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“Truth is more likely to come out
of ervor, if this is clear and definite,
than out of confusion’.

Francis Bacon

INTRODUCTION AND SUMMARY

The main purpose of this thesis is to develop the relativistic thermody-
namics of irreversible processes in a continuous mixture consisting of an
arbitrary number of chemical components. The second purpose is to investi-
gate the energy-momentum tensor of the macroscopic electromagnetic field
in ponderable matter.

We shall restrict ourselves to the special theory of relativity and we shall
assume that atomic particles are neither created nor vanish. The validity of
the thermodynamical theory is limited by the condition that, for an observer
moving with the barycentric velocity, the variations in temperature, pressure
etc. must be small over a distance comparable with, say, the mean free path
of the molecules.

In chapter I we give the theory for systems which are influenced by forces
which do not depend on the velocities of the chemical components. The theo-
ry is presented in four-dimensional tensor form. First, we introduce some
useful notions such as densities, concentrations and flows of matter, the
barycentric velocity and the barycentric Lorentz frame. The four-vectors
which represent the relative flows of matter and the heat flow are defined in
such a way that they are perpendicular to the four-vector which represents
the barycentric velocity. The tensors which represent the stresses possess
similar orthogonality properties. From the relativistic macroscopic funda-
mental laws (i.e., the balance equation for rest mass, the momentum and
energy laws and the second law of thermodynamics) the entropy balance is
derived. The phenomenological equations are given for isotropic media and it
is shown that the Onsager relations are Lorentz invariant. A new cross-effect
is found between diffusion and heat conduction, arising from a relativistic
term in the force conjugate to the heat flow. It appears that due to this cross-
effect the diffusion phenomena are influenced by the barycentric motion.

As far as heat conduction, diffusion and entropy are concerned, the results
of the theory given in chapter I are elaborated in chapter 11, Moreover, this
chapter contains considerations of heats of transfer and of almost Lorentz
invariant quantities. The results of the theory given in chapter I concerning
heat conduction and diffusion are reformulated in three-dimensional tensor
form with the help of quantities which are used in the non-relativistic theory.



Formulae are given from which the difference between the results of the
relativistic and the non-relativistic theory may easily be surveyed. The
transformation properties of diverse quantities are examined. As a conse-
quence of the developed formalism it is seen that the density of entropy is
the fourth component of a four-vector and it appears that in general the
entropy in a small element of volume is not a Lorentz invariant quantity.
The connection between different sets of heats of transfer, occurring in the
literature, is derived. Some of the quantities occurring in the theory appear
to be almost Lorentz invariant. A formulation of the theory with the help of
relative flows of matter which are defined with respect to a reference
velocity other than the barycentric velocity is deduced from the formalism
developed.

In chapter III we deal with systems, without polarization and magnet-
ization, in an electromagnetic field. The entropy balance is derived from the
relativistic macroscopic fundamental laws by means of a procedure which
is slightly different from the one used in chapter 1. The phenomenological
equations for isotropic media are given in four-dimensional and three-
dimensional tensor form. Also the Onsager relations are discussed. The
relativistic law of Ohm appears to be a special case of the general equations
which are obtained for diffusion phenomena. It appears that the electric
current is a function not only of the electric and the magnetic field vectors
and of the gradients of the temperature and of the partial specific Gibbs
potentials of the chemical components, but is a function also of the local
derivatives with respect to time of the two latter quantities and a function of
the barycentric acceleration.

The thermodynamical theory for systems with polarization and magnet-
ization is given in chapter IV. We restrict ourselves to systems which are
isotropic as far as polarization and magnetization are concerned. In the case
that the medium is polarized and magnetized terms occur in the non-rela-
tivistic second law of thermodynamics which are due to the polarization and
magnetization of the matter. In this chapter we first derive the relativistic
second law of thermodynamics for the case under consideration. If we wish
to deduce a satisfactory form for the entropy balance from the fundamental
equations, it appears that the explicit expression for the ponderomotive
force must be closely connected to the form of the relativistic second law of
thermodynamics. The phenomenological equations and the Onsager re-
lations are given for media which are anisotropic with respect to irreversible
])r()C('SS(’S.

In chapter V we consider the energy-momentum tensor of the macroscopic
electromagnetic field. We also give further discussions of the first and second
laws of thermodynamics and of the macroscopic forces which the electro-
magnetic field exerts on the matter. As in chapter IV we restrict ourselves to
systems which are isotropic as far as polarization and magnetization are
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concerned. To have our considerations as general as possible we introduced
in chapter IV several quantities for which we did not give further specifi-
cation. It is seen that it is possible to make such choices for these quantities
that an explicit expression can be deduced for a symmetric energy-momentum
tensor of the macroscopic electromagnetic field. It appears that the non-
diagonal elements of the tensor found in this way are equal to the corre-
sponding elements of the tensor of Abraham. Itisshown that Abra-
h a m’s tensor leads to an equivalent formalism. It appears, however, that
the form for the relativistic second law of thermodynamics which follows
from Abraham’s tensor corresponds to a rather unusual form for the
non-relativistic second law of thermodynamics. Finally, it is shown that
from the point of view of the developed formalism A brah am’s tensor is
preferableto Minkowski’s tensor.

This work forms a part of the research programme of the »otichting voor
Fundamenteel Onderzoek der Materie’’ (F.O.M.). The latter foundation 1S
financially supported by the ,,Nederlandse Organisatie voor Zuiver Weten-
schappelijk Onderzoek” (Z.W.0.).

Parts of the contents of this thesis have been published (Physica, Amster-
dam 19 (1953) 689; 19 (1953) 1079; 20 (1954) 199). The rest will appear
shortly.

Institute Lorentz for Theoretical Physics G. A. KLUITENBERG
of the University of Leyden,

Langebrug 111,

Leyden, Netherlands.




CHAPTER 1

SYSTEMS INFLUENCED BY FORCES WHICH DO
NOT DEPEND ON THE VELOCITIES OF THE
CHEMICAL COMPONENTS

§ 1. Introduction. The purpose of this chapter is to extend Eckart’s
theory ) of the relativistic thermodynamics of irreversible processes in a
simple fluid to a mixture of an arbitrary number of chemical components
and to derive physical results with the help of the Onsager relations, We
shall assume that matter (rest mass) cannot change into other forms of
energy and we shall limit ourselves to the special theory of relativity. Further,
we shall make the restrictions that there are no external forces depending on
the velocity of matter and that the medium is isotropic. We give the
theory in four-dimensional tensor form, hence, the relativistic invariance is
assured. We shall deal with the phenomena of diffusion, heat conduction,
viscous flow and chemical reactions and with their cross-effects.

Having defined a barycentric velocity, the Lorentz frame in which this ve-
locity vanishes will be called the barycentric Lorentz frame. As guiding
principle we shall assume that in the barycentric Lorentz frame all equations
have to correspond closely to the non-relativistic equations. Our method is
analogousto E ckart’s procedure?) (except insome points ofinterpretation)
and is closely related to the non-relativistic one 2).

The validity of the theory is limited by the condition that in the barycentric
Lorentz frame the variations in temperature, pressure etc. must be small
over a distance comparable with the mean free path of the molecules. This
state of affairs is analogous to the non-relativistic case ?).

In §§ 2 and 3 we discuss some preliminaries needed in the development of
the theory. In § 4 we introduce four fundamental laws. In the first place we
have the momentum law and the balance equation for the energy. Since we
assume that matter cannot change into other forms of energy we can also
introduce a conservation law for total rest mass. As fourth fundamental
equation we introduce the second law of thermodynamics (Gibbs relation).
In § 5 we derive the first law of thermodynamics for the internal energy
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of the system, measured by an observer in the barycentric Lorentz frame,
from the first three fundamental equations mentioned before. In § 6 we de-
duce the relativistic analog of the entropy production, well-known from the
non-relativistic theory. The phenomenological laws are formulated in § 7 and
it is shown that the Onsager relations are invariant under Lorentz transfor-
mations. Eckart has found that acceleration of matter causes a heat
flow and it will be shown that it also gives rise to a diffusion flow. This
phenomenon resembles thermal diffusion because both are cross-effects of
heat conduction and diffusion.

In the following chapter we shall formulate the theory with the aid of three-
dimensional vectors, by means of which concepts of physical interest will
be introduced.

§ 2. Flows of matter and related notions. Before stating the fundamental
equations, which we need for the calculation of the entropy production, we
shall first introduce some useful notions. In § 3 we shall consider the energy-
momentum tensor and some quantities which may be derived from this
tensor, while in this section we shall deal with such notions as densities,
concentrations and flows of matter, the barycentric Lorentz frame, the
substantial derivative with respect to time and an auxiliary tensor.

We assume a four-dimensional coordinate system (x,, %,, %3, %, = ict),
where x,, ¥, and x; are the coordinates in ordinary space, ¢ is the velocity
of light and ¢ is the time. By taking x», = ¢, we have the metric tensor
given by the Kronecker tensor and thus associated contravariant and
covariant tensors become identical.

Furthermore, we shall assume that we have a mixture of # components.
If N9 is the number of atomic particles (electrons and atomic nuclei) of
component j per unit volume (the volume being at rest with respect to
the observer) and M), is the rest mass of particle % if it is free (not
bound in an atom, molecule or ion) we define as density of rest mass of
component j the quantity ¢” = X¥" M{ . We can represent the flow of
maller of component 7, as is \\Lll-l\nm\n. by a four-vector of which the
components in the sp:u‘(-—tim«' continuum are defined by

mi'=0"); mP =" ; m =o"P; m=ice?, (j=1,...,m) (2.1)

where v is the velocity of component j. Chemical components will always
be denoted by a superscript and tensor components by a subscript.
The total density of rest mass is given by

o =37, 0" (2.2)

The specific volume is defined by




and the concentration of component 7 by

¢! = p'p. U et (2.4)

e = 1. (2.5)

]
We shall define the barycentric velocity by

v=3" v (2.6)

We now introduce a four-vector with components

m 20 fa=1, 1 34) (2.7)

a
[t is easily seen that
My = OV My = QUs; My = QU5; My = 1Cg. (2.8)

We see that this four-vector represents the total flow of rest mass. By m
we shall indicate the scalar

(2.9)

m = (— Bi_, md)t = o(c® — V).

For the following considerations it is useful to introduce the dimensionless
four-vector
U, = Mq[Mm. (p=12i54) (2.10)

a

From this equation we have with the help of (2.8) and (2.9)

3 2

A e =0

u, = vy(c
. ! (2.11)
Uy = ;-3(62 vz) 3: " = ”‘((.2 = ‘,2)— i

We see that this four-vector can be interpreted as the four-dimensional
analog of the barycentric velocity v. Further, we see from the preceding
equation that

> Sl o L (2.12)

“~a=1 "a

hence, it follows that

A ug(Ou,foxs)=0. (B=1,..,49 (2.13)

At any particular time we can assign to every point of the system a
Lorentz frame in which v vanishes. We shall call this frame the barycentric
Lorentz frame belonging to the point in the space-time continuum under
consideration. All quantities at a point in the space-time continuwm measured
in the barycentric Lorentz frame belonging to this point will be distinguished
by primes. According to (2.9) we then have

o' = mjc = o(1 — V*|?)}. (2.14)




From this equation and (2.3) we have
(T c/m, (2.15)
and from (2.11) we have

u, = 10(a; 4), (a=1, .., 4) (2.16)
where d(«; f) is the Kronecker symbol. Further, we have according to (2.4)

o/ =g\t (7 1, ...,n) (2.17)

(1)

We can show that ¢'"’ may also be expressed as

N = —m™ T umd), (1=1,...,n) (2.18)
This can be done in the following way. In the first place we remark that
the right hand side of this equation is a scalar. Hence, if we prove the
validity of (2.18) in one Lorentz frame we may infer that the equation is
valid in any Lorentz frame. Inserting (2.1), (2.9) and (2.11) into (2.18) gives
with the help of (2.4)

A =0 e t) (2.19)

It is seen that this equation is identically fulfilled in the barycentric Lorentz
frame. Thus, (2.18) is proved and therefore (2.19) too. Furthermore, we have

= = 1, (2.20)

]

The most convenient way to represent by four-vectors the relative flows
of matter of the components with respect to the barycentric motion is

I =m) —c"m,. (a=1,..,4;9=1,...,m) (2.21)

a

Substitution of (2.1), (2.8) and (2.19) into this equation gives with the help
of (2.4)

) ) . v 2 {7) .
1.’/‘; m UI/? w(7) C ——;V v e . 1\11 ”()'} ) A== v v =
i Wd P ) L W € 2 22—y 2)

(n r)r( (7) C‘: i ke ) (4 ' {7) (I G V(” s V)

= p¥ip = Uz ) LR o' ==

3 - J J ’ b ~ .
C2 S v2 2 v2

(=1, vosm) (222)

These equations give the flows in terms of densities and velocities. The
four-vectors I have been defined by the preceding equations in such a
way as to have two important properties. First, it follows from (2.21) with
the help of (2.7) and (2.20) that

22y BN =10, fe= I; «i;4) (2.23)




which expresses that the sum of the relative flows of the components
vanishes. Further, we deduce from (2.21) with the help of (2.10), (2.12)
and (2.18)

w4
~lo

i, 1= 0. =107 (2.24)

a

From this equation we see that all the relative flows, I, are perpen-
dicular to the four-vector u, representing the barycentric velocity.

We shall define the substantial derivative with respect to time as the
Lorentz invariant operator

D=c>:

a

| %, (0/0%,). (2.25)
With the help of (2.16) we see that
D = gfot, (2.26)

where # is the time measured by an observer in the barycentric Lorentz
frame.

The density of rest mass, pf}j, of component j measured by an observer
moving with this component is given by

o =g (1 —vP*Ar,  (j=1,...,m) (2.27)

o)
In principle the quantities g and ¢’ are different; however, in practical
cases their difference in value is very small.

Finally, we introduce the tensor

0.5 + Uiy, (@, fp L s arot) (2.28)

e af af
d,; being the Kronecker tensor. We immediately see that
A = Agas {a, 8 =i,..:4) (2.29)
and with the help of (2.12) we deduce that

1 Ney Ause, =0 (f 1, .., 4) (2.30)

4 )
=1 Uy afi fa

Using (2.16) it follows from (2.28) that
Aoy = 0(a; p) —6(a; 4) 6(B;4), (@p=1, .., 4) (2.31)

1
; 0
Ay 0
0

or

0
? (2.32)
0

O O OO

0
1
0
0
The sum of the diagonal elements of a tensor is a scalar. Using (2.12) and

(2.28) we get for the sum of the diagonal elements of A,

3¢, 4, =3. (2.33)

a=1 “aa




In the following it is seen that the tensor A (@, =1, .., 4) plays the role
which J,(a, f# = 1, 2, 3) has in the non-relativistic theory. From (2.10),
(2.18), (2.21) and (2.28) we have

IP =2 Agmd.  (a=1, .., 4;5=1,...,8) (2.34)

§ 3. The energy-momentum tensor and some deduced quantities. In this
section we shall consider the energy-momentum tensor and some other quanti-
ties which may be defined with its help. We denote by e, the energy per
unit volume and by J, the energy flow. In principle both quantities differ
from the corresponding non-relativistic quantities because the theory of
relativity recognizes the fact that rest mass is a form of energy. Since the
barycentric Lorentz frame is defined in such a way that the total flow of rest
mass vanishes, J;, corresponds closely to the non-relativistic energy flow in
the barycentric Lorentz frame. According to the theory of relativity an
energy flow is associated with a momentum density g given by

gi=10o""J (3.1)
We write the energy-momentum tensor in the form

W = bg + 805 (@, =1, 2, 3): W = icg (a 1521 :8)

Wa=1"Ja (@=1,23); Wy=—e,. (3.2)

The components W, (a, § = 1, 2, 3) correspond to the momentum flows.
These terms have been split up into a part 8,V corresponding to the trans-
fer of momentum with the barycentric velocity (convective part) and a
remaining part which defines the stress tensor. According to (3.1) we have
W = Wi, (@ =1, 2, 3) and we extend this by assuming W ; to be a symme-
tric tensor. Thus,

Weas = W, VD=1, ... 4) (3.3)

It is easily shown that ¢, is given by

’

by = Zypy th, Wi thy. (3.4)

The right hand side of this equation is Lorentz invariant. If we calculate
the right hand side in the barycentric Lorentz frame we get with (2.16) and
(3.2) just the left hand side. Hence, the equation is proved

We represent the heat flow by a four-vector defined by

IV =—cZ A, Wethe. (a=1,..,4) (3.5)

With the help of (2.16), (2.31), (3.2) and (3.3) we find from the preceding
definition

0O =T BO=Tues BO=Jii L9=0. (3¢

From this equation we see that 1. corresponds to J.,)- Further, J/, corre-

9




sponds to the non-relativistic energy flow in the barycentric Lorentz frame
as was stressed above. The heat flow in the non-relativistic thermodynamics
of irreversible processes is usually defined in such a way that it equals the
energy flow in the barycentric frame. (Discussion of various ways to define
the heat flow in ref. 4.) From these considerations it follows that I® may
represent the heat flow. With the help of (2.30) and (3.5) the following
important property of the heat flow may be derived

oy St =0, (3.7)

a

showing that I is perpendicular to the four-vector #, representing the
barycentric velocity (cf. (2.24)).
Further, we may represent the stresses by the tensor

Wog = Zap ey Aoy Wyp Bz (@, 8=1,..,4) (3.8)

ay

As a matter of fact we find from this definition with the help of (2.31)
and (3.2)

wog =l (4, p=1,23); wu=wu=0 (ea=1,..,4), (3.9)

showing that w,; indeed may represent the stresses. From (2.29), (3.3)
and (3.8) it follows that

Wop = Whas (B =il 4 (3.10)
and from (2.30) and (3.8) we have
T s = e W th,=0. (B=1,..,9) (3.11)

The equations (3.10) and (3.11) reduce the number of independent com-
ponents of the tensor w,; to six.
It may be readily verified that

Wog = Uatbgliny + € Yyl O + w, I)) + w0,y (@ f=1, ... 4) (3.12)

by substituting (3.4), (3.5) and (3.8) into the right hand side of this equation
and making use of (2.28) and (3.3).

We now define, analogous to the specific internal energy in the non-
relativistic thermodynamics, the specific energy measured by an observer
in the barycentric Lorentz frame by

¢ =v'e, —a, (3:13)

where a is an arbitrary constant, fixing the zero point of ¢’. It will appear
that a drops out of the final results.

By ¢’ we denote the hydrostatic pressure measured in the barycentric
Lorentz frame. We may define as viscous stress tensor

Py ety F B8 Bi== s 4) (3.14)

e
af Cap




From the preceding definition we have with the help of (2.32) and (3.9)

’

Py=—1{,4 98,5 (a,$=1,23); Pyu=P,,=0 (a=1,..,4), (3.15)

af a

showing that P,; indeed may represent the viscous stress tensor. From
(2.29), (3.10) and (3.14) it follows that

Py = Py, (a, f Lranyd) (3.16)

‘41,‘1
and from (2.30), (3.11) and (3.14) we have

Yomi Us Py =24 Ppats,=0. (B=1,..,4) (3.17)

a

We shall not introduce the simplifying assumption p'=3 X!_ w,, so that
volume viscosity effects will not be neglected.

§ 4. The fundamental laws. We can now formulate four fundamental
laws which are the starting point for the calculation of the entropy pro-
duction.

I. The balance equation for rest mass. We assume one
chemical reaction among the components of the system. We shall denote
by »*,, the chemical production of rest mass of component & per unit
volume and per unit time. It is obvious that this quantityis Lorentz invariant.
The quantity »* divided by the molecular mass of substance % is pro-
portional to the stoechiometric number of this component in the chemical
reaction. Thus, »* is Lorentz invariant too. Hence, it follows that Jioys
called the chemical reaction rate in mass per unit volume and per unit
time, is also Lorentz invariant. Now, we can write the balance equation
for rest mass in the form

a0 ot = — div o™Mv® W T (B= 1, .0.5m) (4.1)

(For several reactions the last term would be a sum of similar expressions
for each reaction.) With the help of (2.1) we can write this law in the
four-dimensional form

ooy omPlox, =y ] . (k=1, ..., n) (4.2)

a
Hence, it follows that this law is Lorentz invariant. Summing the n equations
(4.2) over all values of k, we get with the help of (2.7) and o S W =0

' i om,jox, = 0. (4.3)

a

This means that the total rest mass is conserved.

II. The momentum and energy law. We shall assume that the
external forces acting on the system do not depend on the velocities of the
chemical components. If F* is the force per unit of rest mass on component
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k, we can define, as is well-known, a four-vector with components

&) — AR R R — (k) (k) (). R — (R TR A(R)
K" =9 F /QcoﬁnKz = Fy /o.rl‘a =0 13/910;'

K = ig® (v* - B%)/(cqly). (k=1,...,m)  (44)
From (2.1) and the preceding equation we have
SmlKP =0, (f=1,...,0 (4.5)

Thus, we see that the vectors m and K are perpendicular. The balance
equation for momentum is expressed by

0g./ot + 23 _, 0(g,vp) [0%5 = B} 0" F — 33, 0topl0%s. (a=1,2,3) (4.6)
The energy balance reads
(')L’(‘,)/ﬁi = — div J(‘) e \‘” {0 o v . FUI. (4.7)

With the help of (3.2) and (4.4) we can combine (4.6) and (4.7) into the four-
dimensional equation

B4 OW glony =2 B KD, (a=1,..,4) (4.8)

showing the relativistic invariance of the two laws.

III. The second law of thermodynamics (Gibbs
relation). Justasin the non-relativistic thermodynamics of irreversible
processes we assume that the second law,

T'(os'[ot') = a¢'[ot' + p'(@v'[ot’) — Zi_, ' (ac'D|at'), (4.9)

is valid in the barycentric frame. 7 is the temperature, s the specific entropy
and u"" the partial specific Gibbs function of component j (chemical potential).
With the help of the Lorentz invariant operator D defined by (2.25) we can
write

T'Ds’ = D¢’ + $'Dv' — Z1_, p' D', (4.10)

The quantities with primes, measured in the barycentric frame, are here
expressed as functions of space coordinates and time in an arbitrary Lorentz
frame.

§ 5. The first law of thermodynamics. In the non-relativistic theory the first
law of thermodynamics is obtained by multiplying the momentum law
by v and subtracting the result from the energy equation. By multiplying
the equation (4.8) by #, and summing the result over r all values of a, it
is obvious that we perform an analogous procedure. Therefore, we must study
the equation

4

ATA7 1D L ul] N4 (7) all
~a,fl=] H"(C‘” af 6"1:'7) = iy Sy 0(0) Yo I\ (51)

7 ]

in more detail.
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With the help of (2.10), (2.21) and (4.5) we can transform the right hand
side of this equation into

o b ol u, KD =22, B2, off) (me") ™ P K =
= I P e TIEY, (5.2)
with the Lorentz invariant quantity " being defined by
o = pllcime'MN =, (f=1,...,1) (5.3)
Considering the left hand side of (5.1) we have with the help of (3.12)
Za g1 Uy (OW o5/0%5) =
= B4, (0)0xy) [Zh_y wa {uatipery + 7' (Ul + up) + wop}] —
— Bt {watgeiy + ¢ gL + u ) 4 w0, (2u,/0%5). (5.4)
Using the relations (2.12), (2.13), (3.7) and (3.11) we can simplify this
expression
D gt Wa(OW 15/ 0%5) -
= — 41 (0)0%,) (g ey + ¢ D) — X gy (¢ 10g I + W) (O14,/0%5)- (5.5)

We now transform two terms on the right hand side of (5.5). With the help
of (2.10), (2.14), (2.15), (2.25), (3.13) and (4.3) we deduce

341 (8]0x5) (ugey,) = ¢ 'o'De. (5.6)
Using (2.10), (2.13), (2.14), (2.15), (2.25), (2.28) and (4.3) we derive
X4 g1 AoplOuplox,) = ¢~ 'o'Dy’, (5.7)
and from this equation and (3.14) we have
B4 5 Wop(Ouglox,) = ¢ o' p Dy’ — 35 5. Pog(0uglox,). (5.8)

Substitution of (5.6) and (5.8) into (5.5) and the use of the definition (2.25)
gives with the help of (3.10)

4 5oy U (OW 5 03) = — ¢~ De! —c B4, (a]“)«e.'.\-ﬁ + ¢~ I9Duy) —

p Dv' —m,z 1 I(,’ (Ouglox,). (5.9)
Substitution of the results (5.2) and (5.9) into (5.1) gives the equation
o'(De’ + p'Dv’) = —E3_, (oI} [0x5 + ¢~ I Duy) -

{i}

55 3 4 1(’)”:1,',”1\'.(,‘” 1 cTh, y Py (Quglox,), (5.10)

] a a,B
which may be considered as the first law of thermodynamics for the energy
¢’. The left hand side of this equation is completely analogous to the left hand
side of the corresponding equation of the non-relativistic theory. The first
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term on the right hand side of (5.10) corresponds to the divergence of the
heat flow in the non-relativistic theory. It should be remarked, however,
that in (5.10) the four-dimensional divergence of the heat flow occurs. The
second term on the right hand side has no non-relativistic analog and was first
found by Eckart?). The third and fourth terms are analogous to the
corresponding non-relativistic ones, viz. energy dissipated by external forces
and by viscous stresses.

§ 6. The entropy balance. In the preceding section we derived the first
law of thermodynamics from the balance equation for the energy with the
help of the momentum and mass laws. We shall now calculate the entropy
balance from the first and second laws of thermodynamics and the balance
equation for rest mass.

We first derive with the aid of (2.10), (2.14), (2.21), (2.25), (4.2) and (4.3)

D' = (1/g') Z4.1 (8/0x,) (e m,) = — (1/e) {Zh-, (1Y [0x) — ¥ ]}
(7 00 cgm)  (651)

Substitution of this expression and (5.10) into (4.10) gives after some
calculation

o'Ds’ = —T4_, (9fex,) {(1/T") (IO — Zi_, wOI)} —
— (1T') Zouy ID {(1/T") (0T [0x,) + ¢~ Dy}
(UT") By Bho IO {0 KD — T'(0f0x,) (0T}

+ (¢/T7) :::.ﬂ. 1 I)u;x (Oug/ox,) — (1 |T”) Je -\’-";: W (6.2)

We now define the scalar quantity

a

=33, P,. (6.3)

Substitution of (3.14) into the preceding equation gives with the help of
(2.33)

[1 /’I i :13 }.:,‘; 1 u"ml' (64)

From this equation we see that /7 is the difference between the hydrostatic
pressure and § of the sum of the diagonal elements of the stress tensor. Further,
we introduce the tensor

P,=P,—14,. (e,p=1,..,4) (6.5)

apf
Using (2.33) and (6.3) we have from the preceding equation

2 P =0. (6.6)

aa

With the aid of (2.29) and (3.16) we immediately see from (6.5) that

P g B (o, g=11/0254) (6.7)




and using (2.30) and (3.17) we have from (6.5)

i, Py =T Pos, =0 (f=1,..,4) (6.8)

We now define as “forces” (affinities) the four-vectors

YO =—{(1/T") (8T"[ex,) + ¢~' Du,), (a=1, .., 4) (6.9)

Y=o KJ'—T' (8/ox,) (W' |T"), (a=1,..,4; 1=Es 07 (6.10)
and the scalar
A =—27 /"y, (6.11)

Substituting (6.5) and the three preceding equations into (6.2) gives
with the aid of (5.7)

o'Ds' = —3*_ (9

%) {(1/T") (IQ — =2, W' PIP)} 4

HUT) [Bl oo Zacy IO Y P4 e 3, P ;(0uy/ox,)+ ITo'Dv’ +J Al (6.12)
The first and second parts on the right hand side of this expression are
analogous respectively to the divergence of the entropy flow and the entropy
production of the non-relativistic theory. The first term in the second part
contains the contribution of the heat conduction (j = 0) and the diffusion
(7 #0), the second and third terms the contributions of ordinary and
volume viscosity and the last term the contribution of the chemical reaction.

§7. The phenomenological equations and the Onsager relations. Taking
into account Curie’s law we introduce the phenomenological laws in such
a way that a certain flux only depends on forces having the same tensorial
character as this flux. On the other hand, this flux may depend on all
the forces having its tensorial character.

Therefore, we introduce for the vectorial fluxes and forces I and YV
the equations

=3 o Zp_ LEPYP, (a=1,..,4;7=0,1,..., n) (7.1)
where the LY® are (n 4 1)? tensors (7,£=0,1, ..., n) each having
4 components (.= 1, .., 4).

We shall now show that we can derive an explicit form for LJ* from

the assumption that the medium is isotropic, using the postulate that all
equations should correspond closely to the non-relativistic equations in the
barycentric Lorentz frame. From (2.22) we have

1':,” . Q,.,'j?'{:u ((l 1' 2’ 3' } I' o s )

, . (7.2)
IY =0 G=1,...,n).
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Using (2.14) and (2.17) we have from (5.3)
o = pffo!". i =00, 1) (7.3)
Substitution of the preceding equation and (4.4) into (6.10) gives
YD = F.9 — T'(o/ox,) (w'?|T") la= 152,35 1 =1, 0. )5
YP = (ifc) v - F'D (5T [e) (0fot) (W'"|T") (=1, ..., 7). 7.4
From (7.2) and (7.4) and from (3.6) and (6.9) we can conclude that (7.1)

corresponds to the non-relativistic equations for an isotropic medium in the
barycentric Lorentz frame if

L;,'”“ LO® £8(a; B) — 6(a; 4) 6(8; 4)}
fa; Bi=l, s 1o =10, o) (7.5)

where the L”® are the phenomenological coefficients of the non-relativistic
theory. With the help of (2.31) we can write for (7.5)

LW— LO® A - Ta,p=1,..,47.k=01,...,1) (7.6)

apf

Since if two tensors are equal in one Lorentz frame they are equal in all
Lorentz frames, we can conclude from (7.6)

LOW LW 4. (a,p=1,..,4; ,k=0,1,...,7) (7.7)

af

As the L¥® are the phenomenological coefficients of the non-relativistic
theory we have among them the Onsager relations
g 8 g

LW — W), o, & 220, 1,00 55,9) (7.8)
From (2.29) and the two preceding equations we get

LW —L B0 _LO®_[®O, (q, f=1,.., 4; j, k=0,1,..., ) (7.9)

“afl af

We see that the Onsager relations enter again in the relativistic theory
and that they are invariant under Lorentz transformations.

In a mixture of # chemical components we may have n — 1 independent
relative flows of matter and one heat flow. Together these flows have 3n
components in ordinary space. Hence, we should expect 3n independent
phenomenological equations; however, (7.1) gives 4(n + 1) equations.
Therefore, we must now prove that # -+ 4 of the equations are dependent on
the others. From (2.30) and (7.7) it follows that

4w (En o2 LAWY =0. (=01 ....,m (7.10)

a 0 (2] af
According to (2.11) we have #, % 0 in every Lorentz frame. Hence, from the
preceding equation, (2.24) and (3.7) we can draw the conclusion that in
(7.1) for (ach value of j the equation with « = 4 depends on the equations
with a 2 3 for the same value of j. This reduces the number of inde-
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pendent equations by # + 1. As is well-known from the non-relativistic
theory we have

Zry LY®=0, =01, ....,n) (7.11)
Using the preceding equation and (7.7) we find
B (B0 By LYY ) = 0. (@ =1, 2, 3) (7.12)

From this equation and (2.23) we see that in (7.1) for « = I, 2 or 3 the
equation with j = » depends on the equations with j =1, 2, ..., n—1
for the same value of « and this reduces the number of independent equations
by 3. Thus, finally, we get the right number of 3z independent equations.

It should be emphasized that the term ¢~! Du,, occurring in (6.9), repre-
sents an effect which the non-relativistic theory does not predict. This term,
discovered already by Eckart!), shows that acceleration of matter
causes a heat flow. Moreover, as we now see, it also gives a cross-effect with
diffusion.

For the tensor P, we can introduce the phenomenological equations
Py =cXi, | Ly, (ou)ox,), (@ R="1, % 4) (7.13)

where L,z is a tensor of the fourth order. Taking into account the as-
sumption that the medium is isotropic, the postulate that all equations have
to correspond closely to the equations of the non-relativistic theory in the
barycentric frame and the equations (6.6), (6.7) and (6.8), which equations
express properties of the tensor P, we can derive, along the same lines which
gave the result (7.7), a form for L, which leads to the equation

Poa=ncZs. ., (4,45 {(0n, [ox;) + (u, 0x,)} — 34,54, (0u,/0x,)],

A ~af
(@pB=1,..,4) (7.14)

where the scalar 7 is the ordinary viscosity. Again, we may show that among
the sixteen equations given by (7.14) eleven equations are dependent on
the others. This reduces the number of independent equations to five which
would be expected from physical considerations.

For the scalar quantities /7 and J ) we can introduce phenomenological
equations of the form

7 Nwe’ Do’ + L,

(P)e)

4, (7.15)
j’” = [.,L.;;m gl Dv' 4 LA, (7.16)

i

where 2., is called the volume viscosity. All quantities occurring in (7.15)
and (7.16) are Lorentz invariant. The Onsager relations, in the Casimir
form, read

Ly — Lot (7.17)
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Substitution of (7.14) and (7.15) into (6.5) gives

2

Py =ncZ), o [As, Ag (00, /0x;) + (0u,/ox,)}— 54,54

(ou,,|ox;)

7e 4

i, a 1

Ny Aag 0’ DV + Loy Aop A. (a, B ) (7.18)
The first term in( 7.16) and the last termsin (7.15) and (7.18) represent cross-
effects of volume viscosity and chemical reactions which one could call
“yisco-chemical’’ effects.
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CHAPTER 11
FURTHER DEVELOPMENT OF THE THEORY

§ 1. Introduction. In the preceding chapter we developed the relativistic
thermodynamics of irreversible processes in an isotropic mixture of an
arbitrary number of chemical components. Heat conduction, diffusion,
viscous flow, chemical reactions and the cross-effects of these phenomena
were studied. The four-dimensional tensor form in which the theory was
presented warranted relativistic invariance.

In this chapter the results of the theory concerning the entropy, heat con-
duction and diffusion will be studied in more detail. The theory will be
presented in three-dimensional tensor form. It should be emphasized that
the relativistic invariance of the theory is maintained. Further, we shall consider
to what extent the relativistic theory deviates from the non-relativistic one.
We shall also discuss the transformation properties of various quantities.

In § 2 we give the connection between the four-vectors introduced in the
preceding chapter, which represented the relative flows of matter of the
chemical components with respect to the barycentric velocity and the three-
dimensional vectors, J” (j = 1, ..., ), which are used in the non-relativistic
theory for this representation. We also introduce another heat flow, J©. in
this section. We consider the phenomenological equations for the flows J
(1=0,1,...,m) in §3. It appears to be useful to introduce new three-
dimensional forces X" (j = 0, 1, ..., n). We derive in § 4 the transformation
properties of the flows J” and the forces X" for the transition from the
barycentric Lorentz frame to an arbitrary Lorentz frame. The entropy and
the entropy balance are discussed in § 5. Further, we draw some conclusions
in this section concerning the phenomenological coefficients from the positive
definite character of the entropy production. In § 6 the heats of transfer are
introduced. Their transformation properties are examined and the connection
is given between diverse definitions for these quantities occurring in the
literature. Another form for the forces and the phenomenological equations,
with the help of which the results of the relativistic and the non-relativistic
theory may easily be compared, is derived in § 7. We discuss some almost
Lorentz invariant quantities in § 8. Finally, in §9 we formulate the theory
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with the help of relative flows of matter which are defined with respect to
a different reference velocity.

§ 2. Relative flows of matter and heat flow. In chapter I we defined with the
help of equation (1.2.21) *) a set of nfour-vectors, I (a=1, . .,4;7=1, ..., n),
which represented in our theory the relative flows of matter with respect to
the barycentric velocity. The first three components of every four-vector
form a three-vector in ordinary space. Hence, according to (1.2.22) we used
as relative flow of matter of component j the three-dimensional vector

[ = o v i Yo v (4 = n) (2.1)
0 o : P \

Thus, we see, that we do not take v as reference velocity, but v multiplied by
the factor (2 — v -v) (¢ — v2)~!. This factor, however, still depends on v”
and therefore we have in fact a different reference velocity for each chemical
component. Because of this it seems to be useful to reformulate our results,
without giving up the relativistic invariance of the theory, with the help of the
relative flows of matter as used in the non-relativistic theory and defined by

JY o (v —v). =t (2.2)

The physical picture with this description is simpler than with the description
using the vectors IV as we now take v as reference velocity for each chemical
component. Moreover, we may now easily compare our results with those
of the non-relativistic theory.

By eliminating the vector o"'v'" with the help of (2.2) from the right hand
side of (2.1) we find as relation between I and JY

1) = J 4 (v-J?) (& —V) "' V. G =10 M) (2.3)

Written out in components these equations read

(P—v?) 1D =33 _ {(c>~V®) 8,5+ Vap} . @ (a=1,2,3;7=1,...m) (2.4)

where §,, is the three-dimensional Kronecker tensor. Thus, for each value
of j (2.4) gives three equations with the help of which we can express the
three components of J7 in those of I/) and v. This gives

=33 (Bs—c v, (@=1237=L...,7 (2.9)

or

Ji = 19 — 2 (v- 1) v. (=1, -.c..,’8) (2.6)

*) Equation (2.21) of chapter I of this thesis will be indicated as (1.2.21) and in the same way

we denote the other equations of chapter 1
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With the aid of (I.2.2), (I.2.4) and (I1.2.6) it follows from (2.2) that
22V =0. (2.7)

Again, the first three components of the four-vector /¥ (a =1, .., 4),
representing the heat flow in the theory and defined by (1.3.5), form a three-
dimensional vector. Substitution of (1.2.28) and (1.3.2) into (I1.3.5) gives with
the help of (1.2.11) and (1.3.3)

I? = ¢(— )} [(1 —v¥/A) I, +

(e)
2

+ {724+ (E—V) "} (v-T,) v—EE(P—Vv) e

N3 : 2 2\ =1 1§23 ¥ 1
Ik \—‘:1_li 1 la [u.'l ’ULI Y ((' b ) ("‘q.[i | Z!u Iu,rl “,l) v J: (2'8)

(v %

where i, is the unit vector in the direction of the positive a-axis in ordinary
space. We now split upJ,, into two parts, one being parallel and the other
being perpendicular to v. Thus,

Jo =d+ Jwis (2.9)
with

4 v (v-Jd,) /v (2.10)
and

Jo, =dy—v(v:J,)/vV2. (2.11)

With the help of (2.9), (2.10) and (2.11) we find for (2.8)

I9 = ¢(P-v)YI ~(V*A) I, , + V3(P—VP) ' i~ (2-v?) ey V-
"3 . = 2 2\ —1 153 > N
— 2 gy 1305 — (¢ — V9 (B p=1 Valas v3) VH (2.12)

We now define a new heat flow, J, by the equation

O =5, Gp—cu,0) 10, (a=1,2,3) 2.13)
or
JO _ o __ -2 (v- ]"0) V. (2.14)

Substitution of (2.12) into (2.14) gives with the help of (2.10) and (2.11)

(0) 2 2\ —% 22 [ A2 - 3 2 ¥
IV =e(c® — V) {J— (VP Iy, — eV — 23,4, i,typ Ug}. (2.15)

e)

Comparison of the expressions (2.12) for I and (2.15) for J© with the
definitions for the heat flow of the non-relativistic theory 1) shows that
Jis more closely related to the heat flows introduced in the noh-relativistic
theory than I’ and in the following it is seen that for the three-dimensional
formulation J'9 is to be preferred over I'?,

As is well-known from the non-relativistic theory, there is, however,
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a certain freedom in defining the heat flow. For instance, we may also
introduce as heat flow the vector

J t’((‘2 = vz) -3 :J 0) ¢ .;z(v_Jo ) ‘/: (2.16)

Inserting (2.15) into (2.16) gives with the aid of (2.9), (2.10) and (2.11)

2 2 3 . 3 \
Jio=J %" (- vA) N (B2 5 bt~ VT ES 5oy Valaglp)- (2.17)

From the preceding equation we have

Jo.=3.—(ew +P)v if ts=Py (a,p=1273 (2.18)

q) ¢)

which form is the same as a well-known definition in the non-relativistic
theory for the heat flow in a non-viscous medium ?).

§ 3. Forces, phenomenological equations and Onsager relations. To obtain
the phenomenological equations for the flows JV' (1 =0,1, ..., n), we
substitute (I1.7.1) into (2.5) and (2.13). Using (1.7.7) we then find

) — ©» (7)(k) 523 54 o R > 7(k)
J& = Lo L 1=p=1 “y=1 (0 — €1 "',a) 4,, NS

)
1 @ 7

@=1,23;7=01,...,m) (3.1

We now define the three-dimensional “forces” (affinities) X®(k =0, 1,
.., n) by

r(k) 3 4
XW =33 Z5_1(0

4]

o) 4, YP. (a=1,2,3;k=0,1,..., n) (3.2

With these forces (3.1) takes the simple form
JO =32 LR X® G=0,1,....m (3.3)

The definitions of the relative flows of matter, JV (=1, ... 1) are
analogous to those of the non-relativistic theory (cf. (2.2) and 2)). This is
not the case with the definitions of the heat flow, J© (cf. (2.15) and !)), and
the forces, X® (£ =0, 1, .. .,n) (cf. (3.9), (3.12) and 2)). The phenomenological
coefficients are the same as in the non-relativistic theory and satisfy the

Onsager relations

L0k — 1 *6) (j,k=0,1, ...,n) E3.4)
according to (1.7.8). From (1.7.11) we have with the aid of the preceding
equation

LO — —_ 38=1 M, G=01....m7 (3:2)

By substituting (3.5) into (3.3) we obtain the equation

B (XWX 4 LD XO, (=0, 1, ..., n—]) (3.6)




which contains only independent quantities. The forms of the preceding
equation and of (3.3) are well-known in the non-relativistic theory 2). For

I (a=1,..,4;7=0,1,...,m— 1) we can derive a similar expression

a ]

@e=1,.,49=0,1,....,n—1) (3.7

) — 4 swn—1 7 (7)(k)(x7(k) 7(m)\ 4 (1)(0) y {0
1 e ) {“"k 1 Lali () — ¥ B ) & i [‘aﬂ’ Y/l I &

We shall now consider the explicit form of X™ in more detail. For that
purpose we substitute (1.2.28) into (3.2). Using (1.2.11) we then find

XP =YV +ic' oY} @=1,2,3;2=0,1, ..., n) (3.8)
Inserting (1.6.9) into (3.8) gives with the help of (1.2.11) and (I1.2.25) for £ =0
X9 = _—{(1/T") grad T'+(c>*—v?" Yav/d) 4 (v/T")c 2 (T [2t)},  (3.9)

where the operator d/df is the substantial derivative with respect to time
defined by

d/dt = oot + Zj_, v, (9/0xy). (3.10)

From (I.5.3) we have with the aid of (1.2.4), (1.2.14) and (1.2.19)
oPeW ol = (> — R (2 —vM-v)~L. (B=1,..., %) (3.11)

Substitution of (1.6.10) into (3.8) gives with the help of (I.4.4) and (3.11)
for k = 1, N

X® = ¢(2 — v (2 —vM.y)—1

!
1
Pu'™|T) oty v]. (k=1, ..., n). (3.12)

From (3.9) it follows that in the barycentric Lorentz frame X has the
form

X0 — _{(1)T") grad" T' + ¢~2 (ov/et)'}, (3.13)
while we find from (3.12) for the form of X* (k =1, ..., n) in the bary-

centric Lorentz frame
X'® = PN — T grad’ ('™ TY. (Bi=1, e, m) (3.14)

In the two preceding formulae grad’ means that the operation of the
forming of the gradient must be performed with the help of x|, x, and x5. The
forms (3.13) and (3.14) for X' (k= 0, 1, ..., n) correspond closely to the
expressions for the forces in the non-relativistic theory ), the only difference
being the second term on the right hand side of (3.13). It should be remarked
that, though v = 0 in the barycentric Lorentz frame, in general (ev/et)’ does
not vanish. The general expressions for the forces (3.9) and (3.12) show
that, in contradistinction to the non-relativistic theory, the forces depend
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on v'¥ and on derivatives with respect to time of several quantities. In §7
we shall derive another form for the forces in which v* and derivatives with
respect to time, except the time derivative of the barycentric velocity, do
not occur explicitly.

§ 4. The transformation properties of flows and forces. The phenomenological
L()Lﬁl(,lultb L% occurring in (3.3), are Lorentz invariant. The flows and
forces occurring in (3.3), however, do not transform as the components of
a four-dimensional tensor and we shall now examine their transformation
properties.

We have from (1.3.6), (1.7.2), (2.6) and (2.14)
[0 =9, pi= 9, V=9 1P=0. (j=0,1,...,1) (4.1)

We now consider two Lorentz frames. Quantities measured in one of the
frames we denote by double primes. We then have according to the theory
of the Lorentz transformations 3) %)

19 = 24, a, 1. f@=\t; 0., 45 { =01, ..oy %) (4.2)
Excluding rotations of the three-dimensional axis-frame, we have for the
coefficients a,; %) 9)

anﬂ = b(al ﬁ) ‘*_ 1(nu"'(r;f)‘ K.‘"’v(zr) ((l, ﬂ — I 2 3 ; (4 3)
Ay =~y = Wpa ¢ (1-V5, /A7 (a=1,2,3); ay = (I ~vi, /%), '

where v, is the velocity of the Lorentz frame “without primes’” with respect

to the Lorentz frame “with double primes’’ and x is given by
=(1—v3/c?)~t—1. (4.4)

We now take for the Lorentz frame “with double primes” the barycentric
Lorentz frame. We then have v,, = — v and (4.2) becomes with the help
of (4.1) and (4.3)
IN=23_, (8.5+2.0s %/v?) ]r;(;‘), (@=1,2,3;7=0,1, ..., n) (4.5)
or 7
I = J'0 4+ viv I v (j=01,...,%) (4.6)
Substitution of (4.6) into (2.6) and (2.14) gives with the aid of (4.4)
JN=JD 4 v (v-IJD){(1— VA —1}¥°. (j=01,....,1m) (4.7)
We now split up J'’ into two parts; one being perpendicular to v and the
other parallel to v. Thus,
J'@ v (V- J”’”‘),"Vz, (} =0, I, .c., M) (48)

and
JY = JU— v(V'-J""’)y’vz. (3=0, 1,5 ~:%) (4.9)




With the aid of (4.8) and (4.9) we get for (4.7)
JO=J0 4+ JN1 —v?A. (G=0,1,...,1%) (4.10)

Hence, we see that the component of J7 perpendicular to v is the same

as the component of J'7 perpendicular to v, however, the component of J%

parallel to v becomes smaller if one goes to a Lorentz frame in which |v/| is

larger and differs a factor (1 —v?/c%)?! from the component of J'? parallel to v.
From (1.2.31) and (3.2) we have

R A Y YW =XW (a=1,2,3:2=0,1, ...,n);

afi ; «a a

U s (4.11)
21 Byg Y aMi=10 ¥ ZE B0 i ERRO s

With the help of the preceding equation we can deduce in the same way as
above that

X® =X'W 4 X (1 —vet, (k=0,1,...,n) (4.12)
where X/ and X'® are defined by equations analogous to (4.8) and (4.9)
respectively.
In the same way as we derived the transformation properties of J®
(R =0,1, ..., n) we can find those of Jo-

§ 5. The entropy and the entropy balance. In § 6 of chapter I we derived
the entropy balance. We shall now examine this balance further. According
to (1.6.12) we have

"’,l)‘\-' e (- ‘\"‘:zx = | (;]n a ";'\.u) =+ g, (S' ])
where 7, and o are given by

Iya = (1T) (ID — 20, 6’019y, (a=1,..,4) (5.2)
and
o= (1/T){Z 2t , IV YD 4

+ ¢ X351 Pos (Pup/0x,) + Io’'Dov’ + Jiod} (5.3)
respectively.
We shall now transform the expression (5.1). For that purpose we first

derive with the help of (1.2.10), (I.2.14), (1.2.25) and (1.4.3)
o' Ds' = X _, 8(m,s’)[ox,. (5.4)
Inserting (5.4) into (5.1) gives
Xt _,0S,/ox, = o, (5.5)

where the four-vector S, is given by

Se=ms' + 1. (a=1,..,4) (5.6)
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We now introduce the quantities

(v) =G : \'r (57)
and
](sm ‘Su =3 ‘s‘\x',‘v«x’ (“ == 11 27 3) (58)
Substitution of the two preceding equations into (5.5) gives
0y, /ot = — div (Jiy + si,)V) + 0. (5.9)
Introducing
S = §y/0 (5.10)

we find from (5.9) with the help of (I.2.8), (1.4.3) and (3.10)

o(ds/dt) = —div J; (5.11)

(s) '4

The preceding equation has exactly the form of the entropy balance as it is
usually given in the non-relativistic theory ®). Hence, we can interpret s as
the specific entropy, s, as the density of entropy and J ,, as the density of
the conductive flow of (ntrop_\.

Inserting (5.6) into (5.7) gives with the hclp of (1.2.8), (I.2.14) and (5.10)

Sty = Sy (1 — ¥ At —idc™ I, (5.12)
According to the Lorentz contraction we have
dv = dv’ (1 — /&)Y, (5.13)

where dV is an infinitesimal volume element in ordinary space. Multi-
plying (5.12) by dV and using (5.13) gives for the entropy in the volume
element dV

s AV = s AV — i~ Iy, AV, (5.14)

(

From (5.2) and the preceding equation we see that the entropy in the volume
element is only a Lorentz invariant quantity if there is no diffusion and
heat conduction (I} = 0 (a 1, ..,4;1=0,1, ..., n). We shall show,
however, in § 8 that in all practical cases the se :cond term on the right hand
side of (5.14) is very small with respect to the first term, so that the entropy
in a small volume element has almost the same value in all Lorentz frames.
Hence. we can conclude that according to (5.7) the density of entropy multi-
plied by ic appears to be the fourth component of a four-vector, while the
tllt]“[)\ in a small volume element is not a Lorentz invariant quantity
because the \mnwnn of entropy is due not only to convection (the term
s, v in (5.9)), but also to conduction (the term J.. in (5.9)). Thus, Planck’s
point of view ?) ©), which is also adopted by Einste in?), and according
to which the entropy is Lorentz invariant, is according to our formalism only
correct if there is no diffusion and heat conduction. E ckart®) interprets
the quantity s’ as the entropy, whereas we think it is more correct to call this
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quantity the specific entropy measured by an observer in the barycentric
Lorentz frame.

To avoid confusion we make the following remark. If in a Lorentz frame
at the time ¢ and at the position r we have v (r, ) =0, then s, (r,#) = s, (r, ).
In general, however, at the time ¢ + d¢ we shall have v (r, ¢ 4+ df) # 0 and
then s, (r,¢+ df) # sg, (r, £+ df). It appears that limy,_, {s,, (r,¢+ df)
S (r, t)}/dt differs from limy, o {s, (r, ¢ 4 dt) — s{,, (r, ?)}/dt. Applying (5.5)
or (5.9) in the barycentric Lorentz frame, we must take for s, /of the first
limit mentioned above. Also by applying (5.11) in the barycentric Lorentz
frame we must take a limit of this kind for @s/¢f. Similar considerations
also hold for the derivatives with respect to space coordinates of the entropy
and the entropy flow. In general if Zis some arbitrary quantity (for instance
a tensor component) depending on x,, x,, x; and x,, we denote by (25/dx,)’
(@ =1, .., 4) alimit of the first kind (Cf. (3.13)) and by 85 /ox, (a =1, .., 4)
a limit of the second kind (Cf. (1.4.9)).

According to (5.3) the contribution, o, of heat conduction and diffusion
to o is given by

T’ 640 = -\‘-:;x 0 :;i I3Y =Z0, FHaxol, (5.15)

where we have used (4.1) and (4.11). From (4.10) and (4.12) we have
JN=J9 L (1 —v*/H)~ 3D, (=01, ...;7n) (5.16)
XN =X L (1—v*A) XY, (=01,...,n0) (5.17)

where J’ and X! are defined analogous to (2.10) and J9 and X7 are
defined analogous to (2.11). Inserting the two preceding equations into
(5.15) gives

T Gy = Zp-o (I X9+ (1 — v¥/cd)~" I -XI1, (5.18)

or

T’ 0 = 2o 30 X0, (5.19)

1
where X% is given by
X = X4+ (1 —v¥AH 11X, (G=01,...,n) (5.20)

The form (5.19) is analogous to the form which is usually given in the non-
relativistic theory for o, ,.

According to the second law of thermodynamics ¢ must be a positive
definite expression. Analogous to the non-relativistic theory 2?) we can
draw some conclusions concerning the phenomenological coefficients from
this positive definite character of ¢. Substitution of (3.3) into (5.15) gives

5 > P F0h) :
T apyay = Zfpo LM X0 X, (5.21)
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As 03,4 i @ part of o we must have o, = 0. Hence, from (5.21) we find,
analogous to the non-relativistic theory 2), that the L"% must satisfy

several inequalities as, for instance

LU0 = 0, (j=0,1%.,n) (5.22)
and

LOOLB® _ LONLHD >0, (j, k=01, ..., %) (5.23)

From (1.7.15), (1.7.16), (1.7.17) and (5.3) we find for the contribution, o,
of the chemical reaction and the volume viscosity to ¢

T’ 0y = LA% + 4 (¢’ Dv')% (5.24)

Again, o, > 0 and thus,

L >0, (5.25)
and
N = 0. (5.26)

It is interesting tonote that there are no cross-terms in the expression (5.24);
therefore, L, and L, need not satisfy an inequality of the type given
above. Along arguments analogous to those which lead to (5.22) we can
derive

n =0, (5.27)

which assures that the contribution of the viscous flow of the medium to o is
positive definite. As o, 6, etc. are Lorentz invariant quantities, the given
inequalities assure the positive definite character of o in all Lorentz frames.

§ 6. The heats of transfer. In the literature the heats of transfer are intro-
duced in different ways. A set of # — 1 independent quantities, oY,
Q*@, ..., 0*"=1 to which one gives the name heats of transfer are defined by

LOO = ST LOWOA®, - f=1, .c.,n—1) (6.1)

With the help of the n— 1 equations (6.1) we can express Q*", Q*@, ...,
Q*”=" in terms of the Lorentz invariant phenomenological coefficients.
Hence, these heats of transfer are also Lorentz invariant. Substitution of
(6.1) into (3.6) gives for j = 1, ..., n — 1 the equations

JO=33=1 LIMX® X 1 g*HXO)," (=1, ...;n—1) (6.2)

while we find from (3.6) with the help of the two preceding equations and
(3.4) for j = 0 the equation

/

JO — }_“;_-—lx Q*NJD 4 AT X, (6.3)




where the Lorentz invariant quantity 4 is defined by
A = (1/T") (L9 —Z3=1 LOWQg*™), (6.4)

This quantity is the coefficient of heat conduction in the stationary state.
The four preceding equations are analogous to those of the non-relativistic
theory. According to (3.13) and (4.12) we have X9 =0, if in the barycentric
Lorentz frame 7" is uniform and at the same time (év/éf)’ = O; therefore,
one calls the quantities Q*? (=1, ...,n —1) heats of transfer. We remark
that if for an observer at a certain point in the space-time continuum
grad T'=0 (uniformity of the temperature 7”) for an observer in a different
Lorentz frame in general grad T # 0.

From (6.3) we can derive another form for J9 which is also used in the
literature 9). For that purpose we substitute (2.2) into (6.3) and we then get
with the aid of (I.2.4) and (I1.2.6)

JrO‘. . E;x—)l(o*(;)_ﬂ\:z—r{C(l.",()*ll:,)g(j)vu'\_(‘\:;\xlv-l!C(k;Q*-k])g(nsv(m ‘i‘ lT'erJ‘ (65)

The n quantities @, @@, ..., @™, which are related to GO
Q*"~ Dby the equations

QP = Q*) — Sl gR®, (=1, n—1) (6.6)
and
Q" = — =p=l (WoHk, (6.7)

are also denoted as heats of transfer, since (6.5) can be written with the
help of the two preceding definitions in the form

JO = 3 | Qighiyh 4 AT’ XO, (6.8)

In this equation the absolute flows of matter p”'v" are used instead of the
relative flows of matter J, defined by (2.2), which occur in (6.3). From
(I.2.5), (6.6) and (6.7) we see that the quantities Q" (1 =1, ..., n) satisfy
the relation

=r_ Qi = 0. (6.9)

According to (1.2.19) the concentrations are not Lorentz invariant. Hence,
we see from (6.6) and (6.7) that also the quantities Q" are not Lorentz
invariant. In § 8 we shall show, however, that in all practical cases these
quantities have almost the same value in all Lorentz frames.

If we use the heat flow I/ we can obtain a set of » heats of transfer which
are exactly Lorentz invariant. Analogous to (6.2) we find for I3’ (j +# 0)

{7) swu—1 v4 (7)(k) 7(k) 7(n) % (k) x7(0)
I I ] =D R ‘.Lnﬁ (3;3 74};* _+‘Q "13 )'

(@=1,..,4;j=1,...,n—1) (6.10)
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whereas, analogous to (6.3), we find for o
= E;’”]‘ Q¥ IY 4 AT %24 _, A,Y9. (a=1,..,4) (6.11)

B

Inserting (I.2.21) into this equation gives with the aid of (1.2.7)

I =327, QVmd 4 AT' 33 _, 7 9 4 (e=1, ..;:4) (6.12)
where the quantities Q¥ (j = 1, ..., n) are defined by
Q¥ = Q¥ 31 /W g¥®, (f=1L togn=) (6.13)
and
Q" = —Z37] c'Wo*®, (6.14)
We now see that in contradistinction to the @” (j = 1, ..., n) the quantities
Q" (7 =1, ..., n) are exactly Lorentz invariant because the right hand sides

of the two preceding equations contain only Lorentz invariant quantities.
It is easily seen that

oF_ e oh =0, (6.15)

From the positive definite character of ¢, ,, it follows that

A>0, (6.16)

showing that the coefficient of heat conduction in the stationary state, 4,
must be positive or zero (cf. 2)).

§ 7. Other forms for the forces and the phenomenological equations. We shall
now give other expressions for the forces in which the velocities of the
components and derivatives with respect to time, except the time-derivative
of the barycentric velocity, do not occur explicitly. The desired expressions
are readily obtained by inserting (3.13) and (3.14) into (4.12) which gives

X9 = —[(1/T") {(grad’ T"), + (grad’ T"), (1 — v?/c3)})
+ ¢~ 2{(av/ot)’, + (ov/at)| (1 — v3/A)¥}], (7.1)
and
X® = F'® 4+ F® (1 —v?/c?)

T'[{grad’(x’'®/T")} , + {grad’(«'®/T")}, (1-v*/c®)}] B=1,5m) (7:2)

respectively. In these expressions the components of grad’ 77, grad’ (u’'?/T"),
(év/et) and F'™®, parallel and perpendicular to v, are defined analogous to
(4.8) and (4.9). The partial specific enthalpy of component % measured by an
observer in the barycentric Lorentz frame is given by

B® = y' W TisW, (== L, cavyim) (7.3)

where s is the partial specific entropy of chemical component £ We now
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consider z'® as a function of ¢’ '@, . -1 p’ and T”. We then have

the relation 2)

: P ot w1 (A R IALGN o A7
grad’ u'® — s'® grad' T’ + v'™ grad’ '+ Zi) (0p Ploc’?) grad’ ',
(foi== 1 5 o iint) (7.4)

(k)

where 2" is the partial specific volume of the chemical component Z.
Substitution of (7.4) into (7.2) gives with the help of (7.3)
X® =F® L F® (1 —v?c)t 4
+ (B'®T") {(grad’ T'), + (grad’ T"), (1 — v*/A})
o' {(grad p) | + (grad’ 4), (1 —v¥/e})} —
7= @' /2c V) (grad’ ¢'?) , +(grad’ %) (1—v3/c)).
(k=1,...,m) (7.5
Inserting (7.1) and (7.5) into (6.2) gives for the phenomenological equations
for the relative flows of matter J%
JYV = T2 L (R0 __ ey (F.® —F™) (1 vZ/c?)}

+ {(A" M — A" —Q*®) /T {(grad’ T")  + (grad’ T”),, (1 —v?/cA)})

(v"® —o'™) {(grad’ $") | + (grad’ 2, (1 —v3Ah
~ 2P {o(u’™® — '™y loc’™} {(grad’ ¢'? | + (grad’ ¢’ D), (1—v? Y
— (Q*®/) {(av/ot)’, +(av/et)’, (1-v? AN (=1,...,n-1) (7.6)

If ¢ tends to infinity (7.6) goes over into the well-known phenomenological
equations for J”(j=1,...,m—1) of the non-relativistic theory 2),
The phenomenological equations may also be written in the form
Ja =25 o2 LOPXP,  (a=1,2, 3: 71=0,1,...,n) (7.7)
where

LGP =L (8-c"%0,,). (a,f=1,2,3;],k=0,1,...n) (7.8)

af afl

This is readily verified, for by inserting (5.20) and (7.8) into (7.7) we get the
phenomenological equations (3.3) back again if we take into account that
X[ and X' are defined analogous to (2.10) and (2.11) respectively.

§8. Some almost Lorent: invariant quantities. As emphasized in the
introduction of chapter I, the validity of the theory is limited by the con-
dition that the state of the system is not too far from the state of thermo-
dynamical equilibrium ; therefore, we must have

' (7))

V| <L, G=1; <ciim) (8.1)
and

!Jmf‘ <¢ 51’,-\- (8.2)
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We shall now show that it follows from (8.1) that
(1 — v/t (1 — V2[R~ 1 G=1, .cun) (8.3)

in any Lorentz frame. According to the well-known Einstein addition
theorem we have 3) 4)

(4)2 v/ 02 y24 2 |v'0} |v| cos §'—v P2vic2sinD’
A lE

, sili==t s i) (8.4)
(1 + | V9 || v] ¢ 2 cos 9')? :
where 9’ is the angle between v’ and v measured by an observer in the
barycentric Lorentz frame. After a short calculation we find from the
preceding equation

(1—v?/cA)} (1 —v?[c?) = (1 _v'iizjeyk (1 4 |v'@)| v| ¢ cos ),
= 1,.5::0) (8.5)

and from this equation and (8.1) we immediately see that (8.3) is correct
in any Lorentz frame.

It is now easily shown that the concentrations ¢ (j =1, ..., ) are
almost Lorentz invariant quantities. Using (1.2.4), (1.2.14), (I.2.17) and
(1.2.27) we have

N =(1—v2/c?)~ (1—v2/c)} (1—v'2[3k D, (j=1,...n) (8.6)

From the preceding equation, (8.1) and (8.3) it follows that
¢ ~ "D, (=1, const) (8.7)
Comparing (6.6) and (6.7) with (6.13) and (6.14) gives with the help of (8.7)
Q" =~ QY, =1, wierm) (8.8)

showing that the heats of transfer Q" (j =1, ..., n) are also almost Lorentz
invariant quantities.

We now consider the transformation properties of ‘the entropy in a small
volume element. From (4.1) and (5.2) we have

I, =0. (8.9)

(s)4
Using the Lorentz transformation (4.3), we have with the aid of the preceding

equation
(8.10)

—ap—1 2] -2\—% 3 s ’
— g~ (1 — V33 2y v L5

I

because in this case v, = — v. Substitution of (8.10) into (5.12) gives
with the help of (I1.2.8), (5.6) and (5.8)

S = (1 —V?/c?) ~t (57 + ¢72 veJi). (8.11)
From the preceding equation, (5.13) and (8.2) we have

Sy AV = i &V (8.12)




showing that the entropy in a small volume element is an almost Lorentz
invariant quantity.
Finally, we remark that we have from (1.2.27) and (1.7.3)

o = (1 — v'112/c2)}, G=1,...,n) (8.13)
Hence, we see that according to (8.1)
o’ ~ 1, (=il ) (8.14)

which may be used in practical calculations.

§ 9. Formadation with other relative flows of matter. Sometimes, for practical
applications, it is useful to reformulate the theory with the help of other
relative flows of matter. These relative flows of matter have the form
J¥D = Ny —y*) (j=1,...,n), where v* is a linear function of
v v@ . v"™ and differs from the barycentric velocity. For this
reformulation we shall give a method which can be applied in the rela-
tivistic theory as well as in the non-relativistic theory. Hence, we introduce
as relative flows of matter

J*) =gl (v ¥, (G=1,...,m) (9.1)
where
v =33 EBy®, (9.2)
We shall assume that the quantities &, £@ . . &" satisfy the relation
28 EW =1, (9.3)
From the three preceding equations and (I1.2.4) we have
" v —1 ] j
J*HM = T (gD, (9.4)
where
g0 = £ oM (509 ) =1, U =Naoss n—1) (9.5)

We now introduce the matrix AY%® (j, 2 =1, ..., n—1) defined by
AW = §(5; ) 4+ D (EP—1). (fk=1,...,m—1) (9.6)
The matrix 4 ~'%® given by
AW = 5(5: ) — (ENEOY (e® —1), G E=1,...,0—1) (97)
has the property

s
= !

21 ADD A-10W = Fazh 4100 4OW 2 8- kY, (4, k=1, ...,n—1) (9.8)
as is easily derived with the help of (1.2.5), (9.3), (9.5), (9.6) and (9.7).
Hence, 47'™® is the inverse matrix of 47®_ Using (1.2.4), (1.2.5), (1.2.6),

(2.2), (9.1), (9.4) and (9.6) we can derive
JN = Ta=1 AOXN) Je®) (G=1.:..n—1) (9.9)
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From (5.19) we have with the help of (2.7) and the preceding equation

T,O-(hmi) = X?—’Ox gl Gl (#.10)

where
J*0 — Jo. (9.11)
X*0 — X—!O), (9.12)

X*) = sl 400 (XWX, (j=1,...,2—1) (9.13)
Using (3.5) and (7.8) we have from (7.7)

J9 = 23_, [HOXO 4 x;*;xg LoHM (X — X). (9.14)

Ja f af f

e =1,2,3; er.l....,n 1)
From this equation we have with the help of (9.8), (9.9), (9.11), (9.12) and
(9.13)
¥ — i3 LEIRXFR (e=1,2,3;7=0,1,....n—1) (9.19)

a af

where the new phenomenological coefficients, Lz ®)  are given by

L2O0) = J90 (e, p=1,2,3) (9.16)
LA =gt 4100 OO, (a,p=1,2,3; §=1,....,.8—1) (9.17)
LW = Fa=t 4100 FOW (a,=1,2,3; k=1, ...;n—1) (918)

=3l A-100 LOO 4-100 - (q, p=1,2,3; §, k=1, ..., 5—1) (9.19)

From (3.4), (7.8) and the four preceding equations it follows that
LEDR — [ *HE 1,:;’4)(:& L,,,, . (9.20')

af} Pa

(@ p=>FX, 2,39, k=02 .o, w—=1)

We see that the Onsager relations are maintained. It is easily seen that we
can derive analogous formulae for the transition from a formulation using
relative flows of matter given by ¢ (v¥ — v*) to a formulation using
relative flows of matter given by o”(v") — v**), where neither v* nor v**
are equal to the barycentric velocity.

REFERENCES

1 l'olhoek, H. A., and Groot, S. R. de, Physica, Amsterdam 18 (1952) 780.

2) Groot, S. R. de, Thermodynamics of irreversible processes, North-Holland Publishing
Company, Amsterdam and Interscience Publishers Ine., New York (1951).

3) Fokker, A. D, Relativiteitstheorie, P. Noordhoff, Groningen (1929).

4) Becker, R, Theorie der Elektrizitit, Band II, B. G. Teubner, Leipzig und Berlin( 1944).

5 Planck, M., Berl. Ber. (1907) 542

6) Planck, M., Ann. Physik 26 (1908) 1.

7) Einstein, A., Jahrb. Radioakt. Elektronik 4 (1907) 411

8) Eckart, C., Phys. Rev. 58 (1940) 919.

9) Groot, S. R. de, L'effet Soret, N.V. Noord-Hollandse Uitgevers Maatschappij, Amsterdam

(1945).




CHAPTER 11

SYSTEMS WITHOUT POLARIZATION AND
MAGNETIZATION IN AN ELECTROMAGNETIC FIELD

§ 1. Introduction. In this chapter we shall develop the relativistic thermo-
dynamics of the irreversible processes in a continuous system which is
influenced by an electromagnetic field. We shall limit ourselves to systems
which are neither polarizable nor magnetizable. Further, we shall assume
that the system is an isotropic mixture of an arbitrary number of chemical
components. As in the two preceding chapters of this thesis we shall limit
ourselves to the special theory of relativity.

As is well-known, the force exerted on each of the chemical components
by the electromagnetic field is given by the formula of Lorentz. According
to this formula, the force acting on a certain chemical component depends
among other things on the velocity of the component under consideration.
If we should adopt the formalism of chapter I without alterations, the con-
sequence would be that also in the barycentric Lorentz frame the thermo-
dynamical “force” (affinity), conjugate to the relative flow of matter of a
certain chemical component, would depend on the velocity of this component.
In the Appendix we shall show that this is not allowed. Therefore, in this
chapter we shall follow a method which differs in some respects from the one
given in chapter I.

In § 2 we give the equations of the electromagnetic field. The fundamental
laws which form the starting point for the thermodynamical consider-
ations are given in § 3. In § 4 we discuss the first law of thermodynamics, in
§ 5 the entropy balance and in § 6 the phenomenological equations and the
Onsager relations. To compare our results with those of Mazur and
Prigogine?!) we formulate the phenomenological equations in three-
dimensional tensor formin § 7. The relativistic law of Ohm is discussed in § 8.

§ 2. The electromagnetic field. The macroscopic electromagnetic field in
ponderable matter is described by the electric field vectors E and D and
the magnetic field vectors H and B. Throughout this chapter we shall
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assume that the medium is neither polarizable nor magnetizable i.e.,

D=E, (2.1)
H = B. (2.2)

and

Again, we shall consider a mixture of » chemical components. Ions and
free electrons will be considered as separate chemical components. If e*
is the charge per unit of rest mass of component %, the density of the electric
charge is given by

Oy = Sinay &0, (2.3)

In the same way the density of the electric current, j, is given by
=2 ¥ y(k) vi®, (2.4)

If we take into account (2.1) and (2.2), the Maxwell equations read
rot B— ¢! (6E/at) = ¢!, (2.5)
div E = o4, (2.6)
rot E + ¢~ (eB/at) = 0, (2.7)
div B = 0. (2.8)
The quantities ¢ satisfy the relation

e eMae =0, (2.9)

By multiplying (I.4.1) *) with ¢™ and summing over £ we obtain with the
help of (2.3), (2.4) and the preceding equation

g (ap/0t = — div j. (2.10)

In this chapter we shall assume that the forces acting on the matter are
only of an electromagnetic nature. Hence, the force, F®  per unit mass
on component k is given by the formula of Lorentz

FY — M (E 4+ c7'(W AB)} . (k=1,...,7) (2.11)

As is well-known E,, E,, E,, B, B, and B, are the components of a tensor,

B, given by
0 B, — B, —1iE,
B, 0 B, —1E,
g = ‘ A 2.12
1)11,‘! 1);2 o 1),l O =l 11113 ( )
tE, 1B, 1E, 0
This tensor is antisymmetric, 7.e., it possesses the property
By=—D08s (ap=1,..,14) (2.13)

*) Equation (4.1) of chapter I of this thesis will be indicated as (I.4.1) and in the same way we
denote the other equations of chapter I and chapter II.
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From (I.2.1) and (2.3) it follows that
10 = Zhoy P mP. (2.14)

(el)

According to (I.2.1) and (2.4) we also have for the components of j

fa=2Z0_1"m®. (a=1,2,73). (2.15)
As the quantities ¢® (& 1, ..., n) are Lorentz invariant it follows from

(2.14) and (2.15) that 7y, 75, 75 an(] 100, form a four-vector. Using (2.12),
(2.14) and (2.15) we can combine the \1 ixwell equations (2.5) and (2.6) into
the form

L‘;» OB al0x; = ¢~V 2 e¥mP. (a=1,..,4) (2.16)

In the same way we find for the Maxwell equations (2.7) and (2.8) with the
help of (2.12)

0B 5/0%, + 0By, (0%, + 0B,,/023 = 0. (a,f,y=1,..,4) (2.17)

Using (2.14) and (2.15) we can rewrite the equation of continuity (2.10)
in the form

Bz Mo jox, = 0. (2.18)
Since the quantities e® (k =1, ...,n) and +* (¢ = 1, ..., n) are Lorentz

invariant, (2.9) is valid in any Lorentz frame. Using (1.2.1), (2.11) and (2.12)
we find for K (a =1, ..,4; k=1, ..., n), defined by (1.4.4),

K = e®(cof) T 23 i Bam. fa=1,..,4:k=1,....,n) (219

ap

From this equatlon and (I.2.1) we see that the quantities off) K& (a = 1,
A , n) depend explicitly on v*,

§ 3. The fundamental laws. Analogous to (1.4.8) the equations of motion
and the balance equation for the energy read

2 W gloxg =27 oD KD, (a=1,..,4) (8.1)
Using (2.16) and (2.19) we find for the right.-hand side of this equation
o KD =34 _ B.i(0Byfox). (a=1,..,4). (3.2)
We can also assign an energy-momentum tensor to the electromagnetic
field. This tensor, W, ,, satisfies the relation

Zra o K9 = — 38 oW ppf0ns. (@=1, .., 4). (3.3)
From the preceding equation we can derive with the help of (2.13), (2.17)
and (3.2)

Wine = —2Zya1 By By — 30,5281 (B (a,8=1,..,4) (3.4

(Nap ~ aff
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It follows from (3.1) and (3.3) that we can write for the equations of motion
and the energy balance

T 1 W yapl0% =0, (a=1,..,4) (3.5)

where W, is the energy-momentum tensor of the system (matter and
electromagnetic field together) given by

Wit = Was+ Wipage (@8=1,.., 4 (3.6)
We have from (3.4)
Wi = Wopar (@p=1,..,4) (3.7)

, the energy-momentum tensor of the electromagnetic field is symmetric.
As in chapter I we shall also assume that the energy-momentum tensor of
the matter is symmetric. Hence,

W, =W

af

(@, B=1, ..,4) (3.8)

pa*
We have from the three preceding equations

W =W (.= 1,1 d) (3.9)

(H)ap (¢)par

i.e., the energy-momentum tensor of the system is symmetric. From this
symmetry of W, we can derive ?) that the total macroscopic angular

momentum of the whole system (field and matter together) is constant, .e
(d/de) [{x ~ g (v, 1)} dV = 0. (3.10)

In this equation g, (r, {) is the density of momentum of the system at time ¢
and position r, while dV is.an element of volume in the ordinary three-
dimensional space. The integration must be extended over the whole of
the system. Because the energy-momentum tensors of the electromagnetic
field and of the matter are also symmetric separately, equations of type
(3.10) are also valid for the electromagnetic field and the matter separately.

Since we assume that the medium is neither polarizable nor magnetizable
the second law of thermodynamics (Gibbs relation) is again given by
(I.4.10). The balance equation for rest mass is given by (1.4.1).

§ 4. The first law of thermodynamics. As stated already in the introduction
to (hl\(h \pter we cannot follow the same procedure as in the two prece ding
chapters of this thesis. For, according to (2. 11| .md (I1.3.14) the conse-
quence would be that X'® would depend on v" , 1.¢., in the barycentric
Lorentz frame the thermodynamical “‘force” (nfmil‘\') conjugate to the
relative flow of matter of a certain chemical component would depend on the
velocity of this component. In the Appendix we shall show that this is not
allowed. Therefore, in this section we shall deduce an expression for the
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first law of thermodynamics which leads to a form for the entropy production
such that X’™ does not depend on v'¥,
Using (1.2.10), (I.2.21), (2.13) and (2.19) we can derive

~ () (k) —1 4 ) R
a1 Ol 10, K e e~ B2, u, Byy(mP) — '™ muy) =

<4 (B)f =1 (k) x4 (5 . \

et Aate N Il By ug). (R L sagm) (4.1)

It is now easily seen that we can follow the same procedure as in § S of
chapter I, except that according to (I.5.2) and the preceding equation,
we must replace wKP by e® 52 B, u;. We then get instead of (1.5.10)
"(De’ "Dy’ - y4 a70) 5. 1 ~=1 (0 0
o'(De’ + p'Dz") — gy (013" [0xg 4 ¢~ I} Duy)

[ L 01 R 4
T~ ~j=1 “gp 1 € Iu ])uﬂ "ﬂ -+ ¢ ~a B

1 Pog (0ug/ox,) (4.2)
as first law of thermodynamics.

§5. The entropy balance. In the same way as in § 6 of chapter I we can
derive the entropy balance. This gives

a

+ (T (B0 B4 IO YO + c B4, Py(ouyfox,) + M g'Dv' + J oy A, (5.1)

o'Ds’ = — 34, (8fox,) {(1/T") (I — =1, P I} 4
[ 1 a/ % ¥ ]/ n /)

where the “forces” (affinities), Y (a=1,..,4;7=0, 1, ..., %), are given by

Y =—{(1/T")(eT"[ox,) + ¢~ Du}}, (@=1,..,4) (5.2)
Y =e 35| Byuy—T'(0)0x) (W'T’). (a=1, .., 4; g=1,..:,9)  (5.3)

Hence, we see from (I.2.11) and (2.12) that Y (@=1,..,4; j=0,
I, ..., n), given by the preceding equation, does not depend explicitly on
v® in the barycentric Lorentz frame where v — 0.

§6. The phenomenological equations and the Onsager relations. For the
phenomenological equations, describing the diffusion phenomena and the
heat conduction, we can write

ID =235 LY YP. (a=1,..,4;§=0,1,....,m) -(6.1)

“af} B

As shown in §7 of chapter I we have for the (# + 1) tensors L
(@,f=1,..,4,4, k=0, 1, ...,2) in the case of an isotropic mixture

LA = FOWx - o, Bi=1, .., 4; s B= 0L, 2. m) (6.2)

The (n + 1)? quantities L™ are the phenomenological coefficients of the
non-relativistic thermodynamics of the irreversible processes in an isotropic
mixture of » chemical components. From the preceding equation we see
that these coefficients enter in the relativistic theory as Lorentz invariant
quantities. We may consider these coefficients as functions of ’, 7", ¢V,
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Y PR,

¢'®=1 E’ and B, i.e., as functions of quantities measured in the
barycentric Lorentz frame. As is well-known, the Onsager relations read 3-7)

LO®(B) = LOW)(—B"). (j,k=0,1,...,7) (6.3)
In the case j = k the preceding equation expresses that the L%? (j = 0,

1, ..., n) are even functions of B’. According to (I.7.11) we also have the
relation
=7  L"*(B) =0. (k=0,1,..., n) (6.4)

Substituting (5.2), (5.3) and (6.2) into (6.1) gives with the help of (1.2.28)
and (2.13)

(7) D (1) (k) ,(R)) 34 4
19 = (Zp_, LYW ®) B5_ Bogthg
"4 i rere N k)5 (8 17!\ | Da | {(7)(0 I'T\ (5] [ 8 o 1
p 2SIV A |f D 148 LO® ("M )[oxgy+ LY M(1/T") (T [ox5) ¢ "Dug]. (6.5)

(=1, nr%; ]':O,l,...,'n)

The phenomenological equations for P, Il and ], have the same forms
as in chapter I. It is easily seen from symmetry considerations that in an
isotropic medium L, and L, must be even functions of B’. Hence,
the Onsager relations for these phenomenological coefficients are again
given by (1.7.17). .‘

§ 7. Three-dimensional * tensor form [
To be able to compare our results with those obtained by Mazur and
Prigoginel), we shall reformulate the phenomenological equations
for heat conduction and diffusion in three-dimensional tensor form. We
shall use the procedure which was given in chapter I1. It should be empha-
sized that the relativistic invariance of the theory will be maintained. As in
chapter II we shall use relative flows of matter defined by

or the phenomenological equations.

JN = gy —v)., (G=1,.00,) (7.1)

As shown in § 3 of chapter IT we can write the phenomenological equations

in the form

JN =3 LONX®  (j=0,1,...,%) (7.2)
where J© is given by (I1.2.13) and X® (k=0,1,...,n) by (IL3.8).
According to (11.3.9) we have

p. &l —{(1/T") grad T" + (2 — v3)~Hdv/dt) + (v T)c¢=2(2T"|at)}. (7.3)
Substitution of (5.3) into (11.3.8) gives with the help of (I.2.11) and (2.12)
for k& | AR

X — (1 — v2/?) HePE + ¢ (vAB) —c(v-E)v)

— T'[grad (u'®|T") 4 2 {o(u T ety v]. (k=1 ...,%) (7.4)




Substituting (7.3) and.(7.4) into (7.2) gives
JN — (Zp_, LO®®) (1 — w22~ HE + ¢ (v A B) —c2 (v-E)v} —
— 38 LYW [T grad (u'®T") + ¢ 2T’ {o(u'™|T") 08} v] —
__ L9YO ((1/T") grad T’ + (2—v?) ~! (dv/df) + (v/T")c~3(eT" at)}. (7.5)
=001 i2m)

If we compare the result which (7.5) gives for the diffusion flows J¥
(f=1,...,n) with that obtained by Mazur and Prigogine?)
we see that besides the term E +4 ¢~ '(v A B), there occurs the term
— ¢~ (v E)v. This term is of the order v?/c?. Moreover, these two terms are
multiplied by the factor (1 — v?/c?) ¥, Besides terms containing the gradients
of /'®|T" and T’ we also get terms with local derivatives with respect to
time of these quantities. Finally, there is the term with dv/d¢ which ex-
presses that heat conduction and diffusion are influenced by the barycentric
acceleration.

§ 8. The relativistic law of Ohm. We now consider a mixture of two
chemical components. We then have from (6.3) and (6.4)

L(IHZ)(B') — L(z)“’(—‘ B') S L(I)(l)(__ B') e L“)(”(B'). (8. ])
From the preceding equation and (6.3) it follows that
L(”(z)(B') — ]_(U(I)(* B') — L(l)(2)(4 B') = I,(z;‘l’(B'). (8.2)

Hence, we see that L"?(B’) and L?"(B’) are even functions of B’ in
the case of a binary mixture. With the help of (1.2.13), (1.2.25), (1.2.28) and
(8.1) we now find for (6.5)

IO = (x/e) B4_ Bty — LYVT(8)0x,) {(u'™® — p'®)/T"} —
— LMO(1T") (6T [ox,) — LYV c='T'D {(u'™ — p'@) T} —
LOO ((T) DT — LY ¢ ' D,  (a=1,..,4) (8.3)

where the Lorentz invariant quantity y, the electric conductivity, is given

by
¥ = e“)L(l)[l) (e(l) == 6(2’). (84)

The first term on the right hand side of (8.3) gives the influence of the
electromagnetic field on diffusion phenomena. The second and third terms
are found in the same form in the non-relativistic theory. The second
term is proportional to the gradient of (u'" — p'@)/T’ (“eingeprigte
Kraft”) and the third term gives the cross-effect with the heat con-
duction (thermal diffusion). The remaining terms on the right hand side
of (8.3), all containing substantial derivatives with respect to time, do not
occur in the non-relativistic theory.




We now consider the case that one of the two chemical components
consists of electrons. Taking the electrons as component 1, then in literature
the relativistic law of Ohm is given by 2) 8-12)

N

€V =y B Byt (@=1,...4) (8:9)

It is seen that the right hand side of (8.5) is equal to the first term on the
right hand side of (8.3). The latter equation gives the general expression for
the diffusion flow in a mixture of two chemical components. The four-
vector #,, which is used in the definition of the four-vector Ij (Cf. (1.2.28)
and (1.2.34)) and which also occurs on the right hand side of (8.5), is often
not sharply defined in the literature. According to our formalism #, is
given by (1.2.6) and (1.2.11).

As the electrons have a very small rest mass we have p'"" < ¢'. Hence,
according to (1.7.3) and (I1.8.14) we also have ols) < ¢'. With the help of

(1.2.2), (1.2.14), (1.2.27) and (11.8.3) it follows that in any Lorentz frame
o' £ 02, (8.6)

Using (1.2.7), (1.2.9), (1.2.10) and (1.2.28) we have from (1.2.34

s (1) 3@ 1@ gll)
I“) Al .;.4[-]7:) (771',‘ ”j’;j )n" ”lﬁ )”’l”-
a .

.\_:;‘ 1 (m”)? (a=1, ..,4) (8.7)
If | v | is sufficiently great, v, v and v have nearly the same direction
while the length of these vectors is of the same order of magnitude. Ac-
cording to (L.2.1), (I.2.7) and (8.6) we then have in general mg) = my
(B=1,..,4).1f | v |, | v? | and | v | are not of the same order of magni-
tude we are in the non-relativistic region and it appears that we may replace
ms by mi (B=1,..,4) in the numerator of the right hand side of (8.7) for
a = 1,2, 3 (Cf. (1.2.22)). It is also easily seen that we may replace 331 (m5)?
by Zi_,(m?)? in the denominator of the right hand side of (8.7). Hence,
from the preceding considerations we can infer that in any Lorentz frame

N4 anll) (2)
Zigy My~ Mg

IM &~ m) — m? (a=1,2,3) (8.8)

4 (2)y2
251 (mg")

By analogous considerations we can find that we may replace u; by
mP{—Z5_, (m?)?) -} in the right hand side of (8.5).

APPENDIX
As already stated in the introduction and in § 4, the procedure given in the
chapters I and II of this thesis would be wrong in case the medium is
influenced by an electromagnetic field. We shall now show that even in the

barycentric Lorentz frame this procedure would lead to wrong results.
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According to (7.5) we have in the barycentric Lorentz frame

J0 = (Zp_) LI ANE — T75r_ LW grad’ (u/®)T") -

~p

- LYY 11 )T*) grad’ T" + ¢~2 (ov o0y (=001 voamy (A)

where we have taken into account the definition (11.3.10) for d/d¢. From
(I1.3.3), (IL.3.13), (I1.3.14) and (2.11) we should have according to the
procedure given in the chapters I and II

J'()r }.,;\' : [’«M) ¢'“”){E' L ‘l(V”'I"' i Bl):‘
T' 3 LY®grad’ (u'™®|T") — LYOY1/T") grad’ T'+c¢~2 (v aot)'}. (A.2)
(7 L tLavad Joon)

According to Fieschi, de Groot, Mazur and Vlieger?)
the result (A.1) is correct. From (7.1) we have v'® = (1/p’™)J'® (B = 1,
..., n). Using this expression for v''* and comparing (A.1) and (A.2), one
can easily see that (A.2) gives a result which is different from the one given
by (A.1). Hence, (A.2) is wrong in the barycentric Lorentz frame and then,
of course, the procedure given in the chapters I and II gives wrong results

in any Lorentz frame.
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CHAPTER 1V

STEMS WITH POLARIZATION AND MAGNETIZATION
IN AN ELECTROMAGNETIC FIELD

§ 1. Introduction. The purpose of this chapteris to extend the considerations
given in chapter III to systems which are polarizable and magnetizable. We
shall deal with the case where the medium is isotropic as far as polarization
and magnetization are concerned. As in chapter I1I we shall assume that
the forces acting on the matter are only of an electromagnetic nature.

In the case that the medium is polarized and magnetized terms occur in
the non-relativistic second law of thermodynamics which are connected with
the polarization and magnetization of the matter. In this chapter our first aim
will be to derive the appropriate relativistic second law of thermodynamics.

If there is no polarization and magnetization, the electromagnetic field
only influences the medium by exerting a force on each chemical component
which is electrically charged. As a consequence of the polarization and
magnetization, however, the electromagnetic field exerts a force which we
cannot regard as acting on each chemical component separately. This
force will be called the ponderomotive force. It. will appear that the ex-
plicit expression for the ponderomotive force is closely connected with the
form of the relativistic second law of thermodynamics.

Again, we consider a continuous mixture of an arbitrary number of
chemical components. The barycentric velocity, defined by (1.2.6) *)
and measured by an observer in a Lorentz frame A at the position r and
at the time ¢, will be denoted by v(r, ). As in the preceding chapters
we shall assign to each point of the space-time continuum a special Lorentz
frame (the barycentric Lorentz frame) such, that in the point under con-
sideration, for an observer in this special Lorentz frame, the barycentric
velocity vanishes. It should be remarked that by this condition the bary-
centric frame assigned to a point of the space-time continuum is not uni-
quely determined. For, if for an observer in some Lorentz frame at a certain
point of the space-time continuum the barycentric velocity vanishes, the

*) Equation (2.6) of chapter I of this thesis will be indicated as (I.2.6) and in the same way

we denote the other equations of the chapters I, 11 and III.

44




barycentric velocity also vanishes at -the same point of the space-time
continuum for an observer in a Lorentz frame which is at rest with respect
to the Lorentz frame first mentioned but for which the ordinary three-
dimensional axis-frame has been rotated with respect to the ordinary
three-dimensional axis-frame of the first Lorentz frame. This indefiniteness
did not play a role in the considerations in the preceding chapters.
For example, in the relativistic second law of thermodynamics, given
by (I. 4.10), quantities occurred which were measured in the barycentric
Lorentz frame, but which were invariant with respect to rotations of the
ordinary three-dimensional axis-frame. It will appear that also in the
considerations in this chapter this indefiniteness of the orientations of the
ordinary three-dimensional axis-frames of the barycentric Lorentz frames
does not play a role.

We shall denote by B,, the barycentric Lorentz frame assigned to that
point of the space-time continuum which is described by position r and
time ¢ by an observer in Lorentz frame A. We shall denote by r’ and ¢
the position and time respectively which an observer in the Lorentz frame
B,, assigns to the point of the space-time continuum which is described
by an observer in Lorentz frame A by position r and time £.

Again, we shall distinguish by primes all quantities at a point in the
space-time continuum measured in the barycentric Lorentz frame be-
longing to this point.

The second law of thermodynamics is discussed in §2. In §3 we deal
with two four-dimensional tensors introduced in § 2. In § 4 further con-
siderations are given on the second law of thermodynamics. We then
discuss in §5 the balance equations for momentum and energy and in
§ 6 the balance equation for rest mass. The first law of thermodynamics
and the entropy balance are derived in § 7 and § 8 respectively. It is also
shown in § 8 that the explicit expression for the ponderomotive force is
closely connected with the form of the second law of thermodynamics.
The phenomenological equations and the Onsager relations for vectorial,
tensorial and scalar fluxes are given for anisotropic media in §9, §10
and § 11 respectively. Finally, in § 12 we deal with the phenomenological
equations for isotropic media.

§ 2. The second law of thermodynamics. We first remark that the com-
ponents of the electric field vector E and the magnetic field vector B form
the components of a four-dimensional tensor, B,,, defined by

0 Bl b,
— B 0 B —iE
B, = 2 ’ el (2.1)
B, — B, 0 — iE,
1E, 1K, 1E, 0
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[t is seen from this definition that this tensor is antisymmetric 7.e.,
B, = — By,. (@; 8 =:1;,:.754) (2.2)

The components of the polarization vector P and the magnetization vector
M also form the components of a four-dimensional tensor, M ;. This tensor
is defined by

0 M, M, P,
M 0 M iP
M, = : ; ki 19 (2.3)
M, —M, 0 iP,
- 1P, 1P, —aPy 0

and is also antisymmetric. Thus,

M, - M. (@, 8=11;..,4) (2.4)

Before dealing with the relativistic second law of thermodynamics we
shall first consider the non-relativistic second law of thermodynamics.
In the case that the medium is polarized and magnetized, terms occur
in the non-relativistic second law of thermodynamics which are connected
with the polarization and magnetization of the matter. As said already
in the introduction to this chapter we shall only deal with systems which are
isotropic as far as polarization and magnetization are concerned. For such
systems Mazurand Prigogine?) take as the form for these special
terms — E-{d(vP)/d¢f}, where » is the specific volume and d/d¢f is the oper-
ator defined by (I1.3.10). (The authors quoted leave magnetization out
of consideration.) By definition we have dP/df = limy,_, {P(r + vd¢{, { + di)
— P(r, #)}/dt. Usually, P(r + vd{, ¢ + di) and- P(r,#) are measured in
the same three-dimensional axis-frame. It should be remarked, however,
that P(r + vd¢, ¢ + df) and P(r, /) may be measured in three-dimensional
axis-frames which are rotated with respect to each other over an arbitrary
angle (of which, however, the (mathematical) order of magnitude is not
greater than the order of magnitude of df). To make this clear we remark
that dP = P(r + vd¢, ¢ + di) — P(r, ) may be split up into two parts.
The first part, d,P, is due to the rotation of the axis-frame and the second
part, d,P, equals dP if P(r - vd¢, ¢ + df) and P(r, {) are measured in the
same axis-frame. It is obvious that d,P | P. Since the medium is assumed
to be isotropic as far as polarization and magnetization are concerned
we have P // E. Hence, we have d,P | E and therefore E-dP = E-d,P.
Thus, we see that it is not necessary to measure P(r + vd¢, ¢ + df) and
P(r, /) with respect to the same axis-frame. It is easily seen that if the
theory of Mazur and Prigogine?) is extended to the case where
we have polarization as well as magnetization the special terms in
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the non-relativistic second law of thermodynamics will have the form
— E-A{d(eP)/dt} — B-{d(vM)/d¢}.

We shall now discuss the relativistic second law of thermodynamics.
As is well-known, the non-relativistic second law of thermodynamics for
systems without polarization and magnetization reads T (ds/d?) (de/dt)

pldv/df) — Z7_, u"(dc"/dy) 2). According to (1.4.10) the corresponding
relativistic second law of thermodynamics reads 7'Ds’ — De’ - " Dy' —
— X7 1'"De'?. Thus, we see that the operator d/df, defined by (I1.3.10),
is replaced by the operator D, defined by (1.2.25), and the quantities
T,s,e p,v, " and ¢” are replaced by T7, ¢, ¢/, v, w'? and ¢, On
taking the forms mentioned above for the special terms, the non-relativistic
second law of thermodynamics for systems with polarization and magnet-
ization reads 7'(ds/df) = (de/dt) + p(dv/dt) — E-{d(vP)/d¢} — B-{d(vM)/df} —
— X7, p”(dc”/dt). Hence, the most natural assumption for the relativ-
istic second law of thermodynamics seems to be 7'Ds’ — De’ | p'Dy’ —
— E“D(@'P’) — B"“D(»’'M’) — i /"D’ or, using (2.1) and (2.3),
I'Ds"=De' + p'Dv' — 3 3%, _, BsD(v'M ) — X w9De'?, It should be
remarked, however, that the special terms in the non-relativistic second
law of thermodynamics which are connected with polarization and mag-
netization need not necessarily have the form given above. Examples of
different forms will be discussed in the following chapter. (Cf. also formula
(2.67) of reference 1.) To have our discussion as general as possible, we
introduce two four-dimensional tensors, Gas and Z4(a, B, = 1, .., 4), which
will further be specified in § 3, and we take as the relativistic second law
of thermodynamics

I'Ds" = De' + p'Dv’ + } Y p=1 Gog DZ, ooy M D", (2.5)
(By taking G, = — B;; and Z,; = vM,; we obtain from (2.5) the form

for the relativistic second law of thermodynamics which corresponds
to the form for the non-relativistic second law of thermodynamics assumed
above.) It should be remarked that the quantities u'"'(j =1, ..., n) may be
considered as functions of 77, p’, (;,;,,(u, f=1,..;4) and ¢’ j=1,...,n—1).

From (L.2.11), (1.2.25) and (I1.3.10) we have D (1 — v?/c3)~¥d/dt)
and hence, DZ_; = (1 — v?/c?) Ylimg,_o {Zoa(r + v dt, ¢+ dt) Zoy(r, H}/de].
It should be noted that Z,’,;,(r + vdi¢, ¢ 4 df) is measured in BLk om bl
and Z,',f,(r, {) in B,,. As is well-known, the pure Lorentz transformations
(t.e., Lorentz transformations without rotation of the ordinary three-
dimensional axis-frame, for which transformations the coefficients are
given by (I1.4.3)) do not form a group. Thus, it is impossible to choose
the barycentric Lorentz frames such that they all transform into each
other by means of pure Lorentz transformations. Since, as we have said
already above, Z,:[,(r f~ vdz, ¢ 4 d#) is measured in B ot grag anid Z,',',,('r, {)
in B, the quantity T)Z",,f will depend on the choice for the orientations of
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the ordinary three-dimensional axis-frames of By, ya, /i ar and B, In §4
we shall show that, though I)Z,','.Z depends on this choice, the second law
of thermodynamics, given by (2.5), does not depend on it. This is the same
situation as the non-relativistic one which we have discussed above.

§ 3. Discussion of the tensors G5 and Z,5. We shall now further specify
the tensors G,; and Z, (a, =1, .., 4). For that purpose we introduce
the four-dimensional tensors H:ﬁ and A\I:_,, (@, p =1, .., 4) defined by

=Y A B, (@, f=1,...,4) (3.1
aff y,5=1 ) V3 e J
My =23y Aoy My Ag, (a,p=1,..,4) (3.2)

and the four-vectors BF and M}(a =1, .., 4) defined by

B! =33_, B4, (a=11; ....54) (3.3)
M? =35 M, u. (a= 1, «, 4) (3.4)

With the help of (1.2.29), (2.2) and (2.4) we have from (3.1) and (3.2)

3% = — B (a; B="1,....s4) (3.5)
My, - Mj;,. (a.8=1 .., 4 (3.6)

Using (1.2.30) we also find from (3.1) and (3.2)

341 Bip g = Zpa1 Yp Bg. =0, (a=1,..,4) (3.7)
223 i .\1,’:‘, Up .‘_‘.;71 g .\I;,*u 0 (=04 (3.8)

From (3.3) and (3.4) we obtain with the help of (2.2) and (2.4)
s oty spuig e ) (3.9)
T T ) (3.10)
Using (1.2.32), (2.1) and (2.3) it follows from (3.1) and (3.2) that
0 B, — !B, 0

B> (3.1H

ap
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and from (I.2.16), (2.1), (2.3), (3.3) and (3.4) we get
Bi=E; ‘BP=E; Br=E; Br=0 (313
M{*=—P;; M;*=—P); Mj*= —P,; M[*—=0. (3.14)
With the help of (1.2.28), (2.2), (2.4), (3.1), (3.2), (3.3) and (3.4) we derive
B,y = By — B} uy+ u, By, {a; p=1,"..,4) (3.15)
M= Mz — M} uy + u, M}, (@B=1,..,4) (3.16)

We now define the tensors Gy and Z2 (@, =1, .., 4) by

Gl = 4y Bl Mg MY, (a,.p=1,..,4) (3.17)
Zay = k3 Bl + diy M, (a,B=1,..,4) (3.18)

and the four-vectors G¥ and Z* (a I,..,4) by
Gs =Rp BY + A M2 (@a=1,..,4) (3.19)

Zq =35 BY o+ A MY, (a=1,..,4) (3.20)
In these equations the coefficients Aw(k =1, ...,8) are Lorentz in-
variant quantities which will be specified in the following chapter. It will
appear that they do not occur explicitly in the final results (z.e., the entropy
balance and the phenomenological equations) obtained in this chapter. We
now take for the tensors G,, and Z 5 analogous to (3.15) and (3.16)

Gop = Gag — G ug + 1, G, (a,8=1, .., 4 (3.21)
Zpg =23 —ZF wy+ u, Zg. (@,f=1,..,4) (3.22)

Substituting (3.17), (3.18), (3.19) and (3.20) into the two preceding equations

gives
(;:tfi : }'I/l\ H:b‘ f ;wlza Jl:f,’i T /-'{,5> (“u l’): H: ”/?) A

b A (4, M3 — M2 uy), (,p=1,..,4 (3.23)
Zop = ki3 Blg + gy M2 + 20 (u, B; — B} up) 4

t Ay (0, M3 M7 uy). (@, p=1,..,4) (3.24)

From the two above equations it is seen with the help of (3.5) and (3.6) that

G = — Gy, (=1, :.;4) (3.25)
Zog = — Zy, (@, =1, ..,4 (3.26)
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We shall now derive some properties of the tensors (,‘f:,, and Z%, and of
the four-vectors G¥ and Z*. For that purpose we first consider the consti-
tutive equations. As is well-known these equations read for media which
are isotropic with respect to polarization and magnetization

M’ (1 s HYB’, (3.27)
P (e — 1)E/, (3.28)

where the Lorentz invariant quantities u and ¢ are the magnetic perme-
ability and the dielectric constant respectively. From (3.11), (3.12), (3.13)
and (3.14) it is seen that the two preceding equations can also be written
in the form

M.y = (1 —u")Bg, (@, =1, .., 4 (3.29)

aff

M.* = (1 — &B.*. NS Py W | (3.30)

a

Since these tensor-equations hold at position r’ and at time ¢ for an ob-
server in B,, they also hold for an observer in A at position r and at time £.

Thus,
MY = (1 —u")B3, (@, =1, ..,4) (3.31)
M = (1 — &)B;. (@=1,..,4) (3.32)

It follows from (3.17) and (3.18) with the help of (3.5) and (3.6) that

Gay = — Gpa (@, p=1;...4) (3.33)

A ] (B8 (3.34)
and with the help of (3.7) and (3.8) that

$4 Ghuy =S4 u,Gh=0, (a=1,..,4 (335

B4 Zig by = gy g Zgu = 0. (@=L ..x4) (3.36)

Using (3.9) and (3.10) we have from (3.19) and (3.20)

Y % GE =0, (3.37)
Py Wy 2 =1, (3.38)

From the four preceding equations we get with the help of (1.2.16)

Gt =Gg =0, (@a=1, .., 4) (3.39)
I =7Z2=0, la=1, .., 4) (3.40)
G =0, (3.41)

0. (3.42)




Inserting (3.31) and (3.32) into (3.17), (3.18), (3.19) and (3.20) gives

Goa = {hqy + Ay (1 — g~} B, (@, =1, ..,4) (3.43)
2% =4 A (1 =g~ W B% (a,p=1,..,4) (3.44)
G =l S 20 (1 — B B2, (=1, ..,4) (3.45)

Z3 = flen 45 %00 (1. —8)}B. (=1, .., 4 (3.46)

From these equations we find

Zy=TGY (a, p =1 4) (3.47
Zy = QG?, (@ =1 4) (3.48

where

r ; ‘ : 3.49
R s P

0 = /,";7’ i /",8’;,(] ... : (3.50)
Ay + Ag (1 — &) '

Finally, we remark that we have from (3.21) and (3.22) with the help
of (1.2.28), (1.2.30), (3.35) and (3.36)

Gop =25: 20 4., G.; Biy, (a,p=1,..,4) (3.51)

Zoay =Zri 4, Z.; Ay, (@ f=1,..,4) (3.52)
We also have

Gz = Zjy Gop 1, (@=1,..,4) (3.53)

Zg = Xy Zop 4y, (=1, .., 4) (3.54)

These two equations are readily verified with the help of (I1.2.12), (3.21),
(3.22), (3.35), (3.36), (3.37) and (3.38).

§ 4. Further discussion of the second law of thermodynamics. We first
remark that, according to (I1.2.16) , (o 1, ..,4) does not depend on

Xy, X5, X3 or x, and hence, using (1.2.25), we have
l)u,'_, = 0. (a s 0.4 (4.1)

In the same way we find from (3.39), (3.40), (3.41) and (3.42)

DG,y = DG} =0, (@=1,..,4 (4.2)
DZ,; =Dz} =0, @ =lisaol) (4.3)
DG* = 0, (4.4)
DZ* = 0. (4.5)

ol




We now substitute (3.21)
help of (4.1)

and (3.22) into (2.5). We then get with the

T'Ds’ = De’ + p'Dv’ — 21, ' D'

-3 Z0sa1 (Gog — G.F wp + u,G5*) (DZ.3 — uy DZ* + u, DZ3¥), (4.6)
or, using (I.2.16), (3.39), (3.41) and (4.3)
T'Ds'=De'+p'Dv'+3 22 ,_1G3 DZ g —32_G.*DZ.* — X7 4’ D', (4.7)

Inserting (3.17), (3.18), (3.19) and (3.20) into the preceding equation gives
T'Ds" = De’ 4 p'Dv' — ZF_, u"? D' +

af )

+ 3 2351 (A By + A M )D(A Bog + Ay Mo3) —
— B3 (A5 B.* + Ay M Y)D(Ay BLY + A MY), (4.8)
or, with the help of (3.11), (3.12), (3.13) and (3.14)
T'Ds’ = De’ + p'Dv’ — Z7_, p'? D'

F (A, B’ + Al M')-D(Aly B’ + 4 M’), —
= (g B — 20 PRDUL B =3Py, (4.9)

We obtain the non-relativistic second law of thermodynamics corresponding
to (4.9) by dropping the primes and replacing D by d/d¢ in (4.9). (Cf. § 2).
Hence, we consider all those forms for the relativistic second law of thermo-
dynamics of which the non-relativistic analogs can be written in the form
of the non-relativistic analog of (4.9). It should be remarked that not all
sets of values for 4, (k 1, ..., 8) give correct forms for the second
law of thermodynamics.

We shall now derive another form for the relativistic second law of
thermodynamics which will be useful for the considerations in the following
sections. Using (3.39) and (3.41) we can write for (4.7)

T'Ds'=De'+p'Dv'+§ T, Gog DZ3 —S4_, GI*DZ*— 1, w/9De'Y. (4.10)
Substituting (3.47) and (3.48) into the preceding equation gives

T'Ds’ = De' + p'Dy' — Z_, u'? Dc'?
1 {(Gog)? DI’ + 3I'D(G2)3 —

G.*)? DR + 3QD(G.*)%




We have

Des=t (Cog ) = Depat (GRS (4.12)
Deai (G =Sk G5 (4.13)

since the right hand sides of these equations have the same values in all
Lorentz frames. Inserting the two preceding equations into (4.11) gives
with the help of (3.47) and (3.48)

T'Ds’ =De 9Dy’ 4 1 54, GEDZY% — T4 6 D2 —

af “afl a

— X, w9D ', (4.14)

7

Using (3.21) and (3.22) we can write for (4.14)

T'Ds’ = De’ + p'Dv’ — 0, /" D' — 34_ G* DZ*

7

y4

. ~ 5 P N % \
- 3 Zopa1 (Gap + GF g — 1, GYD(Z g + 23 4y — uy Z3).  (4.15)

With the help of (1.2.12), (I.2.13), (I1.2.25), (3.25), (3.26), (3.37) and (3.38)
we find for the above equation

T'Ds’ = De’ + pDv" — 0, ' De'® + 3 54, . 6., DZ,; 4

4

{ ~4 ¥ ~4 - %k ~4 Sk -
- Dap=i L4 Gap Du,, — Lapar Uy Gog DZy + 51 G, % IM,,;, —
~4 L 3 7%k
— 22,1 G; DZ. (4.16)
Using (3.54) we have

‘\-::.;i 1 G: Ug I)Za,f} S| (;f DZ,T = ‘\-::A:.;f =1 (;-T Zog ”“;r (4.17)

Substituting the preceding equation into (4.16) gives with the help of
(3.25) and (3.53)

T Ds! De' 4 p'Dy’ — Xy D¢’ 4

B AT s e TG e —GF 2.5 D), (4.18)

a,f a

or, using (3.25), (3.26), (3.53) and (3.54)

T'Ds’ = De’ + p'Do’ — ', /D D' + 434, G, DZ,4

.‘_I,";",,_}, 1 Uo (Goy Zy5 — 2,4, Gyg) Dutg. (4.19)

From this final form for the second law of thermodynamics it is seen that,
as is required, our result is independent of the choice for the orientations
of the three-dimensional axis-frames of the barycentric Lorentz frames.
This may also be seen from (4.11) since the quantities ¥};_,(G.5)* and
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2t _(G.¥)? are invariant with respect to rotations of the ordinary three-
dimensional axis-frames of the barycentric frames. (In our derivations,
however, we have assumed that these orientations are chosen such that
derivatives with respect to x,, %, x; and x, of such quantities as vt
Z,; and Z.* exist.)

§ 5. The balance equations for momentum and energy. Again, we shall
assume that the energy-momentum tensor of the matter is symmetric.
Hence,

4! W g4 (a, p L s d) (5.1)

afl

We shall assume that the forces acting on the matter are only of an electro-
magnetic nature. The balance equations for momentum and energy read

SA_, oW 4loxs = k. (=1, ..;4) (5.2)

af @

The first three components of the four-vector %, (e =1, .., 4) are the
components of the force per unit volume which the electromagnetic field
exerts on the matter. The quantity (c¢/i)k, is the energy which the electro-
magnetic field contributes to the matter per unit volume and per unit time.

In two ways the electromagnetic field exerts a force on the medium.
In the first place the Lorentz force acts on each chemical component which
is electrically charged. In the second place, in consequence of the polar-
ization and magnetization of the matter, the electromagnetic field exerts
a force on the medium which cannot be interpreted as acting on the chemical
components separately. This force will be called the ponderomotive force.
Hence, we have

(a 1}ieond) (5.3)

a jar

v ( >
ke =20, o) K9 + Bp

where o} KY (« =1, ..,4) is the four-vector representing the Lorentz
force per unit volume acting on component j and kpy, (@ =1, ..,4) is
the four-vector representing the ponderomotive force per unit volume.

In chapter 111 K7 was given by (II1.2.19). We shall now assume that
K9 = e (col)) ™ Z5_; Famy, fa="F . & =1 e ®) )

where FJ} (j =1, ...,#n) is a four-dimensional tensor. This tensor repre-
sents the “local” electric and magnetic fields to which the ions of the
chemical component j (j = 1, ..., n) are subjected. To have our discussions
as general as possible we shall not yet completely specify this tensor but
we shall assume that it is given by an equation analogous to (3.23) and
(3.24). Hence,

(1) 21j) ¥ a’(§) * 1)
Ag) Bag + Aoy Moz + Ay (u

) # ) ¥
‘ap By — B ug) +

a

A0 (u, My — M¥uy). (@, B=1, i, &=, ca;n) (55)




From the above equation it is seen with the help of (3.5) and (3.6) that

2. — F}. (8=, .49 =1, .".,9%) [5¢6)

fa

In §8 we shall investigate the explicit form of kp, (e = 1, .., 4).

§ 6. The balance equation for rest mass. Analogous to (I.4.1) the balance
equation for rest mass reads

a0™ ot - div o™ v® 4 »® T (k IO etary (6.1)

Using the four-vectors m{ (« = 1, .., 4; k = 1, ..., n), defined by (1.2.1)
we can write for the preceding equation

Mlox, = v J.. (k=1 ..., %) (6.2)

a

by {
P ,r)}I

Analogous to (I.4.3) we have the conservation law

Y=y om.jox, = 0. (6.3)

The equation (6.1) can also be written in the form
l_;’D(""” = = .\_.4, 1 ?1:,”?1“ 4 0 f f (] A ) (6.4)

which equation is identical with (1.6.1).

§ 7. The first law of thermodynamics. To deduce the first law of thermo-
dynamics, we use the same method as in § 5 of chapter I; i.e., we study
the equation which we obtain by multiplying (5.2) by #, and summing
over a. Hence, we must consider the equation

X3 gt Wa(OW pf0x5) = Th_\ u, k. (7.1)

a,f
Using (1.2.10), (I.2.21), (5.3), (5.4) and (5.6) we derive

4 8 AL 4 (k) —1 (k) x4 (% | V4
gt Uo oy = — 23 B2 TP e a1 Fog wg) + i, uy Ripree (7.2)

Substitution of (I.5.9) and the above equation into (7.1) gives
o'(De’ + p'Dv’) = — Z5_ (21 exy + ¢~ I Duy) -

| 4 > N - PPIRE L~ N 4 (k) 1 (k) > 4 ~(k) 4 3 v
- 1 Poglougfox,) + i Ba_, IP(e 2 1 Fopthg) — 2w Rip (7.3)

c ~a,pe= a a

as first law of thermodynamics.

§ 8. The entropy balance and the ponderomotive forces. We have not yet
discussed the form of the four-vector &, (a = 1, .., 4) which represents
the ponderomotive force. In this section it will appear that certain con-
ditions must be imposed on &, if we want to obtain a satisfactory ex-
pression for the entropy balance. These conditions, however, are not such
that %, is uniquely determined.
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We first substitute (6.4) and (7.3) into (4.19). Using (I. 2.25) we then find

o'Ds" = — Z_y(9fox,) {(1T')ID — Zf., ' IP)} +

F (YT [— 225 IQ {(1T)(eT " [ex,) + ¢! Du,)

al W

LS 4 (7) §,l) $4 (1) Tro O 4) 1
T =] g1 Iu Il( Bl ayﬂ Uy — 1 ((/("1vn)(.ll ,I./l )} +

-~ 34 s S - VR - AN A1) )
i’ ~af=1 I (r,‘f((llflf)("l(t) - ./m i) VM
.y 5 ¢ o4 s 57 o
— € Xyi U {Ripja — 30" Byt G5, (02, )0%,) —
' N4 S 7 7 7 ) 18+ 1
— 0 B8t %Gy Zye — Z, G) (01:)0%.)}])- (8.1)

The last two lines of the preceding equation do not contain quantities
which may be interpreted as fluxes in the sense of thermodynamics, be-
cause Rp, represents the ponderomotive force, the tensors G, and Z,
describe the electromagnetic field and the polarization and magnetization
of the matter, the four-vector u, represents the barycentric velocity and p
is the total density of rest mass. The entropy production always consists
of a sum of products of fluxes and “forces’” (affinities), while the entropy
flow equals a sum of terms where each term contains a flux as factor.
Hence, if we want to obtain a satisfactory form for the entropy balance
the last two lines of the preceding equation must vanish. This means that
k(p, must have the form

(/R

1 \‘/, - Y ’!, ~ \\4
L) R (’;1;-((/',«;.1“\”,) T ~ge=1 "|u(’i B

X et Ug(Gpy Zp — Zy, G.p) (Ougfox,)}. (a=1,..,4 (8.2

The four-vector @4(f = 1, .., 4) which occurs on the right hand side of
this equation cannot be determined with the help of pure thermodynami-
cal considerations; for, if we insert the preceding expression for &, into
(7.3) or (8.1) the term containing @®; vanishes according to (1.2.30).

We now define

YO = — {(1/T") (oT"[éx,) + ¢! Du,}, (a=1,..,4) (8.3)
YU =" 38 1 Fagg— T'(0fox,) (w'?[T7). (a=1,..;4;9=1,...,n) (8.4)
Substituting (1.6.5), (I.6.11) and the three preceding equations into (8.1)
gives with the help of (1.2.30) and (1.5.7)

o'Ds" = — Bq_(8/ox,) {(1/T") (I — Zfey w9 IP)} 4

(1T (Epoo T 1D YD 4 ¢ 54, Po(0u,)ox,) + Ho'Dv’ + ], A}. (8.5)

7 a a,p
If we define
Fios (/7)) (I — 2y A 2 (a 1, ) E6)

o= (1T){Zr oSt IV Y 4 ¢34, P (dulox,) + Ig’Dv’ + ], A}, (8.7)
V=) g | 1 £ B (

@ a a,p
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we have for (8.5)
o'Ds’ - )..2 1 f?'[m,,,'(".t" g ! 7 (8.8)

This is the final form for the entropy balance. We can interpret ¢ as the
entropy production per unit time and per unit volume. The four-vector
I . represents the conductive flow of entropy per unit surface.

From (8.7) it follows that ¢ is a Lorentz invariant quantity. It is seen
that the entropy balz.cc (8.5) is formally equal to the entropy balance
(IT11.5.1) for the case without polarization and magnetization. Mazur
and Prigogine also find this formal analogy as one of the results of

their non-r<lativistic theory !).

§ 9. The phenomenological equations for wvectorial fluxes in anisotropic
media and the Onsag.r relations. In the preceding chapters we have given
the phenomenological equations for isotropic media. We shall now treat the
general case of media which are anisotropic as far as the irreversible processes
are concerned. It should be remarked that the medium can become aniso-
tropic (as fur as the irreversible processes are concerned) owing to the
polarization and magnetization of the matter. In this section we shall
deal with vectorial fluxes. These fluxes represent the heat flow and the
relative flows of matter.

According to (8.7) the contribution, ¢, of the vectorial fluxes to
the entropy production, o, is given by

ama = (YT') Zjg Bauy I Y. (9.1)

\3':- now introduce as new vectorial “forces’” (affinities) the four-vectors
you! (o 1, ...4;3=0,1, ...,7) defined by

g 0 S oy 4 (= 1,...4; §.=0,1,.o0i0) (9.2)
Using (1.2.30) it follows from this definition that
b, Y9 =0 (=101 Jym) (9.3)
With the help of (1.2.24), (1.2.28), (1.3.7) and (9.2) we can write for (9.1)

G = (U/T) By By IO T, (9.4)

a=] “a a

We shall leave out of consideration cross-effects between quantities of
different tensorial character. (It should be remarked that such cross-effects
might exist in anisotropic media.) We shall assume, however, that a flux
depends on all “forces’ (affinities) having the same tensorial character as
this flux. Therefore, taking into account the above form for o,,, we have
for the four-vectors I (a=1,..,4; =0, 1, ..., n) the phenomenological
equations

1IN =32 S IX0 Y (=1, ..,4; 1=0,1,...,5) (95
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From (I.2.24), (1.3.7) and the preceding equation it follows that

B0 Shsnq u, LYW FB — 0, G=01,...,n) (9.6)
Using (1.2.28), (9.3) and the above equation we write for (9.5)

19 = 3% 08 TON 8, (=1, 05% F=0,1 cco,m) (9,7
where

IOW =34, A LM A.  (ap=1,..,4;1,k=0,1,...,n) (9.8)

We shall now deduce some properties of the phenomenological tensors
1,',;'71kr (e, p=1,..,4; 1,k=0,1, ..., 7). With the help of (I.2.30) we
have from (9.8)

T 0, LO™ = 0, B=1, a5 3, 8=0, 1, civst®),  (5:9)
and
LM 4, = 0. (@=1,..,4; 1, k=0,1, ...,n) (9.10)

Using (1.2.16) it follows from the two preceding equations that
L'pw — T'9w — o, (@=1,..,4; {,-=0,1, ...,n) (9:11)
From (9.7) and the above equation we conclude
I =33 53 T A0 M fa=1,.., 4=0,1..,%) (812

Since the Yp ®p=1,2,3; k=0,1,...,m) are independent from each
other we have from (I.2.23) and the preceding equation

B LM =, (@=1,..,4; $=1,2,3; k=0,1,...,m) (9.13)
or with the help of (9.11)
L™ — 0, (arp=1,: o4 =01 i) (9.14)

ap

As this tensor relation holds at position r’ and at time ¢’ for an observer in
B,, it also holds.at position r and at time ¢ for an observer in A. Hence,

00 1)\ (a,8=1,..,4; #=0,1, ...,n) (9.15)

ap
Using (1.3.6) and (I.7.2) we have from (9.4)
T'oun = B0 2= 1P Y9, (9.16)
With the help of (1.2.23) we find from the above equation

~

T _ a3 '(0) v7’(0) m—1 v3 ) u,, 51 (04)
Tlopg = Bd=i 1% Y + 2353 B LA(Y.D— ¥ M) (9.17)
Inserting (9.12) into the preceding equation gives

‘o ' 3 T (0)(k) <R F1(0)
1 O (h)(d) () g,/ 14.': ),; 3«. T

AN sn—1 3 T Ltk) ik g7 St
T2 o ZniER,  Tlw gum (g Py, (9.18)

af
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From this equation it follows that

~

oy = L (PO + (1., L) 74 70 i

Y O=F™ (=1, ...,.n—1), V9= 0 for a st £, ¥™=0 for q = £, (9.19)

a a 1 a
where & and { are two numbers, each of them having one of the values
1, 2 or 3. Since T"ay;,, must be a positive definite quantity, it follows
from the preceding equation that

Lowo's o, E=1,223) (9.20)
and
20 L Et=1.223 (9.21)

because Y.,” and Y™ may be chosen arbitrarily. From (9.18) we also
have

Al TN W) ()2 AN T kN Tin (1) Vad L
/lr()s)ull L. ()‘ = ) 3 ("‘k lI‘SZ/ ) )C /()5 ):' ) if

-’ </ . 3 3 o7/ ( ‘,I“ ] 3 ) o
Y. '=Y,"(=1,...,n—1) for j £ ¥.9=0, Y O=F'™ for q¢

[ a a

Y™ — 0 for a # ¢, (9.22)

a

where & and { are two numbers, each of them having one of the values
1, 2, or 3 and / is a number which may have one of the values 1, 2, ... n—1.

Since Y."

2| < . . . ’
— Y™ and Y. may be chosen arbitrarily and since T'0a)
must be a positive definite quantity it follows from the above equation that

LY > o, (E=1,28 Vx5 e }) (9.23)
and
MaLPM=0 = (r=1,231I=1...n—1) (924

It is easily seen that the two preceding equations are also valid for I = .
Moreover, on account of (9.11) £ and ¢ may run from 1 to 4 in the equations
(9.20), (9.21), (9.23) and (9.24). Thus, we get

~; :

LI > o, (=1, .., 47=0,1, ...,m) (9.25)
and

3 T ') k) Y

ey Lag ™= 0 (@ =1, .:;4; Y=0,1; ..., m) (9.26)
Since the last tensor equation holds for an observer in B, , at position r’
and at time ¢’ this equation is also valid for an observer in A at position r
and time £ Hence,

no LOW — 0. (@B=1,..,4;7=0,1,...,n) (9.27)

It may easily be verified that (9.12) is identical with the non-relativistic
phenomenological equations for heat conduction and diffusion in aniso-
tropic media for the case that v and dv/d/ vanish %). Thus, the coefficients

7::1’”‘ (a, p 1,2,3; 7,kh=0,1,...,n) are the phenomenological coef-
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ficients, of the non-relativistic theory, among which we have the Onsager
relations

L™ (B) = L) (—~B'). (a,8=1,23;1,k=0,1,...,n) (9.28)

From (9.11) and the preceding equation we find

fmm (B') = z‘;;k](i) (— B). (&, pi=1,0:,%; 1, =0,1;1".n) '(9.29)

Since these tensor relations hold for an observer in B, at position r’ and
at time ¢ they also hold for an observer in A at position r and at time £
Therefore, we get

IO (B) = IND(—B) (a,f=1,..,4; ,k=0,1,...,m) (9.30)

as relativistic Onsager relations for heat conduction and diffusion in ani-
sotropic media.

It should be noted that it is also possible to derive (9.27) from (9.15) and
(9.30). As we have seen, however, it is not necessary to use the Onsager
relations for the derivation of (9.27) since this equation may also be deduced
from the positive definite character of 7", ,. The method used above
to deduce (9.27) is an extension of a procedure used by de Groot?
to derive this equation for isotropic media. Finally, we remark that the
tensors Z*”"“" occurring in (9.5) need not have any of the properties which
we have (lerl\ ed for the tensors L! "k’

§ 10. The phenomenological equations for temsorial fluxes in anisotropic
media and the Onsager relations. The only tensorial flux occurring in the
expression (8.7) for ¢ is the ordinary viscous pressure tensor f’uﬂ (a, B =
=1, .., 4). It is seen from (8.7) that the contribution, ¢, of the viscous
flow to ¢ is given by

o = (¢|T") 251 P (0s/0x,). (10.1)
We now introduce the four-dimensional tensor Y, (¢, f =1, .., 4)

Yo =¢34, (34,45 {(0u,l0x;) + (Bug/ox,)} — 34, Ay (2u,/0xp)].  (10.2)
(o B=i0 . 4)
From (I.2.30) and the preceding equation we have
Dy %, Yoy =0, (8 =18 ) (10.3)
it Yopthy =0. (@ =1, 4 (10.4)
With the help of (I.2.29) we find from (10.2)
Yoo= Yp, (@ p= 1, is; 4) (10.5)




Using (I.2.28), (I1.2.29), (I.2.30) and (I1.2.33) we get from (10.2)
}:::l }/'rm - O' (10.6)

With the help of (I.2.28), (1.6.6), (1.6.7), (1.6.8) and (10.2) we can write
for (10.1)
Oy = (I/r) u/r 1P } (107)

ap
As noted already in the preceding section we shall leave out of consider-
ation cross-effects among quantities of different tensorial character. There-
fore, taking into account the preceding form for g, we have for the tensor
P (a,p =1, .., 4) the phenomenological equations

A o A B 2 (a,B=1,..,4) (10.8)

afly

where I',';}T* (a, .y, =1, ..,4) is a phenomenological tensor. We now

introduce the four-dimensional tensor L35, (a, 8,7, (=1, ..,4) defined
by
Lot =28 100mt Qg A g A, Lty (@, B7.6=1,..,4  (10.9)
Using (1.2.28), (1.6.8), (10.3), (10.4) and (10.9) we can write for (10.8)
Py 28, WIS ¥ (a,B=1, ..,4) (10.10)
Finally, we introduce the four-dimensional tensor I.f:.»,.,,: (a0, 8,9, 8= 1, .., 4)

defined by

I‘l;/ (I B | I** 1 [‘** ]**) 5

afiyl | “Bayl afly ~fBaly
1 4 *k * ok A V4 e * %
o li"]uﬂ =] (]‘SE;'C 13 ‘55:;') e il;']',': i3 (1’41.3 1 I‘ﬂu ) T
{ 4 kA $-
t34ap Ay 241 Liie (@By.t=1,..,4 (10.11)

With the help of (I1.2.28), (1.6.6), (1.6.7), (10.3), (10.4), (10.5), (10.6) and
the preceding equation we find for (10.10)

Poa= 2 Ear Yo, (2, 8= 1; <=;4) (10.12)
We shall now deduce some properties of the tensor I,U,) Using (1.2.30)
and (10.9) it is seen {from (10.11) that
Dt Yo Loge =0, Beys =1, 05,4 (10.13)
Zai %5 Lipe =0 e, pl=1.u4% (10.14)
B, Ly =0 (a2 B =11, ;1,4 (10.15)
2ty Ligy =10 (a; psp=1,..,4) (10.16)
With the help of (1.2.33) we obtain from (10.11)
XLy 0, (af= 1y iis 4 (10.17)
DT [,,*,,, 0. v e=1;..,4 (10.18)
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Further, we get from (1.2.29) and (10. 11)
5P

L}

Bayt (a, B, y, € b e g4 (10.19)
S @By =1, ..,4 (10.20)

We shall now derive the Onsager relations. Using (I1.2.16) we find from
(1.6.8), (10.3), (10.4), (10.13), (10.14), (10.15) and (10.16)

Py =P, =0, (@=1, ..,4) (10.21)
Yo, = V5. =0 (@=1,..,4) (10.22)
Ligey =Lotpy = Ligy=Lips =0. (0,fop=1,..,4) (10.23)

Using the three prccv(ling equations it follows from (10.12) that

P’ =
1 aff =] [

g Yo (@, =1, 2 3) (10.24)

It may be easily verified that (10. 24) is identical with the non-relativistic
phenomenological equations for the ordinary viscous pressure t(nsm
in anisotropic media and that the coefficients Lg: (@, B.v.6=1,2, 3)
are the same coefficients as the phenomenological coefficients use d by
de Groot and Mazur?. Therefore, we have the Onsager relations

Logw (BY) = L%, (— B)). (0,8, 7, ¢ = 1,2,3) (10.25)
Using (10.23) we may extend the preceding equation to
Lige BY)= L2 (— B). (B v =1,.,4 (10.26)

Since this tensor relation holds at position r’ and at time # for an observer
in B, , it also holds at position r and at time £ for an observer in A. Hence,

L. (B') Ly (— BY). (ay Byl =713 ., 4) (10.27)
This equation is the relativistic form for the Onsager relations for viscous
flow in anisotropic media.

Finally, it should be remarked that the tensor 1,,ﬁ (a. By E=1, .., 4

need not have any of the properties which we have derived for the tensor
Lq,,-( B, v, ¢ [

§ 11. The phenomenological equations for scalar fluxes in anisotropic media
and the Onsager relations. For the scalar quantities /7 and [, we have the
phenomenological equations

/1 '/(x-’)'f’])“, f l’l,”]lc\ A, (11.1)

and

A/_,(, L(c‘,(mt_/l)?" - LA. (11.2)




The coefficients Ly and L4 are identical with those of the non-rela-
tivistic theory. Between them we have

Ly (B') = — Ly (— BY), (11.3)

which is the Onsager relation for visco-chemical effects in anisotropic
media.

§ 12. The case of isotropy. The three-dimensional tensor 1_’,',,, (o, 8= 1,2,3)
is the ordinary three-dimensional viscous stress tensor of the non-relativistic
theory. The three-dimensional tensor Y,',',, (@, p =1, 2, 3) is the “force”
(affinity) conjugate to P,; in the non-relativistic theory. As may be seen
from (1.6.7) and (10.5), the two tensors are symmetrical. Moreover, the
trace of these two three-dimensional tensors vanishes according to (I1.6.6),
(10.6), (10.21) and (10.22). As is well-known, isotropy means that the
two tensors are proportional to each other. Hence, we can write

Pi=29Vl. (a:f=1,22) (12.1)

From (10.21), (10.22) and the preceding equation we have
Iﬁ):,ﬂ = 27 \",:‘_,,4 (a, B 15 san 4y (12.2)
In the same way we can derive

I =30 LW FF®) (@=1, .., 80 =0.1,.;m) (12:3)

for isotropic media. Since the two preceding tensor relations hold for an
observer in B,, at position r’ and at time ¢ these relations also hold for
an observer in A at position r and at time /. Hence,

D=2V, (@, =1, .., 4) (12.4)
and

1Y = 32 1O8 & (@=1,..,4;5=0,l,..0;%) (12.5)

Inserting (10.2) into (12.4) shows that (12.4) is identical with (1.7.14).
From (1.7.7) and (9.2) we see that also (12.5) is identical with (I1.7.1).
Comparing (10.8) and (12.4) we see that in the case of isotropy

Lt = 200, 6p. (@, iy, E=1,..,4) (12.6)
Similarly we see from (9.5) and (12.5) that in the case of isotropy
LN — phihg . (@,f=1,..,4;4,k=0,1,...,m) (127

Substitution of (12.6) into (10.9) gives with the help of (1.2.28) and (1.2.30)
1.;;:‘._- 214 4y Apge. (&ip:E= 1y .4} (12.8)

Inserting the preceding equation into (10.11) gives with the aid of (1.2.28),
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(1.2.30) and (1.2.33)

1)

/C)'

PN = (A Ay 4 A ) §4 (12.9)

ap L
(@B, =1, ..., 4)
Substitution of (12.7) into (9.8) gives with the help of (1.2.28) and (1.2.30)
TON' = LN A,  (efp=1,..,4;1,k=0,1,...,7) (12.10)
If we take a = f = y = { we have from (10.27) and (12.9)
n(B’) = n(— B'), (12.11)

2.e., ) 1s an even function of B’. The Onsager relations for heat conduction
and diffusion read

LW By — LWO (— B, (1, =0,1, .v.,n) (12.12)

which follows from (1.2.29), (9.30) and (12.10).

In isotropic media the phenomenological equations for the scalar fluxes
IT and [, are again given by (11.1) and (11.2). It is easily seen from
symmetry considerations that in an isotropic medium L, and L, must
be even functions of B’. Hence, we have from (11.3)

Ly (B') = — L (B) (12.13)

for the Onsager relation for visco-chemical effects in an isotropic medium.
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CHAPTER V

THE ENERGY-MOMENTUM TENSOR OF THE
MACROSCOPIC ELECTROMAGNETIC FIELD, THE
MACROSCOPIC FORCES ACTING ON THE MATTER AND
THE FIRST AND SECOND LAWS OF THERMODYNAMICS

§ 1. Introduction. In chapter IV of this thesis quantities occurred, in
the expressions for the Lorentz force and the ponderomotive force and
in the first and second laws of thermodynamics, which were not completely
specified. In this chapter we shall give such explicit expressions for these
quantities that the four-vector which represents the total force exerted
by the electromagnetic field on the matter may be taken as the divergence
of a four-dimensional tensor (the energy-momentum tensor of the electro-
magnetic field).

We shall deal with media which are isotropic as far as polarization and
magnetization are concerned.

The equations for the electromagnetic field are given in §2. In §3 we
give explicit expressions for the quantities mentioned above and we derive
an expression for the energy-momentum tensor of the electromagnetic field,
In § 4 we discuss the conservation laws for energy, momentum and angular
momentum. The energy-momentum tensor of the electromagnetic field,
derived in §3, and the forces exerted by the electromagnetic field on the
matter are discussed in §5 and § 6 respectively. In §7 we compare the
energy-momentum tensor of the electromagnetic field, found in § 3, with
the tensors of Abraham and Minkowski. The first and second
laws of thermodynamics are discussed in §8. In §9 we discuss the in-
definiteness of the energy-momentum tensors of the matter and of the
electromagnetic field. Finally, in § 10 it is shown that Abraham’s
tensor leads to an equivalent formalism and that from the point of view
of the developed theory this tensor is preferable to Minkowski's
tensor.

§ 2. The electromagnetic field. The electromagnetic field in ponderable
matter is described by the electric field vectors E and D and the magnetic

65




field vectors H and B. The polarization vector, P, is defined by

P=D—E, (2.1)
and the magnetization vector, M, by
M=B—-H. (2.2)
The Maxwell equations read
rot H — ¢~ (éD/et) = ¢7'j, (2.3)
divDi=pps (2.4)
rot E 4 ¢~ (éB/at) = 0, (2.5)
divB = 0. (2.6)

As is well-known E,, E,, E;, B,, B, and B, are the components of a tensor,
B (a,p 1, .., 4), defined by

| 0 B, — B, - 1E,
B, 0 B, —iE,
By 7 08 (2.7)
B, — B, 0 — 1B,
1E, tE, E, 0

This tensor is antisymmetric, i.e., it possesses the property
B, = — By, (@ B=1,..,4 (2.8)

Also Dy, D,, D, H,, H, and Hj are the components of a tensor, H,; (a, f
1, .., 4), given by

0 H, L D,
- H 0 H — 4D
H, = : e (2.9)
- PR - ; 0 — iD,
1D, 1D, 1D, 0

This tensor is also antisymmetric. Hence,
[{u,i AT Il/a’u‘ (”. [{ 1. ‘e 4) (2.10)

From (2.1), (2.2), (2.7) and (2.9) it follows that Py, P,, P;, M,, M, and M,
are the components of a tensor, M, (¢, =1, .., 4), given by

0 M, — M, Py
M, 0 M, 1P,
M5 ! (2.11)
M, M, 0 1Py
1P, iP, 1P, 0

where also




Using (2.7), (2.9) and (2.11) we can combine the equations (2.1) and
(2.2) into the tensor equation

M, = By, — Hy (@, p=1,..,4) (2.13)

ap afi*

With the help of (IT1.2.14) *), (I11.2.15) and (2.9) we can combine the
Maxwell equations (2.3) and (2.4) into the form

28 OH plons = c ' Zh_, ™ m®, (& = 10:,:4) (2.14)
In the same way we can write for the Maxwell equations (2.5) and (2.6)

0B lox, + 0B, |ox, + 8B, lox, — 0, (@:pv=1,..,4) (2.15)

api Py By a yal YV

where we have used (2.7).

We now introduce some four-dimensional vectors and tensors which are
useful for the discussions in this chapter. We define the tensors B and
Il::, (@, p =1, ..,4) by the equations

H::., 3 -\~4 1 Az By -"s;s- (a, p e (2.16)
Hop = Zfe, Ao Hye A, (. p=1,..,4) (2.17)

and the four-vectors B} and HY* (a = 1, .., 4) by the equations

By =34_, B,su, (a=1, ..,4) (2.18)
H =35_, H 0. (@a=1,..,4) (2.19)

Using (1.2.28), (2.8), (2.10) and the four preceding equations we derive

B,s = By — Biu, + u, B}, (o, B=1,..,4) (2.20)

Hey = Hay — HY uy + u, H}. (@, p=1,..,4) (2.21)
From (2.16) and (2.18) it follows with the help of (I.2.30) and (2.8) that

21 Bagug = Zh_, u, Bge =0, (a=1,...4 (2.22)

Xt u,B¥ =0 (2.23)
In the same way we deduce

Zpay Hoguy = ZA_ u Hy, = 0, (@=1; iy, 4) (2.24)

Tiogu, HY = 0. (2.25)

Using (I1.2.29), (2.8) and (2.10) it follows from (2.16) and (2.17) that

By, = — B, (@B=1,..,4) (2.26)
Hj = — Hj,. (@, =1, .. 4) (2.27)

*) Equation (2.14) of chapter I11 of this thesis will be indicated as (I11,2.14) and in the same wav
we denote the other equations of the chapters I, II, III and 1V.
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From (2.16) we derive with the help of (1.2.32) and (2.7)

0 B, = B, 0

e — B’ 0 B 0
B.s , , (2.28)

B, < 0 0

0 0 0 0

and using (1.2.32) and (2.9) we find from (2.17)

0 H; —H 0

| o 0 H; 0
HX o , : (2.29)

H, — H, 0 0

0 0 0

Using (1.2.16), (2.7) and (2.9) it follows from (2.18) and (2.19) that
B! =E, (@=1,2,3); B®=0, (2.30)

a

’

' %
HY*=D, (@=1,2,38); HS =0, (2.31)
For media which are isotropic, as far as polarization and magnetization
are concerned, we have the constitutive equations
H’ quI B’, (2.32)
D’ = ¢E/, (2.33)
where the Lorentz invariant quantities x and ¢ are the magnetic permeability
and the dielectric constant respectively. From the six preceding equations

we find
Hy=u""B37, (wp=1,..,4 (2.34)
Bt =B, (=1, .., 4) (2.35)
and since these tensor equations hold for an observer in B, , at position r’
and at time ¢’ they also hold at position r and at time ¢ for an observer in A.

Hence,
He =B, (@ f=1,..,4 (2.36)

H* — ¢B?. (=1, ..,4 (2.37)
A well-known different form for (2.36) reads

Hu, + H a5 + Hpu, = p ' (Baptt, + B,us + By, 14,). (2.38)

(«l,[;, y4 L, e )

With the help of (1.2.16), (2.7) and (2.9) one easily verifies that this relation
holds for an observer in B, ,at position r’ and at time #'. Hence, this equation
also holds at position r and at time ¢ for an observer in A. From (2.37) and
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(2.38) we have with the help of (I.2.11), (2.7), (2.9), (2.18) and (2.19)
H—c¢c'(vaAD)=u'{B —c ! (vAE)}, (2.39)
D+ c ' (vaH) =¢E + ¢! (vAB)L (2.40)
By solving these equations for the vectors H and D we obtain
L[(1 — euv¥/A)B

{( = S 4 c -2 (V'B)V}j. (241)

(1—ep™Ne ' (vaB) —c 2 (VE)W)), (242

which are the three-dimensional tensor forms for the relativistic consti-
tutive equations.

§ 3. Derivation of the energy-momentum tensor of the electromagnetic field. As
n clmpt(rlll we shall assign an energy-momentum tensor, W napla, p=1,..,4),
to the electromagnetic field such that

a

ky = — Z5_1 OW y05/0%;, (@=1,..,4) (3.1)

where %, (a 1, .., 4) is the four-vector given by (IV.5.3). In this section
we shall derive an expression for W pas-
In chapter IV we did not specify the tensors Z,, and Gopla, p , 4

(lh

and the four-vector @ (a = 1, . ., 4) which occurred in the e xpression (I\ 8 2

)
)
for the ponderomotive force m(l the tensor Flj(a, B=1, .., 4; j=1,...,m)
1

which occurred in the expression (IV.5.4) for the Lorentz fmu We \]1 1
now choose these quantities such that an explicit expression may be ob-
tained for the tensor W, which is closely related to the expressions of
Abraham and Minkowski for the energy-momentum tensor of
the electromagnetic field (Cf. § 7). We shall make the choices (Cf. (IV.3.16)
and (IV.3.23), (IV.3.15) and (IV.3.24), (IV.3.15) and (IV.5.5))

('ﬂa;; 7',-1[/,,% (a, /‘l y alsly (32)

Zap B, (a, B
2(7) . o .
F = By, (@s8= 1, oo A5 (3.4)

i #g(Bp, M, — MyB.;) (6uy/éx,) +
¢~ Dify =4 2yt Ug(Bgy M, — My, B, )} (a
Using (1.2.25), (2.8) and (2.12) we have from (3.5)
s 4, D, =0,




and from this equation we have with the help of (1.2.28)
Dt Aoy Op= D, (@a=1, ..,4) (3.7)

Inserting (3.4) into (IV.5.4) gives for the four-vector representing the
Lorentz force

K9 =" (cof)=* 3, Bamp. (@'= 1, sy =1, oocs98) ~ (3:8)

Substitution of (3.2), (3.3) and (3.5) into (IV.8.2) gives with the help of

(I.2.3) and (3.7) for the ponderomotive force
Ripra = % 2§~y My (8Bg,[0x,) 4

%"7 0 l)‘ 3

gy g(Bg, M, M, B,,)}. (@ =1 4), (3:9)
From (IV.5.3) and the two preceding equations we have
ki, =¢! }.Z;’, e E_ B, mi + 135 M, (2B, [ox,) +

a

ol oD (o' B4 us(B,, 11:_,,, — M, B} (a=1,..,4) (3.10)

Using (1.2.10), (I.2.14), (1.2.25), (2.13) and (2.14) we can write for the

above equation.

ke = Zp,uy Bo(0H lox5) — 325, Hy (0B, [ox,) —
) }.Z;‘, 1 (0] 0x4) {. .‘_. o<1 We(By, Hyy — H,, B,,)}
- 125, {8(By,)?fox, fa = 15:2,:4) (3.11)

and from this equation it follows with the help of (IV.6.3) and (2.15) that
ky = Zguy B (0H,

-1 ¥4

— ¢~ B3 _ (0fexg) {o'my 25,y wy(By H,, — Hp, B,,)} +

Jexg) + 325,y Hp, {(2B,s/0x,) + (8B,,/025)} —

yBl 2“8y apl

1 {0(Bg,)[0x,}. (@ =12, ..;4) (3.12)

L 134
I 4 “py=

Finally, we find from the last equation with the help of (1.2.10), (I.2.15),
(2.8) and (2.10)

4 (a)a. | f94 ) i y4 3 )2
k 2 1(0foxg) {Z5-; Bay Hyp 4+ § 045 2,0 1(Bye)"} —

a

— X1 (0)exg) {ug X3y we(By, Hyy — Hp, Bo)).  (a=1,..,4) (3.13)

From (3.1) and (3.13) it follows that we may take
Wines = — 2ty Boy Hyp — 30,5 25 o1(B)* +

{(Z a1 (B, Hyy — Hp, B,,)} 44 (e, p=1,..,4) (3.14)

as an explicit expression for the energy-momentum tensor of the electro-
magnetic field.
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S 4. The conservation laws for energy, momentum and angular momentum.
We define the tensor W, by

W as Weas + Wi (mp=1,..,4) (4.1)

We can consider this tensor as the energy-momentum tensor of the system
(electromagnetic field and matter together).
From (IV.5.2), (3.1) and the preceding equation we have

X1 OW /02, = 0. (@a=1,..,4) (4.2)

For a = 1, 2 and 3 it follows from this equation that the total momentum
of the whole system (i.c., the density of momentum of the matter and the
field together, integrated over the whole volume of the system) is conserved.
For a = 4 it follows from (4.2) that the total energy of the whole system
(2.e., the density of energy of the matter and the field together, integrated
over the whole volume of the system) is conserved.

To be able to discuss the law of conservation of angular momentum
we shall first show that the tensor W, (¢, =1, .., 4) is symmetric
for media which are isotropic as far as polarization and magnetization are
concerned. Using (1.2.28), (2.8) and (2.10) we have from (3.14)

4! W ppa = — E?r.:.s 14u(By, Hyy— H,; B, ) Ag. (a,p=1,..,4) (4.3)

l’(/)u;f i
With the help of (1.2.12), (2.20), (2.21), (2.22), (2.23), (2.24) and (2.25)

we can derive that

%.\(By, H,e — H,, B,) = Z}_,(B}, Hy, — H}, BY)

4

- {23~ (BY, Hy — H},B*)}u, + Bf Hf — H} B¥ 4

re

w (g (ByHye — H¥BJ)). (LE=1,..,4 (4.4

Inserting (4.4) into (4.3) gives with the help of (1.2.28), (1.2.30), (2.22),
(2.23), (2.24) and (2.25)

> y 4 % * * %
" (/)ap ” (Nfpa — ~y=] (1) II-,'[I ]{(:;v );‘/!) E|

ay

¥ BYRY — HIBY. (@,B=1,..,4) (4.5)

We now introduce into (4.5) the relations (2.36) and (2.37) which hold for
media which are isotropic as far as polarization and magnetization are
concerned. This gives

l!'(,;,‘(, — II',,UM. s bi= L 04) (4.6)

In our considerations we assumed that the energy-momentum tensor
of the matter, W, (¢, f = 1, .., 4), is symmetric (Cf. § 5 of chapter 1V).
Hence,

W W ss (a, B 1, s 3) (4.7)

aff
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From (4.1) and the two preceding equations we have

Wi = Wigpa (@p=1,..,4) (4.8)

i.e., the energy-momentum tensor of the system is symmetric.
We introduce the three-dimensional vector g, of which the components
are given by

w Wil y \
Zia = (1c)"" W (g~ (@ 1,2 8) (4.9)
This vector gives the density of momentum of the electromagnetic field.
The density of momentum of the system, g, is given by
g(g) . g . g(”, (4]0)
where g is the density of momentum of the matter, given by (1.3.2).
We now consider a finite system. Using (4.7) we then can derive ?)
(d/d) [ {r ~g(r, H)}dV = 0, (4.11)
i.e., the total macroscopic angular momentum of all the matter within
the whole system is conserved. In the same way we have from (4.6)
(d/dt) [ {r A g (r, H)}dV = O, (4.12)
1.e., also the total macroscopic angular momentum of the entire electro-

magnetic field within the whole system is conserved. From the three
preceding equations we find

(d/df) [ {r ~ g (r, t)}dV = 0, (4.13)

which shows that the total macroscopic angular momentum of the whole
system is conserved.

§ 5. Further discussion of the emergy-momentum tensor. In this section
we shall express the components of the energy-momentum tensor of the
electromagnetic field with the help of three-dimensional vectors. For that
purpose we first deduce from (2.7) and (2.9)

xf 1 l))u;' [AI;'/‘X 2 g (B'H) Oq/f E ]{,, I{ﬂ t E,, I)[;. (’l, ﬁ I, 2. 3) (51)
2 i B H,=i{BAD), (a=1,23) (5.2)
341 By Hyp = — i(E ~H), (B.=1,2 3) (5.3)
Yoy By H,, = ED. (5.4)

Using (1.2.11), (2.8), (2.10), (5.1), (5.2) and (5.3) we derive
25y W (By, H,, — Hp, B,,)

(& — V)t [{va (BAH)}—{vA (EAD)}+c(E~H)+¢(BAD)], (5.5)




and using (1.2.11), (2.8), (2.10), (5.2) and (5.3) we deduce
28 i U (If:_l, H,— H,B,)
i(c® — V)" H{v:(BAD) + v-(EAH)!. (5.6)
Inserting (1.2.11), (2.7), (5.1) and (5.5) into (3.14) gives for a, f=1,2.3
Wi = {(B-H) + JE? — 1B3 4, — H, B, — E, D,
F(E—v) (v A (B AH)} — {v A (EAD)l4c(E ~ H)+ ¢(BAD)], v (5.7)
(@, p = 1,2, 3)

Substitution of (I1.2.11), (5.3) and (5.6) into (3.14) gives for « 4 and
o] e
W nas 1(E ~ H), + i(c? v) " v(B A D) 4 v-(E - H)}v,. (5.8)
(p 1, 2 3)

Inserting (1.2.11), (2.7), (5.4) and (5.6) into (3.14) gives with the help
of (2.1) for « p =4,

Wi (AE? 4+ 1B2 4 (E-P)!

2 2 1y

V) ivi(D A~ B) + v-(HA E)L (5.9)

+ c(c

The Maxwell stress tensor is given by (5.7). On account of (4.6) this three-
dimensional tensor is symmetric. The components of the Poynting vector
Jip), which gives the density of the energy flow of the electromagnetic
field, are given by

[ipip = (/D)W 5. =12 3) (5.10)
From (5.8) and the preceding equation we have
oy = c(E~AH) + ¢(c* — v3) " {v+(BAD) + v-(E ~ H)lv. (5.11)
[t follows from (4.6), (4.9) and (5.10) that
B =c2J 5 (5.12)
From the two preceding equations we get
8y =c¢ (E~AH) + ¢! (®— v}~ {v-(BAD) 4 v(EAH)}v. (5.13)
The density of energy, ¢y Oof the electromagnetic field is given by
ehm = — Wi (5.14)
From (5.9) and the preceding equation we find
e = $E* + 4B? + (E-P) +

= (((‘2 25 V")‘I { ( A D) -+ V(E/\l]): (5]5)
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Using (2.8), (2.10) and (2.13) it follows from (3.14) that
33t Wipaa = — Zh,=1Bg, Mg, (5.16)

Substitution of (2.7) and (2.11) into this equation gives

Zaet Wie = — 2{(B-M) + (E-P)} (5.17)

for the trace of the energy-momentum tensor of the electromagnetic field.

§ 6. Discussion of the forces acting on the matter. We shall also express
the forces acting on the matter with the help of three-dimensional vectors.

Using (1.2.1), (2.7) and (3.8) we find from (I.4.4) for the Lorentz force,
per unit mass, acting on component k

FM — (A (E 4 ¢! (v AB)} (=1, ..., %) (6.1)

We have from (1.2.1), (1.2.27), (2.7).and (3.8)

K® = ie™ o® (Cl_)zgj) -1 (V™:E) =
ic=' e® {1 — (v*)2/c%) (v*-E). (6.2)

(=il vi5m)

It follows from the two preceding equations that the quantity (c/i)olg KS”
can be interpreted as the work done per unit time and per unit volume
on component k& by the Lorentz force.

We shall now express the components of the four-vector, &p),, repre-
senting the p(mdcrom()ti\’c force, in terms of three-dimensional vectors.
For that purpose we first remark that we have from (2.7) and (2.11)

St ByMy;= — (BM)dy+ M,B, —E,P;, (a,$=1,23 (63
3. By M= —i(BAP), (@=1,2,3) (6.4)
3o By My = —i(E~M), B=1,273) (6.5)
¥ _B,M,, = — (EP). (6.6)

With the help of (I.2.11), (2.8), (2.12), (6.3), (6.4) and (6.5) we find
4y (By, Mo — Mp, B,)
(—v)) v (BAM)}+{vA (EAP)4c(EAM)—c¢(BAP), (67)

4
=P

(a BRORE)

and

B4 ws(Bs, M,y — My, B,y

“~B

i(c? — vV {v-(EAM) — v:(BAP)}. (6.8)




The first three components of the four-vector %, are the components
of a three-dimensional vector kg, Inserting (1.2.25), (2.7), (2.11) and
(6.7) into (3.9) gives with the help of (I.2.11), (I.2.14) and (I1.3.10) for k

K = (Grad E)-P + (Grad B)-M +
e lo(d/de) {' (P — V) [{v A (BAM)} + {va (EAP)) 4
- ¢(EAM) — ¢(BA~P)]}, (6.9)

where
(Grad E)-P = X3_, {¢E/ox,)-P},, (6.10)
and
(Grad B)'M = X2_, {(éB/éx,)-M}i

) ta*

(6.11)

We can interpret k, as the ponderomotive force per unit volume.
We now define

xp) = (Grad E)-P + ¢ 'o(d/df)[2'(¢? — v*) H {v~ (E~P)}], (6.12)

sy = (Grad B)M + ¢~ o(d/d?) [2'(c* — v?) H{v A (BAM)}], (6.13)

@ = ¢ o(d/dt) {o'(1 — V¥~ (E AM)}, (6.14)

ep = — ¢~ o(d/dt) {v'(1 — v¥/e)~F (B ~ P)). (6.15)
From (6.9) and the four preceding equations we have

kip) = Kge) + Kpvy + Keny + Kpp)- (6.16)

We can interpret kKgp, and Kgy, as the forces which the electric field
exerts on the medium in consequence of the polarization of the matter
and the magnetization of the matter respectively. In the same way we can
interpret K gy and Kgp) as the forces which the magnetic field exerts on
the medium as a consequence of the magnetization and the polarization
of the matter respectively. The term (Grad E)-P reduces, in case the magnetic
field is constant (i.e., @B/ét =0), to the Kelvin form for the force which
the electric field exerts on polarized matter 2). The term (Grad B)-M is
the magnetic analog of the term (Grad E)-P. Only terms of this kind are
taken into consideration by Smith-White?® and by Mazur and
Prigogine?.

Substitution of (1.2.25), (2.7), (2.11) and (6.8) into (3.9) gives with the
help of (I.2.11), (1.2.14) and (I1.3.10)

Rps — (i/ ¢) {P-(¢E/ét) + M-(éB/ét)} +
+ (ifc)e(d/df)[v'(¢®* — v*)H {v-(E~ M) — v+(B A P)}]. (6.17)

The first three components of &, (@ = 1, .., 4) are the components
of a three-dimensional vector k. From (I.4.4) and (IV.5.3) we have

k=3 o FD 4k, (6.18)
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where k is the total macroscopic density of force which is exerted by the
electromagnetic field on the matter.
Further, it follows from (IV.5.3) that

X N 'H 3 \
ky =2, oD K9 + kpy. (6.19

“)
The quantity (c/i)k, is the total work done on the matter by the electro-
magnetic field per unit volume and per unit time. As we have seen at the
beginning of this section (c/ z)n(o,I\,} is the work done on component j by
the Lorentz force. Hence, (¢ 1)._',. ,010, K7 is the work done by the electro-
magnetic field on the medium because the matter is bearing electric charges.
From the preceding equation and the given interpretation of (¢/i)k, and
(c/)Zr, olpy K? it follows that we can interpret (c/i)kp, as the work which
the electromagnetic field does on the matter because the matter is polar-
ized and magnetized.

§ 7. Comparison with the tensors of Abraham and Minkowski
To be able to compare the energy-momentum tensor derived in § 3 with
the energy-momentum tensors which Abraham and Minkowski
assign to the macroscopic electromagnetic field in media which are isotropic
as far as polarization and magnetization are concerned, we shall change
the expression (3.14) for W ;.

For that purpose we first introduce the Minkowski vector, ¥ (« L, o),
(“Ruhstrahlvector’”) which is given by

!II 4

a =Zpreq e Bpwp(Home + Heytty + Hpet)), (a=1,..,4) (Z.1)
and the four-vector ¥} (a = 1, .., 4) given by
P2 = B 00 H, 4. (Bt + Byth, + Bpnt). (@=1, ..,4) (7.2)

Using (1.2.12), (2.8) and (2.10) we can also write for these two equations

W, =28 4 Bo Hop + 4 20 ¢ ey 4 By Hop 14, (= 1; &,4) (6D

a 3

W3 = B8 wpHy, By + thy T30 sy WeH o Bsthe, (o ="Lia,i4) L (24)
or with the help of (I1.2.28)
W, =2 By Hoe Ay, (a=1, .., 4) (7.5)
p* ‘4 ]u.H B, A, (=1, i:;i4) (7.6)
From the two preceding cquutinns we find with the help of (1.2.30)
Tt e Wy =20, (7.7)
XY, W= (7.8)
Using (1.2.28), (2.8) and (2.10) we have from (7.5) and (7.6)
¥, — ¥ =23}_,w(B;, H, — H,B,). (7.9)

((t L s d)




Inserting (7.9) into (3.14) gives

W BB 10T,

(HaB B ay ‘5B ap “y,L

1 (B)? 4 (W — Wo)u. (7.10)
(a, B 1 7y 4]

In the case of media which are isotropic as far as polarization and mag-
netization are concerned we have from (7.1) and (7.2) with the help of (2.18),
(2.19), (2.37) and (2.38)

P* — eu¥,. o=, ..04) (7.11)

a

By substituting the preceding equation into (7.10) we find

Wi = — Sy By Hyp — 305525001 (Be)? — (ep — 1) (7.12)

af
(a, p 1, .., 4)

For media which are isotropic as far as polarization and magnetization are
concerned the symmetric tensor of Abraham, H'z}_,,‘., fas =15 %4,
has the form %) 9) )

Wh=—34 B Hys— 38,55 i BaHy— (eu— )W, 4, (7.13)
(@, B=1,..,4)

From the two preceding equations we see that the first and the third
terms 1in H'(;,”_ﬁ and W, are equal; the second terms, however, differ.
Hence, we see that W,
of the tensor found in § 3 equal the corresponding elements of the tensor
of Abraham. The asymmetric tensor of Minkowski, ”'i‘rlww (a, p

1, .., 4), has the form 9

Wl o= — 3 B oH,y—¥8e3he Bply  (ap=1 4 (714

W ag if @ # P, i.e., the non-diagonal elements

af

Only the first terms occurring in (7.12) and (7.14) are equal. We conclude
that our form for the energy-momentum tensor of the electromagnetic
field is thus essentially (apart from a difference in the diagonal terms)
the same as A braham’s symmetric tensor. In § 10 we shall show that
Abraham’s tensor leads to an equivalent formalism and that from the
point of view of our theory W, is to be preferred over W ;.

§ 8. The first and second laws of thermodynamics. We shall now discuss
the first and second laws of thermodynamics. For that purpose we intro-
duce the quantity ¢ defined by

¢ (> — V22, u, kopy (8.1)

Inserting (I.2.11) into this equation gives

q (c/t)kipys — (VKp)). (8.2)
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Using (3.4) and (8.1) we can write for the first law of thermodynamics
given by (IV.7.3)

e'(De’ + p'Dv’) = — X5, (oI ox, + e~ I Duy,)

+ ¢ X35y Pog(Otigfon,)+ Zh_ Sh_, I (¢ Ty Bogug)+9(1—v2/3) 7. (8.3)
From this equation it follows that we can interpret ¢ as that part of the
work done by the electromagnetic field on the medium per unit volume
and per unit time which is used to change the internal energy ¢’ of the
matter. We can draw this conclusion also from (8.2), because, as we have
seen at the end of § 6, we can interpret (c/i)k ), as the work done by the
electromagnetic flcld on the medium due to the polarization and magnet-
ization of the matter. Hence, we can also say that ¢ is the work done by the
electromagnetic field to change the state of polarization and magnetization
of the matter. With the help of (1.2.3), (1.2.25), (1.2.30), (IV.8.2) and (8.1)

we can write the second law of thermodynamics, given by (IV.4.19), in
the form

T'Ds' = De’ + p'Dv’ — gv'(1 — V32~ — B0_, w') D', (8.4)

We shall now give an explicit expression for ¢. For that purpose we first
substitute (3.2) and (3.3) into (IV.8.2). We then obtain with the help
of (1.2.3)

Ripja = $25,-1 My, (0Bg,[0%,) + 0'Sh; Agp Dy —
- 38,01 Up (By, M,y — My, B,) (2upfox,). (a=1,..,4) (8.5)
Substitution of (8.5) into (8.1) gives with the help of (1.2.25) and (I.2.30)
p=—§1 — VAL, M, DB, + [
+(1:— v?/c )5}1,,,, 1 U (Byy Mg — M, B,g) Duy.  (8.6)
Inserting this equation into (8.3) gives for the first law of thermodynamics
o'(De’ + p'Dv’) = — Zf_, (AP )ox, + ¢ ’1:,0’ Duy) +
I c.‘_.,‘f‘ y Pog (Ougfox,) + Zh_ Za_ IV (W 2 g1 Bog ) —

— 1%3,. 1M DB, + 225, (Bm, M., — ;11,,.,, B,g) Duy. (8.7)

For the second law of thermodynamics we obtain by substituting (8.6)
into (8.4)

T'Ds" = De’ + p'Dv’ + dv' 323, M ;DB
— v’ E,‘f',,,), 1 Uo(Boy Mg — M, Bg) Dug — 27_, ' De'?.  (8.8)

aff aff —

To be able to compare our results with those of non-relativistic theories,
we shall still formulate the second law of thermodynamics in another way.
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Inserting (I.2.11), (2.7), (2.11), (6.7) and (6.8) into (8.6) gives with the
help of (I.2.25) and (I1.3.10)

q — P-(dE/df) — M-(dB/d¢) -4
(@ — V) Hv:(BAP) — v-(E~ M)} {(d/df) (1 — v*/c?)~H} 4
F (@ = V) YA (BAM)} + (VA (EAP)} — c(BAP) 4
+ ¢(E A~ M)J-[(d/d?) {v(c* — v?)~H}]. (8.9)

Substituting (8.9) into (8.4) gives with the aid of (1.2.11), (1.2.25) and
(I1.3.10)

(ds’/dt) = (de'[dt) + p/(do’/dt) — I, P (de'P/de) +
+ o'P-(dE/d¢t) + »'M:(dB/df) —
—v'(* — V) {v:(BAP) — v-(EAM)} {(d/dt) (1 — v3/cA)~H} —
-'(? — V) v~ (BAM)} + (v~ (EAP)} — ¢(BAP) +
¢(E ~M)J-[(d/dt) {v(c* — v*)~H}]. (8.10)
The first three terms on the right hand side of this equation are analogous
to terms which also occur in the non-relativistic second law of thermo-
dynamics. Instead of the fourth and fifth terms several authors give different
forms. By introducing, for example, a different definition for the specific
energy of the matter measured by an observer moving with the barycentric
velocity, other forms may be obtained.
For instance we may define the Lorentz invariant quantity & by
e =¢e + 4 .‘_::J,,,l M 5 B (8.11)
Using (2.7) and (2.11) we can write for this equation
¢' = e + v'(M:B) + v'(P-E). (8.12)
Hence, with the help of (I.2.3) and (8.11) we can also write for (8.7)
(D + Do) = — B4, (1 0ax, + =" I D) +
e }.,,,/;7,, P y(ouy/ox,) + Zp_; }..,4, 1 I (e® Zhoy Boguy) +
- 30" 251 B, D(v'M,,) 4 2 syt Wa(Bay M5 — M, B,s) Dug. (8.13)
Inserting (8.12) into (8.10) gives for the second law of thermodynamics
T’ (ds’/dz) 1e’'/dt) + p'(dv’/dt) — Z7_, p'? (de’P/dt)
— E-{d(v'P)/dt} — B-{d(v'M)/dt} —
2'(¢> — V) H{v-(BAP) — v-(E ~ M)} {(d/dt)(1 — v/c?) Y -
v (® — V) [{vA (B~ M)} + {vA(E~AP)} —¢(BAP) 4
¢(E~M)]-[(d/d?) {v(c® — v))~H}]. (8.14)
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The first five terms on the right hand side of this equation are analogous
to terms which occur in the non-relativistic second law of thermodynamics
used by Mazur and Prigogine?). The other terms are of a special
relativistic nature.

By introducing still other definitions, analogous to (8.11), for the spe-
cific internal energy of the matter, we may obtain other forms for the
fourth and fifth terms occurring in (8.10). It is seen, however, that all these
forms for the second law of thermodynamics are equivalent. In the following
section we shall discuss this question from a more general point of view.

§ 9. On the indefinileness of the energy-momentum tensors of the maiter
and of the field. By means of two examples we shall show that there remains
a certain indefiniteness in the energy-momentum tensors of the field and
of the matter.

We introduce a new energy-momentum tensor of the matter, ll':,(a, p

1, .., 4), defined by
Wa =W, — 9, (a.p=1,..,4) (9.1)

where p is a Lorentz invariant quantity having the dimension of a pressure.
y . %

We also introduce a new energy-momentum tensor, Wi 4(a, f =1, .., 4),

for the electromagnetic field which is defined by

Wi = Wpeg + 580p- (@B =1,..,4 (9.2)

Further, we introduce a new hydrostatic pressure p'* defined by

p'* =" — p, (9.3)
and a new stress tensor, wy(a, f = 1, .., 4), defined by
|
Wy = Wy — P (a,B=1,..,4) (9.4)

Finally, we introduce a new four-vector, k:(u - 1, ..,4), representing the
total force exerted on the matter by the electromagnetic field, defined by

% ~4 ’ r¥k o A 4 Y Dins o
k., — 3y OW opfOxg = R, — X5_ (DA ,5) /0%, (a= I,.:,4) (9:5)

a

where the last form has been obtained with the help of (3.1) and (9.2), and
a new four-vector, k{p,(a =1, ..,4), representing the ponderomotive force,
defined by

Ripa — Sy 0(pA o) [0%5. (=1, ..,4) (9.6)

*
kY

ya

We shall now deduce some relations which are useful for the following
considerations. From (9.1) and (9.2) we have with the help of (1.2.29),
(IV.5.1) and (4.6)

Was = W @p=1,..,49 (9.7
and
Wi = Wi (@, 8=1 5,8 * (9:8)




Using (1.2.29), (1.2.30), (I.3.10) and (I.3.11) we get from (9.4)

2 * ~
Way = Wg, (@ Bi=L i 0d) (9.9)
and
~4 * 4 * {
g Ug Wp, gy Wap My 0. (=21 arecs ) (9.10)

With the help of (1.2.3), (1.2.29) and (1.5.7) we deduce from (9.3) and (9.6)

p*Dv’ + v'e T3, u, Ripe = p'Dv’ + v'c 35_, u, kip

(9.11)

)a*

Using (1.3.12) and (9.4) we find from (9.1)

- G ey (0)
Weas = ugugeny + ¢~ (uz 1

3 ta

U IP) + wlhs. (@, p=1,..,4 (9.12

a*p af

[t follows from (I.3.14), (9.3) and (9.4) that
Py= —wy+ p*4,. (a, =1, ..,4) (9.13)
We have from (4.1),(9.1) and (9.2)

Wia = W + Wi s (@, p=1,..,4 (9.19
If we consider W7, and ll':,,;; as the energy-momentum tensors of the
matter and of the electromagnetic field respectively, we see from the
preceding equation that the energy-momentum tensor of the system
remains unchanged. Hence, also the laws of conservation of momentum
and energy, given by (4.2), and the law of conservation of angular momentum,
given by (4.13), remain unchanged. Since, according to (9.7) and (9.8), the
new energy-momentum tensors of the matter and of the field are symmetric,
we also have relations which are analogous to (4.11) and (4.12).
We shall now discuss the first law of thermodynamics. For that purpose
we remark that according to (IV.5.2), (9.1) and (9.5) we can write for the
balance equations for energy and momentum of the matter

2y OWk|oxs = k7. (a=1,..,4) (9.15)

/ apl a

We now multiply (9.15) by u
we then get

and we sum over a. Analogous to (IV.7.1)

a

B4 1 U(OWopfox) = B8, ukr. (9.16)

3

For the derivation of (1.5.9) we used, among other things, the relations
(L.3.11), (L.3.12) and (I.3.14). These relations correspond with (9.10),
(9.12) and (9.13) respectively and it may be easily seen that, analogous
to (1.5.9), one obtains

4 DT re P 3! vl 1 34 (0) 1 230 ~—1 7(0
Lf,.;, 1 U, (OW /0 5) c o' De —c '\_.’} (0I5 |exy + ¢~ I Duy)

¢l op Do + T, Po(ouslox,).  (9.17)

1, ag
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From (1V.7.2), (3.4), (9.5) and (9.6) we find

4 ; * AN \‘ (k) (A) y4
gy Uy /(a B T T | 1 ( S| Iiu,i Hi)

Ripra (9.18)

g Uy

Inserting the two preceding equations into (9.16) gives for the first law of
thermodynamics

4l *1),/ 4 A7(0) 15, : ) ~ AL
¢'(De’ + p""Dv’) = — X5_, (21 [0x5 + ¢~ I Dug) + ¢ 24, _, P 5(0u/ex,)

o y4 (B8 $14 ) L
Tnmi Tt IMe 2py Bygtg) —c X

: 1 Uy klr*l’m- (919)

We immediately see from (1.2.3), (8.1) and (9.11) that (8.3) and the above
equation are identical.

Using (8.1) and (9.11) we can write for the second law of the :rmodynamics
given by (8.4)

T'Ds’ = De' + p™*Dv’ + cv' BE_; 1, Kfppe — 0, ' D', (9.20)

Substituting (IV.6.4) and (9.19) into (9.20) leads to the entropy balance
(IV.8.8). Thus, we obtain the same phenomenological equations among
the same fluxes and “forces” (affinities). Hence, we see that with respect
to thermodynamics it does not make any difference if we consider W
and W, or Wk and W, , as the energy-momentum tensors of the matter
and the electromagnetic field respectively.

It should be remarked that the equivalence of the points of view of
Kelvin and Helmholtz concerning the ponderomotive force in
polarized media may be shown 2) with the help of considerations which are
analogous to those which we have given above.

We shall now give a second example. Analogous to (9.1) and (9.2) we
now introduce

W = Wy — 25 u, 4, (@, =1, ..,4) (9.21)
and
Winas = Wipas + 2014 145, (@, B=1,..,4) (9.22)

where ¢ is a Lorentz invariant quantity having the dimension of an
energy per unit volume. Further, we introduce

xp ~ 4

€w) = €o) — €n) (9.23)
as the new energy per unit volume of the matter measured by an observer
in the barycentric Lorentz frame at position r’ and at time # and

~, ’ ~

¢ V(e — €y) —a (9.24)

as the new specific energy of the matter measured by an observer in the
barycentric Lorentz frame at position r’ and at time #. Analogous to
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(9.5) and (9.6) we have

5 M AT N : 4 (o ¥
k, 251 OW (y05]0%5 = Ry — B5_  0(€qy g p)[0%, (a=1,..,4) (9.25)
and

- 4 AW ;

Ripje = Ripys — Zp_1 0(€) 1, 145) [0%5. fa= 1, ;4" (9:26)

Using (IV.5.1) and (4.6) we get from (9.21) and (9.22)
(a, p 1, .., 4) (9.27)

["«'rlﬂu' (a, p 1, 004 (9.28)

(flap

With the help of (I.2.10), (I.2.12), (1.2.13), (1.2.15), (I.2.25), (I.3.13),
(IV.6.3), (9.24) and (9.26) we derive

De’ + v'c Zg.; ty ypya = De’ + v'c T5_ 4, Ripyg: (9.29)

a a

From (I1.3.12) and (9.21) we have with the help of (9.23)

~ -~

W = € Ugt4g + € : (u4 IO 4w, l},o)) + @, (a, B 1, ..,4) (9.30)

From (4.1), (9.21) and (9.22) we have

~ ~

‘I'[l]u(i = Wes + Wipas (=1, ..,4) (9.31)

[t follows from the preceding equation that the laws of conservation of
energy, momentum and angular momentum remain unchanged. On account
of (9.27) and (9.28) we also have equations analogous to (4.11) and (4.12).

Using (9.21) and (9.25) we can also write for the balance equations for
energy and momentum of the matter given by (IV.5.2)

i JJox, = k. (a | AR (9.32)

Starting from the preceding equation it is easily seen that, analogous to
(9.19), one obtains for the first law of thermodynamics

U 7 N4 70 15, 1 ~—1 7(0 ~ Y4 VO 1 PR
o'(De’ + p'Dv’) Xio (015 [oxp+c™" I Dug) + ¢ 5y Pog (Sug/ox,)+
R S I A CH AR 4 > :
~k=1“a=1 [u (‘ ol 3 | 1)«/1 ”}f) — Clgny Uy /‘(l’)tl' (9'3‘3)

With the help of (1.2.3), (8.1) and (9.29) it is immediately seen that (8.3)
and the preceding equation are identical.
Using (8.1) and (9.29) we can write for the second law of thermodynamics
given by (8.4)
T'Ds' = De’ + p'Dv’ + cv' Z_,u, /?(,, - 29D, (9.34)

Ja

Inserting (IV.6.4) and (9.33) into the preceding equation leads to the
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entropy balance (IV.8.8). Hence, we see that no changes enter into the
thermodynamical results if we consider IT"”}, and IT",),,{, as the energy-
momentum tensors of the matter and of the field respectively. It is easily
seen that by taking ¢ = — $ X1, | M,; B,; one obtains the expressions
(8.13) and (8.14) for the first and second laws of thermodynamics respectively.

[t should also be remarked that the form (3.14) for the energy-momentum
tensor of the electromagnetic field does not follow uniquely from (3.1)

and (3.13). For example, if the tensor II'::,J, satisfies the relation
251 OW gsl0xy = 0, (a=1,..,4) (9.35)

we have from this equation and (3.1)

kq = X; ,b”";:;, (=LY 4) (9.36)
where
Wit = Wi + Wi, (@B =11 4) (9:37)

» 3% % . .
If the tensor WD, vanishes if E =D = 0 and B = H = 0 we may con-
. r¥KE -
sider Wi5os just as well as the energy-momentum tensor of the electro-

magnetic field.

§ 10. Further discussion of the tensors of Abraham and Min ko w-
s ki. We shall first discuss the tensor of Abraham. Using (2.13) we
have from (7.12) and (7.13)

Wihs = Wina + 16,32, B, M, (@pB=1,..,4) (10.1)

or, with the help of (I1.2.28),

”T:)Wf : ”'(/lﬂif T { Au*i ‘\-:4 {=1 1{7’: M

5 Vs

W .‘_I.f,_:;,;, B, M,. (10.2)

(a0 =1, »o,4)

Since X5, B,; M,, is a Lorentz invariant quantity it is seen from the
considerations in §9 (Cf. (9.2), (9.22) and (10.2)) that we obtain an equivalent
formalism by taking Abraha m’s tensor as energy-momentum tensor of
the electromagnetic field.

As may also be seen from the preceding section, the formalism with
Il';‘,’w involves new definitions for the hydrostatic pressure and for the
internal energy of the matter measured by an observer moving with the
barycentric velocity. Comparing (9.2), (9.22) and (10.2) we find from (9.3)
and (9.23)

pi=p — 338 B, M, (10.3)

for the new hydrostatic pressure and

’ 4 ’
LI Ay

RN
) = o) T %

B M, (10.4)




for the new energy of the matter per unit volume measured by an observer
moving with the barycentric velocity. Analogous to (9.24) (Cf. also (9.23)
and (10.4)) the new specific energy of the matter measured by an observer
moving with the barycentric velocity is given by

= ylen -+ F38 BLUMY — o (10.5)

¥

or, using (1.3.13),

e =¢ 4 }v'38, B M, (10.6)

From the considerations in § 9 it can be seen that the new form for the
second law of thermodynamics is obtained by inserting (10.3) and (10.6)
into (8.8). This gives

T'Ds' = De’ + p"“ Dy’ — 2r o u' De’?

}v' 2541 M ;3DB,, + v 3¢ 1 o (M oy By — By, M,j5) Duty —

af “~a,py=

10" E0p By DM y—3v' B4y i 4, (B M,;—M,, By Duy.  (10.7)

Comparison of (IV.2.5) and (IV.4.19) shows that one can also write for
(10.7)

T'Ds’ = De + p™4Do’ — =, ' D' |

WENT ’
f ~a,f=1 (‘1lqﬂ

1 DB, — B.,DM_). (10.8)
With the help of (2.7) and (2.11) we get for the preceding equation the
form

T'Ds' = De't + p4 Do’ — B, u') D'
+3v/(P“DE' — E“DP’' + M"“DB’ — B"DM).  (10.9)

By dropping the primes and replacing D by d/df in (10.9) we get the
corresponding non-relativistic second law of thermodynamics (Cf. § 2 of
chapter 1V). It is seen that this form for the non-relativistic second law
is rather unusual.

The four-vector representing the total force per unit volume exerted by
the electromagnetic field on the matter if we use the formalism with
Abraham's tensor will be denoted by k2. We have

k4 - X3 oW 3/ 0%5. (=1 04) (10.10)

(/)i

Using (IV.5.3), (3.1) and (10.1) we find from this equation

,A » (7) (1) 4 y 1{5]5y Y4 4
Ra 21 000) K3’ Ripa — 1(0[0x,) (X1 B 2

M,). (10.11)

",
Ja
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We now define the new ponderomotive force per unit volume by
,A 2
kipre = kipja — } (0/0%,) (25,=1 B, Ms,). (10.12)
([ ="17%5,4)

It is easily seen that this definition is in agreement with (9.6) and (9.26).
From (8.5) and (10.12) we have

A "4 5 154 ~4 5 A
Flos = 18,1 My,(0B,,[0x,) — } S8, By, (0M,,[0x,) +

1 \‘:g.;'..’ 1 g (Mg, B,y — By, M) (0u]0x,) +
0241 Aop Dy (@=L, ..;4) (10.13)

We define the four-vectors /e;';,’;,, and k(,, (a=1,..,4) by

Ja

¥4 ' \‘4 4
kpe = 0'{%v . My, (0B, [ox,) + Zg_1 Aus Dy

+ 30" B3 pmy s (M, B,y — By, M) (Purfox,)}, (10.14)
(a=1,..,4)
K = — 0'{}v" 24, By, (M, )0x,) 4
4o’ 250y g (Bg, My, — My, By,) (8u,/0x,)}. (10.15)
(=1, :3:4)

Using (1.2.3) we have from the three preceding equations

ks = Ritrs + Ripa: (a=1,..,4) (10.16)
Comparison of (IV.8.2) with (10.14) and (10.15) shows that each of the
two four-vectors k), and /(T,:: has the required form. This corresponds
to the fact that on the right hand side of (10.8) two terms occur having
the form }.24,,1(, DZ, .» Whereas on the right hand side of (IV.2.5) only
one term occurs of this form.

We now consider the tensor of Minko wski. We first remark that
we cannot obtain a formalism with this tensor by means of a procedure

af

analogous to those given in the preceding section. In passing to other
formalisms by means of the procedures given in § 9 the energy-momentum
tensor of the system, W, remains unchanged. Hence, if we should try

pass to a formalism with Minkowski’s tensor by means of such
a procedure the energy-momentum tensor of the matter would become
asymmetric since W, is symmetric and Minkowski's tensor is
asymmetric. This, however, would give rise to difficulties because the
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symmetry of the energy-momentum tensor of the matter has been a basic
assumption in our thermodynamical considerations.

Also if we should assume that the energy-momentum tensor of the matter
is symmetric we get into difficulties, since W e Would become asymmetric
and hence, (Cf. § 4), the macroscopic angular momentum of the system
would not be conserved.

Moreover, we get a different thermodynamical formalism with M i n-
ko wski’s tensor. To show this, we first remark that we have from M i n-
kowski's tensor for the four-vector, k¥, representing the total force per
unit volume exerted by the electromagnetic field on the matter

B )2 ("”'i‘,’}”‘vfs(".r”. (a 1, .., 4) (10.17)

With the help of (2.8), (2.10) and (2.15) we find the relation

V4 2 [Py 1 V4
g1 (0By,[0x5) H, g - § 25,

1 Hp (0B, /0x,). (10.18)
fa =1 4)

Using (2.14), (3.8), (7.14) and (10.18) we derive from (10.17)

/\‘;)I = 2, (’:8‘/ K7+ i S:,-,: 1 H/r,. ((r"flﬂy‘;&""n) :
— $ 33, Hy, (8B, Jox,). (@=1,..,49 (10.19)

Hence, the four-vector, A';‘,',],‘, representing the ponderomotive force per
unit volume, is given by (Cf. also (IV.5.3))

}‘:(.‘II’)U } '\':;,;.' = | 1)),‘?;'(i"[[;ﬂ}“‘g".u) A lt :,3.',‘ | II;{;- (érlfﬁ;:“‘vé.x,,) y ( ]O.ZO)

(@a=1,..,4)
or, with the help of (2.13),
kipe =} 23,1 My, (6B, /0x,) — }By, (8M 5 )ox,). (10.21)
(a 1. e, )

From the considerations in chapter 1V it is seen that one obtains from
(10.21) for the form of the special terms occurring in the relativistic second
law and connected with polarization and magnetization

1o/ B4 3 1, 34
1V 2opy M3 DBy — Jv' X5 5 1 By ])‘110,1

af a,f

(Cf. (I.2.25), (8.1) and (8.4)). This expression for the special terms has not
the required form X7, ,G.; DZ,,, neither is it a sum of such forms (Cf. § 2 of
chapter IV). From a pure mathematical point of view it would be possible
to determine a set of tensors Gz and Zj,, given by expressions analogous to
(IV.3.23) and (IV.3.24), such that

SRS “ry 7' 1 .,/ N4 1 o N4
At --’,; 1 ('u,c I)/,,,: § U &g p=) -”..,.' I)[)'uw' 1Y ~ap

1 By DM .

87




—

[t appears that this equation can only be satisfied if the quantities 4,
occurring in (IV.3.23) and (IV.3.24) depend on the acceleration of the
matter. This, however, is rather unsatisfactory since these quantities
occur in the relativistic second law of thermodynamics.

Hence, we conclude that from the point of view of the developed theory
Abraham's tensor is preferable to Minkowski’'s tensor.
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LIST OF SYMBOLS

Roman superscripts between parentheses indicate chemical components.
Greek subscripts without parentheses indicate tensor components. The
meaning of a primed quantity is explained in § 2 of chapter I. The meaning
of the symbols // and | used as subscripts is explained in § 2 of chapter 11
for unprimed quantities and in § 4 of chapter II for primed quantities,
Three-dimensional vectors are denoted in bold face type. In the following
list one finds the symbols used in the text, their meaning and the sections
where they have first been introduced.

ROMAN SYMBOLS

A arbitrary Lorentz frame (IV.1)

A affinity of De Donder (1.6)

AV transformation matrix (I1.9)

1 ~10W transformation matrix (11.9)

a constant fixing the zero point of the specific energy of the matter
(1.3)

Q.5 coefficients of a pure Lorentz transformation (11.4)

B,, barycentric Lorentz frame assigned to the position r at the time ¢
(IV.1)

B.s four-dimensional tensor describing the electromagnetic field
(IT1.2)

BY, auxiliary four-dimensional tensor (1V.3)

B* auxiliary four-vector (IV.3)

B magnetic field vector (I11.2)

B, components of B (IT1.2)

c velocity of light (1.2)

e concentration of the chemical component 5 (1.2)

D electric field vector (111.2)

D, components of D (V.2)

E electric field vector (111.2)

E, components of E (I11.2)

e specific energy of the matter derived from W (1.3)
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density of the energy of the matter derived from W, (L.3)
specific energy of the matter (related to e by (V.8.11)) (V.8)
specific energy of the matter derived from IT',,;, (V.9)

density of the energy of the matter derived from IT’,‘ﬂ (V.9)
specific energy of the matter using Abraham'’s tensor (V.10)
density of the energy of the matter using A brah am's tensor
(V.10)

density of the energy of the electromagnetic field (V.5)

auxiliary Lorentz invariant quantity having the dimension of
an energy per unit volume (V.9)

charge per unit of rest mass of the chemical component j (I11.2)
four-dimensional tensor representing the ‘‘local” electric and
magnetic fields to which the ions of the chemical component ; are
subjected (IV.5)

force per unit of rest mass acting on the chemical component 7 (1.4)
components of F7' (I.4)

four-dimensional tensor occurring in the second law as intensive
variable (IV.2)

auxiliary four-dimensional tensor (IV.3)

auxiliary four-vector. (IV.3)

auxiliary four-dimensional tensors (V.10)

density of momentum of the matter (I.3)

components of g (1.3)

density of momentum of the electromagnetic field (V.4)
components of g, (V.4)

density of momentum of the system (111.3)

four-dimensional tensor describing the electromagnetic field (V.2)
auxiliary four-dimensional tensor (V.2)

auxiliary four-vector (V.2)

magnetic field vector (I11.2)

components of H (V.2)

partial specific enthalpy of the chemical component j (I1.7)
four-vector representing the density of heat flow (1.3)
four-vector representing the density of the relative flow of matter
of the chemical component j (1.2)

four-vector representing the density of the conductive flow of
entropy (I1.5)

vector with components I{, I and 7Y (I1.2)

vector with components 1{’, 73’ and 19 (11.2)

unit vector in the direction of the positive e-axis in ordinary
space (11.2)

imaginary unit (1.2)

density of the energy flow of the matter (1.3)




components of J, (1.3)

density of the conductive flow of entropy (IL.5)

components of J, (I1.5)

Poynting vector (V.5)

components of Jip (V.5)

density of the heat flow (related to I by (11.2.14)) (I1.2)
components of J9 (I1.2)

relative flow of matter of the chemical component j (related to
IV by (11.2.6)) (I1.2)

components of J (11.2)

density of the heat flow (identical with J©) (11.9)

components of J*@ (I11.9)

density of the relative flow of matter of the chemical component
J using v* as reference velocity (11.9)

components of J*? (I1.9)

density of the heat flow (related to J by (11.2.16)) (11.2)
chemical reaction rate in mass per unit volume and per unit time
(1.4)

density of the electric current (I11.2)

components of j (I11.2)

four-vector representing the force per unit mass on component §
and the work done by this force per unit time (I.4)

four-vector representing the force per unit volume exerted by
the electromagnetic field on the matter and the work done by the
electromagnetic field on the matter per unit volume and per unit
time (IV.5)

four-vector representing the force per unit volume exerted by the
electromagnetic field on the matter and the work done by the
electromagnetic field on the matter per unit volume and per unit
time (related to %, by (V.9.5)) (V.9)

four-vector representing the force per unit volume exerted by
the electromagnetic field on the matter and the work done by
the electromagnetic field on the matter per unit volume and per
unit time (related to %, by (V.9.25)) (V.9)

four-vector representing the force per unit volume exerted by
the electromagnetic field on the matter and the work done by
the electromagnetic field on the matter per unit volume and per
unit time (related to k£, by (IV.5.3) and (V.10.11)) (V.10)
four-vector representing the force per unit volume exerted by
the electromagnetic field on the matter and the work done by
the electromagnetic field on the matter per unit volume and per
unit time (related to %, by (IV.5.3), (V.3.9) and (V.10.19)) (V.10)
four-vector representing the ponderomotive force per unit volume
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(P)a
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A
k(P)u

L(C)(/’)

L(P)(‘)

LD
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LO®
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Ly

7 (k)
Lnﬁ

and the work done on the matter by the ponderomotive forces
per unit volume and per unit time (IV.5)

four-vector representing the ponderomotive force per unit
volume and the work done on the matter by the ponderomotive
forces per unit volume and per unit time (related to k., by
(V.9.6)) (V.9)

four-vector representing the ponderomotive force per unit volume
and the work done on the matter by the ponderomotive forces per
unit volume and per unit time (related to %, by (V.9.26)) (V.9)
four-vector representing the ponderomotive force per unit volume
and the work done on the matter by the ponderomotive forces
per unit volume and per unit time (related to %, by (V.10.12))
(V.10)

four-vector representing the ponderomotive force per unit
volume and the work done on the matter by the ponderomotive
forces per unit volume and per unit time (related to kg, by
(V.3.9) and (V.10.21)) (V.10)

auxiliary four-vector (V.10)

auxiliary four-vector (V.10)

vector with components %, £, and %; (V.6)

vector with components %, &p;, and & py; (V.6)

force per unit volume exerted by the electric field on the matter
in consequence of the polarization of the medium (V.6)

force per unit volume exerted by the magnetic field on the matter
in consequence of the magnetization of the medium (V.6)

force per unit volume exerted by the electric field on the matter
in consequence of the magnetization of the medium (V.6)

force per unit volume exerted by the magnetic field on the matter
in consequence of the polarization of the medium (V.6)

Lorentz invariant phenomenological coefficient for the chemical
reaction (1.7)

Lorentz invariant phenomenological coefficient for visco-chemical
effects (1.7)

Lorentz invariant phenomenological coefficient for visco-chemical
effects (1.7)

Lorentz invariant phenomenological coefficients for vectorial
fluxes (1.7)

four-dimensional phenomenological tensors for the vectorial
using YY) as affinity (1.7)

a

Ja

fluxes 17

a?

four-dimensional phenomenological tensors for the vectorial
fluxes 9, using Y as affinity (IV.9)

a

four-dimensional phenomenological tensors for the vectorial
fluxes 19, using ¥ as affinity (related to L™ by (I1V.9.8)) (IV.9)
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three-dimensional phenomenological tensors for the vectorial
fluxes JV (j =0, 1,..., n) (IL7)

three-dimensional phenomenological tensors for the vectorial
fluxes J*? (j = 0, 1,...,n) (IL.9)

four-dimensional phenomenological tensor for viscous flow using
(Cu,/0x;) as affinity (1.7)

four-dimensional phenomenological tensor for viscous flow using
Y, as affinity (IV.10)

four-dimensional phenomenological tensor for viscous flow using
Y., as affinity (related to Ly, by (IV.10.11)) (IV. 10)
four-dimensional phenomenological tensor for viscous flow using
Y., as affinity (related to L}, by (IV.10.9)) (IV.10)
four-dimensional tensor representing the polarization and mag-
netization of the matter (IV.2)

auxiliary four-dimensional tensor (IV.3)

auxiliary four-vector (IV.3)

rest mass of particle % of the chemical component j (1.2)
polarization vector (IV.2)

components of M (IV.2)

auxiliary Lorentz invariant quantity (1.2)

four-vector representing the density of the total flow of rest mass
and the total density of rest mass (1.2)

four-vector representing the density of the flow of rest mass of
the chemical component j and the density of rest mass of the
chemical component 7 (1.2)

number of atomic particles of the chemical component j per
unit volume (1.2)

number of the chemical components (1.2)

auxiliary quantity having the dimension of a pressure (I11.2)
four-dimensional tensor representing the viscous stresses (I.3)
four-dimensional tensor representing the ordinary viscous
stresses (1.6)

polarization vector (IV.2)

components of P (IV.2)

hydrostatic pressure following from W (1.3)

hydrostatic pressure following from W}, (V.9)

hydrostatic pressure following from W, (V.10)

auxiliary quantity having the dimension of a pressure (V.9)

heat of transfer of the chemical component ; using the flows
el (9= Fion g 98) (EE6)

heat of transfer of the chemical component j using the fluxes
JV (=1, ...,n-1) (I1.6)

heat of transfer of the chemical component j using the flows

g(;) vi (§' =1 iy ) (EL6)
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position vector (I1.5)
four-vector representing the density of the flow of entropy and
the density of entropy (I1.5)

specific entropy (1.4)

density of entropy (I1.5)

partial specific entropy of the chemical component j (I1.7)
temperature (1.4)

time (1.2)

three-dimensional stress tensor (I1.3)

four-vector representing the barycentric velocity (I.2)

volume (I1.5)

barycentric velocity (I1.2)

components of v (I1.2)

velocity of the chemical component j (1.2)

components of v (1.2)

relative velocity of two Lorentz frames (I11.4)

components of v, (I1.4)

linear combination of the velocities of the chemical components
(I1.9)

linear combination of the velocities of the chemical components
(I1.9)

specific volume (1.2)

partial specific volume of the chemical component j (I1.7)
energy-momentum tensor of the matter (1.3)
energy-momentum tensor of the matter (related to W,
(V.9.1)) (V.9)

energy-momentum tensor of the matter (related to W, by
(V.9.21)) (V.9)

energy-momentum tensor of the electromagnetic field (II1.3)
energy-momentum tensor of the electromagnetic field (related
to W ;. by (V.9.2)) (V.9)

energy-momentum tensor of the electromagnetic field (related
to W,z by (V.9.22)) (V.9)

energy-momentum tensor of Abraham (V.7)
energy-momentum tensor of Minkowski (V.7)

auxiliary four-dimensional tensor (V.9)

energy-momentum tensor of the electromagnetic field (related to
W paa by (V.9.37)) (V.9))

energy-momentum tensor of the system (I11.3)

four-dimensional tensor representing the stresses, derived from
W .z (1.3)
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affinity conjugate to J© (I1.3)

components of X% (I1.3)

affinity conjugate to J7 (I11.3)

components of X7 (I1.3)

affinity conjugate to J (related to X' by (I1.5.20)) (I1.5)
components of X© (I1.7)

affinity conjugate to the relative flow of matter J? (related to
X7 by (11.5.20)) (I1.5)

components of X% (I1.7)

identical with X' (IL.9)

components of X*© (I1.9)

affinity conjugate to J*? (I1.9)

components of X*7 (I1.9)

four-vector representing position and time in the four-dimen-
sional space-time continuum (I.2)

four-vector conjugate as affinity to 7% (1.6)

four-vector conjugate as affinity to 19 (1.6)

four-vector conjugate as affinity to /¥ (related to Y%y (IV.9.2))
(IV.9)

four-vector conjugate as affinity to 77 (related to Y by (IV.9.2))
(IV.9)

four-dimensional tensor conjugate as affinity to the ordinary
viscous pressure tensor (IV.10)

four-dimensional tensor occurring in the second law of ther-
modynamics as extensive variable (I1V.2)

auxiliary four-dimensional tensor (IV.3)

auxiliary four-vector (IV.3)

auxiliary four-dimensional tensors (V.10)

GREEK SYMBOLS

auxiliary Lorentz invariant quantity (IV.3)

auxiliary four-dimensional tensor (I.2)

Kronecker tensor (three-dimensional and four-dimensional) (I.2)
Kronecker symbol (I.2)

dielectric constant (IV.3)

auxiliary quantity belonging to the chemical component 7 (I1.9)
ordinary viscosity (1.7)

volume viscosity (1.7)

angle between v’ and v measured by an observer in the bary-
centric Lorentz frame (I1.8)

auxiliary quantity (I1.4)

coefficient of heat conduction in the stationary state (I1.6)
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auxiliary quantities (I'V.3)

A% auxiliary quantities (IV.5)
7 magnetic permeability (IV.3)

u? partial specific Gibbs function of the chemical component 7 (1.4)
W Lorentz invariant quantity proportional to the stoechiometric
number of component j in the chemical reaction (1.4)

g arbitrary quantity (I1.5)

£) auxiliary quantity occurring in the expression for v* (I1.9)

11 Lorentz invariant viscous pressure (1.6)

0 total density of rest mass (1.2)

o density of rest mass of the chemical component j (1.2)

o density of rest mass of the chemical component § measured by an
observer moving with this component (1.2)

Oy density of electric charge (II1.2)

o entropy production per unit volume and per unit time (I1.5)

) contribution of the viscous flow to ¢ (IV.10)

Oia) contribution of heat conduction and diffusion to ¢ (11.5)

T o)) contribution of the chemical reaction and the volume viscosity
to o (11.5)

D, four-vector occurring in the expression for %4, (IV.8)

q that part of the work done by the electromagnetic field on the
medium per unit volume and per unit time which is used to
change the internal energy e’ of the matter (V.8)

7 electric conductivity (I11.8)

¥, four-vector of Minkowski (“Ruhstrahlvector”) (V.7)

p* auxiliary four-vector (V.7)

2 auxiliary Lorentz invariant quantity (IV.3)

" auxiliary Lorentz invariant quantity belonging to the chemical

component j (I.5)

VECTOR NOTATION AND OPERATORS

ab=3X3_,ab,

a~b = (ab; —ayb)i, + (az by — a, by)i, + (a, b, — a, by)i,

la| = (X3, ad)!

-1 (68]ox)i,

diva = X2_, (%a,/0x,)

rot a = {(0a;/0x,) — (Pa,[0x;)} 1, + {(0a;/ox;) (Oay/ex,)} i,
+ {(Cay/0x;) — (Pa,/ex,)} i,

(Grad a).b is defined by (V.6.10)

D substantial derivative with respect to time defined by (I1.2.25)

d/d¢ substantial derivative with respect to time defined by (11.3.10)

(except in the formulae (I11.3.10), (V.4.11), (V.4.12) and (V.4.13)

where (d/dt) is the ordinary derivative with respect to time)

grad & = X2




SOMMAIRE

Nous nous proposons dans cette thése de développer en premier lieu la
thermodynamique relativiste des phénoménes irréversibles dans un mélange
continu d'un nombre arbitraire de constituants chimiques. De plus nous
étudions le tenseur d'impulsion et d’énergie du champ électromagnétique
macroscopique.

Nous nous limitons 4 la théorie de la relativité restreinte et nous supposons
qu'il y a ni création ni annihilation de particules atomaires. La validité de la
théorie est limitée par la condition que, pour un observateur se déplagant
avec la vitesse barycentrique, les variations en température, pression etc.
doivent étre petites sur des distances comparables au libre parcours moyen
des molécules.

Dans le premier chapitre nous donnons la théorie de systémes qui sont
soumis a l'action de forces ne dépendant pas des vitesses des constituants
chimiques. La théorie est présentée en forme tensorielle quadridimension-
nelle. En premier lien nous introduisons quelques notions servant de point
de départ pour le développement de la théorie. Les quadrivecteurs qui
représentent les flux relatifs de la matiére et le flux calorifique sont définis
de telle fagon qu'’ils sont perpendiculaires au quadrivecteur représentant la
vitesse barycentrique. Les tenseurs quadridimensionnels qui représentent
les tensions mécaniques possédent des propriétés d’orthogonalité semblables.
Le bilan d'entropie est déduit des lois relativistes fondamentales de la
physique macroscopique. Nous montrons que dans des systémes isotropes
les relations d’Onsager sont invariantes pour des transformations de Lorentz.
De plus nous trouvons un effet croisé nouveaun entre la diffusion et la con-
duction thermique. Il apparait que, par suite de cet effet, le phénoméne de
diffusion est influencé par le mouvement barycentrique.

Les résultats obtenus dans le chapitre premier sont discutés en plus grand
détail dans le second chapitre. En outre ce chapitre contient des considéra-
tions sur les chaleurs de transport et sur quelques quantités qui sont presque
invariantes pour des transformations de Lorentz. Les résultats de la théorie
concernant la conduction thermique et la diffusion sont reformulés en forme
de tenseurs tridimensionnels a 'aide de quantités qui sont utilisées aussi dans
la théorie non-relativiste. Dans la théorie présentée ici la densité d'entropie
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est la quatriéme composante d'un quadrivecteur et il apparait qu’en général
I’entropie dans un élément de volume n’est pas invariante pour des trans-
formations de Lorentz. Nous discutons aussi la relation entre les différentes
chaleurs de transport qui figurent dans la littérature. Une formulation de la
théorie & I'aide de flux relatifs de la matiére, qui sont définis par rapport A
une vitesse différente de la vitesse barycentrique, est déduite du formalisme
développé.

Dans le troisiéme chapitre nous considérons des systémes sans polarisation
ou magnétisation dans un champ électromagnétique. Nous arrivons au
bilan d’entropie par une méthode qui différe un peu de celle utilisée dans
le premier chapitre. Les relations phénoménologiques pour des milieux
isotropes sont données en forme des tenseurs tridimensionnels et quadridi-
mensionnels. La loi relativiste d’'Ohm est un cas spécial des équations
générales obtenues pour les phénomeénes de diffusion. Il apparait que le
courant €lectrique ne dépend pas seulement des vecteurs des champs élec-
triques et magnétiques ainsi que des gradients de la température et des
potentiels chimiques des constituants, mais aussi des dérivées partielles par
rapport au temps des deux derniéres quantités et de 'accélération barycen-
trique.

La théorie thermodynamique des systémes polarisés et magnétisés est
donnée dans le quatriéme chapitre. Nous ne discutons que les systémes qui
sont isotropes quant a leur polarisation et leur magnétisation. Au cas o le
milieu est polarisé et magnétisé, des termes supplémentaires s’ajoutent 2 la
formule non-relativiste de Gibbs. Nous donnons en premier lieu la formule
relativiste de Gibbs pour le cas considéré. Si 'on veut déduire une forme
satisfaisante pour le bilan d’entropie il apparait que I'expression explicite
des forces pondéromotrices doit avoir un rapport étroit avec I'expression de
la formule de Gibbs. Les relations phénoménologiques et les relations
d’Onsager sont données pour des systémes anisotropes quant aux phéno-
menes irréversibles.

Dans le cinquiéme chapitre nous considérons le tenseur d'impulsion et
d’énergie du champ électromagnétique macroscopique. Nous continuons
aussi la discussion des deux principes de la thermodynamique et des forces
macroscopiques que le champ électromagnétique exerce sur la matiére.
Comme dans le quatriéme chapitre nous nous bornons aux systémes qui
sont isotropes quant a la polarisation et la magnétisation. Nous montrons
qu'il est possible de trouver un tenseur symétrique d'impulsion et d’énergie
pour le champ électromagnétique macroscopique. Les éléments non-diago-
naux de ce tenseur sont égaux aux éléments correspondants du tenseur
d’Abraham. Nous montrons ensuite que le tenseur d’Abraham
correspond 4 un formalisme en tous points équivalent. Enfin nous montrons
que le tenseur d’A braham est préférable A celui-cide Minkowski
du point de vue de notre théorie.
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SAMENVATTING

Het hoofddoel van dit proefschrift is de relativistische thermodynamica
te ontwikkelen van de irreversibele processen in een continu mengsel, dat
bestaat uit een willekeurig aantal chemische componenten. Het nevendoel
is de energie-impulstensor te onderzoeken van het macroscopische electro-
magnetische veld.

We hebben ons beperkt tot de speciale relativiteitstheorie. Verder hebben
we aangenomen, dat er geen atomistische deeltjes gecreéerd worden of ver-
dwijnen. De geldigheid van de thermodynamische theorie wordt begrensd
door de voorwaarde, dat, voor een waarnemer, die met de barycentrische
snelheid meebeweegt, de verschillen in druk, temperatuur enz. klein moeten
zijn over een afstand, die vergelijkbaar is met de gemiddelde vrije weglengte
van de moleculen.

In hoofdstuk I ontwikkelen we de theorie voor systemen, die beinvloed
worden door krachten, die niet afhangen van de snelheden van de chemische
componenten. De theorie wordt geformuleerd met behulp van vierdimen-
sionale tensorrekening. De vierdimensionale vectoren, die de relatieve
materiestromen en de warmtestroom representeren, worden zo gedefinieerd,
dat ze loodrecht staan op de vierdimensionale vector, die de barycentri-
sche snelheid voorstelt. De tensoren, die de druk representeren, bezitten
eveneens dergelijke orthogonaliteitseigenschappen. Uit de relativistische
macroscopische fundamentele wetten (te weten: de tweede hoofdwet van
de thermodynamica en de balansvergelijkingen voor rustmassa, impuls
en energie) wordt de entropiebalans afgeleid. De fenomenologische verge-
lijkingen worden gegeven voor isotrope media en er wordt aangetoond, dat
de Onsager-relaties Lorentz-invariant zijn. Een nieuw kruiseffect wordt
gevonden, dat voortkomt uit een relativistische term in de affiniteit gecon-
jugeerd aan de warmtestroom. Het blijkt, dat door dit kruiseffect de dif-
fusieverschijnselen beinvloed worden door de barycentrische beweging.

Voor zover het de warmtegeleiding, de diffusie en de entropie betreft, wor-
den de resultaten van de in hoofdstuk I gegeven theorie verder uitgewerkt
in hoofdstuk I1. Bovendien bevat dit hoofdstuk be :schouwingen over de trans-
portwarmten en enkele grootheden, die bijna Lorentz-invariant zijn. De resul-
taten van de in hoofdstuk I gegeven theorie betreffende warmte geleiding en
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diffusie worden geformuleerd in driedimensionale tensorvorm met behulp
van grootheden, die in de niet-relativistische theorie gebruikt worden. Er
worden formules afgeleid waaruit het verschil tussen de resultaten van de
relativistische en de niet-relativistische theorie gemakkelijk kan worden
overzien. Uit de ontwikkelde theorie volgt, dat de entropie in een klein
volume-element in het algemeen niet een Lorentz-invariante grootheid is.
Dit resultaat verschilt van dat van Planck en Einstein volgens
hetwelk de entropie in een klein volume-element wel Lorentz-invariant is.
Het verband tussen de verschillende in de literatuur voorkomende definities
van de transportwarmten wordt afgeleid. Enkele grootheden, die in het
formalisme voorkomen, blijken bijna Lorentz-invariant te zijn. Een formu-
lering van de theorie, die gebruik maakt van relatieve materiestromen, die
gedefinieerd zijn ten opzichte van een andere referentiesnelheid dan de
barycentrische snelheid, wordt afgeleid uit het ontwikkelde formalisme.

Hoofdstuk III handelt over systemen, zonder polarisatie en magnetisatie,
die beinvloed worden door een electromagnetisch veld. De entropiebalans
moet voor dit geval uit de fundamentele relativistische vergelijkingen wor-
den afgeleid door middel van een methode, die in sommige opzichten ver-
schilt van die welke in hoofdstuk I gebruikt werd. De fenomenologische
vergelijkingen worden gegeven in vierdimensionale en driedimensionale
tensorvorm. Ook de Onsager-relaties worden weer besproken. De relativis-
tische wet van Ohm blijkt een speciaal geval te zijn van de algemene ver-
gelijkingen, die verkregen zijn voor de diffusieverschijnselen. Het blijkt,
dat de electrische stroom niet alleen afhangt van de electrische en magne-
tische veldvectoren en van de gradienten van de temperatuur en van de
partiéle specificke Gibbs-potentialen van de chemische componenten, maar,
dat hij ook afhangt van de locale afgeleiden naar de tijd van de beide laatst-
genoemde grootheden en van de barycentrische versnelling.

De thermodynamische theorie voor systemen met polarisatie en mag-
netisatie wordt ontwikkeld in hoofdstuk IV. We hebben ons beperkt tot
systemen, die isotroop zijn voor zover het polarisatie en magnetisatie be-
treft. In het geval, dat het systeem gepolariseerd en gemagnetiseerd is,
treden er in de niet-relativistische tweede hoofdwet van de thermodynamica
termen op, die een gevolg zijn van de polarisatie en de magnetisatie van de
materie. In dit hoofdstuk leiden we nu eerst de relativistische tweede hoofd-
wet -af voor het beschouwde geval. Het blijkt, dat er een nauw verband
moet bestaan tussen de expliciete uitdrukking voor de ponderomotorische
kracht en de gedaante van de relativistische tweede hoofdwet van de ther-
modynamica indien men een bevredigende vorm wil verkrijgen voor de
entropiebalans. De fenomenologische vergelijkingen en de Onsager-relaties
worden gegeven voor media, die anisotroop zijn voor zo ver het de irrever-
sibele processen betreft.

In hoofdstuk V zijn de resultaten gegeven van het onderzoek, dat be-
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trekking heeft op de energie-impulstensor van het macroscopische electro-
magnetische veld. Bovendien bevat dit hoofdstuk verdere discussies over
de eerste en tweede hoofdwet van de thermodynamica. Als in hoofdstuk IV
hebben we ons beperkt tot systemen, die isotroop zijn voor zover het pola-
risatie en magnetisatie betreft. Om onze beschouwingen zo algemeen moge-
lijk te houden voerden we in hoofdstuk IV verschillende grootheden in, die
we niet nader specificeerden. Het blijkt nu, dat het mogelijk is om zodanige
keuzen te maken voor de bovenbedoelde grootheden, dat een explicite uit-
drukking kan worden afgeleid voor een symmetrische energie-impulstensor
van het macroscopische electromagnetische veld. De niet-diagonaalele-
menten van de op deze wijze gevonden tensor zijn gelijk aan de correspon-
derende elementen van de energie-impulstensor, die Abraham aan
het electromagnetische veld toekent. Er wordt verder aangetoond, dat
Abraham’s tensor tot een gelijkwaardig formalisme leidt. Het blijkt
echter, dat de vorm voor de relativistische tweede hoofdwet, die volgt uit
het formalisme met A bra ham’s tensor, correspondeert met een tamelijk
ongebruikelijke gedaante voor de niet-relativistische tweede hoofdwet
van de thermodynamica. Tenslotte wordt er aangetoond, dat, vanuit het
gezichtspunt van de ontwikkelde theorie, Abraham’s tensor te pre-
fereren is boven de energie-impulstensor, die Minkowski aan het
macroscopische electromagnetische veld toekent.
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STELLINGEN

De opmerkelijk hoge waarden voor log ft, die men vindt bij de f-desinte-
gratie van *Co en %Co, voor overgangen met A/ = 0 of + 1 (zonder pari-
teitsverandering), wijzen er op, dat er, behalve de gewone selectieregels, nog
bijzondere selectieregels moeten zijn. Het is niet uitgesloten, dat hier nog een
andere selectieregel een rol speelt dan die voor het |, benaderde” quantum-
getal L.

I1

Bij de gebruikelijke wijze waarop men de door een gloeiend gas geémitteer-
de spectraallijnen berekent, veronderstelt men, dat een atoom in het gas
aanvankelijk in een stationaire toestand is. Het behoeft echter nadere ver-
klaring waarom deze veronderstelling tot het juiste resultaat leidt.

[11

Het is zowel uit didactisch als uit methodisch oogpunt ongewenst om in
een leerboek over quantummechanica aanvankelijk als ladingwolk te inter-
preteren hetgeen als waarschijnlijkheidsdichtheid behoort te worden opgevat.
De winst aan ,,aanschouwelijkheid” weegt niet op tegen het offer van de
juistheid der interpretatie.

F. Hund, Materie als Feld, Springer, Berlin (1954)

IV

Het zou voor het inzicht in het verband tussen de moleculaire polarisatie
en de diélectrische constanten van stoffen met zeer grote dichtheden van
belang zijn het model van het molecuul in een doosje aan te vullen met een
statistische celtheorie.

A. Michels, J. de Boer en A. Bijl, Physica4
(1937) 981.

S. R.de Groot en C. A. ten Seldam, Physi-
ca 12 (1946) 669

v

In tegenstelling met hetgeen Tamm beweert, kan de dichtheid van de
macroscopische kracht, die het electromagnetische veld op de materie uit-
oefent, niet opgevat worden als een gemiddelde van de dichtheid van de
microscopische kracht, die door het electromagnetische veld op de materie
wordt uitgeoefend

C. Maller, The theory of relativity, Oxford Uni-
versity Press, London (1952).



VI

Om de energie-impulstensor van het macroscopische electromagnetische
veld in anisotrope media te kunnen bestuderen is het wenselijk eerst de in
hoofdstuk IV van dit proefschrift gegeven thermodynamische theorie uit te
breiden tot systemen, die, ook wat betreft polarisatie en magnetisatie, ani-
sotroop lijn.

VII
De energie-impulstensor welke Abraham aan het macroscopische
electromagnetische veld toekent verdient de voorkeur boven die, welke
Minkowski eraan toekent,

Hoofdstuk V van dit proefschrift.

VIII

Pauli merkt op, dat de door hem gegeven vorm voor de energie-
impulstensor van Abraham geldt voor homogene isotrope media. Deze
uitdrukking is echter ook geldig voor inhomogene isotrope media.

W. Pauli, Relativititstheorie (Encyc lopadie der
Mathematischen Wissenschaften, Band V, Teil 2), B
G. Teubner, Leipzig (1904-1922)

Hoofdstuk V van dit proefschrift

[X

In de relativistische thermostaticavan Planck en Einstein is de
entropie binnen een volume-element een Lorentz-invariante grootheid. Dit is
echter niet meer het geval indien er warmtegeleiding of diffusie optreedt.

Hoofdstuk 11 van dit proefschrift.

X

Voor de in de tweede hoofdwet van de thermodynamica (relatie van Gibbs)
optredende extensieve variabelen. die aan balansvergelijkingen voldoen, is er
voor de wijze van transformeren bij Lorentz-transformaties een geringere
mate van vrijheid dan voor de intensieve variabelen, die voorkomen in de
genoemde wet,

X1
De afleiding van Callen, Barasch en Jackson voor de Onsa-
ger-relaties leidt niet alleen tot de verlangde betrekking Lz = L;,, doch
tevens tot L,, = 0. De redenering, die ze geven om aan dit ongewenste resul-
taat te ontkomen, bereikt dat doel niet.

H. B. Callen, M. L. Baraschen J. L. Jack-
s on, Phys. Rev. 88 (1952) 1382.




XI1

De thermodynamica van de irreversibele processen in enkelvoudige stoffen
met inwendig impulsmoment kan worden uitgebreid tot stoffen, die uit een
willekeurig aantal chemische componenten bestaan.

XII1

Het verdient aanbeveling om na te gaan of het mogelijk is in ons land
supra-universitaire cursussen te organiseren om het steeds groter wordende
verschil te kunnen overbruggen tussen de stand van de natuurkundige we-
tenschap en het wetenschappelijk niveau, dat vereist is voor het afleggen van
een doctoraal examen met natuurkunde als hoofdvak.

X1V
Het is onjuist om in de Europese Gemeenschap voor Kolen en Staal (Plan
Schuman) een voorbeeld te zien van een ontwikkeling naar internationale

beheers- respectievelijk bezitsorganen.

Iréne Scizier, De Europese Kolen- en Staal-
gemeenschap (Cahier uit de serie Documentatie over
Europa).

De weg naar vrijheid, N.V. De Arbeiderspers, Amsterdam
(1951)

XV
De verdere ontwikkeling van de muziek zal waarschijnlijk eerder gaan in

de richting van nieuwe modulaties binnen het kader van de oude tonaliteit
en in de richting van nieuwe toonladders dan in die van bi- of atonaliteit,

(Vergelijk respectievelijk de latere werken van Fauré en Badin gs.)













