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S T E L L I N G E N

1. De door di Giacomo aangegeven voorwaarden waaronder de
electrische polarisatie in een verdund polair gas mag wor
den gelineariseerd in het drijvend tijdafhankelijk elec-
trisch veld zijn onvolledig.

A. Bi Giacomo, II Nuovo Cimento 473 ( 19^4) •

2. Met Behulp van een magnetisch veld is het mogelijk experi
mentele aanwijzingen te verkrijgen over het optreden van
een "visceuze" terugstroom hij het thermomoleculair druk-
effect.

3. Voor een Beschrijving van het SenftleBen-Beenakker effect
verdient de parameter B/n, de verhouding van magnetische
inductie en dichtheid, de voorkeur Boven H/p, de verhou
ding van magnetische veldsterkte en druk.

4* Be door Muriel en Dresden aangegeven master-vergelijking
is in zijn algemeenheid onjuist.

A. Muriel en M. Dresden, Physics Letters 2Jk, 16

(1968).

R.M. Wilcox, J.Math.Phys. 8, 962 (1 9 6 7 )*

5. Teneinde een gunstige signaal-ruisverhouding te verkrijgen
Bij vlucht- of verhlijftijd-experimenten verdient het aan
beveling gebruik te maken van een (kruisCorrelatiemethode.
Bit is van groot Belang Bij experimenten, waarbij gebruik
wordt gemaakt van door middel van kathodeverstuiving ver
kregen atomaire Bundels.



6. Voor een theoretische verklaring van het optreden van twee
maxima in de transversale transport-coëfficiënten van zuur
stof in een magneetveld is het niet noodzakelijk het optre
den van "spin-omklap"-botsingen te veronderstellen.

L.L. Gorelik, V.G. Nikolaev en V.V. Sinitsyn,
Zh.Eksperim. i Teor.Fiz. Pis'ma v Redaktsiyu
4, 456 (1966);

I.K. Kikóin, K.I. Balashov, S.D. Lasarev en R.E. Neu-
shtadt, Physics Letters 24a. 165 (19^7)*

Yu. Kagan en L.A. Maksimov, Zh.Eksperim. i Teor.Fiz.
51. 1893 (1966) (Engelse vertaling: Soviet Physics
JETP 24, 1272 (1967)).

7. Naar aanleiding van de onlangs aangegeven regels betreffen
de het promoveren op publicaties dient het verbod van de
Rijksuniversiteit te Leiden, een dankwoord te richten tot
aan deze universiteit verbonden personen, herzien te worden

Acta et Agenda, 5 december 1968.

8. De toename in de effectieve werking van ultra-centrifuges
bij toenemende hoekfrequentie wordt bij hoge hoekfrequentie
gasdichtheidverhouding begrensd door het optreden van
Corioliskrachten.

9. Voor de theoretische beschrijving van Debije-relaxatie in
verdunde meer-atomige gassen kan met vrucht gebruik worden
gemaakt van de door Waldmann en Snider opgestelde trans-
portvergelijking.

L. Waldmann, Z.Naturforschg 12a. 660 (1957)•
R.F. Snider, J.Chem.Phys. ^2, 1051 (i960).
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GENERAL INTRODUCTION

Many physical experiments consist of studying the
variation of some physical phenomenon as a function of
certain external parameters. Specializing to the field
of transport phenomena in dilute gases one can mention
the measurement of transport coefficients as a function
of temperature. For noble gases this yields a quite pre
cise knowledge of the parameters that enter into the ex
pression for the intermolecular potential .

Ionized and polyatomic gases, however, offer addit
ional possibilities, due to the circumstance that the
motion of the individual particles can be influenced by
means of external electric and magnetic fields. Charged
particles feel Coulomb and Lorentz forces when placed in
such fields. The electric field, if not too strong, acts
as a driving force causing an electric current, the pro
portionality coefficient £ (the conductivity tensor)
being independent of the electric field E 2'. A magnetic
field B contributes to the driving force via v * B, v*“ -"O •• — o
being the stream velocity of the gas, but it also influ
ences the transport coefficients. Thus a - o (B) is no
longer an isotropic tensor. In a similar way the heat
conductivity tensor 1 and shear viscosity tensor n are2)affected '.

For neutral polyatomic molecules the situation is
different. Homogeneous external fields no longer influ
ence the translational motion of the molecules. However,
if the molecules carry an electric or magnetic dipole
moment they affect the time development of the internal
state of the molecules due to the field contribution:



H (field) . . /•> . e - / m) . B (O

to the Hamiltonian. Hare ia the electric and jj(" the
magnetic dipole momenta

A direct consequence of the presence of an external
field is that a polarization or magnetization of the gas
can take place. In time dependent external fields this
leads to absorption phenomena which can be of both resonant
and non-resonant nature.

An example of the first type is the collision broad
ening of spectral lines with the important special case of
nuclear magnetic resonance in low density gases. Non—res
onant absorption or Debije relaxation has also been obser
ved in a number of gases. Recent reviews of both nuclear
magnetic resonance and Debije relaxation in dilute poly
atomic gases can be found in ref. 3.

In these cases the time dependent field acts as a
driving force and is not contained in the parameters (re
laxation times) that enter into expressions for the shape
of the absorption curve as a function of frequency, pro
vided the field is not too strong.

A static homogeneous external field can lead to effects
of a quite different nature. It was observed by Senftleben
in the 1930*s ^  that the heat conductivity and viscosity
of the paramagnetic gases and NO decrease slightly
(0.5 - 1%) upon application of a magnetic field.

Denoting by AL the change in a transport coefficient
L due to the field,

AL(B) - L(B) * L(0)

one can state the following features, as they were found
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7
experimentally by Senftleben:
a) AL is even in Bj
b) AL depends on the angle between JB and transport direction;
c) AL depends on B * |j}| via the parameter B/n, n being the

gas density;
d) For large B/n AL tends to a saturation value.

At this point it is of interest to note that a similar
behaviour is found for the transport coefficients of ionized2)gases . Indeed both phenomena are of a related nature and
precisely these effects are the subject of the present in
vestigation.

The field effect in an ionized gas is caused by the
precession of the velocity vector around the field axis.
This leads to a partial averaging of the anisotropy in vel
ocity of the non—equilibrium distribution function. As the
transport coefficients are connected to weighted averages of
the distribution function, they are affected in turn. The
effectiveness of the averaging process is determined by the
number of precessions that are performed between two succes
sive collisions. This number is given by the ratio ui /to of

. . p c
precession frequency to and collision frequency u , whichP c*
quantity is proportional to B/n.

An explanation of the Senftleben effect along these
lines was given by Gorter ^ in 1938. In a magnetic field
the magnetic moment of a paramagnetic molecule precesses
around the field axis. This magnetic moment is coupled to
the rotational angular momentum, which is perpendicular to
the plane in which the molecule rotates. Gorter now remarks
that without a field the transport coefficient is proportio
nal to the inverse of the collision cross-section, averaged



over all orientations (here all directions of the angular
momentum vector) of the molecule. The situation alters if a
magnetic field is applied, for now the precession causes a
(partial) averaging over the orientations of the molecules
about to collide. Thus in this case one first averages the
cross-section over all orientations and the transport coef
ficient equals the inverse of this averaged quantity. It can
easily be shown that the second averaging procedure yields
a smaller transport coefficient than the first, thus ex
plaining its decrease in a magnetic field. It is also clear
that, as for the ionized gas, the averaging efficiency de
pends on the number of precessions between two successive
collisions, thus explaining the B/n-law. Gorter’s ideas
were worked out further by Zernike and van Lier , who
obtained quantitative results for the B/n-dependence as
well as the dependence on the angle between field and
transport directions. However, the saturation values
(AX/X) and (An/n)_-f. were found to be equal, in contra-sat sac
diction with experiment •

Further theoretical progress had to wait untill 1961
in which year a paper appeared by Kagan and Maksimov
(KM 1) 7\  These authors consider the case of gases consis
ting of linear paramagnetic molecules of which the para
magnetism is due to the spin magnetic moment only (this
applies for oxygen). The gas is considered to be a mixture,
each component corresponding to a different projection of
the spin angular momentum S on the total (spin + rotation
al) angular momentum J. Starting from a Boltzmann equation
for the one particle distribution function f, the Chapman-
Enskog method is used to obtain an explicit formula for the
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heat conductivity tensor A(B). f is assumed to be a function
of J in addition to its dependence on time t, position x
and velocity v. The precessional motion of J around the
field axis is taken care of by adding a corresponding flow
term to the left hand side of the transport equation. For
the orientation dependence of the collision cross-section
a model similar to that used by Zernike and van Lier is
introduced. It consists of approximating the (in general
unknown) collision cross-section by a product of the corres
ponding cross-section for monatomic gases and a second fac
tor which contains a term depending upon the angles between
the rotational angular momenta and the relative velocity of
the collision partners. It is further assumed that during
collisions the angular momenta do not change in both magni
tude and direction. The shape of the saturation curve (B/n-
dependence) is in reasonable agreement with experiment, as
is the case for the ratio (AA)^/(AA)_l at saturation. Here H
and X  stand for parallel and perpendicular to the temper
ature gradient respectively.

It will be clear from Gorter*s explanation of the
Senftleben effect that any phenomenon which disturbs the
internal state of the molecules between collisions may lead
to a change in the transport coefficients of polyatomic gas
es. For the case of homogeneous magnetic and electric fields
a coupling between magnetic or electric dipole moment and
the other internal state variables such as the rotational
angular momentum N, is needed (N is replaced by J in the
further discussion whenever it is the only angular momentum
connected to the internal state of the molecule).

Moreover the molecules must be non-spherical. That is,
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collision cross-sections (in quantum mechanical treatments;
the transition operator) must depend on the internal states
of the colliding molecules. In the absence of an external
field this can give rise to an anisotropy in the dependence
of f (in quantum treatments; the one particle density ma
trix) on N. The action of the field leads to a change in
the initial condition for each binary collision that takes
place and as a consequence the velocity distribution and
hence the transport coefficients are altered.

The first to realize that field effects are not res
tricted to paramagnetic gases, were Beenakker and coworkers
who showed in 1962 that the viscosity of N2 decreases upon
application of a magnetic field 8\  Due to its rotation,
nitrogen, as does every other polyatomic molecule, posses
ses a small magnetic moment coupled to the rotational angu
lar momentum N. As this magnetic moment is in the order of
a nuclear magneton instead of a Bohr magneton, as is the
case for oxygen, one needs a roughly a thousand times larger
B/n-ratio to achieve the same averaging efficiency. One might
raise the question if nuclear spins, which carry a magnetic
moment of the same magnitude as that due to rotation, can
play a role. This is usually not the case as the coupling
between spin I and rotational angular momentum N is weak and
the dependence of the interaction potential on I negligible.
Thus at any appreciable field I and N precess independently
around B and one may neglect I alltogether in a description
of the Senftleben-Beenakker effect.

Following the historical development somewhat further
the work of Gorelik and Sinitsyn must be mentioned next.
In a paper published in 1964 these authors reported the



existence of a field effect on the heat conductivity of9)
. This was followed a year later by a second paper

where results for H2 and D- were given 1 .
During the last four years progress has been rapid.

Nowadays a large number of data on viscosity and heat con
ductivity exist for a number of gases (A review of both
experiment and theory has been given recently by Beenakker

In 1965 Korving et al. published results concer
ning the influence of a magnetic field on gases made up
from spherical top molecules (CH^, CF^), thus showing that
field effects are not restricted to linear molecules.

ION
In the same year a paper by Senftleben came out, where
results were given about the influence of an electric field
on the heat conductivity of gases consisting of polar sym
metrical top molecules. In one case (CH3CN) the field effect
showed a positive sign. This was confirmed later by de

14)Groot et al. , who also found a striking dependence of
the effect on the dipole moment y , its sign being nega
tive for small y ̂  ̂but becoming positive for large elec
tric dipole moment.

An interesting behaviour is also shown by the hydrogen
isotopic molecules H2, D- and HD in a magnetic field

. Not only is the field induced change in viscosity and
heat conductivity of H2 and D2 much smaller than for other
molecules, due to their nearly spherical shape, but also
the viscosity change of the three hydrogen isotopes satura
tes at about ten times lower B/n-values than other diamag
netic gases (N , CO). This turned out to be a very valuable
piece of information in connection with the choice of trial



functions in series expansions of the molecular distribut
ion function in theoretical considerations.

Another important development was the discovery of
field effects, odd in the direction of B (transverse effects)
17, 18|, 19)^ fact such phenomena were long known for el
ectric conductivity (Hall-effect) and heat conductivity
(Righi-Leduc-effect) in electrically conducting media. Also
theoretical expressions already existed for transverse vis
cous flow in ionized gases ^. In 1955, Hooyman, Mazur and
de Groot 20  ̂ showed, in a phenomenological treatment, that
in a magnetic field the viscosity tensor, relating the sym
metric part of the stream velocity gradient tensor to the
symmetric part of the pressure tensor, contains seven inde
pendent coefficients. Five of these, rij to determine
the shear viscosity tensor, rij, ^  an(* are even* ^4 ant*
n odd in B. The bulk viscosity coefficient ny turns out to
be even in B. Moreover there exists a cross coefficient c,
even in B, which links shear and bulk viscosity. In the ab
sence of a field n5 and 5 vanish. A similar classifica
tion can also be given for the heat conductivity tensor
X(B) is determined by three coefficients of which two are
even and one is odd in B. The latter determines the heat
flow perpendicular to both B and temperature gradient
(transverse heat flow) whereas the two other coefficients
are responsible for the heat flow in the plane of B and
temperature gradient (longitudinal heat flow). As far as
gases with internal degrees of freedom are concerned, trans
verse effects were first described theoretically by Wald-
mann and Kupatt 22  ̂ in an investigation about the diffusion
of spin i particles in a magnetic field. Theoretical expres
sions for transverse Senftleben-Beenakker-effects in heat
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conductivity and viscosity were obtained some years later,
• o o \independently by Kagan and Maksimov ' and Knaap anH Been

17akker 1 . It was shown that the transverse effect ex—
hibits an absorptive behaviour

-A \(natural units)

— -► % (natur*l units)

(see figure 1), the maximum

Figure I.
The magnetic field dependence of the
heat conductivity coefficients (AA)J_,
(AA)^ and (AA)tr ■ A as given by
equation (7) in the main text. B/n is
given in units 0 and AA in units C
(natural units).

in its B/n-curve occurring at roughly the same B/n-value
for which a point of inflection is found on the curves for
the longitudinal effects. The sign of the transverse effect
may be either positive or negative, depending on the sign
of the Lande g-factor.

Next some attention will be paid to theoretical devel
opments. On these the paper by Kagan and Maksimov has
had a profound influence. In this paper, and also in a

25)second one by Kagan and Afanas*ev , it was stressed that
the molecular distribution function not only depends on the
velocity but also on the angular momentum of the rotating
molecules. Thus in series expansions both variables should
be present. A convenient way to take both into account is
an expansion into products of irreducible tensors construc
ted from the reduced peculiar velocity W and the angular
momentum ̂  respectively. (Sometimes J is replaced by the
reduced quantity M ■ (2 I kT)  ̂J, I being the moment of
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inertia of a linear molecule.)
According to the Chapman-Enskog approach the molecular

diatribution function is (to first order in the macroscopic
gradients) given by

f-f(0).{1-A(W,J,B).3x*n T-2 B(W, J,B):3X ̂ } (3)

Here f i s  the local equilibrium distribution function, T
the absolute temperature and the stream velocity. A and
B obey the appropriate ,,Chapman“En8kog,,“equations, which
can be written formally as

2 a  £7^°) + J - J9 (4)

where Y is a given function of W2, and W. J is the
linearized collision operator, J  ̂ a streaming operator
connected to angular momentum flow (precession of around
B) and $ stands for A and B respectively. The expansion for
$ now reads

Piq
where the symbol [ ](p) indicates the pth rank irreducible
tensor (in Cartesian representation) constructed from the
vector within the brackets•

After further expansion into suitable polynomials in
and J2 (5) is introduced into (4). Multiplication of

left and right hand side of (4) with f^ and each of the
expansion functions and integration leads to an infinite
set of equations for the expansion coefficients, which are
now tensors depending on B. Truncation of the series expan
sion leads to a finite set of equations from which the re-
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maining expansion coefficients can be determined. As the
transport coefficients are given by integrals of .$

=3 S

over W and J, they are finally obtained in terms of these
coefficients. Kagan and Maksimov  ̂ thus obtained acceptable
results for heat conductivity by adding W [ j ] ^  to the
expansion functions usually included in similar calculations
for field free transport coefficients and which all have
q-0. Due to the special collision model used by these authors
A and B are even in and hence no functions with odd q en
ter into the series expansions.

22)Waldmann and Kupatt , in their note on diffusion of
spin | particles, considered the expansion function W S
(S is the spin), which is the only possible function with
q+0 as no higher spin tensors can occur for spin J. Here a
positive field effect was found. This is due to the general
rule, connected with the time reversal invariance properties
of j , that inclusion of functions even in in the expan
sions for A and IJ gives rise to an increase of the field
free transport coefficients, whereas functions odd in J lead
to a decrease. As the effect of the field is a partial des
truction of the contribution of the functions [ w ] ^  [ j ] ^
with q+0 it follows that inclusion of functions with even q
leads to a decrease of the longitudinal coefficients where
as functions with odd q give an increase. For a further dis
cussion of these matters, see ref. 26.

Early in 1966 an unpublished report by the author app
eared in which some general aspects of transport pheno
mena of mixtures of diatomic gases in a magnetic field were
discussed. Using the space reflection and time reversal in
variance properties of the binary collision dynamics (no
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model assumptions for the collision operator were made) the
results for the viscosity tensor given by Hooyman, Mazur
apd de Groot 28  ̂ are reproduced for this special case. Also
an Onsager relation is established, connecting thermal dif
fusion and diffusion thermo coefficients in a magnetic field.
In addition it is shown that for diatomic molecules no
cross effects between viscous flow and heat flow can occur
in a magnetic field and it is stated that such effects can
be expected only for optically active molecules. (In the
presence of electric fields the situation is different. Here
cross effects may occur but transverse effects are restric
ted to optical isomers.)

Also in 1966 McCourt 28 ,̂ in a thesis, presented expli
cit formulae for the longitudinal part of the heat conduc
tivity tensor of diamagnetic diatomic gases. Contrary to the
work done so far {with the exception of ref. 22) the inter
nal degrees of freedom are treated quantum mechanically, the
underlying transport equation being the Waldraann-Snider-
equation 29). Here no special collision model is employed
and the choice of expansion functions corresponds with that
of KM 1. Thus angular momentum anisotropy is introduced via
y [j]^2\  where now J is a quantum mechanical operator.

It should be stressed that for diamagnetic diatomic
gases quantum mechanical and classical treatments lead to
comparable results. Only the collision integrals entering
into the final formulae are defined in a different way.
Quantum mechanical treatments are preferable in those cases
where typical quantum effects play a role; hydrogen at low
temperatures and paramagmetic molecules.

At the end of 1966 a second paper by Kagan and Maksi-
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tnov appeared. Instead of an expansion of A and B this
work made an expansion of «7  ̂ ■ (*7^ ♦ For this
purpose the collision operator (no model assumptions are
made) is divided into two parts, «7̂ e' and the first
connected with elastic collisions and the second containing
all polyatomic features. The eigenfunctions of the first
part are approximated by products of Maxwellian eigenfunct
ions and suitable angular momentum dependent functions. The
latter now contain irreducible tensors in spherical repre
sentation. This has the advantage of diagonalizing «7'̂  .
The expansion of «7 is based upon the assumption

/ p) «  /<•>■ (6)
Unfortunately this assumption is incorrect. Sound absorption
and Debije relaxation in polyatomic gases are both determined
by relaxation times connected to diagonal matrix elements of
«7 and it follows from experiment that for many polyatomic
gases these diagonal matrix elements can be as large as the
diagonal matrix elements of *7̂ e  ̂ (Which determine X and n for
noble gases). Especially the results obtained by Kagan and
Maksimov for the bulk viscosity in a magnetic field are un
acceptable. This is due to the circumstance that bulk vis
cosity in dilute gases is of a truly polyatomic nature. It
is, however, easy to modify the splitting of j ' ° ' in such a
way that the difficulties mentioned above can be overcome.
This is discussed in chapter 5 of this thesis, where the im-
proved perturbation expansion of «7 is used to good advan
tage in an investigation concerning the analytic continuat
ion m  the complex B/n plane of the theoretical expressions
for A and n.
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Vflgnn and Maksimov did obtain expressions for trans
verse effects. The results for viscosity are in agreement
with ref. 20$ seven independent viscosity coefficients are
found if which two are odd in B_.

In the beginning of 1967 a paper by Knaap and Beenak
ker appeared in which the magnetic field influence on
the heat conductivity and viscosity of gases consisting of
linear molecules was treated on the basis of the collision
model) introduced by Kagan and Maksimov in their earlier
paper Both para- and diamagnetic gases were considered.
(The original treatment by Kagan and Maksimov was for para
magnetic gases only. No experimental results for other
gases were available at that date.) Due to some approxima
tions in the treatment of the spin-rotation coupling Kagan
and Maksimov did not find a transverse effect for paramag
netic gases. This was improved upon by Knaap and Beenakker,
who showed that in oxygen transverse effects may exist, in
agreement with experiment ^  . Their expression for the
transverse viscosity coefficient n5 was Already published
a year earlier, together with the experimental results

The expression for the field dependence of the heat
conductivity of diamagnetic diatomic gases, as obtained by
various authors ^   ̂» reads:

Here is U the second rank unit tensor, e the third rank Levi-

AX(B)- -  C{
"  1+0 l+(20) 1+0 l+(20)

] e. b }J ■ —
l+(20)

(7)
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Civita pseudo tensor and b a unit vector along B. C is a
positive constant, determined from matrix elements of .

The dependence on the absolute value of j}, or precession
frequency w enters via 0, which can be written as

0 - up.T (8)

where the relaxation time" t is inversely proportional to
the diagonal matrix element of with respect to w[ j]^2\
From (7) it follows that in saturation (0 ■ * »)•

(9)

A characteristic feature of (7) is the occurrence of
single and double frequencies 0 and 20. It was first thought

that this was related to the special collision model em
ployed . In model independent calculations 30)^ however,
the same 0-dependence is found and thus there must be a more
general reason behind this. From the expressions given by
Kagan and Maksimov in their second paper 23  ̂ one gets the
impression that in general an expansion function [Wj
[j[] ̂  leads to a range of frequencies 0, 20 ..., q0. A si-
milar result is found for ionized gases, where only tensors
[w] occur . For heat conductivity p-1 and only a single
frequency is present, whereas for viscosity p-2 and single
and double frequency are found 2'.

As it is difficult to compare Kagan and Maksimov's
23)

method with the usual expansion method of A and B the
author reconsidered the derivation of (7) 3 . In earlier

. 24, 28, 30)
woric some approximations were made which are
now avoided. It turns out, somewhat surprisingly, that in
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the improved treatment the 0 - 2 0  property is lost complet
ely and (7) is replaced by a more complicated expression.
Also (9) no longer holds. This work is presented in chapter
2, Here it is pointed out under which conditions (7) can be
obtained. In fact its validity is related to a weak coupling
between the directions ofl W and via J ^. For rough sphe
rical molecules this coupling is rather strong and signifi—

32)cant deviations from (7) are found , For a further dis
cussion see also ref. 26,

In chapter 2 also a brief discussion is given of the
various collision integrals (matrix elements of J^° ) that
determine C and x. An attempt is made to derive the values
of some of these from the experimental data.

For viscosity the quantity £ at the left in (4) is
proportional to the second rank irreducible tensor [w]
Thus * is also ieoond rank irreducible. Also, due to the
space reflection invariance properties of J, £ must be even
in W. In treatments not dealing with field effects £ is
usually approximated by [w] 2 . In order to obtain any field
effect at all some jJ dependent functions must be added. The
simplest of these are [ £ ƒ  ̂ , [ w ] ^  and [ w /   ̂[jll
[W ](2) J being odd in J leads to a positive contribution to
the field effect on the longitudinal coefficients.

As the experimentally observed field effect is negative,
theoretical attention has been centered upon [j] and
[w](2)s[J](2), Knaap and Beenakker 2^  have considered
[W ]<2> [j]^2\  As they used the elastic Kagan-Maksimov col
lision model, they were not able to treat [̂ j] , since
matrix elements of containing this function vanish.
This is different for[w](2) [ j](2) as W changes during
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collision. As in the case of heat conductivity the final
results again exhibit the 0 - 2 0  property, although the re
laxation time t - 0/w is now different. Still it is of theP
same order of magnitude and hence one is not able to ex
plain the early saturation found for the hydrogen isotopic
molecules. It was already suggested in the paper containing
the experimental results for the latter (see also ref. 33)
that 0 should contain a relaxation time corresponding to
inelastic collisions (in particular; reorienting). As
these are less frequent for hydrogen than for other molec
ules this would explain the experimental results. For this
reason [ _j]' is of importance as this quantity changes
during inelastic collisions but not during elastic ones.
The diagonal matrix element of J with respect to [ j ] ^
then gives the required (inelastic) relaxation time t. Ex
pressions for rj based on this function were obtained inde
pendently by H.F.P. Knaap and the author in the later half
of 1966.

34)
Knaap and coworkers compared r with data drawn

from nuclear magnetic resonance experiments and obtained a
satisfactory agreement. In a later treatment, McCourt and
Snider considered both [ j ] ^  a n d [ w ] ^  [ j ] ^ .  The
latter is of importance when the bulk viscosity n and the

. . r n(2) Vcross coefficient £ are considered, since [ J]v * does not
give a contribution to these quantities and the shear vis
cosity coefficient n,• Recent calculations for rough sphe-

36) *rical molecules have shown that for this model the re
lative importance of [ j]^2\  [w J and [ W ] ^  [ j ] ^  is
given by the ratio -100: +4 : -1,

In chapter 3 a calculation on the basis of the expan—



sion functions [ w ] ^  and [ j ] ^  is given of n for mixtures
of diatomic diamagnetic gases. The results are specialized
further to a binary mixture of a diatomic diamagnetic and a
noble gas.

Measurements of viscosity in mixtures are much more
interesting than those for heat conductivity due to the
following two reasons:
a, The number of expansion functions required for a satis

factory description of the Senftleben-Beenakker effect
is always one less for viscosity than for heat conducti
vity. Hence the expression obtained for n is somewhat
simpler than that for X (it contains fewer different col
lision integrals).

b. The parameter for which the longitudinal effects reach
half their saturation value and 0 for which the trans-TTlflX
verse ones reach their maximum are given by the diagonal
matrix elements (  ̂ W [ ant* [.£] *
[ j]^2') for heat conductivity and shear viscosity respec
tively.
As is pointed out more fully in chapter 2 the heat con
ductivity expression is connected with collisional reo
rientation of both W and J whereas the second one is
linked with reorientation of only. Thus viscosity gives
more direct information about inelastic effects than heat
conductivity. In mixtures measurements of 0. and 0max as
a function of concentration lead to separate information
about reorientation of J due to molecule-molecule and
molecule-atom collisions.

Chapters 4 and 5 deal with the analytic continuation for
complex B/n of the theoretical expressions for heat conduc-
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tivity and shear viscosity. In chapter 4 ionized gases are
considered and in chapter 5 polyatomic neutral gases. As can
be seen from (7) (see also figure 1) the longitudinal coef
ficients show a dispersion and the transverse ones an ab
sorption type behaviour as a function of B/n. This leads to
the question as to wether the two are linked by a dispersion
relation. By introducing spherical coordinates one can write
some of the transport coefficients as real and imaginary
parts of a complex function of the real parameter B/n ,
For instance 2ri2 ~ **1 an<* ”^4 and also n~ and -n- form
such pairs.
The problem is now to find an analytic continuation of these
complex functions. In order to solve this problem it is con
venient to start from equation (4). It has the formal solu
tion:

* - I - J~X 2 <10)

Or, in spherical coordinates:

* ; - </0) ♦ / ' V ^  - j"  ^  o n

The main feature of the work presented in chapters 4 and 5
is the reduction of J  ̂ to an expression containing resol
vents of the type

(/ ° + ioB/n) * ; a real (12)

Due to the dissipative nature of along with
(spectrum in the left complex half plane) an analytic ex
tension for complex B/n in one half plane is always possible.
For ionized gases the reduction to (12) is readily obtained
from the rotational invariance of , The situation is
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not so simple for neutral polyatomic gases, due to the cir
cumstance that at least two vector variables are present
(W, J).
If in an ionized gas mixture charged particles of both
signs are present the expressions for the transport coeffi
cients contain resolvents with positive and negative a’s
and an analytic extension in one half plane is not possible.
This also happens for polyatomic neutral gases.
The best one can do in these cases is to split the trans
port coefficients into two parts, ,and L , each allo
wing a dispersion relation, but of contrary sign. Thus an
overall dispersion only exists if one of the pair L ,
L vanishes.
This is the case for electrons in an equilibrium background
(Lorentz gas). Here transport is due only to electrons and
a dispersion relation indeed holds. The same is true for
transport coefficients of monatomic gases measured in rota
ting systems. Here the Coriolis force acts in precisely the
same way as the Lorentz force in a magnetic field but no
sign differences in the a’s arise in this case.
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THE INFLUENCE OF ANGULAR MOMENTUM
ANISOTROPY ON THE HEAT CONDUCTIVITY OF

DILUTE DIATOMIC GASES
by A. TIP

FOM Instituut voor Atoom- en Molecuulfysica *), Amsterdam, Nederland

Synopsis
The influence of angular momentum anisotropy on the heat conductivity of a dilute

gas consisting of diamagnetic linear molecules is investigated. By the use of a new
technique to solve the expansion coefficients of the molecular distribution function it
was possible to obtain a solution for this function which does not contain any further
approximations than those implied by the choice of trial functions for this distribution
function. Secondly it is clearly exhibited how angular momentum reorientation cross
sections enter into the formalism when an external magnetic field is applied (Senftleben-
Beenakker effect). In this way it was possible to obtain the value of one of these cross
sections for CO and N2 from the experimental results on this effect. Moreover it is
pointed out how all cross sections entering into the formulae for the heat conductivity
and viscosity of H2 and D2 can be obtained separately from the combined experimental
results on both transport coefficients.

I. Introduction. About the influence of magnetic fields on the transport
properties of dilute polyatomic gases, the Senftleben-Beenakker effect, a
rapidly growing body of experimental results exists1)2)6). Theoretical
computations based on a simple collision model proposed by K agan and
M aksimo v (K. M.)4)s) have been made, but the obtained results for viscosity,
heat conductivity and binary diffusion are not in mutual agreement6)’).
As a matter of fact the model contains an adjustable parameter describing the
nonsphericity of the collision cross sections and this parameter has to be
chosen different for the different transport phenomena. It is also possible
to proceed without making model assumptions. One then obtains results
that contain several kinetic cross sections that cannot be numerically
evaluated without a detailed knowledge of the complicated collision mecha
nism of polyatomic molecules. Such a program was recently completed b\
M cCourt and S n id e r6)9) for the case of heat conductivity and viscosity
in a semi-quantum treatment. A classical line of approach was followed by
K agan and M aksim ov in a second paper10). Here they separated the

») formerly: FOM-Laboratorium voor Massascheiding.
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collision operator into a monatomic part and a second part which contained
the essentially polyatomic features. Assuming matrix elements formed from
the second part to be small with respect to the first they employed a pertur
bation technique to obtain expressions for the field influence on heat con
ductivity and viscosity. This assumption will hold for off-diagonal matrix
elements but not for the diagonal ones. The latter contain angular momentum
reorientation cross sections that are in the same order of magnitude as the
transport cross sections with the exception of hydrogen, deuterium and
possibly HD. In the present paper the classical case is considered once
more but no smallness assumptions are made except those implied by
the choice of trial functions in the expansion of the molecular distribution
function. By the use of a new technique to derive the expansion coefficients
in the distribution function it was possible to show which assumptions
correspond to the occurrence of ‘single and double frequencies’ in the ex
pression for the saturation curve. Moreover, it is clearly exhibited how
angular momentum reorientation enters into the formalism.

II. Equations governing the heat conductivity in a magnetic field. By means
of the Chapman-Enskog method it is possible to generate a solution for the
heat conductivity problem. For the heat conductivity tensor A, defined by

q =  —A.dmT  (2.1)

where q is the heat flux and T  the absolute temperature in degrees Kelvin
one obtains for a diamagnetic gas, consisting of linear molecules

A =  (2k2T/m)((W2 + M 2 -  I) W, A). (2.2)
Here the inner product is defined as

(tf>, V) = lF W 0'F do  (2.3)
where '

F<o> =  (4k*)-1 exp -  {W2 +  M2), do =  d W - ^ L  dv (2.4)

W — (ml2kT)l V and M =  (2IkT)~*J are reduced quantities derived from
the peculiar velocity V and angular momentum J, y> is the angle specifying
the position of the molecular axis in the plane perpendicular to J, m is
the mass, I  the moment of inertia of the molecules considered and k is
Boltzmann’s constant.
A(W, M, y>, B) is the solution of the equation

( | — W2 — M 2) W =  J A  = J(0) A — «-! (M. 8m +  y,.dv) A (2.5)
where n is the gas density and M  is given by

M =  yM  X B (2 .6)
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y being the gyromagnetic ratio. rj> can also be expressed in terms of xp and M
but this will not be used here.

For the linearized collision operator 7<°> the expression used by T axm an11)
is assumed to hold (see also ref. 12 appendix B).

Hence:
JW A  =  ƒ F f^A "  +  A\ — A — Ai) gb db dc d<n (2.7)

g, b and e have their usual meaning as relative velocity, impact parameter
and azimuthal angle about the direction of the initial relative velocity. The
subscript 1 refers to the second molecule taking part in the collision. Double
primed quantities refer to the initial state of the so called corresponding
collision’ which restores molecules in the unprimed state, whereas single
primes will be used to refer to the final state in ‘direct collisions’ which
remove molecules from the unprimed state. As is well known double primes
can be replaced by single ones when inverse collisions exist, that is when
J(0) is self-adjoint. This is the case for monatomic gases but generally not
for polyatomic ones. To obtain unique solutions (2.4) has to be supplemented
by orthogonalizing A to the nullity of J. Hence:

(A, <P) =  0, 0e{l ,W .W Z + M*}. (2-8)

The set of equations (2.5), (2.8) applies as long as magnetization effects can
be neglected, but can easily be adapted to include these.

III. Trial functions for A. To obtain approximate solutions of (2.5) A
is usually expanded into some set of orthogonal functions, which series is
then truncated after a few terms. For monatomic gases the eigenfunctions
of the Maxwellian collision operator are very suitable for this purpose and
inclusion of only one or two terms in the series expansion is sufficient for
most purposes. For polyatomic gases, however, no exactly solvable collision
model is known and hence scries expansions are nearly always into products
of Maxwellian eigenfunctions and some convenient orthogonal set of internal
state functions. In earlier papers11)13)14) these were nearly always restricted
to expansions into internal energv variables. A few years ago, however, it
was pointed out by K agan and A f an as’e v (K .A.)15) that angular momentum
direction variables have to be taken into account as well; external gradients
not only create an anisotropy in velocity space but also in angular momentum
space as both are connected via the; collision mechanism. For the existence
of external field influences angular momentum anisotropy is paramount
for it is just this anisotropy that is attacked by the precession of angular
momentum in external fields. The situation is somewhat different from the
case of ionized gases in a magnetic field where the anisotropy in velocity
space is directly attacked by the Lorentz force. As the latter is a more direct
process the influence on the transport coefficients is much larger.
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The ideas of Kagan and Afanas’ev were worked out further by W aid -
m an  n 16) and D a h l e r  c.s.17) 18) 19) for gases consisting of rough spheres,
loaded spheres and spherocylinders. From these it becomes clear th a t a good
approximation to  A  can be obtained by means of the trial function originally
proposed by K .A .15) :

3
A =  £  A<®> <P<“> (3.1)

% —  1
where

#U> =  (f — W2) W, d><2> =  (1 — M2) W, 4»<3> == W'M°M  (3.2)

Here the o between the M ’s has its usual meaning (see for instance ref. 12).
Although the A W ’s may still depend on y> this can be neglected for the present
purpose4) 18), but not when the influence of an electric field is studied20).
When a magnetic field is present the A<a)’s are no longer scalars but instead
one now has (in component notation):

^ 4 *  =  A I M "  +  +  A 18L*£L  (3.3)
where

«E i. =  WtM lM n (3.4)

As $<3>, according to  (3.4), is no longer irreducible but the Kronecker-
product of irreducible representations of the rotationgroup of dimensions
one and two respectively it can be decomposed into three irreducible parts.
By doing so one obtains:

A t  =  £  A M w  (3.5)
a - 1

where 0 d ) t <Z><2> and 0 (3) are still given by (3.2) but in addition one now has:

0

W  =  (W X M)iMm
0  ( 3 -6 )

OÏÏ» = W'lMmJf,
Here again the notation of ref. 12 has been used, the combination of double
bar and 0 indicating irreducibility. Note th a t in (3.5) subscripts have been
dropped for brevity as will be done in the future when no confusion can
arise. All as used in (3.5) are m utually orthogonal, their norms are given
in appendix I. To define the coefficients A ^ m and uniquely they are
supposed to be irreducible in (I, m) and (Z, m, »), respectively. Substitution
nowr leads to the following expression for the heat conductivity tensor:

Xkl =  -{ 2 k 2Tlm)&A<" +  lAW ) (3.7)

IV. Equations for the AW-coefficients. By introducing (3.5) into (2.5) and
forming the inner products with each of the five <Z>(*)’s one obtains a  set of
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five equations from which the A W s  can be determined.

-d trW lt  +  tfv )  =  2  # w)]a
-f- —  £  (4-1)

n «

The definition of the Enskog brackets in the first term at the right hand side
is given in appendix II where a further evaluation in terms of kinetic
collision cross sections (generalized ^-integrals) is also given. In connection
with this it should be remarked that the matrix elements of ƒ  <°> with respect
to $(4> and as well as those formed from each of them with the other
<p(*)-functions vanish due to the rotational invariance of ƒ  <°> and the Wigner-
Eckart theorem. The inner products 0W) are given in appendix
I. Thus one is left with the result:

=  S  t * i A g  (4-2a)
a™ 1

a— 1

0 =  S  +  U lM elrmbm ~  U A k?mbm ^  ^
a—1

0 =  UiAjal +  ^A^bmAmirt +  ^A^einu^wAnmrs — I bw [A.2d)

0 =  ts sA & t +  ^C A ^ lfiw A w lm , rst +  f f lA ^ e m p w b w A lp n r s t  ■ (4-2«)
Here is , „ ..

tccfi =  [(#<*> +  & i ) -0W)1 (4'3>

where the dot in the Enskog bracket indicates contraction with respect to
the available indices, b is the unit vector in the magnetic field direction and

 ̂ The^d-tensors are isotropic tensors, which are irreducible in their first and
second sets of subscripts respectively, see appendix I.

A closer inspection of (4.2c) shows that A%1 enters only with one of the
last two indices saturated with b„. Hence it is not necessary to solve the
whole tensor A ^m from the equations (4.2) but only the saturated form

= Atflfim- Saturation of (4.2d) with bs now leads to.

0 =  *44A {£} +  lCAfi{dir +  \bibr) +  — ^.2d )

where A g  =  In the same way saturation of (4.2c) with bsbt leads

0 =  *55̂  +  Ü ^ A ^ S d m r  +  bmbr) +  ^ U ^ l r w b w  (4-2c')

From the resulting equations and A&  are readily eliminated, thus
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leaving equations (4.2a), (4.2b) and

0 =  S  Wj&{(5<44 -  *#*/<«•) dmr +  (V- +  V<44/<m) &mrJ>w +oc-1
+ # t 2lt55bmbr} +
+  (f +  C2̂ mr +  5*44&W6» +  (V +  ¥W < 85) (4.4)
to determine the remaining ,<4<*>’s.

From the equations (4.2) it is seen that for vanishing external field AW
and AW  vanish also. One now obtains

4<$> =  ,4 <*><>«; «e(l,2,3) (4.5)
where the 4̂<a>’s must be solved from

-  (W w  +  t fu )  =  E  tafA C>; 0*(1, 2, 3). (4.6)
X— 1

The Enskog brackets can be evaluated one step further by means of in
tegration with respect to the center of mass velocity. The results are given
appendix II. Introducing these into (4.6) one is left with the following set
of coupled equations:
-  ¥  =  {4<yy:<4yy> +  7 <y2Jy2>},4 <i> -5<y*Ay*>AW |+  4<M°M:dyy>^(3)
- |  =  -_ 5 W AW  +  (3<y2 jy*> +  4 <(M*- Mf) y .AM*'/')}AW |
-  <(M°M -  AT/Afi): yAM2y>AW
0 =  4 <M°M:Ayy> A W — 4<(M°M -  M \M i) : yJAf2y> ̂  (2)

+  {2<(Af°Af +  M^Mi) :AM°M> +  4<(M°M — M jM i): yd (M»M.y)>} d  <*>

(4.7)
For the definition of the collision integrals <FAG} see appendix II. The part
of the scheme in the left upper corner surrounded by the dashed line corre
sponds to the result obtained by T ax m an 11). Both experiment^ 2) 3) and
model calculations on loaded spheres and spherocylinders18)19) show that
the influence of angular momentum anisotropy on transport coefficients is
small. Hence A <3> is only weakly coupled to A W and A W which condition is
satisfied when ̂ 3  and f23 are small as compared to the diagonal elements ha- In
connection with this it should be remarked that h i  is of the order of h i  and
*22- In the totally elastic limit it reduces to 16/9i2(1’1>, fi(1,1) being one of the
familiar monatomic collision integrals.

AW and AW  can be solved from (4.6) and substituted into (3.7) thus
giving the heat conductivity tensor for vanishing external field:

h i =  Mkl, A =  - — I —
f22 f23

+  i
hi h i

—  «
h i h i

tnD (  1 6 f23 ^33 f l 3  ^ 3 3
4 h i h i
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where D =  det(M - Note that (4-8) deviates from the Taxman result only
in quadratic or higher order terms in f13 and <23-

V. The heat conductivity tensor in the presence of a magnetic field. To obtain
the heat conductivity tensor for the case of nonvanishing £ it is convenient
to subtract the field free solution from (4.2a, b) and (4.4). Writing

S  tf«*3Tj£i{(5<44 — ^ £ 2/<55) <V +  (tt +  ¥  *W*55) Cemrubw +

+  y (J&{— (f +  ¥  *W*m) £2<5«ir +  Sh&EmrJ>u> +  ( ¥  +  TT *W*») Z2bmbr}
=  ^1(3){(| +  tiilhs) dkr — StuCekrwbw — (^  +  ir  *W<w) £2&*M (5.2)
From the first two equations Yd) and Y<2> can be solved in terms of Y<3).
Introducing this into the third equation one is left with a closed equation
for Y<3>:

which differs from f33 only in terms of second order in <13 and <23- Yg’ is easily
solved from (5.3) by noting that the inverse of

with « =  a/(a2 +  62) ; p =  -&/(«2 +  &2), « +  Y =  (« +  c) 1

A g  =  AM dtr +  Y£> (5.1)
one obtains:

S W Y £ ) =  0, M l, 2)

14 £2
Y < «  *33 « 4 4 ) - (

28 f44
£2 bmr +

9 f55

+  M ~ 6 ~ + “9 ' ' 5 rH
. /2 5  28 <44

-f- 5<44

28 <4414 <33

9 <555 <55

28 <4428 <44
bkr —  Sta&icrwbw 9 <559 <55

where

afiki bckim bm  - f -  cb ifil (5.5)

is given by
afiki  “ i“  fts klmbm yb kb l (5.6)

The result is:
Yg> =  [AWft33) Uki (5.7)
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where

Uti(x) =  %t44 [P(PQ -  1) *2 +  Q] *2

(PQ -  1)2*4 +  (P2 + Q2 +  2) *2 +  1
[(1 + P 2 ) * 2 +  1)*

■t>kl

+

(PQ -  1)2*4 +  (p2 _|_ Q2 +  2) *2 +  1

[P(PQ -  1) *2 +  Q]X2

T "  • e lclmt>i1

(PQ -  1)2*4 +  (P2 + Q2 +  2) *2 +  J ( |p  _|_ 0  _  JU) *2 _|_ f

Here is:

bkbi

(5.8)

(5.9)
P — f + “iT hiltu * = f£/<44
9  =  i  +  2 4̂4/^33

By inserting (5.7) into (5.2) one now obtains YU> and Y<2> which can be
substituted into (3.7) with the final result:

6/fe27'
A h i = h i  -  Mki = -------  (AID)* f /itw

where
111 h i I
h  2 h i £
fl3 h i 0

(5.10)

(5.11)

In the limit * -*■ oo Uki becomes equal to

U k l ( 0 0 )  =  p 4 4

P Q -  l
<5/ti +

L ^ - i  f  p  +  Q - %
bkbi

(5.12)
In this limit the ratio (AX)//j(AX) where // and _L refer to magnetic
field direction parallel and perpendicular to daT  respectively, becomes

m , l
(AX)± P($P + Q - W (5.13)

VI. Some special cases, a. An approximation leading to important
simplifications in Uki(x) will be discussed first.

The coefficients t3S, t44 and i55 all correspond to contracted forms of the
matrix element (/«»><J>W, where is defined by (3 4) In fact one
has:

~  U iO)0 u L .  * % )  =  t ^ 33A 'k imA gpqr

+  +  ekmsbu)(dsudtv +  bsVdtu)(epgudrv -f eprr<5fflt)
“H i^ S s A k lm , pgr- (6.1)
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If the interaction between W  and M  via the collision mechanism becomes
vanishingly small then (6.1) becomes proportional to  <5*pdJm>gr (see also ref.
8). Thus the following approximation seems reasonable for the case of
weak coupling between W  and M :

— (J '“’C .  ** TgLsrftpA im, qr (6-2)

which is exact for the contracted quantity  ®vi»■) 5=1 C )
Comparison of (6.1) and (6.2) shows th a t (6.2) amounts to  the approximation

h i  »  f*33 , *55 »  |* 3 3  f i . 2 )

(6.3) is indeed exactly fulfilled in the totally elastic limit bu t it is im portant
to  note th a t it  also holds for the contributions of the reorientation cross
section <(M°M +  M®Mi): AM0My to  <33, *44 and <55 in the general inelastic
case. Hence this cross section m ay be arbitrarily large without invalidating
(6.2) and (6.3). '

Introducing (6.3) into (5.9) and (5.10) and replacing <33 by t33 one obtains
the well-known result4)8) :

Uuiy) A *33
—3y2(3 +  4y2) ,

(l +  y2)G +  4y2) w

where

(8y2 +  5) y y2(7 +  4y2)
-  ( 1 + y a) ( 1 +  ^ i j -  Sklmbm +  (1 +  y2)(l' +  4y2)

y =  §C/*33

(6.4)

(6.5)

Thus it  is seen th a t the occurrence of the ‘single and double frequencies y
and 2y is closely connected with the validity of the ‘diagonal approximation

2)

6. In  their first paper4) Kagan and Maksimov used the following model
to  obtain numerical results:

<FAG> *  <{1 +  fJu(M°M/M2-f- M?Mi/M2) :(y°y/y2 +  y '9y'ly*’)} FAG>0 (6.6)
M' — M, M'i =  M i. (6-7)

Here u is an adjustable param eter, describing the nonsphericity of the cross
section and the subscript 0 in < >0 indicates tha t this quantity  must be
computed in the elastic limit. One thus obtains:

*n «  4<yy:dyy>o =  4fi(2-S) *12 =  *is =  0

<22 ~  4<y.zly>o =  4£<1’1) *23 « |#»(|Ott*1> ~  ■0<2,1)) (6-8)

*33 »  ^ < y .^ y > o  =  ^ (1,1)
This can be looked upon as a first approximation beyond the totally elastic
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result. It can be generalized somewhat to include energetically inelastic
collisions. For this purpose one assumes instead of (6.7):

M'lM' = MjM,  MilMi = Mi/Mi. (6.9)

In this case <i2 and <13 are no longer vanishing but one now has:
t i2 <=» —5<y2zly2>

(6. 10)
*i3 ^  ~rsi“<y2̂ y2>

whereas an additional contribution to t33 arises as well.

VII. Discussion. As the saturation curve given by (6.4) is in fair agreement
with experiment the approximation (6.2) may indeed be assumed to hold.
Hence the only collision integral entering into the description of the satu
ration curve is <33 which shall be written as

*33 =  Oa +  <r&; oa — 2<(M°Af 4- M^Mij-.AMOMy

ob =  4<(M°A# -  M®Mi):yd(Af°M.y)> (7.1)
in the following.

It is well known that angular momentum reorientation cross sections can
be quite large for polyatomic molecules21) and therefore one is not allowed
to replace f33 by its elastic limit. It was found by K orv ing6) that agreement
with experiment can be obtained for diamagnetic gases by using the
parameter [Hlp)l(H/p)i for the description of the saturation curve. Here H
is the magnetic field strength and p the pressure. The quantity (H/p), refers
to that field strength over pressure ratio for which half of the saturation value
is reached. This procedure amounts to an elimination of £33 and hence a good
agreement may be expected. K or ving then compared the experimentally
obtained value of (H/p)^ (and hence *33) with the expression obtained in the
elastic limit. He found that for N2 and CO the elastic theoretical result was
about half the experimental one. Comparison of the somewhat unreliable low
density results obtained by G orelik et alii3) for H2 and D2 showed that in
this case t33 equals its elastic limit. This should be so, for H2 and D2 are
nearly spherically symmetric molecules and angular momentum reorientation
during collisions should be rare as compared to other polyatomic gases. In
connection with this accurate heat conductivity measurements of H2) D2
and HD should be of great value. From (6.5) it follows that

(fj)«l/Cj =  fob) el 1(0 a +  Ob) (7*2)
where the subscript el refers to the elastic limit. From Korving’s results6)
it follows that (C4)«*/C* equals 0.63 for N2 and 0.51 for CO.

Assuming ab to be equal to its elastic value one then finds oa/ob 0.6
for N2 and 0.95 for CO. Hence the reorientation cross sections are of the
same order of magnitude as the transport ones. The somewhat larger value
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for CO may be connected with the asymmetric character of this molecule.
I t should be noted, however, that the assumption Ob (Ob)ei may be wrong.

The case of viscosity has not been treated here but nevertheless a number
of results can already be drawn from simple considerations.

For rough spheres Condiff et alii11) found that in this case the distri
bution function must be approximated by M°M and M°MW°W  in addition
to the monatomic trial function W°W. The influence of M°M on the magni
tude of the field free viscosity coefficient is about two times as large as that
of W°WM°M. However, in the totally elastic limit AM°M  vanishes whereas
AW°WM°M  does not. Hence it is not clear if M°M  will give the most
important contribution in cases less inelastic than rough spherical molecules.
This difficulty was recognized byM cC ourt and S n id er9), who, in a semi
quantum treatment, kept both trialfunctions in the expansion of the distri
bution function. They found that this does not complicate the final results
much. The viscosity change in a magnetic field now becomes a simple sum
of contributions from both trialfunctions, each containing a different satura
tion parameter £. Going over to the equivalent classical case the £-
parameter corresponding to the contribution from 0  is inversely proportional
to the diagonal element (0, / (O)0). Hence:

£i ~  [(M°M +  M®Mi) ~  (era)"1 (7.3)
( ,  ~  [(W°WM°M + W \W iM \M i): M°MW°W]~1 =

=  {|ffo -|- 2<y°y(M°M +  M?Mi) j AM°My°y> +
-I- zo<y(M°M -  M\Mi) i AM°Myy}~1 (7.4)

The last of these can be simplified somewhat further for, according to (7.2):

<y(M°M — MjMi) j AM°My> ™ 3<y.(M°M — M?Afi)•
.A(M°M.y)y =  fa». (7.5)

Thus one is left with:
£ 2  ~  (fffo -f- 4ab <ic)-1 (7-6)

where
ae =  2<y°y(M°M +  M?Mi) 1 AM°My°y>. (7.7)

which equals §£(2>2) in the elastic limit. Thus in this limit

£2 ~  (Ifi*’1*”  +  ^O'2’2’)-1 (7-8)
in agreement with the elastic treatment of K naap  and B een ak k er5). For
H2 and D2<t0 is small as compared to ab and ac and hence £ 1  will be much
larger than £2 at the same Hlp-value. This explains the early saturation
as compared to other gases for which aa is of the order of the normal transport
cross sections. For these gases both contributions may overlap and
hence a more careful analysis is necessary. This as well as a comparison of
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the off-diagonal cross sections entering in the expressions for heat conducti
vity, viscosity and binary diffusion will be discussed in a later paper. For the
case of H 2 and D2 viscosity measurements a t higher ////(-values may lead
to  information about the relative importance of the two angular momentum-
dependent trial functions. The off-diagonal cross section determining the
magnitude of the viscosity effect connected with M °M  is the same cross
section tha t enters into the heat conductivity result. Due to  this and the
circumstance th a t the modified Eucken approximation is valid in this case
it is now possible to  obtain the values of <13 and <23 separately when accurate
heat conductivity results become available. Moreover the study of the
tem perature dependence of the viscosity effect on H 2 and D 2 seems promising
for this leads immediately to the tem perature dependence of the simple cross
sections oa and <13.

In connection with the foregoing it is interesting to  note th a t an elastic
theory such as th a t of ref 5 breaks down first in cases where nearly all
molecular collisions are elastic.

As was mentioned already in the introduction Kagan and Maksimov
recently published a paper in which they divided the collision operator into
an elastic part and a second one tha t contained all polyatomic features.
Assuming the latter to be small compared with the first they now used a pertur
bation m ethod to  solve equation (2.5) and the equivalent equation for vis
cosity.

As will be clear from the preceding discussion this smallness as
sumption does not apply to  diagonal elements for it should amount to
neglection of a& as compared to oa and ac. The same criticism applies to ref.
20 where the same method was used. As this paper is concerned with polar
molecules ot> may be even larger here as reorientation collisions occur
frequently in polar gases21). A second draw back of the Kagan-Maksimov
m ethod is th a t the bulk viscosity cross section <y2dy2> being of truly
polyatomic nature is assumed to  be small of first order as compared to
the shear viscosity and heat conductivity cross sections. I t  is then found
that magnetic field influences are of first order smallness whereas they are of
second order smallness for shear viscosity and heat conductivity. This should be
compared with ref. 17 where the influence of angular momentum anisotropy
is found to be of minor importance for bulk viscosity whereas it is im portant
for shear viscosity and heat conductivity. I t  may be possible, however, tha t
the K.M. method can be changed in such a way th a t diagonal elements are
not approximated but th a t off-diagonal ones like /13 and / 23 in the present
investigation are assumed to be small compared to  diagonal ones.

An advantage of the spherical-harmonics expansion used by K.M. is tha t
it clearly shows how “single and double frequencies” are connected with
the w-value in the angular momentum spherical harmonics Y("(M/Af).

The fact tha t K.M. do find single and double frequencies for the case of



94 A. TIP

heat conductivity will be connected with an approximation of the type (7-2)
in their work.
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APPENDIX I

Straightforward computation leads to the following expressions for the
inner products used in the text:

(0W $>«>) =  |dw ( 0 $ ,  < > ) =  tVUlmn

0 > p > )  =  M h  (0%l, =  &Aklm,uvw
(<P<3\  <f>}3>) -  f )«

Here Aklmn and Aklm>uvw are isotropic tensors, defined by the fact that they
are symmetric and traceless in their first and second sets of indices respective
ly, their nonvanishing traces being given by Aklkl =  10 and Aklm klm =  42.

(Af x  #(») =  -(A f x B.dM0W, 0M)
(Af X B .d M0 ^ \  #<?>) =  \ekpwB w
(Af X B.dM0W,0™) =  - & B wAwvki
(Af X B . dM0 ki ,  ~  Y^Bw(ewkmAmipg +  ewimAmkPq)

(Af X B.8M0 (kl\  0^ .)  =  -fjB w A w ici,Pqr

(Af X B . dM0 $ m, 0 (£ L )  =  ^ B n{{£niqdmp +  Snmqdlp) &kr

— \ { eklpbmq +  Zkmpdlq) ^»r} A Pqr,uvw

APPENDIX II

The Enskog brackets are defined as
[0, ¥*] =  J F«»F(10><P(Ï/ — W) gb d& de d<r dcri

Hence
(ƒ<0)0, V) =  -[0 + 01, S']

where Liouville’s theorem has been used to change from double to single
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primes, cf. ref. 11. Special cases are:

L® k\tff”] =  $[$<“>.«*><«] d «  a, pe(\, 2, 3)

*  tl.m n

W BL  O  =  £[*<*>. <*»>] Aklm,npg
After integration over the center of mass velocity one obtains, writing tag =
— [(<£(«) +  0<a)).4Mrt];

fxi =  7 <y2d y 2> +  4<yy:dyy>

=  —5<y2dy2>

/is =  4<M°M:dyy>

2̂2 =  3<y2dy2> 4- 4<(Af2 — M\) y.A(M 2y)y

hz =  —4<(M°M — AfjMi) :yA(M2y)y

tzz =  2<(M°M 4- AfJMi):AM°My 4- 4<(M°M — MjMx):yd(M°M.y)>
f44 =  3<(Af°M 4- M®Mi):4M°Af> +

+  4<((y x M)°M  -  (y x Mi)°Mx) :d(y x Af)°M>
f55 =  6<M°M 4- 4-

4- 4<y(M°M -  M»Afi) :4M<>My> -§*44 _  |^33
Here A& = & — <p', y  is the reduced relative velocity — W'x) and

<FdG> =  (4kT/m)i [exp — (y2 4- Af2 4- Mf) F .dG ..

. . .  . . dM  dMx.y id id e d y  —  . - ^  dy.dyx

As the collision op>eraror _/(*) is not selfadjoint tag does not generally coincide
with tfia. However, the brackets used in this paper possess this symmetry
property. This is not trivial for it has to be proved from the space reflection
and time reversal invariance of the intermolecular mechanics.
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ON THE SENFTLEBEN-BEENAKKER EFFECT
IN MIXTURES

I. THE MAGNETIC FIELD DEPENDENCE OF THE SHEAR VISCOSITY
TENSOR IN MIXTURES OF DIAMAGNETIC GASES

by A. TIP
FOM-Instituut voor Atoom- en Molecuulfysica*), Amsterdam, Nederland.

Synopsis
The theory has been developed for the magnetic field dependence of the shear

viscosity tensor of a dilute gas mixture consisting of linear diamagnetic molecules
(Senftleben-Beenakker effect). For binary mixtures of diamagnetic and noble gases
explicit expressions have been derived, which show that these mixtures offer in
teresting possibilities for the measurement of angular momentum reorientation cross
sections for molecule-noble gas collisions.

I. Introduction. During the last few years a large number of both experi
mental and theoretical papers concerning the influence of a magnetic field
on the transport properties of dilute polyatomic gases, the Senftleben-
Beenakker effect, have appeared1)-*). For pure gases the theory has
reached a certain degree of maturity. One is now able to correlate the
experimental results for the viscosity and heat conductivity of gases con
sisting of linear molecules to kinetic cross sections (collision integrals),
which depend on the non-spherical part of the intermolecular potential*) ?) *).

For mixtures, however, the situation is different. Some heat conductivity
measurements in mixtures have been made in the thirties by S enftleben
and P ie tz n e r9). Also some experimental data on viscosity in mixtures
exist1*). Senftleben has tried to measure a field influence on binary dif
fusion11). It turned out, however, that such an effect must be much smaller
than that on the viscosity and heat conductivity. This has recently been
confirmed by V ugts e.a.12). On thermal diffusion too, no effect has been
found1*). Theoretical results on mixtures are scanty. Binary diffusion has
has been treated shortly by K agan and Maksimov*) and in some more
detail by the author14). Borman e.a.ls) considered the case of mixtures
of polar gases in electric fields. The elastic collision model that was used in
their publication makes their numerical results doubtful, however.

*) Formerly: FOM-Laboratorium voor Massascheiding.
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In the present paper the case of shear viscosity in mixtures of diamagnetic
gases consisting of linear molecules has been considered. Unlike heat con
ductivity the parameter that determines the position on the saturation curve
contains pure angular momentum reorientation cross sections only. Hence,
the influence of external fields on the viscosity coefficient in mixtures will
lead to important information about the non-spherical interaction between
different types of molecules. Especially if one of the components of a binary
mixture is a noble gas the theoretical expressions are not very complicated.
Experiments on mixtures consisting of molecules like HD or N2 and a series
of noble gases seem promising as they will lead to a useful addition to already
known data about atom-molecule interactions from other transport proper
ties.

II. Basic equations for shear viscosity in mixtures. For a dilute gas of poly
atomic molecules in the presence of a magnetic field B, the viscous part II
of the pressure tensor is related to the gradients of the stream velocity Vo
by7)18); ^

n = — 2(tj + Up.) : e,v0 — (*u + 2v)(0„ t>o). (2-1)

Here the double bar and small circle have their usual meaning17), U is the
second rank unit tensor. yj is the coefficient of shear viscosity, which is a
fourth rank tensor in the presence of an external field, k is the bulk viscosity
coefficient. The symmetric traceless second rank tensors p. and v are trans
port coefficients describing cross effects between shear and bulk viscosity.
They vanish for B =  0 and are connected by the Onsager relation

jit (B) =  v(—B). (2-2)

yj is symmetric and traceless in its front and back pair of indices, which
fact diminishes its number of independent components to five.

Expressions for the complete set of viscosity coefficients for a pure gas
have been obtained by M cCourt and S n id e r7), who based their calcula
tions on the semi-quantum Waldmann-Snider kinetic equation18).

In the present paper an expression for yj in mixtures will be derived in a
classical treatment. In mixtures of gases yj contains contributions from all
components. If fact one has

yj =  kT(W*W, B), (2.3)

where the inner product is defined as
(<p, y/) =  2  Xi(0, !P)<; {0, ?P)< =  ƒ den, (2.4)

i
with, for linear molecules,

F<«> =  (4ji*)- 1 exp — (Wj +  M \); d<n =  dW^dAfj/M^ dy<. (2.5)
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The subscript * refers to the Ith component of the mixture, nt is its number
density and =  «</», where n is the total number density, its concentration.
Wi =  (wi/2Ar)* Vi and Mi =  (2IikT)~h Jt are reduced quantities derived
from the peculiar velocity V( and angular momentum J(l whereas y>i is the
angle specifying the position of the molecular axis in the plane orthogonal
to is the mass, /< the moment of inertia of the ith component mole
cules, k is Boltzmann’s constant and T  the absolute temperature. The
symmetric and traceless tensor field B1(W"i , Mt, Wt, B) is the solution of the
"Chapman-Enskog” equation

—  2WfW{ =  (JB)i =  (J<0)B)i -  — (Mr  9 +  y>(. e ) Bi( (2.6)
n

where Mi is given by

M, =  yiMt X B,  (2.7)

Vi being the gyromagnetic ratio. can also be expressed in terms of Mi
and but this is not needed here, for B< will be assumed to be independent
of rpi, which is appropriate for the magnetic field case, but not when electric
fields are present. For the linearized collision operator the expression from
ref. 8, extended to mixtures, will be used. Hence;

(Jl 'BJi =  2  X] ƒ F)u,(Bi -f- Bj — Bj — B]) gtjb db de doj. (2.8)
1

For the meaning of the different quantities entering into (2.8) see ref. 8.
In particular double primes are used for the initial state in restituting
collisions, whereas single primes refer to the final state in direct collisions.
As usual B must be orthogonalized to the null space of J  (the sub-space
spanned by the summational invariants) to obtain unique solutions of (2.6).
Thus:

(B, 0) =  0; 0 t e  {dijt y/mt Wit W\ +  M\}. (2.9)

To obtain approximate solutions of (2.6) and similar equations for other
transport coefficients two different methods are in use at present. The first
consists of changing from the L2-space defined by (2.4) to an la-space
formulation by expanding B into a suitable complete set of functions and
forming inner products of (2.6) with each of them. Truncation of the ex
pansion series after a finite number of terms leads to a finite set of linear
equations which can be solved in principle. Variational principles to justify
this procedure are discussed by S n id e r1»). The second method is a pertur
bation method originated by K agan and M aksim ov4). This method,
however, may lead to erroneous results due to an unjustified assumption
about the polyatomic linearized collision operator8). It has turned out that
the method can be changed into an elegant iteration procedure20), at the
same time leading to a better understanding of the "single and double
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frequency” property5)7)8) of the field dependent transport coefficients. In
this paper the first method will be used. The proposed trial function for
Bt is:

Bj =  W^Wi : B[1} +  M?M< : Bf>. (2.10)

This is adequate for the case of hydrogen isotopes and presumably also a
good approximation for other gases. It has been shown by M cCourt and
S n id e r7) how to include the next higher order function W°WM°M  for
the case of pure cases (see also ref. 5). Their treatment can be extended to
mixtures if the need arises. (2.10) satisfies (2.9) and leads to the follow
ing expression for tj after insertion into (2.3):

i\ =  \k T  £  (2.11)
i

Substitution of (2.10) into (2.6) and forming inner products with each of
the functions W?Wt and M?Mt leads to the following set of equations for
the expansion coefficients B[a):

5T =  2  Xf{[W^Wi: W"Wi]t] B)1» +  [H?1F, : W fW fa  B<'>

+  [W*Wi: B<*> +  [W°t Wt : M fM fa  B<*>}, (2.12)

0 =  S  : W*Wt]i} B'1’ +  : W°W,]t, B)1’
1

+  [M?M, : B[2) +  [M ?M,: Bf>} -  C,h : B«\ (2.13)

where
T  iclmn =  \{&km$ln  "H  d/cn^lm) \bklbm n (2.14)

and
hicimn =  i( t̂onCinr +  <5*neImr +  ^Im^knr +  ^In^kmr) br, (2-15)

with b = BjB, are equal to the tensors and H(1) employed by McCourt
and S n id e r6)7). C< is given by

Ci =  %Vi Bjn (2.16)

and the Enskog brackets are defined as
[Fft) Gfc]y =  ƒ F\9)F?>F»(G* -  G'k) gi,b db de dat da,. (2.17)

The change from the double primes to the single ones has been made via
Liouville’s theorem in pair space. To arrive at (2.12) and (2.13) the following
relation has been used

[F*, G*]y =  £[F* : Gfc]y T, (2-18)

which holds for all functions discussed here. Moreover, the symmetry
property

(2.19)[Fa : G*]y =  tG* : f a] «
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is valid for these functions. It can be proved from the space reflection and
time reversal invariance of the intermolecular mechanics.

III. Binary mixtures. For binary mixtures one obtains from (2.12) and
(2.13) the following set of four coupled equations:

5*iT =  ax B?> +  axt%P +  öiB<2> +  ft12B<2>

5*2"T —  # 12® !^  -(- < 1 2 ^ ^  -I-  ^ 2 lB i2* -f-

0 =  ftiBj1» +  621 6^  +  ciB̂ 2> +  ciaB<2> -  xxCx h : B<2>

0 =  6 i|B <11) +  b2*P  +  ci2B<2> +  c2B<2> -  X2C2 h : B?>

The coefficients at the right hand side each contain a number of Enskog
brackets. Their explicit forms are given in the appendix. It is useful to
note that the a’s contain pure linear momentum reorientation cross sections
(the well-known /^-integrals), whereas the c’s are made up from pure angular
momentum reorientation cross sections. The b’s, however, consist of cross
sections which contain both velocity and angular momenta vectors. For
all diatomic gases except the hydrogen isotopes, the a’s and c’s are in the
same order of magnitude, for the latter, however, the c’s are more than ten
times smaller than the a’s. The b’s are considerably smaller than the a’s
and c’s which fact follows from the experimental smallness of the Senftleben-
Beenakker effect. This enables one to neglect quantities babfi as compared
to aaag, aacfi or cac0.

To solve the set of equations (3.1) the usual subdivision of Bf> into a field
free part and a second part, which contains the magnetic field dependence,
will be made2)8)-8).

Hence:
Bf> =  £<«>T +  Y*-)(B); Y<«>(0) =  0. (3.2)

In this way one obtains

i\{B) = rjoT +  drj(B), (3.3)
where

Vo =  \k T  S  XiB™- Ar\(B) =  \k T  2  x(Y?K (3.4)
i i

Introduction of (3.2) into (3.1) leads to the following set of equations for
the B(a)’s:

5*i «1 a i2 bx bi2 B[iy
5X2 <*12 «2 bsx 62 B P
0 bi 6 2 1 Cl C12 B P
0 biz i 2 C12 c 2 B P
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Using the above mentioned smallness assumption for the b’s one obtains
from this:

where

B ^  =  5 (* l« 2  — *2«12)/«

B ^  —  5 (*2«1 — *1<*12)/<*

B[2) =  [(&12C12 — b\c%) B ^  +  (&2C12 — 621C2) ^ 21)]/c

B{2) =  [(61C12 —  bitfi) B ii ) +  (621C12 —  btfi) B ^ l c

«1 «12

«12 a2
c

Cl C12
c 12 C2

(3.6)

(3.7)

The expression for rjo obtained from this is on the level of the Wang-
Chang-U hlenbeck and de Boer theory21); it contains energetically
inelastic collision integrals but angular momentum anisotropy does not
enter. Subtraction of the equations (3.5) from the corresponding ones (3.1)
leads to the following set of equations for the Y)a)’s

0 =  aiY<»> +  «i,Y<l> +  6iY«> +  bltY?>

0 .  ax*Y<” +  «2Y'1» +  62lY?» +  b if^

x itiB ? *  =  CiY<2> + c12Y<2> - xiCih : Y<2>
XitzB^h  =  c12Y<2> +  c2Y<2*> -  x2C2h : Y<2>

where again the smallness assumption about the b’s has been invoked. The
second pair of these are two strongly coupled equations for Y)4* and Y2 ,
for C12 will be of the same order of magnitude as cx and c2 in general. They
can be decoupled, however, at the price of introducing terms containing
h : h. For that purpose one expresses Ŷ2) in terms of Y(2) by means of
the third equation (3.8). Introduction of this into the last one leads to a
closed equation for Y)2' and in the same way a similar equation for Y£ ) can
be obtained. The resulting expressions are:

Y<2> -  2(0i +  0 2)(cic2/c) h : Y<2) +  4 0 i0 2(cic2/c) h : h : Y^ =

=  2(0i£<2> -  (ci2/ci)02 B<2))(cic2/c) h -  4 0 i0 2(cic2/c) h : h

Y<2> -  2(0i +  0 2)(cic2/c) h : Y(22) +  4 0 i0 2(cic2/c) h : h : Y<,2) =

=  2(02£!ƒ> -  (ci2/c2)0 i Bi2))(cic2/c) h -  4 0 i0 2(cic2/c) h : h,

0 * =  *<C</(2 Ci). (3-10)

It is seen that the coefficients at the left hand side are the same in both
equations. This enables one to derive an equation for arbitrary linear
combinations of both Y£2)’s. This is an important result for the quantity
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entering into the expression for At\ is
Z =  x{Y1̂ - \ - (3.11)

which indeed can be written as such a linear combination.
In this way one obtains:

Z — 2(0x -f 0i)(ciC2lc) h : Z +  40x02(cxc2/c) h : h : Z =
=  2[0r*cx(B<«>)* +  6>2 -W M 2))2] h
-  46>i0 2(ciC2/c)[£c1(B<2>)2 +  %cn B{2)B™ +  h : h. (3.12)

A striking difference with similar equations for a pure gas is the occurrence
of the terms proportional to h : h. These terms are due to the coupling
via cX2 of the last two equations (3.8). When cx2 vanishes they disappear
again, although this is not immediately apparent from (3.12). They also
disappear if one of the Ci s vanishes as is the case if one of the components
is a noble gas. It may be anticipated that for ternary mixtures terms
proportional to h3 =  h : h : h will tuin up. The solution of (3.12) is a
straight-forward task. For that purpose one expands Z into a series in h:

Z =  Z  Z*h*. (3.13)
*21

This series can be truncated after four terms due to the closure relation
h5 =  -  *h3 -  £h. (3.14)

Substitution into (3.12), use of (3.14) and equation of like powers of h then
leads to four equations from which the expansion coefficients can be deter
mined. As the result is a complicated function of 0 X, 0 2  and other para
meters this will not be discussed here. Instead the simpler case of mixtures
with noble gases will be discussed in the next section.

IV. Binary mixtures with noble gases. For binary mixtures of which the
second component is a noble gas the quantities £2, 612, b%, cX2 and C2 vanish.
Hence, B\2) =  0 and

B ? '=  - ( b i W  +  b u P M c. (4.1)
Due to this (3.12) simplifies into

Z -  20xh : Z =  20x *cx(B<*>)* h, (4.2)
with the well-known solution

Z =  *cx(0<2>)2 F(0X, h), (4.3)
where

201
F(6>1' H) =  (T + 0 2) ( l + 4 0 2) [(1 +  50?)(h +  2@lhZ) +  40> 8 +  2»ih4)]-

(4.4)
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For the relative change of the viscosity coefficient in a magnetic field one
finally obtains:

. , ( W *  +
nlr,° 5cifr0f > +  *2BW

F(©i, h) KF(0lt h). (4.5)

To proceed further it is useful to  take the magnetic field along the * axis
as this reduces the number of nonzero components of Ar\ significantly22).
From  this point onwards the analysis of M c C o u r t  and S n i d e r 7) applies,
idvj/qo corresponding to  their (/drj/jjo)02, K  to  y>' and S \  to  £'. For com
pleteness sake the resulting expressions for the five viscosity coefficients
tji to  Tjs> as defined in ref. 22, are given below:

T)1 =  T)0

/  4@2 \

« - ’«('-*T T ëf) (4 .6)

2Öi
,‘ = +,“K r+4e;
r)S = - m K

@1
1 +  Ö? '

In  capillary tube experiments with the field perpendicular to the capillary
the actually measured quantity  is23)

Ar)ho =  i ( 2?ya — m  +  173 — 2»jo)/»?o, (4 -7 )

which is given by
T 4€>i 1 1 a r\

The question might arise if in more general mixtures of diatomic gases the
viscosity coefficient rj 1 still equals j?o- This is indeed the case, for Z will
again be given by an expression of the type (3.13). As 171 rjo corresponds to
Z m i  (in component notation) and h\lxl =  0 this quantity  will vanish in
the approximation (2.10).

V. Discussion, a. As will be clear from the preceding, binary mixtures
with noble gases are the simplest to  deal with from the theoretical point of
view. In  th a t case the field dependence of the shear viscosity tensor is the
same as for pure gases, only the coefficients K  and @1, th a t determine the
m agnitude of the effect and the position on the saturation curve, are
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different. One now has

© i  =  -—
6n +  M°2M2) \AM\Mi>n

yB
(yn(x\ai +  *2<ri2) (5.1)

For the definition of the bracket expressions, see the appendix.
<ti and <ri2 are pure angular momentum reorientation cross sections, o\

for collisions between two molecules, or2 for molecule-atom collisions. The
experimental determination of ©è „  the ©i-value for which the effect reaches
half its saturation value or of ©mai>1), the ©1-value for which the transverse
coefficients r/i and 1/5 reach their maximum, leads to the value of a =
—  X \0 \  - ( -  X%Oi2.

From its concentration dependence one is able to obtain the value of an
separately.

The expression for K  is not so simple. It reads:

8*i[(*i<y°y: +  *2 (m2/»»i2)<y0y: AM*Mx>n) +
K _  ________________ +  x2(mi/wi2)<y0y : A M iM i> n B ^

SafaB»» +  XiB?') ’ (S2)

The B ^ ’s are functions of concentrations and ^-integrals and can be
evaluated in the standard way24), a can be obtained as discussed above
and <y°y : AM\Mi>i can be obtained from pure gas measurements. Thus
it is possible to obtain <y°y : A M \M \)n  which is determined by the
anisotropic molecule-noble gas interaction. Measurement on mixtures of
molecules like HD or N2 and noble gases will thus lead to a useful addition
to already known data about atom-molecule collisions from other transport
phenomena.

b. If in a binary mixture of two diatomic gases the parameters @1 and ©2
are widely separated (©i ©2), (3.12) can be approximated by

for moderate fields, which again leads to an expression of the type (4.5).
However, in this case the parameters bn, è2, ci2 and c2 no longer vanish
and hence 0  and K  have a more complicated structure than in the noble
gas case. This is more or less the situation for mixtures of paramagnetic
and diamagnetic gases, although a paramagnetic gas like oxygen needs a
more careful description *). Due to their large magnetic moment the ratio

*) See refs. 2 and 5. The mixture concept used in these papers for the description of the three
different spin states in oxygen will break down as soon as transitions between these states occur.
The author is indebted to Dr. F. R. Mc.Court for an interesting discussion on this point.

Z -  2©1 (cxc2/c h : Z =  201 fci(S)i2)2 h (5.3)
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of Larmor and collision frequencies is already large for the paramagnetic
gas while it is still small for the diamagnetic one and hence a partial satu
ration is reached, which will be described by an equation akin to (5.3). For
higher fields the diamagnetic gas will be saturated as well and hence one
expects a saturation curve that consists of two different contributions. For
the transverse effect one will expect two extrema, one corresponding to the
paramagnetic and one to the diamagnetic gas.

c. The treatment given here for linear molecules can easily be extended to
general polyatomic gases; only the internal-state phase volumes will
change4). It is not yet known at present if in addition to M°M more an
isotropic internal-state functions must be taken into account in the ex
pansions for the B(’s in this case. Provided this is not necessary experiments
on mixtures of symmetric top molecules and noble gases are promising. For
a number of these molecules reorientation cross sections have been measured
by means of nonresonant absorption techniques25). The cross sections
obtained from these experiments are +  fi2 ) and I*
being the effective electric dipole moment. For mixtures of CH3CI or CHF3
and gases like He or H2 both quantities differ appreciably25). It would be
very interesting to supplement these data with the corresponding values of

+  M°2M2) : and : JM jM P u

obtained from „  or 0 max>„. Moreover, a comparison of these with the
corresponding values for molecules like CF4 may lead to information about
the difference in the interactions between nonpolar and polar polyatomic
molecules.
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damental Research on Matter) and was made possible by financial support
from the Nederlandse Organisatie voor Zuiver Wetenschappelijk Onderzoek
(Netherlands Organization for the Advancement of Pure Research (Z.W.O.)).

APPENDIX

In this appendix the further evaluation of the Enskog brackets will be
discussed. For that purpose the following quantities are introduced:

«*y = tnt +  my, 8  =  ® y =  (mt/my)* Wt +  (»q/»iy)* Wj
HU =  mitrijlniij; y  =  yjt =  (mt/my)* Wj — (m ^ / w y )*  Wt

As 8  is proportional to the center of mass velocity, it does not change upon
collisions and an integration over this variable can be performed. Thus one
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obtains
[Fa, G*]y =  (8/*»)< ƒ (exp -9 * )  F* AGk d*>y, (A.2)

where

<KAdL*>y =  (12871*j-1 (2kT/pij)* ƒ [exp — (y2+ M j+ M j)]  KAdL*do)y (A.3)

with
=  L* — L* (A.4)

and
do>y =  y t j b  dft de dy(dAfi/M<)(dMy/Afy) dy>< d tp j (A.5)

The Enskog brackets used in this paper become

[ W ^ W i  : W ^ W ^ i j  =  8(my/my)2<y°y : dy°y>y +  80/3(>Hj»^/m?#)<y • dy>y

[W^W'i: =  8(wi»ty/wt^)<y0y : dy°y>« — 80/3(wiwy/»n?#)<y-dy>y

[Af?M<: FFfH^i]y =  8(w^/wy)<y°y : JMVAf4>y

[M ^M ;: =  8(wt^/wy)<y°y : A M ' j M f r t f

: Af/AfjJy =  8<M?Mt : dM}’M4>y

[MJ’JM, : =  8 < M j M } :

In connection with this, note the symmetry property (2.19).
The quantities displayed in equation (3.1) are:

«1 -  * ? [ < ! ? ! :  (* 0 ^ 1  +  W ^ * )] i  +  : W ^ i ] »

«12 =  *i-r2[W^W,1 : W^iy2]i2

a2 =  : ( W ^  +  I W 2)]2 +  *i**[W*ïTa : IV^IFJu

Ai =  **[IF«FFi : (MjMi +  MSM2)]x +  siXatW'JW'i : AfjAfJn

612 =  ^ [W 'fW 'i : MSM2]i2

ft*i =  * i* * [H W  : A#̂ A#i]i* ( 7

&2 =  : MSM2]i2 +  x \[W «W i: (M?Mi +  M§M2)]2
c i  =  x f [ A f « M i  : (M°xMi  +  M S M 2 ) ] i  +  ^ [ A f j M i  : A f j M J u
ci2 =  *i*2[M?Afi : Af^M2]i2

c2 =  *!*2[M«M2 : M“M2]u  +  ^[M gM 2 : (MjMx +  M"M2)]2

In case that the second gas is a noble gas there is no M2 and hence i i 2,
f>2, Ci2 and c2 vanish. In that case (A.3) simplifies somewhat for now one
can immediately perform the integration over (dM2/M 2) dy2 for (1,2)
collision integrals and over both sets of internal state variables for (2, 2)
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collisions. It should be noted that the bulk viscosity cross section <y2-dy2>z
vanishes as well.

In the lim it  t h a t  nearly all collisions are energetically elastic which is the
case for H2 and D2 one may replace <y°y : dy°y>y by 0 $ ,2) and <y-dy>y
by their elastic hmits. For other gases this should also be a fair
approximation.

Received 29-7-67
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Synopsis
In the presence of a homogeneous magnetic field B the thermal conductivity and

shear viscosity tensors of ionized gases are anisotropic. The thermal conductivity
tansor contains three independent components, one independent of B, one even and
one odd in B. The shear viscosity tensor contains five independent components, one
field independent, two even and two odd in B. For pure gases, the transport coef
ficients which are even in B can be written as the real part of complex functions of
the parameter £ =  eB/nM, while the coefficients odd in B  are the imaginary parts of
these functions. Here e is the charge, M  the mass and n the density of the gas under
consideration.

Using the Chapman-Enskog equations it is then shown that these functions possess
an analytic extension in one complex half plane and fall off as 1/|£| for large |f|; these
facts enable one to obtain dispersion relations, connecting the transport coefficients
odd in B  to those even in B. For mixtures the situation is more complicated. Dis
persion relations hold only if all charges have the same sign. However, a number of
sum rules hold under more general conditions.

1. Introduction. In the presence of a homogeneous external magnetic
field B transport phenomena may become anisotropic 1>2*3). In heat con
ducting systems the heat flux q is no longer parallel to the temperature
gradient dxT . In general there will be a heat flux perpendicular to both B
and dMT ; the Righi-Leduc effect. A similar effect in electric conductivity
is the Hall-effect, whereas recently such a phenomenon has been found in
the viscous flow of dilute diatomic gases (transverse Senftleben—Beenakker
effect4)).

Theoretical expressions describing such transverse phenomena have been
known since long for the case of ionized gases in a magnetic field1-3 >5) and
have recently been obtained for the Senftleben—Beenakker effect as well*).
A classification of the different possible phenomena from the point of view
of irreversible thermodynamics has also been given3»7).

A common feature of the expressions for ionized gases and the Senftleben—
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Beenakker effect is that the transport coefficients connected with longi
tudinal phenomena show a dispersive behaviour as a function of B/m, where
n is the gas density, whereas those connected with transverse effects have
an absorption behaviour. By longitudinal is meant a flow in the plane of B
and the external gradient for vectorial phenomena, whereas the flow perpen
dicular to this plane is called transverse; this can be suitably generalized to
higher rank tensorial transport coefficients (e.g. the shear viscosity coef
ficient). In fact the parameter entering into the formulae is the ratio of the
precession frequency (proportional to B) and the collision frequency (pro
portional to n). The transverse transport coefficients show a maximum for
the value (B/»)max of B/n for which both frequencies are equal. The longi
tudinal coefficients tend to a saturation value for large B/n. The value
(B/n)^ for which the change from their field-free value is half that for the
saturation value is roughly equal to (B/«)mai and corresponds to a point of
inflection on the saturation curve.

In a real gas a number of collision frequencies are present, all corre
sponding to different eigenvalues of the linearized collision operator and
many of them may lead to contributions to the transport coefficients. Thus
one may expect that the overall dispersion and absorption curves will con
sist of many contributions, each one containing a different relaxation time.
In most cases only a few of these are important, but it is difficult to ob-
lain the values of the corresponding relaxation times from the experimental
curves if they are not widely separated.

In an ionized gas the precession frequency is the orbital frequency of the
charged particles spiralling around the field axis (Larmor frequency). In
this case the relaxation times of interest are those connected with the col-
lisional change in linear momentum. This is different for the Senftleben—
Beenakker effect. Here the precession frequency is that of the internal angu
lar momentum which precesses around the field axis, due to the presence of
a magnetic moment of para- or dia-magnetic origine. The relaxation times
are now related to collisional changes in both linear and angular momentum.

Many dispersive and absorptive physical phenomena are connected by
dispersion relations, the Kramers-Kronig relations being a well-known ex
ample. The purpose of the present paper is to investigate the possible ex
istence of a dispersion relation between transverse and longitudinal transport
coefficients for a dilute ionized gas, for which the starting point will be the
Chapman—Enskog equation. Although it is well-known that a treatment
based on the Boltzmann equation is not valid for a fully ionized gas, as,
due to the long range forces, collective phenomena dominate, it is appli
cable to weakly ionized gases, where the main interaction is that between
charged particles and neutrals. The case of a small amount of electrons in
an equilibrium back ground (Lorentz mixture) is an example of such a
system. In more strongly ionized gases the Boltzmann equation can still



TRANSPORT COEFFICIENTS OF IONIZED GASES IN A FIELD 3

have some validity, due to Debye screening of the Coulomb potential.
It turns out that for a pure gas a dispersion relation can indeed be es

tablished. For mixtures a dispersion relation only holds if the charges of
the components of the mixture all have the same sign. Also a number of
sum rules can be derived, which hold under more general conditions. The
derivation of these results relies heavily on the rotational invariance of the
linearized collision operator. Due to this the Lorentz force flow operator can
be diagonalized by introducing spherical coordinates. Thus the analytic
properties of the solution of the Chapman-Enskog equations as a function
of B/n are reduced to those of the resolvent operator of the linearized col
lision operator and one is able to use some results from the theory of semi
groups to obtain dispersion relations and sum rules. As the Coriolis force
has the same structure as the Lorentz force the theory developed in this
paper also applies to the transport coefficients of gases in rotating systems.

2. Expressions for the heat conductivity and viscosity tensors of pure gases
in a magnetic field. In a homogeneous magnetic field B the viscous part II
of the pressure tensor is related to the gradient of the stream velocity v0 by

o _

n  =  —2t)(B) : dxVo, (2.1)

the double bar and small circle having their usual meaning1). i)(B) is the
coefficient of shear viscosity. It is a fourth rank tensor, symmetric and
traceless in its front and back pairs of indices. Because of this there are
only five independent components, three of which are even and two odd in
B. As the gas will be assumed to be dilute and collisions between particles
to be elastic there will be no bulk viscosity and also no cross effects be
tween shear and bulk viscosity. The heat conductivity tensor A(B) which
relates the heat flux q to the temperature gradient d,T  is defined by

q = -X(B).0„7\ (2.2)

It contains three independent components, two are even and one is odd in B.
According to the Chapman-Enskog method tj and X for a pure gas are

given by
ïj =  kT (W W , B),
X =  k((W  -  ft) V, A), (2.3)

where k is Boltzmann’s constant, M  the mass of the particles and W  =
=  (M12kT)l V, a reduced quantity derived from the peculiar velocity V.
The inner product is defined as

(<P, ¥/) =  *-• J (p'F d W  =  J F M # * ?  dW . (2.4)

It defines the real Hilbert space
The symmetric and traceless tensor field B(B) and the vector field A(B)
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are solutions of the “Chapman-Enskog” equations
-2W »W  =  /(B) B(B), (2 5)
( | - W * ) V  =  J(B) A(B),

where
j (B )  =  y < ° >  +  y (1)(B). (2-6)

7 (0) being the hnearized Boltzmann collision operator given by
J(O)0 — J (Pi — 0  — (Pi) g£> d£> de dWi. (2.7)

Notation is conventional1,2), except for the fact that reduced quantities
have been used. The operator /««(B) is derived from the Lorentz force
term. I t can be written as

TW(B) =  B ‘W  X dw, (2,s)
J 1 ' nM

where e is the charge of the particles and « the gas density. To obtain
unique solutions of (2.5), A and B must be orthogonalized to the summational
invariants 1, W  and Wz. It will be understood that these functions are not
contained in J t T and hence the eqs. (2.5) are operator equations on this
space having unique solutions.

Of course the Boltzmann equation is not applicable to a pure gas of
charged particles due to the presence of Coulomb forces. Thus the present
discussion refers to a gas on which a force of the Lorentz type acts but
where the intermolecular forces are of sufficiently short range. This is the
case for a rotating pure gas as the Coriolis force has the same structure as
the Lorentz force. Again / (1> is of the type (2.8) with (e/»M) B replaced by
(2In) (i), o) being the rotation vector.

The present formalism also applies to the Lorentz gas, a low concen
tration of electrons in an equilibrium background. Here transport is due
solely to the electrons and the back-ground gas enters only via the col
lision operator (2.7) for which case and &ï vanish. It will be assumed
in the following that J<°> and J W(B) have a common domain 9 t, dense in

r and that the functions at the left in (2.5) are contained in this set.
As is well-known, is negative definite

(JW0, $) <, 0, V<P 6 (2-9)

Moreover it is self-adjoint
y«» _  y*(0). (2-10)

From Gauss’s theorem it follows that
y<b =  —7*d), (2-11)

and hence (2.9) also holds with /<°) replaced by J.
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For the present purpose it is advantageous to use complex notation. Thus
will be a complex Hilbert space generated by the inner product

(0, ¥/) = *-»ƒ e^ WdW', (2.12)

the bar denoting complex conjugation.
Following Kagan and Maksimov6) spherical coordinates will be employed.

This enables one to represent longitudinal and transverse coefficients as
real and imaginary parts of complex functions of the real parameter
c =  eBKnM).

The transformation from Cartesian to spherical coordinates is accomplished
by means of the transformation formulae given in table I where vectors and
traceless symmetric tensors of rank two are related to spherical irreducible
tensors of first and second rank, respectively.

T a ble  I

Transformation formulae between the Cartesian and spherical components
of vectors and second rank symmetric traceless tensors;

■A =  {A*} =  {AJ*}, A =  {A*|} =  {Ajj*,} A t i  =  A |t ; tr  A*j = 0

II A i — —| f (A i 4- iA ,)

A t  =  i^  2- (A f ‘ +  A}) -•V ï / ï - A .

II

OJ
 £ a r*  =  /  — M i -  iA,)

A u  = - ^ i AOo + ^ - s - t v  +  A i, Ajj =  | / — ■ (è(A ii — A ,,) +  iA i,}

=  r  ~ ~  M ia — i^23>r Ö7T

A 12 =  i |A - ~  ( A t 2 -  Ai) A« = 2 ^ 1  A ,3
4 r 7Ü

A .3 =  ( A t 1 -  A*) A f 1 =  - y ^ £  (A is +  iA23)

A 23 -  i / - -  (At  1 +  A |) A f 2 =  d ( A i i  -  A m) -  iA i,)}
' Ö7T

T he eqs. (2.5) ca n  now  be w ritten  as

* 7  =  7 (B )  0," '(B ) (2.13)

w ith

¥ 7  =  ( f  -  W’2) V Y \ ' ( W I W ) , 0j" =  A m,

¥ 7  =  — 2 W ZY™(WIW), 0?' =  £ m, (2.14)
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the YJ* being spherical harmonics. P f  will denote the projection on the
subspace C J fc spanned by Y™. It will be recognized that the operator
J =  (1 /i) W X dw is formally identical with the angular momentum oper
ator of quantum mechanics in reduced units. Taking B along the z axis one
can write

jm (B) =  iCJz, C =  cB/(nM). (2.15)

One thus obtains
¥ 7  =  (J(o) +  iCJt) (2.16)

The property (2.9) on leads to the following property on the corre
sponding domain on JPc,

Re(/<°>0, 0) ^  0, V0 e 2>c, (2.17)

which again is also true for /<°> replaced by J. J z has the spectral decom
position :

/ * =  S  2  mPT- (2-18)
{ ■ 0  n i “  — I

If one neglects the influence of B on the collision mechanism ƒ  <°> is ro
tational invariant and hence

P?/<0)P»' =  J\°%rdnm-; J\0) =  P ,-y ; (2-19)

r(°) does not depend on m, which fact is easily seen from the Wigner-
Eckart theorem.

From (2.18) and (2.19) it is clear that J  commutes with P? and thus the
are invariant subspaces of J. This, together with the relation ¥ 7  =

_  pjnij/m leads to a splitting of (2.16) into separate equations on each of
the subspaces 7 :

Ï 7  =  (J\0) +  iwC) 0 “ (C). (2-20)

After introduction of the spherical components of W°W and B into (2.3)
one obtains

»?i(C) =  £*(£)>
»?a(C) =  +  i(^i(f) +  2(£))>
|» (0  =  i ( ! i (0  +  ^'*(0 ). (2-21)
174(f) =  i i(L l(0  -  £.-*(0).
*?5(0 -  i i ( i i ( 0  -  ^ ( f l ) .

where

Z7(0 =  -  ^  W (lP r,0?(C)). (2 .22)
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The viscosity coefficients 1 ) 1  to rj5 are those given by Hooyman, de Groot
and Mazur3-7). Since in their paper the field is along the x axis, one has to
perform a cyclic permutation of coordinates before the identification can be
made. For B along the z axis the heat conductivity tensor takes the form3)

/  Aj A2 0 \
X = (  —At Xi 0 I (2.23)

\  0 0 A8/

where now

*i(0 = umo + i r ' m
MO -  i i(L[(0 -  £ f ‘(0). (2.24)
MO -  L\( £),

with

L?(0  -  -  —  * (» T . <PT(0). (2.25)

The formal solution of (2.20) is

4>?{0 =  (J(0) +  i wC)” 1 V\”, (2.26)

and hence

(* 7 . « 7 (0 )  =  (¥ 7 . (ƒ(0) +  iwC) -1 v \n) =  (¥'«, (J(°) +  iiwf)- 1?P,), (2.27)

where the absence of the m in the ?P/ at the right expresses the fact that
(2.27) does not depend on the m value in ; this is due to the rotational
invariance of _ƒ<*•>.

Thus

Lj"(C) =  Lj(m£). (2.28)

From this it is clear that L°(£) and hence rji and A3 are independent of £.
It is also seen that Ai, A3 and r\\, 172 and *73 are even in £ whereas A2, rji and
rji are odd in this variable. For £ =  0 £{"(£) =  Z.®(£) and hence in this
case rji =  t] 2  =  *73, Ai =  A3 whereas rj4, 175 and A2 vanish. As ƒ  <°> is self-
adjoint, one has

((/(«) +  im£)~i)* =  (y(0) _  im£)-i,

and one obtains

LT(0 =  LTi-Q  =  ! ,(-« £ ) =  I7 "*(£)• (2.29)
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Thus
Ai(C) =  Re L\(C) =  Re Lift)

-A 2(C) =  Im L}(C) =  Im Lift)

2772(0 -  «71 -  Re Ljft) «- Re L2(20 (2.30)

—IJ4(C) =  Im Lj(0 -  Im L2(20

t?s(0 =  Re Lift) =  Re L2ft)
- i j ,f t)  =  Im L j(0  =  Im L«ft)

The existence of a dispersion relation depends on the possibility of ana
lytic continuation of LJ^ft) in the complex f plane. This will be investigated
further in the next section.

3. The derivation of the dispersion relations. To prove the existence of the
dispersion relations use will be made of the theory of semi-groups of oper
ators. Standard treatises on this subject are refs. 8 and 9. However, the ten
pages of appendix 1 of ref. 10 contain nearly all the material that is needed
here.

A closed linear operator A in a Hilbert space with domain 3(A) dense
in Jt? generates a contraction semi-group of class Co if it is dissipative, that
is, if

Re(Ax, ^  0; Vxe3(A).  (3.1)

This means that there exists a semi-group of bounded operators T(t, A) on
jf? with the properties

T(0, A) =  \ \ T(h +  h,A) =  T(h,A)T(h,A), h , h > 0 \
||T(<, A)|| <, 1, W > 0 ;  (3.2)
lim T(t, A) x =  x, Vxe JP.
no

T(t, A) x is continuous in t >  0 for all x e and for any x e 3(A) the
derivative of T(t, A) exists in the strong sense and is given by

—  T(t,A)x =  T(t, A)Ax =  AT(t,A)x, t >  0. (3.3)

Due to (3.1) the whole open complex half plane to the right of the imaginary
axis is contained in the resolvent set p(A) of A and the resolvent R(A, A) =
=  (X — A)-1 is holomorphic in X on p(A). Moreover, the following relation
between resolvent and the elements of the semi-group exists:

R(X,A)x =  $ e~u T(t, A) x dt, Re A >  0, Vxe.?f.
o

(3.4)
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From this one derives the following estimate:

\(x, R(A, ||(* ,y)| +

Re A >  0, Vxe  , Vy e 2(A).  (3.5)

These results will now be applied to the case at hand.
A discussion of the linearized Boltzmann equation from the point of view

of semi-group theory has been given by ScharfU). In his paper, matters
such as self-adjointness and dissipativity of the collision operator are dis
cussed quite fully. In the present paper it has been assumed that /«» is
self-adjoint and dissipative (see 2.10) and (2.17)). Due to this its spectrum
is restricted to the negative real axis. In addition it will be assumed that
(apart from the five-fold degenerate eigenvalue zero for the summational
invariants) it does not extend to the right of — d with d positive. Physically
this means that all relaxation times are finite and mathematically it guaran
tees the existence of the solutions of the Chapman-Enskog equations. A
further result is that along with /<°> also /<0) =  /<«> +  d is a dissipative
operator. One obviously has:

R(A, JW) = R(X +  d, / D ; T(t, JW) =  e-*  T(t, /<"’). (3.6)

Thus, it is clear that R(A, /<°>) is holomorphic for all A with Re A >  —6 and
hence the imaginary axis is included in the resolvent set.

Applying these results to (2.27) one obtains (the coefficient in front of
the inner product, which is not relevant for the present discussion, will be
omitted from now on):

L?(Q *  (*i. (7(0> +  i^C)"1 Vi) = - ( V i ,  R(d -  imc. /£>) •Pi), (3.7)
where =  J[0) +  d and the resolvent at the right hand side is defined
on the subspace 3fi. It follows from (3.7) that Z.J“(£) has an analytic con
tinuation in the upper half plane for m >  0 and in the lower one for m <  0.
In order to avoid confusion z will be used instead of f, whenever this vari
able assumes values away from the real axis. Thus C is always real.

Assuming IPj* to be in the domain of /{0) one obtains the following bound
from (3.5):

,trWI ̂  \ in z T ï\  I™ +  m Im z >  0.
„  (3.8 )
From this one obtains

lim L;»(C) =  0, w /  0 (3 9)
C-»oo '  '

and

W W I ^  cp /w  for |z| -> 00; rn ±  0; C f >  0. (3.10)
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Eq. (3.9) shows that in the high field limit the only surviving component of
the heat flux is the one along the field direction and it equals its field-
free value. For viscosity a similar conclusion can be drawn. Due to (3.10)
and the fact that Lf(£) is analytic in the upper half plane for positive m,
the following dispersion relation holds3-12) :

+  oo

Re£r(0 = -« ’f-p—f ldf'' ”‘>0- ' <3">
—oo

As Im I f  (£) is 0(1(1 in C»this can ** transformed into :

2 f" r im L T (0
Re I f  (£) =  — g,2 _  • m >  0- (312)

0

Thus it is seen that the quantities h(C), 2»/*(C) — »?i and 773(C) are con
nected to -A 2(C), -V 4(0 and -775(C), respectively, by means of a dis
persion relation of the type (3.12). The results obtained here apply to the
two cases mentioned earlier; the Lorentz mixture and the rotating pure gas.

4. Mixtures. The transport coefficients for mixtures can again be written
as inner products

I f  =  (0f. !Pf), <41)

where now

(0 , j  xt(0, E  X1 i AWf F)O)0 y (^ )  T(Wt), (4.2)

F)0> =  if*  exp — IF2.

The concentration of the component j  is denoted by xj and the summation is
over all N  components of the mixture. In (4.1) the V'jfs are of the type
(2.14) and ¥?* is the solution of the Chapman-Enskog equation

y/m _  (4.3)

Or,

= u*?)} -  um*r)i+1 — J*M‘ ( 4 4 )

where y<°> is the collision operator:

(y<O)0), =  2  J n 0)W  +  * * - • > -  #») d& dc dwr*- <4-5)

Due to rotational invariance one can again replace J t) by m in (4.4). Thus
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one can write

tT (Q  -  (7(0) +  i «*£) (4.6)

where f =  Bjn and a is a diagonal matrix in iV-dimensional vector , space
with components a.]h =  (ej/Mj) &jh. Thus also in mixtures transport along
the field direction is not altered by the field.

The results of the previous section can immediately be applied to the
case of a rotating gas mixture. A simple scale transformation transforms a
into the unit matrix. Thus

J  -*■ J (0) +  i»« t, (4.7)

/ <0) remains dissipative along with /<°> and hence (4.7) which has an inverse
of the resolvent type can be discussed by means of the formalism of
section III.

In general one cannot obtain (4.7) for ionized gas mixtures due to differ
ences in the signs of the «i’s. Thus /-»  is not of the resolvent type and an
analytic continuation is in general not possible. For this reason a pro
jection upon the components will be introduced. On these subspaces one
again deals with resolvents. Let P} be the projection operator which projects
upon the /th component subspace:

(P &  V) =  *i(*. *)#. (4.8)
Then one can split J  according to

J  =  J (d) +  /<*«. (4.9)

where

J (d) =  2  J P  =  2  PjJPi =  S  Pj(Ji0) +  iatjtnC) P , =
1 i 1

=  2  (J?’d) +  ioymtPj) ; (4.10)
1

j(nd) = s  s  yjr*1 = s  s  ^yp* = n  p }j ^ p h.
1 h*1 1 j h*1

Thus:

Ji 'd)<&i =  F f i W  +  0j i  — — 0fi) gfjib dé de & Wji -\-
+  2  xK ƒ F ^ \0 j  -  0  j) g]hb db de d Wh ]

=  Xh ƒ F^(0h  -  0 h) gihb db de d WH. (4.11)

Here j 1 refers to the collision partner in collisions between like molecules.
One now obtains:

y-1 =  (y«*> + y<»<*))-i = j-'(d) 2  (—/(»<*>ƒ-*«*>)»
n = 0

(4.12)
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where

/-'<<*) -  s  J i Hd) =  2  W r  + P i -  ' (4.13)
# I

jh u s  7-1 can be written in terms of products of operators of the resolvent
type. It will be clear that the expansion (4.10) only converges if ƒ<»<*> is
smaller than /<<*>.

From (4.1), (4.3) and (4.12) one obtains

17(f) =  ¥ 7 ) .«  2  (4.14)
n

with
»£«(£) =  (J-'(d)(—J-'(nd)J(d))n «p™ (4.15)

The two lowest order " I7 's  are:

• l f ( 0  =  2  ^(C/j0>d) +  ioywC)"1 Ï 7 ,  ¥>?),; (4.16)
i

1IJ»(C) =  -  S  S  +  ^ fn C )- l J m ° - d) +  i ^ C ) " 1 SPS, «7)i-
i  h * l

The expressions for »Z7(C) for «;> 1 contain products of resolvents. In
order to discuss the f-dependence of these expressions, it is convenient to
treat them n<dng partial fractions. This can be done directly for the oper
ators but one can also introduce the spectral decomposition

7<0) =  p l d E,x, (4-17)
—oo

after which a separation can be performed. Thus, for 1Z-j"(C):

1Z7 (0  =  -  2  2 * *ƒ H  (A +  ia/wC)"1 (^ +  i«ftwC)-1-
I ft?6# * p

•(d £ ^ 7 < r d£» IP'S. ¥ ? ),. (4.18)

and now the factor (A +  iĉ mC)-1 (jn +  i«AmC)-1 can directly be split.
In this way all "17(C) can be broken up into expressions which contain C

only via operators of the type (7j0) +  i<x]tn£)~i> where p is a positive integer.
One is now in the position to derive a number of sum rules. In the follow

ing m will always be assumed to be nonzero.
From lim j^ , (7)0) +  ioy*»C)~p =  0 for cy 0 it is seen that in this limit

the sums in the expressions for the various "17(C) are only over the neutral
components (a} =  0). As the remaining expression is real the transverse
components of the transport coefficients vanish in this limit. Let

P~*=f2 P i  ( 4 - 1 9 )

ay = 0

be the projector which projects upon the neutral components subspace.
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Then one can write

Lr(oo) =  lim LfC) =  ((ƒ(«>.<*> +  P ^ ,  ¥7 ) =
C loo

oo

=  E ( J  l ( 0 . d ) ^ p ooj ( n d ) j ~ ' {0.d))n  p m y  (4-20)

The PM in front of P™ restricts the sum in the inner product (4.2) to a
sum over the neutrals only. As /"(o,d) commutes with P„ /<»<*) is always
sandwiched between two of these operators and hence all sums are over the
neutral components only. Thus (4.20) constitutes the generalization of (3.9)
to mixtures. Note that, although the sums are only over neutrals, Z“ (oo)
still contains the interaction between neutral and charged particles via the

If there are no neutral components in the mixture PM =  0 and hence

L i \ ° ° )  =  0, “I ^  0, V,. (4.21)

If Poo =  0 some additional sum rules hold:
As

lim +  ioLjtnC)-1 =  — —
C-k x  lOCjMt

one obtains

lim imfOinO =  2 —  11*7*11?; ^  0, V,.
C-*oo ƒ Otj

Also

lim mCBT“ (C) =  0; w ^ l ,  <xf 0, V,C—K30
and hence

lim imfLJ"(0 =  2  —  tt^Tll?; ^  0, V,. (4.22)
*-*> o  1 at] 7

In (4.22) the right hand side no longer contains molecular interactions, only
quantities as masses, charges, concentrations and kT  are involved. I t should
be observed that (4.22) contains two sum rules; one for the longitudinal
and one for the transverse transport coefficient. Another relation is ob
tained from the limits

, r(o>
lim C2[(Jju) +  ioymf)-1 — (iapwC)-1] =  Ji ■

(atfm)‘

lim -C *C /r +  i« M ) '1 J T U T  +  ic c ^ ) - l   ------ ! _  /<7>;
cyaejiin2

lim £*ƒ■'«>(7(,m0ƒ “ «*))» =  0, M >  1.
C—Î OO
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From this one finds:

lim {(mf)2ir(C) + i ^ C S —  11*711?
C - K . 1  1 “i

=  lim {(>»£)2 L|"(C) -  me lim wC'Lp(r)} =
C >oo C# *00

/  r<°) ƒ("<*) \
=  2 ^  ; oy^O .V ,. (4.23)

f  oif \  otj k + i  at» /ƒ

Although the right hand side depends on the molecular interactions this
dependence is rather simple since the inner products only contain a few
collision integrals (For the definition of the ^-integrals see ref. 1). As

+ o o

ja tu T  + W ' - — ; «,#0.
—oo

one obtains
+ o o

f d ( m C )  0Lf(C) =  - *  S  ||*TII?; «# ^ 0 .  (4-24)J * l°vl
— OO

The integrals over the higher order "Z-^’s do not vanish in general. How
ever, they do vanish if all ay’s have the same sign as can be shown from
partial fractions (This restricts its practical value to the Lorentz mixture
and to rotating gases). In that case

+ o o

f d(mC) LT(0 = -Tt S 11*711?; *  0, v,, (4.25)
—oo

Vcy same sign.

Finally there remains the question as to whether or not a dispersion re
lation exists. I t will be clear that no such relation exists if ay’s of different
sign occur. If, however, all nonzero ay’s have the same sign, analytic con
tinuation is possible in one half plane. It may happen, however, that certain
cy’s are zero. In that case a dispersion relation of the type (3.13) or (3.14)
holds for

AZ,|"(C) =  Lj"(C) — L™(o°) (all nonzero ay's of the same sign). (4.26)

All results obtained above are exact consequences of the Chapman-
Enskog equation provided the expansion (4.12) is valid. This expansion
was needed to reduce the f-dependence to that via resolvents. It is likely,
however, that one can circumvent the series expansion by manipulating the
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set of N  linear eqs. (4.3) in a different way without introducing infinite
series. Thus the validity of the expansion would not be required.

In a mixture of electrons, neutrals and ions of arbitrary sign some ap
proximate results can be obtained. This is due to the large mass difference
between electrons and other particles. Thus aftn£ is already very large for
the electrons when it is still small for the other components of the mixture
and one may for not too high fields put otj =  0 for all components except
the electrons. Thus one gets an approximate dispersion relation and ap
proximate sum rules. A second corrolary of the large mass difference be
tween electrons and the other components is that the J ^ ’s between
electrons and other particles are very small. This may again lead to useful
approximations.

It will be clear that all sum rules obtained in this section immediately
hold for the Lorentz gas, as in that case the conditions on the ou are trivi
ally fulfilled.

5. Discussion, a. The semi-group of operators T(t, /«»), introduced in
section III, has a clear physical meaning. In fact T(t, JW) corresponds to
what is known as the Green function of the problem. From (3.3) it is seen
that

m = T(t,jw) /(0) (5-1)
is the solution of the equation

(s.2)
that is, of the linearized Boltzmann equation for a spatially homogeneous
system. When a magnetic field is present (5.2) becomes

W ) = J ( B )  f(t) (5.3)

or, breaking up (5.3) into separate equations on the subspaces J t f  :

= (J\0) + imQ /TW;
rW = T?(t. ƒ<<» +  imf) 7(0) =

=  eim« T(t, y<0>) 7(0). (5.4)

One can write the quantities L,m(C) (see (3.4) and (3.7)) as

£p(0 = - f  (*7(0). ¥7(C, t)) dt =
0

=  -  ƒ  e,m{< m o ) ,  !P7(0. 0) dt (5.5)

with ¥7(0) =  ¥ 7  and ¥"»(£, t) given according to the second equation (5.4).
Eq. (5.5) can be interpreted as the correlation function expression for the
transport coefficient in the dilute gas limit at frequency mf. As Ft(t) =



16 A. TIP

=  (!f7*(0), !f7*(0, £)) does not depend on m, due to rotational invariance,
one can write

= L,(mC) = -  f é mtt Fi(t) ét. (5.6)
o

Thus it is seen that one is able to obtain the autocorrelation functions F(t)
for a pure dilute ionized gas from the field dependence of the transport
coefficients. At higher densities this will no longer be the case since then
vector quantities other than the velocities of the particles are involved and
the rotational invariance arguments used in this paper no longer apply.
Similar complications arise for the Senftleben-Beenakker effect. The fact
that Fi(t) in (5.6) is an autocorrelation function immediately implies the
existence of a dispersion relation for £ ” (£). However, to arrive at (5.6) within
the framework of the present theory one needs the same properties of /<°>
that lead to a dispersion relation directly.

b. The basic property (2.17) of the Boltzmann collision operator is the
mathematical expression for the positive definiteness of the entropy pro
duction. Thus any well-behaving collision operator should possess this
property. This is for instance the case for the Fokker-Planck collision oper
ator. However, the existence of a continuous spectrum ranging up to zero13)
may lead to difficulties for the analytic continuation in this case.

c. In table II the various cases are summarized for which the transport
coefficients show an absorptive or dispersive behaviour. In all cases the
appropriate Chapman-Enskog equation contains the external parameter £

T a b le  II

A review of the various cases where transport coefficients show an absorptive or
dispersive behaviour as a function of an external parameter (magnetic field or, in
rotating systems, rotation frequency). The existence of dispersion relations or sum

rules is indicated

system dispersion
relations

sum rules not
containing molecular

interactions

Lorentz mixture yes yes
rotating gas (Coriolis force) yes yes
ionized gas mixture, all components

charged but charges not of the same no yes
sign

ionized gas mixture, charged components
of the same sign, at least one neutral yes no
component present

ionized gas mixture, charged components
with different sign, at least one neutral no no
component present

polyatomic neutral gases no no
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via J  =  7 <0) +  CJa), where JW  is antisymmetric. This, together with the
dissipativity of /<°> is sufficient to lead to absorptive or dispersive be
haviour. It is well known that for linear passive systems the linearity and
passivity lead to a causal behaviour of the system under the influence of
an external force14). A causality condition, however, leads to dispersion
relations for the Fourier transform of the linear response. In the present
paper dispersion relations were found for some special cases and one might
ask if there is a causality condition connected with this. This is not likely
since related cases do not possess dispersion relations. Also, although the
system is passive, due to the dissipativity of /<»>, the dependence of the
thermodynamic fluxes on the external field is not linear. However dissi
pativity of 7<°> and antisymmetry of 7<» do lead to absorptive and dis
persive behaviour.

In macroscopic theory the first condition is connected with the passivity
of the system. Thus there remains the interesting question whether or not
there is a macroscopic condition which leads to dispersive or absorptive
behaviour of the transport coefficients of passive systems which depend on
an external parameter. Even this does not seem likely for it is known that
the Senftleben-Beenakker effect for the longitudinal transport coefficients
may have both positive and negative sign. Thus these transport coefficients
(which are positive) may, in extreme cases, first grow larger but for higher
field values may drop again to lower values or vice versa. Thus the satu
ration curve does no longer show a simple behaviour. The only remaining
feature is that the transport coefficient tends to a finite limit for high field
values. For further discussions about the Senftleben-Beenakker effect see
ref. 15.
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Synopsis
Longitudinal and transverse components of the transport coefficients of dilute

polyatomic gases in a magnetic field can be considered as real and imaginary parts
respectively of complex functions of a variable C proportional to the field. I t  is shown
that such functions can be generally split into two parts, corresponding to different
signs of the index m% labelling the components of the spherical tensors built up from
the angular momentum. Each of the two parts obeys separate dispersion relations
with respect to f. Although no exact dispersion relations hold for the components of the
transport coefficients as a whole, such relations are shown to hold in those approxi
mations where the rank of irreducible tensors built up from the reduced velocity
vector entering into the expansion of the distribution function does not exceed the
absolute value of the index m denoting the spherical tensor components of the trans
port coefficients. Some experimental consequences are discussed.

1. Introduction. As is well known, the transport properties of a dilute
polyatomic gas change upon the application of an external field (the Senft-
leben-Beenakker effects1-2)). These effects can be obtained by solving the
appropriate Chapman-Enskog equation and this can be achieved in two
ways, either by means of a variational procedure®) based on a truncated
expansion of the perturbation, <j>, of the distribution function from local
equilibrium or by means of an iterative procedure *) based on a splitting of
the collision (super)operator into unperturbed and perturbing parts.

The two procedures are equivalent in the field-free case if the splitting of
the collision operator in the iterative procedure is such that the unperturbed
operator is that part diagonal with respect to the set of tensors chosen for

• Permanent address: University di Genova, Dipartimento di Fisica, Genova, Italia.
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the variational procedure. This same remark holds true in the presence of a
magnetic field provided the set of expansion tensors employed is made up
of eigenfunctions of the field (super) operator. For linear molecules and
spherical tops this is exactly the case if spherical tensors are employed.
Diamagnetic molecules in general, however, have a rotational magnetic
moment not necessarily along the axis of rotation, i.e., the rotational g-
tensor can be anisotropic. Only the case where the g-tensor is isotropic will
be considered here. It should be observed that the expansion of the distri
bution function in terms of irreducible Cartesian tensors is especially
appropriate for the variational procedure, while the expansion in irreducible
spherical tensors is more convenient for the iteration method (when a field
is present). For this reason, the preceding discussion of equivalence of these
procedures should not be applied without due consideration.

A special advantage offered by the spherical tensor expansion is that it
facilitates an investigation of the analyticity properties of the transport
coefficients in the external-field variable. Indeed, the longitudinal (even-in-
field) components of the transport coefficients are given by the real part of a
complex function whose imaginary part gives the transverse (odd-in-field)
components4).

If the phenomenological equations for the heat flux vector q and the
pressure tensor U are written as

n =  —2ij(B): S

where JL(B) and 17(B) are the thermal conductivity and shear viscosity tensors
as functions of the magnetic field B while YT  and S are the temperature and
(symmetric traceless) velocity gradients, then the following quantities are
found to be related:

The above components of the viscosity tensor are obtained through the
scheme given by de Groot and Mazur5), whereas Ax and Atr are defined
through the scheme

q =  -X (B )-V T

and

real part
K

2rj2 —  rii

imaginary part
Atr
1)4

175

(
which applies for B along the z axis.
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Because of this, it is of interest to investigate the analyticity properties
of these complex functions of the real, variable f  =  grotnuB\hn when £ is
extended into the complex plane. It will be shown below by an iterative
procedure akin to that introduced by Kagan and Maksimov4) under what
conditions the continued functions are analytic in a half-plane so that
dispersion relations can be found connecting the longitudinal and transverse
components of the transport coefficients.

A similar treatment for the case of weakly ionized gases is also in pro
gress6).

2. Partial dispersion relations. The ‘‘second order” Chapman-Enskog
equation can be written formally as

V  =  <?<!> -  ( / o  +  *£ / i )  <p (!)

where tp is the inhomogeneous term appropriate to the problem under
consideration, <p is such that the perturbation <f> is formed by completely
contracting <p with the corresponding macroscopic gradient, J 'q is the
collision superoperator and is a self-adjoint superoperator* which is
due to the applied magnetic field. The precise form of / 0 is unimportant for
the present discussion, the only properties required being its isotropy
(rotational invariance) and its dissipative nature (in particular, it is not
required to be self-adjoint). The form of is, however, crucial to the pro
blem and is

f \  =  [J‘B, ]_ . (2)

If the direction of the magnetic induction B is taken to be that of the
(positive) z axis, then the form (2) above is conducive to an expansion of the
perturbation <p in terms of spherical tensor harmonics (because of the
preferred direction associated with B) where J  is related to J  by J  =
=  [j(] +  1)]~* J- The spherical components of J  are the usual ones J 0, J+
and J -  and lead to the result that

L/o, (3)

This result suggests the expansion of in terms of projection superoperators
which project out the irreducible subspaces defined by ^ “ ’(J), i.e.,
f i  = s  ‘ ’ {4v

is , m i V’ ;

Now, turning to the transport coefficients, it is obvious that a transport
coefficient L(£) can be written in terms of the formal solution of eq. (1)

=  ./'M O  0  (5)

* / i  is self-adjoint in the natural metric {A, B) =  tr ƒ /<°Mt.B dp.
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as
L(f) =  (*. S~HQ tp). (6)

The inverse superoperator appearing in eq. (5) exists and is bounded
on the subspace orthogonal to the summational invariants provided the
resolvent set of ^(C) includes the whole imaginary axis. Such a condition
is assumed to be valid throughout this paper.

A splitting of the collision superoperator into „diagonal” and „non
diagonal” parts can now be performed by utilizing the projection super
operators 0*%'. The „diagonal” part, is given as

/& d) =  z  * r / o * r  (7)
Ia»mia

the remainder of ,fo, viz., A dd)> being completely off-diagonal with respect
A

to the spherical harmonics.
With this splitting, ^ -1(C) can be written as

/~HC) =  ( / (d)(t) -  / f r * ) - 1 (8)
and this can be developed formally in a series expansion, viz.,

/ h  =  / (W ) z  [ / (nd>/<d)(C)]“. (9)
n —0

This series expansion is assumed to converge in the present work. In cases
where only a finite number of expansion tensors is considered, the expansion
will certainly converge if <nd> is small enough (this appears to be the case
as seen from experiment1’a)).

Substitution of the expansion (9) into the equation defining L(£) gives

L(C) =  2  (*. / < d>(C)[/<nd> / < d>(C)]n V). (10)
n

-1
where ^<d>(C) behaves essentially like ,ƒ <d>(£) in that it can be decomposed
as

/< d>-i(C) =  Z # T ( / i d) + it* # -10 T  = z  ^ T ( - /o d>. «*tf) (11)
la» m i la» m i

where i£jj*(—^ d), is a resolvent (super)operator. Thus, when 0̂ <d)-1(0
acts on xf> (which is in the manifold defined by ^-because t[> is independent
of the angles of J) it can be replaced by

The zeroth order term in expression (10) is then just

L<°>(C) =  (tp, X d)- ^ )  =  L(°)(oo). (12)
The first order term vanishes identically while the second order term is

L<2»(C) =  z  (V*. /E,d)" 1/ (nd) & Z'{A d) + M ) - 1 ^ r / (nd) A p - 'V ) -
u,mt (13)
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As w2 can take positive and negative values (and 0), there is a natural
splitting of AL<2>(£) =  L(2>(£) — L<2)(oo) into two parts AL^}(f) and A L^f)
containing, respectively, the positive and negative values of m2. Thus,
writing the transport coefficient in its spherical representation, each
component AL|^2̂ ({) can be written (to second order) as

A L |"(2)(£) =  AL£<2>(fl +  AL“ (2)(C). (14)

Now, the superoperatory o (and therefore /<*>) is assumed to be dissipative
in the strict sense, that is to say, its spectrum is wholly contained in the half
plane defined by 3te A <  — d. This amounts to the physical assumption that only
finite relaxation times are present. As a consequence, #  will also be strictly
dissipative, which result has already been used in the foregoing.
exists and is bounded and, if m2 is positive, the same is true for (^<d) _|_
-I- tmaC)-1 in the whole of the upper half-plane of f  (with f  considered as a
complex variable). Therefore AT£<2>(£) is regular in the upper half-plane and
can be thought of as an analytic function, holomorphic in the whole upper
half-plane of f ; a similar conclusion holds for AZ£f2>(f) in the lower half-plane.
Consequently, the representation (14) splits the analytic function AL™<2>(£)
into two parts, A£#*>(£) and AZ£<2>(f), holomorphic, respectively, in the
upper and lower half-planes of f . *

Moreover, in the present instance, much more can be said: AZ,»<2)(f) tends
to zero, at least as fast as |C|-1 when |C| -*■ oo in the upper half-plane. This
follows again from the dissipative nature of /<*> since, quite generally, the
norm of the resolvent of a dissipative operator vanishes, at least as fast as
(^e A +  d)-1, in the right half-plane of the spectral variable A, and the norm
of the resolvent of ,ƒ<<*> (for A =  —im<£) can be used in order to obtain an
upper bound for A£ # » « ). This has the important consequence that
AL™( >(Q obeys the dispersion relation

+  oo

&te AZ,“ <2>(£) =  J_ <p f  J m  AL»+8)(^)n J c -  c
—oo

which, since / » t  AL” (2)(̂ ) is odd in f, can be written also as
OO

AL” (2)(C) = — ? [ d £ ' ?  J m  AZ>n <2>(C)̂
n J — £2 •

0

* This conclusion is hardly surprising. In fact, the class of analytic functions which
,  LW thiS Way ‘S VCry large: lt comPrises n° t only all meromorphic functions

(Mittag-Leffler theorem) but also functions possessing essential singularities, provided
they afe finite in number and isolated’). For such functions, it is sufficient to take the
principal parts of the Laurent series at the singularities below and above the real axis
the remainder being holomorphic everywhere, i.e., an entire function.
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Analogously, AL£L(2)(£) tends to  zero a t least as fast as |£|-1 when in the lower
half-plane and obeys the opposite dispersion relation

Expression (15) has precisely the form of the well-known Kramers-Kronig
relations for the complex susceptibility5).

So far, only the second iteration has been discussed. I t  is clear, however,
th a t the same can be repeated in higher orders after separating the mixed
term s which contain m ^ ’ s  of different sign, into sums of pure terms. This
is always possible, using partial fractions, even though the fractions to
be split have the nature of (super) operators (higher order powers such as
(f — a)~P{j> >  1 and integral) cause no problems). Thus, the splitting of
AZ,” (£) into two parts, each of which is holomorphic in only one of the two
half-planes can be made to  all orders, the corresponding dispersion relations
holding to  all orders. This is also true for the whole sum so th a t the super
scripts (2) appearing in eqs. (15) and (16) can be dropped. I t  has been shown
then, th a t each component AL™(C) of a transport coefficient can be split into
two (complex) parts, obeying the dispersion relations (15) and (16). This
result is very general, bu t not very strong, since what is really desired are
overall dispersion relations for the measured quantities, i.e. for the compo
nents of the transport coefficients themselves. These can be obtained when
one of the two parts AZ,™ (£) or ALj’L(C) can be neglected with respect to  the
other. The circumstances under which this is possible are investigated in the
following section.

3. Overall dispersion relations. I t  is useful to  return to  an examination
of the second order expansion for L™(C) and investigate the relation between
the „quantum  num ber” characterizing the angular momentum ex
pansion term  and the „quantum  num ber” m  characterizing the components
of the transport coefficient. In  order to  do this, the nature of the departure
from local equilibrium has to  be more thoroughly considered. The function <f>
(a quantum  mechanical operator) depends, in the general case, not only on
J  bu t also on the reduced velocity W. Furthermore ip is, as has already been
stated, independent of the directions of J  but it does depend on the directions
of W. If the component Lj"(C) is sought, the index I can be seen to label the
rank of W  in xp. For example, the three pairs of components (Ax , Atr),
(2jjfe — r]i, rji) and (»?3, r\5) correspond, in the spherical tensor notation, to
1 = 1 ,  |m| =  1; I — 2, \ m \  =  2; and 1 — 2, \m\ =  1, respectively.

In  order to  treat also the W  dependence, projection operators P"1 which
project onto the manifolds defined by the spherical harmonics in W  are
introduced and the expansion (9) modified by using, in place of the

oo

die AL™(2)(C) ?  d f
„ C' J m  AL”(2)(H

r2 -  c2 *
( 16)

o
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superoperator

/ ( « » =  S  P ^ / o P W  (17)
h m ih m t

diagonal with respect to the manifolds defined by both the W- and J-
spherical harmonics. Its complement is called </^ ndd), and so on.

An expression of the type (13) can now be written, more explicitly, as

LTm(o = {v?, +ic/i)-1 /r d)/r-vn -
= r  wr. / r -w /o P w t/ r  + it™*)-1 x

lim iltn it

x pr,̂ T / o P r ^ / r >-V D . os)

where the prime on the summation indicates that the numbers l\, /2, mi, m2
cannot take simultaneously the values I, 0, m, 0. This has allowed the
replacement of / ^ ndd) by / 0 in the last part of eq. (18). It is at this point
convenient to change from the (implicit) representation with Zimi/2m2 to a
(be it again implicit) representation with Intlilz to correspond to the form
of L™{Cj appearing in eq. (18). The projection superoperators must,
in this transformation, be replaced by an expression given by

Pt& u  =  S  (/imi/2m2|Zm) (19)

where (Zimi/2m2|/m) is a Clebsch-Gordan coefficient and

W  =  S  (^imi/2m2|/'m3)|/ms/i/2a> </'m3/i/2a|. (20)ai'
Here m3 is required by the Clebsch-Gordan coefficient to be equal to mi +  m2
and the index a denotes all other variables required in a full decomposition
of <l> (for example, associated Laguerre polynomials in W2 and Wang Chang-
Uhlenbeck polynomials in J 2). Alternatively, can be replaced by*

pmpm, _  ^  (/lWl/2W2|/W3) (21)

the double-dagger ({) denoting the adjoint in the natural metric. In this way
eq. (18) becomes

Tj"(2)(C) =  £ ' £  (Zimi/2m2|/'m3) (/imi/2m2|/'m3) x
lih m im t W

x (fr . - ip r ^ / o ^ r ( / o ,d)+ « - ‘/ o P r ^ / r v r )
(22)

But, as f 0 is isotropic, o^riaV vanishes unless V = I and mi +  m2 =
=  m; similarly, 2 ™ * vanishes unless I" =  I and mx +  m2 =  m.

* This is because the combined projection is, of course, self-adjoint.
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Hence, eq. (22) reduces to

L r w (o  =  s '  (Wama i h 1 (v>r. / r )_1 p r ^ s /o J sr  X

x ( /r '  + in # -1 ̂ rV o P r^ /^ ’-VD- (23)
Because of the presence of the Clebsch-Gordan coefficient, if m is chosen
positive, ALJïJ^C) will be considerably smaller than AZ.™(2)(£). The cases
where it vanishes altogether are of interest since then a dispersion relation
of the form (15) will hold for AZ™(2)(£) as a whole. The Clebsch-Gordan
coefficient is non-vanishing only if m2 — m — mi, which, since mi varies
from — li to + /i, imphes that

—1\ +  m <  m2 <  h  +  m (24)

and m2 will always be positive, thereby causing the vanishing of AL™(2)(£)
if l\ <  m for m >  0 . In other words, a dispersion relation between even and
odd components of a transport coefficient corresponding to a certain m
exists insofar as in the expansion of <f> the rank li of the expansion tensors
in the reduced velocity W  does not exceed m. Thus, for example, if
in a calculation of the shear viscosity only the term [J]<2> (corresponding to
l\ =  0) is considered8), dispersion relations will be found for both the pairs
(2r) — Tji, 174) and (173, 175); if, on the other hand, the terms [J]<2>[IP]<2>9> or
J[W'](2>1°) (corresponding to li — 2) are included (space inversion con
siderations force l\ — Z to be even), only the dispersion relation for the pair
(2j?2 — 171, *74) will remain. As far as the thermal conductivity is concerned,
all calculations to date ®>9-12) have involved only terms of rank 1 in W: for
all such terms, a dispersion relation between Ax and Atr holds.

It should be mentioned here that the second order approximation in the
iteration procedure is on the same level as the so-called diagonal and spherical
approximations employed normally in the variational procedure*. The
explicit calculations performed in various special cases8-4),8_12) are in
agreement with the present conclusions.

The foregoing considerations have been undertaken in second order, but
are in fact valid to any order. The general term will contain factors of the
form

IT-’̂ y o P W  =  2  (hmxhnullmi +  m2)(/imi/*mi|/' m[ + mi) x
IT

x j j t t p V o i s r  (25)
and, since ^ 0 is isotropic, V must equal I and, furthermore, mi +  =
=  mi +  m2: thus the total m propagates throughout the whole term (the
other factors, being completely diagonal in mi and m2, do not create any

* See the appendix where a diagrammatic representation is discussed.
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difficulties). Hence, the expression (25) contains, in particular, the Clebsch-
Gordan coefficient {limil2m2\lm), where m  labels the particular component
wT, and the preceding discussion carries over. As long as only tensors whose
rank 1% in the reduced velocity W  does not exceed \m\ are considered, a
dispersion relation of the form (15) holds to all orders and for the sum of the
iterative expansion. This can be seen, for example, in the exact calculation
of the thermal conductivity when the only anisotropic term  considered12)
is W[J]M.

The presence of dispersion relations for the pairs (2t?2 — rji, rjt) and
(V3, r\5) when only the [J]<2> expansion term  is used for the viscosity trial
function and the loss of the dispersion relation for the pair (rjs, j j5) when a
[W]W dependence is added, allows an opportunity for determining ex
perimentally in a  sensitive way how im portant the various term s in the
expansion are. I t  is quite probable tha t the [T](2> term  is the most im portant
one in the viscosity expansion; for example, the change in the viscosity of
H 2 in the field occurs a t a (B/n)i value corresponding to  an inelastic time
scale18*14). For this reason, a comparison of the curve for rj3 obtained ex
perimentally with th a t obtained through the dispersion relation (15) from
the experimentally measured curve of r)5 will be a check on the size of the
higher terms.

In  the present work no comparison has been made with the original
perturbation m ethod of Kagan and Maksimov. A discussion of this m atter
can however be found in ref. 15.
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APPENDIX

A diagrammatic representation. A typical term  occurring in the iteration
procedure can be represented in the l2, m2 plane as follows: l2 labels concentric
circles of integral radii and m2 labels horizontal straight lines of integral
ordinate. The points of intersection characterize the various components
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2,2  > •  ' 2,2

1,1 •

2 ,2 •

Fig. 1. Diagrammatic representation of some terms important for the thermal
conductivity problem (h =  1, fa =  2)."

la: second order iteration.
16: diagonal approximation.
1 c: spherical approximation.
1 d: a non-diagonal diagram containing 16 as a subdiagram. Full lines

indicate /2-changing transitions, dashed arcs /2-conserving transitions.

of the vector spherical harmonics in J. Transitions from one point to another
correspond to the (super) operator â 0“d), all diagrams starting from the
origin and ending there (since 1p lies in the irreducible subspace projected out
by &l). The number of lines occurring in the diagram gives the order of the
term; hence, the second order diagram is just a segment travelled twice
(fig. la). The "diagonal approximation” employed in the usual variational
treatments3) allows only two lines from the center, the rest being restricted
to certain arcs of the circle of radius 12 connecting a number of allowed points
(tn — li <  mz <  m -f- /1) (fig. li).

On the other hand, the "spherical approximation” forbids motion along
the arcs (fig. lc). The combination of the two approximations corresponds
therefore to a second order iteration. Fig. 1 d shows a more general type of
diagram.

This kind of diagrammatic representation is only useful when l\ is essenti-
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ally fixed, and therefore is especially suitable for the case of the thermal
conductivity where h  can be restricted to be 1. The diagrams occurring in
fig. 1 are all of interest for the thermal conductivity problem.
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SAMENVATTING.

In dit proefschrift worden enige aspecten beschreven
van de invloed van een magneetveld _B op transportverschijn
selen in verdunde meeratomige en geïoniseerde gassen. Zoals
bekend leidt het aanleggen van een homogeen statisch mag
neetveld niet alleen tot een verandering in de longitudina
le transportverschijnselen (even in _B), maar leidt dit ook
tot het optreden van transversale effecten (oneven in _B).

Hoofdstuk 2 bevat een berekening van de warmtegelei-
dingstensor X(B) voor een verdund twee-atomig gas. De in
vroegere artikelen gemaakte aanname van kleine anisotropie
in de intermoleculaire wisselwerking is hier vermeden. Als
resultaat van deze, meer algemene, berekening blijken zowel
de vorm van de verzadigingskrommen voor de diverse compo
nenten van X als functie van de parameter B/n (n is de gas
dichtheid), als de verhouding van de verzadigingswaarden
voor de twee longitudinale componenten van X, zich te wij
zigen, De optredende correcties zijn bijvoorbeeld van be
lang voor een gas bestaande uit zogenaamde 'ruwe bollen'.

In het tweede hoofdstuk wordt een berekening gegeven
van de viscositeitstensor 3(B) voor mengsels van twee-
atomige gassen en edelgassen. Metingen van 3(B) voor een
dergelijk mengsel als functie van de concentraties van de
componenten kunnen belangrijke informatie verschaffen over
het anisotrope deel der wisselwerking tussen moleculen en
edelgasatomen.

Een nadere beschouwing van zowel de experimentele als
de theoretische krommen voor de afhankelijkheid van de
transportcoëfficiënten van B/n laat zien, dat de krommen
voor de longitudinale coëfficiënten het karakter van een
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dispersiekromme hebben, terwijl die voor de transversale
coëfficiënten een verloop karakteristiek voor een absorptie-
kromme vertonen. Dit doet de vraag rijzen of longitudinale
en transversale transportcoëfficiënten verbonden zijn door
middel van een dispersierelatie, of, nog algemener, er aan
deze laatste een causaliteitsprincipe ten grondslag ligt.
Hierop wordt nader ingegaan in de hoofdstukken 4 en 5, voor
respectievelijk geïoniseerde en meeratomige gassen. Het
blijkt dat dispersierelaties in het algemeen niet gelden.
Echter bestaan deze wel voor de transportcoëfficiënten van
het Lorentzgas en voor gassen in roterende systemen. In het
laatste geval komt de rotatievector u in de plaats van het
magneetveld IJ (Corioliskracht in plaats van Lorentzkracht).
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