a simple 

description. But no observable quantities can arise from equilibrium, so 

the brief moments of transition are very important to us. For example 

MeV the weak interactions no longer keep up with the expansion 

rate of the Universe and the neutrinos decouple from the rest of the 

Because of this transition and later reheating of the photons the 

present neutrino temperature should be lower than that of the photon 

background by a factor (4/1l)1/3, which in principle is an observable 

difference. Now the important processes:

~ ^econ^lnemenb. At T=0 the dynamical property of quark confinement

is absolute, it has to do with the non-perturbative structure of the QCD

vacuum. But at T > T - n o r^v r •c u*z ^eV confinement property vanishes: quarks

and gluons move freely, although Debye screened. For T > 5 T we have a
c

y ideal gas of quarks, leptons and gauge bosons. This simplicity makes 

p ible to discuss the phenomena 2) and 3) at much higher temperatures.

£itions^ or symmetry restoration at high temperatures. Consider 

the potential V(+) of the elementary scalars *. At T=0 it must have a non- 

symmetric minimum, so that through the Higgs mechanism some gauge bosons 

acquire mass (sect. 1.1). But at very high temperatures the effective 

potential is different. In fig. i symmetry restoration is illustrated for 

the discrete symmetry * + - * and where the "ball" indicates what the 

groundstate is.
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T= 0 T»V

-V 0 V 0 0 0

Fig. 1

This symmetry restoration should occur for the Glashow-Weinberg-Salam and

2 15Grand Unification models, i.e. at temperatures of the order of 10 and 10

GeV. The detailed dynamics in the early Universe is very interesting and 

during the GUT transition superheavy magnetic monopoles may have been 

created (see our Part I).

3) Baryon number creation. GUTs generally lead to reactions which violate 

the conservation of baryon number B. A (anti)quark has B = (-1/3) 1/3. At 

low energies these interactions are very weak, suppressed by powers of 

1/My, and predict a large, but finite, lifetime of the proton. In the early 

Universe when T ^ My these reactions have their "normal" strength. In fact 

they may provide the answer why the present Universe has a dominance of 

baryons over anti-baryons (net baryon number).

Fig. 2a gives the scenario of the first second of the Universe. Note 

that for T > M„, , one does not know what ,rhappens", because the quantum 

effects of gravity are not understood. In this "epoch" the Einstein 

equations (1) are not valid. Even the idea of a global cosmic time t [1]
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p[g cm 3] t[secl T[GeV]

1095 ~10-«3 1019

1079 10"37 1015

1027 10-11 102

1015 10~5 10"1

105 1 10"3

- - -

o 1 fO o 106 yr 4000 K

10-29 ,n1010 yr 3 K

(b) T[GeV]

??

M_ =103?
Preon Preon

1 QUANTUM GRAVITY?

i
i *
i GUT Phase Transition

Baryon number creation

ELECTROWEAK (GWS) 
Phase Transition

+
Quarks
Hadrons

+

NucleosynthesisI

Recombination to atoms 

Present!

2
10 ? Electroweak transition

10-1 Quark confinement transition

+

preons

quarks

+

leptons

hadronsleptons
+

Fig. 2. History of the Early Universe if (a) Grand Unification Theories or 

(b) some compositeness model holds. Numerical values are only 

indicative. Parts I and II of this thesis discuss the epochs indi 

cated by * and ** Respectively.
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I

may not work, hence the quotation marks above. We set t=0 at some

temperature just below Mpj_anck> the precise definition is not so important

-1 -43because the error is At ^ M , , ~ 10 s.Planck

If the physics for energies involves new interactions (between

preons, say), the earliest phase of the Universe is uncertain (fig. 2b). If

all present particles are made out of strongly bound preons, they probably

are liberated at T > T ~ M , just at quark deconfinement at 0.2c,preon preon

GeV. Also the behaviour at T ' ^GWS exPectec* to he different than as 

described in 1). The physics should then be understood better, before one 

can talk in detail about the very early Universe.
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1»3 Overview

This thesis consists of two parts that address very different physics 

and energy regimes. Both parts start with a general chapter, where the 

references have been updated with respect to the original publications.

In Part 1 the very early Universe is explored when interactions from 

Grand Unification may operate. Especially I consider the transition from 

the unified gauge group G to the SU(3) x SU(2) x U( 1) phase as the Universe 

cools belcw temperatures T *•* My and Chapter 2 contains a general discussion 

of what may happen. There are two types of transition possible: second or 

first order, where the value of <fc of the effective potential V( ^jT)

goes to a non-zero value continuously or with a jump, respectively. The 

first order transition may happen at a very low temperature (supercooling) 

compared to the transition temperature if it would be second order. Also 

for a first order transition the precise dynamics and its feed back on the 

global expansion of the Universe may be spectacular. During the 

supercooling epoch the Universe expands exponentially, the scale factor 

grows as R * exp (t/x) instead of the normal R «/t. [This is just as in a 

de-Sitter Universe, which results from adding a non-zero cosmological 

constant to (1) and (3a).] Guth [9] has argued that, if the exponential 

expansion phase was long enough and the temperature after reheating T^ 

MU» the smoothness and flatness of our observed Universe could be 

explained. This strong expansion phase could perhaps also reduce the number 

density of magnetic monopoles to sufficiently low levels. However the main 

problem that P. Hut and I pointed out was how to end this supercooling, 

while keeping the density of the Universe homogeneous enough. Later this 

problem was discussed in more detail in [8] . The recent "new inflationary 

Universe scenario" (section 1.4) might resolve this problem.
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Chapter 3 presents some figures with the results of numerical 

calculations on how the matter-antimatter asymmetry is created after the 

phase transition. Normally one neglects this complication of the "initial 

data" and indeed we find that the final asymmetry is quite independent of 

them. These figures illustrate the brief discussion in sections 4 and 6.2 

of Chapter 2. For details the interested reader is referred to the original 

publication.

* 2-1
In Chapter 4 we argue that supercooling below T ^ Tc ^pianck does not 

occur. The reason is that supercooling is a delicately balanced proces, 

which may be tipped over by expected(?) gravitational effects. If the 

supercooling ends at T* the inflation is far less than required for Guth's 

original scenario [9] . Also the new scenario may be invalidated by this 

process, see section 1.4.

The major violation of "naturalness" in GUTs is the fine tuning of the 

Higgs potential in order to have M^g/My ^ ^ » this is called the 

hierarchy problem. In the last two years supersymmetry (a symmetry between 

particles of different spin) was invoked to alleviate this problem. If one 

sets the parameters of the tree level potential V(<J>) so that Mgyg/My=10 , 

the special fermion-boson cancelations make that this ratio remains

unchanged by higher order quantum corrections. In the standard GUTs one

—13must tune many orders so that the final ratio is 10 . Even better, Witten 

suggested a mechanism that might also explain the smallness of this ratio. 

But in Chapter 5 I show that this model cannot generate the baryon 

asymmetry, because of the peculiar dynamics of the phase transition of 

Grand Unification, contrary to the "standard" case of Chapter 3. This 

problem seems quite general if supersymmetry is broken at a mass scale far 

below My, see paragraph 1.4.4 below.
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Another implication of GUTs for cosmology is that they allow for a

small, but non-zero, restmass of the neutrino (v). I found that a mass in

the range 10 eV < m^ < 100 eV would be very important for the formation of

structure in the Universe [10]. These articles are not included in the

present thesis for the following two reasons: 1) experimentally and

theoretically it is not clear that m is so large, i.e. a mass
v

significantly above ^ an<* ^ the actual formation of structure

occurs only when t > 108s. The r&le of superheavy (> 105 GeV) right-handed 

neutrinos, the partners of the light ones mentioned above, or other 

superheavy fermions, in the early Universe is not very interesting [11]•

In Part II I consider the phenomenon of quark liberation at high 

temperatures, T > - 0.2 GeV. Here the starting point (QCD, see sect.

1.1) and the problems addressed are better defined than those of Part I. 

Although the energy scale is modest (- 10° GeV) the theoretical 

sophistication to solve this problem nust be great. Ultimately the methods 

and knowledge obtained in solving the non-perturbative QCD should help us 

to understand what the Higgs mechanism, as applied in Part I, really means. 

High temperature quark deconfinement has the following direct applications:

1) Heavy ion collisions in accelerator experiments: for a head-on collision 

with center of mass energy per nucleon > 1 GeV a "fireball” is expected to 

be created with T > Tc. For details and references see [12] .

2) The dynamics of the quark-hadron transition in the early Universe; see 

section 1.5 below for a further remark.

Theoretical expertise gained from the study of quark (de)confineraent 

could be very useful if compositeness occurs, which should on the one hand 

be similar to and on the other hand differ significantly from QCD, or if 't 

Hooft's idea [13] of "tumbling" to larger and larger SU(N) theories for
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increasing energy contains some truth. In both cases the early Universe 

would differ from that sketched in fig. 2a and Part I. Even more 

speculative is the possibility that classical gravity is an induced quantum 

effect, with Newton's constant G arising in some way analogous to the mass 

scale of QCD [14]; in the very early Universe with T > Mpiancfc there would 

then be drastic changes in G^n(juce(j and \n(jUced’ some*low analogous to 

those of deconfinement in QCD.

But first we must get hold of the bear's skin, namely the physical 

mechanism that liberates the quarks in high temperature QCD. Chapter 6 

reviews some background and theoretical ideas on this matter. As said 

above, the deconfineraent transition is a change in the nature of the QCD 

vacuum. For zero temperature we have the successful bagmodel of hadrons: a 

finite region of perturbative vacuum, where quarks move freely, is immersed 

in the sea of impenetrable true vacuum. The non-perturbative vacuum may be 

thought of as having a zero "dielectric constant". Of course, this picture 

cannot tell us why the deconfining transition occurs, because the two vacua 

structure is put in by hand. One needs to understand how this phenomeno- 

logic model arises from the fundamental theory, i.e. QCD. Only then can one 

hope to understand what changes at high enough temperature. In Chapter 7 I 

show how deconfinement takes place, if one follows a certain ansatz as to 

how the dielectric model arises.

Whereas Chapter 7 starts the attack of the deconfinement problem from 

the continuum theory, one may also start already from a lattice theory. 

Here the fields do not live in the continuum space-time but on a discrete 

subspace, the lattice. Quark liberation may then be studied in the strong 

coupling expansion, see also paragraph 1.4.5 below. But in order to 

establish the physical temperature Tc, we need to take the continuum limit, 

which lies in the weak coupling regime. G. Mack has presented an idea on
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how the zero temperature confinement might persist in the weak coupling 

glme. In Chapter 8 X she*; that it is easy to understand why this fails at 

high enough temperatures.

It will be clear from the above and from Chapters 6-8 that a precise 

understanding of quark liberation will come if and only if one knows how 

the zero temperature theory gives confinement. In that case we have to 

establish jsxplicitly_ how the continuum theory and the weak coupling lattice 

theory are linked. These remarks may seem trivial, but are nevertheless 

true. Also the continuum limit of the lattice gauge theory is hard to study 

numerically. Analytical methods should be used preferentially. One of the 

most successful methods may be the 1/N expansion. The SU(N) gauge theory 

without matter fields has only one free parameter, namely the number of 

colours N. It has been known for some time that we may get an

understanding of the structure of the relevant SU(3) theory by considering 

the limit case SU(°°). [For some caution on the problem of confinement in 

the N ■+■ 00 limit see paragraph 1.4.5 below]. Even better would be to 

consider the limits N, Np -► », N/Np fixed, if we introduce Np flavours of 

"quarks" in the fundamental representation N.. This is because the relevant 

theory both has N=3 colours and 3 light quarks, named up, down and strange. 

Hence it is extremely interesting to consider the pure SU(N), N °°, gauge 

theory on the lattice. Recently there has been significant progress for 

this case: nearly all space—time dependence can be neglected for N 00. In 

Chapter 9 and 10 I consider this reduced theory. First I discuss what 

happens physically and then I address the non-trivial problem how finite 

temperature can be incorporated. Finally in Chapter 11 P. van Baal and I 

construct an elegant model, which looks very promising to study large~N 

(de)confinement both numerically and analytically.
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1•A Recent developments*

The subject matter of this thesis evolves rapidly. In this section I 

mention some relevant new results (< January 1983). For more details the 

reader is referred to the original literature. First I consider four topics 

relevant to Part I.

1.A.1 New Inflationary Universe

The structure of Guth's article [9] is: if so much inflation occurs, 

then these problems are solved. But the interesting point is that first 

order phase transitions from GUTs may provide the "if". Alas, it turned out 

that there were, severe problems with the reheating, cf. Chapter 2, 3 and 

[8], and that even apart from that the inflation would not be large enough 

(Chapter A). Recently Linde and Albrecht and Steinhardt [15] realized that 

for potentials V( <J>), which are sufficiently flat around 4>=0, there is an
Q

extra source of inflation: after supercooling to T v 10° GeV (fig. 3a) a 

fluctuation region (FR) of size - T makes a jump from <}> = 0 to 

<J> T, which evolves towards the true vacuum at **• 10^ GeV (fig. 3b); this 

roll-over is quite slow and meanwhile the FR still expands exponentially. 

The present Universe would only be a tiny part of this vastly inflated FR 

and will thus be smooth and nearly Euclidean. Also the magnetic monopoles 

would lie at the boundary of our FR and we will not be bothered by them for 

a long time. In the FR the 4> upon arriving at the true vacuum will 

oscillate rapidly, damp by decaying in particles, and thus reheat the FR 

smoothly to TR ~ 10^ GeV, which assures the generation of the baryon 

asymmetry [16]. In one stroke many problems of our Chapter 2 are evaded, 

but there remain three major ones:

*to be (re)read after the main chapters of the present thesis.
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Fig. 3» The potential for the new inflationary Universe scenario as used by 

Albrecht and Steinhardt [15]. Notice the linear (a) and logarithmic 

(b) scales of the 4>-axis.
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1) The scalar potential V( 4>) must be very special, named after Coleman and 

E. Weinberg, with a vanishing (mass)z<J> term. This is very unnatural, but 

perhaps there is a yet unknown reason for it. But if the theory is coupled
o 2

to gravity, the total ((mass) + ^(curvature)) $ term must also vanish. 

This looks very strange: the particle physics has a fine tuning, which 

involves gravity through (curvature) = G x vacuum energy density. Note that 

the socalled minimal coupling £=0 is not at all minimal through its quantum 

effects [19] . This problem might be linked with the familiar one of the 

vanishing present cosmological constant A.

2) During the roll-over, fluctuations in <J> develop which lead to density 

perturbations [17]. The good news is that these perturbations are nearly 

constant over ail scales (< size of FR, of course), which is what one would 

like to find, cf. discussion in ref. [10]. Hie bad news is that the density 

amplitude 6 appears to be much too large. To estimate 6 some approximations 

were made and it is possible, but not probable, that a correct analysis 

gives a much smaller 6.

3) It is not clear that the Universe can cool to T ' 10^ GeV, or in other

words, that the <j> makes such a small jump in the FR. If the relevant scale 

2 -1is more like T ~ M„ . there might be not enough inflation duringH U Planck &

roll-over, see the next paragraph.

1.4.2 Gravitational effects on the supercooling phase

In Chapter 4 we argued that quantum gravity effects terminate the

supercooling at temperatures - T , which is above those required for theH

inflation scenario, old or new version [18] . Our claim was substantiated in

[19], where also the vacuum contribution in a curved background to <+2> was

A
calculated, which may destabilize the false vacuum at T . The value of T 

depends on many details, but lies in the range T^ to (TqT^)^, with the

31



Perature TR - 1010 GeV and Tc - 1014 GeV typically. In [20] it

is clalmaj
n aim - AU- Gev typ

is claimed that for
certain parameters the (closed) Universe makes a

homnoanaA...
that there is enough 

use the

homogeneous trancu^
n out of the false vacuum, so that there i:

Inflation, But it -tc
not clear what happens physically, e.g. they 

amplitude to arrive at the of the barrier (cf. fig. 3b)

K4'3 a magnetic monnr„1a

argued that a magnetic monopole significantly modifies 
the fermion vacuum around it up to distances of the order of 1 Fermi. This 

could lead to reactions that violate the conservation of fermion number.

and possibly baryon nunber, with cross-sections determined by the strong 

interactions! If __
rrect (there are still some problems to derive

proton decay rate) magnetic monopoles would strongly catalyze the decay 

of nearby protons.

In turn it is then quite trivial tn „ v
to see how many monopoles are allowed to

hang around, notably using the heating of old neutron stars (22], Ihis

conflicts with the flux implied by Cabrera’s candidate event [5] of one

Dirac magnetic charge g. Not th
g. Note that such a charge would be Indirect

experimental evidence that the SU(3) of colour is not broken at very low

energy [23]. As said the inflation scenario predicts no monopoles in our 

part of the Universe.

1.4.4 Supersymmetric GUTs

The problems of Chapter 5 for a supersymmetric GUT in the early 

Universe, namely the dynamics of the phase transition and the baryon number 

creation, hold quite generally. Apart from the insufficient reheating 

(Tr - scale of supersymmetry breaking « My) there are problems for the 

theory itself to generate enough baryon asymmetry [24]. Another
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insurmountable problem seems to be how to end up in the correct vacuum 

[25] . Perhaps the transition is helped somehow by strong coupling effects 

f°r »GUT v 1 at T •“ 1010 GeV [25, 26] , after which the baryon number can be 

created if there happen to be scalars with mass m^ - 10^ GeV [26] . Also 

Witten's upside down model [ref. in Chapter 5] with supersymmetry breaking 

scale M 10^ GeV and M < has the problem that either (if high)

the created baryon number is not enough or (if low) the proton decays 

too fast [27].

Apart from all the cosmological problems it is difficult to get the 

correct low energy theory, certainly if one wants to keep the model simple.

We can be somewhat briefer on the new results relevant to our Part II.

1.4.5 SU(N) lattice gauge theories (LGTs)

In Chapter 6 I mentioned that Weiss had calculated the effective

potential for the L(j0 variable in the weak coupling regime. Polonyi and

Szlachanyi [28] have done the same for pure SU(2) in the strong coupling

expansion, and find that <L>T shifts away from 0 for high enough

temperature, apparently a second order phase transition. More generally

Borgs and Seiler [29] derived for SU(N) a bound on where the phase
o

transition line must lie in the g -T plane. But their bound, which is

independent of the "magnetic" terms in the action, gets vrorse towards the 

2
continuum limit (g 0) .

The most interesting development is the theoretical [30] and numerical 

[31] indication that the deconfinement phase transition for the pure SU(3) 

theory is first order. Svetitsky and Yaffe [30] argue as follows: The 

effective L(x) theory is both for high and low temperature short ranged. 

Assume that this holds for all temperatures then the N=2 and 3 cases are
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very different, namely N=2 will be in the universality class of the three 

niensional Ising model, which has a second order phase transition, whereas 

**“3 is in the same class as the three state Potts model, which seems to 

have a first order phase transition. This appears to be confirmed by the 

numerical work of [31], where N=2 and 3 behave very differently. Notice 

that for N=3 the jump <L>T at 8^rit(Nt) shrinks rapidly when one goes to a 

finer lattice (larger Nt, cf. Chapter 8). In [31] they also calculated the 

chiral symmetry restoration temperature Tc^ with Kogut-Susskind fermions

and neglecting fermion loops. The order parameter vanishes at Tc^

(cf. Addendum in Chapter 6):

SU(2) : 1.00 < T . /T < 1.30 (smooth) 
cn c

SU(3): 1.00 < T ,/T < 1.05 (discontinuous)
ch c

Now some new results on the zero temperature phase diagram, or in 

other words, the permanence of confinement (cf. Chapter 8). Numerical 

simulations [32] indicate that in the continuum limit (lattice spacing 0) 

Lorentz invariance indeed is restored, but perhaps there are some 

complications as to when already asymptotic scaling sets in [33]. On the 

theoretical front Tomboulis [34] seems to have proven that the SU(2) LGT is 

in the confinement phase for_all couplings. He uses a bound on the electric 

flux in a periodic box obtained by thinning out variables 3 la Migdal and 

Kadanov ( block spin"). If larger and larger blocks are made one arrives at 

the strong coupling LGT where confinement is trivial. For high enough 

temperature T one evidently does not get the bound, because of the 1/T size 

limitation. All this is very much in the spirit of our Chapter 8.

Finally let us discuss the large-N theories. There is the as yet 

unanswered question how (dis)similar the confinement of the SU(3) theory is
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compared to that of the N -*■ 00 theory. In the one case the center, which may 

be essential for confinement [35], is discrete Z(3), whereas it tends to 

the continuous U( 1) for N -*■ °°. Also the string tensions of adjoint (A) and 

fundamental (F) representations of the gauge fields are related for N + 00 

by 0^ = 20^ [36] . This would be difficult to explain from the point of view 

of [35] , because the adjoint representation of SU(N) is blind to the center 

Z(N). Perhaps this problem may be solved if the elusive masterfield [37] 

can indeed be constructed with the reduced model [38].

1.5 Concluding remarks

Already in section 1.1 I said that there are (at least) two crucial 

experiments for Grand Unified Theories (GUTs):

1) the Z° mass as predicted by the Glashow-Weinberg-Salam model M^/M^. =

l/cos0 and M__ - 37 GeV/sinQ , vrtiere 0 is the Weinberg mixing angle [39]; w w w w
O 1

2) a proton lifetime of the order of lCr yr.

If confirmed this would point towards the simple picture of GUTs and one

can then discuss seriously the processes of the very early Universe (Part

I) . In my opinion supersymmetric GUTs are too complicated to believe,

certainly if they must overcome the problems of paragraph 1.4.4 and produce

the measured value of 0 = 28°, which can be explained so beautifully by
w

the desert of the standard GUT picture. Of course, it may be that (local) 

supersymmetry is an ingredient of quantum gravity.

How then would the history of the very early Universe run? The main 

problem is to avoid the creation of too many magnetic monopoles. My guess 

is the following: 1) at - 1015 GeV there is a dull phase transition 

(second, or weakly first order); 2) the number of monopoles is reduced by 

thermal fluctuations if the Higgs masses are quite large typically [40];

35



^ number is created just after the phase transition, this

an extension of the minimal SU(5) GUT (cf. Oiapter 2); 4) the 

problems of cm#-*
° ness» flatness and the origin of the small density

perturbations for
ga axy formation, all are relegated to the epoch of 

quantum gravitv Tr»f
1 course, we can do this only if there is no later 

inflation, which TOshes out these perturbations.]

8 that the new inflationary Universe [15] is very

ng, but complete solutions to the age-old problems always go down 

better if well salted- [4!]. Son* grains of salt were addec] in paragraph

1.4.1.

r understanding of confinement and the Higgs mechanism, 

g neral of non-perturbative phenomena in the standard SU(3) x SU(2) x 

If the two experiments mentioned at the beginning should turn 

ry differently one should also consider the possibility of 

mpositeness [4] . This is why I turned to the, seemingly less spectacular, 

Problem of quark deconfine^nt in high temperature QCD (Part II). In the 

investigation of this problem we nay learn a great deal; for s_ other

(in)direct applications see section 1.3 above. As to cosmology I think the

ju t went through the quark-hadron transition without producing

notable results. [The s ii0„q j  .
g mechanism that should produce the large 

perturbations of F421 !«; i.
y unclear to me]. For completeness I remark

that the Glashow-Weinberg-Salam fpancu< ?
8 lam transition at T - 102 GeV could not be very 

spectacular either, because we nof-
t want to wash away the baryon number

created earlier.

Anyway, whatever the future theories of high-energy physics will turn

out to he, their link with the early phase of the Universe will he tost

interesting: "Combien d'§venements se pressent danc a.
p ssent dans 1'espace d’une seconde,

et que de choses dans un coup de d§." [43]
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NOTE ADDED

As of 1 June 1983 the preliminary results of the two experiments mentioned

in sect. 1.5 are: 1) from the CERN pp-collider there are four candidate

events for the Z° with approximately the CWS mass; 2) from the Irvine-

Michigan-Brookhaven experiment over 130 days the 90% c.l. limit on the

proton life time is t  /BR > 1 1032 yr, where BR is the branching ratio of 
P

the ir°e+ channel (- 40%?).
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CHAPTER 2

BREAKING OF GAUGE SYMMETRIES IN THE COOLING UNIVERSE



pour moi} des petits
Je m’accormode asse%Si, me semble difficile,
Mais le vuide a. soujjr _____ auhtn.lc
Et je goute bien

corpSj

Jeux la matiere subtile.
Moliere, Les Femmes Savantes.

1. Introduction

The expanding, homogeneous and isotropic Universe, which is pre 

sently filled with low energy photons (T= 3K), is thought to have originated 

in a rapidly expanding and very hot phase: the Big Bang. The. knowledge 

needed to describe the earliest epoch of the Universe has boon augmented 

significantly by recent advances in our understanding of the interactions 

of elementary particles. The essential idea is that of gauge, theories, to 

which all four fundamental interactions belong, namely gravity, electro 

magnetism and the weak and strong forces. The latter, three forces have been 

proven to be renormalizable, i.e. quantum corrections are finite and 

calculable, whereas a renormalizable quantum theory of gravity remains 

elusive.

Contrary to the case of the photon the mediating particles of the 

weak interactions are massive, 0(100 GeV), which is precisely the reason 

why the interaction is so weak. This mass results from the mechanism 

of spontaneous symmetry breaking (SSB),in which a non-symmetric ground 

state occurs for a theory with symmetric interactions. More specifically 

the vacuum state jis not invariant under the transformations while 

the Lagrangian _is symmetric.

It is probable that these three observed forces are the low energy 

remnants of a unified gauge theory, broken at several energy scales.

Because quarks and leptons are grouped together in the representations. 

Grand Unified Theories (GUTs) have baryon number (B) changing reactions
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which, not being included in the electroweak and colour interactions, 

are very weak at observable energies and thus predict a large, but 

finite, decay time for the proton of 'V 10^*“^(M^/6 10*^GeV)^ years, 

where is the mass of the relevant boson mediating the B violating 

force. But in the very early Universe at temperatures larger than or 

of the order of the B violating forces are quite effective and 

in fact they might well create a small asymmetry between baryons and anti- 

baryons, which after the annihilation of the pairs at much lower tem 

peratures 0(1 GeV) gives the observed dominance of matter over antimatter.

After some introductionary work we will review the transitions 

to lower gauge symmetry as the Universe cools down (sections 5 and 6). These 

socalled phase transitions (PTs) might modify the expansion of the Universe 

significantly, but we hope, of course, that they do not invalidate the 

"standard" results of Heliumsynthesis and baryon number creation (sections 

2 and 4). Hopes that PTs might generate the required density perturba 

tions for galaxy formation are tempered in §6.2.

Also we will briefly discuss in §6.3 the expected creation of raonopoles,

i.e. localized,finite energy solutions of the equations of motion with 

magnetic charge, which might be expected when the spatial distribution 

of the symmetry breaking "directions" is non-trivial.

Let us remark that the coverage of the references is only indica 

tive. We put = K , = c = 1 and express nearly everything in
Boltzmann

powers of GeV (roughly the proton mass), but in order to distinguish

-1/2 19gravity, which sets the stage only, we keep = G = 1.22 10 GeV. 

Indices y run over 0,1,2,3; x^1 and 9^ denote a space-time point and deriva 

tive; and all indices occurring twice are summed over.
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2. The Big Bang

There are three basic cosmological observations (Weinberg, 1972).

1. On large enough scales (-0 (100 Mpc)) the Universe is homogeneous

and isotropic. Hubble found in 1929 a linear expansion: redshift

Z H (X - X . ,)/X . _ , = H x distance,with H aobserved emitted emitted o o

constant.

2. Penzias and Wilson discovered in 1965 the isotropic electromagnetic 

background radiation which has a Planck spectrum and temperature

^ 3K.

3. There is a universal Helium abundance of 'v 25% in mass and

a very low primordial abundance of heavier elements later to 

enhanced by stellar evolution processes.

The theoretical model to understand these facts is very si:..;:le 

(Weinberg, 1972). From the Einstein equations of classical gravity 

and the restrictions on the metric tensor from homogeneity and iso 

tropy (Robertson and Walker) we have an expansion equation

0)

where R(t) is the scale factor and k = -1,0,1 a curvature parameter. 

Also we have an energy conservation equation (adiabatic expansion)

^(pR3) = - 3pR2- <2)

For relativistic particles we have the energy density Pre^ = N T ’

with N the total effective number of helicity scates (2 for the photon),
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3 3 — i
and from entropy conservation (s a T ; volume oc R ) T a R • Thus 

P a R ^ and the curvature term in Eq. (1) can be neglected for R 

Eq. (1) then gives the Big Bang evolution

C = 2.4 Ilf6 N-1/2 (I^f2 s. (3)

Particles with mass will be roughly as abundant as the photons Y 

for T > M^, but for lower temperatures they will annihilate and reheat th 

other interacting particles somewhat. Note that they will be able to 

reach their equilibrium density n 'u (M^T)^ exp Q- M^/Tj <<nrel^ on^ 

if their interaction rate I’_ > H at T ^ M7. This point will be of impor 

tance in section A.

We note that because of the finite age of the Universe the maximal distan

ce travelled by light, i.e. the causally connected region, is limited.

This socalled particle horizon is given by d„(t) = R(t) / R( O dt 2t,
n o

as follows from the metric ds2 = dt2 - R(t) l_^3s D anc* 6iven

Eq.(3).

Roughly the Big Bang scenario runs as follows. At very early times 

verse is dominated by relativistic particles; precise calculations 

that at t 'v> 1 minute some 25% He is synthesed and practically no heav' 

elements; still later at T ^ A000 K the protons and electrons recom 

and the photons expand freely henceforth, no longer being Thoms 

scattered (T °c R ~1; now Tq * 3K); at roughly* the same epoch the energy den 

sity starts to be dominated no longer by radiation but by non rela 

matter, i.e. hydrogen and Helium nuclei. In this last phase, the largest 

in time (cf. Eq. .), we can neglect the pressure and the precise expansion 

solution depends on two constants only, which we take as the present val
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Of expansion rate and density ratio: H = (R/R) = h 100 km s 1 Mpc 1
o o

o ^^cr^o’ Pcr = 3Ho/87rp = h^ 2 10^ gem According to

present knowledge h 'V 1/2 to 1 and % 0.1 to 1. The age of the Uni- 

erse is tQ - f (ftQ) Hq 'v Hq ^ h * 20 billion years, but we will 

be discussing the very earliest relativistic phase only, when 

t (T = hy 'V 10~35 s.

3. Particle interactions: Unification

3.1 Immediately after the invention of quantum mechanics the relati 

vistic theory for electromagnetic interactions was sought and 

the Dirac equation dates of 1928 already. But only in the late 40's 

was the theory proven to be renormalizable: the infinite quantum cor 

rections can be absorbed in a finite number of constants (charge and 

mass of the electron for example) and the theory (Quantum Electrodyna 

mics, QED) can be formulated using the observed finite masses and 

charges only and finite quantum corrections. That this 

can be done is highly non-trivial; infinities at each order in the

perturbation expansion might each require different counterterms in the

2 -Lagrangian, whereas for QED all counterterms, say (Z^e + + —)

are of a limited number of forms, say mass terms mo^<jj, and thus only a few

constants can be redefined, say mass m . QED has a very specialrenorm J
form; it is a gauge theory, i.e. invariant under transformations with 

local parameters (as A (x) in Eq. 4). The global invariance (A = con 

stant) leads to charge conservation.

What about the other two particle interactions? First
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let us consider the weak interactions. Fermi gave in 1934 the theory 

for 6 decay (n -»■ p + e + v), in a form analogous to QED with a four
5 2

fermion interaction and dimensional coupling constant Gp ^ 10 GeV 

Although very succesfull the theory could not be the final one: 

it is not renormalizable and at high energies (£ 300 GeV) the cross- 

sections violate the limits from unitarity (in simple terms: more out 

than in> cf. Taylor, 1976). In the 50's and 60's two ingredients 

towards a solution were put forward, but each had their problems.

One was the idea of spontaneous symmetry breaking (SSB) which may give 

masses to the mediating bosons (see example below), but according to 

the Goldstone theorem massless scalars are predicted to occur which 

are not observed. The other idea is to extend the U(l) symmetry of 

QED to a larger group, these are called Yang-Mills (YM) theories. We 

then have more than one "photon", but they obviously are massless, where 

as the weak interactions are weak because the mediating boson W is^

2 2 .
very heavy: G = g /2 M with g the dimensionless coupling constant 

r w

(cf. e of QED). YM theories looked promising for renormalization.

Higgs showed that surprisingly a spontaneously broken gauge theory on 

ly had the good properties: massive gauge bosons but no massless 

scalars. Later ' t Hooft showed that the YM theories after the SSB 

remained renormalizable.

It will prove useful, for later work, to illustrate all this for the 

simplest model, called the Abelian Higgs model (cf. 0'Raifeartaigh,

1979). The gauge symmetry group U(1) has one parameter A(x) and works 

on the gauge field and the complex scalar field (J) = ^j + i $2 as 

follows, in infinitisimal form,



(4)
VX) Ay(x) + ¥ 8y A(x)

4>(x) -*■ Q - iA(x)^ 4>(x) .

The invariant Langrangian density is

L = V pWV' i|Du4,12 ‘vw ■

with field strength F = 3 A - 8 A , gauge covariant derivative 
& yv y v v y

Dy4> = 3^<}> + ieA^c}), and the scalar potential

vw = -u2 |<j>|2 + x|<t>|4 (X, y2 > o).

The vacuum will be at the asymmetric minimum of V, which we choose 

O = < 0 |(})| 0 >= <0 14)^ 0> = (y2/2A) .

Develloping in fields around this minimum 0 = 4> - a we rewrite (5) after

a gauge rotation to eliminate 02:

L = -.‘ V,pPV-K Ap - i iv.i"-2 .2

2UM + ^interaction <V V ■
(7)

2 2 2where the gauge boson has become massive M = e y /2A. There is only
A

one massive scalar field 0. and L. . retains the gauge invariance.
1 interaction & °

Realistic models require larger gauge groups and the introduction of

fermions, for completeness we give the general form. Lie group G has
2

generators tf (r = 1 ----- N, N = n - 1 for G = SU(n)), hence for g e G:

g = exp [A t 1 . Define a Lie valued potential A = Ar t . The finite o l-rr-J yyr

gauge transformations are

% - g V 1 + e 8 8

<t> + R (g) 4> ,

where g = g(x), R a representation for the <j), and e a coupling constant.
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The fields and covariant derivatives are

Fuv = Vv - 3v Ay + e [V Av n

= 3y<t> + e R(A ) <p

(8)

With the Cartan-Killing metric {, }, note {A^, A^} - ^ Ay A ’

generalise Lagrangian (5) to

~L = * {FUv’ FPV } + ’ °y<*>} + * ^Dy ^

+ ij;mi^+ + V((j>) .

(9)

The 3rd and 4th terms of the RHS are the generalised Dirac terms for 

the fermions ip in some representation R^ (replace R in definition 

(8)), while the 5th term is a Yukawa interaction. Some gauge fields 

A^ acquire masses by SSB if V(4>) has non-trivial minima, and if H 

is the remaining symmetry there are dim (H) fields A^ which remain 

massless.

With these ideas Glashow, Weinberg and Salam constructed the

electromagnetic-weak theory (table I; Taylor, 1976). The quarks u,

and the leptons e , are put in left-handed doublets and right handed

singlets (no v ), each generation is treated similarly. The ratio
2

gj/g2 = tan 0, is determined experimentally : s^n®w ”

The SSB gives the weak bosons a mass and by the exis 

,o

tence of the

Z predicted neutral currents (e vg -*■ e ve'>), as confirmed later by 

CERN experiments. Also the prediction by Glashow, Iliopoulos and Maiam 

of the charm (c) quantum number (in order to cancel sd -*■ W W )

has been verified, still later the beauty (b) quark was found as 

T = bb at * 10 GeV (truth (t) remains the current experimenters quest)

Baryons are composed of 3 quarks and mesons of 2, with the interq 

forces described by a YM theory (called Chromodynamics, with "colours"



Table I: Low energy interactions

gauge group G

coupling constants g 

2
strengths a = g /4t t

2
as observed at 0(10 GeV) 

fermion representations

Electroweak

gauge fields

Higgs scalars

SU(2) x U(1)

c*2 'u 0.03 (Xj % 0.01

d L 6 L

*
V dR’ V

4- o
w , w", Z mass 'V go

Y photon

with < 

o % 300 GeV

0|<f. I 0>-=a(°)

Colour

SU(3)

^ 0.2

u u ur y b

d d dr y o
c c,

8 gluons

similarly for the other two generations: read for (u, d, e, v^) 

respectively (c, s, y, V ) or (t, b, T, v^) , where we neglect Cabbibo 

mixing of the down quarks.

L, R denotes left- and right-handed components.
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lable II: Unified Interactions (Georgi and Glashow, 1974)

SU(5)

aU(1015GeV) : 1/40

fermions :

5 =
y

db

e

v

10 =

0 ui

0

ur " dr

ur - u - dr y y

0 - ub - d

- etc 0 - e

0

antisymm.

scalars : <p: 2^ , with <0|cj>|0> ^ 10'5 GeV diag (1 , 1, 1 ,-3/2 ,-3/2) 

H: _5_, with <0[h |0>^ 102 GeV (0,0,0,0,1)T

other generations similarly



red, yellow hi
> oiue as charges, Table I). For high interaction energies 

r ^orces 8et weaker (cf. Eq. 10), probably this explains 

lepton scattering results on protons, which apparently 

scattered on freely moving point particles (quarks). For larger

63 gets larger and this is related to the confinement of 

<1 ks, i.e. no separate quarks exist, but rigorous calculations are 

still lacking. Also the hadron production relative to y”y+ in e" - e+

collisions is beautifully explained by 5 quark flavours, each in 3 co 

lour variants.

3.2

The three elementary particle interactions can thus be understood 

as the gauge theories summarized in Table I. But, as always, deeper 

questions remain unsolved:

1) there are still (too) many arbitrary parameters, e.g. 7 for the 

electroweak theory.

2) why is electric charge quantised and IQ , I = lo I ?
1 electron1 1 proton'

3) why do we have three so different forces?

4) what is the relation between quarks and leptons, which on the one 

hand are so different (quarks have strong interactions, leptons not; 

quarks heavier than the leptons, per generation at least), but on

the other hand have some inter relations (notably the cancelling

of the triangle anomalies)?

5) why is there a triplication of generations?

6) are the Higgs scalars elementary particles or composites, and what 

regulates the SSB precisely?

7) what is the quantum theory of gravity?
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The last three problems are still unsolved (perhaps 5 has some 

thing to do with the connection GUT-supergravity, see below), but the 

first four might be tackled in the unification scheme (reviews: Langacker, 

1980; Nanopoulos, 1980; Ellis, 1980). The idea is to have one simple gauge 

group G , hence one coupling constant gy, and quarks and leptons to 

gether in Gy representations. At a high energy scale My the symmetry 

breaks spontaneously to the "observed" SU(3) x SU(2) x U(l). But what 

about one coupling strength, whereas we observe large differences 

(Table I)? The answer lies in the renormalization group equations 

(Georgi et al., 1974), which give the effective coupling 

as a function of the interaction energies (q ), generally for G SU( )

a (q2) = 1 2tt (10)
(11n - 2F) In (q2/A2)

with F the number of quark flavours (6?) and A an energy scale. With

2 2the observed and (with n = I in (10)) at q =(100 GeV) we calculate 

equality at My 'V 10*5 GeV with cty 'v 1/40. But now we may calculate 

go(100 GeV) and find: sin2 0, % 0.20! Thus the three observed

forces are low energy remnants of a unified interaction broken at 

energies 'v My Also questions 2) and 4) may be dealt with (e.g. Nano 

poulos, 1980). The smallest possible (rank 4) Gy is SU(5) (Georgi and 

Glashow, 1974). There are stringent restrictions on G which basically 

allow only 2 larger G, which will have more fermions (cf. Barbieri,

1980). Table II gives the fermion representations and the required 

Higgs scalars for the SU(5) unification, where again each generation is

treated similarly.
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and
The breaking by <0 | H| 0> in the Yukawa terras gives the down quark 

charged lepton equal masses. Thus for the third generation ra^ ^ m^., 

which gets renormalized for the low observable energies (using F = 6: 

a strong indication on the number of generations) to m^ 'v 3ra_, which 

fits the experimental data (1.5 and % 4.5 GeV). For the first generation

the observed ratio is quite different from 3, see discussion in Ellis

(1980).

also something completely new in the unification hat.

By the breaking through the 4, scalars 24-(8+3+1)=12 bosons X get a high

ttass (the ones of the SU(3) x SU(2) x „(!) remaining massless).

Some of these bosons mediate reactions between quarks and leptons 

, X +-
which at our low energies leads to a very weak proton decay 

Or dd))with a large lifetime due to the X propagator, 

but perhaps measurable. Another significant effect of the baryon number 

changing reactions might lie in the early Universe at temperatures

T%Mx*
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4. Creation of the Matter-Antimatter Asymmetry

All observations indicate the total absence of antimatter in 

the Universe (Steigman, 1976). The baryon number density n^ thus is 

non-zero and observations give the numerical value

nB _ nbaryon - ^antibaryon nbaryon .„-10 ,^bo N
% 10 (q .o P (ii)

with fi, the present baryon density relative to the critical density 

(section 2;c.f. Olive et al. 1981). If baryon number would be totally con 

served one might think the small number of Eq. (11) just to be given 

by initial conditions. But it would be more satisfactory if we could 

find a physical mechanism to generate this small baryon asymmetry.

The basic idea is quite simple : the density ratios of baryons:antibaryons: 

photons at very high temperatures is something like 10 :10 :10 , 

later the unknown mechanism produces a small asymmetry 10 +1:10 -1:10 , 

which after annihilation* gives the final ratios 2:0: 'MO , as observed.

The key problem, of course, is the second step. Four ingredients are 

required to generate a net baryon number density (e.g. Weinberg, 1979):

1. Baryon number (B) non-conservation,

2. Charge conjugation (C) asymmetry,

3. C and parity (CP) asymmetry,

4. non-thermal equilibrium distribution functions of some of the species 

involved.
Conditions 2 and 3 are to avoid a canceling of production by particles 

and antiparticles (operation of C changes the sign of the baryon number, 

because B (particle) = -B (antiparticle); P leaves B unchanged). Also
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condition 4 is obvious; if everything first stays in equilibrium no 

asymmetry can arise. As we have seen in the previous chapter unified 

interactions will give B violating reactions as well as C and CP 

asymmetries. Condition 4 is implemented by the fast expansion of the 

Universe as given by Eq. (1) (see also Appendix A of Kolb and Wolfram, 

1980a). In order to illustrate condition 4 Weinberg (1979) has proposed 

the delayed decay scenario, which runs as follows. Assume complete 

equilibrium at Tp^ (>> M^); we have for the decay rate of the heavy X 

boson (including a time dilatation factor)

FX % “X *X N & 2 -1-1/2
(12)

and the expansion rate of the Uni
Universe (Eq. (1))

H ^ N1^2 T2/Mp^ .
(13)

The X and their antiparticles X will decay around a temperat 

when F^CT^) ^ H(T^) • U. the X and X decay at temperature
ure T

Td<MX
(14)

they will not be replen ished by inverse decays (Boltzmann factor), 

and the net baryon number to entropy ratio produced in the delayed 

decay is simply proportional to their equilibrium density

—B n, s
45 N.
^4 C(3) AB

05)

with s the specific entropy and AB the average net baryon
number from

56



the decay of a X-X pair. Before discussing the estimates of AB we 

must see whether or not condition (14) applies. Using Eqs. (12)(13) 

we easily see that (14) implies

MX>
..1/2N a. mp:

(16)

For gauge bosons (a 'v 1/40) with a calculated mass of Mx ^ 6 10* GeV 

(Ellis et al., 1980a) we see that the delayed decay condition (14) 

does not hold. However Higgs bosons are believed to have very small 

Yukawa couplings (as in the Weinberg-Salam model, cf. Taylor, 1976) 

and the condition (14) may apply.

In order to find AB one calculates the different branching ratios 

of the X and X (cf. simple model below; Nanopoulos and Weinberg, 1979). 

For SU(5) with two 5's of Higgs and some honest estimates Yildiz and 

Cox (1980) calculated (15) to be of order of 10 ^ (for further dis 

cussion of AB and the required CP breaking e.g. Ellis, 1980).

Recently a direct connection was noticed (Ellis et al., 1981a) 

between the AB interference graphs and those leading to a finite re 

normalization (60 ) of the 0 parameter of the QCD (SU(3)) vacuum.

{This 0 defines the ground state when topologically distinct Yang-Mills 

vacua exist, analogous to the Bloch functions for periodic potentials; 

gauge transformations in topological equivalence class n implemented 

on the vacuum |0> give G |0> = ein6 |0> (for an introduction e.g.

Crewter, 1978; Jackiw, 1980).]

Assuming 0 = 0 at a high energy, say Mpianck the present ob 

servational limits on the electric dipole moment of the neutron d^, 

which gets a dominant contribution of the CP violating term with 

parameter 0 (1 GeV) > ^®GUT» allow for practically no entropy gene 

ration after the n generation at unification energies (Ellis et al.,
B
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1981a,b). The reasoning goes as follows: d^ > 4.10 ^®GUT e-cm w0U^ 

violate the experimental upper limit (2.10-24 e-cm) if the generated

^as to significantly larger than 10 ^ to allow for later 

entropy generation. We remark that in comparing 60GUT and ^B graphs 

moduli of typical unitary matrix elements U^m connecting the different 

contributing Higgses, namely in decay and mass terms, were naturally 

assumed to be 0(1). If these are substantially smaller they could alle

viate the nearly conflicting theoretical (60 > -----l^dnJ nB^S^ anC*

observational (d^ < -----) limits (see Eq. (24) of Ellis et al., 1981a).

If condition (14) is not strongly satisfied the final result will 

be less than estimated in Eq. (15) and the rate equations of the B 

changing reactions have to be solved numerically.

Kolb and Wolfram (1980a) have introduced a simple model which in 

corporates the major physical ingredients. More detailed models are not 

quite relevant for the moment because of the lack of knowledge on the 

precise unification Lagrangian and the details of CP violation.

The model consists of two types of particles: nearly massless part 

icles b and b carrying baryon numbers B = £ and B = -£ respectively, 

and massive bosons X and X mediating baryon-number violating reactions.

The decay amplitudes M of these massive bosons are parametrized as

|m(X -* bb)|2 = (1 + ri)J |Mq|2,

|m(x  - bb)|2 = (i - n)i |Mo12,

|M(X bb)|2 = 0 + n)i |mo|2,

|M(X - bb) | 2 = (I - rbj | Mq  | 2,

2with Im I of the order of a small coupling constant c l . Because of uni tan ty 
1 o1

Note that the above arguments do not hold if a global U(l) axial symmetry 
forces 0 to be zero (Peccei and Quinn, 1977; Dine et al. 1981).
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and CPT invariance only two free parameters n> 0 are left, where 

£ = H-n = 0(a) measures the amount of CP breaking. Thus a state initially 

containing an equal number of X and X (n° = r^r) will decay, in the absence 

of back reactions, to a system with a net baryon number n^ a (n " 0)1 *

(n^- + n^) • For simplicity all particles are given only one spin degree of 

freedom, and obey Maxwell-Boltzmann distributions. Because in the expanding 

Universe all densities drop quickly, a convenient type of variable is

y a  - W

the relative number density of particle A(= b, b, X or X) with respect to 

photons. The rate equations can be written as (Hut and Klinkhamer, 1981a)

dYA 2 
cbT = * x Kl(x)

K.(x) o
4^ Vx) + * “ K,« Yb (x)} (17a)

<«- Kj(x)

-p *'2'

d^r = ^-{exS Vx) Ki(x) y b (x)

288a -4 , . .x Y (x)) ,IT B
(17b)

req

with "time" parameter x = M^/T, an effective expansion parameter xp = 

M^/(7.5 1018 N-1^2 GeV), K] 2 modified Bessel functions, Yg - Yb Yg, 

and the deviation from equilibrium parametrised as Y^ Y^

Y = I (Yy + Y-). In deriving Eq. (17) we put n + 0 = 0, the final Yfi 

being quite insensitive to the exact value as long as |0 0

hsee fig. 5 in Chapter 3 of this thesis.
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In equation (17a) it is clear how the first RHS term determines

the production of Y^, independent of already existing and Y^,

a function of temperature only (T = M^x) . The second term destroys

the deviation from equilibrium of the X’s, and is therefore pro

portional to Ct/x^ or aG 2: the magnitude of the deviation is govern

by a competition between particle reaction rates and Universe expansion

The third term is typically ten orders of magnitude smaller than the

second one in our calculations (e = 10 Yg e)• Therefore the rate

equation for Y^ is nearly completely Y^-independent, and Y^(x; XQ^ lS

fixed by specifying the initial condition Y^(xq; XQ) independent of Yg.

The rate equation for Y^ shows a production term Y^, with the

same reaction vs. expansion factor ct/x^, but also the small CP violation

parameter e. The next two terms « Yfi determine the damping of YR, by

means of all baryon number changing processes, independent of £, which alrea y

indicates that Y„ < E. The first of these two terms describes in- 
13 max —

verse decays of X, X (bb X, etc.), and drops off quickly for high

x (Kj(x) « x ^ e X for x » 1). The last term is the Fermi approximation 

for 2 -*■ 2 scattering processes (bb -*■ bb, etc.), which is the dominating, 

but still rather unimportant, term for x > 20. For high energies this 

term is unimportant, since the large contribution to 2 -*■ 2 scattering 

by the exchange of on-shell intermediate X's is already included in the 

previous term (see Kolb and Wolfram, 1980a, sect. 2.3.2). Therefore we 

just replaced x ^ by 1 for x < 1, since a detailed treatment of the 

2 -*■ 2 processes would be unnecessary in this regime.

Let us choose parameters a = 1/40, = 10^ GeV, N = 100 and

E = 10 ^ (note that condition (16) is strongly violated). Starting from 

thermal equilibrium at x q = 0 (or x q = M^/Mp^ ^ 10 S we find Yfi(x) peaking
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around x % 1 and then, mostly because of inverse decays, falling

—8a factor 4 to the final value Y„(°°, x = 0) = 1.43 10 (this differs
D O

from Kolb and Wolfram (1980a) who find a somewhat larger drop, this 

difference could only be due to our treatment of the 2-2 scattering, 

but we overestimated their contribution somewhat at x 1). F°r other 

parameters Kolb and Wolfram (1980a) displayed similar damping of the 

Eq. (15) estimate in their figs. 3 and 4.

Finally we remark that because of the B violating processes 

operative at T = 0(1^) any (not too large) primordial baryon number 

will be destroyed (second term RHS of Eq. (17b)), after which the final 

Yg will be generated. The presently observed matter dominance thus sets 

via the required AB important constraints on the unification theory 

and the CP violation.

5. Phase Transitions

Up till now we have not included finite temperature effects

particle theory. We are warned however by such drastic effects a P

conductivity (another example of SSB, cf. section 3) vanishing

enough temperatures: symmetry is restored by the thermal

In the Abelian Higgs model we used the minimum O of the

potential: f4rl = 0. The vacuum state is determined by the effectiv_
L-d(p -10

potential (cf. Coleman and Weinberg, 1973), where quantum

are included (e.g. in the loop, i.e. * , expansion). If one still requires 

a non-trivial minimum of VQff one fin(*s t*iat ^or ^ f°°P V1 

coupling must not be too small X > 3e /32it (cf. Linde, 

finite temperature the effective potential is ideally 

theory applies, but with
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the time components of the momenta discrete and the relevant 

integralis replaced by sums (de Fetter and Walecka, 1971). The ex 

pectation value of operator 0 is <0> = Tr[o exp(-H/T)] /Tr[exp(-H/T)] , 

with H the Hamiltonian and T the equilibrium temperature. For the 

T - 0 potential V = y2 <})2 + A. <j)^ one fincjs the equation for the 

minimum a modified: a(A a2 - y2 + ^ T2) = 0. The minimum 0(T) shifts conti 

nuously from a(T = 0) = (y2/A)1/2 to a(T ) = 0 at a critical temperature
c

1 / 2^•c ~ 2p/X ; this is called a second order phase transition (2PT).

For T > the theory is symmetric. Strictly speaking quantum corrections 

will always introduce a weak discontinuity in a(T). For the Abelian 

Higgs model one finds analogously: a(A Q2 - y2 + (4A + 3e2)T2) =0.

And for A e we see that although there is a non-trivial miniimum O'
2 1 / A^-c ^ (15A/2t t ) y with V(a = 0) = V(a'*), there is a barrier in be 

tween. The transition from a = 0 to a0 will be discontinuous and 

occurs at a temperature different from Tc: a first order phase transition

(1PT). For completeness we remark that for a temperature range |T - Tc|

2
£ e perturbation theory breaks down, the m,,. ->-0 and infra-red

lliggs
divergencies occur (Weinberg, 1974). For more details we refer to the

reviews of Kirznits and Linde (1976) and Linde (1979). Also for more

complicated models (GUTs) it holds true the IPTs occur if the Higgs

particles H are light compared to the gauge bosons G ( cf. Eq. 7).

Alas our understanding of the Higgs sector in GUTs is little. Generally

one might say that if the scalars H are fermion composites H = FF one

expects 'V M^, ^ M^; but if the breaking is through radiative corrections

(Coleman and Weinberg, 1973) we have typically My % ct1^2 My. Perhaps

there are two indications that the breaking is radiative (at least at the 

... 2
unification scale ). The unexplained hierarchy of energy scales M^ ^

10 GeV «< My ^ 10 GeV « M^ ^ 10 ^ GeV could originate as follows

62



(Ellis et al. 1980b; Weinberg, 1979b): if the quartic couplings X of the 

2 Higgs systems (with bare masses zero) needed for the breakings are 

the same strength 'v g2 at , the X of the 24 will diminish much more

rapidly at lower energies than those of the 5, and the first will give 

breaking at ^ 10 4 Mp-^ when X 'v 0, while the second will be 'v 0 at ve y 

much lower energies. Secondly Ellis et al.(1980c) have looked for 

can be incorporated in the extended supergravity theory with composi 

states, and find only G = SU(5), fermion representations 3(K) + 5) (exactly 

the 3 generations as observed) and probably massless 24 and 5 sea 

Alas the argument involves a lot of speculations, but some hav 

theoretical backing in 2 dimensional models.

6. Phase transitions from unification in the Universe

6.1

After all the preparations of the previous chapters we now g
11;

bus
iness? At very high temperatures (T > Tc = 0(1015 GeV)) the vacuum 

is in the symmetric state and the gauge bosons and fermions (the observed

Oones get their masses only at the 10 GeV breaking) are massless and 

forces long range. If the vacuum gravitates normally (cf. weak equivalence 

principle, Weinberg 1972) the symmetric minimum at T > T£ has a large 

energy density = O(04), because the present cosmological constant 

is zero or small %(\0~2 eV)4 (cf. Kolb and Wolfram 1980b). This just 

amounts to setting the zero energy level of the potential: V(P, T=0) - 0. 

For T > Tc this 'v a4 'v Tc4 will be negligible compared to the particles 

P ^ NT4. For a 2PT the vacuum shifts at Tq to the broken state so that 

never in the history of the Universe was Pv dominant. But for a 1PT the 

transition is blocked for T < T£ and the constant energy density Py will 

soon dominate over that of the particles which is redshifted by the
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expansion. From Eq. (1) and p 'v we then have a very rapid expansion 

approaching the de-Sitter solution

R(t) -v R(tc) exp (—~c~) (,8)

X * (8t t /3)“^ Hpl/o2

which stretches the particle horizon to

dR(t) t  exp (—-—-) ' (19)

The particle temperature T still goes as R_1, so there results a large 

jsupercooling if the symmetric vacuum is blocked from the transition 

(hence called the false vacuum) for times quite larger than 

tc -V. (f! Tpl (Eq. 03)).

Because we presently are in the broken state we know that the transition 

iSH.3*: have occurred. As in the usual first order phase transitions the 

transition goes through nucleation. The bubbles of true vacuum will have 

a minimum size for which the gained energy « p r8. compensates the 

surface energy « - r^.^. There are two ways the bubbles may originate: 

by thermal excitations,or by barrier penetration. The nucleation rates are,

PT “ exp tv1] and “ exP G"S4l » where E3 is the free energy of the 

critical solution and the action of the solution in 4-dimensional Euclidean

space. rT peaks at T ^ JT. (Guth and Weinberg, 1980), whereas Tp is constant 

but small, barrier penetration being a weak effect, of course (Coleman,

1977). There are basically three alternatives to end the supercooling at Ten(j: 

1. By thermally nucleated bubbles, but then T , is not far below T , other- 

wise the few bubbles cannot catch up the rest of the exponentially 

expanding Universe (Sato, 1981).

2. By the tunneled bubbles filling the Universe.

3. The false vacuum becoming unstable.
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If the barrier is large the thermally nucleated bubbles will be too 

sparse, so we expect strong supercooling either terminated by 2 or 3.

But alternative 2 is full of problems, to name a few (for monopoles 

see § 6.3):

a) Strictly speaking the transition never ends, Tp is constant but

a bubble will cover only a finite region in co-moving coordinates 

(cf. Eqs. 18, 19), hence there always remains some false vacuum.

Guth (1981) also noted the bubbles true vacuum probably do not per 

colate.

b) Neglecting point a) the problem remains to thermalise (how?) the 

released heat, which is put in the kinetic energy of the bubble walls, 

of the largest bubbles, when there is only 1 second before Helium 

synthesis starts.

c) If the bubbles give rise to strong inhomogeneities it is not clear

whether or not we reheat to T of Eq. (20) below, which is important
K

for the baryon number creation (§ 6.2).

It thus appears that an instability of the false vacuum at Tj,is the

cleanest way to end the supercooling period. At Tj,the vacuum at every
4

space point shifts to the broken state. The "latent heat Pv ^ 0 re 

heats the Universe to

a[- 30

Nr,

1/4 ^ 0.4a
(20)

as follows from energy conservation with Nj and Nr  the number 

before and after reheating (cf. Einhorn and Sato, 1981).

After these generalities we must be more specific on wha -

occur at T < 1015 GeV. For G = SU(5) Daniel and Vayonakis (1981) and
'll



Guth and Weinberg (1981) calculated the phase diagrams. What transition

occurs depends on the coupling constants in the Lagrangian, but a not too 

destabili-zesstrong 1PT is typical. For certain parameters the false vacuum 

(region d of Guth and Weinberg, 1981; for Abelian Higgs 3e /16tt <

^ < e )• If the breaking is of the Coleman-Weinberg type (CW; see 

section 5) Daniel (1981) and Billoire and Tamvakis (1981) found a very 

large supercooling = 0(1 GeV) when at last the nucleation rate

Tq equals the expansion H. This potential for $ « T « O and with
3 “"3the adjoint scalars $ on the critical orbit <*> = <J> U+ diag (1,1,1> /2» /2)^

(arbitrary U) is to 1-loop (cf. Abbott,1981)

,T1 5 2 2.2 _.4 d> 1N B 4
Veff = 8 g T ^ + ^ (ln ~ + 2 0

a

B = 8 10-4 (21)

O 'V' 1015 GeV.

This potential has a barrier whose width shrinks for lower temperatures 

and thus there always will be a Ten(j when the nucleation rate ^q(Tend^ 

is large enough. This need not be the case for certain barriers 

originating from quantum corrections, which are more or less constant 

as is the expansion rate of the false Universe H % (Eq. 18).

Recently Sher (1981) noted the importance of the running SU(5) 

coupling constant g(T), cf. Eq. (10), because we are dealing with ex 

ponentials. A more detailed investigation (Tamvakis and Vayonakis, 1981)

2
shows a destabilization by a non-perturbative <F^> term, calculated 

for instantons, which will become important at T = 0 , with

AgU(5) 'v 2 106 GeV, cf.Eq. (10).

Another reason for the premature ending of the supercooling might 

lie in the small gravitational effects (cf. the chiral effects noted 

by Witten (1981a) in the supercooling at the Weinberg-Salam scale,
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inducing a transition at 0(100 MeV); but see our footnote 2). Abbott (1981;

2see also Fujii, 1981) considered some small coupling terms + R4> added to the

B 4potential of Eq. (21). For curvature determined by p^, R = -32t t G(-2<J ) 

we have two completely different histories: -) the false vacuum de 

stabilizes at 0(10^ GeV) , or +) the barrier always is too large 

(cf. remark above) and the transition is never completed. Hut and Klinkhamer 

(1981b) noted another possible gravitational effect: for T 0(10 GeV) 

the wavelengths associated with the barrier are larger than the event 

horizon = (3/8tt)*^“ p probably invalidating the usual flat

space-time calculations and global gravitational effects in analogy 

with the Hawking radiation might induce a shift to the vacuum.

These three different arguments thus indicate that the supercooling 

for a CW SU(5) potential is ended at much higher temperatures and more 

smoothly than first thought.

In this paragraph we will see whether or not the simple ideas on 

baryon number creation of section 4 survive the complications from 

phase transitions (Hut and Klinkhamer, 1980a). For this purpose we 

will use the simple model of Kolb and Wolfram (1980a). If the vacuum 

is in the disordered state (<<P> = 0) the theory is symmetric and massless 

so clearly no net B can be generated, the out—of—equilibrium driving 

mechanism is lacking. For a second order PT this occurs at T > T£.

At T ^ Tc the theory is broken and the baryon number producing processes 

start their build up. We thus solve the equations (17) starting from 

thermal equilibrium at x q = ^ 8a/Tc = °0) and find» not sur"

prisingly, the same n /s as the standard calculations with x q - 0.
D

* .
see fig. 2-4 in Chapter 3 of this thesis.
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Larger differences might be expected for first order PTs. The 

baryon number will be generated after reheating, which must be quite 

smooth, or in other words the thermalisation must be effective, if we 

want to preserve the homogeneity of the Universe. This will be the 

case if the vacuum becomes unstable at Tj (10^ - lo' GeV?) , because whe 

the barrier vanishes the bubbles from the last flash of nucleation 

probably will have sizes and thermalisation times 0(o )• ®uC before, 

in the supercooling period,we have an important bonus: the washing 

out of any truly primordial n_/s will be much stronger than in the 

standard scenario (cf. Kolb and Wolfram, 1980a). For example the B 

changing collisions will have 2 ^ (Ellis et al., 1980d) so

that the damping factor is

T1
expQ- 1^/x / <va2-2> dT H ^ exp|_7 a2 N Tpl/Tj ] ,

TP1

which is < 10'*° for T. < 10~2 T . This exponential damping follows 
'h 1 'U c

from the rate equation dY_/dt 'v -2Y_ny <v0o 0> (cf. the third term onD D L~L
the RHS of Eq. 17b, where we had inserted the Fermi approximation valid 

for T << M^; see § 4 of Kolb and Wolfram, 1980a).

With the possibly huge damping we must now consider the n^/s 

generated after smooth reheating. Again this is simply starting from 

equilibrium 0*a (x q) = Yb (x q) = 0) at Xq ~ ~ ga/0.4a ~ 0(1),

which gives the [iig/s]] final e£^ua^ to t^ie standard value (this holds 

generally for x q <_ 5) . Also the numerical solutions show that the ti^/s 

destroying processes are still effective enough at x x q to wash out 

a possible baryon number density (Yg(xQ) ^ 0) from the thermalisation 

of the bubbles themselves. But this contribution to frB/s]finai came 

from the gauge bosons, whereas lighter Higgs bosons are present. These
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will be the most important for the n^/s created, since 1) their 

CP violating diagrams are of lower order than for gauge bosons, 

typically (remember from Eq. (17b) Yg ^ roughly a e) , and 2) 

the dilution will be less (cf. Kolb and Wolfram, 1980a, fig. 4).

We thus conclude that the generated baryon number density after 

a second order PT or after the smooth reheating in a first order PT 

probably will be the same as in the usual calculations neglecting PTs. 

Finally some remarks (Hut and Klinkhamer, 1980a, Appendix B) on the 

role of lPTs for galaxy formation, where the major question is the 

origin of the small density perturbations, which grow under self 

gravity into the observed bound systems, galaxies up to clusters.

Strong lPTs provide two interesting ingredients: 1) after reheating

1 /2the particle horizon has been stretched by a factor ^ N Tc/Tj

relative to the standard horizon 'u 2 t , as follows easily from Eqs.
c

(18) and (19), and 2) nucleation probably will lead to density per 

turbations. But point 2) includes all unsolved problems mentioned 

earlier and whereas the wanted density perturbations on galaxy 

scales perhaps could be made, this arises not at all naturally nor is 

it clear how to avoid unwanted aspects of the perturbation spectrum, 

such as unobserved strong metric perturbations (primordial black holes). 

Probably the density perturbations already exist before the baryon 

number creation epoch. This would then result in density perturbations

of the adiabatic type (6pb/Pb = 6py/PY> or nB/s constant): in each 

region of size du in the huge galaxy-sized density enhancement 

(of very small amplitude) the same ng/s is made at T ^ Mx’ depending 

on physical parameters only (e, M^., ct etc.), albeit at different eig

times. The only reasonable way to have isothermal perturbations



(6p^ = 0) later, appears to be from large-scale shear at T 

(Bond et al., 1981), but here we are already deviating from the 

charming simplicity of the standard model (section 2).

6.3

Another aspect of the breaking of gauge symmetries in the early

Universe is the possible creation of monopoles, which depends on the

"directions" of the breaking. From topological arguments monopoles

are expected to occur if the breaking has a stage with G -*■

where t t 2(G/H.) £ {0}, which always is the case if G is simply connected

and Hj contains a U(l) factor, because then t t 2(G/H^) = it ^HO which is

certainly non-trivial (remember: t t (H) is the n*”^1 homotopy group with
n

as elements the different equivalence classes of the mapping n-sphere

in H). Hence in the unification scheme monopoles are to be expected.

The actual ' t Hooft-Polyakov solution for G = SU(2) and a triplet

Higgs <|>a (reviews: Actor, 1979, Prasad, 1980) illustrates this.

We are looking for classical and stationary solutions with finite

energy, hence (|> at infinity must be on the orbit of minima of the 

12 2 1 Apotential V = - yp <J> + ^ A <J> . The exact ' t Hooft-Polyakov solution,

which asymptotically goes as <j>a r Qp A~1/2 + (const/g r)

exp(- /2 m r)J 'v r& p A 2, cannot be deformed continuously to a fixed 

direction in group space n , and thus is not in equivalence class n=0 

but in n=l (remember: SU(2) = S2). More detailed analysis shows that

this solution is a magnetic monopole with magnetic charge g = n/e 

2 -1/2 2and mass M=C (4t t /g ) g p A , with a constant C(A/g ) = 0(1). Recently 

great progress has been made with multimonopole solutions (Ward, 1981; 

Prasad, 1981, Prasad and Rossi, 1981; Jaffe and Taubes, 1980). For larger
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G the analysis can be extended.

We must thus seriously consider the creation of monopoles 

(non-trivial distribution of "directions" of 4> ) during phase 

transitions ("magnitudes") at unification temperatures. Alas a 

correct calculation taking care of gauge subtleties has not even 

been attempted, but the creation of vortices in superconduction 

experiments is indicative of the reality of the effect. In the 

following we assume the monopoles are not confined (cf. the 

suggestion of Linde, 1980). Naively one expects the (f> directions 

to be uncorrelated over separations > d^, which indicates 0(1) ra 

pole per volume element O(d^) (cf. Kibble, 1976; Einhorn, 1980) 

Because of the smallness of d^, the large monopole mass 0(1 

and the slow annihilation their energy density would completely 

destroy the standard Helium synthesis result (Presskill, 

was soon realised (Guth and Tye, 1980; Einhorn et al•, 19 )

stretching of dR in a 1PT might be relevant. If the supercooling 

period ends by a shift at T]t the directions in the many small bubb 

being uncorrelated, some rough arguments on the correla 

seem to require T] = 0(10® GeV) (Einhorn and Sato, 1981),

• j • c c i» Tf there is anot too far from the values discussed in 9 •

2 PT, or in other words %ggs * Mgauge> P**»*P« ther-l fluctuations 

reduce the monopole density enough (Bais and Rud ,



Conclus:

Theories on the unification of the separate gauge theories 

for the three types of elementary particle interactions (electromag 

weak and strong) have direct relevance for the earliest phases of 

Universe. The history of the Universe is described by the Hot Big Bang 

model, which gives the epoch of important unified interactions at 

times t 10 ^ s and temperatures and typical energies of ^10 G 

^ 10^ K. This theoretical hubris is rewarded with an explanation of 

the presently observed matter-antimatter asymmetry. We have reviewed 

in some detail the finite temperature effects on the field theory,

I ^namely the phase transitions (PTs) at temperatures of order 10 GeV

o
(and 10 GeV) between the different gauge symmetries. These PTs may 

have dramatic effects on the history of the expansion of the Universe, 

but we showed that the final "standard" results on the matter-anti 

matter asymmetry are hardly effected. Also we briefly discussed the 

expected creation of monopoles at these transitions. Naive estimates 

indicate much too high monopole densities, invalidating the synthesis 

of Helium with abundance % 25%, as observed. Perhaps strong supercooling 

in first order PTs reduces the monopole density. We emphasized that 

in order to preserve the baryon number creation and Helium synthesis 

phase transitions are not allowed to create strong inhomogeneities.

This might be a problem for first order transitions and the best way 

to end a 1 PT appears to be a destabilisation of the false vacuum

at temperatures of order lO1^ - 10^ GeV, for which there are indications 

that this indeed occurs.
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This is the appropriate place to acknowledge discussions with 
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Notes

1 Ideas that the value of Eq. (11) might hold locally from imperfect 

(statistical) annihilation do not seem to work and also give typically

_ 18
10 (cf. Steigraan, 1976).

2If the Weinberg-Salam breaking is radiative, Witten (1981a) has 

calculated an entropy generation of 103 - 10^ from the 1 PT, which 

appears not to be allowed by the 66 arguments mentioned in chapter 4. 

More than one Higgs doublet, as seems required for AB, might reduce this 

supercooling (Flores and Sher, 1981).

For completeness we remark that all our discussion of phase transitions 

might be completely changed if recent speculations on a global super- 

symmetry hold true. The major problem of GUTs is a natural explanation 

of the hierarchy M^/My 'v 10~13 , or why do some scalars remain mass 

less in the breaking at unification energies My? The heuristic scenario 

runs as follows (Witten, 1981b):
The gauge symmetry is broken to SU(3) * SU(2) x U(l) at energies My 

at the tree level, without breaking a global supersymmetry (GSS); 

the GSS remains unbroken up to all finite orders in perturbation theory, 

at low energies the GSS (and SU(2) x U(l)) is broken by a non-perturbative

mechanism. The last step is still uncertain, 

analogies in lower dimensions, and, of course 

finite temperature?

though there are some 

, how to reconcile GSS with
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CHAPTER 3

b a r y o n  NUMBER c r e a t io n  a n d  ph a s e t r a n s it io n s in  t h e e a r l y  u n iv e r s e ,
figures 2-5

Fig. 2. The generation of the baryon number to photon ratio 
fi»(*;-v0), where ,v= Mx/T and Mx the mass of the 5-violating 
boson, is calculated for a simple model, with CP violation 
parameter c. Earlier calculations (Kolb and Wolfram, 1980b) use 
symmetric starting conditions at a o  = 0. Finite temperature effects 
lead to phase transitions (PT), which give the boson a mass Mx only 
for T<TC~~Mx/g. The Y„(x;x0) evolution is calculated for 
realistic starting values after a second order PT (.v0 ~g ~i) or after 
the smooth reheating ending the period of supercooling of a first 
order PT (,v0 — 1)- The final Y„ values are given in Fig. 3

Fig. 3. Final baryon-number to photon ratio K«(co,.v0) for 
realistic starting conditions (.v0~l) as compared to .vo = 0: 
/= KH(co,.Y0)/y„(oo,0). In this case Tfl(co,0)= 1.43 1(T8



Fig. 4. The generation of the final baryon-antibaryon asymmetry 
for a first order phase transition, if the thermalisation of the small 
bubbles of true vacuum at the end of the supercooling epoch itself 
gives a net baryon number Fjjubblcs(.v0 = 2)= ± 10“7. For com 
parison the curves for YB(.v0 = 0) = 0 (dotted) and >'« (-v0 = 2) = 0 
(Fig. 2) are given
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Fig. 5. Yb(x \x q=0) for different branching ratios of X, X decays 
(see Appendix A). For (»/+ij)/2=l there is a nearly total sup 
pression of the B damping processes



CHAPTER 4

GLOBAL SPACE-TIME EFFECTS ON FIRST-ORDER PHASE TRANSITIONS 
FROM GRAND UNIFICATION
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We argue that the supercooling of a first-order phase transition proceeds only to T~ 1011 GcV (calculated for a 
Coleman-Weinberg potential). Then the barrier width between real and false vacuum as calculated in flat space—time be 
comes comparable to the scale set by the event horizon, and mode mixing might induce the transition.

We consider phase transitions at grand unification 
energies, which might have taken place in the early 
history of the universe. First we discuss the local 
physics and its implications on the expansion of the 
universe and secondly we turn to possible effects of 
the global space-time structure.

Gauge theories for the unification of the strong, 
electromagnetic and weak interactions have at least 
two transitions towards a larger symmetry at high 
energies:

ClTu~10»GeV -SU(3)XSU(2)XU(1) 

T>ws~10*GeV ’^)XU(').

where the group G describes the unified interaction 
with a single coupling constant g and with quarks and 
leptons in common representations (for reviews see 
refs. [1,2]). In order to apply these ideas to the early 
universe [3], finite-temperature field theory is used 
and one finds symmetry restoration for high enough 
temperatures, resembling phase transitions [4]. Spon 
taneous breaking of symmetries is due to non-zero 
expectation valuesof the Higgs scalars </> introduced

*’ For T = 0 vacuum expectation values, for T * 0 relative 
to a Gibbs ensemble of temperature T.

in the theory. This mechanism preserves renormalisa- 
tion while providing masses to some gauge bosons and 
fermions [5]. In a first-order phase transition (1 PT) 
the shift towards non-zero <</?> is discontinuous, in 
contrast to the smooth change for a second-order 
phase transition. Which type of transition occurs de 
pends on the parameters in the effective potential of 
tiie scalars V(yc, T) [6]. To have breaking at very 
different energies some very special fine-tuning in V 
is required [7], which may hint [2] to symmetry 
breaking by radiative terms only [6]. This in turn 
might explain the hierarchy of hierarchies Afws/A/u 
< A/jj/A/pj 1, if the quartic coupling constants (X) 
are of order £2 at the Planck energy = G 
= 1.2 X 1019 GeV (fi=c = k = 1) [8]. Perhaps super- 
unification [9] leads to radiatively broken G = SU(5). 
The important point here is that Coleman-Weinberg 
(CW) breaking leads to strongly first-order phase 
transitions [10,11]. In the following we will use this 
potential for numerical estimates.

We now consider the scenario for a 1 PT in the 
cooling universe. Initially the vacuum is symmetric 
because of a positive temperature-dependent mass2 
term in the effective potential V [12]. For tempera 
tures T<TC [where for the two minima V(<pc 
= 0, Tc) = F(v jc o, :rc)] the transition to the ener 
getically favourable broken state is blocked and the
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universe cools far below the critical temperature Tc 
10 ^end when the transition takes place and the la 
tent heat reheats the universe to fTc, where /= 0(1) 
follows from entropy conservation and depends on 
the available particle states before and after reheating 
[13]. For CW breaking of SU(5) the potential is 
(«p < T < o)

V=ig2 T2 (ln^/o2 - £) + 5 Bo4 , (1)

with «pc a classical scalar field, <^>7-=q  = o and numeri 
cal constant B = 8 X 10~4 [11,14]. The zero level 
is such that V(o, T - 0) = 0, as required by the pre 
sently observed zero cosmological constant [15]. The 
part of the universe still in the symmetric state has a 
constant vacuum energy density pv ~ T* which for 
T< Tc = 0.3 o [11] leads to exponential expansion 
a « exp(f/T) as follows from the Friedmann equation
[3]:
(iw2=(87T/3M5,Xp, + fo’'Wr4), (2)

where a(t) is the scale factor and N the effective num 
ber of degrees of freedom of relativistic particles. The 
transition to the broken vacuum takes place through 
nucleation with a minimal bubble radius; either 
through thermal excitation or through tunneling [16].

How precisely the transition to the broken state 
for the whole universe takes place is of crucial impor 
tance and in general we can distinguish three cases:

(1) Thermal nucleation rates have a maximum just 
below Tc and either the bubble density gets high 
enough and they quickly fill the universe or else the 
bubbles cannot catch up with the continuously accel 
erated expansion of the rest of the universe [17,18].

(2) Nucleation through tunneling has a constant 
rate per space volume. This leads to a large supercool 
ing, which originally was the motivation to consider
1 PT’s in order to prevent high monopole densities [19] 
*2. The nucleation rate for the CW SU(5) model 
equals the expansion rate only at T- 0(1 GeV) and 
the transition is directly to SU(3) X SU(2) X U(l), 
not through an intermediate SU(4) X U(l) [11]. We 
note that the barrier vanishes here at T= 0, which 
need not be general (e.g. if X <g4 in the abelian 
Higgs model [4]).

*7 The suppression mechanism of ref. [20] requires large Higgs 
masses mu > m\, which is not the case for CW breaking.

(3) Nucleation will be immediate if at Tj the meta 
stable symmetric vacuum becomes unstable (abelian 
Higgs model: 3g*/l6n2 < X <g4; in SU(5) region d 
of ref. [18]). The false vacuum shifts to the broken 
state while releasing its latent heat. If there typically 
is one monopole in a horizon volume their densities 
would be tolerable for Tj < 101" GeV, although 

correlations starting to form after Tj suggest the 
creation of more monopoles, and require T\ < I08 

GeV [13,21].In all cases it is important to reheat locally at least to 
the Higgs mass so that a new baryon asymmetry can 
be created, since previously developed asymmetries 

are strongly diluted by the supercooling.
In first-order phase transitions the energy density 

of the metastable vacuum drives the expansion of the 

universe. However, we must also try to incorporate 
effects of the global structure of this accelerated ex 
pansion. In particular we will point out where the 
flat-space equilibrium theory used so far breaks down. 
Without a consistent theory of quantum gravity and 

one of non-equilibrium corrections to finite-temper 
ature particle interactions, we can only attempt to 
give a qualitative picture, as suggested by a scmiclas- 
sical approximation (see below) analogous to the 

Hawking effect43.
The major difference between cosmology and flat 

space-time (laboratory) physics is the existence of 

horizons:(1) A particle horizon limits the region of possible 

causal contact with a given observer before a given 
time, and thus includes all comoving particles which 

have intersected the observers past liglttcone.
(2) An event horizon limits the region which will 

in future have the possibility for contact with a geo 
detic observer and thus is the boundary of the past 

lightcone of the observer for tIn the standard Big Bang model there are only particle 

horizons. With relativistic particles, adiabatic expan 
sion we have from (2) and hence
the maximum proper distance travelled by a light 

signal up to time / is [3]
t

dH = °(t) J dt'/a(t') = 2/ (a «t1/2) , (3 a)

0 ~re,/T (j“e'/T), (3b)

We thank Eardly and Press for reminding us of the Hawking 

radiation in de Sitter space.
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The exponential expansion during a 1 PT introduces 
also event horizons: two observers initially separated 
by a distance significantly greater than the exponen 
tial timescaler ~/UPlp“*'2 will never be able to 
communicate, because the intermediate region expands 
with a constant acceleration so that light signals never 
catch up. The distance to the event horizon is [22]

/)„ = (3/A)l/2 = (3/8t t )1/2 yUpi Pv-l/2 (4)

Here lies the origin of all evil: the fiat space-time 
approximation is expected to be valid for distances 
much smaller than that of the event horizon, for 
which a locally inertial reference frame is a good ap 
proximation. But for length scales comparable to or 
larger than the event horizon distance DH. or, equiv 
alently, for energies < 1 the fiat space-time ap 

proximation clearly breaks down.
How does this affect our previous discussion of 

the 1 PT? We expect changes to be small if we discuss 

effects at values of the classical field ipc (or much 
larger than Dj^1. But the description of the stability 

or calculations of tunneling rates of the symmetric 
vacuum will fail for small «pc. An (educated) guess of 

the temperature T* below which the fiat space—time 
approximation breaks down is made by equating the 
barrier width Aipc and T’c/Tpi- F°r the CW po 

tential we find roughly

(g2T2l2B)WgolT) io yr.
where we replaced the second term in the RHS of (1) 
by -2fl<p4 ln(go/7) [14] and hence the fiat space- 
time treatment of the barrier will not be valid for

1011 GeV. (5)r<(rc/rP1)io-15->
Because confinement of the Higgs expectation value 
in the metastable symmetric state requires local effects 
on scales which are globally distorted by the back 

ground metric for T< T*, we expect that the universe 
cools to ~T* and then shifts to the broken state, 
thereby ending the supercooling prematurely. Although 

we cannot give a rigorous proof for our assertion, we 
will now discuss several analogies in its favour.

Since T* ^ Tpj one may use a semi-classical ap 
proach where gravity is treated classically through gener 
al relativity (GR) and the particles as quantum fields. 
Note the contrast between the local approach in GR 
and the global treatment for the particle fields. In par 
ticular the definition of the Hilbert space of particle

states requires a priori causality relations, whereas 
only the solution of GR equations provides lime* or 
space-like separations between events (cl, rcl, (22 j). 
Unambiguous particle states can only he defined for 

space—time backgrounds somehow related to 
Minkowski space [24], to which Robertson -Walker 
and de Sitter spaces arc linked by a conformal trans 
formation. The problem is to treat the backrcaetion 
of the particles on the metric and as a first guess one 
uses a somehow regulated energy momentum tensor 
of the particle fields as a classical source term in the 

Einstein equations.
A major result of the semi-classical approach is the 

prediction of thermal radiation from an isolated black 

hole with temperature [25]:

7 h  = (S~) * A/pi {Muu, (6)

which can be derived in several ways:
(1) A mapping of a complete set of particle states 

from the asymptotic past into one of the asymptotic 
future shows that an incoming vacuum state leads to 
the emergence of a thermal particle spectrum [25],

(2) Thermodynamic considerations suggest (6), up 
to a factor of order unity, because information on the 

quantum states is lost by the existence of an event 
horizon. The entropy of the black hole can be esti 
mated, from which = (05/3A/)-1 follows [26].

(3) Path integrals on a complexified SchwarzschUd 
metric give a propagator of the form of a thermal 
Green's function with temperature 7"H [27].

These derivations are consistent, because the asymp 
totic region of space-time is fiat, where particle 
states can be defined unambiguously. AH distant ob 
servers agree on the Hawking radiation (6), but an in 

falling observer near the horizon will hardly see anylOliUlg ------ -----
radiation [28]. This observer dependency always oc 
curs locally in globally curved space-times for wave 
lengths of the order of the curvature radius (cf. 

Schwarzschild radius 2GM ~ Tf[*). Even in a 
Minkowski vacuum a constantly accelerated observer 
will detect thermal radiation, because his detector

positive frequencies with respect to his own
- .i-------observer diene

,'cele-

‘ llCljUVliviva ............... ‘
propot time [29]. For the accelerated observer the

L-" J- -also is an event horizon. Both the inertial and aecel 
rated observer agree that the detector will be excited, 
but they differ on the interpretation, namely brents* 

strahlung and absorption, respectively.
Also in our cosmological context similar phenomena



(7)

occur. In a Friedmann universe the particles determine 
a preferred restframe. If the vacuum energy density, 
which is locally Lorentz invariant, dominates over 
that of the particles, accelerated expansion takes 
place (2), and the universe asymptotically approaches 
de Sitter space, where geodetic observers are equiva 
lent. Gibbons and Hawking [22] showed with the 
same path-integral technique as for the black-hole case
that every geodetic detector will see radiation with a 
temperature

rGH = (12)-M2»_ia 1'2 -Afp/pJ'2 ~ r|/rP1. (7

Two differences with tire black hole case are in order
(1) absorption of the thermal particles does not de 
stabilize the event horizon [22], in contrast to the 
increasing rate of black-hole evaporation ; (2) no ob 
server independent definition of this radiation is pos 
sible *4; indeed if this could be done, local Lorentz 
invariance would give an infinite total energy density 
from the superposition of the finite contributions (7) 
of all equivalent observers.

To make the link with our assertion that the false 
vacuum indeed decays at a temperature T* (5), we 
now give a general physical picture for the above re 
sults. Parker [28] notes that whenever a physical 
system is externally disturbed on a time-scale r, modes 
with frequencies to < cocr ~ r_1 are excited. Both 
in the black-hole and the de Sitter case, the particle 
production results from a mixing of positive and neg 
ative frequencies of the particle fields, caused by the 
time dependence or curvature of the background 
metric. Modes are excited with energies

w OJ, '(GW)

'Al/2
(Schwarzschild) , (8; 

(de Sitter), (8b
which agrees with the exponential drop in a Planck 
spectrum for to > T, with T given by (6) or (7). 
Parker also shows that relations (8) imply particle 
creation near enough to the event horizons so that 
the Heisenberg uncertainty for detection would be 
large enough to compensate for the negative energy 
of one of the particles, thus providing an energy re 

servoir for detection of Hawking radiation. As men 
tioned above, the backreaction on the event horizon 
is different in the black-hole and the de Sitter case.

Similarly, mode mixing will occur for energies giv 
en by (8b) during the exponential expansion in a 1 PT 
in the early universe. As soon as the potential barrier 
around the false vacuum becomes narrower than this 
range, decay is no longer prohibited rigorously and 
we expect the transition to occur.

Finally we compare our discussion with a recent 
article by Shore [30], who considers CW-breaking 
with a given strong curvature in de Sitter space *s.
He finds symmetry restoration for a curvature R with 
a Hawking temperature (7) larger titan the Higgs or 

gauge boson mass for conformally (iRyP-) or mini 
mally (no.flip2) coupled scalars, respectively. But in 
a 1 PT the curvature due to the false vacuum is less 
than this critical value by a factor ~ T*/Tp\. Hence 
this curvature will not affect the existence of an asym 
metric true vacuum. In our view, the important effect 
of space-time curvature is not a qualitative change 
in the effective potential, such as the disappearance 
of a minimum, but the irrelevance of a stabilizing 
narrow barrier around the false vacuum when mode 
mixing occurs with respect to a fiat space-time ap 
proximation.

Some implications of our suggestion of a globally 
induced transition to the broken vacuum at T* ~ I011 
GeV; (1) perhaps low enough monopole densities 
[13] even if there are no other suppression mecha 

nisms [31]; (2) no unnatural (<MWS ~ 102 GeV) 
supercooling; (3) a smooth transition and reheating, 
thereby saving baryon number and helium synthesis. 
All’s well that ends well.

5 Abbot (14) considers barrier penetration for an ad hoc 
R<P2 term in the flat-space CW potential. But for the nu 
merical value of the curvature R determined by Pv his 
temperature-independent barrier is of the order of our 
uncertainty range Z>Tl.H
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CHAPTER 5

SUPERSYMMETRIC UNIFICATION AND COSMOLOGY 

F.R. KLINKHAMER
Leiden Observatory, 2300 RA Leiden, The Netherlands

Received 13 October 1981

We discuss the cosmological implications of a model of supersymmetric unification by Witten. Because the unification 
phase transition occurs with a low critical temperature, we estimate the final baryon number to be negligible.

Recently global supersymmetry has been evoked to 
explain the hierarchy problem of unification theories: 
why is the breaking scale of unification A/y ~ 1015 
GeV so much larger than that of ordinary physics, say 
the breaking of the Weinberg-Salam electrowcak inter 
actions at A/Ws ~ 300 GeV [ 1J? In this letter we will 
consider a specific model of Witten [2J and its role in 
the early universe, where the expected low critical tem 
perature might have important implications for mono 
poles and the creation of the presently observed matter- 
antimatter asymmetry [3]. In our units h = c = k% = 1.

Ref. [4] gives the details of having an additional;V= 1 
global supersymmetry (GSS), which survives the break 
ing of the unified gauge group at energy scale A/y, but 
is to be broken at low energies M = 0 (103 GeV) by 
weak non-perturbative effects, triggering the Weinberg- 
Salam breaking. The important difference with respect 
to the breaking of internal symmetries is that GSS is 
broken if and only if the minimum of the (tree) poten 
tial is unequal to, i.e. larger than, zero. A difficulty with 
these models is that the SU(5) partners of the normal 
Higgs doublet have masses %M, being the supersymme 
try partners of the down-like quarks, and would mediate 
a much too fast proton decay.

Another approach is to break the GSS explicitly at 
low energies M [2], The potential for the required three 
complex scalar fields A, X and Y is

V=X2\A2-M2\2 +g2\A\2 + \2XAX + gY\2 , (1)

which clearly breaks supersymmetry (F> 0). For gl 
XM > 1 the minimum is at A - 0, but \X\ can be arbi 
trarily large (fig. 1). The GSS breaking is set by M

IXI = A/y (heavy line). The energy scale A/y, associated with 
the breaking of the unified gauge symmetry, can be much larger 
than the scale M of the explicit supersymmetry breaking.

(V ~ X2M4; mass splittings), but an arbitrary large 
energy scale may arise from (OIATIO), which up to now 
is undetermined. This is illustrated by the two masses 
/«! 2 of the A field: m\ 2 = 4X2|<0|2'|0)|2 + 2g2 
± 2X2AP.

As with the Coleman-Weinberg type of breaking
[5] one-loop corrections determine the value of 
(0|Af|0). Including gauge fields (coupling constant c) 
the valley of the potential (fig. 1) is for large \X\
VA =o = aX2M4[\ + (bX2 - ce2) ln(\X\2/n2)] , (2)

with some positive constants a, b, c and n the mass 
scale from renormalization. If (bX2 - ce2) < 0 a min 
imum might be expected for large \X\ values [perhaps 
at \X\ ~A/ exp(l/e2)] and a hierarchy of scales has 
arisen. In ref. [2] a more realistic model with SU(5)
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broken at the large energy scale <0|AT|0> is discussed, 
which also has large masses for the coloured Higgs 
triplet saving the proton from rapid decay.

To do cosmology, temperature effects must be con 
sidered. If the usual finite-temperature field theory ap 
plies it is evident that supersymmetry is broken: the 
ground state is a statistical ensemble, where fermions 
and bosons are treated differently, and is not invariant 
under GSS, which results in differences of fermion and 
boson Green's functions [6]. Also the path integral 
formalism is illustrative: the Lagrange density is in 

variant under GSS up to a total divergence, which by 
the finite integration interval of imaginary time [0,
1 IT] gives a surface contribution. Finally, we note 
that for explicitly broken GSS the Goldstone fermion 
remains massless up to one-loop, even without protec 
tion from chirality [6]. Hence, finite temperatures will 
only enhance the breaking of supersymmetry, contrary 
to the typical case of internal symmetries, to which we 
will turn now.

For high temperature loops in a renormalizable the 
ory contribute to the effective potential terms of the 
form 74 and /T2<£2, with/depending on the coupling 
constants. The first terms just are the contribution of 
the thermal fluctuations to the energy density, while 
the second arise from the quadratically divergent self 
energy diagrams of the scalars 0. Normally these will 
lead to symmetry restoration above a critical tempera 

ture Tc [7], which can be estimated as follows. The 
minimum of a typical potential K(0) = -m202 + /<£4 
lies at <j>2 = m2/2/ with a value -m4/4/ ~ -/04 and will 

disappear at temperatures of order Tc when m4// 
~/0272, with/of order 1. Hence Tc is of the order of 
the vacuum expectation value 0. The same conclusion 

does not hold for the potential of eq. (2), where the 
vacuum energy density X2Af4 is much less than Afy:

rc~X/-1/2(Af/A/u)Af. (3)

Although the “derivation” of eq. (3) is not very refined, 
it is clear that Tc will depend on M, but perhaps the 
numerical factor will be less small because of some non- 
perturbative effect. This means that the universe cools 
with the unified symmetry to a very low temperature 

Tc, or even lower, since one might expect a first-order 
phase transition. More or less simultaneously the Wein- 
berg-Salam breaking will take place.

What are the implications for the creation of mono 
poles at the phase transition? Although it is not clear

whether one may neglect gravity, the naive monopole 
mass is so large (A/mon ~ a" •A/y £ Afpj) that they 
might collapse immediately into black holes [8]. The 
standard estimate of the evaporation time is very small, 
0(A/p/), but the black holes cannot decay because their 
magnetic charge is conserved and there are no lighter 
monopoles. One might hope that because the transition 
occurs relatively late [eq. (3)] the correlation length 
for the Higgs fields can be large enough to have negli 
gible monopole (black hole) density (cf. section IV of 
ref. [9]). As for the standard unification the mono 
pole problem remains unsolved.

Let us neglect the usual complications of the tran 
sition and reheating to rR [10] and consider the crea 
tion of a baryon number density at temperature rR 
~A/ after a smooth transition and instantaneous ther- 
malisation of the latent heat pvac — A/4. In the stan 
dard unification theories one worries not too much 
about the role of phase transitions for the creation of 
the observed baryon number, since Tc ~~ A/y is of the 
same order as the masses of the relevant heavy bosons X. 
But for Witten's model [2] the situation changes dras 
tically n. During the symmetry period no baryon 

number is created, the X being massless, and any truly 
primordial baryon number will be washed out com 
pletely [11], Before the transition there are roughly 

as many X as photons, /ix ~ r3.
The heavy bosons acquire instantaneously, by as 

sumption, a massA/x ~A/y at temperatures rR. They 
decay with a small asymmetry, not being replenished 
by inverse decays, and the net baryon number density 

created is proportional to;ix(rR) (cf. ref. [3]). The 
crucial question is if nx(TR) still is of order or is 
reduced to (Afx7R)3/-exp(- A/x//R)? Some estimates 
of the expansion time scale of the universe, and of the 
decay and annihilation time scales of the heavy bosons 

X are, at temperature TR:

t d  ~orlN~lMxl >

Tann («<0>)"» ~ a-2(A/x/rR)3 A/x 1 , (4)

41 The condition to create the maximal baryon asymmetry by 
the delayed decay of the X [rD ~ t at TD <A/X. cf. cq. (4)1 
isA/x > Arl/2 ayA/p, [3|. Including the supersymmetric 
partners of the observed particles one estimates A/y ~ 1018 
GeV and ay ~ 1/30 [8 J. Contrary to the case for the stan 
dard unification heavy gauge bosons now fulfill the condition.
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withN the total effective number of states, ;V = 0(100), 
and A/pj = C-1/2 — \q \9 GeV. From the hierarchy 
^ 1 ^ Tann one concludes that the X decay immediately 
and we have the baryon number to entropy ratio

/»B/^[0.14(yVx/yV)Afi](rc/rR)3 , (5)

where M is the average net baryon number from the 
decay of a X-X pair. If the estimate of cq. (3) contains 

some truth the created baryon number is negligible, 
because of the factor (TC/TR)3 ~ (Af/A/^)3. There arc 
two further arguments:

(1) It might be that in the mysterious thermalisation 

required at the transition also the X bosons attain their 
equilibrium densities with the miniscule Boltzmann 
factor (cf. ref. [1 l])t2.

(2) The energy densities before (b) and after (a) 
the transitions arc roughly: pb ~ pvac + pthcrm - A/4 
+ 74 ~A/4 and pa ~ 7R + AZx/ix a. Energy conserva 

tion 43 would give for /ix a the generous upper limit 
(A//A/X)(A//7R)3 7R. Hence a suppression factor of 
only (!)A//A/X compared to the standard baryon num 
ber result [square brackets in eq. (5)].

To summarize, the baryon number created after a 
phase transition at low critical temperature appears to 
be negligible. This might be a severe problem for Wit 
ten’s model of supersymmetric unification [2], and 
also the created monopole density is problematic.
But one should keep in mind the proviso of our foot 
note 3.

I thank K. Tamvakis for introducing me to the 
finite-temperature breaking of GSS. This work was 
started in the pleasant atmosphere of the Les Houches *

*2 This is also the reason why we gave an upper limit to«x(7R) 
of ~Tq and not 7"R. Wc expect the number of X bosons 
created in the thermalisation to be much less than that of 
massless particles.

43 In this letter we take the point of view that the Bose con 
densate gravitates normally and has its zero energy-level 
fixed by the observation that the present cosmological con 
stant is vanishingly small. But we keep in mind, especially 
since we introduce supersymmetry and because the unifica 
tion scale will not be far below Afpj, that the gravitational 
aspects of symmetry breaking might be radically different.

Summerschool “Gauge Theories in High Energy Phys 
ics” and participation was made possible by a grant of 
the Netherlands Organization for the Advancement of 
Pure Research (ZWO). F.A. Bais’ comments on the 

manuscript were appreciated.

Note added. Ginsparg [12] also has considered the 
phase transition of Witten’s model. Our use of the 
high-temperature approximation is not correct and 

Tc is just somewhat below M [not by the factor Af/A/^i 
of eq. (3)]. Hence the reduction factor (7C/7R)3 
~ (7C/A/)3 of eq. (5) may be appreciable, but not as 
small as (Af/A/^3. The further two arguments for 

reduced baryon number remain.
Ellis et al. [13] discuss the low-energy predictions 

from unification with GSS. Typically A/x is of order 
1016 GeV, in contrast to the value quoted from ref.
[8], and hence the relevant monopoles do not collapse 

gravitationally.
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CHAPTER 6

QUARK LIBERATION AT HIGH TEMPERATURE



Les retentis sanies couleurs 
Dont tu pars ernes tes toilettes 
Jettent dans l ’esprit des poites 
L'image d’un ballet de fleurs.

Baudelaire

1. Introduction

standard Big Bang model provides an excellent understanding of the ex 
panding Universe ^ ' Tt- ■; i •t implies that the early phase of the Universe was extreme- 

y dense. Knowledge from the field of high-energy physics thus is required

the matter content correctly. It is widely believed that at tempera- 

0(100 MeV) there is a gas of quarks and leptons with weak interactions, 

here are some heuristic arguments 1) Hadrons may be viewed as bags 

P bative vacuum, where quarks move freely, immersed in the true non-per- 

vacuum, which has a lower energy density by some constant B(T=0) and in 

quarks ProPa8ate. One finds an energetically favoured bag size (y 1 

arly ^^ at ^igh temperatures the bags will touch and the quarks can 

P g e over large distances. For this there are two reasons, a) Thermal fluc- 

Create many bags, and b) At high temperatures certain non-perturb- 

igurations, which at T=0 contribute to the lowering of the true vacuum 
energy density, are squeezed out(2), so that the bag radii « B(T)-,/4 increase.

2) Quantum Chromodynamics (QCD) is the SU(3) gauge theory with quarks in the 3 

on. The strong interaction between nucleons is thought to be a large 

remnant of QCD. There is a very special property of QCD which contrasts 
with electromagnetism: at higher energies, or smaller distances, the effective 

coupling gets weaker (asymptotic freedom). Clearly (?) at high temperatures, when 

a particles have energies * T, the interactions are weak and thus the strong 

orces needed for confinement are absent.

But this assumed hadron-quark transition is not at all trivial, because the 

physics of the confinement regime is so difficult. The situation differs from the 

ordinary’^ phase transitions resulting from the break down of the unified gauge 

symmetry , which are driven by (fundamental or composite) scalar particles. The 

-dimensional Schwinger model, where the symmetry is broken dynamically, warns 

us: it has no symmetry restoration at high temperature(4). Confinement, also, 

probably is a dynamical effect of the gauge fields only. It is not at all evident 

that quark liberation occurs.

Recently new techniques for calculations in the non-perturbative regime and 

better theoretical understanding of quark confinement have shed their light on 

the question of quark liberation. This we want to discuss in the present paper.
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Section 2 gives some background of quark confinement and finite temperature field 

ry* c^ear evidence from numerical calculations of gauge theories with 
tice regularization (§2.3) that quark liberation indeed occurs is presented 

ction 3. But this evidence is only of an experimental nature. Section 4 pre- 

nts our understanding of the physical mechanisms that operate the quark liber- 

tion. The conclusions are presented in section 5. We note that in some formulae 

will consider SU(N) generally instead of the SU(3) of QCD and that the numer- 

results presented are for SU(2). Needless to say that the covering of the
ferences is only indicative, especially in section 2. Natural units are used 

so that e c = k = 1.

2. Background

2*1* Quark confinement

We will consider pure QCD, where the quarks act only as classical sources 

and not as dynamical fields, such as in vacuum polarisation. There are some argu 

raents that confinement is only due to the gauge fields (called gluons in QCD). 

For example, the very fact that baryons and mesons consist of a fixed number of 

quarks and antiquarks. Also for a SU(N) , N 00, theory the importance of quark

fields relative to gauge fields goes to zero. In the vacuum polarization, for 

example, the contribution of a loop of fermions is negligible to that of gluons, 
because there are N^-l gauge fields and only N colours of quarks. For an intro 

duction of why we are sure anyway that hadrons are composed of quarks see ref.

(5).

The action, field strength and gauge fields are^

s = /d x L(x) = -/d4x 1 tr F FyV
2 tr t ’ (la)

Fyv(x) = 3p Av - 3V % - ig Oy ’ (lb)

Vx) = Ap(x) Ta • (lc)

with T the group generators, a=l..(N^-l) for SU(N), and g the coupling constant. 

The action is invariant under local gauge transformations with group element 

fl(x)

(Id)n A(j + ig 1 n n+ .
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For non abelian gauge theories the non-zero commutator in (lb) gives the self 

interaction of the gauge fields, in contrast to the electrically neutral photon, 

The interaction strength a = g2/4iT at energies2 Q2 is determined by da/d In Q 5

2 3B. The 8 function can only be calculated perturbatively: 8 = At t b a + 0(a ). 

For non-abelian SU(N) theories b is negative for not too many quark flavours n^ 

(6?), so that one finds asymptotic freedom

a(Q2) 1 2tt

1lN-2n ln(Q2/A2) (a « 1) (2)

results from the renormalization point and depends on the type of regularization 

used. The counter part of asymptotic freedom is called, prosaically, infrared 

slavery, which means that forces grow strong at large di stances. This gives an 

tive of quark confinement, and immediately shows the necessity of non-

perturbative techniques (a > 1). For an introduction see ref. (9), (10); but for 

a topological point of view of confinement see ref. (8).

(5)W^^ n0t e^ak°rate on the phenomenological string and bag models for ha- 

, because for our problem we need to consider the basic non-perturbative 

QCD. For this we will discuss the Wilson criterion for confinement in pure QCD. 

Experimentally quark confinement is defined by the statement that the physical 

states are colour neutral. To pull out a coloured constituent requires infinite

gy, so that the interquark potential is monotonically rising with separation. 
The Wilson loop is defined as(11)

W(C) - tr P exp[ig ^ dxPA (x)] , 
C y (3)

with P the standard path ordering operator around curve C. The confinement cri 

terion is

<0|w(C) [0> « exp [j-oa] , (A -*■ <») , (4.

with A the minimal surface of C and a a dimensional constant called the string 

tension. For a rectangular loop of space dimension R and time dimension T one
(9)easily sees how criterion (4) arises . The change in the action from a heavy 

quark-antiquark pair created, separated to a distance R for a time T and then 

annihilated is just given by the logarithm of (3). For a confining potential 

VaR the change in the action clearly is a RT = A, and hence we arrive at (4). 

One can define another loop operator, which acts as the dual of W(C), and study

(12)other phases than confinement for gauge theories in general
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2• 2. Finite temperature

At thermal equilibrium the expectation value of operator 0 is g'

<0> = Z_1 Tr(0 e ^H) ,Bh n (5)

with Z = Tr e ^ the partition function (but see below) . 1°£^er^tj_ons of (fer‘ 
representation we have to integrate over (anti)periodic con igu

(13)
mionic) bosonic fields with period B in imaginary time

Tr e-BH B 3
Z = n (B) / M exp dt / d x 

(anti)per 0

Leff (♦. iW > (6)

with normalisation factor N(B) and where (J) denotes all sorts of fields. The first 

equality in (6) holds only in physical gauges, which have the correct number of 

degrees of freedom over which we trace. It is the trace operator that leads us to 

consider only (anti)periodic configurations in the path integral on the RHS of 

Eq. (6). l>e£f may differ from L if the Hamiltonian density is not simply qua

dratic in the momenta.The Wilson criterion is slightly modified because we now want to find the 

potential energy between a q,q pair averaged over a thermal ensemble. Consider

for the SU(N) gauge theory

-1 B o -i
L(x) = N tr P expQi / dt A (x,t)J ,

0

(7.

• • .He nl - Ay(x B) is a sort of Wilson loop (but
which because of the periodicity A (x>°) A v._»p ^
see below). The free energy relative to the vacuum F(Nq, 1 ^q

yM ) of N quarks and N- antiquarks at positions Xj.* Xi 1S 
^N- q M q

:p[- BF(N ,N—; ..)] = <L(x,) ••• l (*n  ) L ‘ “L
q q q

> , (8)

• v Gauee transformations which keep
with <..> from path integrals as in Eq. (o)• g
A^(x) periodic as required need not be periodic themse

n(x,B) = (ci) fi(x,o) ,
(9) 

2-rrin/N
with the first RHS factor in the center Z(N) of gauge group SU(N), cn 

for integer n. The LOO operator is not invariant under semi-periodic gauge trans 
formation* (9): L(x) - cn L(x). Hence (8) transforms by a factor exp^mC* - )/J



If the symmetry is not spontaneously broken this guarantees that £F(N^,N^-) must

be infinite, unless N^-N^- = kN, for some integer k. For QCD (N=3) this means

finite energy for baryons (N =3, N— =0) and mesons (N = 1=N—), but not for a single

quark (Nq=l). The RHS of (8) thus tells us at what temperatures we have contm

ment (<L> = 0) or quark liberation (<L> £ 0). [We admit that we have been a bit

cavalier about possibly divergent selfenergies in this brief discussion of the 

criterion on <L>].

2.3. Latti jauge theories (LGTs)

The idea is to work on a space-time lattice, where the lattice spacing

gives the momentum cut-off n/a, but to preserve gauge invariance completely. 

The Wilson action is^'^

SW = S02 Z u.

P
P • ^ Up) (10)

Up = U(n)y U(n + 0)v u+(n + 0) U+(n) ,

sum is over the elementary squares P, plaquettes, and U(n) is a group

the link starting at site n in direction y (n + y is the site next to
n in the y direction). If we write U(„)y - exp [ig0A(n) 1 , „e find in the limit

* * 0 the C™tlnu™ Oa). The action is gauge invariant under U(n) -

n) U(n)y n (n + p). It is easy to transpose earlier continuum formulae on the 

lattice, e.g.

N
L(x) = N 1 tr II U°(x,t) , 

t=0 00

where 6 = Nta.

Wilson showed that for gg >> I in (10) the confinement condition holds 
<01w|0>- a exp Q* aA]. The major problem is to show that a small sized lattice 

with weak coupling leads, through many operations of thinning out of the vari 

ables, to a coarse, strong coupling theory with the Wilson action. This should 

happen quite independently of the details of the initial lattice. Note that the 

Wilson action is only one of many that give the correct continuum action. This 

problem can be attacked theoretically by renormalization group (RG) methods 

or by numerical calculations, especially Monte Carlo (MC) procedures'10’16^. We 

will employ RG ideas in §§4.3, 4.4.
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To find <0>, for some operator 0, MC methods avoid to calculate

integrals over the fields, one for each degree of freedom of U^(n) per
. , ,,.0 <n> as the mean ofstead they bring the system to equilibrium and then calcuiat

0(U^(n)) over a number of successive field configurations U^(n). The p . ^

meaning of "equilibrium" and "successive" depends on the methods of up % 
variables^The results indicate that indeed the confinement at strong 

coupling persists to weak coupling^* Recently spectacular results 

hadron mass spectra were obtained , where dynamical effects of the q 

neglected^^ . With tnis powerful method we will now consider what happ 

confinement at finite temperature.

3. Quark liberation; numerical experiments for SU(2)

In §2.2 we defined the operator L(x) , whose averages, as in Eq. (8), we 

wish to calculate numerically. These MC calculations were don * Con-

08), (19) on 4-dimensional lattices with time and space sizes Nt and Ng. 

finement is destroyed for temperatures above

T (MC) % 0.35 0.55 0^ 150 - 220 MeV (12)

with a the zero temperature string tension. The true value probably
, (19) At- t there appears

high end of the range, where the specific heat peaxs • c
to be a second order phase transition. For this there are two argurae

change in the order parameter <L> is smooth (fig- > .
T large fluctuations occur during the averaging of the Monte Carlo. The physica

temperature is 6_1 = (N a) '. Renormalization gives the relation betw
c . _ „ „ . _2 - f(0> where f(gn)

lattice spacing a and the bare coupling constant gQ. 0
is known for the perturbative regime and can elsewhere be calculated

It follows that the physical 6 is a monotonically rising function of
k j * 1 d 2 At T co

coupling gn. This gives the physical interpretation of figs. an
0 . u.. <;tpfan-Bol tzmann law

we exactly know the energy density, which is given y (jg)

up to corrections in powers of ag(T). The MC results agree p ^ • 2
In principle <0> can be calculated from MCs for every operator 0. Fig.

shows the change of the interquarU potential (KM) of Eq.(8» above and below

T . It is remarkable that the string tension below T. rapidly approach

TC= 0 value -1(400 MeV)2: o(T = 0.98 T > = 0.4 o(T = 0) already .
.,.09) C„a „aOTBtic(20) screening has been cal

For T > T also the electric 
c (2,21)

and magnetic

culated and found to agree with the theoretical predictions 
To conclude we may say that numerical experiments clearly show quark liberation

95



Tc
T

physical temperature —*

Wilson TB^' ' <L> ^e expectation value of the
N -3 N -7 and fhe> ^are lattice coupling constant. The lattice had
o$ UbefLTtwIs9 7L%\7tZ\h(2)' F0Tr<L> = °°V* °2the™ %rf°n^ined 
B = 0.21 and 4Af* = f f** <L> = «»■•* ^0 " VgfA »it*

rature (sect. 3)° *I5‘ ^ fz9ure also represents <L> vs the physical tempe-

n

Fig. 2. Monte Carlo results for SU(2) from ref. (14) of the quark-antiquark po 
tential vs lattice separation n. The lattice had N+=2j N-20 aru^ ^s critical 
coupling is 4/g*i = 1.85. Note that the physical temperature is a monotonic 
function of 4/gZ.. Thus at a temperature below T we find a linear confining 
potential, whereas above Tq  we have a screened Coulomb potential.
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for temperatures above the value of Eq. (12). We now want to 

happens.

understand what

Quark liberation: theory

1 • Strong coupling LGT

In §2.3 we presented the LGT in a Lagrangian form. One may also use a Hamil 

tonian, which consists of two terms: 1) the sum over the links of the generalised 

momenta with a factor g^, and 2) the sum over a plaquette term with a factor 
8q • For strong coupling one only considers the first,electric, term. In this 

case Susskind^ ^ showed that the partition function of an Abelian LGT is similar 

to that of the planar Heisenberg model in the Villain approximation, but with 

the role of the physical temperature inversed. Because the phases of the Heisen 

berg magnet are known one finds that also the LGT has a phase transition from 

confinement at low temperatures to a Coulomb gas at high temperatures. For non- 

abelian LGTs, e.g. QCD on the lattice, the Coulomb interaction is screened by

the "charged" gauge bosons, analogously to Debije screening by electrons in a
(2,22)

plasma. For the transition temperature one finds *

T (LGT) < <Ja/ln5
0

Inclusion of the other term in the Hamiltonian only reduces the 

properties somewhat and thus the strong coupling estima
The physical picture is that for T > T the electric strings condensate, 8

_ 7 .c . 0 insertion of one more string
the separation of a q,q pair to infinity, i*e* fined
requires only a finite amount of energy and quarks no longer are con

4-2. Z(N) symmetry

In §2.2 we considered the transformation properties of the Wilson 

L(x) under the center ZOO of the gauge group SU(N). Expectation values of pro 
ducts of L(x.) and L+(Z.) tell us about the phase we are in. We have the fol 

lowing scenario(23), where one chooses a gauge so that U is not 1 only on a 

spatial slice. At very high temperatures <L> is uniformly non-zero, but when the 

temperature is lowered some islands of flipped ZOO spin appear and they con 

dense at T < T , thereby restoring the symmetry <L> - 0. Weiss
la ted the l^loop effective potential V,(L) for the order parameter L and indeed



Fig. 3. Calculated string tension o vs. the lattice coupling gn from the semi- 
classical effective theory of ref. (2). Both o1/2 and T are in units of ^lattice'
For T > 30 A, ,, . the instanton contribution disappears and confinement no 
longer occurs.

finds spontaneous symmetry breaking; the minimum of V, lies at L . ^ 0. This
1 min

calculation will be essentially correct at high temperature, weak coupling. But 

at lower temperature higher orders and topological effects, notably the islands 

of flipped spin, will determine the behaviour. It is to be remarked that the bar 

rier between the minima of Vj shrinks for decreasing temperature. Hence it is 

plausible that the Z(N) symmetry is restored below a certain critical temperature, 

so that confinement occurs.

4.3. Semiclassical effective theory

The Weinberg-Salam model gives at energies << = 0(100 GeV) the familiar

Fermi theory of $-decay, its coupling constant being determined by the parameters
2 —2of the fundamental theory = const g . Similarly we wish to find an effect 

ive theory of QCD on the scales of interest for confinement, < 0(100 MeV). Here
(2)we discuss a semiclassical calculation' 1) integrate out the degrees of free 

dom on length scales a; 2) assume the effective action to have the Wilson form 

(10), we seek to determine the a dependence of the coupling constant ggj 3) there 

will be contributions from ordinary perturbative fluctuations and from finite 

temperature instantons with sizes < a. Fig. 3 gives the resulting string tension.
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The T 0 result with the sharp change at g? 'v 2 is in good agreement with the
■ (161 °0 2 2 numerical results . Note that in that regime the expansion parameter gq /St t

is quite small, which justifies a posteriori the use of semiclassical methods.

For temperatures above 35 A the string tension no longer is constant: the
lattice 6

instantons are squeezed out because of the small time dimension 6(§2.2) . Gross, 

Pisarski and Yaffe find a critical temperature of

Tc (semi class, eff. th) % 0.5 a, (141

both for SU(2) and SU(3).

4-4. Dielectric effective theory

Define a colour dielectric constant e(L) so that the effective coupling
• . 2 2 2 . 2 distances L is g“ = g /e(L), with g some coupling constant renormalized in the

perturbative regime. Quark confinement may be described phenomenologically by

having e(L) = 0 for L larger than a typical hadron scale. The resulting bag model
(24)

a region of e 'V 1 immersed in the e = 0 vacuum, gives some impressive results
(25)Recently Nielsen and Patkosv showed how a dielectric theory may result 

from QCD. They consider the following average over curves C, running from Xq to 

Xq + e, inside a 4-d box of dimension Lq (the gauge group is SU(2))

U(x, e. x0; V av P exp Q. 
C

Vc
/
x«

dx^ (15a)

which can be developped in the small parameter £

u = K<v xo} + 1 ^ W
(15b)

K(L0; Xq ) = av P exp Q. $ A dx^] . (15c)
C C M

For small LQ they derive an effective potential Vj(s; Lq ), where s = | tr K.

This thinning out procedure should be continued to > a typical hadron scale.

Assume that the final effective potential V^(s) has the same form as Vj, but with 
Ln replaced by a value L such that s . =0; V (s) = V.(s; L*). Because the

effective fermion term in the Lagrange density probably is i \p(s 3^ - B^)yW \l>.
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^. kk (26)eCtr^C t^eory w*t*1 no quark propagation over large distances.

considered the finite temperature effects and showed quark liber 
ation to occur above

Tc(diel. eff. th) = l '1 % 0.48 aW2 .
(16)

g 3 , __ transition is that finite temperature squeezes the boxes to
.n. * 8^ves a strong reduction in the curve average (15c) and forces the

minimum of V (s. t  \ c
. 1>8 * n^ way from the confinement value 0 towards the perturb 

ative value 1.

5. Conclusion

Monte Carlo calculations of lattice gauge theories clearly show that at 
high temperature quark liberation does occur. The best numerical value(l9> for 

the transition temperature is T,(MC) n, 0.56 (A 220 MeV. This result is for a pure 

SU(2) gauge theory but we expect no basic difference for real QCD. In section 6

we gave several explanations of this phenomenon. Also the theoretical estimates 
of T of Eqs. (13)

.c ' K are in good agreement. The situation thus is quite
satisfactory. The major problem is at T = 0, namely to show rigorously that the 

perturbative theory with asymptotic freedom is linked to the strong coupling LGT 

with quark confinement. From that investigation one could also determine the

nature of the transition at T<., which the MC results indicate to be a second 

order phase transition.

Let us briefly return to cosmology. For T > 200 MeV the matter content of 

the Universe indeed is a quark-lepton gas. Baryonnumber creation and changes of 

gauge symmetries can be calculated for this gas(3). The quark-hadron transition 

probably left no direct remnants in the present Universe. The density fluctuations 

that might result from a second, or first, order phase transition probably are 

negligible for galaxy formation, which seeks an explanation for the origin of the 

mitral density perturbations. This is because of the scales involved (o'/2 and th 

horizon at Tc). Still it is extremely interesting to understand the quark liber 

ation problem, perhaps mostly because of the implications for the nature of quark 

confinement itself.
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Addendum

There has been progress recently on Monte Carlo (MC) simulations with fer 
mions^^. At finite temperature there are two important problems to address.

1) is the effect of dynamical quarks on (de)confinement indeed small (cf. §2.1)-* 

and 2) is the chiral symmetry, which at T=0 is broken with the pions as Goldstone

bosons, restored at high temperature? In this addendum we will briefly discuss 

the second question.

In ref. (27) the spontaneous breaking of the chiral symmetry, <0110>f^0, is 

calculated using lattice regularisation and various other approximations. The 

symmetry restoration at a temperature T , is discussed phenomenologically by/An\ cn
Pisarski 

T

(28)
, who gives some arguments for the following relations to hold: 

> T and T— Ci
(291Engels, Karsch and Satzv have done MC simulations, 

action used is

c ch Tc w^ere is the temperature of quark liberation.

The fermion oart of the

p _ 3

SW = 1 {Vn ‘z Ku[*„a - Y )U » m - n p=0 V* n y n,n+y ^n+y

ip * (1 n-y v VVff.n • (17)

where colour and spinor indices are suppressed, n denotes a lattice site, the 

link variable runs between sites n and m, and the "hopping" parameters

may differ in spacelike and timelike directions. In the partition function the 

ip and ip fields can be integrated out analytically. From the resulting determinant 

only the leading term in the hopping parameter expansion is retained. The Wilson 

formulation of fermions on the lattice, Eq. (17), does not lead to species doublii 

but breaks the chiral invariance explicitly. Information about the physical chiral 

symmetry breaking and its restoration at Tch can be obtained by considering the 
difference <W>SB “ <W> , where <W>SB is the average for an ideal gas of mass 

less fermions (Stefan-Boltzmann). Fig. 4 presents the energy density £, for the 

pure Yang-Mills system (YM) and with two flavours of fermions, and the measure 

for chiral symmetry breaking, both as a function of temperature. Two conclusions 

may be drawn, partially answering the two questions above: 1) the inclusion of 

quarks does not change the liberation temperature T£ much, and 2) the temperature 

Tch of chiral symmetry restoration is somewhat higher than T . The values for 

SU(3) and 2 quark flavours are
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Tc(MC)"80 lattice * °-*0 o,/2*160MeV

^(MO * 100 ^lattice * 2>° MeV ,

used a(T-O) = (400 MeV)2. These preliminary results are encouraging.

interesting to calculate the change in when virtual quark loops are 

and in when other actions than Eq. (17) are used. Also it should be 

that the measure for chiral symmetry used, <1W,>gg ” is correct at
W ternPeratures of order 100 ^^att;£ce» where g2 is not very small.

(18)

to

Fig. 4. Monte Carlo results for SU(3) and two flavours of quarks from ref. (29).
£ is the energy density (curves) and the dots refer to the chiral symmetry break 
ing measure. YM denotes the pure gauge theory and SB the Stefan-Boltzmann value 
of e. The curves show quark liberation above Tq  and the dots chiral symmetry 
restoration above T ^. {warning: curve values are only indicative] .
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We discuss quark liberation from the point of view of the effective dielectric theory of Nielsc 

the transition temperature.

Some heuristic arguments, based for example on 
the bag model for hadrons and the phenomenon of 
asymptotic freedom of QCD tell us that at tempera 
tures much higher than typical hadron or QCD scales 
quarks no longer are confuted [1]. Recently this has 
been confirmed by Monte Carlo calculations of lattice 
gauge theories (LGTs), which clearly show the transi 
tion from the confinement phase to the (screened) 
Coulomb phase. For SU(2) the transition temperature 
is Tc ~ 0.35 - 0.50 e1/2 ~ 150-200 MeV, with e the 
zero temperature string tension [2,3]. Because of the 
smoothness in the order parameter (<L>, see below) and 

the large fluctuations around Tc, this probably is a sec 
ond order phase transition. Along with these brute 
force results we would'like to understand the mecha- 
nism of the highly non-trivial phenomenon of quark 
liberation. For strong coupling LGTs one indeed finds 
a transition [4], with as physical picture [1] the con 

densation of electric strings at T> Tc, so that it costs 
little to insert one more quark-string-antiquark (en 
tropy versus energy). The second explanation focusses 
on the global Z(N) symmetry, in case of an SU(AQ 
gauge theory [5]. Consider L(x)= N~l tr P 
X exp[i/dM°(.x,/)], with the integral over [0,0] and 

A^(x, t) Lie algebra valued. The expectation value (L> 
acts as an order parameter, because L is not invariant 
under Z(N). At high temperatures there is spontaneous 
symmetry breaking (L> =£ 0, but when the temperature 
is lowered islands of flipped Z(N) spins occur and con 
dense at Tc, restoring the symmetry <Z.>= 0. It is 
easy to see that these phases correspond, respectively, 

to quark liberation and confinement [3].

In this letter we will take the point of view of the 

feet dielectric theory [6], but as an effective theory 
ulting from QCD on large distances [7]; cf. ref. [1]. 

;lsen and Patkos [7] derive for small L0 an effective 
tential Vx (a), which has ominimuin < 1 (put in (3):

: 0,/= 1,0 = L0}. Here and in the following we con- 
er a pure SU(2) gauge theory. The procedure was 
consider an average over all curves, nearly closing 
a :q , inside a box of volume L\ of the following inte- 

il and to develop it

•(«/' 

' *0

= AT + ieM5M(x0), (1)
exp

*o
i K the closed-path integrals (e = 0) of the lhs. This 
;edure could be followed for gauge groups SU(AQ 

eneral, but for N= 2 K as given by eq. (2) is a 
ge invariant Lorentz scalar and the effective theory 

its trace o=\ixK will be considered.B^ then is 
effective field and a should describe the influence 
he non-perturbative vacuum on scales ~£01 the ef- 
:ive fermion term in the lagrangian density should 
a be Let the final potential
;r many steps of this block-spin procedure be V0(a) 
assume that (1) the minimum is at amin = 0, in or- 
to have a perfect dielectric theory of quark confine- 

it, and (2) it has the same form as V1 (o), only now 
lecial value L0 replacing L0 so that omin = 0. 
lsen and Patkos then calculate the string solution 
i find (for a = 4, see below): AM0M = 0.70 e^2, 
luebaii = 1-15 e1'2, fvacl^C^lvac^ 10.38
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X A MOM' These reasonable results will become impres 
sive once it is shown, probably using renormalization 
group methods, that the fixed point indeed fulfills the 
assumption (2). Another open problem, of course, is 
the inclusion of dynamical fermions. We will assume 
that the above picture contains some truth (lienee the 
somewhat lengthy summary) and will consider its 
claims at finite temperature. Eqs. (x) of ref. [7] will 
be referred to as (NPx) and natural units are used 7i 
= c = k= 1.

Field theory at equilibrium at finite temperature T 
= P~l is described by integrating in the path integrals 
of the generator of Green’s functions over (anti)period- 
ic configurations of the (fermionic) bosonic fields, 

with period p in imaginary time [8]. As long as L0 
< P the effective theory after averaging over boxes Lq  
will differ little from that of ref. [7] and if after 

many iterations an < P is reached we will still have 
confinement at this temperature. But if P is so low that 
Lm > P, confinement might not be reached, because in 
the successive steps of block-spinning (Ln) finite tem 
perature effects (see below) become important before 

we reach the L% scale with the assumed confinement.
In such an intermediate step (Ln > P) we consider 

PL2 boxes instead of L\ ones. Let us do a near local 

analysis, i.e., in K Taylor expanding both A^(x) on 
the curve in terms of Ap(x0) and the exponential. One 
finds (cf. NP2.11)

K(*0)~ 1 -te2/48)C (2)

with the Lie algebra valued field strength. The fac 

tor aL* comes from the curve average of j dx^x^
X § dxj^1*^ (both integrals over the same curve) 
which is proportional to the average of the^quared 
area of non-intersecting minimal surfaces S2 (NP2.9). 
For a square box S2 = a(l)Z,JJ, for some constant a(l). 
The numerical calculations of ref. [7] give us the nor 
malization ot(l) = 4. But for a flattened box the con 

stant a(fi/Ln) will be a monotonically decreasing func 
tion for decreasing argument (see note 1 at the end of 
the paper). Using (2) as a constraint and integrating 

theyl^ fields out one expects an effective action for a 
(cf. NP3.15, 3.17), with (see note 2 at the end ofthe 
paper)

K,(o,[22/*2<*/3/L„)] o  ln(£2A2ox)

-f(VW/toO-®)! (3>

as the high temperature effective potential over dis 
tances ~I„. Agox s Aj exp[\!/(y)) 4/ff and am  rc‘ 
suits from minimal subtraction. With the strong de 
crease of a(P/Ln), sec note 1, the minimum is shifted 
towards the value 1, i.e., away from confinement. 
Under the assumption (2) that the form of the effec 
tive potential remains unchanged, we have two possi 
bilities. (1)/3>Z,#: For all L„< Lt we use the unmod 
ified NP potential [put P = Ln in (3)] and we arrive at 
a dielectric theory of confinement at these low tem 
peratures. (2) p < Lt: For L j.......LM = P we can use
the unmodified potential, but for +„ >P we have 
(3). Its minimum would be at amin = 0 for an given 

by

1. Abox = exp(-2O7r2/0/8S l %). (4)

where we used a(x) = 4x2 (x < 1). But (4) has no solu 
tion for L' >0 and P =£ 0. In other words the mini 
mum of the effective potential can never be at the con 
finement value 0. We have no confinement for these 
high temperatures. Thus, we estimate the transition 

temperature

Tc~L:' = Abox exp[5,72a(l)/8S] =0.4Sf1/2, (5)

where we used the zero temperature results of ref. [7]. 
Independent of this somewhat simplified discussion of 

the expected renormalization group behaviour we can 
derive an upper bound on Tc. Strong coupling LGT 
gives an estimate Tc ~ eafln 5, with a the lattice spac 
ing [1,4]. The effective zero temperature lagrangian 
[7] is an LGT with a = Lt, so that

rc2be£,,/ln5~1.32£1/2. (6)

The inequality sign in (6) might result from the ne 
glected magnetic terms in the hamiltonian if the bare 
coupling g2 <°° [4], which will be relevant in our case 
where g2(Z, J/4t t  = 0.38.

To summarize we may say that, if the Nielsen— 
Patkos approach proves to be correct, its remarkable 
numerical results are augmented by the hadron—quark 
transition temperature (5), which is in good agreement 
with the Monte Carlo results [2,3]. Also the reader is 
invited to compare our work with that of ref. [9], 
where the effective potential at finite temperature is 
calculated with a constant colour magnetic field back 

ground.

This work was started during a visit at the
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Astronomy and Astrophysics Center of the University 
of Chicago with support from the grants NSF AST 78- 
20402 and DOE-DE-AC 02-80 ER 10773. Some infor 
mative discussions on LGTs with S. Wadia are acknowl 
edged. Finally I thank the referee for urging me to 
wards a somewhat clearer presentation of note 2 and 
for bringing ref. [9] to my attention.

Note 1. We will not elaborate on the precise form
of a(P/Ltl), but give a geometrical argument for its 
behaviour.

In a final analysis a scheme should be used which 

maximizes a, in order to have small L*, cf. (5). Note 
that S~ can be viewed as an average over fiat surfaces 
[2] of varying sizes that range through the box. A two- 
dimensional analogue would be:

_ w/2
l2-f i0l(0)2=S(L,/L2)L2r

0
for anLjij rectangle (corners aU\y coordinates 0,0 
and L2, Li) and with 1(0) the length from the coordi 
nate center to the boundary of the box at polar angle
0. We find P- « LxL2 = (L^L2)L\. Consider now /2 

over a cube. This is /2 over a face, which fans through 
the cube, and the resultjs a factor 7 times the two-di 

mensional result. Titus /2 over a three-dimensional box 
IL2 again js proportional to (l/L)L2. Similarly one 
finds for S2 averaged over a four-dimensional box PL 
the dependence (P/L)2LA, if 52 over a rectangle QL is 
“fl2/,2, ^ analogy to I-.

Note 2. We indicate the changes expected for finite 
temperature compared to the derivation of V(o\T = 0) 
of ref. [7]. Two general remarks: firstly, space-time 
integrals in the euclidean actions should run over R3 
X [0,0] and the field configurations are periodic 

Atl(x, 0) = >4;i(Ar, 0), and secondly, it again seems rea 
sonable to assume that o (.Xq ) is only influenced by the 
low frequency part of the gauge fields, |A:| < ti/Ln 
(cf. NP3.3).

The effective potential after integrating out the 

gauge fields under the constraint from the trace of (2) 
has two parts. (1) The high frequency contribution, 
which in one loop gives the linear term in (3), is ex 

pected to have the same form as (NP3.9). In its deriva 
tion one should use now a homogeneously magnetized 
box of volume 0L*, but this will give no difference for 

the linear part of V because the space-time integral in 
(NP3.9) also is restricted (see above). Only a will now 
be reduced because of the flattened box [see note (1)J. 
(2) For the low frequency contribution (NP3.10), 
which gives the ln(l - 0) term in (3), also a PLj\ box 

should be used. This gives an extra factor LJP multi 
plying ln(l - 0), cf. (NP3.I4). The other change 
would be that, because of the periodicity condition on 
the gauge field configurations, in the estimate of the 
entropy part the dimensionality essentially is reduced 
by one, which should give another factor /< 1. Admit 
tedly this estimate of the low frequency part of 
V(oy(i) is rather crude. Note that the precise value of 
/is not relevant for our purposes: (4) has no solution 
for any 0 </< 1, so that Pc is given by the from 
the zero temperature theory. (Of course, our approxi 
mation of the renormalization group behaviour is very 
simplified, if not naive.)

To summarize, the high temperature (fi<Ln) effec 
tive potential is expected to have the same dependence 
on o as at zero temperature, except for the three dif 
ferent factors as given in (3).
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Abstract. First we describe Mack's effective Z(2) 
theory of quark confinement in the SU (2) lattice gauge 
theory at zero temperature. Then we show how quarks 
get liberated above a critical temperature, which has a 
numerical value somewhat below the glueball mass (in 
natural units).

Hadrons arc composed of quarks, which have a new 
type of charge, called colour (red, yellow, blue say). It is 
believed that the interaction between quarks, apart 
from the usual electric and weak interactions, is 
described by the non-Abelian SU(3) gauge theory, 
called Quantum Chromodynamics (QCD). One ob 
serves that quarks are confined, which means that the 
physical states carry no net colour (just as white is the 
sum of the three basic colours). The major task of the 
last years has been to establish that QCD is in the 
confinement phase. Three introductory reviews on 
quarks, gauge theories and confinement are eiven in

m
If we consider gauge fields only the condition for 

confinement is that the vacuum expectation value of 
the Wilson loop W(L), see Sect. 1 for its definition, 
decreases rapidly as exp( -ax minimum area of L) for 
large loops L[2]. a is a constant, the (zero temperature) 
string tension. Let us sketch the physics behind this 
condition. For a rectangular loop with size T in the 
time direction and R(<^ T) in a spatial direction the 
exponent is the change in the action from a quark- 
antiquark pair separated at a distance R and created 
and annihilated over a time T. The exponent will then 
be - T K(R), with V(R) the minimum energy of a static 
quark-antiquark pair. For a linear potential F(R) = 
oR the Wilson condition is fulfilled. Because of the 
constant tension (experimentally a ~ (400 MeV)2) it 
would cost an infinite amount of energy to completely 
separate a quark-antiquark pair, hence no naked 
quarks or anti-quarks can exist. A major theoretical 
tool is to consider the gauge theory on a discretized 4 
dimensional space-time [2]. A hypercubic lattice is 
used, which consists of sites x, links 1, elementary

squares called plaquettes p, and cubes c. The gauge 
fields 1/(1), which are group elements, live on the links, 
whereas quarks ip(x) sit on the sites. Lorentz in 
variance, or better Euclidean invariance since we 
rotate the time axis to imaginary values so that we have 
a Euclidean space instead of the usual Minkowsky 
space, has been sacrificed momentarily, but gauge 
invariance is preserved exactly (see Sect. 1). Lattice 
gauge theories (LGTs) are, of course, ideally suited for 

numerical calculations.
In this paper we will consider the destruction of the 

quark confinement property by high temperatures. We 
will not discuss the applications of this phenomenon, 
notably for the theory of the early Universe or 
collisions of heavy nuclei in accelerator experiments. 
We “just" want to have a picture of the physical 
mechanism that operates the change of phase.

Computer simulations of LGTs show quark libe 
ration above a critical temperature 7^ = 40(±5) 

- 0.44 o' 2 - 200 MeV [3]. Here A,MKt is an 
energy scale, which arises in the continuum limit of the 
lattice spacing a-* 0 from a special dependence of the 
bare coupling g0(a) (asymptotic freedom, see (11)) so 
that physical masses and other quantities remain 
constant. We used the relation /lla,lice =0.011 a12 as 

determined in [4]. This value of Tf is for the pure S V{2) 
LGT and follows from expectation values of a sort of 

Wilson loop. For SU{3) the result is roughly the same. 
Simulations including dynamical quarks are being 
started, but are still at a rather crude level of sophisti 
cation. The deconfinement temperature Tc remains 
approximately the same and for T^ Tth=0(Te) 
chiral symmetry is no longer spontaneously broken as 

observed at T=0[5].
Several theoretical ideas on deconfinement at high 

temperature for the case of the pure gauge theory have 
been advanced, see for a review [6]. Here we wish to 
present a new semi-quantitative picture of quark 
liberation, which is not restricted to the pure gauge 
theory. This will be based on Mack’s idea that (zero 
temperature) confinement arises as a hierarchy of

109



effective Z(N) theories [7], Z(N) is the discrete center 
group of the gauge group S U{N). The physical case of 
interest obviously is N = 3, but the study of the 
somewhat easier case of N = 2 will already indicate the 
essential features of QCD. In the effective Z(2) theory 
the role of the underlying (thick) vortices is essential. 
The precise definition of a vortex will be given in Sect. 1, 
one may consider it as the world sheet of a loop of 
magnetic flux. Vortices encircling the Wilson loop will 
have a disordering effect, so that its vacuum expec 
tation value drops as an area law, which means that 
there is confinement. At strong coupling thin ( = one 
plaquette) vortices do the job, while at weak coupling 
thick vortices are relevant. This is of paramount 
importance if the confinement of the strong coupling 
regime is to persist in the continuum limit.

In Sect 1 we will discuss this zero-temperature theory 
of confinement in such a way that the finite temperature 
modification makes it clear that above Tc confinement 
no longer persists in the continuum limit (Sect. 2). All 
this is for the pure gauge theory, but in Sect 3 we 
present some ideas how to test for quark liberation 
including the fermionic quarks as dynamical fields. The 
conclusions are presented in Sect. 4. Throughout we 
will use the Euclidean Lagrangian formalism in D = 4 
dimensions. The standard Feynman-Kac path in 
tegrals reduce on a finite lattice to ordinary multiple 
integrals (one integration over the group per link). The 
theory is a special problem of statistical mechanics, this 
also explains some terminology we will use. Hence it is 
easy to incorporate finite temperature in this for 
malism. As the reader has noticed we work in natural 
units, where h = c = k = 1.

(c)

Fig. 1 a — c. Vortices for D = 3 dimensions (the relevant case D = 4 
is analogous). The cubic lattice is not drawn, but the links in L 
indicate what the lattice spacing a is. In this figure we set a= l > 
Vortices disorder the expectation value of the Wilson loop along L 
Drawn arc a thin vortex with a thickness of one plaquette and a thick 
vortex (container) with thickness cl2 > 1. To give a twist to the 
boundary conditions of the container change the link variables t/(I) 
toy 1/(1) for leZ,, which encircles the loop (indicated as heavy short 
lines), and with y in the center Z(N) of the gauge group SU(N)- •» 
Long box to study the vortex free energy of (13). Twisted boundary 
conditions arise in the same way as in a. The twist changes 
U(C) = 771/(1), 1 eC, to y U(C) for every C as indicated, c Thick vortex 
(container) disordering the expectation value of the thermal Wilson 
lines L(x) L(x + R)' (see Sect. 2). The lattice has a temperature 
T=(N,)-1. At high temperatures, small N., the thick vortices 
required for confinement cannot disorder LIJ enough and quarks 
are liberated.

I. Quark Confinement at T = 0

The Abelian LGT with as gauge group Z(2) = {1; - 1} 
is known to have a strong coupling regime {fi < pc) with 
confinement and a weak coupling regime (fi > pc) 
where confinement is lost. From duality follows 
PC(Z(2)) = \ In (1 + ,/2) = 0.44. The partition function 
Z is the multiple integral over the link variables 
o(l)eZ(2) of exp(- p x Euclidean Action). For the 
connection between “inverse temperature” P and 
coupling constant g0 see the SU(2) case below. In 
general the Wilson loop for a path L and gauge group 
G is defined as

wM = x[J[uM) U{l)eG’ (1)

where the product is path ordered along L and x is a 
character, i.e. x(l/) = trace R{U) for unitary repre 
sentation R of G. For G = Z(2) and surface S so that its 
boundary dS = L we have, because G is Abelian,

mz.)=n *(<*;>), (2)
peS

with (in general path ordering is important)
u(dP= i, + i2 + i3 +14)= iy(i,)i/(i2)i/(i3)t/(i4).

(3)

Take for simplicity D = 3 dimensions and lattice 
spacing a. The confinement of the strong coupling 
regime arises from the condensation of thin (thickness 
= a) vortices. A thin vortex is a ring (closed surface for 
D = 4) of plaquettes with a(dp)= — 1 (see Fig. la.) 
From (2) we see that numerous long vortices intersect 
ing S may disorder W(L) so that the Wilson parameter 
<0| drops sharply oc exp( — a A(L)), signall 
ing the confinement phase. These vortices are conden 
sed for P < Pc (“high temperature”) because an en 
tropy contribution compensates the large energy of 
long vortices. But for p> pc (“low temperature”) these 
long vortices are rare and only short vortices encircle L 
so that <0| W(L)|0> drops only as a perimeter law and 
quark confinement is lost (see [8]).

Now we go to the non-Abelian LGT with G = S 1/(2), 
in which we are interested. The standard Wilson 
action, measure and partition function are for
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G-SU(N) in general [2]

p

MU) = Z~'e 

Z = S‘ln(U),

^"'Ret T(U(dp))l (4a)

(4b)

(4c)
SI?te ulelhrhen0dised Hr measure°ver G- NoK
vr/n. ---- undamental representation, so that

is invariance under local gauge'/.(U) = tr U. There
transformations

C2(x)eG:U(\)->Q(x)U(\)Q(yV \
for 1 between sites x and y. The vacuum expectation 
value of observable F(U) is

(4d)
<0|F(l/)|0> = Jd/i(l/)F((/).

From the classical continuum limit one has (1 = 2N/gl- 
The bare coupling q0(a) is given by the perturbative
f,.2 . r\\(0o 
C = renormalizationG = SU(N) 8r0Up e<iual,on 0 0 forfor a -*o f  h ? S‘VeS freedom g2o(a)->0

r For G = SUI2\ at I™. o 1'SU(2) at low enough [i there confinement just as if G = Z(2). We see this 
follows: 1) define plaquctte variables

o{dp) = sign %(U (dp),
2) note that the following inequalities hold [9,8]

i<oix n t/d)io>i ^2<oi n ^p)i°>
lcL peS

S2<0in*0)|0>*a).

(5)

(6)

where we compare the SU(2) Wilson loop, which is 
bounded by the term in the middle, with the Z(2) one at 
the same /?, 3) from the discussion above we know that 
the Z(2) theory for p < pc has the area law behaviour 
for the Wilson parameter and (6) implies the same for 
SU(2) (q.e.d). Hence, thin vortices, i.e., configurations 
of 1/(1) with on a closed surface <j(dp) = — 1, give 
confinement for low enough fi in the 51/(2) LGT.

The phase diagram we would like to establish for 
SU(2) (and, of course, for the SU(3) of QCD) has a 
confinement phase for all finite P and a second order 
phase transition at pc = co. At the second order phase 
transition the correlation length in units of a diverges, 
so that the details of the fine scale lattice become 
irrelevant. Because of asymptotic freedom (running 
coupling constant vanishing with high energy) we want 
Pc at the free limit g0 =0. There are some indications 
that the 51/(2) LGT has the wanted phase structure in 4 
dimensions [10] and computer simulations [4] appear 
to confirm this.

The question is now to understand how the S U(2) 
LGT avoids the deconfining phase transition, which 
occurs in the Z(2) LGT at finite pc. We will give a brief 
discussion of Mack’s answer ([7], see there for further 
hypotheses and arguments). The idea is that the S U(2) 
Wilson loop is suppressed as an effective Z(2) 
theory with lattice spacing d and coupling Pcu(d) =

PC(Z(2)) - 3, where 0 < 5 <€ 1. This results from the con 
densation of thin vortices with thickness d = a for P < 
Pi and of thick vortices with d £ dc for P> pt. Pi ~ 
2.0 is a constant determined from low p expansions 
of the string tension. When going towards the con 
tinuum limit (P —* oo) there are always thick vortices 
condensed, so that for any P the Wilson loop W(L), 
with size t> dja, is strongly disordered by these thick 
vortices, just as in the confinement phase of the Z(2) 
theory. The thick vortices may be viewed as having 
spread out* the magnetic flux of a thin vortex (Fig. la). 
This spreading out is possible in the Wilson action of 
the continuous SU(2) group. In the thick vortex for 
every plaquctte £tr U(dp) may be 1-3, contrary to 
the - 1 of the plaquctte in the thin vortex. This shows 
how thick vortices may continue to play a role in the 
continuum limit (p-* co), while thin vortices of 
o(dp) = — 1, see (5), are virtually non-existant because 
for large P only configurations with U(dp) near 1 are 
highly favoured, see (4abc).

The remaining problem, of course, is to prove that 
the SU(2) LGT behaves on large scales as a Z(2) theory 
with an effective coupling < pc so that it is in the 
confinement phase. One could use the idea of block spin 
[10], where the basic algorithm runs as follows: on a 
lattice with spacing a(n) define new variables on a larger
scale a,, and calculate their effective interactions.
The gain of reducing the number of variables may be 
countered by the complicated nature of these effective 
interactions. But in many problems of statistical me 
chanics the phenomenon of universality occurs, mean 
ing that after many iterations of the algorithm the 
solution converges, irrespective of initial details, to one 
simple form. In our case this should be the Z(2) Wilson 
action, where the Pc(f(d) remains to be determined. Let 
us consider some fixed P> Pi, of the original 5U(2) 
LGT. After many block spin iterations we hopefully 
arrive at an effective Z(2) LGT with lattice spacing dc 
and coupling ptU(dc). If Pe„(.Pe(Z{.2)), then thin 
vortices in the effective theory, which were thick 
vortices in the underlying SU(2) theory, will give 
confinement as discussed in the beginning of this 
section.

Up till now this scenario of solving the theory fc 
block spinning and proving confinement has not be | 
performed, but it provides us the conceptual frame 
Mack’s (hypothesized) effective Z(2) theory of confix 
ment. Another line of attack is the notion that PtU(a 
measures the free energy of a vortex with thickness de 
(see Sect. 3). In [11] a so-called vortex container was 
introduced, which is a rectangular sublattice of the 
form of a thick vortex (Fig. la). One considers then the 
change of its free energy when a unit of magnetic flux is 
forced through by a “twist” of the boundary conditions

* See T8] for the analogous role of thick Bloch walls in the D = 2 
ferromagnet with continuous symmetry. Here for all there is 
disorder in contrast to the Ising model. Even at large /? long vortices, 
Le. Bloch walls, exist. A longer vortex can counter the increase of its 
energy from its greater length by thickening, which reduces the 
gradient contribution to its total energy
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(see Sect. 3). For non-overlapping containers winding 
around the Wilson loop a sufficient condition for 
confinement is that the free energy change should drop 
exponentially with the thickness of the container [11], 
In Sect. 3 we will discuss somewhat further this method 
to determine the physics of thick vortices from the 
response of (sub) lattices to twisted boundary con 
ditions. Clearly one determines in this way the contri 
bution to the free energy from the internal structure of 
the thick vortex, whereas the configurational entropy 
may be derived on a coarse lattice where they are just 
thin vortices. In this way we also arrive at an effective 
Z(2) theory. This ends our intermezzo on how Mack’s 
effective Z(2) theory might arise.

In [7] the minimum thickness dc for vortex con 
densation is derived to be (/?, ~ 2.0)

a~'dc= 1 [i<pi (7a)

a- ldt = exp{(3t i3/1 1 )(P -/*,)] P> Pi- (7b)

This completely determines oa2 as a function of p and 
agrees with numerical results [4]. Also the predictions 
for the vortex free energy (see Sect. 3) are confirmed by 
direct numerical simulations with /?, =2.06 [12,13].

In the standard S 1/(2) theory magnetic strings (lines 
of plaquettes with o(dp) = — 1 from (5)) are observable, 
since they contribute to the action (4a) differently than 
if o(dp)= + 1. Note that if the Lagrangian density 
would be proportional to |tr U{dp)\2 this would not be 
the case. [This variant theory basically has a gauge 
group G=S0(3), which fulfills the continuum con 
dition 7T,(G)^0 for the existence of monopoles 
with invisible strings, whereas 71,(50(2)) = 0[13]] 
Vortices are closed surfaces (in D = 3 a closed line. Fig.
1 a) of these negative plaquettes and arc the world sheet 
of a closed magnetic string. But the magnetic string 
may also end in a monopole (for SU(2) there is no 
distinct antimonopole, Z(2) having only one element

1). A monopole is identified in a cube c if the 
configuration U(l)eSU(2) is such that with (5)

<8>

These monopoles are important for pSpx. They 
determine the cross over region [14] and contribute via 
the free energy of the thin vortices to the string tension 
[13]. It is not unexpected that these small (size^o) 
monopoles contribute to quantities defined over a 
plaquette size, respectively specific heat and thin 
vortices. For large operators, e.g. the Wilson loop, they 
will not be important. Even apart from this size 
argument one knows that small monopoles are very 
rare in the continuum limit P~> oo where for nearly all 
plaquettes o{dp) = 1 (see above).

In principle one can define a larger monopole on the 
scale of a large cube C, for example, with in (8) the 
product of plaquettes running over dC. We only 
consider thick vortices for confinement in the weak

coupling regime and not corresponding large mo 
nopoles and their thick strings*.

With this picture, in the zero temperature LGT, of 
confinement persisting towards the continuum limit by 
the presence of thick vortices, we will address what 
happens at finite temperatures.

2. Quark Liberation at T ^ Tc
Field theory at equilibrium at a temperature T> 0 is 
easy to incorporate [ 17] in the path integral formalism 
used in the previous paragraph. Four dimensional 
space integrals run over R3 x [0, T~'], i.e. the “time ’ 
axis is shortened, and path integrals use only periodic 
field configurations with /t;i(x.O) = .^(x, T~l), with 
-4h (.y ) the Lie algebra valued field. On a lattice its size 
also is flattened N, x N3 (N, 4NS). For simplicity we 
take the lattice spacings and coupling constants equal 
in timelike and spacelike directions (for a more precise 
treatment see [18]). In numerical simulations, specifi 
cally those of the Monte Carlo (MC) type, a typical 
lattice with N, = 2-5, Ns = 10 gives a good indication 
for the behaviour near Tc[3].

The free energy F(R) of a static quark -antiquark (qq) 
pair at a spatial distance |R| is given by [19]

exp[ - T~l F(R)] = <L(0)L(R)')r, (9)

with <>r from the normalized multiple integral over 
periodic configurations. The Wilson line L(x) is defined 
as FI (7(1), where the product runs over the links of the 
straight line from (x,y,z,0) to (x,y,z,T~ ‘).

We will now turn to the phenomenon of quark 
liberation at T$> M, with /V/~ (2 to 3)cr112 the glueball 
mass [23]. Our starting point will be the ideas dis 
cussed in Sect. I, notably the role of thick vortices.

Consider a lattice of fixed size N, x N3, with N, 
small (but see below) and Ns large enough. Because 
T~ 1 = N,a < M 1 we are in the weak coupling regime 
(P>Pi ,a < M~l), where thick vortices can be impor 
tant a priori. But the thick vortices, which in case of 
confinement (Fee R) must disorder between the L, L1 
operators so that <L(0)L(R)'>J.ccexp( -oT~lR) are 
now restricted in their thickness (Fig. lc). If we 
approximate by using vortex containers [11] their 
maximum thickness is c/cril ~ N,a, regardless of the 
limit R-* co. From (7b) we have the minimum thick 
ness dja required for confinement at p. Because the 
hierarchy of ever thicker vortices for increasing P only 
applies if dja ^ N, we find a critical coupling above 
which confinement fails

Pc,JN,) = pl +(1 l/3n2)ln(yv,). (10)
The perturbative (P = 2N/gl large) renormalization

* For a variant action analogous to that of [15] over larger sizes 
than a plaquette the phase diagram is similar [16]. The relation 
between thick monopoles and vortices with respect to the vortex 
internal structure should be compared to that of the thin ones, where 
small monopoles contribute significantly to oa1 in the strong 
coupling region [13]
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specimen of the notorious A para-_____ uuuiiiuu) /i para meters, which arise from regularization, and different 
from those of the continuum theory by a calculable 
factor. From T=(/V,a)-1 and (11) one finds the 
physical temperature Tc = 0(100/1 =(V<T,/2'

0(o /z) cor-respond,ngjo^he lattice results Pcrit(N,) of (10).----iwuiia /^criitiVfl 01‘But, objects the alert reader, doesn't the very same 
argument hold against confinement at low tempera 
tures T<$ M?” The negative answer is twofold :

1. In standard MC studies of confinement at T=0 
[4], the Wilson loop L is taken to be (much) smaller 
than the lattice size Nf, in order to avoid finite size and 
boundary effects. Also ft must be smaller than

a '5)[I9]. Then the results of <0|
ten us about the potential energy of a qq pair at T- 0.. . ■ ..... ....... a *f‘/

— in principle one can also study the qq interaction 
averaged over a thermal ensemble of (anti) quarks, be it 
at low temperatures 0 <T <t M. For a qq separation R 
the free energy F(R) again can be determined through 
(9) from the value of <L(0)/.(R)' }T. For our lattice we 
have the physical condition N,a M_I and in order to 
mimic the infinitely extended continuum space 
A'j §> Nr For the small N, we study we are now in the 
strong coupling regime (p small, aZM~l). Here 
confinement can be directly calculated to occur [2]. 
The physical picture is the condensation of tltin (^a) 
vortices, just as in the 2(2) gauge theory. For N, a few 
these relevant vortices indeed fit in between the L, iJ 
operators, so as to give the strong disorder leading to 
confinement at these low temperatures T< M.

The second part of the above answer seems to 
require a small N,. This cannot be, intuition tells us we 
should find the same, or even better, physical results on 
a fine scale lattice with 1 N,<£ Ns. We will show that
this is the case. Crucial is the observation that the 
minimum vortex thickness dc is a physical quantity, 
only when measured in units a will it increase for larger 
P- The exponent of (lb) should include an extra factor, 
which comes from the two loop calculation, just as the 
one in (11). The end result forr/c then is independent of 
P, as long as P > /),. This is obvious because from [7] 
we have df = 0.54 c t " ', which relates dc directly to the 
physical string tension a. In the derivation one uses 

,(/? = pc-(5) = 0.54a "2 for the Z(2) string tension, 
which follows from strong coupling exP^1^!°.n_.' 
Similarly /?, ~2.0 is determined from <Tsu(2)(^"y
0.54a-2. We now reassure the alert reader ro 
above completely: for low temperatures lhelVf 
finemcnt, because thick vortices can always ^ 
between the L(0) and L(R)1 operators as ms
T-‘ Pd„ for all N,=(T?)- if ««»A M/‘ 
mutandis we have quark liberation for ;mDficitly 

In Mack’s effective theory it is assumed » |hc 
that only vortices with thickness d= t

disorder. However it may very well be that a 
somewhat thicker vortices contribute. Generally 
much thicker vortices will be less important bccai 
their configurational entropy is smaller than a thinn 
vortex of the same length. We may take an averaj 
thickness d — Fd{,FZ l. We then estimate, usir 

ad2 = 0.54,
Tc =(l.4/F)oi. (I“
The predictive power of our reasoning for the numeri 
cal value of Tc is not great, but it states correctly that 7 
is at least a factor 2 below theglucball mass [23], whicl 
is the only mass scale in pure LGTs. The Monte Carle 
results [3] seem to imply a moderate Fez 3.

To summarize, the semi quantitative theory dis 
cussed in Sect. 1 explains (de)confinement at tempera 
tures (above) below some Tc by the (absence) presence 
of vortices of a thickness a few times dc. Up to now we 
only discussed the pure gauge theory with quarks 
acting as classical sources. But the mechanism pre 
sented for (dc) confinement at (high) low temperatures 
also remains valid if quarks act as truly dynamical 
fields. In the following paragraph we will present some 
ideas how high temperature quark liberation in a LGT 
with fermion fields might be established.

3. Vortex Free Energies
Another order parameter to determine the phases ol 
LGT is the vortex free energy //[20,21]. On a fin it' 
lattice A with a non-simply connected boundary dA 
one considers the partition function Z(U(cA)) as a 
function of its boundary conditions (be).

Hence in (Abe) we do not arbitrarily integrate over 
the U(ledA)'s. Specifically one looks at the relative 
change from a twist:

■ $ ln[Z(A, twisted bc)/Z(A,bc)]. (13)fi.,(A,bc)
where (Fig. lb)
1. A is a parallelopipcd in D = 4 dimensions with sides 
if, x d, x d3 x d4 and dt =d2<d3=dA
2. boundary conditions are periodic for the gauge 
fields (free for the fermions)
3. a twist is introduced by some singular gauge 
transformation so that U(C)-*yU(C), >• is a non-trivial 
element of the group center ( = — 1 for Z(2)) and C on 
dA winds around the short dimensions of the box.
4. this twist may be obtained from (7(1 )-*}•(/(!) for 
leLin Fig. lb.

The physics behind this scheme is that the twist forces 
a unit of magnetic flux through the box in the long 
direction. Compare with the vortex container of Fig. la 
where also a twist is introduced by £/(l)-»y(/(l), 
leL[ll]. An analogous expression to (13) withfor/1 a 
container with thickness d determines the effective Z(2) 
coupling Pe(((d\) °f Sect. I [13], Hence it is interesting 
to study (numerically) (13), which is a sort of straigh 
tened out vortex container. Most importantly the 
possible different behaviours of (13) with respect to the
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Fig. 2. Numerical results of [12] on the vortex free energy g of (13) 
for a box d*. The theoretical curve based on Mack's theory of 
confinement agrees well with the data points. For a fixed box size, 
here d = 5, at high enough p the minimum thickness of the vortices dc 
is larger than the box considered. Here the results should follow a 
perturbative curve (dashed line?, see [12,24]). The high temperature 
phase transition from confinement to liberation for P rising above 
Pc,i,(N,) is expected to show up for N, x d3 box sizes. The numerical 
results should then follow the perturbative curve down to P„lX(N,) 
and then for lower P along Mack's curve. This method to calculate 
numerically Paix[N,), and hence Tc, from the difference by flattening 
for the vortex free energy g, perhaps can be done also with dynamical 
quark fields present

box dimensions also distinguish the phases of the 
gauge theory when dynamical quark fields are present 
[21].

The theory of confinement at T = 0 as described in 
Sect 1 makes a prediction for the behaviour of n as a 
function of p. This has been confirmed by numerical 
simulations [12,13] for d4 boxes, with d = 3 — 6. These 
simulations calculate dn/dp from the difference of the 
averaged trlf(dp) with or without twisted boundary 
conditions on the box, see (4) and (13). Following the 
ideas of Sect 2 on the mechanism of quark liberation it 
would be interesting to compute p for a N, x d3 block 
with N, d. We know that for P > /Jcri,(Nf) there are no 
thick vortices to give confinement and we expect some 
drastic changes in the numerical results in the range 

PcruiN,) up to P(da = de). Even for the hypercubic box 
d4 above P{da = de) there are no more thick vortices 
operating in it. Below Pclll{N,) we are still in the 
confinement phase and the results for the hypercubic 
and flattened box should agree approximately. Figure 
2 sketches the expected results. As said this method to 
determine /?cri,(N,) for the pure gauge theory probably 
can be extended to include dynamic fermion fields [21], 
because their contribution to the partition function can 
be calculated exactly in MC simulations over the 
gauge fields [22]. The twist operates on the gauge fields 
only, while the fermion fields contribute to the internal 
structure. In a MC on a N, x d3 lattice one should try 
to establish a Peiil{N,), which separates different be 
haviour of n, or a quantity determined by it, as a 
function of p. Many details are unresolved or unde 
cided for the moment, but this appears to be an

alternative* way to determine Tc for QCD on the 
lattice.

4. Conclusions

Quark confinement at low temperatures and liberation 
at T > T( has been, or will be shortly, established by 
numerical simulations of the pure gauge theory on the 
lattice. The inclusion of dynamical quark fields in these 
calculations is possible in principle, cf. [22]. But these 
are brute force results, and we would like to isolate the 
components in the theory which arc responsible for the 
“observed" behaviour. For the persistance of confine 
ment to the continuum theory at T = 0 they are the 
thick vortices of Sect. 1 [7,8,11]. Focussing on them 
we showed (Sect. 2) how to understand the phenome 
non of quark liberation above a critical temperature Tc. 
We estimated Tc in (12), which is not too far from the 
Monte Carlo value. In Sect. 3 we turned to the change 
of free energy in boxes when a magnetic flux line is 
introduced by a twist in the boundary conditions of the 
box. This is very much like the vortex containers that 
approximate the physics of the thick vortices [11]. 
Here we showed how numerical simulations could be 
used to determine Tc. This was for the pure gauge 
theory, but the vortex free energy remains a relevant 
order parameter when dynamical quarks are present 
[21], contrary to the Wilson loop parameter [2]. 

Perhaps Tc can be calculated analogously in this case. 
To summarize we may say, that the thick vortices of the 
lattice gauge theory, which probably guarantee the 
persistance of confinement in the continuum limit, 
simultaneously explain by their absence at high tem 
peratures the liberation of the quarks.
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CHAPTER 9
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We consider the Eguchi-Kawai reduction, in the momentum-quenched {
SU(N) lattice gauge theory for W-co and address the problem of how fin,te tC P es
be incorporated. This is of interest in order to establish quark deconfinement at ig P 
We also show that different quenching procedures may be inequivalent.

1. Introduction
An approach towards solving quantum chromodynamics (QCD) is to consider 

the large-N limit of the SU(N) gauge theory [1]. Some experimentally observed 
characteristics of QCD, which has only N = 3 colours, may be explained in this 
way*. Another line of attack is the non-perturbative regularization from a space- 
time lattice, a method initiated by Wegner and Wilson [3]. Both strong coupling 
expansions and numerical, Monte Carlo, simulations of lattice gauge theories 
(LGTs) with N = 2 and 3 provide some tentative results, notably on the persistence 
of confinement and the hadron spectrum [4]. These simulations also show that in 
QCD, deconfinement occurs at a critical temperature 7^^200 MeV and that at 
T^5Tc  there is an asymptotically free gluon gas [5]. As an important theoretical 
task it remains to determine the mechanism and the dynamical variables that 
operate this quark liberation; for some general papers see [6, 7]. Here we will try 
to open a new way using the Iarge-N LGT, for which recently a reduced model 
has been proposed [9, 10, 12, 13, 26, 27].

In sect. 2 we discuss the reduced model [12], trying to be as explicit as possible 
in order to clarify some ambiguities. How to incorporate finite temperature will be 
discussed in sect. 3, where we show that the finite temperature expectation value 
of a local operator may be calculated in the reduced model from (9). How one 
might then look for high-temperature deconfinement will be the topic of sect. 4. 
In our way of introducing temperature into the reduced model this should be done 
by calculating intensive thermodynamic quantities such as the energy density (14). 
We also mention in this section that the claimed equivalence of the models of [10] 
and [12] is not precise, or equivalently that the method of quenching is somewhat

* See for example ref. [2].
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arbitrary. In sect. 5 we present the conclusions and discuss briefly the hamiltonian 
point of view.

Before we proceed with the reduced large-W LGT we remark that Thorn [8] 
has argued that the yv~»oo continuum theory indeed has a deconfining phase 
transition at Tc. The argument is that for T>TC the free energy density f = F/V 
is of order ;V , because of asymptotic freedom, while at T <TC it is 0(1), because 
glueball interactions are suppressed 0{N'~l) [2]. This shows a different analytic 
behaviour above/below Tc, which is the definition of a phase transition. Whether 
for large, but finite, N this phase transition persists or that deconfinement is more 
like the gradual dissociation of molecules, say, is not clear yet.

Finally note that the difference between U(N), which we will consider in the 
following, and SU(Af) is trivial, -/U(N, = -/SU(n ) + 7t 2T4/45, because the singlet 
field Tr (AM(x)) in U{N) is free [8]. The space-time dimension is D = d + 1 and if
not specified we take the relevant case of d =3 space dimensions. Natural units 
with h/2ir = c = k = 1 are used.

------ —VM 1UUUCI
Recently Eguchi and Kawai [9] showed that the standard [3] U(AO LGT for 

can be reduced significantly: from an infinitely extended lattice to a periodic 
a tice with one site only. But numerical simulations [10, 11] proved this reduction 

num er of variables not to be correct in the weak coupling regime. The 
reason is that for couplings g2^g|K - 6. 7/yv [11], a U(1)D global symmetry of the

e -*1S broken spontaneously, which invalidates the equivalence with the
rim ar m?^e^ symmetry breaking arises from the strong effective attractions 
[10] at weak coupling in the EK model between the eigenphases pj. (/ - 1........./V;

R. °. var*ables, which have this U(1)D symmetry. Consequently
3n<u jpf proposed to suppress these interactions, in the hope that their 

quenc e model (QEK) also equals the standard model at weak coupling. The 
Q K model was vindicated (but see sect. 4) by Gross and Kitazawa [12], who

a a 3t 1 C *^anar ^‘a8rarns of QEK are equivalent to the integrands of the 
standard perturbation expansion [1]. Here the (fixed) p' variables of QEK play
the role of the loop momenta (cf. [13, 27]) of the standard theory and thus should 
be integrated over at the end.

Now let us be more specific. The Wilson action is [3]

5w 8 ^ ^JT^U"(x'>U“(x+t)UJi(x + C)Ul(x) + h.c.],
(1)

with UM(.*:)€ U(A7) residing on the link (length a) from site x in the p. direction, 
or is in other words the bond between site x and its neighbour x+/x. There 
is invariance under gauge transformations U^x)-*S{x)UtM{x)S{x +p)-1 for any
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(2)
mapping S{x): ZD -> U(N). The reduced action is [12]

c -2 D —4SR = g a l Tr[ UJ3JJ.

with £>* = exp (iP„a), (Pw),,= p!» &/> IPwl n^a' 

QEK model is [12]

| n dU^CUJ^Dj

integration measure for this

(3)

C(t/„,DJ= f n d d(DJ 8(U„D, - VJ ,
J M

4(£>M) = 11 sin2 ((p^ -p'Jia),
«</

where the standard Haar measure []M df/M is constrained by C so that the variables 
M cannot be eliminated from the action (2) by a change of variables, which would 

give us back the EK action. Note that by integrating out the variables, one 
arrives precisely at the QEK partition function of [10]. But it appears that there 
is some difference or arbitrariness in how to treat observables (see sect. 4). For 
other ways to counter the spontaneous breaking of U(l)°, see the recent papers 

* which focus on reproducing the standard Makeenko-Migdal loop 
equations. At large, but finite, g~2 and N the role of the different [10, 12, 26, 27] 
reduced lattice actions, which all seem to reproduce the planar graphs of perturba 
tion theory and the loop equations with boundary conditions, is not dear. Note 
that the same problem, although less severe, arises for the standard LGT (Wilson, 
cat-kernel, . .. actions). The reduced model is invariant under the following U(N) 

transformation (no sum over p)

US>y 'SUUDUS -l Seum (4)

which may be viewed as a gauge transformation ->S(x)UtlS(x + fx) » c^‘
There is not a separate transformation for the Dbecause these are not dynamica 
variables, but momenta only. The vacuum expectation value of operator O (t/M, ) is 

given by

(0|O|0>= fW° Y[(dp>/2n)Zi! I W&U^CO exp (Sr ) , (5)

where the normalized momentum integrations have a UV cut-off from the space- 
time lattice with spacing a and where there is an obvious normalisation by the

quenched partition function Zr  = Zr (Di1), see (lib). „ii.. n„i„ fn,
Th, Ihe QEK ... ^

strong [9, 10] and weak [12] coupling, but a (02\r\~l ^
simulations [14] of QEK show the same first-order phase rans g
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as that of the standard Iarge-/V SUUV) LGT with Wilson action [15]. From the 
hut “ *! I^,XeC^ act‘ons H6] we expect this phase transition not to be deconfining, 
: . , ^ tC> ln<^ca*e different analytic behaviour of observables, for example the
also the hner,8b H<8I * f°r 8 8reater °r smaller than ^critical ~ (0.3/V) Note that 
that th' e3i ernC aC.t*°n ^°r ^=4 dimensions has a phase transition [17], so 
the ,JS 3113 -ytlCaI barner for ,arge-N theories does not seem to be an artifact of 
fmm “ aCtl°n use<^- Perhaps the reduced model has an even less smooth transition 

Finaii°nS tC> COUp,ings; at ,east this has been shown to occur for D = 2 [29]. 
in , f ^ r makC thC obvious remark that the reduced model can also be 
rerta nUmenCally for confinement by the usual Wilson criterion [3], For a
(OlAr^TrTl [SideS T and L' T>>L) 0ne considers W(T,L) =
tain* a . C * 0 Wlth the actlon (1) and standard measure. If W{ T, L) con- 
nna L effi1 W ICh dr0ps exP°nentially with the area A = LT for A co, there is 
quark confinement. Numerically [18] the string tension o- follows from

w (T-\,L)W(T,L-\)1 T, L » £a

*SJbe pbys*caI correlation length. In this way, one eliminates a perimeter 
P - 2{L + T) contribution to W(T, L)ocexp {-aa2A ~maP). If a2<r(g2) for g2-0

es according to the renormalisation group we may determine the physical tension 
o- in units of /llattjcc and then in MeV. With the reduction UJx)->U» [9]

n UAx)-*(UJL(Ul.)T(Ul)L(U:)T, (6a)

T L rectangle in the p, v plane, one could follow the same procedure by
cu ating W{T,L) in the EK model. For the quenched model one uses the 

translation rule [12]

t/MU)-*exp {iP -x)Uu exp (-iPx) (6b)

to calculate W(T,L) with (2), (3) and (5), which should also be correct at weak 
couplings. The very same rule, of course, gives the reduced action (2) from (1).

3. Finite temperature
For a quantum field theory in equilibrium at temperature T [19], the expectation 

value of operator O is (0)T =Z~] Tr (O e~H/T), (1)T = 1, with H the hamiltonian 
and the trace running over physical states. The standard perturbation expansion 
applies with the following changes in the Feynman rules

p°-* iirT(2n), [(2n + 1) for fermions],
(7)

[ d4p -» 2iriT [ d3p £ ,
J J n = —oo

S\p-p')^(lmTY'Snn.S\p-p'),
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where the factor i comes from the use of a euclidean metric. These rues ^ ^ onjy 
from the path-integral formalism, where for (fermionic) bosonic e ^
(anti)periodic configurations contribute with period T 1 in euclidean tirT\ lattice 
standard LGT one considers thus a N, xNf lattice, with (time-) SP^®, may 
spacing (at)a5 and Nlat« /Vsas. The physical condition is that Ntat — j
hope that this LGT describes the continuum QCD correctly if max alt * 
Numerical calculations for SU(Af), N = 2, 3, have been performed succes ^ 
lattices with ax = as and Ns and N, of order 10 and 2-5, respective y^ 
simplicity we will set <7, = as = a at the end of the manipulations t at ar^e ^n(jard 
Consider now the reduced model, which was shown [12] to give Clearly 
perturbation theory, provided the pl variables were treated as momen^ 
to put temperature into QEK the momentum integrations o f
according to rule (7). temperature is

The prescription for the reduced action to be us mmetric lattice
somewhat more subtie. The T = 0 QEK model is reduced from a sy ^
Ws x Ns ,Ns-> oo. As mentioned, the standard T>0 LGT is.°rj?Ver sum 0f (7) in
lattice, where the periodicity in euclidean time resu ts in ^ ^ ]jnjCSj which is 
momentum space. Define “local” operators to have a suPP°r^ usecj por a local 
not closed by the periodic boundary conditions of the finite a very small,
operator OlGC and large Af„ i.e. for any fixed temperature a ion [5] 0f the
we expect that in order to calculate (Oio c )t  on*y a nv 
reduced action (2) is needed,

Si Ss (a,/as) I Tr [UD(/x</)] + g,-2 (ajat) E Tr[UD(/xf)]
(A < V

= 1.....d

+h.c., <8>
with UD(/l u /) an obvious abbreviation. At the end of the manipulations needed to 
extract thermodynamic quantities (see below), we will set at = as in (8), because, 
while in the standard LGT at5* as is allowed by the extra Nt periodicity, which links 
a, to the physical temperature at = (KtT)'1, this is not possible in the reduced 
model. The constraint of integration measure (3) remains unchanged, because it 
only guarantees that the pi variables cannot be transformed away, whereas the 
effect of temperature concerns the values the p'0 may take. The finite temperature 
version of (5) is thus

<Oioc)r=f II (dplaJ2ir)Y\( t ' Jn^fc^ioc)»
J-n/a% 1 1 Vn—N«/2 7 *

1.....d

Po = 2 t t h  T, Nx = {Tax) 1, {flt = as}Cnd* (9)

where we indicated symbolically that we set at = as at the end of the manipulations. 
This must give the correct perturbation expansion, cf. chapter IVa of [12], where

121



again the tadpole diagrams from the constraint C vanish upon integration in (9) 
because of the reflection symmetry p'^ -» and n -* -n.

Finally we comment on the limits to be taken on the number of colours Af, the 
lattice volume A/,Afs and the lattice cut-off a. Recall that in our lattice approximation 
of the continuum we have the symmetrical picture a = ax = a* for simplicity. The 
problem is that these limits probably do not commute, and hence we must be 
specific about what we mean. We take the practical (optimistic) point of view of 
having a large fixed AT = 7V. The N co theory is used to obtain an approximation 
to the N theory, which also hopefully contains the quintessence of QCD. If we are 
looking for the physical deconfinement transition (sect. 4) we must try to avoid the 
large-N phase transition [15, 17] mentioned in sect. 2. For a fixed temperature this 
is always possible with a large enough (a = a, = N;lT~x), and of course we must 
simultaneously have Ns»Nt, which results, say, from setting Ns = 100N{. So to 
arrive at a correct, i.e. not an approximate, theory we should take lim,v-cc lim,v,-.oo 
(reduced model), where the Af, limit implies the limits of Ars and a (by the tem 
perature condition). That these limits exist has not yet been proved, cf. the discussion 
in [24].

4. How to look for deconfinement

Finite temperature (de)confinement in the standard LGTs is established by 
calculating the connected Green functions of the operator [5, 20]

L(x) = L(xu • • • ,xd) = N~' Tr ]~[ £/0(x,rt),
n = 1....Nx

which is gauge invariant because the line is closed by the periodic boundary condition 
in the time direction (period T~\ see sect. 3). But (Q)EK is derived from an infinite 
lattice, or at least a large one where boundary effects are negligible; also our finite 
temperature version (9) is only to be trusted for “local” operators.

Suppose we naively use (9) to calculate expectation values of products of L{x)'s 
translated from the standard to the reduced model by recipe (6b). Alas our boldness 
will not be rewarded, consider namely the following two operators:

(i) (L(x ))t  serves as an order parameter in numerical simulations; (un)equal to 
zero it signals (de)confinement [20]. But its naive translation into QEK according 
to (6b) ((UoD0)n' exp (-iPoaNt))T vanishes under the p'0 integrations of (9). Also 
in EK with rule (6a) it is zero simply by the U(l) symmetry U0-+eiaU0, if unbroken.

(ii) (L{0)L(R))t -(L{0))t (L(R))t  determines the finite temperature quark- 
antiquark potential for separation \R\ and thus signals the (de)confinement phase 
too [20]. Translated to QEK it would vanish 0(N~2), because of large-N factori 
zation, cf. [12], which on the other hand is a necessary [9] ingredient in order to 
arrive at the reduced model. We remark that the major weakness of the reduced 
model is precisely how to calculate corrections subdominant in N, cf. [12, 27, 28].
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A more promising approach is to use a physical quantity, which in n(jence 
model is local. An obvious candidate to consider is the temperature the
of the energy density e(T). For T»T„ the energy density shou. nfinement 
Stefan-Boltzmann expression £s b  = N2(7r2/15)T , whereas in n degrees of 
regime (T < Tc) it will be much diminished because of the re pj = 2 and 3,
freedom, i.e. heavy bound states versus N2 free gluons. For Auction at Tc~ 
the Monte Carlo simulations for e(T) indeed show a strong r a strongly
40/iial,iCC~0.4 Jcr (lattice values quoted for AT -2) and the existence 
interacting gas only in a small temperature interval 1 - 2 x Tc • pressure P 

The well-known definitions of free energy F, energy density e

.,/a inZN F =F = -TlnZ, ^ VdWr

d a/ar_1 = ^rlare easily transcribed for the lattice theory, keeping t xe
up to finite-size corrections [5]. standard theory in terms

We will give an equation for the free energy 0 _ nQt directly related
of the reduced model. But note that this finite temperature we flrst consider.
to the vacuum free “energy” Fvac mentioned in [9, 1 »
From [12] one may derive

J[dp]»or„,!n(J [dt/]Cexp(-SR(tW>)

= f [dPUmln(( [dV]sin2(---)exp(-5R(V^Vj)). <Ua)
j u ^ r3tcd

in a symbolic notation, cf. (2, 3, 5), and where in thelas J* ^ no], which is in the 
out the Um variables. This is different from the expression 
same notation .

%= f [dp sin2 (• • -)]norm In (| [dV] exp (-5.(^0) .
1 al to p' a. Gross and Kitazawa

where we used that the dl variables of [10J arCtj^.r qUenched partition function is 
have shown, again integrating over the »*>*

ZR=([dp]norm([d^eXP("5R(C/^J)

r .2/ . .) f [dV^exp (-Sr {VhP^^» (lib)= 1 [dpJnormSm (• • 0 J L° K J

where the last expression is identical to that 0 centum approach of [12] appear
But the quenching procedure of [ ]an different expressions of <0|0(L)|0>,

to lead to the different Fvac above and also to
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for an operator O(L) over a set of closed loops L on the standard lattice translated 
according to (6b). Exactly how one takes the quenching is somewhat arbitrary and 
we follow the prescription of [12], which has a clear physical interpretation.

At finite temperature in the continuum limit a -»0 or 7Vt, yVs-»°o for a fixed 
temperature (see sect. 3) it seems reasonable to have a relation analogous to (11a) 
for F(T, 10

^^=-}l[dp]In(Z5), (He)

with JZ[dp] an abbreviation of the integrals and sums in (9). From (11c) we have 
with V(d) = (Nsa )d the space volume

/(r)"v^ = “fl~^'.fI[dp]ln(Z*)- (13)

With the first and second thermodynamic relations of (10) we have from (11c) for 
the energy density e(T)

e(T) = -a-d din Zr

d(l{ . a, = as
(14)

where we used, with Nt fixed, d/dT~x = A,-1 d/dat and the fact that {£ [dp] of (9) 
is independent of a,. We subtracted a constant from the RHS of (14) because in 
the partition function Z =N{T)Zr  we had omitted the temperature-dependent
normalization N{T), cf. [5, 19]. The first RHS term of (14) is the expectation 
value of the time-like plaquettes. When T -* 0 the sum in (9) becomes an integral 
and the e0 term subtracts a vacuum contribution so that e(T = 0) = 0. Similarly a 
complicated expression for the pressure P could be written down.

In the standard LGT one derives from (10) similar expressions, which reduce in 
the continuum limit a -> 0 to [5]

ea4 = 6Ng 2(Pt-Ps), (e-3P)a4 = 6Nadg
da

(Pt + Ps-2Ps

with Pr, r = s or t, the expectation value of

Z [l-A-1ReTrt/(Pr)]/I ,
IPr) {Pr}

and Psym the same for all plaquettes over a large symmetric lattice, which comes 
from the term -e0 of (14). It is evident, cf. [21], that any Pr = 0(g2A2), with 
r = s, t, sym, so that we see analytically that for T -»oo the ideal gluon gas arises, 
which is confirmed by the numerical simulations [5]. For the reduced model the 
situation is less transparent, but for T-+oo (weak couplings) we must have Zr ^Z, 
which then gives the SB values of e and P [6]. Monte Carlo studies must be carried 
out for lower temperatures of e and df/dg~2 after which the latter is to be integrated 
over numerically to give /, see sect. 5 for some remarks.
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5. Discussion
In [12, 13] it was shown that the quenched Eguchi-Kawai model produces 

identically the planar graphs of the standard perturbation theory, if the diagonal 
variables Pare treated as momenta. This model was reduced from a D =d + 1 
dimensional symmetric lattice of infinite volume. We have proposed in sect. 3 
that finite temperature might be incorporated by the standard change of the 
momentum integrations (7) and temporarily of the action (8) in order to extract 
thermodynamic observables (sect. 4), after which we set the space- and time-like 
lattice parameters equal. At a fixed temperature we expect this procedure to be 
correct, for “local” observables at least, in the continuum limit, where in the 
standard LGT on a lattice TV, = (7a)-1 -*oo. Numerical calculations of these
thermodynamic observables can be done in principle. The search for high- 
temperature deconfinement will be somewhat different than for the standard LGT, 
where a gCri,(fl,Nt) is found, from which Tc follows by scaling. For the reduced 
model we have as parameters besides a the physical T directly, and we always 
want to remain quite deep in the weak coupling regime. Note that if one uses 
random spatial p^ instead of integrating over them [12], N»(2ir) is required. 
This follows if one wants good coverage of momentum space: the size 2t t /{c iN )

each, must be «M, which gives the quoted
of the subcubes, which contain one p[t caui, m—* — . .
condition on N even on a coarse lattice of a ~M • M is the dynamical mass sea 
It seems better to try to do the integrations directly, cf. [14]. Another pro em is 
the implementation in Monte Carlo simulations of the constraint in (3).

Up to now we have used the lagrangian formalism, but let us brie y cor*s 
the hamiltonian approach. For the EK action [9] derived from (1) by use ° 
one immediately writes down the hamiltonian analogous to the stan ar one

WEK = b2 I I ReTr(l/Mt/.lW). (15)

z »<v b 2
where fi, v are, of course, space-like and where the E^,b 1, • • •, ^ > 
momenta. Also there is a Gauss law on the electric flux to constrain to t 
physical states. For the standard hamiltonian at strong coupling, uss in 
showed quark liberation for T>TC by inserting two widely separated test ch g 
(source terms in Gauss law). It is not clear to me how this method might be 
implemented for (15). Of course, one can follow the same road as m sec, with, 
for the partition function, Z =Tr exp (-HEJT), or better with (15 replaced by 
the conjectured quenched hamiltonian of [25], The hypothesized role of ms am 
tons" corresponding to permutations of the P.a variables [25] .which should lead 
to the non-perturbative confining vacuum, is perhaps significantly reduced at h g 

temperatures analogously to the situation in [6], leading to econ ne"^" .
To summarize, the reduction method of Eguch. and Kawat ofthe! * f T 

gauge theory may also be interesting in order to understand finite-temperature 
behaviour, but its non-perturbative aspects are not yet completely clear.
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Note added
Having finished this article I was informed of the following.
(i) An early hint to the symmetry breaking at weak coupling is contained in [29]. 

Also using the idea of twist, a quenched reduced model has been derived [30], 
which leads to the planar graphs of perturbation theory and which is more efficiently 
simulated on a computer than QEK [10]. Up to large [5] finite size effects a reduced 
model with symmetric twist” [30] for N = L2 might give the behaviour of the 
standard SU(iV) LGT with Nx = L.

(n) Okawa [31] also has noted the different expressions of [10] and [12] for 
expectation values. His numerical results of the internal energy using (5) show the 
absence of a large-N phase transition, contrary to the case when the prescription 
of [10] is used, cf. [14]. For the search for high-T quark liberation as advocated 
in sects. 4 and 5 this may be beneficial.

(iii) Neuberger [33] looked for high-7” deconfinement using a space-like reduced 
model along a time-like torus of length Nx. From the g2CTil(Nx), where (L) becomes 
non-zero, he appears to find a quite large Tc in terms of /lMOM, say, compared to 
t at for N. — 2 and 3 [5]. It is clear from the present article that in my opinion this 
approach is not guaranteed to mimic the finite-temperature LGT. The point is that 
he collapses not only the space-like but also the time-like plaquettes spatially, while 
keeping the time direction unreduced. At strong coupling this may be correct, and 
indeed gives He k  of (15). But at weak coupling it is not clear that all loop equations 
are identical to the original ones, indeed see [33].
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1. Introduction

Eguchi and Kawai (j] have shown that the SU(N -> °°) lattice gauge theory 

(LGT) with the Wilson action £2]] on an infinite lattice may be reduced to a 

similar model without space-time dependence. Later several authors [e.g. 3-8] 

gave the necessary modifications of this reduced model so that is valid at weak 

couplings too. The problem how finite temperature might be incorporated in the 

single point model I discussed in [9J . At the end of that article I expressed 

some doubts on another possible finite temperature reduced model, which was 

studied by Neuberger Q(f|. In this article I elaborate these doubts, dispel 

them and learn how to improve the single point model [¥]. Also this may be of 

importance if one tries to construct a reduced Hamiltonian [l 1 , 12~| by taking 

the continuum limit on one direction of the Euclidean theory jj 3_| .

The content of this paper is as follows. In sect. 2 I have to repeat the 

proof [l] of the Eguchi-Kawai reduction in some detail, so that it is easy to 

see m sect. 3 how the Schwinger-Dyson loop equations are reproduced if one 

would like to reduce the d+1 dimensional LGT in d dimensions only. If this 

unreduced ("time") dimension has length N^, where at is its lattice spacing, 

this would be precisely the model used in Qo*| to study the large-N behaviour 

at temperature T = (Ntat) 1. In sect. 4 I discuss the implications of a 

(solved) problem of sect. 3 for the study of a truly single point model and 

propose three possible solutions. Finally, section 5 contains some further 

discussion.

2. Eguchi-Kawai reduction

Consider a D-dimensional infinite hypercubic lattice with spacing a = 1 

On it define the gauge theory with group G = SU(N) by the partition function
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z = / n du (x) exp Qj S ] 
x,y M

with the Wilson action £_2]

x,y?*v

+ / \+\
tr (U^ (x) Uv(x+y) U^(x+v) U^Cxj ;•

(la)

(lb)

The notation is standard with U^(x) t*ie var^a^^e 

y-direction b

is scanaara wun u a a j ■----
U . . . eEG the normalized Haar

■ etweea the sites x and x+y, and wit g>
. __ q =o "z with

measure over the t, v
• ae the relation 3=g wlt 

up G. The large 3 expansion gives

the bare coupling constant g(a).

A single point model may be defined by

ZEK = ' 11 dy„ exP& S «(Vv°Xa-

y ' y?*v

(2)

H ‘J y^v - ■
8Uchi and Kawai (jJ proved in the limit N -*■ 03 that the reduced model (2) is 

equivalent to the standard lattice gauge theory (LGT) of (1). The translation

rul(

(3

T: U (x) -* Uy yr- l-
must be used to find in the EK model the counter part of the expectation valued 

W(C) = <tr n U (x)>, where C is some closed path. Their proof is that the 

C ^observables W(C) in the standard model and the translated W£K(C) in the reduced 

model satisfy the same set of Schwinger-Dyson (S-D) equations. Two properties

are used in this proof:

(i) large-N factorization <tr(JI U) tr(H U)> =
C« c"

<tr(IT U)><tr(U U)> + 0(1), and 

C' C" i<p(ii) the U( 1 )D symmetry of (2) Ig - e y Uy (no sum over y).

At weak coupling this symmetry is spontaneously broken Q] (there are only D 

links, but the limit N -► 00 gives an infinite number of degrees of freedom) and 

the EK model (2) must be modified in order to keep equivalence with the standard 

theory QQ. For the moment forget about these modifications.
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Fig. 1. Curves for the Schwinger-Dyson equation (4). (a) Shows the origina

curve C and (b) and (c) the curves and C'^, respectively, where a 

ap-plaquette has been added. In (b) the order of the vertices is 

(..,y-v,y,y+a,y+a+p,y+p,y,y+a,y+a+3,..). In (c) the dashed lines in 

dicate a cancellation Ua(y)^ Ua(y)=1 and the order of the vertices is 

(.•,y,y+P,y+p+a,y+ot,y+a+B,..). Only near y has the curve been drawn 

specifically, the rest is arbitrary.

V

Fig. 2. Example of curves which lead to source terras in the Schwinger-Dyson 

equations, (a) This curve gives a source terra in (4), where the two 

paths are (y,y+ct,y+a+&,..,y) and (y,y+a,y+a+v,..,y). (b) If the time 

direction is finite (N^) and has periodic boundary conditions, these 

make this curve intersect itself (in opposite direction in this 

example) and a source term arises in (8). These source terms probably

are important for the phenomenon of quark deconfinement at a critical 

temperature T£.
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The S-D equations in the two models are derived as follows; see the

original paper [l] for the missing details, the example paths used and iUus-

trated (figs. J,2) here have the same notation. Consider for a closed path

c ~ (x, x+p,...,y-v,y,y+a,y+a+B,...,x-a,x) the expectation value W(C, T j » y»
where a group generator T. is inserted before U (y). For the change of variables

J 01Vy) - ('He T.)i:. it follows from invariance (order e terms vanish) an

summation over j that these S-D equations hold

N W(C) + y Z W(C') - 7 Z W(Cn) = S(C»y,a) W(Cyy)W(Cyy)‘ 

A o^a p A p*x P

. , .- ». (4)

era e' yy * yy
usual A = N/B is to be held fixed in the limit N ■* «. The paths of the lhs

) are shown in figs. la-c. The curves C follow when the change of

P
r,f the actio

variabli

are shown in rigs. la-c. me «_«!.»•— -pes is made on the U^y) contained in the plaquettes of the action (lb). 

The rhs of (4) is a possible source term, where large N factoriz 

used already. t-dce in the same/
s - 0 or if the (y,y+a) link is traversed only once or

there arise from the j
opposite direction, respectively. In the latter ^

C' C--» where y=y (y = y+ct^ for 

summation the traces over two closed curves yyf yy
.Klp v and y difference comes

the same (opposite) sense of direction. The poss
+ e trivial here but not

from a cancellation Ua(y) and Ua(y) in the trace
entirely in the next section. Fig. 2a illustrates the case y = V

, TI u U one derives
With the translation (3) W(C) <tr (Uy • • • v ei 6

, but with extra source terms. These
the same equation (4) for the reduced mode ,

„ ;c traversed twice, say P = a
additional terms arise if in C a direc i

In the standard model U (x) and
(similarly if in the opposite direction).

f Che translation (3) where they become the
Up(y) are different, but not aft

same U and would thus give a source term 
U (5)

<tr(ni uy> tr(n( uv)>EK .
Li l2

(5) the products of the Up are the translations (3) of the Uy(x) on the
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open lines (x, x +p,..., y-v,y) and (y,y + p, y + p + 3,...,x-a,x). In the

standard model gauge invariance would give <tr IT U (x)> =0. In the reduced
L' y 
^ 1

model (5) also vanishes, but now by the two properties mentioned above:

Factorization splits (5) and the symmetry U U and U -> e1* U. make

each part vanish. Here p. , is a direction where the number of U and U ^ of

the product Lj are unequal, analogously for p9. The reader may look for an 

example at fig. 3. The links (y,y+v) and (z,z+v) in the path shown in (a) give 

in the loop equation of the reduced model a source term (5) with "supports" as 

given in (b) and (c). But the U(1) symmetry of the reduced model for the en 

circled link Ut makes this source term vanish.

This means that the W(C) of the standard theory (1) and W(C) of the EK 

reduced model (2,3) have the same S-D equations. As said at weak coupling the 

EK model must be changed so that extra source terms as (5) still vanish.

3. Partial reduction

Consider LGT(l) on a Nt x O*)^ lattice, where the "time" direction, index 

t, is finite and has periodic boundary conditions. The lattice may have differ 

ent spacings a (a ) and couplings B (ft ) in the action (lb) for time and space- 
l s t s

like directions Qa ]] . A reduction in d = 3 space-like dimensions only would 

give the following model,

N d

ZpEK = ! &Ut(n) n^diyntfexpC'B" SpEK] (6a)

Nt d
"6" s = X [B (a /a ) l tr(U,,(n)U ,(n)lT (n)lT(n)) + 8f(a /O x 

p n=l pj«v=l P V p v t s t

Z tr(U (n)Ut(n)/(n+l)u‘t(n) + H.C.)] . (6b)
P M y

It is understood that at large $g the necessary modifications have been applied
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on the spatial parts of (6). Specifically Uy(n) in (6b) may be replaced y

........ r_ of n, and HdU by the constrained integration,
y K » yVn)Dy, with independent 

see [a ] .
j.. the trivial re—

The S-D equations for the standard model are the same, up
from

placements "B", as in (4) but with extra source terras s(c,y,a, t
. A Mpri nsl . Consider

the time periodicity. These were also found by Gocksch an 

the curve of fig. 2b, which is intersecting by the periodici y

,n n fxl tr (II U (x))>. with
the time direction, and gives a source term <tr(.n y' ^ y

I i "no (v v? via the left.
L, the line (y,y+y,___ y) via the right and L2 the line

I will discuss these terms in sect. 4.
fnr the unreduced

The S-D equations for the model (6) are the same 

model. Spurious source terms (5) from the identification of the space 

links in each time layer n vanish as in the preceding

same for all n. Then a
even a further simplification (6') with Uy(n)> c

special subset S of curves may cause some trouble, namely

«... t can be forced to zero 
separate parts of the source terms (5) with suppor i ^

, . ,.Vp linUs. This means that the subset S
only by the phase symmetry in time h k

. where k is a non-zero in-
contains links (y,y+v) and (z,z+v) with 2 y t*

in the time direction.
teger inequal to a multiple of N, and et is unit vector _ ^

Fig. 3 gives an example, whereas the curve (y,y+v,y+v+t, Y

• i dpd in S because the source term (5) can
y+t+y+v, y+y+v, y+y,y) is not inciu<*e *
, , . . . u or by the implied quenching modification (see
be made to vanish by 4 e oi y

below (6)).
... „ ^ A symmetry is broken, the S-D

Thus at large enough 8 , when the ut t ...
. , „ (Y) (1+ie T.)U (y) might beequations derived from the change of varrables Uy(y) J V

has a local symmetry U (n)
different for all curves in S. Note that (6) has y

, / \n/n+n" which would make terms as (b;fl(n) U (n)Sl(n)- and UtCn) - n(n) Ut(n)!2(n+0 .

11 • s rofzl * fi(y))F' • Hence only the pEK model (6) has the
for curves in S vanish (fi(z) * »

■ including the source terms from the »t periodicity. In 
correct S-D equations inducing
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V

Fig. 3 Example of a curve C (a) that may lead to an extra source term (5) in 

the Schwinger-Dyson equations for the partially reduced model (6r), 

where t is the unreduced dimension. This source term (5) has as support 

the two open lines L| ^ shown in (b) and (c). Only if there is a phase 

symmetry on Ut can the uncircled links make this source term vanish.
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the next section I consider single point models where the spu

terms from S do cause problems.

4. Further reduction at finite temperature

It is well known 04] that the Nt x «d theory of sect. 3 describes the 

gauge theory with a lattice regularization at finite temperature
• • -------nal 1 V H Ol

SU(N) gauge theory with a lattice reguiani.oi.j.v“ -- -- 
(Nt at)"1- The reduced model (6) has been used to study numerically Qo] this 

system at large-N. Also in that paper it was shown analytically that the 

ctrum of the eigenvalues exp Q.0 •] » j = *ground-state spe
N, of n Ut(n) is 

n

Bt-0: 6 2ir ,. N+KW (J ' _2_) ’

2 IT . i
with k an arbitrary integer and Z0 = 0 (mod 2t t ) because SU(N) is the gauge

group. Note that similar calculations of <tr IT U^(n)> have been done in 06].

n
The Z(N) symmetry 0. -*■ 0. + 2?rk/N is thus (un)broken at (small) large 0^.

J J i0.Recall that the order of eigenvalues is e ^ is arbitrary. This would be the 

same whether or not the space—like dimensions are reduced.

In the standard LGT the 0crit(Nt) of the Z(N) phase transition is related 06]

to the deconfinement transition at temperature Tc» which is extracted from the

renormalization group scaling of 0Cr^t(Nt). From his Monte Carlo simulations,

which gave $C£lt: (N ), Neuberger 00] claimed the physical deconfinement 

pEK ttemperature Tc at large-N to be 12-50 ^mom* would happen if we reduce

the torus model (6) further by setting Ua(n), a = t, 1, d, equal for all n,

which I will call the replica model (rEK)?
First let me specific on what rEK is. Basically it is a single point model

with d+1 matrix variables: the integration measure of (6) is changed to
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n n
n ct=t, 1,.. ,d

(7a)dU (n) n 6(U (n)-U (m)),
“ n*n a a

and the translation rule (3) is modified

T': Ua(n,X|,..,xd) - Ua(n), (7b)

where n becomes the label of the replica. In this way the distinction is more

transparent between the wanted and unwanted source terms below. But it is clear
N N

that now the order parameter <tr IT U (n)> = <tr U C> gets a non-zero
n=] tv rEK t EK B

value for any $ > % 0.15 N [2ij , where the U(l)^+' symmetry of the single 

point EK model gets broken. [Notice that the Z(N) symmetry as discussed above 

is part of this U(l) symmetry on the time link U^."] This will be independent of 

Nt and we can never obtain from rEK a non-trivial behaviour of 8Crit(Nt), which 

is to be linked to the physical high-temperature deconfinement transition. All 

this is not surprising, because as said this replica model is equal to single 

point EK model. Somehow we must improve the completely reduced model (7) so

that it becomes equivalent to the standard theory also for 8 > 8™, including
EK

the non-trivial dynamics around 8Crit(Nt).

The standard S-D equations of the unreduced theory are

lhs(A) = s(C,y,a)<...> + s(C,y,a,N )<...> , (8)

see (A) and sect. 3, where the second source term from the time periodicity 

(e*8* fig* 2b) was found. The second term on the rhs of (8) may be non-zero in 

the deconfined phase jjA, 16_|. The reduced model (7) has the same equations (8) 

except for a spurious term on the rhs

s(C,y,a)<...> r£K if CeS (9)

as found in the preceding section. The sought-for cure of rEK should kill terms 

like (9) but not those like the second of the rhs of (8). There are (at least) 

two methods along the ideas of [A,5] and Q0 , which appear to achieve this, so 

that their loop equations are equal to those (8) of the LGT.
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1) Modify somehow the ground state of model (7) a t ^j ^ js=l,

<*tV)} for „ * where are the eigenvafues of U <n) • • f

. terval (0,2t t ) uniformly,N, must have the following spectrum: cover the m Qnc

k. For this to be possbunched together at values 2iTk/N for integers • these
(see the remark below). Wttn

must have N = nuN^, with m a positive integ . _ ^ direct-

"momenta" 0 we do the momentum quenching presc p 
t

ion. Specifically replace in (6,7a)

(i) U (n) by U D , = 6lj exp[ieJt]
t t t t

(ii) / n dU (•:») by /dUt * C(Ut, Dc),
n

wheri

D lj = 6ij

and C is the constraint on the eigenvalues of NtDt of 00 *

.. q J the end of the calcul— But (iii) now we do not integrate over the momenta 0t a

-v i27Tk/Nt u which kills (9) indeed, while 
ation. There is a Z(N ) symmetry U^. e ut*

N ... xr modpl will be correct
leaving trU^ invariant. With the condition N - mNt t
t A 1 . . i limir N o®. Note that the interval 2^ of
(good momentum coverage) in the limit
[9] has been recovered. Now the remark on the condition N - ™Nt- This condit 

differs for the quenching prescriptions of [3] and 0, where the structure

in the expectation value of operator 0
the integrations over the momenta 0^ 

is respectively [cf. 9]

Nj

f n dej n n sin2 ((e1 - eb/2) <o>fl (a)
u,j p y i>j p y

/ n d©^ <o>„. 0>)
b,i “ 9

With our random momenta the measure of (a) would give zero for coinciding

angles (N>Nt), so that one should take N=Nt. The weak coupling limit N^ °° then

drags the N along, a somewhat strange situation. For the prescription of 0

one may have N > N^, but one should then correct for the extra weight given to

zero loop momenta in the Feynman diagrams. Perhaps in both cases it is easiest

to have N=N . Note that I took only the time-like momenta random. If all
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momenta are taken at random the numbers work out differently, for example if the

spacing of 0 is 2t t /N one has N = m N Nd.
M s t s

2) In order to disfavor QQ the broken symmetry state vs. the symmetric one the 

following action could be used in (6a, 7a)

3 S
mod rEK ’8" S rEK B2 N-1 Z cltr(nU)|2, (,0)

C L.=part C L. M
l i

CeS

where c^ > 0 are arbitrary constants and S is the set of troublesome curves,

which split in the lines and L^ (see sect. 3 and fig. 3). This is only a

formal solution of the problem. To get something more practical one could

follow the consistent field (cf) approach of QQ to replace the £ term of (10).

This replacement is exact in the limit 8 -* 00 and it is hoped that the same cf

addition to the action S leads to the desired symmetric ground state also at 
rEK

intermediate 0. The cf approach is to replace the link variables by their 

diagonalized form D^, calculate the trace of the product of 's over L, and 

finally sum over the open lines L. If we do this also for the space-like 

dimensions QQ we get for the second term of rhs of (10)

~62n  a 6(eu - v (id

where F is a messy expression, because in the set of troublesome curves of S we

excluded those like fig. 2b, whose source terms we do not want to kill. Also

for simplicity we went to a symmetric lattice 8 =8 =8*
t s

Finally let me mention another possibility. The twisted (TEK) model |7),

with the trace in the action of (2) multiplied by a fixed twist Z e Z(N),
yv

looks very promising, especially for numerical simulations. For N=L2 a 

Par*"*-Cu^ar twist can be choosen so that perturbation theory gives the planar 

Feynman graphs and that the expectation values of open loops from inside a L4 

box vanish. Hence the 1/N corrections are of order of the finite size correct 

ion Q4j of the standard LGT on a L lattice. Perhaps it is possible to con 

struct another twist so that this box becomes of size N x Nd N < N . which
t s* t s’

140



would approximate the standard large-N theory at temperature T =» (Ncac) and 

alS° be usefu 1 in the construction of a TEK Hamiltonian. But that this can 

done generally is not certain, because the L,4 arises as a generalization 

dimensionality (24) of the Clifford algebra of Dirac matrices.

The problem is to find a solution to ft^&v = Zvp "* exP(2?T vy

with such a twist that the ft saturate the action and such that "open loops

P . .• of solutions withd 7 d d = 3. A class of solutions with the
vanish only inside a box NtNg, Nt < Ng an 

first two properties is given by the ansatz (j20j

a be, d 
ft = PyQPRySy

(12)

with arbitrary integers a,b (c,d) modulo p(d)*
. I f0How. Because

The SU(N) matrices S P Q R are given in C20] * whose
the other commutators

PQ = a QP and RS = a SR, a = exp(2TTi/n) and N - pq,
P q n • r n for the ansatz above.

vanish, it is straightforward to calculate the twis \>Pka kb Re kd
VU PR MS ). A

Note that for any integer k trft = (phase factor)
o with a*l. [For A traceless and

necessary condition to have tr AB-0 is A -a
• not true.] For the ansatz (12)

B the unit matrix we see that the opposite i . _
ite necessary conditions, c

to give vanishing traces of open loops one ca .
r . bv the P and Q's. For a part wrth 

which I consider first those generated y

p-links and N v-links this condition is (no sum ove
v (13a)

<v» * V»»V, * w '0<~‘ ”

o£ paths one has similar equations, up to 
■or the three other classes of p

a
N, a„)(E Nu V * 0 (m0d p)

(13b)
y-t...d V w "y

ther equations hold with a^ and b^ replaced by c^ and d^. All this is quite 

omplicated, but it is easy to construct an example for Nt < by choosing

1 > 1 prime and by use of the following lemma:

•f a positive integer n has prime factors < p then n^O (mod p).
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2 2Now the left-hand sides of conditions (13) are less than (1+d) Ng AB = M, with

F2A = max (a ) and B similarly, and suppose all are > 1 . For M < p the lemma
y P

shows that the conditions (13) are fulfilled; one could do better, of course.
Nt

But we want slightly more, namely tr ^ 0. An example that solves this 

problem goes as follows. Choose q = N^, hence N = pN^, and for (12) = S.

This achieves the required non-vanishing of the trace, but because aQ = bQ = cc 

= 0 the necessary conditions (13) may be violated and one must check that the 

traces of open loops inside the N^N^ box still vanish. For tr k < Nt> this 

happens automatically. Some numerical values will show that this construction 

is not very practical and one should find explicit solutions to the whole set 

of equations of which (13) is a part: p = 1601, then Ng is at least 10 (if A

and B = 1) so that for Nt = 3,5 one needs N = 4803, 8005. But in this example

2 1/3 .N probably is of the order of (N /N ) , so that a more practical twists t
. 1/3might be constructed for N 'v 100 with N£ < Ng and Ng 'v 20/N^ . After the

present article had been finished this program was realized [22].

5. Discussion

I have argued that unlike model (6) the completely reduced one (7) is not 

to be trusted at large to mimic the large-N theory at finite temperature. 

This is because the Schwinger-Dyson loop equations of this model get spurious 

source terms if the loop belongs to the class S, of which an example is given 

in fig. 3. Also I gave two or three possible remedies, where the problem was 

to get rid of these spurious source terms but not of those very similar source 

terms arising from the time periodicity (fig. 2b), which are crucial Ql\ to 

give the phenomenon of quark deconfinement at a high temperature T£. Note that 

these terms vanish for T<Tc, which implies that in leading order of 1/N the 

physical content is temperature independent, see also QiQ .
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It is possible to construct 03] from the Euclidean theory by use of th 

transfer matrix and the limits Bt -*■ 00 and at 0 the Hamiltonian of the theory. 

Indeed the authors of 01, 12] have done that starting from the partially re 

duced model (6), which now has been proved to be correct (sect. 3). Only alo g

these lines could one obtain, say, the glueball spectrum 08). This 1S because 

m the Euclidean theory the connected part of the Green's function vanishes in 

leading order of I/N by factorization QQ . A transparant way to understand why 

in the quenched EK models these subleading terms are inherently unobtainable 

follows if one considers the fluctuations around the master field [J C3 •

dust as for the original reduction by Eguchi and Kawai 03 our arguments 

for the case of finite temperature were based on the loop equations. But notice 

that many questions such as (which S-D loop equations (together with boundary 

conditions) determine the physical content of "the" large N theory?" are yet 

unanswered. Indeed the loop equations derived QQ for the momentum-quenched 

reduced model are slightly different than (4), but perhaps they have a smoother 

continuum limit. In [9] I gave the most naive finite temperature reduced model, 

which equals the d+1 dimensional one of the momentum-quenching prescription 

0.5], but with the time-like momentum integral replaced by the standard 

Fourier sum with interval 2^/3^. Because of the quenching in the tiraelike >> 

direction the loop equations for this model do not have the spurious source 

terms, but still those from curves as in fig. 2bF3. Thus, while this model is 

expected to describe the perturbative regime (or high temperatures) reasonably 

well, its validity in the non-perturbative regime (e.g. the deconfinement 

transition) may be correct also. The same should hold for the simpler model 

of sect. 4. A problem that remains is to select between the different 

modifications [3-7j of the EK model, which hopefully are equivalent at N = °°, 

for the best one at large but finite N, where they are inequivalent [of. 9,22],
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Note added

I have heard that just as in sect. 4 D. Gross and L. Yaffe tried to do 

something with the time-like momenta.

Footnotes

FI. I thank H. Neuberger for pointing this out to me.

F2. Admittedly I am a bit cavalier about zeros in the coefficients

aD» du* But recall that (13) and others are only necessary conditions

and a subset of them might be enough. I hope to consider the problem in more 

detail in a future publication, see {22}.

F3. One has VTltt Dk = VTl{e2vi knl/Nt + ... + e27Ti kVNt) , which after summa-

-i Nt
tion N^ £ for all n^ gives 1(0) for k 4- 0 (=0) mod N or, in other 

n. = 1 r
words, a (non-)zero expectation value for these (closed) open loops, 
corrects a remark in sect. 4 of ref. 9]. Note that in our model of sect. 4

for N = mN^ we fix n^ = i, which achieves the same.
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1. Introduction

Recently much attention has been given to the reduction [1,2] of the 

Wilson SU(N -» oo) lattice gauge theory [3] to a single-point model. 

Especially a model with twisted boundary conditions looks very promising 

for numerical [5] and analytic [6] calculations. Also the problem how to 

incorporate finite temperature in (partially) reduced models has been 

considered [7,8,9], In this paper we present general twists, which 

achieve this for a single-point model and which we will call Hot Twists. 

These can be used in Monte Carlo simulations to study the large-N 

deconfinement transition at the critical temperature T . Preliminary 

results indicate that T^ ~ 3\Zo, where a is the string tension. We ex 

tracted from [5] A ~ 3. 10_3Va and from [8] T ~ loV^. This is not 
*-< c L

far from the value for SU(2) and SU(3) [10]: T ~ 0.5Vo. So one might
c

suspect that the mechanism of confinement at N -* °° is

not very different from that at N = 2,3,contrary to the claim of e.g.

ref. 11.

The program of this paper is as follows. In sect. 2 we briefly 

discuss the reduction procedure at finite temperature. In sect. 3 we 

show that non-perturbatively, i.e. at the level of the loop equations, 

there is agreement for N -» » between the one point model with the Hot 

Twists and the Wilson theory at finite temperature. In sect. 4 we 

construct the appropriate Hot Twists. Sect. 5 deals with the weak 

coupling limit,in which one retrieves the planar expansion at finite 

temperature. Finally in sect. 6 we give some further discussion of our 

Hot Twists, notably their potential value for Monte Carlo simulations.

(*) We assumed equal for the twisted [5] and the quenched [8] Eguchi- 

Kawai model.
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2. Reduction 

We

■- mil

start from the pure SU(N) gauge theory on a hypercubic

• Zj where indices
(spacing a = 1) in euclidean space-time with dimension ,

are denoted by greek symbols (y,v,...)« Tf necessary
_ , on a lattice of size

time-(space-) direction by y = o (i,j»k.»» “ * *
ltions in the time direction the

V*s periodic boundary condi

P rtition function Z and the action S„ [3] used are 
w W

(2.1)
ZW [ n dU (x)exp(-6Sw)

J y,x€A

/ f , ,+\ (2-2)
Sw = l TrM-Uy(x)Uv(x+y)Uv(x+C) Uv(x) )

T = N ^, as long
This gives the gauge theory at equilibrium temperat o

as the extent of the spatial directions is much larger than Nq.

. n M is equivalent to the
and Kawai [ 1 ] showed that for N the theory

reduced single-point model under the reduction

(2.3)

R: U (x) -» U y v
For weak-coupling (3 - »), modification of (2.3) proved to be necessary 

first done with a quenching procedure, see [2] and ref. therein. Later 

Gonzalez-Arroyo and Okawa [4,5] proposed the more elegant approach of 

introducing appropriate twist Z^v € ZN (the discrete centre of SU(N)). 

This Twisted-Eguchi-Kawai (T.E.K.) model is defined by:

TEK

J n dU^ exp(-8 STEK)
(2.4)

(2.5)

»

S = J* Tr( 1-Z U U uV) .
TEK 4 \ yv y v y v/

y^v

Here and in the following 3 is the inverse coupling constant squared 

and not the inverse temperature.'
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The twist Z will be labelled by the twist tensor n = -n through:
MV yv vy

Z
yv (2.6)

To guarantee in weak coupling agreement of the internal energy, we demand 

the twist to be orthogonal:

>c(n) ]
-q n n £ = a.N8 yv a6 yvag (2.7)

with a integer. Furthermore the twist must be nonsimple, which usually 

means a^o,and the corresponding minimum action solution must be unique up 

to a gauge transformation, which is equivalent to the statement i(n) = 1, 

with:

i(n) g.c.d. ,N,<(n)/N) (2.8)

(g.c.d. - greatest common divisor, see [6] for details).

In order to establish further correspondence we follow ref. 5 in 

identifying Wilson loop operators. One makes the change of variables:

U^(x) - Z(x,y)U (x) , (2.9)

with Z (x,y) € ZXT such that N

Zyv = Z(x,y)Z(x+y,v)Z(x+v,y)"1Z(x,v)"1 (2.10)

is independent of x. After the reduction R one retrieves the action of 

the TEK model. In order to see that this change of variables is possible 

we have to show that we can choose the Z(x,y) such that we still respect 

the boundary condition:

Z(x,y) = Z(x+NQ6,y) (2.11)
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for all x and p. We first construct Z(x,y) satisfying (2.10) on the same 

lattice but neglecting the condition (2.11), which is easily done. We 

shall show that with a suitable Z^-gauge transformation (2.11) will be 

satisfied. Each time layer represents a configuration on an infinite 3- 

dimensional Z^lattice. They have the same plaquette values Z_ and so by

appropriate Z^T-gauge trans 

Z(x,i) = Z(x+o,i)

formation we can choose:

(2.12)

, *-Vio 7 -factors picked-up by
for all x and i. Now consider the ratio of N Nn-1 -1

. . N°; Z(x+ko,o) n Z(x*I*«.°)
two neighbouring straight timelike lines. £=0
Using (2.12) it represents the Z -Wilson factor for a closed^loop

. 7 0 It will
fig. la) and with the definition (2.10) this ratio become 01 

be shown later that we must, and can, choose the twist such that is

. 7N° = 1 for all i. Therefore the ZN~
the smallest positive integer witn

factor:

N0“! . . 
n Z(x+ko,o)

k=o

(2.13)

iv— v/
is independent of x.. This is necessary to have a consistent reduction of 

temporal loops. Unlike for Z(x,i) we have Z(x,o) dependent on Q» 

can consistently choose Z(x,o) to be periodic.

Z(x,o) = Z(x+N o,o) ,
(2.1 A)

because with (2.12) equation (2.10) remains valid. We can even choose a 

spatially independent Z^gauge transformation which makes ■ I, which

will be assumed below.
As in the TEK-model one has the following correspondence for the 

Wilson loop C:

~Tr( t t U (x))«*i " z Tr(R t t U (x)J , 
N \ec * ' N x€S V x€C " /

(2.15)
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j

:

Fig. 1: a) The time-like lines considered in the construction of the 

change of variables U^(x) -> Z(x,y)U^(x). 

b) The "closing" of a single temporal loop in order to define 

the appropriate surface in (2.15).

Fig. 2: The loop equation for < N 1 Tr

term < N_1 Tr Tn U (x) > < N_1 
L, ]i W

t t  U (x)> contains a source 
x€C U W
Tr t t  U (x) >TT with L, and L 

1*2 y W 1 2

as in (b). These terms should survive in the reduced model, 

but not those (c) coming from the identification of the links 

L and L' in (a). The twist makes these spurious source terms 

vanish.

152



where S is any surface with boundary C (C = 9S). For single P 

loops" closing by the boundary conditions, S is defined y 

with a straight time-like line (see fig. lb).

C

Loop equations
We will briefly sketch how the loop equations in the presence of 

temperature can be the same for the Wilson theory and TEK model.

This imposes conditions on the construction of the twists in sect. 4. We 

have to show that spurious source terms [l] arising from the identifi 

cation of different link variables (iMy) and U^(z) -* U^) vanish. These

terms contain

< N"1 Tr R t t U (x) >TT_ (3#I

c p TEK
yzWith Cyz the part of the lo°p C running from y t0 Z* For 0 °° the tW

eating configurations [5] minimize ST£K and the source term vanish*

Tr^ n Q ^ = o. It is assumed that the twist effects are strong

enough yz to keep (3.1) zero not only at 6 = 00 but down to 

e£K ~ 0.15N , here the strong coupling region sets in and the unbroken

i<p[12] U(1) symmetry -e P Uy forces (3.1) zo zero. Monte Carlo

simulations appear to confirm this conjecture [5].

In the presence of temperature the loop equations in the Wilson

theory have source terms due to the periodicity, which should be main 

tained after reduction [9]. This implies that Nq must be the smallest

positive integer with

/ N \Tr(n0°) + 0 '
(3.2)
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The spurious source terms vanish if:

/ k k k. k_\
Trf ftQ fij J = o (3.3)

for k inside a box of dimensions N xN, xN. xN~ with N. -* co for N y o 1 2 3 1

but Nq  fixed. To illustrate this consider the loop equations for the 

path C of fig. 2a. On the link L the change of variables [1]

U -* (l+i€T^)U is performed. In the reduced model there are the genuine (temperature)

source terms (3.1) with C = L _ (fig. 2b) and the spurious ones L! 9

from the identification of the links L and L'. The source terms from Lj ^

are forced to zero by the twist, but not those from L 9 as follows from

(3.2) and the cancelling of the ft^'s. Note that if the link L* in fig. la

is shifted upwards to the "boundary" it gives a spurious source term, which
/ N k k k x

also vanishes because Tr( ft ft. ) = o for k.^o mod N.. This is
\ o 1 2 3 / i i

necessary if we are to mimic finite temperature.

4. Construction of Hot Twists

We will first translate the constraints (3.2) and (3.3) in constraints

on n , which is related to ft by: yv* y J

ft ft ft^ftT 
y v y v (4.1)

As in [5] we find that condition (3.3) is satisfied if and only if k^ is

4not an element of the sublattice A c: Z :

A = n q yv^v
(4.2)
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where n
yv 5 e uvcx$nag anc* 0 defined by (2.7). Also for all y we have

«nkn+ = nk
^ ° U ou o (4.3)

( No\and as long as Zk. i 1 we have Tr(ftk) = o. So in order to have Tr(^ 0 )
oi \ °/

we must have that ~
is a multiple of N , and n . is a multiple of N/N 

o oi c^ ux
l N/N • For practical

However for at least one value of i n . should equa 0

A = N Zx N.Zx N2Zx N37.purposes we take A to be a rectangular lattice, so 0

for N -* 00• Furthermore,
We also wish N , N and N_ to be of the same

1 4 j •wc require
anticipating that we want to reproduce the planar expansron

the algebra generated by

k k k. k, .
A(k) = nQ fi] fi22fl33 » k€Z4/A , k 4 o (4.4)

t0 be SU(N). Obviously A(k)A(k') = Zfc k,A(k')A(k) with Z^, € ZN and 

Zk,k' = 1 k = k' mod A. This guarantees that they are linearly 

independent. Namely suppose that A(k(i)) for i - 1 to n are independent 

and I a.A(k^) = o. Conjugation with A(k^n ) yields
,■ — i i

n+1 i=l

il " Zk(i)>k(n+l)A(kCl)) and 50 j, “i ('-Zk(i) >k(n+u) A(k(0) = °-
This implies ou = o for all i up to n + 1. In conclusion the volume 

^4/A has to equal (= dim(SU(N))+ 1).

In ref. 6 it was shown that one can easily construct once n^ is 

given. So we shall concentrate on finding nyv*

Let us first take o = 1 in (2.7). Then i(n) = I (see (2.8)) gives no

extra constraint on n . The condition on A is that its 4 generators yv

k, = n are related by a SL(4,Z) transformation to the four basis
P yv J

vectors N e^, therefore N-* n is an integer (in the last two ex- 
y * y yv

pressions no summation over y). The appropriate SL(4,Z) transformation 

can be written as Y = -(L *n)C where L = diag(NQ,Nj . One can check
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that all conditions on n are met by the choice:yv J

yv

K(2K-1) 4K-1

o K(2K+1)

N = N2K(4K2-1) , N. = N K(2K+1) , N = N (4K2-1) 
O 1 o z o

N = N K(2K-1) .3 o

Using the methods of ref. 6 we find:

no = P1 ® 12

n> ■ <5.
^ (K+1)(2K-1) 1-4K2

2 ^2

°2 " 1,
®p*(2k+,) q -4k2

SO
U
3 II o

®pfK+1) q^2 .

(4.5)

(4.6)

Here P^,Q^ are elements of SU(fcL) satisfying the basic commutation

relations P.Q.p'q T = expf-^r^). For eq. (4.6) M. = N and M0 = N K(4K2-1) 
liii \ M. / 1 o Zox l '

and ® is the tensor product of SU(Mj) and SU(M2) which lies in SU(MjM2 = N).

One always has that is proportional to Nq. Here we constructed

n^ such that the are as close together as possible. For N -* «» we

find N.: N_:N0 = 1:2:1. We would rather have that for N -» «> all N. become 1 Z 3 i

equal, although it certainly is not necessary. For this we had to

compromise a little by allowing for a ^ 1, supplied with a constraint on

N . The twist we found is also more economic in Monte Carlo simulations o

(in sect. 6 we will elaborate on this). This other Hot Twist is given by
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'o 2K(4K2-D 4K(4K2-1) 2K(4K2-1)n

n = Npv o

2N2K(4K2-1) , N. = 2N K(2K-1) , N. = N (4K2-I) ,
° Jo AO

= 2N K(2K+1) , N - odd 
3 o o

and the eating configuration is found to be:

% = q ]2
^ 2K(2K+1)(4K2-1) 4K(1-4K2)

P2 ^2

Q = PK+I
! rl

^ „2K(2K+1)(K+1) -(2K+1)2
®p2 q 2

fi2 = P1
®pf(2K+0 q -4r2

r,l“K
„ (1-2K2) (2K- 1) n(2K-02

°3 = P1 ® p2 Q2

(4.7)

(4.8)

Here M = N , M_ = 2N K(4K2-1) define P.,Q. as above. This twist has a =2. 
J o 2 o l i

One must be careful in constructing the sublattice A. Here it will be

generated by k(o) = n , k(1) = Jn , k(2) = n . and k(J; = |n 0. In (4.2) 
p po y Pi y p2 p p3

q is of the form (2Z,Z,2Z,Z) in order to keep k integer.

To guarantee a unique minimum action configuration (up to a gauge) we

need i(n) = 1, which reduces here to g.c.d. (a,N ) = 1 or N = odd.o o

5. Planar graphs

For N -* °o we want to reproduce in weak coupling the planar ex 

pansion in the presence of finite temperature. The only influence of
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finite temperature is that the integrals over temporal momenta pQ get

n qrl
replaced by a Fourier sum l with p (n) = 2nnT . There is no inter-

n=o
ference with planarity because this is a property of the SU(N) index 

structure only [13], unlike on the lattice where space-time momenta come 

from the color degrees of freedom. We will ignore in the continuum the 

infrared (zero mode) problem coming from the n = o term in the sum 

mation^*^ .

Recall that also for T = o there is only a formal correspondence between the 

continuum and the TEK-model at N -» », Here also one ignores the infrared 

problems which still plague the theory.

We can closely follow ref. [5] in establishing the correspondence. 

Conjugation with corresponds to translation, from which one identifies 

the momenta q:

fl A(k)ft+
p p

eXp(lT nyvkv)A(k) •
(5.1)

For convenience we suppose a = 1 (generalization is straightforward) and
4

we label k€Z /A through

n qpv
(5.2)

N
then q = -r~n k and 1 < q < N . p N yv v ny y

The propagator is that of a lattice with periodic boundary conditions and 

size t t N^. For N -+ °° the spatial momenta become continuous but the 

temporal momenta retain their correct discrete character, so that the 

temperature propagator in the continuum limit is reproduced (a = lattice

(*)We thank G. 't Hooft for a discussion on this point.
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spacing; aNQ = T ):

-2>.{, z'2"aVA /2nq oY
l'-COSl aNo )) Un o; (5.3)

Finally a non-planar graph will acquire a phase factor

expi - y 7 k^n ? I, where q^are the loop momenta.
V N .**. £ y yv v J Pi<j y>v 7

Let: us explicitly evaluate the phase factor for the twist (4.5) and 

Q' } = (o,q|^\o,o), for which k^ = (-1 ,o,2K-l, I-2K)q^ \ We find:

■Km .1 4%A‘') - -K^-^ .1 For K -» co
N 1<J 

2nq

1 N K(2K+1) o

KJ

becomes continuous and the phase factor is:

/-i NK(2K+1) r (i) (j )\ . .Hjw n l. ♦, )whiwhich rapidly oscillates. Integration for
0 (i) i<:i

N -> co over <|) will yield zero. So all non-planar graphs vanish for

6. Discussion

We constructed the Hot Twists (4.5) and (4.7) for the SU(N) single 

point model, which guarantees equivalence for N -» <® with the Wilson 

lattice gauge theory at temperature T, both perturbatively and non- 

perturbatively (loop equations). This is rigorous in the weak coupling 

limit (3 -* oo) and in the strong coupling region* but probably holds for 

all 3. This simple model might be useful for analytical calculations. As 

in [6] one can easily construct surviving fluxons (with an action of 

0(1/N) such that e ^ (fluxon) remafns finite for N -» °°). The spectrum 

is the same (AS = is the spacing in the action)* but the occupation 

numbers" are different. However one can argue that their entropy becomes



too small for N -* oo to give a significant contribution, to f.e. the 

string tension.

From a practical point of view, e.g. Monte Carlo simulations, one has

to keep N finite. Just as for the symmetric twist of [5] we have that for

finite N the twist mimics a SU(N) lattice gauge theory with periodic

boundary conditions and size N xN, xN.xN.. From [14] we know that
o 1 L 3

finite size effects are small for min N. ^ 2N , and we assume this to be
1 o

true for the one point model also. For the twist (4.5) N = N (1,K(2K+1),p o
4K2-1,K(2K-1)) and N = N2K(4K2-1), so that we must have K > 2 and 

2therefore N > 30No. We now see why the twist (4.7) is more economic:

N = 2N2K(4K2-1) can be as low as 6N2, because N = N (1,2K(2K-1),4K2-1, 
o o y o

2K(2K+1)) allows for K = 1, which gives N. > 2N .1 o

To be honest we have to compare this number of degrees of freedom

4(N2-1) = 144N^-4 of the one point lattice with 24N^ (or 64N^) of a 
o o o

Nq  x2Nq  x2Nq  x2Nq lattice with gauge group SU(2) (or SU(3)).

There is only something to be gained for gauge group SU(M) with M > 4.

Of course from a numerical point of view one has to compare the one point

lattice with the lattice theory for M = N and then the reduction is

enormous. However compared to the torus model of [8], where one reduces

only in the spatial directions, our model is much easier to handle. The

Monte Carlo calculations are just as easy as for the symmetric twist [5].

One would like to determine 3 (N ), above which the global Zco N

symmetry is broken and deconfinement sets in, by calculating the ex 

pectation value of a single temperature loop. In order to

establish the correct scaling behaviour of 3 (N ) and extract T from it,co c

one would like to perform the calculations for quite large Nq  values. For 

the twist (4.7) we have to work with at least SU(6), SU(54) and SU(150) 

for Nq = 1, 3 and 5 respectively. This may seem somewhat large but only 

in this way are we guaranteed of reasonably small boundary effects.
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ect (N2 = N thanFor given N and N our model is better in this r p 

the single-point (torus) model of ref. 9 (8) with 

(space) quenched momenta, where N = ^(N ^ i
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SAMENVATTING

Kosmologie beschrijft de globale struktuur en geschiedenis van het 

elal. Het Heelal expandeert voortdurend en was dus in het begin zeer heet 

dicht. Om het vroege Heelal te bestuderen moeten we weten hoe de materie 

gedraagt bij de toen heersende zeer hoge temperaturen (> 1 GeV ~ 10*"* 

elvin). Z5 belandt men bij de hoge energie fysica, die het gedrag van de 

elementaire deeltjes en hun wisselwerkingen bij zeer hoge interaktie 

energieen beschrijft. De kennis hiervan is het laatste decennium sterk 

toegenoraen. Hiermee gewapend is het mogelijk de fysische processen, die 

werkzaam zijn in de eerste seconde van het Heelal, te bestuderen. Dit dan 

is het onderwerp van mijn proefschrift.

Waarom maken we ons eigenlijk druk om die ene seconde?

Wat mij betreft zijn er drie redenen: (1) puur raenselijke nieuwsgierigheid;

(2) in deze zeer vroege fase kunnen bepaalde processen werkzaam zijn 

geweest die de kenmerken van het huidige Heelal bepaalden; (3) sommige 

theorieen van de elementaire wisselwerkingen opereren bij zulke hoge 

energieen dat in de komende eeuw(en) deeltjesversnellers op Aarde 

machteloos zijn, terwijl het zeer vroege Heelal wel over dergelijke 

energieen beschikte. Een voorbeeld van deze punten zijn de zogenaamde Grand 

Unification Theories (GUTs). Als we gravitatie even buiten beschouwing 

laten, voorspellen zij dat bij zeer hoge energieen (> - 10* GeV) er

slechts §£n geunificeerde kracht is. De drie waargenomen krachten, namelijk 

1) de elektromagnetische, 2) de zwakke, die radioaktiviteit veroorzaakt, en 

3) de sterke, die de protonen en neutronen bindt in de atoomkern, zouden 

dan slechts een "restant" van deze GUT zijn. Punt (3) is evident als we 

onze sterkste versnellers (~ 1000 GeV) vergelijken met de benodigde energie

* de betekenis van >, < en ~ is groter dan, kleiner dan en ongeveer gelijk aan,
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My. M.b.t. punt (2) zouden GUTs in het vroege Heelal (leeftijd 10 ^s) de 

nu waargenomen materie-antimaterie asymmetrie kunnen genereren. Ook als er 

inderdaad een raagnetisch monopool deeltje is gevonden moet deze in een zeer 

vroege fase zijn gemaakt.

De laatste jaren is er een zekere symbiose ontstaan tussen de fysica 

van elementaire deeltjes en de kosmologie, waarbij de e£n voorspellingen 

doet die de ander toetst en vice versa. Voordat ik zeg wat dit proefschrift 

behandelt bespreek ik eerst de huidige kennis van deze twee vertrekpunten.

Kosmologie. Het standaard model is dat van de zogenaamde Hot Big Bang. 

Het is gebaseerd op Einstein's theorie van gravitatie. Het model 

incorporeert een aantal fundamentele waarnemingen en doet een aantal voor 

spellingen, die bevestigd zijn. Het Big Bang model voldoet voor een tijds- 

spanne van 1 seconde tot » 15 miljard jaar. Niets let ons dan ook om de 

eerste seconde van de Big Bang te exploreren, raaar zoals gezegd is hiervoor 

kennis van het gedrag van de materie bij zeer hoge temperaturen vereist.

Hoge energie fysica. De elementaire deeltjes zijn in drie categorieen 

te splitsen: 1) hadronen, 2) leptonen, en 3) "ijkbosonen", die de 

interakties overbrengen. Hadronen, bijv. het proton, nemen aan de sterke 

kracht deel, maar leptonen, bijv. het electron, niet. Het is nu zeker dat

hadronen opgebouwd zijn uit nog fundamentelere deeltjes: quarks. De

ke inner ken van een elementair deeltje hangen af van hoe het aan de

interakties deelneemt. De kennis van deze krachten is sterk gegroeid: alle 

interaktes worden beschreven door ijktheorieen. Deze ijktheorieen zijn 

nogal mathematisch, voor een poging tot uitleg zie bijvoorbeeld mijn 

artikeltje in de Grote Winkler Prins (8e druk). Het zijn relativistische 

quantum-velden theorieen met een bijzondere interne symmetrie, de 

ijkinvariantie. De struktuur van deze ijksymmetrie bepaalt de fysische 

inhoud van de theorie. Voor interaktie energieen £ 100 GeV is er een
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standaard
model van deze struktuur, die tot nu toe alle toetsen met glans 

heeft doorstaan. Maar het standaard model laat nog vele vragen open. Er

lijken twee alterna 

model 

aantal

uxv.cl.iatieven te zijn. 1) Unlficatle (GUTs) , waar het standaar 

een effectieve theorie bij lage energieen is van Un simpelere. Ee 

open vragen van het standaard model zou kunnen wo 

Tevens wordt er een spectaculaire voorspelling gedaan
— j « ► on

instabiel, met gemiddelde leeftijd ong. 10 ---- _
Zal dit binnenkort toetsen. 2) Compositeness, er is een nog fijnere 

struktuur, die samenbindt tot het waargenomen standaard model. Helaas is er

n°g geen goede kandidaat theorie.
Nu zal ik de inhoud van het proefschrift bespreken, zie ook de 

inleiding l.l - 1.3. jn deel I gaan we uit van unificatie theorieen en 

bekijken hun eventuele rol in het vroege Heelal. In deel II beschouwen we 

het ingewikkelde dynamische probleem van quark "confinement in hadronen en

wat er verandert bij hoge temperaturen (T - 1 GeV).

Het belangrijkste proces in dit proefschrift is de overgang tussen

verschillende fasen van de wisselwerkingen als het Heelal afkoelt. Merk op 

hoe gecompliceerd de "gewone" fase overgangen van de statistische mechanics 

al zijn, bijv. het koken van water. Deze twee soorten van "fase overga»-

hebben veel overeenkomsten.
In deel I beschouw ik de fase overgang van de geunificeer^ 

symmetric naar die van het standaard model. Dit gebeurde toen het i. 

een temperatuur had van ongeveer 1015 GeV - 1028 Kelvin en een leeftijd va*

>• 10-35s. Deze phase overgang kan zeer spectaculair zijn geweest.

Hoofdstuk 2 geeft een wat algemenere bespreking, terwijl de hoofdstukken 3 

t/m 5 specifieker zijn. Het probleem is dat de overgang "netjes" moet 

plaatsvinden, met name moet het Heelal na de overgang homogeen blijven en 

de materie-antimaterie asymmetrie creeeren. Een voorbeeld van hoe de

jaar. Een aantal experimenten
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kosmologie een bepaalde deeltjes theorie inacceptabel kan roaken levert 

hoofdstuk 5.

In deel II beschouw ik de overgang van vrije naar absoluut gebonden

quarks als de temperatuur van het Heelal daalt onder Tc ~ 0.2 GeV =

12 -52 10 K. Het Heelal was tijdens deze "condensatie" ongeveer 10 s oud,

naar van dit proces zijn er waarschijnlijk geen verdere "tastbare"

resultaten meer over. Een andere toepassing is bij toekomstige experimenten

met botsingen van versnelde atoonkernen, waar mischien een "fireball" met

T > Tc wordt gevormd. In dit deel probeer ik een gevoel te krijgen voor wat

er zo drastisch verandert in de vacuum struktuur als de temperatuur in de

buurt komt van Tc. Hoofdstuk 6 geeft een overzicht, terwijl ik in hoofdstuk

7 en 8 twee semiquantitatieve modellen van het mechanisme van de overgang

voorstel. Deze twee modellen sluiten elkaar niet uit, maar benaderen het

probleem eerder van twee verschillende kanten. De laatste hoofdstukken 9-11

zijn lets technischer. In de ijktheorie voor de interaktie tussen de quarks

zijn er N=3 soorten lading, kleurrijk "kleur" genoemd. Eigenlijk is N de

enige vrije parameter van de theorie en er treedt een aanmerkelijke

vereenvoudiging op in de limiet N -*■ °°. Als we de N = 00 theorie zouden

kunnen oplossen zitten we misschien al dicht ("• 1/N^ - 10%) bij de

oplossing van de relevante N=3 theorie. Recentelijk vonden Eguchi en Kawai

dat de SU(N=0,>) ijktheorie op een ruimte-tijd rooster enorm vereenvoudigd

kan worden. In hoofdstuk 9 en 10 bestudeer ik deze gereduceerde modellen en

kijk hoe een eindige temperatuur kan worden ingebouwd. Hoofdstuk 11 geeft

een eenvoudig model waarmee voor N-*» (de)confineraent van quarks bij

eindige temperatuur kan warden onderzocht.

Tenslotte verwijs ik de lezer in paragraaf 1.4 van de introductie naar 

recente resultaten die dit proefschrift aanvullen, en geef in 1.5 enige 

globale conclusies.
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STELLINGEN

1. Proust1 heeft opgemerkt dat Flauberts titel "L'education sentimentale" wel

mooi compact is, maar eigenlijk grammaticaal onjuist. Een voorbeeld van wat 

hij bedoeld kan hebben is te vinden in ditzelfde boek (hoofdstuk 2 van deel 

2): "Elle se plaignit de scs rares visites, i.p.v. "de la rarete de

ses visites".

1M. Proust, A propos du ’style' de Flaubert, N.R.F. janvier 1920.

2. Een raanco in de discussie van Hildesheimer1 over de literaire antecedenten 

en de door Mozart gecreeerde diepgang van het type Don Giovanni is het ont- 

breken van enige verwijzing naar Moliere's toneelstuk "Don Juan ou le festin 

de pierre", terwij1 Mozart daar al vroeg2 mee in aanraking was gekomen.

1W. Hildesheimer, Mozart, 1977.

zMozart Briefe und Aufzeichnungen, II, ed. W.A., Bauer, U.E. Deutch, 1962, 
brief van 24 maart 1778.

3. De reductie in de topologische limiet van QCI) op een rooster naar een een- 

punts model1 is onjuist2.

1H. Levine, H. Neuberger, Phys. Lett. 119 B (1982), 183.

ZF. R. Klinkhamer, preprint ( April 1983).

4. Met de twist van hoofdstuk 11 is het mogelijk een gereduceerde Hamiltoniaan 

te vinden1.

lF.R. Klinkhamer, preprint ( June 1983).

5. De radiostraling bij Antares B geeft een indirecte bepaling van het raassaver- 

lies van een B 2.5 V ster, ongeveer 10“10 tot 10“9 zonsmassa per jaar.1

1F.R. Klinkhamer, J. Kuijpers, Astron. Astrophys. 100 (1981), 291.

6. Het zijn onjuiste simplificaties te stellen dat het expanderend Heelal begon 

met een explosie en dat de roodverschuiving van verre sterrenstelsels het 

gevolg is van het Doppler effect.
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