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STFLLINGEN

Laal P(m) een analytische, conecave functie zijn van n variabelen,
)

(1

en ¥ = (VN seeesVy

Hvél)ﬂ < Mi < o,
(1) L3

NOVy™ s V" 10 s

Dan geldt:
lim ¢N(BP(YN)) =
Nooo

waarbi]j ¢ (..) =

N

op voorwaarde dat de

(n))

een verzameling operateoren met de cigenschappen:
als my niet-lineair voorkomt in P(m);

#(N), met &(N)+0 voor N-+o,

inf [ BP(m) + sup lim @N(h'(m—yN)) !,
m h Noe

" 1n Tr exp [-N(..) 1,
limiet in het rechterlid hestaat.

Hoofdstuk II van dit proefschrift.

IT

De Van der Waals-Maxwell theorie kan zowel met interacties van het Kac

type als met separabele interacties exact gerechtvaardigd worden. De resul-

taten verkregen met deze laatste wisselwerkingen zijn van toepassing op een

grotere klasse van modelsystemen.

Hoofdstuk II van dit proefschrift.

P.C. Hemmer en J.L. Lebowitz in:

"Phase Transitions and Critical Phenomena',
C. Domb and M.S. Green, (eds.), Vol. 5B,

(Academic Press, London, 1976).
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Het demagnetiserende effect leidt in het specilale geval van cen super-
exchangeantiferromagnect tot kritische-exponentrenormalisatie in de zin van
i Fisher. 1n normale magnetische systemen daarentegen geeft dit effect in

het algemeen aanleiding tot andere renormalisaties van kritische exponenten,

M.E. Fisher, Phys.Rev, 176 (1668) 257,
{ Hoofdstuk TTII en IV van dit proafschrift.

1V

De resultaten van Rajagopal en Ramana voor cen &&ndimensionaal XY-model
met Dzyaloshinsky-Moriya interacties lkunnen direct gevonden worden met

behulp van een kanonieke transformatie.

A.K. Rajagopal en M.V, Ramana,
J.Phys. €12 (1979) L355.
J.H.H. Perk en H.W. Capel,
Phys.Lett. 58A (1976) 115,

re (i

%

De Landau ontwikkeling g{x,y) = uxg-i-vyg-i-xh-i-pxgy?-l-yh van de vrije
energie in de twee ordeparameters x en y kan gebruikt worden bij de analyse
van het tetrakritische en bikritische gedrag van een antiferromagneet. Een
gedetailleerd onderzoek van deze ontwikkeling in de buurt van p=2 kan ook

inzicht geven in meer ingewikkeld kritisch gedrag.

Yao-Chien Liu en M.E. Fisher,
J.Low Temp.Phys. 10 {1973) 655.
L. Bevaart, Proefschrift, (Leiden, 1978).
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VI

Het is gewenst de opgegeven temperaturen van de vijf supergeleidende
overgangspunten tussen 0,015 K en 0,210 K die sinds kort als vaste punten

voor de thermometrie beschikbaar zijn door onafhankelijke metingen te veri-
fidren.

R.J. Soulen en R.B. Dove,
NBS Specc.Publ. 260-62 (1979).

VIt
De combinatie van de transformaties die Jullien en Fields toepassen op

de spin 3 XY-keten met alternerende interacties is equivalent met een

lineaire transformatie van fermionoperatoren.

R. Jullien en J.N. Fields,
Phys.Lett. 694 (1978) 214,
H.W. Capel en J.H.H. Perk,
Physica 87A (1977) 211.

VIII

Het feit dat de gebruikelijke schaalwetten niet van toepassing zijn voor
de kritische exponenten van het sferisch model in vier en meer dimensies
kan verklaard worden uit de competitie tussen een singuliere een een regu-

liere bijdrage tot de (Legendre getransformeerde van de) vrije energie.

C.K. Hall, J.Stat.Phys. 13 (1975) 157.




X

Om het ijktheoriekarakter van de gecombineerde zwakke eon elektromagne-
tische wisselwerkingen te testen, verdient het bestuderen van de rractie

+ - + - .. + - + - -
e +e - W +W de voorkeur boven bijvoorbeeld ¢ +e > VW +e +v,

Het eigenwaardeprobleem van Konno en Wadatil, met als speciale kcuze

voor de potentialen de N-solitonoplessing ten Lijde nul, gegeven door

dy
g 2N _ _ .
I cosh 2x Veo T Mg » 0= s

heeft als oplossing de gebonden toestanden

oX, n-1

const, -gX.n
= —— + +1—= + o
Wn’o Tosh ox | PN_1(tanh 2x) + (N+n-1)e PN_1(uanh 2x)}

bij de eigenwaarden An = 2n-1, (n=1,...,N).

K. Konno en M. Wadati,

Progr.Theor.Phys. 53 (1975) 1652.

XI

Tegen de bewering van Fox dat lange tijdstaarten niets anders zijn dan
normeringsconstanten van Gaussische correlaties, 2zijn bezwaren aan te

voeren.

R.F. Fox, Phys.Rep.48 (1978) 170-283, p. 222,

L.W.J. den Ouden, 20 juni 1979,
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INTRODUCTION AND SUMMARY.

An important problem in statistical mechanics is the evaluation of
thermodynamic properties of a many-body system containing a large number
(N) of particles on the basis of microscopic interactions hetween the
prarticles. These properties may depend in a rather sensitive way on the
range of interaction between the particles. Extreme eramples are
interactions of finite range which are zero when the distance Lotween the
particles becomes too large, and interactions of the so-called cquivalent-
neighbour type which do not depend on the distance at all. In many cascs it
is sufficient to cvaluate the {ree energy per particle in the thermodynamic
limit (N o) from which other thermodynamic quantitics can e drrived,

M special class of many-particle systoms is deseribed by the hamiltonian

i

0 LIPS (1)

n

=_h*ow=_. Z

- - i=1
in which W = (W,,...,W ) denotes a finite set of shori-range operatlors,

- 1 n

acting on the Hilbert space of the N-particle system, and E* = (ht,...,h:)
the set of coupling constants or external fields coupled to the operators
W. Tor these systems the free energy per particle in the thermodynamic limit

1),2)

exists and is given by

£,(n*) =1im - (8H)™" 1n Tr exp [-8iC,] , (8 = 1/kT) , (2)

0°= " Ry
vhere the trace is taken over the Hilbert space of the N-particle system.
A precise definition of short-range operators involves a more detailed
description of the process of taking the thermodynamic limit, but all
interactions with finite range belong to this category.

An example of eq. (1), with n=2, is given by the hamiltonian

KU =_-J (gj) Uioj - h § o s g.=%x1 , (3)
which describes an Ising model with interaction J=ht between pairs (ij) of
n2ighbouring spins in the presence of an external magnetic field h=h; . In
this example the cperators W, = Zoioj and W, = Zoi commute, but in general
(wl,...,wn) in eg. (1) can be quantummechanical operators with nontrivial
commutation properties.

An interesting feature of the thermodynamic limit in eq. (2) is that for

specific values of the parameters hr,...,h: the function fo(b*) will exhibit
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T

a nonanalytic behaviour corresponding to a phase transition in the system
described by Mb. For instance, the Ising ferromagnet described by (3) wi?h
J>0 in two and more dimensions shows a discontinuity in the magnetization °,
m, = -Bfo/ah;, for sufficiently low temperatures T<Tc' At T=Tc there is a
critical point at which the second derivatives of fy diverge.

An equivalent description of the thermodynamic properties can be given

in terms of the Legendre transform SO(T) of fo(E*)’ which is defined by
50(9) = sup [E*-Q + fo(b*) 1, m= (ml,...,mn) . (L)
h

Here the supremum exists, since fo(g*) iz a concave function. The more
conventional definition of a Legendre transform,

Bfo

= - % (h*({l_l)) H

go(m) = h*(l_r_l)'l_r_l + fo(l_'_l*(rll)) ’ oh

13

leads to some complications in the presence of first-order phase

transitions, i.e. if one of the first derivatives of fy has a discontinuity. -
Between the second derivatives of f, and g, one has the relation

Xg -aefo/ag*ag* = (azgo/a@ag)‘1, provided that the second derivatives and

the inverse matrix exist. One can alsc obtain fo(h*) from go(m) using the
3) - -

inverse Legendre transformation

£, (n*)

o{h™) = inf [-hem + g (m) ], (5)

m

wvhere the infimum must exist, since go(m) is convex.
For most systems in two and more dimensions an exact evaluation of

f (h™) has not izen found. An exception is the two-dimensional Ising model

0 - u)

in zero field . In other cases approximate methods have been used such as

e.g. series expansions 5). In recent years much know how has been obtained

on the behaviour of fO(E*) in the neighbourhood of a critical point. In the

* . . . el s
case that fo(h ) has divergent second derivatives (at g*:o), it is

6)

appropriate to assume the homogeneity property

a, %
£,(u71 hl,...,ban h;) = bfo(hf,...,h:), bea <1, (6)

where b is a parameter which tends to zero if we approach the critical point.
For a number of cases, explicit values of the critical exponents a; have

7)

teen obtained using a renormalization group approach '’,

In this thesis we investigate the more general class of systems



described by the hamiltonian
i = ~h+W + NP(W/N) , (7)

in which W = (wl,...,wn) are short-range operators acting on the Hilbert
space of an N-particle system and P(W/N) is an analytic function of n
variables. The different terms contributing to NP(W/N) can be expressed
as products of Wi/N and may therefore be called (generalized) separable
many-particle interactions.

The type of systems described by the hamiltonian in eq. (7) may be used
to study the competition between a short-range operator -h*W and an
additional term NP(W/N) of a quite different nature. For example, to the
Ising model in eq. (3) we may add the term

A
2 2 M "2
NP(W/N) = A \Wi/N + A W5/N = = )} o0.0.00, += ] 0.0, . (8)
- 171 272 L, L.
- N (1j¥¢(ke} 1k N 1,3 1

The first term in the right-hand side of eq. {8) represents a four-particle
interaction of hybrid nature, which is short-range with respect to intra-
pair interactions between i and j, and k and £, but long-range between the
pairs {ij) and (k&) . Such a four-particle interaction can arise as a

8),9).

consequence of spin-phonon couplings in compressible ferromagnets The

second term with A? corresponds to a long-range interaction of the
equivalent-neighbour type. Such operators with A,>0 have been used in a

classical description of demagnetizing effects 107, Exact results have been

9)

obtained by Oitmaa and Barber for the two-dimensional Ising model with

A2=O, A1<O, and by Hall and Stell ") for the two-dimensional superexchange
antiferromagnet 12) with A=0, A,<0.
In this thesis we derive a general result for the free energy per
particle
£(n) = lim - (8N)”' 1n Tr exp [-8K] , A (9)
Nooo
corresponding to the hamiltonian (7), wviz.

£(h) = inf [-hem + go(m) + P(m)] . (10)
m

Here go(m) is the Legendre transform of the free energy fo(h*), ef. (2)
and (L), for a reference system described by the hamiltonian (1), which is
a linear combination of (quantummechanical) short-range operators. Note

that the reference system itself may exhibit phase transitions.
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For the special case that all operalors W in the hamiltonian (7) are sums

of one-particle operators, such as e.g. W, Zci in the Ising model (3), eq.
(10) provides a general description of the free energy in systems with long-
range interactions of the equivalent-neighbour type. This problem has been
treated in a fairly general way in ref. 13. Special examples include e.g.
the Husimi-Temperley model, see ref. 1k, the Ising chain with equivalent-
neighbour interactions 15) and the exact evaluation 16),17) of the free
energy starting from the reduced hamiltonian in the BCS~theory of super-
conductivity 18). Alsoc, relations which are similar to special cases of
eq. (10) have been derived in models with interactions of the Kac type,
(i.e. in 4 dimensions the interaction betweon two particles at distance r
behaves roughly like Yd exp(=~yr) ), in the limit y+0, sece e.g. refs. 19,20.

As an application of ~q. (10) we investigate in this thesis the free
energy £(h) in a neighbourhood of a critical point of the short-range
reference system. Starting from a reference free encrgy with divergent
second derivatives X it is easy to see that the critical properties of the
free energy (10) will be alfected in a nontrivial way by a perturbation of
the type P(m). In fact, the second derivatives of gy will then tend to
zero if we approach the critical point, (since 32g0/8@3@ = 561). If the
function P(g) contains a nonvanishing quadratic part, then Ehis quadratic
part will be dominant in a neighbourhood of the critical point.

In particular, if P(Q) is strongly convex, the value m at which the
infimum in (10) occurs, is uniquely determined for each value of the
coupling constants or external fields h. As a consequence there can be no
first-order transitions, and the susceptibility matrix X —BEf/BEBE is
finite, also at the original critical point of go(@), (;ince
3_1 = Sggo/agag + 32P/agag). Also, a more detailed analysis, using the
Eomogeneity property (6) for the reference system, leads to varicus
regimes of critical-exponent renormalization. A special example is the
Fisher critical-exponent renormalization 21), but many other
renormalizations are possible.

On the other hand, 1if P(@) is strongly concave in one direction, i.e.
e ~(32P/BQBQ) re is negative for a certain unit vector e = (el,...,en),
then the function between brackets in eg. (10) cannot be convex in a
neighbourhood of the original critical point (@=O) and the infimum cannot
occur in this neighbourhood. This implies that there will be first—ofder

transitions which may terminate in a classical critical point.

—



These two cases may serve as an illustration that the critical
properties of a short-range system with divergent susceptibilities are
unstable under small perturbstions of the type NP(H/N) as in eq. (7). The
actual treatment of the problem, however, is more complicated. First of
all the assumption (6) for the free energy f, is much too restrictive. In
fact, starting from n variables h?,...,h; one may introduce r variables
e?,...,e: which gffect the criticel properties of the reference system and
which are therefore called relevant variables, and n-r variables
CT""’c:-r which do not and may be called irrelevant. In connection with
the free energy (10) one might then raise the question to which extent the
"irrelevant" variables may be eliminated. This is not a trivial problem
and will be taken into account in this thesis. Secondly, the free
energy f; may have finite second derivatives with a cusp-like behaviour,
i.e. an infinite derivative at the critical point. Finally, expressions
like (10), ©Dbut with a more general function P(T’§> depending on the fields
h as well, can be derived in systems with constraints on first derivatives
of the free energy, and will also be taken into account. Systems with one
constraint on a hidden variable have been treated from a general point of

1)

examples are e.g. the Baker-Essam model for compressible Ising ferro-

view by Fisher 2 and later on by Imry et.al. 22). Important physical

magnets 23), and the Syozi-models with bond-annealed 2k) and site-
25)

annealed impurities.

In chapters I and II we present a rigorous derivation of eq. (10) for
the class of systems described by the hamiltonian (7). The proof is based
on the decomposition of the function P(m) into a concave part Q(m) and a
convex part R(m). For concave P(m) = Q(m) eq. (10) can be proved using a
generalization of a fundamental theorem due to Bogoliubov Jr. 17). A
simplified proof of this theorem in the case of a quadratic function
P(g) = -Age, A >0,is given in chapter I together with an evaluation of
f in & special case with operators W which are sums of one-particle
operators. The proof of eq. (10) for general short-range operators
involves some subtle considerations on the process of taking the thermo-
dynamic limit and is presented in chapter II,

In chapter III we give a rather general treatment on the critical
properties of the free energy (10) in the neighbourhood of a critical point

of the short-range reference system. The conclusions are made more explicit



in chapter IV for the special case P(m) = P(m,,m,) = %Hlmf + %Hzmg, using
the linear model introduced by Schofield to describe the reference free

energy in the neighbourhood of & simple critical point with two relevant
variables and divergent second derivatives such as e.g. the critical point

of the three-dimensional Ising model.
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CHAPTER I

SYSTEMS WITH SEPARABLE MANY-PARTICLE INTERACTIONS. I

1. Introduction

In recent years systems described by hamiltonians in which the interaction terms
are essentially of a long-range nature have received a great deal of interest. In
many cases the free energy per particle in the thermodynamic limit can be evaluated
exactly and the result is usually of the molecular-field type. In connection with
this two classes of long-range interactions have been investigated in detail.

For a number of models the free energy per particle has been evaluated in the
presence of interactions of the so-called Kac type'), for which the coupling be-
tween particles located at »; and r; decreases roughly like —y?exp (—y |r; — #;)),
d being the dimensionality, for sufficiently large values of [r; — r;]. An exact
result for the free energy per particle can be obtained in the so-called Van der
Waals limit, i.e. the limit y | O after taking the thermodynamic limit. The one-
dimensional classical version has been treated by Kac, Uhlenbeck and Hemmer32).
Extensions to more dimensions and quantum-mechanical situations have been
dealt with by Van Kampen?), Lebowitz and Penrose*) and Lieb%). Ising systems
with this type of interactions have been investigated by Baker®), Siegert and Vez-
zetti’?). Recently Thompson and Silver®) and Pearce and Thompson®) treated the

9



n-vector spin model and the anisotropic Heisenberg model with this type of inter-
actions.

A second class of models with long-range interactions are those with inter-
actions of the separable type, by which we mean that the interaction V (k, /) be-
tween particles £ and / can be written as a product of an operator V() acting on
the Hilbert space of particle kK and an operator V(/), i.e. V(k, 1) = V) V(I).
This class includes models with so-called equivalent-neighbour interactions,' in
which the coupling between two particles does not depend on the distance be-
tween the particles. A lattice-gas model with this type of interactions has been
introduced and investigated by Husimi'®), Temperley'') and Katsura'?), An
Ising version equivalent to this lattice-gas model has been studied in detail by
Miihlschlegel and Zittartz!3), The evaluation of the free energy in these cases is
straightforward since the operators in the hamiltonian commute. In the presence
of noncommuting operators, however, the situation is more difficult. Starting
from the so-called reduced hamiltonian in the BCS theory of superconductivity'#)
Miihlschlegel!5) proved, on the basis of the Laplace method, that the free energy
derived by BCS!4) is exact in the thermodynamic limit. (A different approach to
this problem had been discussed earlier by Bogoliubov, Zubarev and Tserkovni-
kov'6).)

Recently two of us investigated a rather general class of systems with separable
interactions!7~1%), In refs. 18 and 19 we considered a hamiltonian including a
one-particle operator Z,,N= 1 T(k), N being the number of particles, and a finite num-
ber p of interactions of the separable type, i.e. 3 7=, Yat=1 AV (k) V7). Here
the interaction parameters /1, can be positive as well as negative. For negative 4;,
the interaction term is negative definite and may be called a separable interaction
of the “ferromagnetic” type. For positive 4, we have an “antiferromagnetic”
separable interaction. The free energy could be evaluated in terms of a “trial”
hamiltonian which is a linear combination of the sums Y 7(k), Y V' (k) men-
tioned above.

In ref. 19 a rather simple proof was given based on a fundamental theorem due
to Bogoliubov Jr.2%-2!) in the presence of only ferromagnetic interactions. This
theorem applies to hamiltonians of the form s#y = N {T — (VO? 4 gy,
where the operators T, V1, ..., V® and the commutators N [T, V¥], N [V‘P,
V®) (k, ! = 1,..., p) have norms which are uniformly bounded in N.

According to this theorem the free energy per particle in the thermodynamic
limit can be expressed in terms of the free energy of a trial hamiltonian which is
linear in the operators T and V. The generalization of this theorem to antiferro-
magnetic operators is not correct, ¢f. refs. 19 and 21. An application to spin sys-
tems has been discussed by Brankov et al.22). Very recently, Bogoliubov Jr. and
Plechko??) and also Brankov et al.?*) proved that the solution of the Dicke-
maser model by Hepp and Lieb?%) can be understood in terms of a generalization
of this theorem.

10
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The fundamental theorem can be proved by deriving an upper and a lower bound
for the free energy per particle, which turn out to be equal in the thermodynamic
limit. The upper bound is a straightforward application of the Bogoliubov-
Peierls inequality®6). Two different approaches have been developed for the
lower bound. Using some subtle inequalities and an ingenious integration over
complex variables Bogoliubov Jr.2%-21) proved that the difference between the
free energy per particle of the hamiltonian and the trial hamiltonian is bounded
from below by a term which is of the order N =25, In ref. 19 the lower bound
was derived using an integral representation for the partition function Z = [e~N¢
and Laplace’s method. The correction due to the second derivatives of G at the
absolute minimum was shown to be proportional to N ! except at those points
where a second-order transition occurs, In ref. 19 use has been made of the as-
sumption that the Hilbert space of particle % is finite-dimensional. This assump-
tion is not essential in the approach of refs. 20 and 21.

Finally it may be mentioned that several systems with equivalent-neighbour
interactions have been treated from a C*-algebra point of view, cf. e.g. ref. 27.

So far we have restricted ourselves to systems with two-body interactions.
Recently models with four-body interactions and. also more general interactions
have been investigated in the literature. Four-particle interactions can be of im-
portance in situations, in which the exchange coupling depends on the distance
between the atoms2?). Systems with such interactions have been treated e.g. in
the molecular-field approximation, see Lee and Bolton?®), Matsudaira®®) or
on the basis of an exactly soluble model with separable interactions, Bowers/
McKerrell3:2!), Thompson®2), Oitmaa and Barber®3), Lapushkin er al3%). In
refs. 28-34, the operators in the hamiltonian commute.

In the present paper we consider the class of systems described by the hamil-
tonian

'#N=N{TN+P(VN)}5 . (L.1)

where Ty and ¥y are “weighted” sums of bounded hermitean one-particle opera-
tors, i.e.

N N
Ty=N-1YT)), Vy=N-'Y V() (1.2)
k=1

k=1

and where P is a polynomial in the operator Vy of the type
M
P(Vy) = 3, PiVi- (1.3)
qz2

Note that in eq. (1.3) we can restrict ourselves to terms with ¢ > 2. Also in gen-
eral the operators Ty and V) do not commute. We shall prove that the free energy

11



per particle in the thermodynamic limit*

f1#] = lim fy[#y] = lim — (BN)~1In Tre™ ¥~ (1.4)
N=w N-w®

is given by
SI#] = min  lim fy[5#, n(8)] (1.5)
feft N-ox

where the trial hamiltonian 3¢, y(£) is defined by
K, 5(&) = N{Ty + P§) + P'(&) (Vy — 8. (1.6)

The minimum in the right-hand side of (1.5) must be taken over the set of values
& e . satisfying the molecular-field equation

& =lim <VN>J!'"'N(¢)’ .7n
N—wo
where (B>, for arbitrary hermitean operators A and B, is the average of B with
respect to A4, i.e.

{BY,=Tr Be %4 (Tre 841, (1.8)

Note that in general the minimum over the set £ € ./ does not correspond to the
absolute minimum of f[s#,,(£)]. An example will be given in section 4.

In the proof of (1.5) use will be made of the general theorem of Bogoliubov
Jr.2%:21) mentioned above for ferromagnetic quadratic interactions. A simplified
proof of this theorem will be given in section 2. Furthermore, we shall use a
weaker assumption on [Ty, ¥y] than refs. 20 and 21. In section 3 we prove eq.(1.5)
using the mean value theorem and general properties like the concavity of the
free energy. In section 4 we deal with a model treated in ref. 32. Although this
model is of a rather trivial nature, since the operators commute, it may be of in-
terest within the context of the present treatment.

Finally it may be mentioned that the present treatment may be generalized to
include a much larger class of hamiltonians. In particular the polynomial P(Vy)
may be replaced by an analytic function of a finite number of operators ¥,
V3, .., V™ and the operators in eq. (1.2) may be replaced by arbitrary short-
range interactions. In the present paper we restrict ourselves to the hamiltonian
(1.1), since the proof contains the essential features of the proof in the more
general case. The generalizations mentioned above lead to some comptications of
a more technical nature and will be treated in a separate paper3%).

* The symbol f[5#] in eq. (1.4) has been introduced as a short-hand notation for the thermo-
dynamic limit of fy[s#x].
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2. Fundamental theorem for ferromagnetic interactions

In this section we give a simplified proof of the theorem due to Bogoliubov
Jl..ZO.zl).

Theorem: Consider a system described by the hamiltonian
Hy = N(Ty~ AVY), 2.1)

where .1 > 0and Ty and ¥V are bounded hermitean operators with a commutator
which tends to zero in the thermodynamic limit, i.e.

(75l < My, | Vnll < My,

. 2.2)
[Ty, Vyll =e(N)—-0, if N- .
Then the free energy per particle in the thermodynamic limit is given by
f=lim fy[5#y] = min lim fy[#, ¥, (2.3)
N~ &€ N-»w
where the trial hamiltonian 5#; y(§) is cefined by
Ko, (&) = N(Ty + A8 — 24EVy) (24)

and where it is understood that the right-hand side of (2.3) converges in the
thermodynamic limit uniformly on the interval |§| < M, on which (2.3) assumes
its absolute minimuin,

Remark: At first sight, the theorem in refs. 20 and 2] seems to be a generalization
of the present formulation, including a finite number of non-hermitean operators
V. However, this generalization can be proved directly applying the present theo-
rem successively. Note that we use a weaker condition on the commutators of
the operators Ty and ¥y than refs. 20 and 21.

Proof: We prove eq. (2.3) by deriving an upper and a lower bound,

Upper bound: The upper bound is almost trivial using the Bogoliubov—Peierls in-
equality??)

F[A + B] < F[A] + (B)., @)

valid for arbitrary hermitean operators 4 and B, where F[C] = —~f~!1In Tre~4¢
is the free energy corresponding to the hamiltonian C. For the free energy per

13
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particle we have
SNIH#N] — Snl e, n(E)]
SN — HadEow 0 = =AWV = Do 00
= ~ALVx = VW y@) Dty — ALV N0, 000 — §? < 0. (2.6

Note that the difference in eq. (2.6) can only be zero, if

& = Vadory - 2.7

Lower bound: In the derivation of the lower bound we follow essentially the proce-
dure used by Bogoliubov Jr.2%:2!), In order to derive an upper bound for the
quantity

ay = ay(0) = nlin Il w(8)] = fu[54], (2.8)

we define the function

ay() = m;'n Sl e, n & 9] = Sul# N0, (2.9)
where

H @) = Hy — WVy, (2.102)

Hn € v) = K iE) — NV (2.10b)

for real values of »*.
From the mean value theorem, we have

-1 _'[dv ay () = an(¥,) 2.11)

for arbitrary values / > 0 and some value v, satisfying 0 < », < I Since for both
hamiltonians 5, y (&, ) and #y(»)

5,
N = [Vl < WVall < My, 212)

-

oy

it follows that
lan(vo) — an(0)] < 2Myv, (2.13)

* In refs. 20 and 21 also complex values of » are taken into consideration. This is not neces-
sary in the context of the present treatment, since Vy is hermitian.
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and

t
ax(0) < 2Myl + I~ [dvay (). (2.14)
o

Using again eq. (2.5), we have
ay(v) < rr:.in N7 H e n (6 v) — NP sy
= ALy ~ Vwdwyo)Dwyn + m;" AV wyn — P
= ALV ~ Vidwwyo)*D i (2.15)

The right-hand side of (2.15) can be expressed in terms of the second derivative
of the free energy fy per particle corresponding to the hamiltonian J#y(v), i.e.

02 02
_N-1 —a{— = = N1 K]

8
= [ dv {(Fx(®) — Vwaeyo) Vo — Vidweyo)Doesenys  (2-16)
0
where use has been made of the notation
A(T) = e‘#x"(\!)A e‘-fJ"N(v)' (2.17)

In order to estimate the right-hand side of eq. (2.15) we use the inequality™

I3 B
ﬂ_lof dv{A(T) Adyp < (A*)¥ < .3_10,[ dz {A(T) A) ¥

J:] +
+ 3 (K4, 1, ATy ) { farcam ), @19

where A(t) = ¢ 4 e™™, for arbitrary hermitean operators 4 and J, cf. eq.(2.10)
of ref. 36. Note that in eq. (2.18) the integrals over T and the average value of
[A, [#, A]] are positive. The inequality can be proved using a representation, in
which J# is diagonal. For details we refer to ref. 36.

Applying (2.18) to the right-hand side of (2.15), we have in view of (2.2)

2 2 %+
ay(® < A {-—(ﬂ]\l)‘1 —%::-‘l + (iMys(N))* (—-%;é”—) } (2.19)

* In refs. 20 and 21 Bogoliubov Jr. uses a slightly different inequality with exponents } and ¢
rather than 1, ¢f. also ref. 22.
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Using (2.14), (2.19) and the Schwarz-inequality for integrals, we have
l

ax(0) < 2Myl +A(ﬁN1)'1Jdv <— aZfN)
0

ov?
l +
+ A" 3 Mye (N))F U dv <_—‘;—f}->} . (2.20)
v
4]
From (2.12) and (2.20) it follows that
an(0) < 2My, {I + A(BND~! + 141 ¥ (N}, (2.21)

Eq. (2.21) holds for arbitrary positive values of /. We may now choose [ so that*

! = max {((N)'*, N" B = IN)-0, for N- . (2.22)
Then
mgin Sl e n(E)] — Iu[# 5] < 2My (1 + A~ + $A) I(N), (2.23)

which provides the desired lower bound.

Eq. (2.3) is now obvious from (2.6) and (2.23) assuming that limy_,  f¥[5 - n(£)]
exists uniformly for all values of & with || < M. Note in connection with this
that the minimum of limy_, o, fx[5#, ()], Which is a continuous function of &,
should occur under the condition, ¢f. (2.7),

§ = lim <VN>JK". N> (2.24)

N-»

so that |§| < M, at the minimum. Hence, the fundamental theorem has been
proved.

3. Evaluation of the free energy
In this section we shall prove eq. (1.4) in six subsequent steps.
(i) Application of the fundamental theorem: First we note that the hamiltonian (1.1)
may be treated using the theorem of the preceding section. For this purpose we
subtract a ferromagnetic operator —A4 VZ (A > 0) from the operator P(Vy), i.e.
Hn=NTy— AV, 3.1

* The treatment in refs. 20 and 21 would lead to an exponent # rather than % in eq. (2.22).
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where
Tw=Ty + P(Vy) + AVE. (3.2

In egs. (3.1) and (3.2) we have a parameter /A at our disposal, so that by choosing
it in an appropriate way we may arrive at a lower bound for the free energy per
particle.

Obviously, the operators Ty and V) satisfy the conditions (2.2), since in view
of (1.2) the commutator [Ty, Vy] is an operator of the order N -1, Applying (2.3)
we have™

f#F] = mtianiqn; EAGIR (3.3)
where
Hy(&) = N{(T + P(V) + AV?) + A8 - 24¢V1. (3.4

In eq. (3.4) and also in most of the following formulae the subscripts N labeling

the operators have been omitted for convenience.
We shall compare 3#,(&) with a trial hamiltonian 5, (£ | %)) which is linear in

the operator V, i.e.

HEI)=N{T+Po)+ PV —n) +AE -3y =24 —n) V}.
(3.5)

In the derivation of upper and lower bounds for f[s#,(£)] use will be made of a
simple lemma.

(ii) Lemma: Let P(V) be a polynomial in the bounded hermitean operator ¥ and
let M be a constant such that M > {[V|,, then for all values % satisfying 5] < M,
we have the relation

KP(V) = PC) = P'() (V = mDal < p2 AV = 1)), (3.6)

where

P2 = max |[P"(y)| (3.7
Inls™M

and ¢ >, denotes the average with respect to an arbitrary hermitean operator 4%,

* The existence of the thermodynamic limit in eq. (3.3) will be shown later on in this section.

% Eq. (3.6) implies that the operator p, (V¥ — n)2 — {P(V) — P(j) — P'(n) (V — u)} is posi-
tive (semi) definite.
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Proof: In order to prove the lemma we consider the function
d
PO =(PV)+ (-0 s P(V:i)>as (3.9

where the operator V, is defined by
Ves(1 =0y + tV. 3.9

Clearly,

d

Vo=2n, Vi=V, I P(Vy) =PV —n). (3.10)

t=0

The left-hand side of (3.6) is given by |D(1) — &(0)| and according to the mean-
value theorem we have
t=r>-4

= =D LPWVYV -4 @3.11)

B(1) — B(0) = Ed? &)

dZ
== <@P(V.)

for some value T with 0 < 7 < 1. Hence,
[D(1) — PO)| < [P LV ~0)*>u S p2 LV = ). (3.12)
Here ||P"(V,)| is finite, since

Vel < @ =yl + 2|V < M. (3.13)

(iii) Derivation of a lower bound: From (3.4) and (3.5) we have

H1E) — H,Eg) = N{PV) — P(y) — P't) (V — ) + A(V — 5)*}.
(3.14)
Using the Bogoliubov-Peierls inequality, ¢f. (2.5),
F[A + B] = F[A] + {B)4+n (3.15)

for arbitrary hermitean operators 4 and B, and also the lemma (3.6), it follows
that

S (O] = /2 G )] + N1 (E) — 2 E D)o
= ful#2 G + (A = p) LV = 9w @3.16)
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For sufficiently large values of 4, i.e.

1'1 2 pz, (3.17)
we have
Sulo#1(8)] = max fyls€2 (§1m]. (3.18)
InlsM

(iv) Derivation of an upper bound: Using (3.14), the Bogoliubov-Peierls inequality
(2.5) and the lemma (3.6), we have

SNBSSl E )]+ N1 HE — H#E D)1
S/l E NI+ A+ 22) KV Dyt — )P
+ A+ D)V = V1) aim e (3.19)

Now the third term of the right-hand side of (3.19) vanishes in the thermodynamic
limit, since in view of (1.2), the trial hamiltonian 42, (¢ | %), given by (3.5), is a
sum of one-particle operators. This implies that

VE) VD1 = <VE w1 VDD rcips for k#1,  (3.20)
and therefore, using (1.2),
V= LDy 1) 261w

N
=N ”k;« VI waim — VK e,em) < MPN~1, (3.21)

so that the right-hand side of (3.21) vanishes in the thermodynamic limit.
We pow consider the second term in (3.19). For each § and N we choose a
parameter 7y so that

N — VWi = 0. (3.22)

Obviously, eq. (3.22) has a solution in %y for some value yy with — M < 9y < M,
since for § = — M the left-hand side of (3.22) is negative, whereas for = M it

must be positive. Hence,

SO < fulo2 Elan)] + (A + po) M2N™1. (3.23)

(v) Minimax formulation for the free energy: Since the trial hamiltonian 3¢, (& | %)
is a sum of one-particle operators, the associated free energy per particle and its
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derivatives in general exist in the thermodynamic limit ¥ = oo ¥. From (3.18)
and (3.23), we then have

S (8] =Nlim e G) = max 122 (5 | m)]. (3.24)
- ® nsM

Noting that the thermodynamic limit in eq. (3.24) exists uniformly for |§] < M,
it follows from (3.3) that

SIH#] = min  max f[o, (£ | 9)]. (3.25)
IKlsM InlsM

In eq. (3.25) the free energy per particle has been expressed in terms of the free
energy of a trial hamiltonian which is linear in the operator V. Eq. (3.25), how-
ever, contains an arbitrary parameter A which arises from (3.2).

(vi) Molecular-field equation: Rather than eq. (3.25), it would be convenient to
have a formulation of the free energy per particle in terms of a trial hamiltonian
involving only the polynomial P. The following reasoning will lead us to such a
formulation.

Let %, be such that

ST#2 (51 n0)] = max S & )] (3.26)
n
Then, in view of (3.16), after taking the thermodynamic limit, ¢f. (3.17),

LV~ 170) Dy = 0. 3.27)
Hence 7, is a unique function of & satisfying

o = 1(E) = <VDwyo- (3.28)
Moreover, at the absolute minimum, we have from (2.24)

£ =Vwup- (3.29)

On the other hand, taking the thermodynamic limit in eq. (3.22), ¢f. (3.28), it fol-
lows that

&) = <VDwycimen- (3.30)
Since from (3.5) and (1.6)
K218 = Hun®) = N{Ty + P& + PE(Vy — 5}, (3.3
* Of course we exclude a pathological dependence of V(k) on k.
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the free energy per particle is given by, ¢f. (3.25),

STI#] = min f[o# (8], (3.32)
gedt

where # is the set of values & satisfying
E = <V>*u(C)’ (333)

which is equivalent to eq. (1.7). Hence eq. (1.4) has been proved in the simple
case (1.1), (1.2).

The generalizations mentioned at the end of section 1 will be treated in a fol-
lowing paper. This will introduce some nontrivial complications in the lemma (ji),
the derivation of the upper bound (iv) and the derivation of an appropriate gen-
eralization of the definition of the set .#.

4. Example

In this section we discuss an example which has been investigated previously by
Thompson®?). The hamiltonian is defined by

#y = —N{BS + P(S)}. (4.1)

Here B is an applied magnetic field and
: . .
S=N-'Y S7, : (4.2)
k=1

where S; = +1 refers to the spin of particle k. The polynomial P(S) is given by
P(S) = J,8% + J,5*. (4.3)

In ref. 32 some features of the phase diagram of this model were treated in the
ferromagnetic case J, > 0, J, > 0. A more general polynomial including higher
powers of S? has been discussed in refs. 30, 31 in connection with higher-order
critical points.

Although this model is a rather trivial example of eq. (1.1), it may be of interest
to consider its phase diagram in some more detail. Moreover, the example will be
used to illustrate two underlying features of the treatment in section 3, namely
the restriction £ € .# on taking the minimum in eq. (3.32) and the fact that min-
max in eq. (3.25) cannot be replaced by maxmin.
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The trial hamiltonian corresponding to (4.1) is given by, ¢f. (1.6),
K@) = —N{(B + P¢)S + PE¢) — &P (5} 4.4
and the free energy per particle is
f#] = ;112‘1 ST (8)]
= :1:21 {—P@&) + &P'(§) — B~'In2cosh B (B + P'®)}, (4.5)
where .# is the set of values & satisfying the molecular-field equation

& = {(SHw o = tanh (B + P'(§)). (4.6)

Here the “minimizing” & € # is the magnetization per particle. Note that we do
not restrict ourselves to the case J, > 0, J, > 0.

Fig. 1. b(&) vs. & for € = 2, For the curves labeled by A, B, C and D we have chosen: tg = 3.7,
p = 4.3, 7c = 4.9 and T, = 5.8. The values for the intermediate curves are: tgp = 4, Tpc = 4.6
and tca = 51. The dots form the spinodal curve.

In order to investigate the molecular-field solutions & e .# we first consider
B/J, as a function of & With the notations™
b=J7'B, =J7'BY,  e=J7's,

4.7
PE)=ITIP(E) = e8> + &4

* Here we assume that J, # 0.
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we find, ¢f. (4.6),
= p(&) = vartanh & — p'(§) = vartanh & — 2& (¢ + 2£2). 4.8)

For different values of = and ¢, 5(£) as a function of & can behave in four different
ways, indicated by A, B, C, D in fig. 1. Also the intermediate curves which sepa-
rate one type of behaviour from another have been given. Moreover, we have in-
dicated the spinodal curve which is the locus of points #'(§) = 0,

A partial distinction between A, B, C and D can be made by considering the
zeros of the slope of b(§), i.e.

PE) =71 =) = p"E) =T(1 = )7 = 2(c + 682). 4.9)
The zeros of 4'(&) can be found from the relation

T=rg?), Os#c<l, (4.10)
where

M) =p @ — 8 =73 {e + 62 — (128 + ¢ - 6)2}. @.11)

The function #(£2) assumes its maximum for &3 = (6 — ¢)/12, which belongs to
the interval [0, 1} if |¢] < 6. In that case eq. (4.10) has two solutions in &2, pro-

vided that

max {r(0), r(1)} = max {0, 2¢} < 7 < r(&3) = 15 (¢ + 6). 4.12)
For all values of ¢, eq. (4.10) has one solution, if

min {r(0), #(1)} = min {0, 2¢} < v < max {0, 2¢}. (4.13)

In other cases eq. (4.10) has no solution.

In fig. 2 we give the phase diagram of the system under consideration for dif-
ferent values of € and . It consists of four regions labeled by A, B, C and D. The
behaviour of 5(¢) vs. & for each of these regions has been given in fig. 1.

The regions C and D in fig. 2 correspond to (4.12), so that b(£) as a function
of & has two maxima and two minima, ¢f. fig. 1. In region B, eq. (4.13) holds and
5(%) has only one maximum and one minimum. In the remaining part A of the
phase diagram b(£) is a monotonic function of & The dotted curve in fig. 1 is the
so-called spinodal curve, which can be obtained by substituting (4.10) into (4.8).

So far we have discussed the set .# of solutions of the molecular-field equation.
In the case that this equation has more than one solution we must select the solu-
tion which leads to the lowest value of the free energy. For this purpose we con-
sider the branches of the free energy f[+#.(&)] corresponding to all solutions
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& e ./ as a function of the magnetic field b. In fig. 3 we give these branches for
the four different cases labeled by A, B, C and D respectively in fig. 1. These four
cases are characteristic for the regions A, B, C. D in the phase diagram in fig. 2,
since the slopes of the branches of the free energy are proportional to the cor-
responding values of £ e .#, ¢f. fig. 1 and fig. 3.

-12

Fig. 2. The phase diagram in the e~z plane, showing the regions A, B, C and D. The dashed fine
is the unphysical phase boundary between regions B and D.

In fig. 2 the regions A and B have been defined by egs. (4.12) and (4.13). In the
remaining part of the phase diagram eq. (4.10) has two solutions in &2, Two dif-
ferent possibilities must now be considered. In region C there are two first-order
transitions in an applied magnetic field +b,, ¢f. the kinks of the lowest branch
in fig. 3c. On the other hand, in case D we have one first-order transition for b = 0.

From a physical point of view, i.e. if we restrict ourselves to the lowest branch
of f[#.(£)], there is no difference between the cases B and D. This has been in-
dicated by the dashed curve in fig. 2. The curve separating the regions C and D
in fig. 2 is determined by the limiting case that both critical fields +b, tend to
zero. This implies in particular that

ST D] = fTH 0],  bo) =0, with 0#&e.. (4.14)
Equation (4.14) can be rewritten as
7= =284 (&, artanh & + In (1 — £3)}-1,
(4.15)
e = 7 (2£,)"! artanh &, — 2&2.
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Fig. 3. The branches of the free energy f = f[#(£)], E = A, vs. b, ¢f. (4.5)-(4.7), for J, = 1
and the same values of ¢, T4, Tg, Tc and 7p as in fig. 1.
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This curve has been evaluated numerically. In the two limiting cases &; — 0,
Eo—+1lwehaver~2et12andz~ (1 +¢)(n2)"1]0.

Finally we discuss the magnetization as a function of the magnetic field. In
fig. 4 we give the isotherms for the values of the parameters used in figs. 1 and 3,
i.e. for e = 2 (J, = 2J,) and various values of 7. The curves A, B, C and D are
again characteristic for the corresponding regions in the phase diagram. The dots
in fig. 4 indicate the coexistence curve which is determined by the condition that
for g ven 7 and b the molecular-field equation (4.8) gives two solutions & € #
leading to the absolute minimum in (4.5). This curve has been obtained numeri-
cally, solving the equations b(¢,) = b(£2), F[#(£1)] = fIH# (£.)), &, # €. Note
that the coexistence curve can also be found from fig. 1 by Maxwell’s equal-area
construction.

......
......
e
",
,

-0.5

Ea -1.0

Fig. 4. The isotherms of the magnetization & vs. b fo- the same values of ¢ and 7 as in fig. 1.

Remarks: The model described above may be useful to illustrate a few technical
features of the derivation given in section 3.

i) First it may be noted that the free energy cannot be obtained by minimizing
the free energy of a trial hamiltonian f[47,,(&€)] without taking into account the
restriction £ € .. In order to see this from an explicit example we consider
JI3#«(£)] as a function of & for B = 0, where 3, 5(&) is given by (4.3) and (4.4)
in the case that the four-body nteraction is ferromagnetic, i.e. J, > 0.

The extrema of f[#,(£)] are given by the equation

LIH(EN = P'(§) {& — tanh P (§)} = 0. (4.16)

For —6 < ¢ < 0 and a sufficiently large value 7, so that the point (¢, 7) belongs
to region A of the phase diagram fig. 2, eq. (4.16) has two solutions

& = +(—¢/6)?, (4.172)
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corresponding to P"(§) = 0 for £2 < 1, and a solution
&§=0, (4.17b)

corresponding to the unique solution of the molecular-field equation & = 0, for
B =0, in region A. Since f[#,(£)] = o0, for & » + oo, the solutions (4.17a)
determine the absolute minima of f[2#,(£)] and (4.17b) corresponds to the maxi-
mum of f[#(&)]. Since the set .## consists only of one point § = 0, the solution
& = 0 is also the absolute minimum of /[ ,(&)] under the condition & € .#. This
feature may appear under the combined effect of ferromagnetic and antiferre-
magnetic interactions. If J, and J, have the same sign, P"(¢) # 0 and all solutions
of (4.16) belong to the set .

ii) A second remark can be made on the minimax formulation in section 3(v).
It should be noted that the two procedures min, and max, in eq. (3.25) cannot be
interchanged in general. Consider e.g. the special case

J,>0, J,<0, pl<pl=2J,, (4.18)

corresponding to a point (¢, 7) with 2¢ < 7 < 0 in region B of the phase diagram
in fig. 2.

In this case the treatment with minmax in the correct order gives us a solution
%(&) = & with & = 1§, for B = 0, where &, > 0 is the positive solution of the
equation

B! artanh & = 2J,6, + 47455 (4.19)

However, if we take the minimum first and the maximum afterwards we would
have obtained [for sufficiently large 4, ¢f. (3.17)]

g = max min f[#, (§ | )] = max min [4&2 — (4 — J, — 3J,5%) %>
1 4 n s
— B~tIn2cosh B {24 ~ 2(A = J, = 2J®)p}, (4.20)

rather than the correct expression (3.25) for the free energy. Clearly for fixed »,
the absolute minimum with respect to & in (4.20) is assumed at a point &(7) with

sgny = —sgné&(n). 4.21)

This can be seen by considering the difference f[o#, (£ |n)] — fIo#, (—& | 7)]
using (4.18). Obviously (4.21) is incompatible with the condition (%;) = &, > 0,
¢f. (3.28), (3.29), for the set & & .#, arising from the minimax-procedure,

A different example of this situation has been given in ref. 18. Such examples
can be used to demonstrate that the fundamental theorem (2.1) for ferromagnetic
operators cannot be extended to the case of antiferromagnetic operators with the
same amount of generality, ¢f. the discussion in section 8 of ref. 19.

27



i, Moad

e

References

1) M. Kac, Phys. Fluids 2 (1959) 8.
2) M.Kac, G.E.Uhlenbeck and P. C.Hemmer, J. Math, Phys. 4 (1963) 216, 229; 5 (1964) 60,
3) N.G.van Kampen, Phys. Rev. 135A (1964) 362; Physica 48 (1970) 313.
4) J.L.Lebowitz and O.Penrose, J. Math. Phys. 7 (1966) 98.
5) E.H.Llieb, J. Math. Phys. 7 (1966) 1016.
6) G.A.Baker, Phys. Rev. 122 (1961) 1477, 126 (1962) 2071430 (1963) 1406.
7) A.J.F.Siegert and D.J. Vezzetti, J. Math. Phys. 9 (1968) 2173.
8) C.J.Thompson and H.Silver, Commun. Math. Phys. 33 (1973) 53.
9) P.A.Pcarce and C.J, Thompson, Commun. Math. Phys. 41 (1975) 191,
10) K.Husimi, 1953 Proc. Int. Conf. of Theoretical Physics, Tokyo, H.Yukawa, ed., (Tokyo:
Science Council of Japan) n, 531.
11) H.N.V, Temperley, Proc. Phys. Soc. 67 (1954) 233.
12) S.Katsura, Progr, Theor, Phys. 13 (1955} 571.
13) B.Miihlschlegel and H, Zittartz, Z, Phys, 175 (1963) 553.
14) 1. Bardeen, L.N. Cooper and J.R.Schrieffer, Phys. Rev. 108 (1957) 1175,
15) B.Miihlschlegel, J. Math, Phys. 3 (1962) 522.
16) N.N.Bogoliubov, D.N, Zubarev and 1u. A, Tserkovnikov, Sov. Phys. Doklady 2 (1957) 535,
12 (1961) 89.
17) P.A.J. Tindemans and H.W.Capel, Physica 72 (1974) 433.
18) P.A.J. Tindemans and H.W.Capel, Physica 75 (1974) 407.
19) P.A.J.Tindemans and H.W, Capel, Physica 79A (1975) 478.
20) N.N.Bogoliubov Jr., Physica 32 (1966) 933.
21) N.N.Bogoliubav Jr., A Method for Studying Model Hamiltonians (Pergamon press, Ox-
ford, 1972).
22) J.G.Brankov, A.S.Shumovsky and V. A.Zagrebnov, Physica 78 (1974) 183.
23) N.N.Bogoliubov Jr. and V.N.Plechko, Physica 82A (1976) 163.
24) J.G.Brankov, V.A.Zagrebnov and N. S, Tonchev, Theor. & Math. Phys. 22 (1975) 13.
25) K.Hepp and E.H.Lieb, Ann. Phys. (N.Y.) 76 (1973) 360, Phys. Rev. A8 (1973) 2517.
26) e¢.g. R.B.Griffiths, J. Math, Phys. § (1964) 1215.
27) ‘A.S.de Vries, Thesis (1972), Groningen.
28) B.S.Lee and H.C.Bolton, J. Phys. C4 (1971) 1178.
29) N. Matsudaira, I. Phys. Soc. Japan 25 (1968) 1225.
30) A.McKerrell and R.G.Bowers, J. Phys. CS§ (1972) 1.
31) R.G.Bowers and A.McKerrell, J. Phys. C5 (1972) 2392,
32) C.J.Thompson, Phys. Lett. 47A (1974) 23,
33) J.Oitmaa and M,N.Rarber, J. Phys. C8 (1975) 3653.
34) S.8.Lapushkin, B.V.Moshchinsky and V.K.Fedyanin, J.I.N.R. E4-8816 (Dubna 1975).
35) L.W.J.den Ouden, H.W,Capel and J.H.H.Perk, to be published.
36) J.Ginibre, Commun, Math. Phys. 8 (1968) 26.

28



o Gl e-

CHAPTER II

SYSTEMS WITH SEPARABLE MANY-PARTICLE
INTERACTIONS. 11

1. Introduction

In a previous paper') we have considered a class of systems containing
many-particle interactions of the separable type. A separable m-body in-
teraction is defined by the property that the interaction V(k,, ..., k.) between
particles ki, ..., k. can be written as a product V(k,)... V(k,), where V(k) is
an operator acting on the Hilbert-space of particle k. Separable interactions
include in particular so-called equivalent-neighbour interactions, for which the
interactions between particles do not depend on the distances between the
particles.

For many models with equivalent-neighbour interactions, the free energy
per particle has been evaluated and the result is usually of the molecular-field
type. Examples are, for instance, the Husimi-Temperley model for a lattice
gas®), the Ising model with equivalent-neighbour interactions) and other spin
models®), the reduced hamiltonian in the BCS-theory of superconductivity™)
and the Dicke maser model™). Two-body separable interactions have been
treated from a more general point of view in refs. 9, 10. Many-body interac-
tions of this type have also been investigated''"). A more extensive dis-
cussion of the literature has been given ir'}{ ref. 1.

Before we describe the generalizations which will be dealt with in the
present treatment, we first give a brief review of the main results of our
previous paper. In ref. 1 we restricted ourselves to the class of systems
described by the hamiltonian

Hn = N{Tx + P (Vn)}, (1.
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where Ty and Vy are normalized* sums of bounded hermitean one-particle
operators, i.e.

Ty=N"3 Tk), Vu=N"3 V(k) (1.2)
k=1 k=1

and P(Vy) is a polynomial in the operator V...
In ref. 1 the free energy per particle in the thermodynamic limit, defined by

f13) = lim fu[%x]= lim — (BN)"' In Tre™*», (13)

has been expressed in terms of a trial hamiltonian %, .~(£), which can be
obtained by linearizing #~ with respect to Vy, i.e.

fl¥]1= r&i.? fl#.(E)], 1.4)
where
Henl€) = N{Tx + P(&) + P'(€X(Vn — £)}. (1.5)

The minimum in the right-hand side of (1.4) is taken over the set of values
¢ € M satisfying the molecular-field equation

&= lm (Va)w v (1.6)
where
(B)a=Tr Be (Tre™®)” (1.7

is the canonical average of B with respect to A.

As a first step in the derivation of eqs. (1.4)-(1.6) we expressed the free
energy per particle in terms of a hamiltonian %, (&) = ¥~ + NA(Vn — &),
using a fundamental theorem due to Bogoliubov Ir.>') for a hamiltonian with
“ferromagnetic’’ quadratic operators. Applying the Bogoliubov-Peierls
inequality, (see e.g. ref. 15), and also a lemma for the average value of P(Vy)
we have shown that the free energy per particle in the thermodynamic limit is
given by

f[%) = min max f[3(¢|)}. (1.8)

Here #.n~(£|n) can be obtained by linearizing the operator %,~(£) with
respect to Vi, cf. egs. (3.4) and (3.5) of ref. 1. Eq. (1.8) has been proved by
deriving a lower and an upper bound for f[#] which turn out to be equal in
the thermodynamic limit; the lower bound is obvious for sufficiently large
A >0; in the. derivation of the upper bound use has been made of a
factorization property for the autocorrelation function of Vy. The final result
(1.4)-(1.6) has been obtained from (1.8) using again the Bogoliubov-Peierls
inequality. _

* Here and from now on a normalized operator is an operator acting on the Hilbert-space of an
N particle system, divided by N.
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In the present paper the treatment of ref. 1 will be generalized in two ways.
First the polynomial P(Vy) is replaced by an arbitrary analytic function of
operators V{,..., V{’. Moreover, these operators V{ need not be nor-
malized sums of one-particle operators, but can be of a much more general
type, including also short-range operators. In connection with this we can
mention the Ising model with two-spin and (long-range) four-spin interactions
treated by Oitmaa and Barber').

With regard to this more general type of operators we mention the three
specific properties for the operators which have been used in the proof of
ref. 1.

a) The commutator between two normalized operaters Vy and V§ (or Tv)
tends to zero in the thermodynamic limit, i.e.

[[Vy, Vi|=0, if N == (1.9)

b) The free energy per particle of a trial hamiltonian which is linear in the
operators Vy, i.e.

Henw =N hVE (1.10)

converges in the limit N — o uniformly on a bounded region in the space of
the variables h..

¢) The autocorrelation function of the normalized operator V, with respect
to the trial hamiltonian tends to zero in the thermodynamic limit, i.e.

Li_fg (VN = (V) )20 = 0. (1.11)

Eq. (1.11) is essential for the derivation of an upper bound for the free energy
per particle.

In the case of normalized sums of one-particle operators (1.2) the proof of
eqgs. (1.9)-(1.11) is trivial, assuming that the dependence of V(k) on k is not of
a pathological nature. Eq. (1.11) is a direct consequence of the factorization

(V) VK Nt = VD AV K Nens  fOr k# k. (1.12)

Also, in the géneral case under consideration here, it turns out that the free
energy per particle can be obtained by minimizing the free energy of a linear
trial hamiltonian over a set # analogous to the one in eq. (1.6). Note in
connection with the definition of # that the average values of the operators
V@ may show discontinuities because of the presence of short-range in-
teractions in the trial hamiltonian.

In section 2 we give a more precise description of the
generalizations mentioned above. The theorems for the
free energy will be formulated in section 3 and proved in
sections 4-7. An application is given in section 8.
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2. General formulation

Before we formulate the main theoremsof this treatment, we discuss the
extensions to more general operators Vy and functions P.

2.1. Generalization of the ozerators

In the introduction we mentioned the three properties a), b) and ¢) of the
operators Vy, which have been used in the proof of ref. 1. These properties
suggest a close relationship between the generalization of the operators Vy
and the process of taking the thermodynamic limit. In order to discuss this
process, we consider a sequence of (v-dimensional) lattice systems with N
particles* located on a subset 2y of an infinite lattice.

We shall say that the sequence of systems {2y tends to infinity in the sense
of Van Hove, cf. refs. 17, 18, if for each £, there exists a collection of
disjoint equivalent cubes

Cu(K), K=1,23,..., 2.1

with M(N) sites, L(N) cubes being contained in {2, satisfying the con-
ditions

)] ’UE} M(N) =0, 2.2)
2) ngl L(N) =00, 2.3)
3 fim LOOMQV)_ 4

Furthermore, to be specific, we assume that for N’ > N each cube C,. can be
constructed from cubes C, corresponding to N, i.e.

4) Cy(K')= ;"‘"CM(K), 2.5)
M'=M(N'), M=M(N), N'>N.

The symbol 2*” is used to express that the cubes do not overlap and that the
M'[M values of K which contribute to Cy-(K') are determined by K'.

The process of taking the thermodynamic limit has been illustrated in fig. 1.

From now on each operator which has a subscript N denotes an operator
acting on the direct-product Hilbert space of particles belonging to one of the
systems {2y given above. In order to describe the generalization of the
operators we decompose an arbitrary hermitean operator NV, into an
operator NV and an operator NRn. The operator NV3 contains only the
interaction between particles lying inside the same cube Cy(K) of the set (2.1)

*If {2, is not well defined for each value of N, one can consider a sequence 2y, with
N(n)->x, if n—x,
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Fig. 1. Two systems with N and N' (N’ > N) particles located on the subsets {2 and {2y of the
infinite lattice 9. 2, contains cubes Cu(K), (M =4, K=1,..., LINY=5, N =37), and ).
contains cubes Cu(K'), M' =16, K'=1,..., L(N')=7, N' = 147),

corresponding to 2y and the operator Ry contains the remaining interactions.
(The interaction terms in Ry involve particles belonging to different cubes and
also particles which belong to the part of 2y outside the cubes.) The
normalized operator V} can be expressed by

NV} = L(ZN)M(N) VidK), (2.6)

K=1

where Vi(K) is an operator acting on the Hilbert space of the particles
belonging to cube Cy(K). The decomposition of the normalized operator Vy

can be written as
Ve = Vi+R.. 2.7)

We now require that the residual operator Ry tends to zero in the ther-
modynamic limit, i.e.

lim [|Rx[| = 0. (2.8)

Also, to be specific, we assume that for a subdivision of a large cube into
smaller ones, as given by eq. (2.5), the interaction between different subcubes,

ie.
M'Rum= M'Vie — 2 "MVidK), (2.9)
K
is negligible in the thermodynamic limit, i.e.

]im Sup "RM(N')IM(N)" =(. (2. IO)
N—oex N'>N

Furthermore it is assumed that, for sufficiently large values of N, there is a
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translational invariance, i.e..
TVidK)T'— VidK+) =0, .11

for a translation T transforming the cube K into one of the other cubes Kr*.

Eqs. (2.8), (2.10) and (2.11) will turn out to be sufficient for our purpose.
From now on operators satisfying these conditions will be referred to as
short-range operators. Note that this concept of short-range operator is of a
rather general nature, cf. the discussion later on in this section. These
conditions ensure that properties similar to eqs. (1.9)-(1.11) are satisfied.

In particular, for short-range hamiltonians NV, the free energy per particle
has a well-defined thermodynamic limit in the sense of Van Hove, cf.

conditions (2.2)-(2.5), i.e.

f=lim fy =lim fuo, (2.12)
where

fn =—(BN) "'InTry e #"¥ (2.13)
and

fu=—(BM)'In Try e #MVi (2.14)

are the free energies per particle of the system 2, and the cube Cy(K) resp.
Using egs. (2.8), (2.10), (2.11) and the Bogoliubov-Peierls inequality'®), we
have

fir = i <IRmiml =0, (M, M’ > ) (2.15)
and

IfN _f:M(N)l = "R~” +(1- LMN_l)lffwl—)O, (N - ), (2.16)
from which eq. (2.12) follows.

2.2. Discussion

It should be mentioned that eqs. (2.8) and (2.10) are satisfied for “(not too)
long-range’ interactions, cf. eq. (2B.24) of ref. 19 or eq. (2.2.8) of ref. 18. To
see this, note that the action of an arbitrary operator V on the system 2, can
be written as **+

NVi= 3 3 V(o) (2.17)

k wg
ke wCNy

* Equation (2.11) can be relaxed assuming that the left-hand side tends to zero for N -,
** Equation (2.17) is equivalent to the definition by Ruelle and Griffiths. For comparison, note that
NVy canbe written as £, c,, P(w), where #(w) = N(w) V(w), N(w) being the number of particles in

.
+In eq. (2.17) we restrict ourselves to open boundary conditions. The effect of other boundary

conditions can be included in the operator Ry in eq. (2.7), without affecting the line of reasoning.
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where k labels the sites in £2y and where the summation over w, involves the
different subsets of {2y containing particles which interact with particie k. In
eq. (2.17) an m-body interaction V(w) between m particles k., ..., k. occurs
m times, namely as one of the terms V(w,), for i=1,...,m resp. (A set w
containing e.g. two neighbouring particles | and 2 corresponds to a nearest
neighbour interaction between | and 2 and the corresponding V{(w) occurs
twice, namely as a term V(w,) for k =1, 2 resp.).

As in refs. 18 and 19, we assume that for sufficiently large values of N the
interaction is invariant under translations from one cube to another and also
that the sum of the interactions V(w,) over an infinite lattice is finite for fixed
k. ie.

A) TV(w)T™'= V(wr), (2.18)

where T is the operator associated with the translation from one cube Cu(K)
into another cube Cy(Kr) and where w,r is the subset obtained from w, after
application of the translation T.

B) X lV(w)l<o <, (2.19)

wj

where the summation in the left-hand side is over all finite subsets w..
containing particle k, of the infinite lattice.

In view of (2.7), the operator Ry does not contain the interaction terms
V(w) for which o is included in one single cube. From this we have the
inequality
N-LM LM

N N U
Here the first term is an upper bound for the interactions involving particles
which do not belong to one of the cubes, and Mv,, is an upper bound for the
interaction of the particles belonging to a cube Cy with particles outside that
cube, i.e.

Mow= 2 2 (Ve @21

kECr wr@TCxy

(2.20)

IRxI < v+

In order to estimate (2.21) we consider the restricted sum of interactions with
a particle k such that the “diameter” D(w:) of the subset w, is larger than
some fixed distance d. From (2.19) it follows that

S V(e <viu—0, ford->w. (2.22)

wy

D )=d

Using (2.22) we can give separate estimates for the contributions to Mv,, from
particles k € Cy lying at a distance larger than d from one of the sides of the
cube and for the contributions from the other particles in Cy. We then have,

for each value of d,
Uy SO0+ 2Vd M'”"vl. (2.23)
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In eq. (2.23) it has been used that the number of sites in Cy at a distance less
than d from one of the sides of the cube is bounded by 2vd M“ """, where v is
the dimensionality of the lattice. Since eq. (2.23) is valid for all d, we can take
as an upper bound for vy the infimum of the right-hana side with respect to d,
which is a function of the variable M. As a result we have

vm—=0, for M-, (2.24)

Hence, in view of (2.20), Ry tends to zero if we take the thermodynamic limit
in the sense of Van Hove, so that eq. (2.8) and also eq. (2.10) are satisfied. This
shows that operators satisfying eqs. (2.18) and (2.19) are included in our
treatment.

As an example one may consider a spin model for a »-dimensional lattice
with anisotropic Heisenberg interactions, described by the hamiltonian

NV =2 8 *du* S (2.25)
kk'
The decomposition (2.7) is then determined by
L(N)
NV = 2 2 8. * Jue * 86 (K8 (K ), (2.26a)
K=1kk’
L(N)
NRy =35 du - s{1- 3 8. (K080, (2.26b)
g =1
where
1, ifk € Cu(K),
=1 qtherwioe @27

The factor between brackets in the right-hand side of (2.26b) expresses that Ry
contains only contributions from particles k and k' which do not belong to the

same cube.
Now Ry in (2.26b) tends to zero in the thermodynamic limit under rather
general conditions. If the interactions J.. in eq. (2.25) are of finite range D, i.e.

Jkk' = 0, lf |Rk - Rkl > D, (2283)

where R, and R,. are the lattice sites corresponding to particles k and k’, then
v =01in (2.22) for d > D, and Ry - 0 because of (2.19), (2.20) and (2.23). Also
for interactions with a Kac-type dependence on the distance , i.e.

Juo =Jy* e-vIRrR.vl, v > 0, (2.28b)
Rx tends to zero.

2.3. Generalization of the polynomial

In ref. 1 we dealt with the simple case of a polynomial P(Vy) of one
normalized sum of one-particle operators. In order to discuss the generalization
to an ‘“‘analytic” function of more operators we consider a finite number of
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normalized hermitean short-range operators V¥, i =1,2,..., n, which we may
assume to be uniformly bounded, i.e.

IVlsM <x, i=1,2,...,n, 2.29)

independent of N***_An arbitrary analytic function P of these operators is
determined by its series expansion, ie.

Ll n

PVI=Y X PG )V VR (2.30)

m=1ip. ., im =1

In eq. (2.30) use has been made of a vector notation

Ve =(VE, ..., VI (2.31)
Furthermore, it is assumed that

Plm .o i)=pUn .o im)¥, (2.32)
so that the operator P(Vy) is hermitean.

For the coefficients p(i,,....,) it is sufficient to impose the ‘“analyticity™

condition:

PM™)=po<o, (2.33)
where

P(n)= 21 i|'~.$m=l X (P Hy | P/ P 2.34)

for some values of My > M, i=1,...,n.
* Note that for the operator given by (2.17) {Vy|/ < v,, independent of N, cf. (2.19).

** Non-hermitean operators J., as have been used in refs. 9, 14, can also be treated using the
decomposition J = {§(J* + J)} +ifli(J* - N}
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3. Theorems.

In section 2 we have given the definition of an analytic function of
short-range operators. With this definition a number of theorems can be

formulated for the free energy per narticle of a system described by the

hamiltonian

1, (h) = N(P(V) - heVy ). (3.1)

Here P(YN) is defined by (2.30) and the coefficients p(i],...,im) saﬁisfy

egs. (2.32) and (2.33). The vector Vy» °f. (2.31), denotes a finite set of
normalized operators V&l), i=1,...,N, which are uniformly bounded, cf.
(2.29), and which satisfy the short-range conditions (2.8), (2.10) and

(2.11). The vector h = (hl""’hn) denotes the fields or coupling constants

conjugate to the operators NYN.
In this chapter it will be shown that the free energy per particle in

the thermodynamic limit, i.e.

f(h) = - lim (BN)—1 In Tr exp [ - SKN(h) 1, (3.2)

Nopoo
exists and can be expressed in terms of the free energy per particle of a
reference system described by a hamiltonian which is a short-range operator.
Note that the hamiltonian (3.1) is not a short-range operator, if P
contains nonlinear terms. For example, 1if NV§1) describes aﬁ anisotropic
Heisenberg interaction, ecf. (2.25), and wvi2) the magnetization operator

N
in the direction of the vector ﬁ, i.e.

(1)_ 3 > (2)_—» >
VAR y ' §k Tyr*Sprs WS = WD 8, (3.3)
k,k k
and if P is a quadratic function
o ()2 (2)2
P(\—]N) =My RPN ’ (3.4)
then the hamiltonian (3.1) is given by
3
K (h)=-n J 8.3 ,8,-ni]8d
. 1 1 ' 2
K VTR e L%
PR % S0 WL T U L B A
OTEPLIT RS e S At St T A A TN I S
? ? : ? (3.5)
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Apart from the usual (short-range) bilinear exchange bhetween spins located
at k¥ and k' and the Zeeman term, eg. (3.5) contains a four-spin interaction
of hybrid type, (i.e. long-range between the pairs with indices (k,k') and
(2,2'), and short-range between the spins k,k' &.d the spins 2,2'), and a
pair interaction of the equivalent-neighbour type. Four-spin interactions
can arise in compressible spin systems, in which there is a coupling
betwaen the spins and the lattice 20). An exactly solvable Ising model with

four-spin interactions has been treated in ref. 16. Also four-spin inter-

actions are important in the framework of renormalization group theory .
Equivalent-neighbour interactions can be used e.g. in the classical
description of demegnetizing effects 22). An exactly solvable model which

can be obtained from the two-dimensional super-exchange antiferromagnet 23)

adding an equivalent-neighbour interaction has been investigated in ref. 2k,
see also refs. 25-27 for one-dimensional short-range systems with equivalent-

neighbour interactions.
In this chapter we shall prove a number of theorems relating the free

energy ver particle (3.2) to the free energy per particle
£o(h) = - lim (88)7" 1n Tr exp [8Nh-V, ] (3.6)
a Tom ary

of a reference system described by the hamiltonian

H, n(h) = -Nhev . (3.7)

First of all we have a minimax-theorem, which can be considered as a
generalization of eq. (1.8), derived in chapter I. This theorem is
formulated in terms of the decomposition of the function P in (3.1) into a

strongly concave and a strongly convex part, i.e.

p(g) = alg) + r(g) , (3.8)
with

e %E%E . e < 0, e .gzgg * e >0 , (3_9)
for every (n-dimensional) vector e. A decomposition like (3.8) is always
possible, at least for the values £ satisfying )Eil < Mi’ i=1,...,n, cf.
(2.29), which is sufficient for our purpose. Note that the decomposition

is not unique, one may choose e.g. Q(g) = - AgeE with A positive and
sufficiently large, similar to ref. 1, but many other choices are possible.

Using (3.8) it can be shown that
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=

P} = min max [Q(g) - £+Q'(g) + R(n) - n*R'(n) + £(h - 9'(g) - R' (0D,
£ n
- (%.10)
vitis Q'(€) = 9Q/3&, R'(n) = 3R/6n . The minimax-theorem can be proved
using a generalization of a fundamental theorem duc to Bogoliubov Jr., see
refs. G, 14 and chapter I. In contrast with the situation in chapter I, the
speeial case of convex P, {(i.e. Q=0, P=R), is far from trivial and requires
zome subtle considerations on short-range operators in the thermodynamic
limit. Eq. (3.10) for the special cuse P=R will be proved in section 4, the
derivation for general P is given in secetion 5.
From the minimax result (3.10) we shall derive in section 6 a different
result,

£(h) = inf [~ hem + 50<T) + P(m) ], (3.11)
n

involving the Legendre transform

golm) = sup [hem + £,(h) ] {3.12)
h

of the reference free energy (3.6). Eg. {3.11) shows that the minimax
result (3.10) does not depend on the details of the decomposition (3.8).
Fg. (3.11) can be used for various purposes. For instance, when all
onarators YN are sums of one-particle operators, it can be used as a
starting point for Landau expansions providing an explicit realization
of various types of classical critical behaviour, see e.g. refs. 1, 11, 12
for examples, ref. 28 for a systematic classification and ref. 29 for the

30)’31). On the other hand, the

relation with the theory of catastrophes
reference system can contain short-range interactions, which give rise to
phase transitions, also in the absence of P(m) in (3.11), so that eq.
{3.11) can be used to study the stability of critical behav cur of a system
with short-range interactions under the influence of a perturbation P
desceribing interactions of a different nature. This problem will be treated
extensively in chapter III. Note that in the absence of P(@), eq. (3.11)
amow.ts to the inverse Legendre transform of (3.12), as is well-known from
thic theory of convex functions, see refs. 32-38 and in particular refs. 33,
3, 38 for Legendre transformations in more than one variable. Expressions
1ike (3.11) have also been derived e.g. for the Ising model with guadratic

caaivalent-neighbour interactions using the Laplace method or a rigorous

——— e



version of the Bragg-Williams approximation, see e.g. refs. 2, 3, 11, 39.

Introducing the Legendre transform

g(n) = sup [hem + £(h) ] (3.13)
h

of the free energy per particle (3.2), eq. (3.11) can be rewritten in the

form

g(m) = sup inf [he(m-m') + g (m') + P(n')]=CElgy(m) + P(m)] ,  (3.74)
h m'

where CE denotes the convex envelope, i.e. CE ¢<§) is the maximum over all

functions ¢(x) satisfying

vix) s ¢(x) ,
- (3.15)

POx + (1-2)y) € alx) + (1=2)ply) , 0 <A <1

Lo)-L2)

Relations like eq. (3.14) have been derived for the free energy

per particle in a classical Van der Waals gas with interactions of the Kac

type h3), see also refs. Ll and 45 for an analogous treatment of the Ising

model. TFor a more extensive discussion of related literature, see e.g.

refs. 39, 46, 47. It may be noted that most treatments including Kac
Lo)-43)

potentials are restricted to models of classical gases ., Ising

Lk),k5),48) 49),50),

models and classical Heisenberg models as far as

quantummechanical systems are considered, only a few specific models have

51)’52). In the present chapter, eq. {3.14) will be proved

been treated
for general hamiltonians of the type (3.1) containing analytic functions of
a finite number of quantummechanical short-range operatcrs.

From eq. (3.14) we derive in section 7 a generalization of egs. (1.4)
and {1.6). In the case of short-~range operators, whinh can give rise to
first-order transitions, the molecular-field equation is more complicated,
since the average values of the operators V&i) may show discontinuities in

the thermodynamic limit.

4, Convex functions.

In this section we prove the minimax-theorem (3.10) in the special case
that P is a strongly convex function of n variables. The theorem can then
be formulated as follows:

Let Qy be & sequence of systems described by the hamiltonian

L



Lemma 2: Let V

%, = NR(Y,), (h.1)

where R is a strongly convex function of n variables satisfying the second
inequaliiy of (3.7) and the properties (2.30)-{”.34) with R, r and A instead

of P, p and <7 The operators V i=1,...,N, are uniformly bounded, cf.

i
N
(2.29), and satisfy ihe short-range conditions (2.8), (2.10) anad (2.11).

Then the frec encrgy per particle f in the thermodynamic limit is given

by
f = max ft(g), (h.2)
n
where
E 3 . = ] E 3 1 .
f = lim leuﬁ] s ft(g) 2 1im fN'“E,N(D)] (4.3)
N-r N-»00

cf. (1.3) for the notation. The hamiltonian ﬂ£ N(n) can be oblained
oA

linearizing Mﬁ with respect to YN’ i.e.
. = ' . - L-.
#, yn) N{R(n) + R'(n)«(¥ -} . (b.b)

In the proof of eq. (L.2) use will be made of two lemma's.

(1) (n)

Lemma 1: Let V seeesV be a finite set of bounded hermitean operators.

Let P(V) be an analytic function of these operators, as defined in sub-
section 2.3. Let p be a density operator acting on the same Hilbert space

as the operators V. Then, for all parameters n with |ni[ « Mi, where 1

satisfies M, > HV(l)H , we have the inequality

|Tr o{B(V) - P(n) = P'(n)+ (V-)}| < p, Tr o(v-n)® + p, , (L.5)
2
s M ] IR

P, £ 3 max [é . * g ) (h.b,
P e B e

337
Py = e sM VLY, (1.7)

Bnaﬂaﬁ n:]_v!

where e is a real unit vector and P is defined as in eq. (2.34). For the
details of the proof we refer to appendix A.
(1) {(n)

N ,...,VN
particle system, described by a hamiltonian Hﬁ, such that, for 1.j=1,...,n,

(i) iXs 7 3\
" < A'Ai ()v.8}

N = ?

n|véi), véj)] I = eij(N) . (4.9)

be a finite set of operators acting on an -

v



e, véi)1||= Ne (V) (4.10)
eij(N) + 0, ei(N) + 0, if N-+w . (ho11)

Let F(v) be an integrable function of n variables satisfying the continuity

condition
n
|F(v) = F(0)] s § F.lv.] , (4,12)
- B i=1 tt

for some Fi 2 0, i=1,...,n, and also the inequality

P(<\_II\I>MI\]_N\”V ) (4.13)

F(v) s <P(}_/N)> vy

Mﬁ—NE'YN

ef. (1.7) for the notation, for every value of v, where P is an analytic
function, as defined in subsection 2.3.

Then we have the inequality

F(0) 5 ¢ , (h.14)
where
ey > 0, if Now (4.15)

Eq. {4.14), which may be considered to be a generalization of the
inequalities used in the derivation of the fundamental theorem in section 2

of chapter I, will be proved in appendix B.

We will now prove eg. (4.2) by deriving a lower and an upper bound to f,

which will be equal to ft(n) in the thermodynamic limit.

Lowerbound: From the Bogoliubov-Peierls inequality, see eq. (2.5) of

chapter I, it follows that

F(v) fﬁ[ﬂ£,N(g) - NueVp] - £ 10 - MoV

N

- (R{¥y) - R(n) - R'(n) * (V-0 ey (4.16)

Since R is a convex function,

R(n) + BR'(n) « KV} .y - 1)< RHVY ) (4.17)
D R ey T S O Iy
so that
Flv) < -<(R(V ) + R((V ) ) (4.18)
- -N Hh—Nz YN -N Hﬁ—Ny YN
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Tor every value of v.
For short-range operators YN and the hamiltonian (%.1) the commutution
relations (4.2)-(4.11) are satisfied, ecf. appendix C. The lemma (4.1k)

applied to F(v) in (4.16) then provides the lower bound

£ lIG] = S ()] 2 ey (4.12)

where ¢ >0, if N=»ew, cf. (4,15),

Upper Lound: In scection 3(iv) of chapter I an uppcr bound was ¢erived using
the Bogoliubov-Peiecrls inequality, lemma 1 and the factorization property
(1.12). This property could be¢ proved casily in chapter T noting that the
operator NVN and the hamiltonian are sums of onc-portiele operators V().
Here, however, NYN are short-range operators and the validity of an cauation
like (1.11) is not obvious. Yel, a factorization property scems to be 2
basic ingredient fTor the derivation of an up»cr bound. For that reason
averages will be taken with respect to the hamiltonian W 1\]( n), which can
be obtained from (L.4) replacing the Vé 1) by the correspondlng operators

01 . .
V. (l), cf. (2.6), so that ﬂg N(n) is a sum of operators acting on the
D

N
Hilbert-spaces associated with the cubes C, (Y) originating from the sub-
division of the system QN’ . (2.1)-(2. 5) Since the operators Nvg 1)

occurring in ﬂ£ N(n) are short-range operators, use can be made of the
, 0

decomposition properties (2,7), (2.8) for each i, so that

40 5
YIT =y + B—N ’ (k.20)
with
ﬂ{eél) I +0, if H-w, i=1,...,1, (h.21)
and
b = 7 0 t o ~
".'jt]l
-0
0, (n) = u((n) - neR'(n) + R'(n)-VD) . (k.23)
.l = - - = = - =" -n
From the Bogoliubov-Pelerls inequality it follows that
- 0 =T 0
UG € Tl ()T + 16 =30 w(ndga ()
Lyl ~=
< T 150 ()] + 3" (1(0 - 1(0 (n)
S TN, L i (n)
£,0 0
=1 a0 - -1 D
- 3¢ — 30 .z
+ IH(t N(_) J(t,N(H)" + N IIJ(N J(H , (h.2l)
Ly
=) e




-

o

(v

where W7 T B (VpY, e (L),

-1
. 7
"‘(t,N(D) i, (s FFURPI S e
\-.'ith

_ 3R
.z Of8
=1 4

an n=M

cf. appendix C, and the lemma (4.5),

Vo Py Dy Pgys WC have

2
TNIMN] ldt . (n)1 + r, ((V )ﬂﬂ (n) - Q)
t,N =
+r?<(v§-<vN>,(0 ( ))">7(0 () * T
- S Tyt D
vith 3 x >0, fl'"BN" +>0, if N-=, ecf. (L.7),

(V]
- Mﬁ|l< EI'HEN" .

with VN’ R, r,

+ EEI.HBN“ .

Tn view of the norm-estimates

(k.25)

(4.26)

3 N instead of

(L.27)

(L.21). Since NVﬁ and

3?0 () are linear combinations of N(N) (K), ef.(2.6), acting on the cubes

t,0 0

CM(K)’ K=1,...,L(N), we have the factorlzatlon property

cr ;
<\_/M(r)v (K" Dy

M

3 X=]

](g)

ot

t N

3

for different cubes K'#K, and therefore

t,N *e nin
From (L.27) and (k.29) we have the upper bound

iG] = £, ()] s q + v, (g >;(o (n)

t,N -

sity -0, 1 oo,
with qN > 1f N

¢ t
(K” (n)“—IM(K »; i

2 2 .
¢ (v2 Uy - <VN>3(0 (n)) o (qy S M/LOD >0, if N

From (L4.30) and the lower bound (4.19) il follows that

e, < S0 - m:x f l“i N(ﬂ)] < qy -

Ilere 1t has been used that,

such that

= ) ,
- -N th N(_)

. . . . 53
which is a consequence of a fixed-point theorem due to Brouwer

for cach finite value of N,

(T'l) ] (M.EB)
(4.29)
s (%.30)
(4.31)

n may be chosen

(k.32)

, since

the vector fieid ¢(n) = <VU K (n) gives a continuous mapping of the
R

region lnil g M5, i=1,...,0, “2nto itself. In the thermodynamic limit (%.31)

s



PraTas

-

reduces to

f = 1lim max fN[H£,N(D)] = max ft(g) s (4.33)
N n n

which completes the proof of theorem (L4.2).

Remark: The free energy per particle f is also given by

f= ft(ﬂm) 3 ()4-3)4)
no=lim (Vb . (4.35)
Iy = 23m

Proof: The function f _(n) is concave in n, so0 that f = max ft(g) = ft(gm)

t
for some value n . Since R is strongly convex, cf. (3.9), we can write
R(n) = en® + &(n) , (L.36)

in which €>0 and ﬁ(ﬂ) is convex for |ni|s M. Following the line of
reasoning leading to (4.19), (with F(v) - s((YN-E)z) and R instead of F(v)
and R in (4.16)-(4.18) ), we obtain

(M1 2 eyt el(Vmn)®y (4.37)

fNWN] - fN”C N - N

t,N

which implies that . in (4.3L4) must satisfy (4.35).

5. Minimax theorem.

In this section the minimax theorem (3.10) will be proved using an
extension of the fundamental theorem due to Bogoliubov Jr. This extension ecan
be formulated as follows.

Let QN be a sequence of systems deseribed by the hamiltonian

3, = N{TN + Q(yN)} , (5.1)

where Q(YN) is a strongly concave function of n variables satisfying the
first inequality of (3.9) and the properties (2.30)-(2.3L4) with Q, q and §
instead of P, p and ./ . The operators Ty end Vo satisfy the (commutation)

properties, for i,j=1,...,n,

uv&i)u <M, (5.2)
Il [Véi),vl(vj)]n = Eij(N) . (5.3)

L6
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(1) 4y = /
H[TN,VN 1= Ei(N) . {5.4)

eij(N)-+O, ei(N) +0, 1if N-o, (5.5)

Then the free energy per particle f in the thermodynamic limit is given

by
£ =min £ (E) (5.6)
§
where
£=lm £ [0 ],  £(g) = lim UK (E)], (5.7)
N-»c0 Noroo
#, u(8) = Mry + alg) +Q'(E) - (V-8)} . (5.8)

The thermodynamie limit of fN[ME,N(E)] is assumed to exist for 'Eil < M.
Note that eq. (5.6) can be considered to be eguivalent to eq. (3.10) for

the special case of concave P=Q. For the validity of (5.6), however, only
the commutation relations (5.3)-(5.5) are required and no short-range
conditions are imposed on the operators YN' This will turn out to be an
essential feature for the proof of eq. (3.10) for general P = Q+R.

. BEq. (5.6) will be proved by deriving an upper and & lower bound for
fN[Hﬁ] which turn out to be equal in the thermodynamic limit. (The special

case of one variable has also been treated in ref. 54).

Upper bound: Using the Bogoliubov-Peierls inequality and the concavity of

the function Q, we have

Fly) = £ (3 - MoV ] - fN[H£,N(§) - NpeVyl

/A

aliy) - alg) - @) - Gy (o) gy,

ga(ve v - alv v ) (5.9)
-N Mk,N(g)—NE YN -N a%,N(E)_NX YN
The lemma (4.14), applied to F(v) in (5.9), gives
£l - £yl j (8T <o s (5.10)

where cN-+O, if N+, cf. (4.15).

Lower bound: Using the Bogoliubov-Peierls inequality and the concavity of

b7



Q, we have

F(v)

mén Ty O (&) = Muell - £yl - mweTy )
min (Q(E) + Q' (£)+(V,~£) - (V) .
Al 2yt e

- Qv )N o Faltv, ) s (5.11)
~-N MN-NY YN -N ﬂN—Ng YN

N

and from the lemma (4.14) it follows that

leﬂﬁ] - mén fN[ME,N(E)] z ey o

where c& +0, if N-»w,

Fq. (5.6) is now a direct conscquence of (5.10) and (5.12).

Remark: Suppose that the minimum in (5.6) occurs at g=f_, then

m

£=1(g ), (5.13)
and gm must satisfy the Implicit equation

£ = 1lim (V). . (5.1%)
M e N ﬂE,N(ém)

Proof: Since Q is strongly concave we can write

2 ~
alg) = —e” + Gle) , (5.15)
in which €>0 and Q is concave. Using (5.15) to derive an upper bound, we

find (5.14),

We now proceed to prove the minimax theorem (3.10) for a sequence of
systems described by the hamiltonian (3.1) with a general function P
sarisfying egs. (2.30)-(2.34), in which the operators V;i) are uniformly
bounded and satisfy the short-range conditions (2.8), (2.10) and (2.11).
Here we can take h=0 without loss of generality, since the operator E-YN
can be included in P(YN).

Using the decomposition (3.8) the hamiltonian (3.1), with h=0, can be

written

Hy = N{TN + Q(YN)} . (5.16)
where

Ty = R(Vy) (5.17)
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and where the strorgly concave function Q(VN) and the strongly convex
function R(VN) satisfy the properties (2.30)-(2.34), (with Q, q,4? and
R, r, & instead of P, p,2).

N and VN under consideration the (commutation)

relations (5.2)-(5.5) are satisfied, cf. appetdixz C. From theorem (5.6) it

For the set of operators T

then follows that the free energy per particle T in the thermodynamic limit

is given by

£ = 1lim £ |7 ] = min 1im £_07C _(£)] , (5.18)
Noveo JURN £ Mo N,
with
T r = MIC - Fe)! b} 1 . [ v
;rt’N(E) u_[o,(g) g1 (g) + B(v) + 0 (g) ‘-r-' . (5.17)

From theorem (4.2) for convex functions of short-range operators we conclude
that the free energy per particle T in the thermodynamic limit exists and is
given by

£ = min max lim fN[u£,N(E’Q)I . {5.20)
E o lNoe

Egs. (5.20), {5.21) are eguivalent with (3.10), noting that a term —NB-VN in

the namiltonian (3.1) can be present in Q(YN) or R(YN).

In the derivation use has been made of the validity of eq. (5.6) for a
larger class of operators involving also nonlinear terms occurriug in

R(V

In
conditions have been used in an essential way in the derivation of the upper

) which do not satisfy the short-range conditions. However, these
bound in thecorem (h.2) for convex functions. In appendix D it is shown by

an explicit example that eq. {5.20) cannot bLe valid with the same amount of

generality as eq. (5.6), sce also refs. 1 and 55.

6. Legendre transform.

In this section we derive eq. (3.11) which relates the free energy per

article of the hamiltonian (3.1) to the Legendre transform (3.12) of the

fe]

reference frece energy.
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Substituting the inverse Legendre transformation of (3.12), i.e.

fo(h) = inf [~ hem + go(m) 1, (6.1)
m

into the minimax theorem (3.10), we have

£(h) = min max inf [ - hem + go(m) + &(g,m) + R(nom) 1 , (6.2)
g n m
with
Alg.m) = a(g) + Q' (g)(m-g) , (6.3)
R(n,m) = R(n) + R'(n)(m-n) . (6.4)

The expression between brackets in the right-hand side of (6.2) is a convex
function of m, and has a unique maximum over n. This follows from the
strong convexity of R(Q), which implies that, for each m, ﬁ(n,@) has a
uniquely determined maximum.

Under these condéz%ons the maximum over n and the infimum over m in (6.2)

can be interchanged s See also appendix E. Interchanging also the

infimum over m and the minimum over £, we find

£(h) = inf [-hem + go(m) + P(m)] , (6.5)
m
with
P(m) = min max [Q(£,m) + R(n,m)] . (6.6)
E 1

The minimum of é(g,g) occurs at £=m, (since Q(g) is concave), and the

maximum of ﬁ(g,g) at n=m, so that
P(m) = Qm) + R(m) = P(m) , (6.7)

which completes the proof of (3.11).

T. Generalized molecular-field equation.

In this section we derive the generalization of the molecular-field
equation (1.6), taking into account that here the reference hamiltonian
(3.7) can be a short-range operator which can give rise to first—order
phase transitions in the thermodynamic limit. Inserting the expression

(3.12) for the Legendre transform go in eq. (3.11), we have
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=

f(é) = inf sup [(E'—E)'@ + fo(h') + P(@) 1. (7.1)
m h'

At fixed m, the supremum in (7.1) occurs at h'=h'(m) for which
h'em + fo(y') 2 h"m + £,(0") , (7.2)

for all values of E". With the notation h"=§'+ve, with e any unit vector,

(7.2) can be written

= [fy(ht+ve) - £,(n')] 2 ve'm . {7.3)

Since f; is a concave function, its left and right derivatives with respect

to v exist and from (7.3) it follows that h' satisfies

4 fo(E'+v§) § e'm g lim - g—-fo(§'+vg) s (7.4)

1lim -
vig W - o W

for any unit vector e.

The infimum in (7.1) occurs at those values of m for which
(h'(m) - h)em + £,(0"(m)) + P(m) < (h'(m') - h)em' + £ (0" (m")) + P(m"),
(7.5)
for all values of m'. Using (7.2), (with §’=E’(Q) and §"=E'(g') ), and the

notation m'=m+ve, with e any unit vector, (7.5) can be written
ve*h'(mt+ve) > verh - P(m+ve) + P(m) , (7.6)
so that m satisfies

lim e*h'(m+ve) < e*(1-P'(m)) ¢ lim ech'(m+ve) , (7.7)
v4+0 - - vi0 -
for any unit vector e. ZEq. (7.7) implies that, for the values of m for

which the infimum in (7.1) occurs, we may use for h' the value
B =h- P . (7.8)

In connection with this relation it may be noted that for systems with short-
range interactions the function h'(m) defined by (7.4) is in general
continuous 57)’58), in which ca;e Z7.8) is identical with (7.7).

Inserting (7.8) in the condition (7.4) for the supremum we obtain a
necessary, but in general not sufficient, condition to determine the
infimum. This condition which we call the generalized molecular-field

equation reads

lim - 4 . (h - P'(m) + ve) € e'm ¢ lim - 4 ¢ (th ~ P'(m) + ve) , (7.9)
dv 0= - ‘= = - - dv “ 0= - V. =
v40 v+0
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for any unit vector e.

As a result the free energy f£(h) can be written

£(h) = min [ £, (0 - P'(m)) + P{m) - mP'(m) ], (7.10)
o ne s b -z m meZim

vhere ./, 1s defined as the set of solutions m of eq. (7.9). DNote that in
eq. (7.10) the restriction TGEIZ is nccessary, since at the infimum over n
in (7.1), eq. (7.8) gives a correct solution to the problem of taking the
supremum over h', ef. e.g. remark 1) of scction ¥ of chapter I for - .
example. Furthermore, we need the minimalination procedure over the
gsolutions m& /4, 1in order to exclude unphysical solutions of (7.0) which do
not correspond to the infimum.

tgs. (7.9) and (7.10) arc identical to eqs. (2.h1) and (2.42) derived i
ref. 59, apart rom some minor changes in notation. In this chapter,
(7.7) and (7.10) have been derived starting from (3.11), or (3.1L), so that
tnese equations must also be valid in systems described by Kac-like long-
range interactions, provided that the Legendre transform g(m) of the free
energy is given by a convex-envelope expression as in (3.1%).

In the absence of first-order transitions (7.9) reduces to the implicit

equation

I;'l=—a_h fo(};l—}:'({ll)) 3 (7‘11)

which can be considered as a molecular-field type of equation.

Remark: Egs. (7.10) and (7.11) have some direct applicaticns for time-

independent correlation functions of normalized short-range operators. TFor

this purpose we consider a system described Ly the hamilvonian

i, = N{P(V) + Am(v)} ‘ (7.12)

where P(YN

normalized short-range operators and A 1s a real parameter. The free

) and H(YN) are analytie functions of a finite number of

energy per particle corresponding to Wﬁ in the thermodynamic limit is given
Ly, cf. (7.10},

£(x) = dm £ [N{P(V) + Ay )}

Mo N
= min lim fN[N{P(m) + P'(m)-(VN—m) + A(m) + A;' (m)e (v, -m)}1.(7.13)
» n el Iy n LAy
ME.7¢ N-reo

In the absence of first-order transitions m=m{A)€.¢{ satisfies the
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molecular-iicld cquation (7.11). Taking the derivative with »oapect Lo )y,

it follows that

lim (T(V ) = - = 1(m(0))
Foreo N wp(yy) ax =0 <
= M(lim VY ooy, ) = T{Ldm (VY N (7.1%)
o~ HE!(m) Yy oo 1 NP(YN)

e, also (h.35), (5.14), Relations 1like (7.14) have also been rstallished
in an algebraic approach (U)’D1).

8. Dicke mascr type of models,

In this secction we consider the class of systems descerited Ly the
hamiltonian

4o
i, =] wea + /FJ PN AL 2 R (8.1)
k ’ k

k'k I kKk'N N

b . .
In (8.1) a_ and a_ are boson construction operators, i.e.

k k

_ .i. .{-. _ + _
ley 2] = [a,a 1= 0, la,a, 1 =8, (8.2)
acting on the Hilbert space hB' The normalized operators TN=T§ and Vék) act
on the Hilbert space hN of an N particle system, and satisfy the
(commutation) relations
Wik gu (8.3)
N
o
(x) (2] (k)" ,(2)
1 X \ \Y i
vy e e (1, 0V LY s e (1), (8.4)
]-
ulTN,VI(V‘)lu s e (M), (8.5)
z-:a(N), eb(N) + 0, if N=w, (8.6)
The hamiltonian ﬂN acls on the direct product Hilbert space hBGhN, the
constants Wy and AP satisfly
w, >0, glkk]/ Y, < o, (8.7)

The second condition in {8.7) is trivially satisfied if the number of modocs

k which are coupled to the H particle system is finite.
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A special case of (8.1) is the Dicke maser model, in which

N N + N
- 2z (1) _ - (1) _ +
NIy = i; sy » MW = E 8 » NV = i;si , (8.8)

for one mode k=1, where gi is the spin of particle i. This model has first
been solved by Hepp and Lieb 7 , see also ref.62 for polynomial extensions.

8)

For the general hamiltonian (8.1) Bogoliubov Jr. and Plechko , cf.

also ref. 63, have proved a theorem which can be formulated as follows.

Theorem: The free energy per particle in the thermodynamic limit of the

class of systems described by (8.1)~(8.7) is given by

lim £ _[3_ ] = lim £ [ ] (8.9)
Moo NUNT TS0 NN

where 2
X =Y waa +Nr -7 I v(k)Jrv(k)} (8.10)
N L Y%k N~ L e, NN : g

In (8.9) the traces are taken over the Hilbert space hBGhN.

The free energy in the right-hand side of eq. (8.9) can be further evaluated
applying the theorem (5.6), (using the decomposition Vy = vyt iYﬁ’ with
vy and Y" hermitean). We first give a direct proof of eq. (8.9), deriving

N N -
an upper and a lower bound for fN[Hﬁ] - leﬂh].

Upper bound: Consider the hamiltonian ] ]2
A +
— ok o k' (k) (k)
e = E o (o = /Ny ) (s — Moy ) + w7y - g o, NN boo (81)

Since the (Bogoliubov) transformation

+ + *
a, > 8 - /ﬁbk, a > A - /ﬁhk s (8.12)
is a canonical transformation, cf. e.g. refs. 6L, 65, we have
fN[JCN,a] = 0 (8.13)

for any set of complex numbers {ak}. Applying the Bogoliubov-Peierls
inequality it follows that
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Fl¥y 1 - Tl < N GG - N,a)ﬁﬁ
20
+ *
a A A + a
Tkooxy ko (k) "k (k) Tk
= Lo Cgg= o)V + o) + (VT +a (- o)
k k k
A + A
R LR R Y
Wy k N,o
2
(x| + +
=) —k {(vék) vék)>ﬁ. - <v§k) >i.<v§k)>ﬁ. } . (8.1h)
x "k N N N
In (8.14) we have used that
By By (
(== = (~=3) + * =0 ., 8.15)
Y ﬂh,a vl wk(ak-fﬁhk)(ak—fﬁhk) k
and we have substituted for {ak} the values
A 2
- k (k),. k ,.(k},-
S ST AL LA ST S TAR S . (8.16)
k we N H o XN Mﬁ,a

Using a line of reasoning similar to the derivation of (4.14), see appendix

F for further details, it follows from (8.14) that

fN[JCN] - fN[J(‘N] <o, (8.17)

with ey 0, if N-o,

Lower bound: Consider now the hamiltonian

: Ikklz (k)fr(b)

_ T
Mx = E Keoyeyey + NIy - E (7%, Ju, Vn ooty o (8.18)

with 0 <Xy <1. Using the Bogoliubov-Peierls inequality we have

" -1
fN[Mh] - fN[A',x] >N (ﬂh -3 D

N,x Hﬁ
t *
_ By A " Ak (k)
= E (1-Xk)wk ¢ Tt TF:E;SEE'VN H t TT:;;j;; Yy ))MN >0,
(8.19)

and therefore
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i ONE! > 1|7
i1 i |WN] 2 1“|(

My N H,x n'n
(1=x Jw, x| i
: - Z (i K aﬁay + zi%f;L7”~ V%}) Vik))J( . (8.70)
K N LR R A S
Trsevting
. Bx, w 1
¥ k7K -1
(a a ) = (e - 1) < (6.01)
: kA S ORM, °
£k N, Aryw,
gives, of, also (8.3) ,
. (P P
. , B, kR \ -
| - i PR + - 1, el
INI N] lejwl ) (GX'N (1=, Ju, / (8.27)
k K kTk
Choosing for the sot {xk} the vulues
X, ( ay, i
S N N 4 -
—_ = 2:—2-) k] (8.::_‘,)
o, T\ BN [Pl
we get the lower bound
. elxrlm
- - 39 P
2,196, 1 - £,09G,1 3 - ) = b, (8.24)

k VBu ¥ N

with by +0, if Now, cf. (8.7).

The theorem (8.9) is now a direct consequence of egs. (8.17) and (8.2L).

Remark: Theorem (3.11) can be used to obttain various further evaluations

of the frec energy of Dicke maser iLype of models.

Consider o.g. the hamiltonian

_ _ ' ¥ - b i o -

i, = g oo, + W {ag@ (V) + agly)} + w{p(7) - nevp} s (8,25}

e wy = (D) oy (n) it sl e et SUPS
wher.: RYN = (NVN ,...,NVN ) are hermitean shori-range opcrators satisfying

(2.8),(0.10), (#.11) and P and Q are analytic Tunctions, cor. (72.30)-(2.3L),
Q not necessarily being a real Tunction.
Then the free enerpgy per particle in the thermodynamic limit can be

writien

£(h) = inf | -hem + g (m) + P(wm) - !Q(T)!Z/mo] R R (8.20)
m

wiere £ 1s the frec energy per particle corresponding to E}mra;a] and go(m)
b Lk kK -

is ihe Legendre iransform (3.12) of the frec energy per rarticle fo(h)
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corresponding to the short-range hamiltonian ~Nh-V“.
Py, {8.00) ean be derived from (8.9), with AP=O if k#0, mnoting that
) (1) (]’1))

the cperators P(VN) and Q(VN) for short-range interactions (NVN TR AS

-
. . Y e LIV E‘n. 8/\ . . i . [ . e T
satisfy the requirements (8.3)=(8.G) imposed on the operators in (5.1). Then

f(n) = J;J'm fNIJ(‘N] . (6.07)
R =0
whore
oo e
I =7 wal (v} = Q' (v @, = bV R
BT Ly T {rCy) - o ety ) ey = e | (£.05)

)
and ca. {8.720) follows as u dircet connquenes o (,07), (8,08) and (3,11),
B, (8.20) ulso holds when the operators Y in (8.00) are not short-
=i
range,  but satisfy the (commutation) rolations (So0)=(5.0),  in Lhe case

)
? .
that T(T) - IQ(T)’ /mO ia strongly concave, of, (H.0),

Appendix A.

In this appendix the proof of the lemma (4.5)~(L.7) will Te given. We
start with an analytic function P(Z), as defined in section 2.3, and an
arbitrary density operator p. Then we apply Teylor's theorem witih lagrange's
form for the remainder, i.e.

o(t) = ¢(0) + to'(0) + 2t2¢" (1) , (B.1)

for some value T with 0 < 1 < %, to the function

o(t) =Tr pP(V.) (A.2)
where
v, =+ t(v-n) . (A.3)

Choosing L=1, we have

2
X = Tr p{P(¥) - P(n) - P'(n)e(¥-n)}= ! Ur {p %Tﬁ-r(yt)

for some 1 with O < © < 1.

According to (2.30) we write

T v . . (i) (i)
P(v.) = ] ) P35 seeesi ) Wy (A.5)
m=1 i],...,im=1
sc that in view of eq. (A.3)
5T




=]

2 t m-1 m sa-1 )
: %Ef P(V,) = ] ) p(isennsi) 1] ( . Vt(ll))

m=2 il""’im=1 a=1 b=a+l ‘=1
. b-1 . . m . :
x (v(la)-ni )( i vill)) (v{in)_p, )( 1 vill)) . (4.6) .
a “g=at+i b M=b1
We now shift the factor (V(la)-ni ) to the left and the factor (V(lb)-ni )
to the right. This leads to & °
2 2
2 %;z P(V,) = (y-g)-g( )'(!-n) + 3, (8.7)
t=T
where
(). 5 ¥ ( S 1 iy
P.0" = P il,...,i §. . 8. ( )] il ).
1J m=2 il""’im=1 m a=1 b=a+1 *’'a d>1p =1 VT
2#a,b
(A.8)
The contribution arising from P(B) can be estimated as follows:
© n
[Tr pP(3)| <13 ¢ ) ) Ip(iy,.en,i )]
m=3 il""’im=1
m-1 m a-1 . . . m .
x { 7 oatie) yla)yyytie) oy ( T vill)u) 1
. a=2 b=at1 c=1 o g=1
% 1#a,b,c
vt n-2 m-1 m . . . m .
. 1wt npvlie), ylie)y ( n nv(ll)n) }
a=1 b=a+1 c=b+1 a g=1 T
2#a,b,c
w n
« ) [p(iysenesip)]
m=3 iy,...,1i,=1

x 3] ( I "Viil)ll)ﬂv(ia)-ni papvtie) ylic)

3
a#b#c#a L#a,b,c a
3P
337 ) i
< ananan - EMILV,VIR = pg, (4.9)

ef. (2.29), (2.33), (2.34). Note that the last line of eq. (A.9) is
identical to (L.T7).

We now proceed to derive an inequality for the quantity X defined by




Tt

(A.4). TFrom (A.7) and (A.9) we have

x| < e o-m)-2®ev-m | + vy

(i)-—ni) PS) (V(j)—nj)l + D, . (A.10)

A

n
I lrroe(v
J

i,5=1

The first term in the right-hand side of (A.10) can be estimated using the
Schwarz inequality

1 KX 1 1 1
|Tr ARC| < (Tr ATA)Z{Tr c(8™B)C)? < (1r ATA)Z 1B (1 ¢TO)2, (A.11)

with
1 » 0 1
_ 31D _ (2) _ o (3) z
A=op (V 'ni), B = Pi,J 2 C= (V —nj)p . (A.12)
We then have
n . 1 N 1
x|l « ] [{Tr p(V(l)-ni)z}z HPS)H {Tr p(V(J)-nj)z}z:( +py > (A.13)
i,3=1
where
(2) .4 3%F (2)
P,y sz W = p% . {A.1h)
J H nj D=M d

ef. (2.29), (2.33), (2.34) and (A.8). From (A.13) and (A.14) we conclude
n ,
Ix] < p, {i£1 Tr p(v(l)—ni)z} + Dy, (A.15)

2)

where p, is the largest eigenvalue of the matrix pg . Hence, the lemma

(L.5)-(4.7) has been proved.

Appendix B.
In this appendix we prove eq. {4.14), using the (commutation) relations

(L.8)-(L4.11), which can be written as

(i)

Oy e e, g < e m

(i)ﬂ < M, W[V

vy S

{B.1)
ea(N), sb(N) + 0, if Noo,
and also the inequalities (4.12) and (4.13).
From (4.13) and the lemma (4.5) we have
n . .
(1) (i) 2
F(v) $ Py * L P (V7 = (vsh v )0 . (B.2)
v 3,8 7 L P2y A
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where p, and pg y are independent of v, aud p
3, -

+0, if H=w, cf, (4.0},

3K

{L.7), (B.1). Applying cqs. {2.16) and (1.18) of chapter T to the auto-

correlation function in (B.2), we have

n 2
1 3
—_— - T | - o)
Flv) <oy y * 121 Py [BN f vl TGy = Mue V1)
SR 5° )
“(N - ; - VAN (B, =
+ v aMe(n) | 533 £,190, ~ Wy \_NHJ’ {(E.3)
where we have also used the estimate, cf. (B.1).
(i) (i)
b | - . -
VT TG = WV V" 05 gy
N = =N
n ~
< 2NM {eb(N) + 3-21 zjga(u)} = 2HME(N) (B.b)

restricting v to the Interval 0 g Ve

<

< 8., for i=l,...,n, where 21,...,R

1 n

are arbitrary positive constants. Note that €(N)+0, if N-w, independent

of wv.

As a consequence of the mean value theorem we have

(

n -1 1 n

T 2.) ( av, ... j av_ Flv) =
g 1 J 1 n -
1=1 o

for some vector v, with 0 < vy 3 < R..
Yo 0,i %

inequalitly
1

%
—1
2.) J dv
3
0

Applying (B.3) to the F(v) in (B.6),

Iil n
F(0) < F.o. + ( 1
- . 171 i=

1=1

integrals and (B.1), 1i.e.

1

)s (B.5)

From (B.5) and (L4.12) we have the

n

n
- J dv_ F(v) . (B.6)
0

and using the Schwarz inequality for

by
-

s 1 a
T 1}2 < 72 v, { 25, - Muey e
vy {507 Tyl - My N Vi U0 et T Yy
0

=N 1 Jve = =N
i 3 i
g /M., (B.7)
we obtaln
: 3 2 E(n)
P(Q) < p3,N + 121 [Fili + pzM {Eﬁzz + <—E;f_> ]. (B.8)

So far 21,...,2n arc arbitrary positive constants. Choosing the Qi such
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on v
2, = &(N) = max {(ﬁ)y s (pi E(N))%} s (B.9)
we have
n
FO) s py g+ 1 (FyraM)a(N) = ¢ (B.10)
? i=1

and eqs. (4.14) and (4.15) have been proved.

Appendix C,

In this appendix we treat some properties of the normalized short-range
operators V&l), i=1,...,n, defined in section 2.1. We first derive the
commutation relations

u[vl(vi), vl(qj)1u= ey s (1) > 0, if oo (c.1)

Using the decomposition (2.6)-(2.8) of the operators Vy» i-e

L(N)
. 0 o _ -1 c
Vy=Vy *Bp Yy =N K£1 MMV (K)
(c.2)
HBNII+ 0, 1if N » =,
and the norm estimates
; i 0(i) .
§§ nle]l)n M, W Them o, (=1, {c.3)
which hold for sufficiently large Mi’ we have
3 . L{N) . .
(1) (3)qy 2 =2 e(i) e(d),,
Hvy™ s vt =1 L(N) K£1 [V (), Vy ()]
o(i) {3) (1) ,o(3) (1) L(3)
+ [V T Ry IR, VT TR, R
A -1 (3) . (i) (1),03)
< d{L(N) MiMj + MiHRN I+ MJHRN I+ "RN Ry Ie,(c.h)
which proves (C.1), cf. (2.3) and (C.2).
As a corollary we have the commutation relations
H[R(YN), v&l)]ll= ei(N) + 0, if Now, (c.5)

where R(VN) is an analytic function of n variables, defined in section 2.3.

Equation (C.5) follows from (2.30), (2.33) and (2.34), (with R, r, A
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instead of P, p, ? ), which lead to

RV, v pn e E ? E [r(i i )|
=N’ "W X A . . 11,--.,1m
m=1 2=1 11,...,1m=1
2=1 . . m
x ( n M. )u[v(ll), vél)]u( n M. )
a=1 la N b=2+1 1b
n o .
(3) (1)
= j;l r1’jH[VN s V11, (C.6)
with
2R (c.7)
r, = .
=1 32 T_]=1\_/I

Finelly, & second inequality involving r, has been used in eq. (L.25), i.e.

0 s T (8 . .
IR(Y) - RV s 21 221 ol N [r(ip,eeni )]
m= RS TRRE:
- (ig) (T .
<\ IoMo JIRSAEIIL T M )=y edR (c.8)
a=1 ‘a v=e+1 o/ T T

Appendix D,
In order to see that (5.20) or (3.10) does not hold under the same

general conditions for operators as (5.6), we consider the hamiltonian

H, = N7, + wWﬁ), (w>0) , (p.1)

where Ty and W are general operators satisfying egs. (5.2)-(5.5). From the

Bogoliubov-Peierls inequality it follows that

f=1lim fN[ﬂh] 28 (p.2)
N-roo
with
g = max lim £ [N(T. + 2m¥_ - wn2)] (D.3)
N N N
n Mo

assuming that the thermodynamic limits in (D.2) and (D.3) exist. If TN and
W) are short-range operators we can apply (5.20), (or (4.2)). As a result
we would have f=g.

In general, however, f can be larger than g, even if the thermodynamic
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limits in (D.2) and (D.3) exist, i.e.
f>g, (D.4)

which implies that the theorem (3.10) cannot be extended to more general
operators sstisfying (5.2)-(5.5).
As an example of (D.1) we consider the hamiltonian

- 2 2 . _ 2
ﬂh = N(-va + wwN), (vyw > 03 Ty = -va) s (D.5)

where V and Wy are normelized short-range operators. From (D.3) and (5.6)

it follows that

g = max min ¢(&,n) , (D.6)
n £
with
6(£,n) = lim £ [N(=2EvV + VE> + 2nwW. - wn2)] . (D.7)
N—mN N N

On the other hand, from (3.10) it follows that

f = min max ¢(&,n) . (D.8)
E n

The operators Vi and Wy can be chosen in such a way that (D.6) and (D.8)
lead to the inequality (D.4), which implies that (3.10) is not valid for
the hamiltonian (D.1) with the operator TN = —vVﬁ.

Explicit examples have been given in refs. 1, 55. A very simple example

can be obtained choosing

N
-1
Vy=Wy =N ] o, w>v>0, (D.9)
k=1
where Uk‘= +1 refers to the spin of particle k. In this case we have
~1
#(g,n) = vE2 - wn?2 -~ 87 1n 2 cosh 28(vE-wn) . (D.10)

For sufficiently low temperatures, (i.e. 28v > 1), the absolute minimum over

£ of $(£,n) occurs for (£,n)-values such that
[g] > £, » 2Bwn = 2BvE -~ artanh £, (D.11)

where &, is the positive solution of 2BvE, = artanh £, . The absolute

maximum over n occurs for (&,n) such that
2BvE = 2Bwn + artanh n . (D.12)

Since the curves in egs. (D.11) and (D.12) do not intersect, the function ¢
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Jdees not have a saddle-point and therefore f>g. (The equality f=g would
imply the existence of a saddle-point, see e.g. lemma (36.2) of ref. 38).

Explicitly we have
1

- 2 -
f=-8 1 In2 >g=vE] - B 1n 2 cosh 2BvE; . (D.13)
In eq. (D.13) it has been used that the min-max of ¢ occurs at £=n=0 and

the max-min at £=£,, n=0.

Appendix E.

In this appendix we give a proof of the following theorem

56)

Theorem: Let K(x,y) be a cortinuous function of the variables
¥ = (xl,...,xp), y £ (yl,...,yq), for each x€X, yeY, with X and Y
bounded regions in the X and y space. Let K have a unique maximum at
x = uly) €X, for each y€Y, and a unique minimum at y = v(x) €Y, for
each x&€X . Then
max min K(x,y) = min max K(x,y) , (E.1)
Xy y X
with the maximum and minimum taken over x€X, y€Y

53)

Proof : From Brouwer's fixed point theorem it follows that the set of
equations
x = uly) (E.2)
y = vix)

has a solution (x,y) which is a saddle-point of K, i.e.
K(x,¥) <€ K(x,¥) € K(X,y) (E.3)
for each x€X, y€Y, cf. e.g. ref. 38. Using the notation

f(x) = min K(x,y) , gly) = max K(x,y) , (E.b)
¥ b'd

it follows from (E.3) that

max £(x) 2 £(X) = K(X,y) = g{¥) 2 min gly) . (E.5)
X M

Sirce f{x) < K(x,y) < gly) for each x€X, y€Y, we also have

max f{x) < min s(y) , . (E.6)
x y

6h



and therefore

max min K(x,y) = max £{x) = K(X,y) = min g(y) = min max K(xz,y) . (£.7)
X N X y ¥y X

Remark: Eq. (E.1) also holds when the maximum of K(x,y) over X occurs at a
convex set U(y)cX , for cach ye€Y, (and the minimum over y at a convex
set V(x)CY , for each =x€X) , instead of a unigue point uly), (and v(x)),

seec ref, 56.

Appendix ™,

In this appendix we prove eq. (8.17). From cq. (8.14), using the

replacement, (a=1,2) ,

(a,k)
Ty * Ty = L Vox Vi , (F.1)
a,k
with
b y LY .
vé"k) g(vék) + vé‘)), Véz’k) = %i(vék) - Véh)) ) (F.2)

we have the ilnequality

g = , - i
Fllvy o312 106, 1 = 1006 1
IAkl2 (a,k) (a,k) 2
oyt Lo T = ) g, (F.3)
® Oy ¥ k N,v N,v
with
- (a,k)
=3 - ? (T
Mw =G =8 L vy Yy ’ (F.4)
o,k
i =d -w J ylask) (F.5)
N,v N a.k N ’
o,k
|3 12 (1,k) . (2,k) .~ .
p3 N Z 0 ( IVI ’ VN 1 )3 (F.0)
? k "k M,V
Using also the inequality
v 4 - F < i o
IF(Lva,k}) F({o})]| < } L ["a,kl , (F.7)
a,k
(with Fa K € 2M, cof. (8.3) ), we have, following the same line of
k]

reasoning as in the derivation leading from eq. (B.2) to (B.10) in

appendix B,
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F({o}) ¢ §J (F . +20)8 (M) =c_, (r.8)

with

cf.

ok K k N
1 4 L
2[a 122 ] 3
_ k k-
1, (1) = max {( i ) , (mﬁ e(N)) } : (F.9)
eM) = & (M) + [ g (We (W), (F.10)
O,k
) A N2
eb(N) = e (N) + E . 2Mea(N) , (F.11)

(8.3)-(8.5), (8.7).
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CHAPTER III

STABILITY OF CRITICAL BEHAVIOUR,
CRITICAL-EXPONENT RENORMALIZATION
AND FIRST-ORDER TRANSITIONS

1. Introduction

When one considers a compressible (Ising) ferromagnet, the critical
behaviour will be unstable. Two types of instabilities have been discussed
extensively in the literature; there can be first-order transitions or a con-
tinuous transition with renormalized critical exponents.

The first-order transitions have been discussed first by Rice') and Domb?)
on the basis of an instability (i.e. a negative value) of the compressibility, see
also ref. 3, and by Larkin and Pikin®) on the basis of a microscopic hamil-
tonian containing magnetoelastic couplings with acoustic phonons. More
recently Oitmaa and Barber®) have derived first-order transitions in the
context of an exactly solvable Ising model with an attractive four-spin
interaction originating from spin-phonon coupling®).

Another exactly solvable model is the Baker-Essam model’) in which the
partition function can be obtained by an integration over the distances
between neighbouring spins. In the constant-volume ensemble this model
leads to renormalized critical exponents®'?). In the constant-pressure ensem-
ble there may be first-order transitions or critical-exponent renormaliza-
tion'""?) and also tricritical behaviour™'®). The Baker-Essam model is a
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typical example of a constrained system. More detailed treatments of com-
pressible Ising ferromagnets have been given on the basis of e-expansions in
renormalization group theory'’-%).

Another type of constrained system is the Syozi model®?) for Ising ferro-
magnets with (bond) annealed impurities. The constraint is here the condition
that the impurity concentration is constant®®?’), This model leads also to the
Fisher critical-exponent renormalization®®), as can be understood from a
Legendre transformation. A different renormalization has been found by
Essam and Place®) for Ising magnets with site-annealed impurities.

From a more general point of view systems with a constrained hidden
variable have been treated by Fisher’) who also discussed several examples
and showed that the constraint would lead to critical-exponent renor-
malization. Later on Imry et al.*') pointed out that constraints can also lead to
first-order transitions™) and to tricritical behaviour®?®), see also refs. 15, 16.

Instabilities will also occur as a consequence of long-range pair inter-
actions. An exactly solvable model in terms of the two-dimensional superex-
change antiferromagnet of Fisher**) has been treated by Esipov*) and Hall
and Stell*). Furthermore, the classical description of demagnetizing effects’)
can be obtained from a hamiltonian containing long-range repulsive pair
interactions, see e.g. ref. 38, p.65. As a consequence one has no first-order
transitions, a finite susceptibility, but also more subtle effects such as a
renormalization of the critical exponent %). More detailed results have been
found using an e-expansion on the basis of a Landau-Ginzburg hamiltonian
with dipolar couplings®*). For Ising systems with an attractive long-range
interaction there is a classical critical point*). Emery*?) has treated an
n-component classical spin model which can be solved exactly in the limit
n—= and which leads to critical-exponent renormalization and tricritical
phenomena, see also refs. 43, 44 for related models.

In view of this one may conjecture that also under more general conditions
the critical behaviour of an Ising system, or a more general reference system
with short-range interactions and with a divergent second derivative of the
free energy, will be unstable under small perturbations of a different nature.
The perturbation can arise from additional terms in the hamiltonian such as
e.g. long-range interactions®**') or four-particle interactions of hybrid
nature*®), but also from one or more constrained hidden variables®).

It is the purpose of the present paper to present a more general formulation
and a systematic analysis of instabilities in critical behaviour. The results are
of a rather general nature and independent of a number of specific details
such as e.g. the number and (commutation) properties of the operators in the
hamiltonian, or the number and nature of hidden variables. For a brief and
partial account, see ref. 45.
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In order to give an outline of the problem we consider an N-particle
reference system described by the hamiltonian

Hon =— Nh*- vy, (L.1)
where NV, ={NV{,...,NV®, (n finite), is a set of short-range opera-
tors“*) and h* ={h¥...., h*} denotes the coupling constants or fields ap-

pearing in the hamiltonian (1.1). The free energy per particle in the ther-
modynamic limit is given by

foh®) = —Lim N~'InTrexp[—#,n]. (1.2)

where the inverse temperature 8 = 1/kT has been absorbed in h*. Starting
from (1.2) we can define the Legendre transform, see refs. 47-51,

8o(m) = S'I‘J_P[h* *m + fo(h)], (1.3)

where the m,,m,,...,m, are thermodynamic variables conjugate to
h¥, h¥, ..., hE

Consider now the class of systems for which the free energy per particle
f(h) as a function of n external-field or coupling parameters h,,...,h, is
given by

f(h) = infl=h - m + gi(m) + P(m)]. (14)

Here go(m) has been defined by (1.3) and P(m) is an analytic function of
m,, ms,...,Mm,

Let us assume that the reference free energy fy(h*) has a critical point at
m.. Then, if fo(h*) has a divergent second derivative at the critical point, we
huve

3’8o

¢ omaom

+e-0, if m—om., (1.5

for a certain unit vector e. If now the matrix of second derivatives of P(m) at
m_ has eigenvalues different from zero, then P(m) dominates g¢(m) in the
direction e in a neighbourhood of m. and the critical behaviour of the
reference system will be unstable. This will apply no matter how small the
perturbation P(m) actually is.

Eq. (1.4) has been derived rigorously*?) from the hamiltonian which can be
obtained by adding a term NP(Vy) to —Nh - Vy where P(Vy) is an analytic
function of n variables. In this hamiltonian we have a competition between a
short-range hamiltonian and an operator of a different nature. In the proof of
(1.4) which has been given in ref. 52, see also***), use has been made of a
fundamental theorem by Bogoliubov Jr.**),
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A;{ expression similar to (1.4) but with a more general function P(m, h)
which may_ also depend on the field variables hy,...,h, can be derived
starting from a general expression for the free energy in constrained systems,

ie,

f(hy= inf sup [fo(h*(h,{&} {n})+ K(h. {&} {n:D], (1.6)

: £ .rij) L IR np}
" where Einen 5; and 7ny,..., n, are hidden variables and h* and K are regular
functions of hy,..., A &.....& and ny,. ... 7, (Inref. 9 one variable n has

. been taken into account.)

In section 2 we review some details concerning the derivation of eq. (1.4)
and give a discussion on the instabilities in critical behaviour arising from

- (1.4). In section 3 we derive eq. (1.4) with the more general function P(m, h)

starting from the constraint (1.6). We also discuss some examples of con-
strainits and instabilities in critical behaviour.
- In many cases it will be necessary to consider the free energy of the
reference hamiltonian in more detail. More specifically we shall assume in
section 4 that the singular part of the free energy is a homogeneous func-
tion*”*) of the relevant fields €%, ..., €%, i.e.

fbet,... . b™e¥)=bf(eF,..., €}), (1.7)

1< a, < 1. We also evaluate the Legendre transform go(m) = g«(E, Z), where
E={E,...,E}and Z={Z,...,Z,.,} denote relevant and irrelevant ther-
modynamic variables conjugate to €, ..., e and the irrelevant field variables
LY, ... X  resp.

In section 5 we eliminate the irrelevant variables Z from the problem and
derive for the free energy f(h) = f(e, £) as a function of relevant and irrele-
vant external fields an expression like eq. (1.4) containing a function T of the
relevant variables E, which will be defined uniquely in terms of P(m, h).

In section 6 the convexity properties of the function IT will be used for the
classification of instabilities in the critical behaviour of the reference system.
If all the eigenvalues of the r x r matrix 3/1/dEJE at E = 0 are positive, then

the function [T is locally strongly convex, the system will not undergo a

first-order transition in a neighbourhood of E = 0 and all second derivatives of
the free energy are finite. If one of the eigenvalues is negative, there will be
first-order transitions, so that the infimum, cf. (1.4), cannot be reached in a
neighbourhood of E = 0. Finally, if the lowest eigenvalue is zero, there will be
multicritical features.

The critical-exponent renormalization in the case of convex II will be
treated in section 7. The results include the renormalizations of refs. 9, 30, but
also a combination of both effects and various other renormalizations. The
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critical-exponent renormalization is derived on the basis of the homogeneity
property (1.7) of f.(€*) and properties of the Legendre transformation.

2. Separable interactions

In this section we review some details concerning eq. (1.4) and equivalent

results which have been obtained rigorously for a class of systems described

by the hamiltonian™*)

Hn(h)= FHon(h)+ NP(Vy), Q2.1
Hon(B)=N(Tn—h - Vy) 2.2)

Here NTy and NVy ={NVQ, ..., NV}, (n finite), are short-range operators
acting on an N-particle system. Short-range operators NVy are defined by

NVy= D N(w)V(o), (2.3)
wC oy
and
Z [V(w)|=v <o, 2.4)
w3k

for any given particle k. Here {2y is a sequence of subsets of an infinite lattice
which tends to infinity in the thermodynamic limit N — o in the sense of Van
Hove*#"). The summation over  in (2.4) contains all subsets w C 2y, N(w) is
the number of particles and V(w) the interaction between the particles in
subset w. Equation (2.4) implies that the total interaction per particle in the
infinite lattice is finite. More specifically one may consider sums of one-
particle operators for which V(w) =0, if N(w) # 1, i.e.

N
Nm=;vm, (2.5)

where V(k) is an operator acting on particle k, or short-range pair inter-
actions, with V(w) =0 for N(w) # 2, i.e.

Nm=;vmn (2.6)
(&l
in which V(k, l) denotes the interaction between the particles k and (.

The function P(Vy) in (2.1) is an analytic function of n variables, i.e.
P(&. ..., &) is analytic for [&|< M, (i =1,..., n), where M; > ||V{ for all N.
The operator P(Vy) will contain terms (quadratic and higher order in the V)
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which are different from short-range interactions. For example, if NV{¥ is a
pair-interaction of the type (2.6) and NV is a sum of one-particle operators,
then
NAVR + NLVE=ANT'S S V@)V D+ AN ; Vk) V().
@ (kD 1

2.7

The first term with A, in (2.7) corresponds to a four-particle interaction of
hybrid nature, which is short-range with respect to intra-pair interactions
between i and j and between k and /, but long-range between the pairs (i, j} and
(k, I). Such operators can be used in the description of compressible Ising
ferromagnets®). Exact results have been obtained in ref. 5 by taking for NV
the hamiltonian of the (two-dimensional) Ising model. The second terri with
A; in eq. (2.7) corresponds to a long-range interaction of the equivaien:-
neighbour type. Such operators with A,>0 have been used in a classic.:
description of demagnetizing effects®). An exactly solvable model in which
#on(h) is the hamiltonian of the two-dimensional superexchange Ising anti-
ferromagnet of Fisher’®) and NP(Vy)= N"'J'Z;; 00, (o =*1), has been
treated in refs. 35, 36. Furthermore, the terms with A, can serve as a simplified
model for interactions of the Kac type, i.e., in d dimensions the interaction
between two particles at distance r behaves roughly like —Jy? exp(—yr).
Rigorous results for the free energy per particle have been obtained in the
Van der Waals limit y | 0, see e.g. refs. 41, 59-62; the results are in general
equal to those for an equivalent-neighbour coupling.

For the class of hamiltonians (2.1), the free energy per particle in the
thermodynamic limit

f(h)a—!jm N'In Tr exp[— ¥ (h)), (2.8)
where 8 = 1/kT has been absorbed in A, is given by eq. (1.4). In eq. (1.4) gi(m)
is the Legendre transform of the free energy per particle fo(h*) of- the

reference hamiltonian (2.2) which is linear in the short-range operators.
The proof of eq. (1.4) in ref. 52 is based on the decomposition of

P(Vy) = Q(VN)+ R(VyN) A 2.9

into a concave part Q(Vy) and a convex part R(Vy), and on the minimax
result’>**)

f(h)= mein max([fo(h — Q'(§) - R'(n)) + Q&) - & - Q'(§)
L

+R(n)—n - R'(n)], (2.10)
where Q' = 3Q/3¢ and R'= 3R/3n. For concave P(Vn)= Q(Vy), eq. (2.10)
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reduces to the theorem by Bogoliubov Jr.***). The validity of this theorem for
a larger class of operators Vy, including also long-range interactions, is an
essential feature of the proof of (2.10) for short-range operators. In ref. 52
also alternative expressions for f(h) have been given. Moreover, for the
Legendre transform of f(h) we have from (1.4) the result

g('n)ESl:P[h *m + f(h)] = CE[g(m) + P(m)], (2.1

where CE denotes the convex envelope, i.e. the maximum of all convex
functions which lie below go(m) + P(m).

Starting from (1.4) or (2.11) we can discuss the instabilities in the critical
behaviour of the reference system described by g¢(m) or fy(k*) due to a small
perturbation. Here we consider the two special cases that the eigenvalues of
3°Plamam are positive, (P(m) strongly convex), or negative (P(m) strongly
concave), resp.

2.1. P(m) strongly convex

In eq. (2.11) we can then omit the convex envelope, since gq(m) itself is also
convex, so that

g(m)=gy(m)+ P(m). (2.12)

From (2.12) we conclude:

i) If the reference hamiltonian has a critical point, i.e. a non-analytic
behaviour of g¢(m), at m = m., then the hamiltonian (2.1) has also a critical
point (non-analytic behaviour of g(m)) at m = m..

ii) There will not be any first-order transitions. In fact, the function g¢(m)+
P(m) cannot contain straight parts on which the external fields k = dg/dm
would be constant. (This is also true if the reference hamiltonian has a
first-order transition, i.e. go(m) has a straight part on which the internal fields
h* = 3g,/om are constant.) The absence of first-order transitions may be
considered as a generalization of the well-known demagnetizing effgct, see
also sec\ion 3 for a more detailed discussion.

iii) For the matrix of second derivatives of the free energy we have

__ 0 (g \'_[3% , 3P\
x= 6hah_(amam) B 6mam+amam) <%, (2.13)

which implies that the second derivatives at any critical point remain finite.
For the effects of critical-exponent renormalization, see section 7.




2.2. P(m) strongly concave

Assume that the free energy foth*) of the reference hamiltonian has a
divergent second derivative at all critical points m., 1.€. at m. eq. (1.5) holds
for a unit vector e. Then for all values of m in a sufficiently small neighbour-
hood U,, of any m. we must have

gy 3P )
(4 ——)-e<0, e .
e (6m(9m+6mam e<0 me U 2.14)
On the other hand, the infimum over m in eq. (1.4) must occur at a point
where gy(m)+ P(m) is convex. This implies that, for the values m € U,. g(m)
belongs to the straight portions of the convex envelope in (2.11). Hence:

i) Any critical point m, of the reference hamiltonian is unstable.

ii) There will be first-order transitions and new critical points m, These
critical points are of a classical nature. as can be seen from a Landau
expansion of gq(m)+ P(m). which is an analytic function in the neighbour-
hood of m,. A systematic classification of classical critical behaviour can be
given following the treatment of ref. 63, or the theory of catastrophes®®).

3. Constrained systems

In this section we consider the free energy per particle in systems with
constraints from a more general point of view. We shall deal successively
with sup-constraints, inf-constraints and inf-sup-constraints.

3.1. Sup-constraints

Assume that the free energy per particle f(h) is given by

f(h)=S{U§)f(h-{17i})~ i=1,....p. 3.1
Ui
where

f(h An}) = fo(h*(h. {ni})) + K(h, {n:}). (3.2)

In eq. (3.2) fo(h*) is the free energy per particle (1.2) of a reference hamil-
tonian (1.1) and h* and K are regular functions of the fields h,, ..., h, and the
hidden variables 7y,...,n, Egs. (3.1) and (3.2) are a generalization of the
relations for p = 1 introduced by Fisher®). If f(h, {n;}) for fixed h is a concave
function of the variables 7,,. .., 7, then the supremum in (3.1) defines unique
functions ny(h). ..., n,(h).
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3.1.1. Legendre transform
From (3.1), (3.2) and the definition, cf. (2.11), of the Legendre transform
g(m), we have

g(m) = sup S(uP[h «m + fo(h*(h, {n:})) + K(h, {n;}). (3.3)
ni
Using the inverse transformation
h = h(h*, {n:}) (3.4)

and interchanging both suprema in (3.3), we find
g(m)= sup sup(h(k*, {ni}) + m + fo(h*) + K(h(h*, {n:). {n:D]
n

= s:l‘p[h* «m + fo(h*) + R(m, h*)], (3.5)
with
R(m, h*) = s{u?[(h(h*,{m}) —h*)- m+ K(h(h*, {n:}), {n:D]. (3.6)
ni

The function R(m, b*) is a convex function of m, i.e.

R(Am;+(1—A)mz, B*) < AR(m, h*)}+ (1 = A)R(m2, h*), 0<a <1, 3.7

which is trivial because of the sup and the linear dependence on m in eq. (3.6).
From (3.5) it follows that the function g(m) is also convex,

gam+(1—A)m)<rg(m)+ (- A)g(m), 0<aA<l. (3.8)

3.1.2. Examples

i) Consider the hamiltonian (2.1) in which P(Vy)= R(Vy) is convex. Then
(2.10) is equivalent to (3.1) and (3.2) with p=n and h*=h - R'(y), K =
R(n)—7m - R'(n). Using the Legendre transformation (1.3), eq. (2.12) is
equivalent to (3.5), since R(m, h*)= R(m)t. A special case is the classical
description’’**) of demagnetizing effects which can be obtained taking R(m) =
im D+ m, in which m = (m,, m,, m.) is the magnetization per particle and D
is the tensor of the demagnetizing field.

ii) Consider an Ising system with the free energy per particle

N = — | -1 o~ ¥ o~
f(m.7") }J_rg N 1n% (gjdx,, € )(HJ‘ dx; e ), 3.9
;i = —di(x;) — mxi; — J(xy)o0; — H(xg)(o; + oy),
#H: = —da(xi) — n'xi — h(x))aw

* This can also be seen from (3.6). since in view of the convexity of R(n) the supremum occurs
atp=m.

(3.10)
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where (i, j) denotes pairs of nearest neighbours and i = 1,..., N the lattice
sites, o; = = 1. (The inverse temperature 8 = 1/kT has been included in %
and ).

Special cases of (3.10), with H(x;) = 0, are:
a) e*®¥ regular, e®" = §(x). @3.11)

Eq. (3.9) reduces to the Baker-Essam model’) in the constant-stress (n = A)
ensemble'?). The function J(x) describes the dependence of the exchange
coupling on the interatomic distance.

b) e*™=g8(x)+8(x~1), e*™=8(x). (.12)

Eq. (3.12) gives the double-bond Syozi model”’) with two different interaction
strengths J(0), J(1); n is the chemical potential for bonds J(1). The n-bond
Syozi model with n different exchange couplings™*) can be included by an
obvious generalization of (3.12).

c) e*™®=g§(x), e =§(x)+8(x ~1). (3.13)

Eq. (3.13) leads to a two-~omponent model®) in which the magnetic field can
have two different values, h(0)=h + hy,., A(1)=h — h,,., where h is the
applied magnetic field and hy, a local field®); n’ is the chemical potential for
fields h(1).

The free energy f(n, n') for H(x;) = 0 can be writtent

f(nv "]I) = fo(-’*(Tl» 3)* h*(")'» ﬁw h)) - Al(nv 3) - AZ(T"* 3* h)v (3]4)
where fo(J*, h*) is the free energy of a rigid Ising model, i.e.
fuI* w9 =~lim N"'In 3, exp(]*z gioi+ h* S a'i), 3.15)
- o @ 7
with
J¥(n, B =%In[f dx e"""’*”"”“’/f dx e""”*""""].
h*(n',B,h) = ‘an dx e"l“”""‘”‘“’/f dx e‘”l"’*""_"“’]. (3.16)

The functions A(n, B) and Ax(n’, B, h) are given by

Al(ﬂa B) = %Z ll‘l[f dx e¢|(x)+nx+l(x)fdx e‘t‘m"'x""(’)],

Ax(n', B, h) =1 ln[f dx e#txrnxehe f dx e"z“’"’"""“’]. » 3.17)

t The more complicated expressions for the case H(x;) # 0 will not be given here, see e.g. ref.
26.
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Here z is the coordination number of the lattice. The inverse temperature
B = 1/kT has been added to indicate that in (3.9), as well as in (3.15), 8 has
been included in the coupling constants, so that (3.16) and (3.17) depend in a
non-trivial way on B. Furthermore h(x) depends on the external field A, so
that h* and A; depend also on h. (An h-dependence of J* and A, e.g. through
¢, may also be taken into account.)

From (3.14) it follows that the critical behaviour in the constant 7, n’'-
ensemble (i.e. constant stress in the case of (3.11) and constant chemical
potential for (3.12) and (3.13)) is given by the critical behaviour of the rigid
Ising system.

From a physical point of view it is often more appealing to pass to the
ensemble in which the quantities

=i 1 -1 ¥, ) = — 1,1 ——af
a= IIJ_IE(ZZN) %:) (xy) = —(32) an’
y (3.18)
' - =9
“EimNT R =gy

are constant'>?*), This can be done using the L .gendre transformation

¥(a, a’)= SﬂUﬂp[%zan +a'n' + fol(J*, h*) = Ai(n, B) ~ Axn’, B, h)]. (3.19)

In (3.19) we should have sup, since according to its definition f(m, ') is
concave in n and n'. The function ¢ describes the free energy of the
Baker-Essam model in the constant-volume (constant-interatomic distance a)
ensemble'), cf. (3.11), or the free energy for Ising systems with bond-annealed
impurities®), (3.12), or site-annealed impurities®), (3.13), in which the concen-
tration of bonds J(1), or fields h(1) resp., are kept constant. Therefore the free
energy in these cases can be obtained by a sup-constraint of the form (3.1)
which leads to (3.5) with a function R(m, h*) depending on h* via (3.15)-(3.17)
and (3.4), (3.6). Note that in all three cases (3.11)-(3.13), eq. (3.19) reduces to a
non-trivial constraint in one variable (p = 1).

3.1.3. Remarks

i) If R(m, h*) is strongly convex in m, i.e. 3°R/omom is positive definite, then,
cf. the discussion below eq. (2.12):

a) A critical point of the reference hamiltonian at h* = ¥ will lead to a
critical point of the constrained system (3.1) at h = h¥+ (3R/om)(m, h¥),
where m is the solution of m = —(3fo/oh*)(h¥)— (3R/oh*)(m, h¥).

b) There are no first-order transitions, i.e. no straight line segments on which
h = 8g/dm is constant.

c) The second derivatives of the free energy are finite.
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ii) Not always will the function R(m, h*) be strongly convex. Especially,
when the number of constraints is smaller than the number of variables h, i.e.
p<n in eq. (3.1), one can expect that e’'-(3°R/omam)- e’ =0 for certain
directions e If the reference free energy has divergent second derivatives,
i.e. (1.5) holds for an arbitrary direction e, then the constrained system (3.1)
has a critical point at which some of the second derivatives —a%f/ohoh
become finite and others remain infinite. This situation occurs in the three
examples (3.11)=(3.13) in which we have only one non-trivial constraint
(p = 1) for the free energy y/(a, a’) and two variables 8 and h.

iii) From (3.5) it follows that the value h* at the supremum is uniquely
determined by, cf. refs. 52, 54,

_ \ d R
* = —— * el < e « — *
wilh*. &)= lim = - fu(h* + ve) < e (m+(?m (m. h ))
< lim - d—d—fo(h* + ve)= uo(h*. e), (3.20)
vl o 14

for all unit vectors e.

If the reference system has a first-order transition at A* = ¢. i.e. uq(c.e)<
wolc, e’) for a certain direction e’, then for all m-values satisfying (3.20) with
h* = ¢, we have

_9g _ R
h = Fe =¢+ Py (m, c). 3.21)

For the special case R(m) =3m - D - m we obtain h* = h — D - m, which is the
wellknown relation*’*) between the internal field k* and the applied field k in
the classical description of demagnetizing effects.

3.2. Inf-constraints

Assume that the free energy per particle f(h) is given by

f(h)y= i(l;}ff(h, {&h, i=1....q (3.22)
where
f(hAED = fo(h*(h. {&D) + K (b, {&)). (3.29)

In eq. (3.23) fo(h*) is the free energy of a reference hamiltonian and h* and K
are regular functions.

3.2.1. Legendre transform
Using the inverse Legendre transformation of (1.3), i.e.

fo(h*) = inf[~h* - m + go(m)] (3.24)
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and interchanging the infima over m and {£}, we have
f(h)= i{rflj)f inf[~h*(h, {&}) - m + go(m) + K(h. {§})]
= inf[~h - m + go(m) + Q(m, h)] (3.25)
with
Q(m. h) = i{l;i}f[(h = h*(h. {&H) - m + K(h, {&D]. (3.26)

The function Q(m, h) is a concave function of m, i.e.
Q(Am+ (1~ A)mz k)= AQ(my, k) + (1 = X)Q(ma. h). 0<a<l1, 327

as follows from the infimum and the linear dependence on m in (3.26).

3.2.2. Remarks

i) If Q(m, h) is strongly concave in one direction. i.e. e' - (3*Q/dmam) - e’ <0
for a certain unit vector e’, and the free energy of the reference system has
only divergent second derivatives at any critical point, i.e. eq. (1.5) holds for
any direction e, then

a) any critical point of the reference system is unstable,

b) there will be first-order transitions and classical critical points.

il) The same conclusions a) and b) can be reached. if Q(m, k) is a strongly
concave function, i.e. e - (3°Q/dmam) - e <0 for all unit vectors e, and the free
energy of the reference system has at least one divergent second derivative at
any critical point, i.e. eq. (1.5) holds for a certain direction e’'.

3.2.3. Examples

i) Consider the framiltonian (2.1) in which P(Vy) = Q(Vy) is concave. Then
(2.10) is equivalent to (3.22) and (3.23) with g=n and h*=h — Q'(¢), K =
Q(&)— £€- Q'(H). Eq. (1.4) has the form (3.25) with Q(m, k) = Q(m)= P(m).
ii) Consider now the Dicke maser type of model® %)

¥ =N[Tn+P(VN)—h - VN]+; wiaax — V' N(aai+ a*ay)
+ VN(ajQ(Vn) + a0Q'(V)), (3.28)

where NTy and NV, are short-range operators, cf. (2.3), (2.4), al, a; are
boson operators and P and Q are analytic functions, Q(Vy) not necessarily
being hermitean. The case in which N[Ty + P(VN)—~h - V5] and Q(Vy) are
linear in the components of the total spin has first been solved exactly by
Hepp and Lieb®), cf. also ref. 67 for polynomial extensions. Eq. (3.28) with
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short-range operators is more general, since a (reference) hamiltonian linear in
short-range operators can give rise to phase transitions.
For the reference hamiltonian

¥#,=NI[Tn—h - Vy1+ §k) wialay — V' N(aah+ a*ay) (3.29)

-

the free energy per particle (1.2) in the thermodynamic limit is given by

foth, @) = fu(h) + fo— |a[wo, (3.30)
where f.(h) and f, are the free energies per particle corresponding to
NI[Ty~h -+ V] and 3, wata; resp. The Legendre transform is given by

go(m, d) = hsup_[h *m+ ad* + a*d + fo(h, a)] = g(m) + fo + wold’, (3.31)

where g.(m) is the Legendre transform of f(h).
The free energy per particle for the total hamiltonian (3.28) can be shown to
be®* 5254 taking a = 0,

f(h,0)= inf [~h - m + go(m, d) + P(m)+ d*Q(m) + dQ*(m)]
= inf{—h - m + gm) + fy+ P(m) = [Q(m)[}/ ]
= infly(h, d) + fy + wildf’ (3.32)

with the function
U(h,d)=— Lim N7 'InTrexp[-N{Tny + P(VN)—h - Vy
+d*Q(Vy)+ dQ' (V)] (3.33)

Equation (3.32) gives three inf-constraints; the third type with P =0 and
linear Q has been used in magnetothermomechanics'?®), where the effect of
lattice compressibility on the magnetic phase transition in the rigid lattice
system leads to a mechanical instability, (¢ is a concave function which
dominates wo|d|’ for small d), and a first-order transition.

3.3. Inf-sup-constraints

Assume that the free energy per particle is given by (1.6), i.e. eq. (3.22) in
which

f(h{gh = S(l:f[fo(h*(h, {&} {nh) + K(h, {&}, {n:D)] (3.34)
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is assumed to be a concave function of A and where h*(h, {£}, {n;}) and
K(h, {&}, {n:}) are regular functions.

3.3.1. Legendre transform
Inserting the identity

inf sup((h'~ ) - m’+ B(h)) = B(h) (3.35)

for an arbitrary concave function @, cf. e.g. appendix A of ref. 52, we have,
cf. egs. (3.22) and (3.34),

f(h) = inf inf sup suF[(h’ —h) - m'+ fo(B*R', {&} {n})
G » & (n

+ K(h', {&}, {m:]). (3.36)
Using the inverse transformation of A*(h', {£}, {n:}), i.e.
k' = h'(h*, {&}, {n:}) (3.37)

and following the treatment of section 3.1.1 we find
f(h)= i(le],.f lEf S:{P[(h* —h)-m’'+ fo(h*) + R(m', h*, {§})] (3.38)
with
 ROm', b, {6) = suplhh*, {6}, {n)~ h*) - m

+ K(h'(h*, {&} {ni]), (&}, {ni])). (3.39)

We want to investigate the stability (under very small constraints) of a
reference system with a critical point which may be chosen at h* = 0. If we

expand the function R in terms of A*, then
R(m', h*,{£&}) = Ro(m', {&}) + Ry(m', {&)]) - B* + R%(m’, h*, {§}), (3.40)

where R? contains quadratic and higher order terms in h*. The term R? may
be ignored close to the critical point assuming for the moment that the
reference free energy has divergent second derivatives. This assumption,
however, should nat be taken too literally, in view of the description of the
reference free ene:g\g in section 4, section 7.4 and appendix G. Omitting the
term R? in (3.40) and using the Legendre transform (1.3), we have

f(h)= i‘nf inf[—h - m' + go(m' + Ry(m’, {&D) + Ro(m’, {ED]. (3.41)

&l m

Finally, introducing the variable m = m’'+ R,(m’,{&}) with the inverse
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transformation m' = m'(m, {¢}) we obtain

f(h)=inf[—h - m + g(m) + P(m, h)}, (3.42)
with

P(m, h) = i{gf[h *(m — m'(m, {&D) + Ro(m'(m, {&}), {&D]. (3.43)

Eq. (3.42) is a more general expression than (1.4), since the function
P(m. h) depends also on the variables h. In principle not much can be said on
the convexity (or concavity) properties of the function P(m, h) given by
(3.43), (3.39) and (3.40). Therefore a more detailed treatment, taking into
account the homogeneity properties of the reference free energy, is needed to
investigate the critical behaviour arising from (3.42), see sections 4-7.

3.3.2. Remarks and examples
i) The restriction to linear terms in A* in (3.40) is not necessary in the case

that the function ¥({n;}) = [K(h,{&}. {n:i}) — h*(h,{&}. {m:}) - m] has a uniquely
determined maximum over {n;} for all values of {£} and h. (This condition is
satisfied e.g., if the function ¥({n;}) is (quasi)concave.) In that case we may
interchange®) the infimum over m and the supremum over {7} in the expres-
sion

flhy= i(r:}f sup inf(—h*(h, {&} {ni}) - m + go(m) + K(h.{g}. {n:)] (3.44)

it Ami
which follows from (3.34) and (3.24).
As a result f(h) can be expressed in the form (3.42) with

P(m, h)= i(rel_}f Slﬂ:[(h — h*(h,{&) {niD) - m + K(h {&}. {n:D)]. (3.45)
il) Consider the hamiltonian (2.1) in which P(Vy) = Q(Vy) + R(Vyx). cf. (2.9).
Then (2.10) is equivalent to eq. (1.6) with p=qg=n and h*=h - Q'(§) -
R'(m), K=Q(&)—-&-Q'(§)+R(m)— 4=+ R'(n). Equation (1.4) has then the
form (3.42) with P(m, h) = P(m). cf. (3.45).

iii) Consider the anisotropic Baker-Essam model on a d-dimensional (hyper-)
cubic lattice in which the exchange interaction Js(x;) between neighbouring
atoms as well as the function ¢;(xs) depends on the direction §=1,...,d.
Then, by an obvious generalization of the considerations in subsection 3.1.2
the free energy ¢(a,,...,a,) as a function of the average distances a;
between neighbouring atoms in the directions 6 =1, ..., d, can be evaluated
to be

d d
Way, ... a)= sup [glasns+fo(f’1“---.Jﬁ)—;As(ns,B)] (3.46)
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in which J#(ns B) is given by the first equation of (3.16) with &s(x5), 1s J5(Xs)
instead of ¢,(x), 1, J(x) and

AB(T)& B) = % ]n[f dx; @ $alxs)tngxs+s(xs) J' dx; eda(xa)'*nslr-’o(xa)]_ (3.47)
By taking the (Legendre) transform

é(p) = i"fa [pa:...as+ Yla,. ... a0l (3.48)

oo

one obtains the Gibbs free energy in the constant-pressure ensemble. (The
existence of the infimum in (3.48) with positive values of p, ai,..., ay is not
entirely trivial, but will be ensured under (physical) conditions on the func-
tions ¢; and J,) From (3.48) and (3.46) the Gibbs free energy can be
expressed in terms of an inf-sup constraint of the type (1.6). Furthermore
using the inequalities |[m;| < 1 for the correlations between nearest neighbours
and the concavity of the functions —J¥(ns B)ms — As(ns B), ¢(p) can be
expressed in the form (3.42), (3.45) with

d
P(m.k)—h-m= inf sup [P!—Iaa
d
+ 2 {asns = J §ne By ~ As(, e)}]. (3.49)

Equations (3.42) and (3.49) may lead to renormalized critical exponents if

P(m, k) is convex as a function of m, to first-order transitions, if P(m. h) is
concave in at least one direction, and to multicritical behaviour, see also
sections 6.3 and 6.4, if the matrix 3P/dmam has a lowest eigenvalue zero at
m. for suitable B'and p. (The tricritical point in the Baker-Essam model and
compressible ferromagnets has first been discussed in refs. 13-16 from a
slightly different point of view).
iv) Finally, there might be some relation with recent results obtained using a
variational approach in renormalization group theory”™). A variational prin-
ciple for the free energy involving a finite number of variables may lead to
constraints as treated in this section.

4. Critical properties of the reference hamiltonian

4.1. Reference free energy

In this section we give a description of the free energy per particle fo(h*) of
the reference hamiltonian defined by (1.1) and (1.2) in the neighbourhood of a
(multi)critical point C. After an appropriate choice of origin, C may be
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assumed to occur at h* = 0 with zero values m = 0 of the first derivatives of f,

at C.
Using a local (linear) transformation, the free energy can be expressed in

terms of relevant fields e¥, ..., e¥ and irrelevant fields {¥,..., {*,, ie.
R*={el....,eX¢h ... L )=8 h", (4.1)
and
folh*) = (87" - B*) = fo(h*) = fole*, £*), “4.2)
where €* ={ef,..., €’} and ¢*={¢¥,.... L%} are r and n —r dimensional

vectors resp.
The variables €* and £* in (4.1) are chosen such that

i) critical points C’ of the same nature as C occur at €* = 0, aiso for {* # 0,
ii) in a neighbourhood of (e*, £*) = (0, 0) there are no critical points of higher
order, (i.e. with a larger number of relevant variables),

iii) the second derivatives —a2fo/aZ*aL* and —3fo/ 8*d€* exist at the critical
points C, C’ and are finite,

iv) the second derivatives —a2f,/d€*de* with respect to the relevant variables
at the critical points C, C' are infinite.

More specifically we shall assume that the reference free energy can be
expressed as, choosing the standard representation for the quadratic terms,

fo€*, £%) = f(€®) —3L*- L* + F(€*, %), 4.3)

Here f(e*) is a non-analytic function with divergent second derivatives at
€* = 0 satisfying the homogeneity property (1.7) with 3 < a; < 1. (We shall not
take into account terms for which a, = }; usually divergent second derivatives
with a, =} involve logarithmic corrections which require a more detailed
analysis, cf. e.g. refs. 9, 73, 74.) Eq. (1.7) implies that the first and second
derivatives of f.,(e*),

af, 3*f,
ﬂk(i*)E“rft, XH(‘*)E - 66?56}'" (44)

satisfy the homogeneity relations*™**)
”k(ba‘er' " ba'el*'l) = blhakﬂk(el*s v ey G:‘)»
Xu(bUet, ..., bY€) =b"" %y (et,..., €M)

As an example we may mention a simple ferromagnet for which r=2,
€¥=1-T/T., e¥=H and

a, = 12— a), a; = A2 - a), (4.6)

4.5)
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where a is the exponent of the specific heat and A = 88 the gap exponent, i.e.
B=2-a-4,-y=2-a~-24.

The second term in (4.3) originates from a contribution to the regular part
which is quadratic in the irrelevant field variables. The function F(e*, {*) is a
small correction containing regular parts, e.g. quadratic terms in €* (or
cross-terms €}¢{F) and higher-order terms, but also next-leading singularities
which may be neglected close to the critical point. The precise meaning of the
function F(e*, {*) being small is specified in eq. (4.10).

At first sight the simple choice (4.3) may seem a restriction of generality.
Our purpose, however, is to analyze the critical behaviour of the free energy
(3.42), in which g¢(m) is the Legendre transform of the reference free energy
fo(k*) and P(m, k) an analytic function arising from a constraint of the type
(1.6). In doing so we shall obtain by choosing an appropriate function Py(m, &)
a more general expression for the free energy fy(e*, £*) with also finite second
derivatives, i.e. 0<a, <1 in eq. (1.7). From (3.42) with general P(m, k) one
can then investigate the stability of the critical properties of the more general
fo(€*, £*) under the influence of a perturbation P(m, k) — Po(m, k), see section
7.4.

We shall now take into account the leading terms of the order b in the free
energy, where b is the parameter, cf. (1.7), that tends to zero if we approach
the critical point. Equation (4.3) can be rewritten as

fol€*, &%) = fu(e*, £*) + F(e*, &%), 4.7
where
fr(€* £*) = f(e") —iL* - L* (4.8)

satisfies the homogeneity relation, cf. (1.7),
f;.(ba'ef', ceny ba'er*,bm{f, vy bll2 :—r) = bfh(‘?‘, sevy ers {fy ey {:—r)-

4.9)
The assumption that F(e*, {*) is small may be formulated by the property
F(b®et,...,b%e* b'*r¥, ..., 0" % ) =0(b"™), (4.10)

for some n >0, where o(b' ) is a shorthand notation for a function satisfying

li?} o(b""™Mb " =0, 4.11)

4.2. Legendre transform
We now consider the Legendre transform g«(E, Z) of fo(e*, &™), i.e.

8oE, Z) = suple* - E+{* - Z+ fu(e*, £, 4.12)
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where
E={E,...,E} Z={Z\ ..., 20} (4.13)

are the relevant and irrelevant thermodynamic variables conjugate to the
(internal) fields e€¥,...,e¥* and ¢¥F, ..., %, resp.

When we ignore the term F(e*, ¢*) in (4.7) we obtain the Legendre
transform

g(E,Z)= spg[e* “E+{*-Z + fr(€*, L), (4.14)
so that, cf. (4.8),

gw(E, Z)=g(E)+iZ - Z, . (4.15)
where

g(E) = su'p[e* + E + f(e*)] (4.16)

is the Legendre transform of f.(e*). From (4.16) and (1.7) it follows that g(E)
is a homogeneous function of the variables E,, ..., E, i.e.

g(b'"™™E,, ...,b"""E,)=bg(E,,...,E). “4.17)
In fact

gb'En... b"E) = sup [ S etb B+ flet,...,eN]
eT * 1

...... =

= sup [; be¥b'"*E, + f(bYe¥,..., b“'e:")]
bYie* biret Lk =1

.....
1

- of S [3 ctBi+ et en]}=baukn... Ep.

Eq. (4.17) implies that the first and second derivatives,

— 33\; -1 — azgs
ft = (?Ek’ (X )kl - aEkaEl’ (4'18)

satisfy the homogeneity relations

et(b'"E\,...,b"""E,)=b"e}(E,,.... E,),

x W E,, ..., b'""E,) = b*%* 'y YWE,...,E). *.19)
For the Legendre transform gy(E, Z) it can be shown that
8(E.Z)= g\(E,Z)+ G(E, Z), (4.20)
where G(E, Z) is a small correction satisfying
G(b'"“E,,....b""E,b"Z\,....b"Z,.)= 6(b"™), (4.21)
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with the same % >0 as in (4.10). For a derivation, see appendix A. If we
ignore terms of order higher than b we may take

éO(E9 Z) = gh(E, Z)a (422)

where g,(E, Z) has been given by (4.15). Eq. (4.22) will be the starting point of
further considerations.

5. Elimination of irrelevant variables

[n this section we eliminate the irrelevant variables Z, replacing the func-
tion P(m. h) by a new function {T depending on the relevant variables E. We
also give a discussion on the origin of possible terms appearing in /7.

5.1. Elimination of Z

Consider the free energy per particle (3.42) in which g¢(m) is defined by
(1.3). Instead of h* we introduced in (4.1) relevant and irrelevant (internal)
parameters h* = (€*, {*)= 8 « h*. Furthermore, in eq. (4.13) we introduced
relevant and irrelevant variables '

m={E,....,E,Z\..., 2. }=8"m, 5.1)

where E and Z are conjugate to €* and {* resp. and m denotes the variables
conjugate to h*, i.e. m - h* = ra - h*. The tilde in (5.1) denotes the transposed
matrix. The Legendre transform defined by (4.12) is related to gy(m), defined

by (1.3), by
&o(E, Z) = &) = sup[h* - i + fo(h*)]
= seplh* - & - s + fo(h*)] = go(S - 1) = go(m). (5.2)

We now express the free energy per particle ;") in (3.42) as a function of
external parimeters

h={e,....€nl0- lnr}=8"h, (5.3)
fe,0) = fh)=f(S7" - k) = f(h), (5.4)
where €,,...,¢€ and ¢{y,...,,_, are conjugate to E,,... ,E,and Z,,...,Z,_,

resp. Using (3.42) and (5.2)-(5.4) we obtain
fle Oy =inf[—h - §7'« m +go(m) + P(m, S - k)]

= inf[~h - i + g(m) + P(§ - 1, 7" - h)], (5.5)
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which can be written in the form

fle. ) =infl-¢-E-{-Z+4(E 2)+ P(E Z,€ ), (5.6)
with
P(E,Z,&¢)=P($-m, S k)= P(m, h). (5.7)
Using the estimate Z; ~ b'?, cf. (4.21), we have the expansion
P(E,Z,e,0)=P(E,0,€6,0)+P;{E €0) - Z+3Z Py Z, (5.8

where terms of the order b'*" with n > 0 have been ignored. (In the last term
the matrix Pz (E, ¢, {) has been replaced by Pz(0, 0, 0) = P,;) Inserting (5.8)
into (5.6), we have

f(¢.§)=i‘§12f[-¢ "E-{-Z+g(E)+3Z-Z
+ﬁ(E’0y¢!;)+PZ(Ev‘o§)'Z+%Z'PZZ'Z]- (5-9)
From the trivial property

igf[%z (04 Pg) Z+T Z]=—4T - (1+ Pg)' - T (5.10)

it follows that

fle, D)= inf[—e - E + g.(E) + P(E0,¢0)

~HPE, € )~ {) - (1 + Pz) "' - (PAE, € £)~ D). (5.11)
We now use the relations
B(E,0,¢€,¢) = Py(€, {) + Pe(€,0) - E + PYE, €, 0),
P/(E, €,{)= P;(0,¢€,8)+ Pz(€,{) - E+ PYE, €, ),
in which P? and P% contain only quadratic and higher order terms in the
variables E. The terms P, and P; independent of E can be included in the

regular part of f(e, £). The linear terms in E can be taken into account by
introducing new relevant parameters

(5.12)

é=e€—Pc(6,0)+(P(0,€, ) ) (1 + Pzz)"' - Pze(€, D). (5.13)
Using the inverse transformation of (5.13), i.e.

eq. (5.11) can be rewritten as

f(e, ) = inf[~& - E + g(E) + [I(E, & )] + 1(&, {), (5.15)

90



where
M(E,&0)=P*"—P%-(1+Pz)" - (Pz-9)
—¥P%+E-Pz)-(1+Pz)" - (PL+ Py - E), (5.16)
(& O =Po—3Pz—0) - (1 + Pz) ' - (P2 - D). (5.17)

In (5.16) and (5.17) the following abbreviations have been used:

Pi=PUE é-p(&¢).0), PI=PUE E-p(El) Q)
P;= Pz(o’ € - P(é, C), g)' Pzz = PZE(é - p(éy (), {), (5.18)
Py= Py(& - p(& {), &),

all these functions being regular in E, € and £

3.2. Discussion

We now discuss some features of the transformation (5.13) and the result
(5.15), (5.16) for the free energy. Here we shall assume that the function P is
small. ‘

The transformation (5.13) should be considered as a nonlinear trans-
formation; in general there are ee and e contributions to the second and third
term of the right-hand side of (5.13) which may be more important than linear
terms. First order contributions in P arise from the terms

€€Pg,,, €{Pgy, €{Pzg,. (5.19a)
Second order contributions ~ P2 are provided by products like

€€Pz. Pz, €Pz€Pzg., Pze€P 7., {Pzz€Pzk.,
€{PzPzg, €Pz{Pzg, {Pz€Pz. PzelPzeq,

where e.g. Pz, denotes a four-fold derivative of P(E, Z, €, £) with respect to
one variable Z, one variable E, one variable € and one variable ¢. (Also, there
may be quadratic terms ~ £, which have been omitted here.)

In the free energy expression (5.15), cf. (5.16), we can have quadratic terms in
E, in first order arising from EEP%g and in second order from products
EP;:PzcE and EEP %z P;. These terms will dominate close to the critical point
E =0, if the eigenvalues of the matrix of second derivatives ¢ I/6ESE at
(E, é, &) = (0,0, 0) are different from zero. If one of the eigenvalues is zero, then
other terms such as EEE and higher order terms in E may be important in (5.15),
but also terms like éEE and {EE which depend on the external variables. First
order contributions to éEE and {EE can arise from

€EEP{r, (EEPf}g,  {EEP%k (5.20a)

(5.19b)
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and second order contributions ~ P? from products

€EEP%cPz,  EEP%ppéPz,  EéPzePzeE,

(5.20b)
{EEP %c P>, EEP %Py, E{Pzg PzcE, EEP %P2z,
but there are also terms
€EEP . (ap/ 9€), ¢EEP e (apl3{), (5.20c)

which arise from the linear part of the transformation (5.13), cf. also the
expression for P% in (5.18).

Note that a function P(m), independent of k&, as in eq. (1.4), which can be
derived from the hamiltonian (2.1), cannot give rise to éEE and ¢EE terms
apart from the term {EEP %g¢ in (5.20a). Also, in that case the transformation
(5.13) is a linear transformation, i.e.

E§=€-Pc—{ (1 +Pz)" Pse (5.21)

Furthermore, if P(E, Z, €, {) is a quadratic function of the variables E, Z, €,
Z, the transformation is linear and no terms éEE and ¢EE can arise.

Finally, if the function P(m, h) is an even function, i.e. P(m, h)=
P(—m, —h), then all contributions (5.19) and (5.20) vanish. First order con-
tributions to terms eee and eel in the transformation (5.13) are then provided
by

EGEPEEEE’ fEEPE;m £€€PZE¢£- (5'22)

First order contributions to terms éEEE and é/EE can arise from

€EEEP { c&, €/EEP % kg, (EEEP % k. (5.23)

6. Stability of critical behaviour

In order to discuss the stability of critical phenomena we distinguish
between the following three cases:

i) The matrix of second derivatives 3[l/dE3E of the function TI(E, €, ¢{) in
(5.15) at (E, &€ &) = (0, 0, 0) has positive eigenvalues.

ii) The matrix 3*I1/ESE at (E, €, £) = (0,0, 0) has a negative eigenvalue.

iii) The matrix 8°I1/3EJE at (E, &, {) = (0, 0, 0) has a lowest eigenvalue 0.

The cases i), ii) and iii) will be treated in subsections 6.1, 6.2 and 6.3 resp. The
different types of critical behaviour may be described in terms of a multi-

critical scaling law as given in subsection 6.4.
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6.1. Positive eigenvalues
In this case the function /I(E, 0, 0) is strongly convex at E =0, i.e.
.
JEJE

for an arbitrary unit vector e. Since the singular part f.(€*) of the reference
free energy has divergent second derivatives, cf. (4.5), we also have

e 0,0,0)- ¢>0, 6.1)

3%

e -W(E, 0,0):-e—0, for E-0, (6.2)
for an arbitrary direction e. From (6.1) and (6.2) it follows that the function
Y(E, & &)= g(E)+II(E, & {) (6.3)

is strongly convex for sufficiently small E, € and ¢, i.e. EE Ug, é€ U, L € U,
where Ug, U, and U, are neighbourhoods of the origin. For E outside Ug the
function g,(E) may be assumed to be larger than a positive constant. There-
fore, the function ¥(E, &, &) will assume its absolute minimum as a function of
E for fixed € € U, ¢ € Uy, in the neighbourhood Uy, provided that /I(E, & &)
is sufficiently small.

Then, for é € U, ¢ € U,, the infimum over E defines a unique function
E(€, &) with the property E(€ £)—0,-if € >0, cf. (5.15), (5.16). From this the
following conclusions can be drawn:

i) The free energy f(e &) has a critical point with E = 0 for € =0, just as the
reference free energy fo(€*, £*) has a critical point with E=0 at €*=0. (In
terms of the variables € and £ the critical point has been shifted, i.e. €# 0, cf.
(5.13).)

i) There cannot be first-order transitions for &é € U,, £ € U,, and the second
derivatives —a*f] 9éa& (and also — 3*f/5ede) remain finite. In fact, from (5.15) it
can be shown that

_ & =(1— 3217)_( o’g, | o'l )_'-(1— a2n)_ it LI P
9€dé 3€dE) \GESE " 9EJE OEdE) oésé oésE

iii)A There will be effects analogous to the demagnetizing effect, if the
reference free energy f.(€*) has a first-order transition at €* =-¢. In fact, the
Legendre transform g.(E) of f(€*) has then a straight portion,

8{E)—g{Ey) = ¢ - (E—- Ey), : 6.5)
for a set of E-values satisfying
uslc,e)= Iyim - %fs(c +rve)<e-E=< IVin —-dd—vfs(c +ve)=pni(c,e), (6.6)
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for all unit vectors e, and
pi(c e)<us(ee), 6.7)

for at least one unit vector e'. Taking into account the condition for the
infimum in (5.15), i.e.

5% eE)=c=é— 5% I(E, & D), (6.8)

one can determine the external parameters & as a function of the variables E,
for fixed internal parameters ¢. (In the special case that [I(E, € {)=3E - D - E,
eq. (6.8) reduces to ¢ = é — D - E, which corresponds to the classical descrip-
tion of the demagnetizing effect’’*®).)

Similar results have been discussed for the special cases considered in
sections 2.1 and 3.1. In section 7 a more detailed analysis of the effects of

critical-exponent renormalization will be given.

6.2. Negative eigenvalue

If the matrix 42/7/3EJE has a negative eigenvalue at (E, &, {) = (0, 0, 0) there
can be found a unit vector ¢’ and neighbourhoods Ug, U, and U; of the origin

so that

32
" 9ESE
for E€ U, é € U, { € U; and some positive number 8. On the other hand, at
the infimum of (5.15), the function Y(E, & ) in (6.3) should be convex as a
function of E, so that

e I, éQL-e'<—-8<0, 6.9)

2
5 <e,__é%%, ¢’ = O(b™" %), 6.10)
cf. (4.19), (6.9). This implies that a neighbourhood of the critical point of the
reference free energy, i.e. the values of b where (6.10) does not hold, cannot
be reached. Hence, there will be first-order transitions in such a neighbour-
hood.

Further away, there may be critical points of a classical nature, or other
critical points arising from the reference free energy. In the neighbourhood of
a classical critical point the function ¢(E, & £) is an analytic function of the
variables E and the critical properties can be derived from a Landau expan-
sion involving only relevant variables. The first-order transition may also end
on a critical point C’ of the reference system which can be described in terms
of r' relevant variables Ei,..., E,, (¥ <r). Following the treatment of sec-
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tions 4 and 5 one can obtain a function T’ of the r' relevant variables of which
the matrix of second derivatives has a lowest eigenvalue zero at C', see
subsection 6.3.

6.3. Other cases

We are left with the case that 4*II/3JEJE has a lowest eigenvalue 0 at
(E, &, ) = (0,0, 0). Then higher order terms ~ EEE, ~ éEE, ~ (EE, etc. can be
essential to describe the (multi)critical behaviour. If there is for example a
(EE term of the type IB{\E:E, (II;>0), then for ¢;>0 the function
IE, & {)=IKE, é,0)+IL{E - E is strongly convex as a function of E in a
neighbourhood of E = 0, for sufficiently small € On the other hand, for {, <0,
we have e’ - (3*[1/dE3E) * ¢' <0 for a certain unit vector ¢’ in a neighbourhood
of E =0, for sufficiently small &.

For {,>0, the free energy f(e, {) will have a critical point at & = 0 arising
from a critical point of the reference hamiltonian, but with finite second
derivatives and no first-order transitions in a neighbourhood of & =0, as
treated under 6.1. However, for £, <0 a neighbourhood of E =0 cannot be
reached for small € and there will be first-order transitions, as treated under
6.2. This situation is characteristic for multicritical behaviour, see e.g. refs.
12-16, 32, 33.

If the terms ~ {EE vanish, then higher order terms, e.g. ~{/EE and
~ {LEE can affect the multicritical properties*’>"). In discussing the origin
of these terms it may also become important to take into account terms of the
order b'*", which have been ignored in (5.8). From (5.6), however, one can
derive the formal expression

fle,0)= inf[~¢ - E + g(E) + P(E, & {)], 6.11)
with
P €)= igf[-; “Z+1Z-Z+P(E 2 ¢ ). 6.12)

We can now expand the function P(E, €, {) in the same way as the functions
in (5.12). The term with E = 0 contributes to the regular part, the linear terms
in E can be taken into account introducing new parameters € and a different
function p(é, {). The quadratic and higher order terms in E can be expressed
by a function II(E, & {) analogous to the one in (5.15). One may now have
terms ~ {¢EE arising from terms ~ EZZ and ~ EEZZ in P(E, Z, ¢, ), which
have been ignored in (5.8). An example is given in appendix B, where we also
discuss some features arising from such terms.
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6.4. Multicritical scaling

To discuss multicritical scaling we expand the function II(E, &, ) in (5.16),
or the more general IT arising from (6.12), as a power series in E,

NE&D= 2 I 4 (&DE,...E, (6.13)

where the prime indicates that we can restrict ourselves to terms with indices
Kiy ..., ks (s =2), satisfying

jﬁ_;u —a)<1. 6.14)

The function Y(E, €, {) in (6.3) may be regarded as a homogeneous function of
the variables E and the coefficients I, .. 4, i.c.

YHb "% E}, {b' Sttt N = bY{Ed (I, .. .« ] (6.15)
For the function
fH&} Tk, ..o J) = inf(~& - E+y]= fle. ) -1(& ), (6.16)

cf. (6.3) and (5.15), we have the homogeneity property
f{bu&}, {b' ol = bf &), (L, ), 6.17)

cf. the derivation of (4.17).
Using the estimate & ~ b*, (ax >3), cf. (6.17), we can expand the functions

Ik, ...x, up to linear terms in €,
O, (&)= O+ 2,‘.' . ..(é, (6.18)

with ki, ..., k, satisfying (6.14), taking only into account terms with a sum-
mation index ! for which

g(l—ak,)SI—az- 6.19)

For the singular part of the free energy f; as a function of € and the
coefficients IT° and IT' we have the homogeneity property
fs[{ba“ék}v {b I-s+a‘|+- . -+a,“H2l ...k_,(;)}, {b ""‘"“kl"" . '+a"s—a‘HL, ,,.k,.l({)}]
= bf [{&} {1, ...« (O} {IIL, .. i, (O, (6.20)
which may be used in studying the multicritical behaviour.

As a special case we mention the tricritical point in compressible Ising
ferromagnets, cf. refs. 13, 15, 16, 32, 33.
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7. Critical-exponent renormalization.

In this section we discuss the case of a small strongly-convex IT as treated
in section 6.1. We shall show that close to the critical point there is a
“‘complete™ critical-exponent renormalization in which case all second
derivatives of the singular part of the free energy tend to zero with well-
defined (renormalized) exponents. Sufficiently far from all critical points (or
for sufficiently small IT) no difference can be seen between the singular
behavicur of second derivatives of the actual free energy and the reference
free energy, and there will be no renormalization of critical exponents.

For the sake of presentation we will first derive the homogeneity properties
in the case of a “partial” critical-exponent renormalization in which some of
the second derivatives diverge and others remain finite. This type of critical
behaviour may show up in intermediate regions, i.e. not too far from and not
too close to the critical point, but also in special cases in which the lowest
eigenvalue of the matrix 8*Il/dEJE is zero, see subsection 6.3. The two cases
of complete renormalization and unrenormalized exponents follow as corel-
laries of the treatment of partial renormalization.

So far we have only taken into account a reference free energy for which
the singular part has divergent second derivatives, cf. (4.3). In a final remark
a more general reference free energy containing also finite (cusp-like) second
derivatives, i.e. 0 < a; <1 in eq. (1.7), will be iaken into consideration.

7.1. Homogeneity properties

In order to discuss the homogeneity properties (in the case of partial
critical-exponent renormalization) let us assume that the relevant variables E
can be decompused into variables

E,, = {E], ceay Eq}, E,, = {Eq+|, caey E,-}, (7.1)
so that
II(E, & ¢) = 1°(E,, € {) + I"(E,, € ). 7.2

Assuming “continuity of the pressure’*’”’) for the reference system, i.e. the
free energy fo«(h*) is strictly concave and gy(m) has continuous first deriva-
tives (A* = 3go/dm), we have at the infimum in (5.15) that

- a s -~
& =5 25 (Eo Ev) + (Ea, &0, &= ” (E.,, &0, (13)
which yield unique solutions E,(€, {), E,(€, {) since II(E, &, {) is assumed to be
a strongly convex function of E, cf. section 6.1.

Let us also assume that in a certain region of external parameters € and L,
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we have the inequalities, (which are satisfied in a trivial way with g = r far
from all critical points and with g = 0 sufficiently close to the critical point),

985 aH“' I 08s | a
laEa|> laEa ’ JE, <€ oE, |’ (7.4

so that in eq. (7.3) for &, as well as in (5.15) for the free energy f(s, &), we can
neglect IT°. Under these conditions we shall derive the homogeneity property
for the (dominant) singular part of f(e, £).

From (5.15) and (7.4) we have

fed= ;inzf,[—é“ ‘E,~ & ' E, + 8(E, )+ II°(E, & D]+ I ). (1.5)

Using the partial (inverse) Legendre transform

¢s(€m Eb) = igf[—éa ‘E,+g s(Eas E, )]’ (7-6)
we have
fe, )= igbf[—éb Ey + ¢ (&, E,) + TP (B, & )]+ I1(E, D). a.7

Here ¢, satisfies the homogeneity relation, cf. the derivation of (4.17),
O(bM €L, ..., b%EL b My, ..., b ™"E,)
=bd(Ery..r€p Egitr-. - E)s (@ > (7.8)
From (7.8) we see that the variables & with k <gq behave like b*. Fur-
thermore, since IT,(€, {) contains a term —3£ - ¢ independent of P(E Z e, 0
and since II” is a strongly convex function of E;, so that for small { terms like

(LEy, {LE,E, cannot influence the phase diagram, we also may use the
estimate ¢ ~ b"2 Then we can restrict ourselves to linear terms in & and ¢ in

the expansion of II’, i.e.
' (E,, &, &, §) = [1(E;, &) + II(Ey, &) - & + II}(E,, &) - L. (7.9)
The infimum over E, in (7.7) is determined by the equation
& =3—23(E,,, e,,)+5-a‘;—<¢s+nz <& +I% - D). (7.10)
b b
Here the first term involving IT} is the dominant term, cf. (7.4), (7.9). From

(7.7) and (7.10) it can be shown thatt

f(€,0) = (&, €2(&)) — & - €3(&) + II(e}(&,), &)
+IT(€3(&), &) - & + T} (€8(&), &) - L + (€, §) + P&, 8), (7.11)

t The notation for the scaling fields €%, €3 should not be confused with the one for the relevant field
variables of the reference system in section 4. In the remark at the end of this section, however, a free
energy of the form (7.11) will be regarded as a new reference free energy.
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where €}(&,) is the unique solution of the equation

b
& =30 (e1(@), &) 7.12)

and where ®(é&,¢) is a small correction which can be omitted. The proof of
(7.11) is not entirely trivial and is given in appendix C.
Ignoring the term (&, {) and using

é =é&(e}), & =€}, (7.13)
where &,(e}) is the inverse transformation of e} = €}'(&,) in (7.12), we obtain
f(e, )= deX, €8) + bulel, €8, §) (7.14)
with
o€}, €8, 8) = — & (e}) - €} + [Ti(e}, & (}))
+IT%(et, & (1)) - €2+ IT(ed, &(ed)) - L +11(E, D).  (7.15)
The function ¢, in (7.14) satisfies the homogeneity relation, cf. (7.8),
d(bhe*, ..., bt b ek, ..., b "ed)
= bo(et,..., €5, €X, ..., €Y. (7.16)

Expanding the function p(&, ) in the transformation (5.14) to linear terms in
€ and ¢{, i.e.

P&, €, &) = po(&) + P.(&) - € + Pr(&) - & 7.17)
we have to leading order

€ = €} —pl(& () — pa(é;(€})) - €% — pi(é(el)) - &,

€ = &(e}) — pi(é(ed)), (7.18)
where p¢ and p{ denote the components k < g and k > g resp. of the vector
po- In the second equation, for €,, we have ignored terms involving & = ¥
and ¢ which go with e(b') and b"? resp., whereas in view of (7.16) and the
fact that IT§ in (7.12) and (7.9) contains only quadratic and higher order terms
in E,, € and &, tend to zero with o(b'?™"), ( >0).

Equations (7.14), (7.15) and (7.18), in which all functions I}, IT%, I1%, pé, p¢,
p$ and p} are regular functions of e¥, are a general representation of the free

energy f(e, {) given by (7.5).

7.2. Partial critical-exponent renormalization

As a consequence of (7.16) we have for the second derivatives
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Xu= deFaeF b€, Eb.) (7.19)

the homogeneity relations

Xu(be¥, ..., b%e¥, biwiek,, ..., b

= b"“""“;Xk,(e’.", ceny 63‘, €:+|, ces€)) (7.20)
with
ai = a, k=1,...,q,
7.21
ai=1-a, k=gq+1,...,r (7:21)

Equations (7.20) and (7.21) imply that, (b | 0),

i) Xy diverges with b'" %~ jif k, | <gq,
ii) Xy tends to zero with b%**~' if k,1 > q,
iii) Xy ~b%™%, (k> q,l=<gq), diverges if a, < a; and tends to zero if ax > a,.

The results (7.16), (7.20) and (7.21) are characteristic for a partial renor-
malization of critical exponents. The physical interpretation of (7.20) is not
trivial, since the transformation (7.18) from €, €¥ to €, €, is in general a
nonlinear transformation. In special cases, however, simplifications occur, see
appendix D.

7.3. Corollaries

As an application we now consider the general case of a (small) function
II(E, &€, £) which is strongly convex at (E, €, {) = (0, 0, 0) as treated in section
6.1,

i) Sufficiently far from the critical points (for small € and {), we have the
inequality b™C% Vs |7, where |I7] denotes the largest eigenvalue of
3 IOEJE. We may neglect the function II(E, €, {), so that we have (7.4), (7.5)
with g =r, i.e. E = E,. Therefore, (7.20) holds with a;=a, for k=1,...,r,
leading to the same exponents as the second derivatives of the reference free
energy. Furthermore, in view of (7.16) with g =r, (ax >3), the regular part
(7.15) reduces to I1,(&, £). Finally, since there are only variables € = €* in this
case, the first equation of (7.18) reduces to a linear transformation, in which
pS, P2 and p; are constant. Note that the transformation coefficients originate
from the linear terms in E in P(E, Z, €, 0, cf. (5.12)-(5.14), whereas the
function II(E, €, {), which has been neglected, arises from quadratic and
higher order terms in E, cf. (5.16).

i) Sufficiently close to the critical point we have the inequality b™"?% " < §,
where 8 >0 is the lowest eigenvalue of 3’Il/dEJE at (E, €, ) = (0,0, 0). We
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then have eqgs. (7.4), (7.5) with g =0, i.e. E=E,, and (7.20) holds with
ar=1—a; for k=1,...,r. As a consequence all second derivatives of the
free energy remain finite, cf. the regular part (7.15), and the singular parts X,
tend to zero with b%**~!, This situation is characteristic for the case of
complete critical-exponent renormalization. Furthermore, since we now only
have variables e} = €*, the second equation of (7.18) is a nonlinear trans-
formation € = &(€*) — po(é(€*)). In the special case that i <a; <}, i.e. i<a} <
4, (k=1,...,r), all nonlinear terms in the transformation may be neglected,
cf. appendix D, but this condition will not be satisfied in practice, if the
magnetic field is one of the relevant fields.

iii) In intermediate cases, i.e. not too far from and not too close to the critical
point one may have eq. (7.4) with both E, and E,, (0 <g <r), under suitable
assumptions for the function II(E, €, ¢). In principle, one could distinguish
between 2" —2 of such regimes corresponding to all partial Legendre trans-
formations (7.6), although it is by no means obvious that all these regimes
would have a clear physical meaning in actual cases. From (7.20), (7.21) one
finds that certain second derivatives X, diverge at the critical point, whereas
others, i.e. those with k,l >gq, or k>q, | <g and a, > a,, tend to zero. This
situation corresponds to partial critical-exponent renormalization. Examples
are the Fisher renormalization®) with a’'= —a/(1 —a), 8 = §, or the renor-
malization in ref. 30 with o’ =a, 8’ =1/8. Partial critical-exponent renor-
malization can also exist down to the critical point, in the special case that the
lowest eigenvalue of 3*I1/9EJE vanishes at (E, &, {) = (0, 0, 0). Such a situation,
however, is not stable under small perturbations which can give rise to
multicritical features, cf. section 6.3.

As an example of i)-iii) we give in appendix E the four possible sets of
exponents in case of a simple ferromagnet with two relevant variables
€= ].— T/Tc, €= H.

In the treatment presented here, the properties of critical-exponent renor-
malization have been derived on the basis of homogeneity relations and
(partial) Legendre transformation. In the simple case of one relevant variable
(r =1), it is worthwhile to use an iterative procedure for the solution of
implicit equations. Such a procedure provides also higher order (confluent)
singularities which contribute to terms of the order b"*", (n >0), in the free
energy and which have been neglected in the general treatment of this paper.
The case with one variable is discussed in appendix F.

7.4. Remark

So far we have considered a reference free energy with divergent second
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derivatives, i.e. eq. (4.3) in which the singular part satisfies the homogeneity
relation (1.7) with $ < a; <1..It is now straightforward to take into account a
more general situation in which some second derivatives diverge, say {1 < a, <
1,k =1,...,q), and others remain finite, 0 <a, <3, (k=q+1,...,r). (Here
we exclude values a; =3 which usually would require logarithmic corrections
and further analysis, cf. e.g. refs. 9, 73, 74.) To see this note that a general
expression for the reference free energy is provided by egs. (7.14), (7.15), (7.18)
in section 7.1, which has been obtained from the simple expression (4.3) after
adding a suitable function P(E, Z, €, {) in (5.6).

Tq be specific, if we choose a function II(E, & ) in (5.15) which depends
only on the variables E, ={E,.\, ..., E;}, i.e. II =0 in eq. (7.2), then in view
of the analysis in section 7.1 we obtain a free energy of the form

f(e,0) = ¢}, €})+ Cel) + Cule}) - €*

(7.22)
+ C;(€})+ £ ~3L - L + small terms.

Here ¢, satisfies the homogeneity property (7.16) which is of a more general
type than (1.7), since, in view of (7.21), i<aj<1 for k=1,...,q and
0<ai<ifork=gq+1,...,r The functions C, C,, C; are regular functions of
the variables €, ={eX.|,...,e*} which can be expressed in terms of the
functions &,, I13, IT, I1? and II(€, ) in (7.15).

The variables €* can be found from € by a transformation of the type

€X=€+A(e)+Aie) € +Aie) ¢,
(7.23)
€} = B(e,),

in which A, A,, A, and B are regular functions of €,. These functions can be
obtained taking the inverse transformation of (7.18), or also from the func-
tion €¥(€,) in (7.12) and the definition €¥ =&, in (7.13) using the explicit
expression for € in terms of € and { which can be obtained linearizing the
right-hand side of (5.13) with respect to the variables €, and &.

Equations (7.22) and (7.23) can be considered to be a general expression for
the free energy of a reference system, in which some of the second deriva-
tives of the singular part diverge and others have a cusp-like behaviour,
involving a homogeneous function of nonlinear scaling fields, see e.g. refs. 78,
79, 44. (This result is of course of a formal nature and does not imply that the
behaviour of such a reference system should be interpreted in terms of a
simpler system as in eq. (4.3), subjected to a number of constraints leading to
eq. (5.6).) The stability of such a reference system may now be discussed on
the basis of a function II(E, & ¢) of the form (7.2), in which IT°(E,, & &)
contributes to the reference free energy and II*(E, & £) is a small bertur-
bation which will affect the critical behaviour. (Of course one may also
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evaluate the Legendre transform go(E, Z) of (7.22), see appendix G for further
details, and discuss the stability of critical behaviour on the basis of (5.15).)

Then, following the line of reasoning of section 6, we are led to the
following conclusions:

i) If II°(E,, 0, 0) is strongly convex as a function of E, in a neighbourhood
of E, =0, then there is a critical point at é = 0, just as the reference hamil-
tonian has a critical point at €* = 0. There will be no first-order transitions, the
second derivatives of the free energy are finite and close to the critical point
there is a complete critical-exponent renormalization described by (7.20),
(7.21) with ai=1—g, fork=1,...,r"

ii) If 8°I1°/6E,0E, has a negative eigenvalue at (E,, &, ) = (0, 0,0), then the
critical point of the reference hamiltonian cannot be reached, there will be
first-order transitions which may terminate in classical criticai points or on a
critical point of the reference system, cf. section 6.2.

"iii) If the lowest eigenvalue of 3II°/3E,dE, is zero there may be multicritical

behaviour, see also the discussion in section 6.3.

*

Finally, 4f the reference free energy has a critical point with or:ly finite
second derivatives, i.c. €* =€}, E = E,, see (7.20), (7.21) with a, = 1— g, for
k=1,...,r then the critical behaviour will be stable under small pertur-
bations. Only a finite perturbation can give rise to qualitatively different
effects such as e.g. multicritical behaviour'*'%), where at the multicritical point
one may obser've “inverse” critical-exponent renormalization (a, = 1 - a}).

Appendix A

To give a proof of (4.21) we start from the relation
go{m;) = gn(m;}) + f dm’ f dm": K{mj}, (A.1)
0 0

cf. (4.12), (4.14), in which m ={m,, ..., m,} denotes an n-dimensional vector
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with relevant components m; = E;, (k =1,...,r), and irrelevant components
m,,=2Z,=1,...,n—r), conjugate to the fields €¥ and ¢} resp. appearing
in eq. (4.1) for the vector h*. The matrix K is given by

K=X+Y)"'=Xy'==X;' Y -X5'-(1+ Y- X; )" (A.2)
with
X, = — 8%f,/oh*R*, = —3%F|oh*oh*. (A.3)

For values m satisfying m; = b'~“my;, in which ay, ..., a, are given by (1.7)
and a; =4 for j=r+1,...,n, use can be made of the estimates, cf. (4.9),
(4.10),

KX R pg| < Cogb %t

(A4
| Yoq| < Dpgb %%, ID|| = e(®™.
From (A.4) we have
l{x'-l-l (Y '.xi:l)"}pql S{c (D - c)n}quap-wq-l, (A.S)
leading to ‘
| K| = 2 DMXE (Y - X5 o ST"% bow*ea, (A.6)

Inserting (A.6) into (A.1) we arrive at the relation
go{b %)) = bgy (P + o (b '), (A7)

Equation (4.21) follows immediately from (A.7) identifying {rf1,, ..., 1,} with
{Ev,....,E.,2y,...,2,..}.

Appendix B

In this appendix we discuss the influence of terms like ¢/EE in II(E, &€, &) on
the basis of the example

fe. )= inf{—eE - {Z +E[* + 17Z*+ A(E)Z +3B(E)Z2). (B.1)

Equation (B.1) has the form (5.6) with one variable E, one variable Z,
&o(E, Z) =|EJ +1Z? and a simple function P(E, Z) = A(E)Z +3B(E)Z* which
depends only on E and Z. In eq. (5.9) the term ;B(E)Z? has been ignored,
apart from an E-independent contribution 3PzzZ>

The infimum over Z occurs at

Zn = ({ — A(E))/(1 + B(E)), (B.2)
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so that
fle, )= igf[—eE +|EJ - ¢ - AENIO + BE)). (B.3)

Assuming that 2 <x <3, i.e. f(€*) ~ |e*]"™* with0<a <}, x =2—a)/(1~a),
we may expand

A(E)= A\E +1A,E?, B(E) = B\E +.B,E?, (B.4)
and

f(e,0) = mfl|E —1¢" + E{—e + LA+ 1B}

+1E¥A: +310*B— (A, + {B)}). (B.5)

Note that in eq. (B.5) we have two ¢’E® terms, one arising from B, i.e. the
EZ? term in P(E, Z) and the other one from B,, i.e. the E2Z? term in P(E, Z).

Equation (B.5) leads to a first-order transition, if the right-hand side for
fixed € and ¢ has two equal infima. This will occur, if the coefficient of E
vanishes and the coefficient of E? is negative, i.e.

€ ={A+1{’By, (B.6)

(A +3°B— (A + {B))* <0. (B.7)

We now discuss different cases:

i) If A;#0, i.e. P(E, Z) contains a nonvanishing EZ term, then the function
II(E, {), cf. (5.16), in the right-hand side of (B.5) is concave for small { and
there is always a first-order transition, see section 6.2.
i) If A, =0, A,#0, i.e. P(E, Z) contains a nonvanishing E*Z term, then the
function II(E, ¢), if we neglect terms ~¢?, is convex for A,¢ >0 and concave
for Ayl <0. For £ =0 the free energy has divergent second derivatives at
€ =0. For Ay{ >0, we have a critical point with E =0 at € =1£?B, with finite
second derivatives of the free energy, for A,¢ <0 there is a first-order
transition at € = 3¢B,, see the discussion on E?¢ terms in section 6.3.
iii) If A, = A,=0, then, as a consequence of the {2E? terms in (B.S5), we have
a critical point at E =0 with finite second derivatives, if B} <3B,, and a
first-order transition for B?>3iB,, provided that {# 0. Here the coefficients B,
and B, arise from EZ’ and E2Z? terms in the expansion of P(E, Z). For { =0
the critical behaviour is identical to that of the reference system.

We now consider the second derivative of f(e, ¢) with respect to the
variable { at £ = 0 in the cases ii) and iii) with A; =0, where we do not have a
first-order transition for £ = 0. From (B.1) and (B.2) we have
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_ 8l _dzZiy
X = '&él "'_dg

el ¢=0
-1 _[ A'(E) _A(E)B'(E)]dzi,.r
1+B(E) L1+B(E) (1+B(E))?] de
S +[ A'(E) _A(E)B'(E)]szm
1+B(E) L1+B(E) (1+B(E))}] de

{=0

£=0

(B.5)

¢=0’
where, ignoring the last term in the right-hand side of (B.3),

€ Ux=1) dEinf 1

E I Q-x){x~1)
i = [= sgn e =
L gn e de |;x0 x(x—1)

€
x

(B.9)

Expanding the right-hand side of (B.8) with A; =0 up to quadratic terms in
E, we have

X“|;=o= 1= BiEiy— 3B, — B)E} + AIE}y %e"“
in which the three terms with B,, iB,— B}, A} behave like |e/x|"*Vsgn e,
|e/x [0, |e/x|“===" resp. Thus we have derived three singular contributions
to the susceptibility x, for ¢ = 0 which arise from EZ? E?Z?, E*Z terms resp.
in P(E, Z), see also refs. 75, 76 for similar results derived using a renor-
malization group approach starting from a Landau-Ginzburg hamiltonian.

To give an example of the effect of nonlinear transformations, let us
consider the Legendre transform of (B.1) in the special case that A(E) =0, i.e.

8(E, Z) = supleE + {Z + f(e, {)] = CEI[E}" +1Z* +1B(E)Z*. (B.11)

(B.10)

’
{=0

Using the new variable
Z =Z{1+ B(E)}'"” (B.12)
eq. (B.11) can be rewritten

8(E . 2)= %‘g[lEl’ +127%. (B.13)

Ignoring the nonlinear features of (B.12) and replacing the convex envelope
over E and Z in (B.13) by the convex envelope over E and Z, one may infer
¢(E, Z)=|E| +122, which is wrong, also because it does not lead to any
first-order transition for B} >1B,, cf. the discussion under iii).

Appendix C

To prove eq. (7.11) we note that the solution of (7.10) can be expressed as

Eb = E:(éb) + E;?(ém ébv £)$ (C.l)
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where €}(€,) has been defined by (7.12) and where €}(&, &, ) is a small
correction. In fact, in (7.10) the first term 8I15/3E, will contain linear terms in
E., (k> q), which behave like b'*, (a >31). On the other hand, 3¢,/3E,
(k > q), tends to zero with the power b*, the coefficients IT and IT? tend to
zero with a nositive power of b, and the components €, (I <q), of &, and ¢
behave like b and b'? resp.

Inserting (C.1) into (7.10) we obtain

2
il & 0=~ [ro - (e}(&), &) | e @t &+ T D)

+ higher order terms. (C2)

In eq. (C.2) it is of interest that €}(&, &, {) tends to zero with b"*"™?, where
n > 0; the precise form of €, will not be used for the derivation of (7.11).
Inserting (C.1) and (7.9) into (7.7) we find (7.11) with

D(€, L) = — & - €, + (&, €}(&) + €}) — D&, €}(E))
+ (X&) + €}, &) — I3 (e (&), &)
+{II5(e(&) + €}, &) — ITo(e}(&), &)} - &,
+{ITi (e} (&) + €}, &) — ITi(€F (&), &)} - ¢

={—€,,+8T(¢S+H3+HZ°€a+ﬂf-§)}- 26', L-e€;
=le, - L- €}, (C.3)

where L is a matrix which depends on €. The derivative in (C.3) has been
taken at the point E, = €}(€;) + €}, so that the last step follows using (7.10).
Since the right-hand side of (C.3) is of the order b'*", with positive 7, the term
(€, Q) in (7.11) can be omitted.

Appendix D

In this appendix we discuss some simplifications which may occur in the
transformation (7.18) and in eq. (7.15) for the regular part ¢.(€¥, €%, {).

i) If for all critical exponents a,, we have 3 < a, <3, then, with (e*), ~ b%,
(e¥) ~ b'™*%, cf. (7.16), the e¥-dependence in p4 and p? can be neglected, as
well as third order terms ~ efefe¥ in p{ and quadratic terms ~ e}e} in pg.
Furthermore, 15 and 7%, which contain only quadratic and higher order terms
in €%, cf. (5.16), (7.2), (7.9), can be neglected. If in addition 3 < a; <3, the
terms ~ €¥e¥ in pj can be neglected, so that (7.18) becomes a linear trans-
formation. However, if the magnetic field is one of the relevant variables, i.e.
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e* = H, a, = 8/(5 + 1), the condition %< a, <} will not be satisfied in practice
for all k.

ii) In the case of two relevant variables ¥, €¥, such that 32¢./de}* ~ b' M >
and 3’¢./3e¥’ ~ b ' >0, we have €} = €*, € = €}. Then the quadratic term
~ € in p¢§ in (7.18) can be neglected, provided that 2(1-— a,) > a,. This
inequality implies also that the e¥-dependence in p; and pj, i.e. the nonlinear
terms in the transformation (7.18), can be ignored. As a further consequence
of this inequality the terms IT% and IT? in (7.15) which, by definition, are at
least quadratic in €¥, can be neglected. Also, when we express II.(€ ) in
(7.15) in terms of €%, €}, {, all quadratic terms involving €* are of the order
b'*", (n > 0), provided that a,> a..

As an example we consider a ferromagnet with relevant variables 1-
T/T.,H. If the exponent of the specific heat is renormalized®), i.e. a,=
1/(2—- a), a;= 6/(8 + 1), which is e.g. the case in the Baker—-Essam model in
the constant-volume ensemble'?) or the bond-annealed Syozi model”), then
the inequality a,<a,<2(1-a,), or equivalently 1/(1—a)<8<2(1-a)la,
will be satisfied in practice. As a consequence the transformation (7.18) can be
considered to be a linear transformation and terms like e*e¥ and e¥*¢ in the
regular part ¢, can be ignored. In the opposite case in which the exponent of
the susceptibility is renormalized™), i.e. a,=1/2— a), a,= 8/(8 + 1), the in-
equality will not be satisfied and nonlinear terms in (7.18) and couplings eXe¥
and €% in (7.15) can be important.

Appendix E

As an example of critical-exponent renormalization we consider a ferro-
magnet with two relevant variables ¢,=1—-T/T,, €;= H in the simple case
that

II(E, & {)=II(E) =31,E} +3ILE}, (I, IT,>0). (E.1)
We may then distinguish between four different regimes,
I b ', b '> 1T,
N b '« b ' >,
HI p*'s> 11, b* ' <11,
IV b '<l, b <,

leading to new critical exponents af, a5 and o', 8, ¥', 8', A’, which in the four
regimes are given by
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a" a; o' ﬁ' yl & A’

| a) a; o ﬁ Y ] a
I 1-aq a —af(l - a) Bl - a) Y(l1—-a) é A1 - a) (E.2)
I ay l‘az a a -v l/s ﬁ

IV 1-aq l1-a; =—af(l—a) A4(1-a) -y{(l-a) 1/8 BI(1 - a).

Regime I corresponds to the case of unrenormalized critical exponents far
from the critical point; regime IV to the case of complete exponent renor-
malization close to the critical point. In regimes II and III there is a partial
renormalization, i.e. Fisher renormalization®) in regime II and the renor-
malization found in ref. 30 in regime III. Partial renormalization can occur in
an intermediate region, but also close to the critical point, if one of the

constants 7, or IT, is zero. This is the case, (cf. section 3), for the constraints -,

(I, =0) in the context of compressible Ising ferromagnets'?) and the bond-
annealed Syozi models?’). The classical description of the demagnetizing
effects*) and also the site-annealed model of ref. 30 provide a natural
constraint with JT, # 0. In practice, however, it may not be easy to distinguish
between the exponents in regimes II and IV.

Appendix F

In the case of one relevant variable, (r = 1), the critical exponent renor-
malization, but also higher order (confluent) singularities can be obtained from
an iterative procedure. We consider the example

f(e) = infl~eE + % |EJ* + $TE?, (F.1)
where x =2 —-a)/(1—a)>2and IT>0.
Introducing
_nn _ 1 et
y=¢E z=plf] (F.2)
eq. (F.1) can be rewritten
1 )=£2-inf[— + Ly +1 2] (F3)
€ " y X y FA N .

The function under the infimum o((F.3) is an analytic function of y and z, for
y# 0, with a positive second derivative with respect to y. The infimum in (F.3)
must occur for y# 0 and therefore the solution of the inf as well as f(¢) can
be expressed as analytic functions of z. In fact,
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fO=5(-3+1z-3243 - D=L =Ddx =92+ ). (R4

As a result the different terms of f(e) behave like €, €**2, €22 ... or

more generally €*™*™®, The first term (m = 0) is the regular part, the second
term is the effect of critical-exponent renormalization, (x ~ 2 = a/(1 — «)), and
the third and higher order terms give confluent singularities. In the move
general case of a convex function /I(E) involving also terms ~ E* and higher
order terms the free energy will contain singular terms of the type ™",
where m and n are non-negative integers.

Appendix G
In this appendix we evaluate the Legendre transform

g(E,Z)=suple-E+¢ - Z+ f(e O] (G.1)

€ €p

of the free energy f(e &) given by (7.22), in which the relation between the

coordinates €¥*, €¥ and €, €, ¢ is given by (7.23). In (7.23), A(e;) contains
quadratic and higher order terms in €, and A;(e€,) is at least linear in €,. (The
linear terms in A(e;) and the constant terms in A;(€,) have been included in
the definition of the coordinates €,.)

From (7.23) we have

€ = €,(€}),
€ =1+ A, (€] (¥ — Ale,(€¥)) — A(€(€])) - L).

Inserting (G.2) and (7.22) into (G.1) and taking the supremum over ¢, we find

(G.2)

g(E 2)= s_ur;[¢s(e:2‘, €N+T(E Z, €})+T,(E;,€f) - €fl, (G.3)

where
T(E,Z,€¥)= C(e})—E, - [1+ A (&(€N]" - A(e,(€})) + E, - €,(€F)
+HZ + Ci(e¥)— E, - [1 + A& (e}))] ' - A (&, (D)},
T(E,€})=C.e)+E, -[I +A, (e} (G.4)

The supremum over €} can be evaluated using the considerations of
appendix C. In fact, in view of the estimate d¢,/d€¥ ~ o(b'"*™?) for some n >0,
cf. (7.16), the supremum over €} occurs at

€} =w(E Z €})+ w'(E Z €l), (G.5)
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where €} = w(E, Z, €}) is the solution of the equation

Ei—#r(E, z, G?)"‘Ez_ira(Emer)'Ca =0, (G.6)

and where w'(E, Z, €¥) is a small correction of the order o(b*""?), Inserting
(G.5) into (G.3) we obtain

(E, Z) = suplo.(e?, €}) + I'(E, Z, w(E, Z, €})) + I'n(E,, w(E, Z, €})) €71,
G.D

Here we have neglected a correction quadratic in ' which is of the order

o(b'").
Since €* ~ o(b"*"?) we may expand w(E, Z, €*) up to linear terms in €2,

ie.
o(E Z,€)=E}E,Z)+ w.(E Z) - €}, (G.8)
where E¥(E, Z) is the solution of

al _
Inserting (G.8) into (G.7) and noting that, in view of (G.9), the contribution of
w,(E, Z) is of the order o(b'*"), we arrive at the expression

§(E, Z) = supl¢.(e2, E}(E, Z2)) + I'(E, Z, E}(E, Z)) + I',(Eq, E}(E, 2)) - €3]

=g(E¥E,Z),E}(E,Z))+ I'(E,Z,E¥(E, 2)), (G.10)
cf. (7.6), where |
EX(E,Z)=T,(E, E}(E, Z)). (G.1D)

Here E*, E¥ and I are regular functions.
In the presence of a constraint leading to a function P(E, Z, €, £), the free
energy per particle is given by, cf. (3.42), (3.45),

fle D)= inf[~e - E~ ¢ - Z +g(E!, EY)+ I'E, Z, Ef) + P(E, Z, € ).
(G.12)

Note that in contrast with eq. (5.6), the function g(E*, E¥) depends on
variables E*(E, Z), E¥(E, Z) which can be obtained from E, Z by a nonlinear
transformation (G.9), (G.11). This feature should be taken into account in
deriving an equation like (5.15) with a function /I(E¥, E¥, &, {). (Furthermore,
in the case that eq. (3.45) is not valid, it can be mentioned that the supremum
over h* in (3.38) can be carried out without using the linear approximation
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(3.40) for the variables €}. In fact, the supremum can be evaluated following
the treatment in this appendix, using (7.22), (7.23) and a relation like

foh*)+ R(m', k*, {£)) = b€, €8)— 3L - £+ D(m’, €8, {ED

+ D, (m', €},{&D) - €*+ Dy(m', €, {ED) &,
(G.13)

leading to eq. (3.42) with a function P(m, ) which may be different from the,

one given in (3.43).)
For the function I'(E, Z, E?¥) in (G.12) it can be shown that

I(E,Z,E¥)=3E, + Yo(Es, Ey, Z) - Ey +31Z + Yz2(E,, B, Z) - Z
+Ey Yy (E,Ep, Z)+ Z, (G.14)

in which Y., and Yz are strictly positive definite for sufficiently small E,, E,
and Z. Equation (G.14) may be derived from (G.4) and (G.9) and the relation

E}=U,(E,E,2Z)-E, +Uz(E,,E\, 2Z)- Z, (G.15)

in which the matrix U, is nonsingular. Here it has been taken into account
that C(e¥) and A(e,(€})) are at least quadratic in €¥ and that C;(e¥) and
A;(€,(€})) do not contain terms independent of €.

From (G.12) and (G.14) it can be inferred that the critical behaviour of a
reference free energy described by (7.22) and (7.23) will be unstable under
small perturbations like e.g. E,- A - E,, in which A is a constant matrix,

independent of E,, Z, €, L.
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CHAPTER IV
STABILITY OF CRITICAL BEHAVIOUR IN SCHOFIELD'S LINEAR MODEL

UNDER PERTURBATIONS INVOLVING TWO (RELEVANT) VARIABLES

1. Introduction.
In the previous chapter we considered the class of systems for which the
free cnergy per particle is given by

£(h) = inf [-hem + g, (m) + P(m,h) ] . (1.1)
m

Here h = (hl,...,hn) denotes.a finite set of coupling constants or external
m=

fields, (ml,...,m ) the thermodynamic variables conjugate to h, and

n

g,(m) = sup [n*wm + £,(0%) ] (1.2)

h*
is the Legendre transform of the free energy per particle fo(b*) of a
reference system with short-range interactions as a function of (internal)
coupling constants or fields E* = (h?,...,h:). The analytic function
P(T’E) can depend on the variables m as well as the variables h. Such a term
can arise e.g. from a perturbation with a long-range nature in the
hamiltonian, or from one or more constraints imposed on the system, cf.
sections 2 and 3 of chapter III for examples and references to the
literature,

In chapter III we studied from a general point of view the stability of
the critical behaviour of the reference system under small perturbations
P(m,h). 1In case that fo(n*) has a critical point with one or more divergent
second derivatives, a very small term P(m,h) in general will lead to
different critical behaviour, such as e.g. a critical point with finite
second derivatives, or to first-order transitions terminating in classical
critical points.

In order to be more specific we shall investigate in this chapter in
some detail a special case of two (relevant) variables, (e.g. temperature
and magnetic field), i.e.

. 2 2
f(h;,h,) = inf [=hym; = hym, + gglmy,m,) + 3Mym] + 3,m5 1, (1.3)
my5My
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* * * ok
go(myamy) = sup  [him + hym, + £o(hT,h;) 1, (1.1)
12hz

where fo(hf,h;) satisfies the homogeneity property

a

£o(0*n}, v72n}) = vfy(nf,n3) , (1.5)

with 3 < a; <1, (i=1,2). Eq. (1.5) implies that f; has a critical point at
hT = h: = 0, with critical exponents o = (2a,-1)/a;, B = (1-&2)/a1 .

¥ = (2a,-1)/a;, A =a,/a;, 6= a,/(1-8,).
From (1.5) it follows that gg(m;,m;) satisfies the homogeneity property

go(b1-a1m1, b1—a2m2) = bgg(ml amz) ’ . (1.6)

which implies that the second derivatives of gy will tend to zero for
m,,m, +0, so that for (small) I,#0, T,#0, the behaviour of f£(hy,h,) for
small hy,h, will be dominated by the term 3Mym + 3m,m>.

The general treatment in the previous chapter leads to the following
conclusions:
i) If m,>0, I,>0, the system with free energy (1.3) will have a critical
point at h;=h,=0. Depending on the magnitude of b, m,, I,, there may be
four regimes I, II, III, IV, characterized by different sets of critical

exponents, as described in appendix E of chapter III.

ii) If one of the coefficients I, or T, is negative, the critical point at
m,=m,=0 of the reference system is unstable and a neighbourhood of m,=m,=0
will not be reached. There will be first-order transitions which may
terminate in classical critical points.

These features will be made more explicit using the linear model of
Schofield to describe the reference system. This model will be defined in
section 2; in section 3 we investigate the effects of critical-exponent
renormelization in the case of positive M; and M, . In section 4 the first-
order transitions and classical critical points are treated in some detail

for negative II,, the special case that II; <0, I, >0 is treated in section 5.

2. The linear Schofield model.

This model has been introduced in ref. 1, c¢f. also ref. 2, to give a
simple description of systems satisfying the homogeneity property (1.5). The
model describes rather accurately several magnetic and fluid systems, cf.

e.g. refs. 3, 4 and also, for a review of experimental results, refs. 5, 6.
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In this section we give a slightly modified, but equivalent, description
which is convenient in view of the Legendre transform (1.2). Other variants
and extensions of the linear model 7)’8), which have been used in the
deseription of critical phenomens, will not be taken into consideration
here.

According to the Schofield parametrization and eqs. (1.5), (1.6), the
function g, and its first and second derivatives can be expressed in terms

of the variables b and 8, with b>0, =-1g56g1, i.e.

golmyom,) = G(8)b (2.1)
n¥ = ag, /om, = H,(0)b 1 i=1,2 (2.2)
i &g i i s g '
) ai+a.-1
.= .om. = K.. i,j=1,2, .
k5 = 3%g,/om; om, KlJ(e)b s 1,3=1, (2.3)
t
Here the variables b and 6, for -1<6 <1, are defined by the
parametrization
1-ai
m, = Mi(e)b »  i=1,2 . (2.4)

For 8=t1, (corresponding to & first-order transition at h;=0 below the

eritical temperature of the reference system), m, and m, satisfy

1- 1-
my = My(=1)b 1 = M (1)p 0L,

(2.5)
My (106" %2 < m, < 1, (10722,
In the (restricted) linear model it is assumed that
My(8) = u (62-03), My(8) = p,8 , K;,(8) =« , (2.6)

where 1), Uy, K, 6? are positive constants. Furthermore, for 85 i=1,2, it

is assumed that

P<a, <1, l4a <2a,, (2.7)

1 1
corresponding to the conditions O<a <1 and 1 <y <2 for the eritical
exponents of the reference system.

The other functions of 8 can now be determined using the relations

2 2
521 (1-a; )k (0)M;(0) = 551 (ag+as-1)K; s(0)ui(e) (2.8)

aiHi(e) =

It ~100

(1—aj)Kij(9)Mj(e) s (2.9)

J=1

(AN



(2.10)

which follow from (2.1)-(2.4). (The primes denote derivatives with respect

to 6).
From (2.7) and (2.8) we have
2(2&1-1) UK

Klz(e) = - 2a,+a,=2 Uy ?
2
2(1-a;)(2a;-1) wuledc ,
K22(8) = 15 TY(Ea,vay-8) g (1*e00)
with

2a2+3a1-3
5= Ray~ay=-1 ’

and therefore, cf. (2.9),

=
—
—
@
~—
]

2 .2
n,(8°-83)

Hy(8) = n,6(05-07) ,
with
2a2—a1-1
U 2agta;-2 S

2(2a,-1)(2a,-a,-1) Wik
Mg = (2a2+a1—2)(ha2—3) E;—' ’
(1-a1)(2a2+a1-2)

2 2
6, = 6

2 a,(2a,-a,-1) 1
92 _ (1-al)<h32-3) 92

3 (2&2—1)(2&2-&1—1) 1

Taking into account that the largest value of 62
below the critical temperature, we have

85 = 1
and therefore
2 (2a,-1)(2a,-a,-1)
1% i) (hepe3)
2 _ (2a2-1)(2a2+a1—2)
2 al(haZ-B) ’

2(2a;-1)

fo¥2 T T, 3 MMt

]

Then finally K;;, K;, and K,, can be rewritten
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(2.11)

(2.12)

(2.13)

(2.14)
(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

will occur for 92(6) =0

(2.20)



2a2+a1—2 n;
K 0 = —————— — = . Ll
n(e) == (2.2h)

—2(2&1—1) ul

K1200) = m Ty, o (2.25)
n
Kpp(8) = o5 (14s6®) . (2.26)

Here the coefficients ny, Nys Ups Hy satisfy the relation (2.23) and s is

defined by (2.13).
From eq. (1.3) the free energy f{(h;,h,) as & function of the external

fields h, and h, can be expressed as
2 N 5
= : 3
f(hyshy) = min  [gylm ,m,) - .Z (himi + Enimi) 1 {(2.27)
Iy oM, &J i=1
where J denotes the set of values m,,m, satisfying the implicit equations

- 1k -
hy = hi + Himi , i=1,2 , (2.28)

with the functions h; = Bgo/ami, ef. (2.2). In terms of the variables b,8
these values m,,m, can be paramatrized by (2.4), or correspond to h;=0 and
(

satisfy (2.5). Accordingly, we have from (2.27), using (2.1), (2.2),

(2.4), (2.5), (2.9), (2.10),
£(hy,h,) = min {f(h;,h,), £,(h;,h,)} . (2.29)

Here

2
£(h;,hy) = min |- b ] (a.H.(6)M.(8) + amM(6) b "Ry |, (2.30)
12772 b.6 &J soq 0 i i iTi
bed, b is

in which J, denotes the set of solutions b,6, (v>0, 82 < 1), satisfying

hy = v*E0H (0) + M (0)p PR, =12, (2.31)

1

and

[ . 1-2
f,(h;,h,) = bZZ? {f blagk; (1M, (1) + 5n1Mf(1) b ") - %h%/n%}, (2.32)
2

where J, denotes the set of solutions b satisfying
_ a1 . 1-2a3
hy = b CH (1) + MM (1) v ). (2.33)
In (2.32) the minimum over m, has been taken explicitly. The relation
my, = - 3f,/dh, = hy/l, (2.3h4)
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is identical to the relation between the magnetization and the external
magnetic field under the influence of demasgnetizing effects, (the
demagnetizing factor D corresponding to Hz). We therefore refer to the
solutions involging J, as solutions of the demagnetizing phase. Note that
f, can only contribute to the minimum in (2.29) if 1, is positive. (For
negative I, , the stability condition that the susceptibility is positive
is not satisfied, and solutions involving J, can then be ignored). 1In the
following the solutions involving J; will also be called solutions of the

normal phase.

3. Critical-exponent renormalization. -

In this section we discuss the case that
>0, M, >0, (3.1)

Then the function between brackets in the right-hand side of (1.3) is a
convex function of m;,m,. As & consequence the value of m,,m, at which the
infimum occurs is uniquely determined for each hy,h, and there are no first-
order transitions. The free energy f(h,,h,) has a critical point for b=0,

or i

h; = h, = 0. (3.2) = i
§
1

A, Demagnetizing phase.

For hy>0 and |h,| < by, with

Tem
hy = MM, (1) © B2, M(1) = My(-1) (3.3)

b is the solution of (2.33), there is a demagnetizing phase, cf. (2.34),
{2.5). The second derivatives
2
Xj; = =3 £/3h;ah, (3.4)
of the free energy (1.3) in this phase are given by

aH,(1) -1
171 -
{———— per-t nl} ,

X1 = e M (1)

(3.5)

X12 T
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i.e. the magnetic susceptibility X2 is constant.

In the two regimes (i) and (ii), such that

(i) b2a1—1 5> Hl ,

(3.6)
(i1) 28171 < g1 .
1
the second derivative Xy; cen be described by
(i)_(1-a1)M1(1) J1-2a1 (1) _ 1 [, e, H,(1) J2e11
X1 = T () * X T T T, (e M, (1) :
(3.7)
In regime (i) we have, cf. (2.33),
(1) =gy (1) /by \-a 28,-1)
X ® X ¥ T E () H (1) » (o= e ) s (3.8)
h; \B 1-a,
by o T,M, (1) <H1 1)) » (B = o ). (3.9)
In regime (ii), however,
o
. H (1) h 1-a
(ii) _ 1 _ 2171 ( 1 )
X11 % X1 “n1{1 T, (e W, (1) \TH, (1) : (3.10)
B
h, =0
hD uH2M2(1) (—ﬁl—m) B (3.11)

In (3.10) and (3.11) we have a Fisher renormalization 9) for the critical
exponents a and B, describing the specific heat and the boundary of the
demagnetizing phase.

More specifically, x,, can be approximated by x?l, A= (i),(ii), with

precision A, 0 < A << 1, if the condition

(1=2)x;, < ><}1\1 < (1+x)><11 (3.12)

is satisfied. Eq. (3.12) is equivalent to
My (1-ay My (1)

28.1-1 A N = .

b > —-——————alHl(” > s dor A (i) , (3.13)
I, (1-a4 )M, (1)

par=t o 1 LR Vi, for A= (ii) . (3.14)

a1H1(1)

B. Normal phase.
Outside the demagnetizing phase, the second derivatives of the free
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energy (1.3) are given by

x= (k+m7
= [(K (S)anlm1 + T)(K (6)b2a2—1 + 1) 2 (e)anﬁQaZ—Q].—1
- 11 1 29 2) - K12
2ap-1 arjtap-1
m, + K,,(6)v K, ,(8)b
" (3.15)
ajtag=-1 2a1-1 3
-K,(8)b M+ K, (8)p
in which b and 6 satisfy (2.%), and
X X12 k1]_ k12 Hl 0
X:{ll J, §=[ ], £=[ ] (3.16)
T Wiz Xa2 ki, Ky o n,

Starting from (3.15) we can distinguish between four different regimes:

2a1~1 2ay-1

I. b >> 1 b >> 1, ,

1. 121!« T, S AL n, ,

111, 52217 5, s po22! oo 1, »

v, 22177 mn o, po22~! o n, . (3.17)
The susceptibility in these four regimes can be described by matrices XA,
with A = I,II,III, IV, which have a homogeneous singular part X:’ i.e.

A A A
A 1-8; -8 a3 ..
xs’ij(hl,hz) ~ b » forh, ~b ", (i,j=1,2, A=I,II,III,IV).
(3.18)
Eq. (3.18) leads to the critical exponents
1 1-a§ 2aé—1 ai 8,
= - — = = - = — = - Q
aA 2 A b BA A 3 YA A L] AA A 3 GA 1 A . (3 1/)
a, &) a, a, -8,

The matrices xA are given by:
8 I { ) 2 (e)}" Kpp(8)n 5 Ky, (0)p!7H1782)

X =k ={K ,(8)K,,(0) - K, (8) '

= = 11 22 12 1egq~- 1=

K (806 21722 g ()p! P22
3.20)

which is the susceptibility matrix of the reference system. Eq. (3.20) has
the form (3.18), with unrenormalized critical exponents, i.e. aj=a,;, a,%a,,

and
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ar=a, B.=B6, V=Y, A;=4, §.=6. (3.21)
. 1 2 2 1 2aq-1 1 1 ai-a
- - - 1= - - 1=92
T 17 - 1ok, (8) = KT (00K, (6)}b -1 K, (8)K,,(0)p
£ - -1 -1 aj-ap -1 1-2a,
-7 X, ,(8)K,,(8)p Ko ,(e)b
(3.22)

In this case we have eg. (3.18) with a%l = l-a,, agl = a,, leading to the

eritical exponents, cf. (3.19),

o =L =, ap =R, s =6 (3.23)

=B
T " Tg® P11 575 Yir 7= % 11
9)

The exponents (3.23) correspond to the Fisher renormalization of critical
exponents, see also chapter IIT for further references to the literature.

The specific heat has a cusp, (aII <0), the susceptibility diverges,

(YII >0), and the mixed derivative xli diverges also, since a, >a;, cf.,
(2.7).
~1 1-2a; -1 =1 ap=a]
IIT. 117 Ky,(0)p -T, K,,(8)K;,(8)b
x =
£ =1 -1 ag—a -1 -2 2 -1 2as-1
-7 K0k (800 271t -, , (8) ~ K, (8K, (8)}p ™27 L
(3.24)
Eq. (3.24) has the form (3.18), with a{II==a1, agll =1-a,, and therefore
we have
Orrp = @ Brpp =4 Yppp =Y, Bppp =8, S =178, (3.25)
corresponding to the renormalization found by Essam and Place 10). The

specific heat diverges, the susceptibility has a cusp and the mixed

derivative tends to zero.

Iv, EIV = 2—1 - E—1'§'E_1
H;1 - ";21{11(9)b2a1-1 --(Hﬂlg)_1K12<e)bal+a2”1
- (m.1.)" k. (g)p21+22"] ! - %k (6)pRe2-) . (3.26)
T 1219 2 Wy Byp

In this case we have a complete critical-exponent renormalization, i.e.

a%v = T-ay, agv = l-a,, and

- = £ =1
» A T Sy = (3.27)

I R & -
T—a > Y1v T-a v

o_ = -
Iv 1-gp ? v

and all second derivatives are finite,
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We now investigate the conditions under which the susceptibility x can
be approximeted by the susceptibility XA, A=I,IT,III,IV, with precision
Ay 0<A << 1, i,e.

(3.28)

<

b

(1-2)x < x* < (142)
where the inequality A <B means that the matrix B~A is positive definite.
For the four regimes we obtain the following conditions from eq. (3.28), see

appendix A for some details of the calculation,

I. Akll - Hl >0,
2,2
(Akyy = M)Ak, = T,) = A%ky, > 0, (3.29)
II. /A, - k;; >0,
22 2 2 2 2
ATy, £ AM{(My-kyy)kT, + Kk, = TN} - Mk, > 0, (3.30)
IIT. VAN, - ky, > 0,
2.2 2 2 2 2
ATMokyy & A{(T,-ky, kT, + Ky ky, = I} - Tk, >0, (3.31)
V. A1, - k;; >0,
2
(VXm, - %, ,)(VA1, - k,,) - k], >0 . (3.32)

For the calculations in the rest of this section, {and also in the

following sections), 1t will be convenient to intrcduce a new variable

p = |k/m, 62217 (3.33)

to describe the "distance" to the critical point and a new parameter

uz 2&2—1
= P = —
e /M 1% m, s p=ggy s (3.34)

to characterize the relative magnitude of I, and T,. The second derivatives

of g, can then be expressed as, cf. (2.3), (2.24)-(2.26),

ki, = (Mo (3.35)
1 1 1

kp, = =M I,/ml? (s-t)* pp2(P*1) s (3.36)

Ky, = [1,/m](14s6%)0P (3.37)

with s defined in (2.13) and
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b= 2, (3.38)

Note that s-t >0 in view of the conditions (2.7) imposed on a, and a,.
Using (3.35)-(3.37), the conditions (3.29)-(3.32) can be written in

terms of p, 6 and I, 1i.e.

I. Xp-1>0,

(Ao=1) (AT ToP = 1) + (trp-s)am™'pPe% > 0 , (3.39)

II.p - /A <0,

(02+A) (A" ToP = 1) + (£p° + (s=t)p + sOAI™ oPe% > 0 ,
(02=2) (AT ToP +1) + (£02 + (s=t)p = sA)AL™ pP0° < 0 , (3.40)
1. (17 eP = vR) + s 'oPe? < 0
(Ap-T)(H_zpep-FA) + [(s—t)kp + {(s+t)rp - QS}H—1 P]H_1pP62
+ s(txp-s)n'epepeh >0,
(Ao+1)(M2p7P 2 1) + [(s-t)xp + {(s*t)rp + 2s}ﬂ-1pp]ﬂ-1fp92
+ s(t>\p+s)n"2pzl°elL <0, (3.41)
V. p-YA < 0 ,
(p-JT)(n'1pp-¢T) + (tp-s»/i‘)n'1ppe2 >0 . (3.42)

We shall now investigate in particular for which values of p eqs.
(3.39)-(3.42) are satisfied for all 8, (0g 8 < 1), in the regimes I, II,
JITI, IV. In that case one should always pass through such a regime in
approaching the critical point within the normal phase.

To be specific, we shall assume here and in the following that the gap

exponent satisfies

2> 2, (3.43)
so that t >0.
Regime I: From (3.39) we have the condition:
. s
g,(p) <0, if p > o
(0) > 1, if+<p< (3.L4)
glp s Y P 0 .
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~ith -1 p
_ =D o7 1) (3.45)

(tAp—s)AH'1pp

1t

g](p)

From (3.4Y4) it follows that
1 1
1T . 1l
NOLRL
1
P >p if Dr.=s (3.146)
1 ? A ta? :
with Py the solution of
o) =1, max{l,(TP}<oc (3.57)
lp ’ A ?\a " .

Regime II: Eq. (3,40) for all 6 with 0 < 82 < 1 implies

o = /<0, AL

with
g,(p) = p2n + [(£+1)6% + (s=t)p = (s+1aanToP . (3.49)

p°-1>0, g,(p) <0, (3.18)

From the first and second inequality in (3.48), we have
1
1p+1 D
T < AP <%)p <o <V . (3.50)

Eq. (3.50) ensures that we have a regime II for 6=0. In order to have this

regime for all values of 8, we must require that
1

g, (1;—)5 ) <o, (3.51)

wvhich leads to the condition

(%)é <A, (3.52)

A = Hee2)™] [{(s-t)2 + h(s+2)(t+2)k}%-(s—t)] z-iﬁgx, (A << 1).(3.53)

Then for all values of p satisfying

1
<§)p <o <o, (3.54)

where P, < YA is the positive solution of
g,(p) =0, (3.55)
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we have regime II for all 8. Note that for small A the condition (3.52) for
I for all O g 62 < 1 is much more stringent than (3.50) for m, if 6=0.

Regime III: From eq. (3.41) for 6=0 it follows that

TP - /T<0, a-1>0, (3.56)
or 1

; 4
I > \Pte % <p < (IVT)P . (3.57)

If we require regime III for all B, then the first and second inequality in
eq. (3.41) follow from the third one and eq. (3.56). It is therefore
sufficient to require that

gy(p) <0, (3.58)
with

g5(p) = -A(Ap+1) + (s-t)apl™ P + {(s+1)(t+1)20 + (s+1)2}(1'pP)%.(3.59)
If now

g3(%) <0, (3.60)
l.e.

P <a, , (3.61)
with

_'! .
C = %(s+1)“(s+t+2)'1[{(s_t)2 + 8(s+1)(s+t+2)2} % = (s-t)] ~ 2o,

(A << 1), (3.62)
then there is a regime III for all values 0 g 92 <1, if

1
3 <P <Py » (3.63)

wher: Py > %—is the solution of

gzlp) = 0 . (3.64)

Again condition (3.61) for 0 g 6% < 1 is much stronger than (3.57) for 6=0.

Regime IV: From eq. (3.42) we have
p <V, glp) > 1, (3.65)
with
L LMD (3.66)
(tp~svX)N oP

g,(e) =

Therefore we have the condition
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P <Py (3.67)

vhere p, is the smallest positive solution of

g,(p) =1 (3.68)

As a conclusion, there are regimes I and IV for all positive values of
1, (II1 being positive), cf. (3.46), (3.67), whereas regimes II and III
occur for sufficiently small and sufficiently large Ii resp., cf. (3.52),

(3.61).

b, Negative Tj.

In this section we investigate the case that N,< 0. We first note that
the infimum in (1.3) can only occur at a point (m,,m,) such that the matrix
of second derivatives of the function between brackets |...] is positive.

This gives the stability condition

kyy + 1y > o,

11
(ky; + Ty )(kpo + T,) = Koy > O
11 17422 2 12 >
which can be expressed in terms of p and 8, cf. (3.35)-(3.37),
p+sgnl, >0, (h.2)
(p + sgn Hl)(1 + Hp_p) + (tp + s sgn H1)62 >0 . (4.3)
Furthermore, for I <0 there is no demagnetizing phase and the external
fields as given by (2.31) can be expressed as

. -1 -
BEn IK/Hllal/(zal )h1= pal/(2a1 1){(32-e§)+ 2(1+s)sgn M, (% —e -

}s
L)

—~0
.x'_'

=0y ]K/H Iaz/ 2a1-1) paz/(2a1—1){(1_62) + 7P} . (4.5)

A. T; positive.

We consider first the case that sgn n = 1, <0 .



oo

0 m*

o

Fig. 1, Stability curve and the curve 52=0 in the p,6~plane for m, >0, M, <O0.

In fig. 1, the drawn curve is the stability curve

A2 _  (e+1)(1+n ~P)
nc = o ~———EB:E;41——— , (4.6)

and the shaded area is the unstable region of the p,8-plane. (It can easily
be shown from (4.6) that 362/3p <0 for the stability curve.) The dotted

curve is the curve h,=0, given by, cf. (4.5),
1

8=0 and 8% =1+Ip"P, p> (-M)P . (4.7)

. For 8 >0 we have m, =1,6>0, and the infimum in (1.3) must be realized
at a positive value of h,. The condition 52> 0 implies 62< 1+Hp—p,
corresponding to the region enclosed by the dotted curve in fig. 1, and a
curve hy=c, with ¢ >0, lies in the stable part of the p,6-plane.

Since in a stable part of the p,6-plane the variable ﬂl must change
monotonically on a curve 52 =c, there cannot be a first-order transition
for positive Ez‘ In fact, if ﬁl has a stationary point P on a curve with
52 =¢, the curves with constant ﬂl and Ez resp. must touch at the point P
and P must lie on the stability curve, since, {in the ml,mz-ylane)‘ cf.

(2.28),

2
appf  dhy jdm, dm, (ky+11;) (kyp*,) = kT, .8)
dml h 3m2 dm1 h dml h k22+H2 :
2 2 1
Consider now the value 52 =0, If 6=0 and p decreases from = to
(—H)1/P, then El increases from -« to ﬁ1c’ with
~ aj/{(2a,-1 2 2 -1/
b, =-(-1) 1/(2az~1) {6, + 2(1+s) sgn M 67(-1) L (L.9)

On the branch with 6%0, Bl increases from E1c to @, if p increases from
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(—II)T/p to =,
For By >H,
spontaneous magnatization and a first-order transition when we pass through

. we have 8 >0, if ﬁ2+ 0, and 6<0, if ﬁ2+ 0; there is a

E2=(3. The point p = (—H)1/P, 6=0, or h;=hq,, h,=0, is a classical
critical point. As gy(m;,m,) is analytic in a neighbourhood of this point,
the free energy (1.3) around this point can be found from a Landau

expansion.

B. T negative.
We now consider the case that sgn ;= -1, N<0. From (4.2) and (k.3)

we have the conditions

p>1, (4.10)
- - —-— _p .
62 > (o 1)(t;—s Mp™) , ifp >, (4.11)
-p
02 <l + Mo 7) igp <2, (k.12)

s-tp

(i) If -1 >(s/t)P, then (4.12) gives instability for p< s/t and the
stability curve is determined by (4.11)}. This stability curve has 892/ap< 0,
so that this case is analogous to the case of positive m in subsection A.

(Note that on the stability curve in this case 62+ o for p+ s/t.)

(ii) If -T<(s/t)P, then (4.11) is trivially satisfied and the stability
curve is determined by (4.12). We first consider the case that

~I< {%(s+1)}2p.

ssesnssacceenire

(7 m{'(-ﬂ)”’ ,1}

Fig. 2. Stability curve and curve 52=() in the p,6-plane for
M <0, - <{3(s+1)}°P,

In fig. 2 the shaded area is again the unstable part of the p,8-plane. Note
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that in this case the dotted curve 52 =0 has a second i .ersection point,
(with 8>0), with the stability curve. In fact, the intersection points

can be found from egs. (4.7) and (4.12) with equality sign. We find

8=0, or p = (s+1)/(t+1) = {3(s+1)}2 , (4.13)
so that there is an intersection point with 8 >0, if and only if

-1 <{3(s+1)}%P . , (4.14)

In that case a curve ﬁz =¢ passes through an unstable portion of the
p,6-plane for sufficiently small ¢ >0. As a consequence, there are first~-
order transitions for sufficiently small |f,]| .

On the other hand, if (4.1k4) is not satisfied, i.e. if
{%(s+1)}2p < -l < (s/t)P, we also have 862/8p >0 on the stability curve,
but now the curves ﬁz =¢, with ¢>0, 1lie in the stable region of the
p,0-plane, and there are no first-order transitions.

We now investigate the case,(h.1h)‘in more detail. From (4.5) and

(4.12) with equality sign it follows that 52 on the stability curve is

given by
: 31 3
h, = pazl(2a1_1)(1+Hp_P)2(p—1)2{(S+1) - (t+1)p}(s-tp) 72 , (k.15)
so that
hy & {(s+3) = (++3)p}(s-t)p 3 _pl
35 = BoP [2&1-1 * 2(s+1) - (#1001 (s=0)(o=1) ~ 2 F o wae

The function between brackets in the right-hand side of (L.16) is
monotonically decreasing in p for
1
mex {(-M) 7P 1} <o < d(s+1)2 . (4.17)

2 . . .
Values of p >%(s+1) are not of interest, since we can restrict ourselves

to 52 >0. To see the monotonicity we introduce the variable

= §:%2 , (4.18)
o—
and the function between brackets in (L4.16) can be written as
=1
o(x) = ay/(28,-1) + u(x) = 3 51 [{(ewx)/(es0}P + 0|, (4.19)
with
_ (x=3)(s+x)(t4x) _ 8 | 3st
2(s~t)y(x) = 1) = (1-st) + x = 5+ =7, (k.20)

so that




)

y Qb _ 82+ (x-1)2(xP-3st) o (4.21)
dx x2(x-1)2

2(s-t

using that x >1 and st= 3-s-t <3 ., Therefore ¢(x) is an increasing function
of x for M<0. For x+1, (p+4(s+1)2), we have ¢(x)+ -= and for
o +max {(—H)1/p, 1}, ¢(x) » 4o,

As a consequence there is one and only one value fo in the interval

(4.17) satisfying ¢(x) =0, so that

aF,
TS (pc) =0 : (h,22)

Eq. (4.22) implies that on the stability curve 52 increases from 0 to ﬁ2c =
ﬁ?(pc) , 1f p increases from max {(-H)1/P, 1} to 9,3 ﬁz decreases from

ﬁ2c to 0, il p increases from °, to ﬁ(s+1)2. Thus for all values

O<h2<h2c,

region of the p,8-plane and there must be first-order transitions at

the curve at constant ﬁz contains a part lying in the unstable

constant ﬁz' For ﬁ2> h, the curve at constant 52 lies in the stable region

2c
of the p,0-plane implying that there is no first-order transition.
Qualitatively the phase diagram in ﬁl,ﬁz-space is given in the figures 3a

and 3b.

bz hﬂ;c- h&
h, h
—— —
0 ~ o PP
hIC h[c 10
_/7&‘-"
Fig. 3a Fig. 3b

Phase diagrams in the ﬁl,ﬁz—plane for negative M(or I,). Fig. 3a is
characteristic for n,>0, Nm<0, or M <0, I< —{%(s+1)}2p. In fig. 3b we
have T, <0, —{%(s+1)}2p< I<0,

From fig. 3b we note that ﬁﬁpc)<ﬁ1o,where b, is the ﬁl-value of the

1o
triple point corresponding to the first-order transition at ﬁ2->o. This can

be seen from the inequality
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®) < B, (4.23)

ﬁl(oc) < hl(%(sﬂ

which can be derived casily taking into account that ﬁl(p) on the stability

curve has a minimum at p= Po and that p = %(s+1)2 in the intersection point

with 6 #0 of the curve ﬁz==0 and the stability curve.

5. The case M} <0, NIy >0,

In this section we investigate the possibility of first-order
transitions in the case T, <0, I, >0, Since I, is positive, we must also
take into account the solutions of (2.33) corresponding to the
demagnetizing phase., The second derivatives of the free energy in this

phase are given by (3.5), but now with Il < 0. The stability condition is

Xyp >0, or
pa1=1  (1-ap)My(1)
> (5.1)
I, | e (1) 2

which in view of the parametrization (3.33), cf. also (2.6), (2.14), (2.21),
{2.22), (2.24), can be expressed as
2
(1-ay)(1-69)) 2

p >k ————a—— = {(s+1

. (5.2)
a,(1-65)n,

On the other hand, the boundary of the demagnetizing phase, cf. (3.3), is

given by

~ -1 ap/(2a1-1) _ o (1=ap)/(2a1-1)

by = ny /My | hy = T , (5.3)
so that ED is an increasing function of p. Egs. (5.2) and (5.3) imply that
for all values ﬁz with

[y < B = n{i(esn)?}{Tme2)/(Boa=1) (5.4)

there must be a first-order transition to the demagnetizing phase. In fact

the intersection point of a curve with ﬁ2= ¢, O<ex h in the normal

s
phase {0 $e2 <1) with the boundary of the demagnetizingcphase (92= 1) occurs
at a value p smaller than E.(s+1)2 and therefore in the unstable part of the
demagnetizing phase, c¢f. (5.2).

Furthermore, first-order transitions at ﬂ2= ¢, (¢>0), can arise if the
curve ﬂz =¢ in the normal phase contains a part lying in the unstable region

of the p,8-plane. To investigate this in more detail we consider the




by

stability conditions (4.10)=(%4.12). For positive T eq. (4.11) is trivial
and the stability curve is given by '
1+ 1p P = %f%g 82 (5.5)

i.e. for larger values of 92 (with 82 < 1), the point {p,6) is a stable
solution. For fixed NM>0, the behaviour of the stability curve in the p,f-
plane is slightly more complicated than in the preceding section, but a
detailed treatment is not necessary in order to derive for which values of
ﬁz there should occur a first-order transition. The behaviour of ﬁz on the
stability curve is given by eq. (4.15) but now for I positive. Note that ﬁz
is positive on the stability curve for the values p satisfying 1<p< E(s+1)2,
which implies that for all intersection points of the stability curve with

02 =1, we must have

By <hpg s (5.6)

as hy =ﬁD is an inereasing function of p.
We shall now prove that for sufficiently small values of IN>0 there is
one and only one maximum EZC(H) of 52 lying on the stability curve with

62 <1. This implies that for all values ﬁz’ satisfying
I5,] < (1), (5.7)

there is a first-order transition. To prove eg. (5.7) and to determine the
critical field ﬁ2c(n) we first note that the extrema on the stability curve
are determined by ¢(x) =0, where ¢(x) has been defined by (4.19). The

condition ¢(x) =0 defines a function H(x) which is given by
-1
a - 29(x) = 3p 1 +1G{(s4x) /(s }P] 7, (5.8)
- s+3 |
q= s—1 ° (5'9)
On the other hand we must have 82< 1 and from (5.5) and (5.8) we find the
inequality
g - 2p(x) > 3px-1 . (5.10)
The function q-2¢ can be written, cf. (4,20),

3
_ 3(s~t)g {x=3) (5.11)

(o=t ) (q-2¢) = Jezbla_ Lx3)

so that (5.10) is equivalent to
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3
3{s=-t){p~q) + Lﬁf%l— <0, (5.12)

Since s>t and p>q, eqg. (5.12) is satisfied for

1<x<x, <3, (5.13)
where x is the solution of (5.12) with equality sign,
1 % L
Xy = 3 = (L-9)3{(vD+3)3 - (vI-3)3} , (5.14)

L=9+ (s-t)(p-q) . (5.15)

It can now be proved that N{x), defined by (5.8), is an increasing
function of x in the interval (5.13). From (5.8) we have

( P
dng) = P(ffﬁ) {(s+2) (t4x) (5=t ) (a=20)} " "n(x), (5.16)
with )

n{x) = 6(s+x)(t+x)(s-t) %% - {3p - (q—2w)}(s-t)2(q-2w) . (5.17)

Using the inequalities (5.10) and (5.12) we find
dy 2
n(x) > 6(s-t){s+tx)(t+x) el (x=1){(s=t)(g~29)}

- 3e=t)a(x=3)%(3e=1) _ (x=3)"(xPor0m3) , 2x(xe3)t |

. (5.13)
x(x=1) x(x—1)2 (x—1)2
Also, the function eg(x) defined by
3p(q - 2p(x)) ™" = x0%(x) , (5.19)

obtained from (5.5) and (5.8), increases monotonically from 0 to 1, if x

increases from 1 to x;, since

a0°(x) _ 2x(x-3)%0"(x)

20 . {5.20)
dx 3(s-t)p(x—1)2

Hence, for all values of Il satisfying

s+x \P
0 <1< M(xy) = (x0-1)(%:§2) s (5.21)
0

we have one and only one extremum EZC of Ez on the stability curve. It can
easily be shown that this extremum is a meaximum. This is triviel if the

stability curve (5.5) has only one intersection point with 62=1, as ﬁ2+0,
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if p¥1. Counsider now the case that 1l is such that there is more than one
intersection point. Let (pc,ec) denote the position of the extremum of 52
on the stability curve, and (p1,1) the intersection point of the stability
curve with 92=1 for the largest value of p satisfying p< I Furthermore,
) be given by h, and the values of ﬁ2=ﬂD in

let the value of h, at (pc,eC e

(p1,1) and {p_,1) by ﬁa and ﬁb resp. Then for all values 82 ec, we have at

c
(p,»8), cf. (5.5),

ah
2 ag/(2a9=1) - 2 ag/(Pa1=1) 2 .2 .
—_ = B2 1 . P _ = A2 1 _ .
50 Pa (1+ Tip_ 307) = o (x,0.-387) <0, (5.22)
and therefore h&< hb< 120 . (5.23)

As a conclusion, we find that there is a value H=ﬂs, satisfying (5.21),

so that first-order transitions occur at all values

I5,] < ﬁgc » ifo<mem,, 5. o)
|5, < By, » ifms I, '
where the critical field ﬁ2c = EEC(H) is given by, cf. (L4.5),
By = (x -106{(s4x ) /(1 )}22/ (B21=1) (5.25)
C [« C c c

X veing the solution of I =H(xc), cf. (5.8), and 8,= e(xc), ef. (5.19),

(or (5.5}); the critical field ﬁDc= EDC(H) has been defined in (5.%). The

value Hs is given by m, = H(xs), with x_ the solution of

S R o ol B 5.6
x6 (x)-1 :

cf. (5.25) and the relation

p (1-ap)/{2a1-1)
~ 2 S+Xc +1
By, = (Keac - (E:;:) (%IT) ? (5.27)

for 0 < 1 < H(XU)' Eq. (5.2A) has only one solution X since the left-hand
side decreases monotonically from =, for N+v0, to a value less than one, for
i =mxy), as ez(xo) =1,

So far we have investigated for which values of h, there will be at
least one first-order transition. A complete treatment of the phase diagram,
however, would require a more elahorate analysis. In fact, at constant

magnetic field, one may have: a second-order phase transition to the
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demagnetizing phasc; a first-order transition in the normal phase followed
by a second-order transition to the demagnetizing phasej a first-order
transition from the normal phase to the demagnetizing phase; a first-order
transition in the normal phase followed by a first-order transition to the
demagnetizing phase. All first-order transitions terminate in classical
critical points. For special values of Il there will be multicritical
behaviour but these possibilities will not be analyzed further in this

thesis.

Remarks,

i) It may be noted that the conclusions in this chapter are universal in
the sense that they are independent of the specific values cof aj; en a5,

provided that the inequalities (2,7) and (3.43) are satisfied.

ii) A reference system in which the specific heat and the susceptibility
have a cusp-like behaviour can also be taken into account, For example, if
the reference free energy is given by

=1, %2 =1, %2
£o(n},h3) = ¢ (n},h3) - 2AT n]° - #A; 037, (5.28)

where A;1,A;1 >0 and ¢, satisfies the homogeneity property {1.5) with

O<a, < 1, then the Legendre transform (1.4) can be evaluated to be
2 2
go(ml,mz) = ¢0(A1m13 A2m2) + %Alml + %Azmz ? (5-29)

apart from small correction terms, Eq. (5.29) leads to an expression for
the reference free energy®similar to (1.3), with n, and T, replaced by A,
and A, resp. This implies that the considerations in section 3, and there-
fore also the Schofield modél, nay be used to describe a reference free
energy with finite second derivatives. Furthermore, the critical
properties of such a reference system are stable under small perturbations
Hi’ as [Hi{<< Ai’ see also section T.l and appendix G of chapter III for a

more systematic discussion.

iii) A quadratic form depending only on m; and m, may be considered as an
approximation to more general perturbations P(ml,mz,hl,hz), depending on
the external fields h; and h, as well, provided that the eigenvalues of the

quadratic part are different from zero. Such perturbations can rise in a

9)

general way from constraints imposed on the reference system s, cf. e.g.

section 3 of chapter III. Important examples are e.g. the Baker-Essam

11),12) 13)

model for compressible Ising ferromagnets and the Syozi model
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for Ising systems with bond-annealed impurities, see chapter III for a more
complete discussion of the literature. However, if one of the eigenvalues
of the quadratic part vanishes, one may have more complicated nulticritical
behaviour, and further details of P(ml,mz,hl,hz) can be essential for the

critical properties, see e.g. ref. 1k,

iv) The special case l,=0 has been previously investigated by Dohm and
Kortman 15) using also a Schofield model for the reference system. For
I,>0 there is a Fisher renormalization close to the critical point, for
;<0 there are first-order transitions for sufficiently small values of the
magnetic field 52 with a classical critical point at ﬁzc(o). For T,=0 one
has the critical behaviour of the reference system, A physical example is

given by the tricritical point in compressible Ising ferromagnets, see e.g.

refs. 15, 16,

Appendix A,

In this appendix we give an outline of the proof of egs. (3.29)-(3.32),
starting from the inequality (3.28). Eq. (3.28) is equivalent with the
inequality

-A(XA)-1 < 4-1 - (éA)-1 < A(éA)-1 s (A.1)

since 0 < A <B®O0 < 2-1 < é-1. Eq. (3.29) is a direct consequence of
1

(A.1), (with (2(_A)-1 =k, x =k+I). Eq. (3.30) can be obtained from eq.
(A.1), wusing that

(2
ITy~1 1 L Tykyg
) =1 2
1o Tk,  Kiptkpp(My-kyy)
r .2
IIy=1 =1 1 LS ky1koo
xX) -x =7 o . (A.2)
L kygkpp  Kpp-Tp(My-kyy)
Eq. (3.31) follows, interchanging the subscripts 1 and 2 in (3.30).
Finally, eq. {3.32) follows as a special case from the relations
1
O < }=( < /Xlg - 0 < (_1)£+1(x-z(£)) < A§(£+1)X
241 L (2= +1
o0 < (=1) (X'K( )) < AE( m)(-1)m (Z-X(m)) . (A.3)
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in which
%
X(Z) = E-1' Z (-1_{'2—1 )n (A.)-l-)
= = 0 T °
is the "3 order approximation" of x = (§+E)—1. Eq. (A.3) can be proved

easily using the identities

1 k) 1 1
mfeyen? = (4 ), E?'(X-X(Z))'H? = ()M ey T (A.5)
- = " 1— - = = - = =
where A=] 2skel" %, Since x(0)=H_1 and x(1)= xIV= . ]'[-1-]&-1'[-1 we
- - s = - = = = = = = =
have from (A.3) that
0<k< /Rg w0 < X_XIV < A
Iv -1 -
0 < gy </AI"—x)®0<I - x< /iy, (A.6)
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SAMENVATTING.

Een belangrijk probleem in de statistische mechanica is de afleiding van
thermodynamische eigenschappen van veeldeeltjessystemen, uitgaande van
microscopische wisselwerkingen tussen de deeltjes. In veel gevallen is het
voldoende om de vrije energie per deeltje te bepalen, waaruit de thermo-
dynamische eigenschappen afgeleid kunnen worden. Deze eigenschappen zijn
in het algemeen afhankelijk van de dracht van de wisselwerkingen tussen de
deeltjes.

Een speciale klasse van veeldeeltjessystemen is de klasse van korte-
drachtssystemen, waartoe o.,a. de systemen behoren waarin de wisselwerking
tussen de deeltjes een eindige dracht heeft, d.w.z, alleen verschillend van
nul is als de afstand tussen de deeltjes niet te groot is. Voor korte~
drachtssystemen heeft men bewezen dat de vrije energie per decltje bestaat
ir de thermodynamische limiet. Een exacte berekening van de vrije energie
in twee en meer dimensies is tot op heden niet gevonden, afgezien van een
aantal uitzonderingsgevallen zoals bijvoorbeeld het tweedimensionale Ising
model in afwezigheid van een magneetveld. De laatste jaren heeft men veel
inzicht gekregen in het kwalitatieve gedrag van deze systemen door gebruik
te maken van benaderingsmethoden. Zo heeft men bijvoorbeeld kunnen vast-
stellen dat veel kortedrachtsmodellen een (universeel) kritisch gedrag in
de buurt van een faseovergang vertonen, waarbi]j het dominante singuliere
deel van de vrije energie aan een homogeniteitseigenschap voldoet en een of
meer susceptibiliteiten (tweede afgeleiden van de vrije energie) divergeren
met welgedefinieerde kritische exponenten.

In de eerste twee hoofdstukken van dit proefschrift wordt een klasse
van {quantummechanische) modelsystemen beschouwd, waarin behalve inter-
acties van korte dracht ook (extreem) langedrachtswisselwerkingen kunnen
voorkomen en meerdeeltjesinteracties van een gemengd karakter. Voor deze
klasse wordt een exacte betrekking afgeleid, waarin de vrije energie uit-
gedrukt wordt met behulp van de Legendre getransformeerde g, van een
referentiesysteem met uitsluitend kortedrachtswisselwerkingen en een
(storings)term P die voortkomt uit de langedrachtsinteracties. In het
geval dat men de vrije energie van het referentiesysteem exact kent, geeft
deze betrekking ook de vrije energie van het systeem met langedrachtsinter-
acties exact. Maar ook als van het referentiesysteem alleen globale

eigenschappen bekend zijn, bijvoorbeeld het asymptotische gedrag in de
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buurt van een kritisch punt, dan kunnen met behulp van deze betrekking al-
gemene conclusies worden getrokken,

Bij het bewijs wordt gebruik gemaskt van de opsplitsing van P in een
concaaf gedeelte Q en een convex gedeelte R, Voor concave P=Q is de relatie
een generalisatie van een fundamenteel theorema van Bogoliubov Jr. Een
eenvoudig bewijs van dit theorema (voor kwadratische Q) kan men vinden in
hoofdstuk I, Het algemene bewijs voor willekeurige P en (quantummechanische)
kortédrachtswisselwerkingen vereist een zorgvuldige behandeling van de
thermodynamische limiet en wordt gegeven in hoofdstuk II.

In het derde hoofdstuk van dit proefschrifi wordt aangetoond dat het
kritische gedrag van een kortedrachtssystcem geheel van karakter verandert
onder invloed van extreem langedrachtswisselwerkingen. In het bijzonder,
als de functie P (sterk) convex is, zijn er geen eerste-orde faseovergan-
gen (discontinulteiten in eerste afgeleiden van de vrije energie), en is er
een kritisch puni met susceptibiliteiten die een doornvormig (cusp-like)
gedrag hebben met gerenormaliseerde kritische exponenten. Als het referen-
tiesysteem een kritisch punt heeft met divergerende tweede afgeleiden en P
{sterk) concaaf is in &&n richting, dan zijn er eerste-orde overgangen, die
kunnen eindigen in een klassiek kritisch punt.

In de praktijk moet men echter rekening houden met het feit dat niet
alle variabelen relevant zijn, d.w.z. op essentile wijze bijdragen tot
het kritische gedrag. Als voor P=0, d.w.z. in het referentiesysteem, &én
van de variabelen irrelevant is, dan behoeft dit nog niet in te houden dat
dit ook voor P#0 het geval is. Een algemene behandeling van dit soort pro-
blemen wordt in hoofdstuk III gegeven.

Angloge conclusies gelden ook voor kortedrachtssystemen waaraan zekere
inherente beperkingen zijn opgelegd (constraints on hidden variables). Voor
dergelijke systemen kan namelijk een betrekking afgéleid worden, die de
vrije energie uitdrukt met behulp van de Legendre getransformeerde gy van
het referentiesysteem en een (storings)term P, die in dat geval tevens af-
hangt van uitwendige koppelingsconstanten en/of -velden.

In het laatste hoofdstuk wordt een speciaal voorbeeld, met twee rele-
vante variabelen m, enm,, en met P(ml,mz) = %Hlm? + %Hzmg, meer in detail
uitgewerkt., BiJ de beschrijving van het referentiesysteem wordt gebruik ge-

maakt van het lineaire model van Schofield.

141



STUDIEOVERZICHT.

Na in juni 1969 het eindexamen gymnasium B te hebben afgelegd aan het
Charlois Lyceum in Rotterdam, %begon ik in september van dat jaar natuur-
en wiskunde te studeren aan de Rijksuniversiteit te Leiden. Het kandidaats-
examen natuurkunde en wiskunde met sterrenkunde legde ik af in juni 1973 en
het doctoraslexamen natuurkunde met bijvak wiskunde in mei 1975. De experi=-
mentele stage werd doorlopen bij de werkgroep Thermometrie onder leiding van
Dr. M. Durieux. In juni 1975 trad ik in dienst van ée Stichting F.O.M. om
bij de groep Theoretische Vaste Stof Fysica/Leiden, welke onder leiding van
Prof.dr. P.W. Kasteleyn en Dr. H.W. Capel staat, het onderzoek te verrich-
ten dat aan dit proefschrift ten grondslag ligt. De Stichting F.0.M.
stelde mij in staet in 1976 aan de zomerschool over kritische verschijnselen
en faseovergangen te Banff (Canada) deel te nemen.

Het eerste hoofdstuk kwam tot stand in nauwe samenwerking met
Dr. P,A.J. Tindemans. Gedurende het gehele onderzoek heb ik mogen profite-
ren van de levendige interesse er: de vele suggesties van Dr. J.H.H. Perk.

Het typewerk werd uitstekend verzorgd door mevrouw S. Hélant Muller-

Soegies.
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