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en YN = (V^ ,...,V~ ) een verzameling operatoren met de eigenschappen:

IIV\l II s M. < °°, als m. niet-lineair voorkomt in P(m);

Dan geldt :

, met er(N) ->0 voor

lim * (3P(VW)) = inf [ ßP(m) + sup lim *w(h-(m-VM)) ] ,
-N m h

M"1waarbij $N(.. ) = -N~
1 In Tr exp [ -N(..) ] ,

op voorwaarde dat de limiet in het rechterlid bestaat.
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II
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Fisher. In normale magnetische systemen daarentegen geeft dit effect in
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V
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voor de thermometrie beschikbaar zijn door onafhankelijke metingen te veri-

fiëren.

R.J. Soulen en R.B. Dove,
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VII

De combinatie van de transformaties die Jullien en Fields toepassen op
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VIII
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IX

Om het. ijktheoriekarakter van do gecombineerde zwakke on elektromagne-

tische wisselwerkingen te testen, verdient het bestuderen van de reactie
+ - + - + - + - _
e + e -> W + W de voorkeur boven bijvoorbeeld e +e -> W +e +v.

X

Het eigenwaardeprobleem van Konno en Wadati, met als speciale keuze

voor de potentialen de ïï-solitonoplossing ten t i j de nul, gegeven door

-a —— + ^ — * = W > a = ± 1 ,
dx cosh 2x -a a

heeft als oplossing de gebonden toestanden

const, r —ox_n /. , _, •, , /.., ., % ax^n-i/ •. i
*n,a = cosh 2x ̂ ae PN-1 ( t a n h 2x) + (N+n"1^ P

N_i<
t a n h 2 x U >

bij de eigenwaarden X = 2n-1, (n=1,...,N).

K. Konno en M. Wadati,

Progr.Theor.Phys. H (1975) 1652.

XI

Tegen de bewering van Fox dat lange tijdstaarten niets anders zijn dan

normeringsconstanten van Gaussische correlaties, zijn bezwaren aan te

voeren.

R.F. Fox, Phys.Rep.J48 (1978) 179-283, p. 222.

L.W.J. den Ouden, 20 juni 1979.
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INTRODUCTION AMD SUMMARY.

An important problem in statistical mechanics is the evaluation of

thermodynamic properties of a many-body system containing a large number

(N) of particles on the basis of microscopic interactions between the

particles. These properties may depend in a rather sensitive way on the

range of interaction between the particles. Extreme examples are

interactions of finite range which are zero when the distance between the

particles becomes too large, and interactions of the so-called equivalent-

neighbour type which do not depend on the distance at all. In many canes it

is sufficient to evaluate tho free energy per particle .in the thormodynarnie

limit (N -»<») from which other fchormodynamLc quant it ion can he d'rivod.

A special class of many-particle systems is described by the- hamiltonI an

n

•7f0 = ~ **'* = " I hiWi » ( 1 )

in which W = (Wj,...,W ) denotes a finite set of short-range operators,

acting on the Hilbert space of the W-particle system, and h* = (h*,...,h*)

the set of coupling constants or external fields coupled to the operators

W. For these systems the free energy per particle in the thermodynamic limit
~ 1)2)
exists ' and is given by

f.(h*) =litn -(@H)~1 In Tr exp [ -BJf. ] , (3 = 1/kT) , (?)
u ~ K-x» u

where the trace is taken over the Hilbert space of the N-particle system.

A precise definition of short-range operators involves a more detailed

description of the process of taking the thermodynarrr.c limit, but all

interactions with finite range belong to this category.

An example of eq. (1), with n=2, is given by the hamiltonian

I V i " h I ai ' ai = ± 1 ' (3)

which describes an Ising model wifch interaction J=hj between pairs <ij> of

neighbouring spins in the presence of an external magnetic field h=h2 • In

this example the operators W, = lo.a. and VL = Ja. commute, but in general

(W ,...,W ) in eq. (1) can be quantummechanical operators with nontrivial

coramutat ion propert i es.

An interesting feature of the thermodynamic limit in eq. (2) is that for

specific values of the parameters h*,...,h* the function fQ(h*) will exhibit



a nonanalytic behaviour corresponding to a phase transition in the system

described by JC . For instance, the Ising ferromagnet described by (3) with
. 1)

J>0 in two and more dimensions shows a discontinuity in the magnetization ,

m?_ = -3fo/3h2, for sufficiently low temperatures T<T . At T=T there is a

critical point at which the second derivatives of fg diverge.

An equivalent description of the thermodynamic properties can be given

in terms of the Legendre transform go(m) of f(j(h ), which is defined by
go(m) = su]D [h*-m + fQ(h*) ] , m = (tij,...^) . (1*)

Here the supremum exists, since fg(h ) is a concave function. The more

conventional definition of a Legendre transform,

3f
o(h(m)) m =

3f
h*(m)-m + fo(h*(m)) , m = - — £ (h*(m))

leads to some complications in the presence of first-order phase

transitions, i.e. if one of the first derivatives of fQ has a discontinuity.

Between the second derivatives of fg and gQ one has the relation

X. = -3f~f./3h 3h* = (3 g./3m3m) , provided that the second derivatives and

the inverse matrix exist. One can also obtain fg(h ) from gg(m) using the

inverse Legendre transformation

fo(h*) = inf [-h-m + go(m) ] , (5)
m

where the infimum must exist, since gg(m) is convex.

For most systems in two and more dimensions an exact evaluation of

fn(h ) has not teen found. An exception is the two-dimensional Ising model

in zero field . In other cases approximate methods have been used such as

e.g. series expansions . In recent years much know how has been obtained

on the behaviour of fQ(h*) in the neighbourhood of a critical point. In the

case that fn(h ) has divergent second derivatives (at h*=0), it is
6) ~appropriate to assume the homogeneity property

fo(b
ai h*,...,ban h*) = bfQ(h*,...,h*), J < a. < 1 , (6)

where b is a parameter which tends to zero if we approach the critical point.

For a number of cases, explicit values of the critical exponents a. have
7) 1

been obtained using a renormalization group approach

In this thesis we investigate the more general class of systems



described by the hamiltonian

JC = _h«W + NP(W/H) , (7)

in which W = (W.,...,W ) are short-range operators acting on the Hilbert

space of an N-particle system and P(W/N) is an analytic function of n

variables. The different terms contributing to NP(W/N) can be expressed

as products of W./N and may therefore be called (generalized) separable

many-particle interactions.

The type of systems described by the hamiltonian in eq. (7) may be used

to study the competition between a short-range operator -h*W and an

additional term NP(W/N) of a quite different nature. For example, to the

Ising model in eq. (3) we may add the term

NP(W/N) = XjW^/N + X W^/N = -=± I I o.a.aa +^- I o.a. . (3)

Tne first term in the right-hand side of eq. (8) represents a four-particle

interaction of hybrid nature, which is short-range with respect to intra-

pair interactions between i and j, and k and I, but long-range between the

pairs <ij> and <k£> . Such a four-particle interaction can arise as a

consequence of spin-phonon couplings in compressible ferromagnets . The

second term with X2 corresponds to a long-range interaction of the

equivalent-neighbour type. Such operators with X-XD have been used in a

classical description of demagnetizing effects . Exact results have been
9)obtained by Oitmaa and Barber for the two-dimensional Ising model with

X=0, X.<0, and by Hall and Stell for the two-dimensional superexchange
12)

antiferromagnet with Aj=O, X2<0.

In this thesis we derive a general result for the free energy per

particle

f(h) = lira - (0N)"1 In Tr exp [-gJf ] , . (9)

corresponding to the hamiltonian (7), viz.

f(h) = inf [-h«m + go(m) + P(m)] . (10)
m

Here go(m) is the Legendre transform of the free energy fn(h ), cf. (2)

and (it), for a reference system described by the hamiltonian (1), which is

a linear combination of (quantummechanical) short-range operators. Note

that the reference system itself may exhibit phase transitions.



^ ^ ' -

For the special case that all operators W in the hamiltonian (7) are sums

of one-particle operators, such as e.g. W2 = £a. in the Ising model (3), eq.

(10) provides a general description of the free energy in systems with long-

range interactions of the equivalent-neighbour type. This problem has been

treated in a fairly general way in ref. 13. Special examples include e.g.

the Husimi-Temperley model, see ref. 1*+, the Ising chain with equivalent-

neighbour interactions and the exact evaluation of the free

energy starting from the reduced hamiltonian in the BCS-theory of super-

conductivity . Also, relations which are similar to special cases of

eq. (10) have been derived in models with interactions of the Kac type,

(i.e. in d dimensions the interaction between two particles at distance r

behaves roughly like 7 exp(-yr) ), in the limit y-VO, see e.g. refs. 19,20.

As an application of 'iq. (10) we investigate in this thesis the free

energy f(h) in a neighbourhood of a critical point of the short-range

reference system. Starting from a reference free energy with divergent

second derivatives y it is easy to see that the critical properties of the

free energy (10) will be affected in a nontrivial way by a perturbation of

the type P(m). In fact, the second derivatives of g0 will then tend to
"~ 2—1

zero if we approach the critical point, (since 8 g../3m3ni = yZ ). If the

function P(m) contains a nonvanishing quadratic part, then this quadratic

part will be dominant in a neighbourhood of the critical point.

In particular, if P(m) is strongly convex, the value m at which the

infimum in (10) occurs, is uniquely determined for each value of the

coupling constants or external fields h. As a consequence there can be no

first-order transitions, and the susceptibility matrix x - -8 f/3h3h is

finite, also at the original critical point of go(m), (since
— 1 2 2 u —

X = 3 go/3m3m + 3P/3m3m). Also, a more detailed analysis, using the

homogeneity property (6) for the reference system, leads to various

regimes of critical-exponent renormalization. A special example is the
21 )

Fisher critical-exponent renormalization , but many other

renormalizations are possible.

On the other hand, if P(m) is strongly concave in one direction, i.e.

e *(3 P/3m3m) • e is negative for a certain unit vector e = (e.,...,e ),

then the function between brackets in eq. (10) cannot be convex in a

neighbourhood of the original critical point (m=0) and the infimum cannot

occur in this neighbourhood. This implies that there will be first-order

transitions which may terminate in a classical critical point.



These two cases may serve as an illustration that the critical

properties of a short-range system with divergent suscepti'bilities are

unstable under small perturbations of the type WP(W/N) as in eq. (7). The

actual treatment of the problem, however, is more complicated. First of

all the assumption (6) for the free energy fQ is much too restrictive. In

fact, starting from n variables h ,...,h* one may introduce r variables

e*,...,e* which affect the critical properties of the reference system and

which are therefore called relevant variables, and n-r variables

?*,,..,5* which do not and may be called irrelevant. In connection with

the free energy (10) one might then raise the question to which extent the

"irrelevant" variables may be eliminated. This is not a trivial problem

and will be taken into account in this thesis. Secondly, the free

energy fQ may have finite second derivatives with a cusp-like behaviour,

i.e. an infinite derivative at the critical point. Finally, expressions

like (10), but with a more general function P(m,h) depending on the fields

h as well, can be derived in systems with constraints on first derivatives

of the free energy, and will also be taken into account. Systems with one

constraint on a hidden variable have been treated from a general point of
21 ) 22)

view by Fisher and later on by Imry et.al. . Important physical
examples are e.g. the Baker-Essam model for compressible Ising ferro-

23) 2*0
magnets , and the Syozi-models with bond-annealed and site-

25) .
annealed impurities.

In chapters I and II we present a rigorous derivation of eq. (10) for

the class of systems described by the hamiltonian (7). The proof is based

on the decomposition of the function P(m) into a concave part Q(m) and a

convex part R(m). For concave P(m) = Q(m) eq. (10) can be proved using a
" 17)

generalization of a fundamental theorem due to Bogoliubov Jr. . A

simplified proof of this theorem in the case of a quadratic function

P(m) = -Am , A >0,is given in chapter I together with an evaluation of

f in a special case with operators W which are sums of one-particle

operators. The proof of eq. (10) for general short-range operators

involves some subtle considerations on the process of taking the thermo-

dynamic limit and is presented in chapter II.

In chapter III we give a rather general treatment on the critical

properties of the free energy (10) in the neighbourhood of a critical point

of the short-range reference system. The conclusions are made more explicit



in chapter IV for the special case P(m) = P(m,,m,) = Jn.m. + gJLm., using
— 26 i

the linear model introduced by Schofield to describe the reference free

energy in the neighbourhood of a simple critical point with two relevant

variables and divergent second derivatives such as e.g. the critical point

of the three-dimensional Ising model.
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CHAPTER I

SYSTEMS WITH SEPARABLE MANY-PARTICLE INTERACTIONS. I

1. Introduction

In recent years systems described by hamiltonians in which the interaction terms
are essentially of a long-range nature have received a great deal of interest. In
many cases the free energy per particle in the thermodynamic limit can be evaluated
exactly and the result is usually of the molecular-field type. In connection with
this two classes of long-range interactions have been investigated in detail.

For a number of models the free energy per particle has been evaluated in the
presence of interactions of the so-called Kac type1), for which the coupling be-
tween particles located at r( and r4 decreases roughly like — yd exp (—y \rt — rj\),
d being the dimensionality, for sufficiently large values of \r{ — r,|. An exact
result for the free energy per particle can be obtained in the so-called Van der
Waals limit, i.e. the limit y \ 0 after taking the thermodynamic limit. The one-
dimensional classical version has been treated by Kac, Uhlenbeck and Hemmer2).
Extensions to more dimensions and quantum-mechanical situations have been
dealt with by Van Kampen3), Lebowitz and Penrose4) and Lieb5). Ising systems
with this type of interactions have been investigated by Baker6), Siegert and Vez-
zetti7). Recently Thompson and Silver8) and Pearce and Thompson9) treated the



w-vector spin model and the anisotropic Heisenberg model with this type of inter-
actions.

A second class of models with long-range interactions are those with inter-
actions of the separable type, by which we mean that the interaction V{k, I) be-
tween particles k and / can be written as a product of an operator V(k) acting on
the Hilbert space of particle k and an operator V(l), i.e. V (k, I) = V(k) V(l).
This class includes models with so-called equivalent-neighbour interactions, in
which the coupling between two particles does not depend on the distance be-
tween the particles. A lattice-gas model with this type of interactions has been
introduced and investigated by Husimi10), Temperley11) and Katsura12). An
Ising version equivalent to this lattice-gas model has been studied in detail by
Muhlschlegel and Zittartz13). The evaluation of the free energy in these cases is
straightforward since the operators in the hamiltonian commute. In the presence
of noncommuting operators, however, the situation is more difficult. Starting
from the so-called reduced hamiltonian in the BCS theory of superconductivity14)
Miihlschlegel15) proved, on the basis of the Laplace method, that the free energy
derived by BCS14) is exact in the thermodynamic limit. (A different approach to
this problem had been discussed earlier by Bogoliubov, Zubarev and Tserkovni-
kov16).)

Recently two of us investigated a rather general class of systems with separable
interactions17"19). In refs. 18 and 19 we Considered a hamiltonian including a
one-particle operator YJ= i T(k), N being the number of particles, and a finite num-
ber/7 of interactions of the separable type, i.e. £f=i J^,i=iAtV

w (k) K<"(/). Here
the interaction parameters At can be positive as well as negative. For negative At,
the interaction term is negative definite and may be called a separable interaction
of the "ferromagnetic" type. For positive At we have an "antiferromagnetic"
separable interaction. The free energy could be evaluated in terms of a "trial"
hamiltonian which is a linear combination of the sums £ T(k), £ V(i\k) men-
tioned above.

In ref. 19 a rather simple proof was given based on a fundamental theorem due
to Bogoliubov Jr.20-21) in the presence of only ferromagnetic interactions. This
theorem applies to hamiltonians of the form JffK = N {T - (K l l)2 H + V(p)2)},
where the operators T, F ( 1 ) , . . . , F (p ) and the commutators N[T, Vw], N[Vlk\
V(l)] (k, I = 1,. . . , p) have norms which are uniformly bounded in N.

According to this theorem the free energy per particle in the thermodynamic
limit can be expressed in terms of the free energy of a trial hamiltonian which is
linear in the operators T and V. The generalization of this theorem to antiferro-
magnetic operators is not correct, cf. refs. 19 and 21. An application to spin sys-
tems has been discussed by Brankov et al.22). Very recently, Bogoliubov Jr. and
Plechko23) and also Brankov et a!.2*) proved that the solution of the Dicke-
maser model by Hepp and Lieb25) can be understood in terms of a generalization
of this theorem.

10



The fundamental theorem can be proved by deriving an upper and a lower bound
for the free energy per particle, which turn out to be equal in the thermodynamic
limit. The upper bound is a straightforward application of the Bogoliubov-
Peierls inequality26). Two different approaches have been developed for the
lower bound. Using some subtle inequalities and an ingenious integration over
complex variables Bogoliubov Jr.20-21) proved that the difference between the
free energy per particle of the hamikonian and the trial hamiltonian is bounded
from below by a term which is of the order N~2/5. In ref. 19 the lower bound
was derived using an integral representation for the partition function Z = js~SG

and Laplace's method. The correction due to the second derivatives of G at the
absolute minimum was shown to be proportional to N~l except at those points
where a second-order transition occurs. In ref. 19 use has been made of the as-
sumption that the Hilbert space of particle k is finite-dimensional. This assump-
tion is not essential in the approach of refs, 20 and 21.

Finally it may be mentioned that several systems with equivalent-neighbour
interactions have been treated from a C*-algebra point of view, cf. e.g. ref. 27.

So far we have restricted ourselves to systems with two-body interactions.
Recently models with four-body interactions and- also more general interactions
have been investigated in the literature. Four-particle interactions can be of im-
portance in situations, in which the exchange coupling depends on the distance
between the atoms20). Systems with such interactions have been treated e.g. in
the molecular-field approximation, see Lee and Bolton28), Matsudaira29) or
on the basis of an exactly soluble model with separable interactions, Bowers/
McKerrell30-31), Thompson32), Oitmaa and Barber33), Lapushkin et a/.34). In
refs. 28-34, the operators in the hamiltonian commute.

In the present paper we consider the class of systems described by the hamil-
tonian

jrN = N{TN + P(VN)}, (1.1)

where TN and VN are "weighted" sums of bounded hermitean one-particle opera-
tors, i.e.

VN = N~^ V(k) (1.2)
k=l k=l

and where P is a polynomial in the operator VN of the type

Note that in eq. (1.3) we can restrict ourselves to terms with q > 2. Also in gen-
eral the operators 7^ and VN do not commute. We shall prove that the free energy

11



per particle in the thermodynamic limit*

f[JT] s l i m / v M = lim - (pN)-1 In Tr e" '*" (1.4)
JV-»oo N-*oa

is given by

/[,#] = min UmM^,^)] (1.5)

where the trial hamiltonian JftItN(i) is defined by

Jftr.»(*) - JV {7V + />(!) + /»'(*) (VN - I)}. (1.6)

The minimum in the right-hand side of (1.5) must be taken over the set of values
f e M satisfying the molecular-field equation

^ > J f ( r , ( 4 ) , (1.7)
N-*oo

where (B~)A, for arbitrary hermitean operators A and B, is the average of B with
respect to A, i.e.

< £ X t s T r 2 * e - w ( T r e - i M ) - 1 . (1.8)

Note that in general the minimum over the set f e .// does not correspond to the
absolute minimum of/[Jf tr(f)]- An example will be given in section 4.

In the proof of (1.5) use will be made of the general theorem of Bogoliubov
Jr.20'21) mentioned above for ferromagnetic quadratic interactions. A simplified
proof of this theorem will be given in section 2. Furthermore, we shall use a
weaker assumption on [TN, VN] than refs. 20 and 21. In section 3 we prove eq.(1.5)
using the mean value theorem and general properties like the concavity of the
free energy. In section 4 we deal with a model treated in ref. 32. Although this
model is of a rather trivial nature, since the operators commute, it may be of in-
terest within the context of the present treatment.

Finally it may be mentioned that the present treatment may be generalized to
include a much larger class of hamiltonians. In particular the polynomial P(VN)
may be replaced by an analytic function of a finite number of operators Vll\
V{2\ ..., Vm and the operators in eq. (1.2) may be replaced by arbitrary short-
range interactions. In the present paper we restrict ourselves to the hamiltonian
(1.1), since the proof contains the essential features of the proof in the more
general case. The generalizations mentioned above lead to some complications of
a more technical nature and will be treated in a separate paper35).

* The symbol/[^f] in eq. (1.4) has been introduced as a short-hand notation for the Ihermo-
dynamie limit of
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2. Fundamental theorem for ferromagnetic interactions

In this section we give a simplified proof of the theorem due to Bogoliubov

Jr.20-")-

Theorem: Consider a system described by the hamiltonian

N- AVj), (2.1)

where .1 > 0 and TN and VN are bounded hermitean operators with a commutator
which tends to zero in the thermodynamic limit, i.e.

\\Ty\\ < MT, \\VN\\<My,
(2.2)

\\[Ts,VN]\\ =e(N)-*0, if N^co.

Then the free energy per particle in the thermodynamic limit is given by

/ s lim /v[«3fN] = min lim / „ [ # „ , Ntf)], (2.3)

where the trial hamiltonian ^tIlN($) is defined by

+ A? - 2A£ VN) (2.4)

and where it is understood that the right-hand side of (2.3) converges in the
thermodynamic limit uniformly on the interval | | | < Mv on which (2.3) assumes
its absolute minimum.

Remark: At first sight, the theorem in refs. 20 and 21 seems to be a generalization
of the present formulation, including a finite number of non-hermitean operators
V. However, this generalization can be proved directly applying the present theo-
rem successively. Note that we use a weaker condition on the commutators of
the operators TN and VN than refs. 20 and 21.

Proof: We prove eq. (2,3) by deriving an upper and a lower bound.

Upper bound: The upper bound is almost trivial using the Bogoliubov-Peierls in-
equality-6)

F[A + B]<F[A] + (B>A, (2.5)

valid for arbitrary hermitean operators A and B, where F[C] = — /?~2 In Tr e~sc

is the free energy corresponding to the hamiltonian C. For the free energy per
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particle we have

Note that the difference in eq. (2.6) can only be zero, if

aMi) - I ) 2 < 0. (2.6)

(2-7)

Lower bound: In the derivation of the lower bound we follow essentially the proce-
dure used by Bogoliubov Jr.20 '21). In order to derive an upper bound for the
quantity

], (2.8)

(2.9)

(2.10a)

(2.10b)

a, = aN(0) = min /„[#«, w(0] - /N[J
i

we define the function

ay(v) = min fH[jTtt, N (f, v)] - fN[J^N(

where

jtTN(v) = tf„ - NvVN,

JT.,. iv (I,») = JT.r. iv(f) - NvVN

for real values of v*.
From the mean value theorem, we have

(2.11)

for arbitrary values / > 0 and some value v0 satisfying 0 < v0 < I. Since for both
hamiltonians Jf ttiJV (I, v) and

cv

it follows that

(2.12)

(2.13)

* In refs. 20 and 21 also complex values of v are taken into consideration. This is not neces-
sary in the context of the present treatment, since VN is hermitian.



and
i

a*(0) < 2Myl + {-1$dvaN (v). (2.14)
o

Using again eq. (2.5), we have

aN{v) < min JV-1 <Jf,r.K(f,v) - *&)>*«*

= A <.(VN - W ^ ) 2 ) * ^ , + min A ( (K*)^ , , , - | ) 2

s w (2.15)

The right-hand side of (2.15) can be expressed in terms of the second derivative
of the free energy fN per particle corresponding to the hamiltonian JfN(y), i.e.

dv2 dp2

= f d t < ( F N ( T ) - <Kw>Jfw(,>) ( F w - <KJV>JfK(v))> j rN(v), (2.16)
o

where use has been made of the notation

(2.17)

In order to estimate the right-hand side of eq. (2.15) we use the inequality*

0"1 /dr <A(r) A)* < <A2>* <^lj6t (A(z
O 0

\ {([A, [jf, ̂ 1])^}* {Jdr <A(x) A>,f> (2-18)

where A(r) — ex*A e~t3r, for arbitrary hermitean operators A and Jf, cf. eq. (2.10)
of ref, 36. Note that in eq. (2.18) the integrals over T and the average value of
[A, [tf, A]] are positive. The inequality can be proved using a representation, in
which JlC is diagonal. For details we refer to ref. 36.

Applying (2.18) to the right-hand side of (2.15), we have in view of (2.2)

aN(v) < A j - ( ^ )

* In refs. 20 and 21 Bogoliubov Jr. uses a slightly different inequality with exponents ̂  and $
rather than i, cf. also ref. 22.
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Using (2.14), (2.19) and the Schwarz-inequality for integrals, we have
i

aN(0) < 2Mvl + A (PM)-1 f dv (~

o

1
From (2.12) and (2.20) it follows that

fljv(O) < 2MV {I + A (0N1)-l + lAT*e (N)*}. (2.21)

Eq. (2.21) holds for arbitrary positive values of /. We may now choose / so that*

/ = max {(e(N))U3, N"*} = I(N) -> 0, for N -» oo. (2.22)

Then

in /w[jftr>A.(f)] - fN[tfN) < 2MV (1 + Afi~> + \A) ' W . (2-23)
i

which provides the desired lower bound.
Eq. (2.3) is now obvious from (2.6) and (2.23) assuming that \\mN^xfN[3^luK{^)]

exists uniformly for all values of £ with |£| < Mv. Note in connection with this
that the minimum of lim^_00/^[1#tI.iW(|)], which is a continuous function of £,
should occur under the condition, cf. (2.7),

f = lim<K^ l r iW(4> , (2.24)
iV-»oo

so that |£| < My at the minimum. Hence, the fundamental theorem has been
proved.

3. Evaluation of the free energy

In this section we shall prove eq. (1.4) in six subsequent steps.

(i) Application ofthe fundamental theorem: First we note that the hamiltonian (1.1)
may be treated using the theorem of the preceding section. For this purpose we
subtract a ferromagnetic operator —AV^ (A > 0) from the operator P(Vty), i.e.

, (3.1)

* The treatment in refs. 20 and 21 would lead to an exponent f rather than ^ in eq. (2.22).
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where

Z (3.2)

In eqs. (3.1) and (3.2) we have a parameter A at our disposal, so that by choosing
it in an appropriate way we may arrive at a lower bound for the free energy per
particle.

Obviously, the operators T'N and VN satisfy the conditions (2.2), since in view
of (1.2) the commutator [7^, VN] is an operator of the order N'1. Applying (2.3)
we have*

(3.3)

where

j f , (D = N{(T + P(V) + AV2) + A§2 - 2A£V). (3.4)

In eq. (3.4) and also in most of the following formulae the subscripts N labeling
the operators have been omitted for convenience.

We shall compare <?fi(£) with a trial hamiltonian 34?2 (I I if) which is linear in
the operator V, i.e.

P(V) + P'(t,) {V - rj) + A (£2 - if) - 2A (f - tj) V).
(3.5)

In the derivation of upper and lower bounds for/[Jf jd)] use will be made of a
simple lemma.

(ii) Lemma: Let P(V) be a polynomial in the bounded hermitean operator Fand
let M be a constant such that M > || V\\, then for alf values •>] satisfying |»?| < M,
we have the relation

- P'{rj) (V - rj»A\ Z p2 <(K - nf>A, (3.6)

where

p2 = max \P\rj)\ (3.7)
l>;|sAf

and < } A denotes the average with respect to an arbitrary hermitean operator A *.

* The existence of the thermodynamic limit in eq. (3.3) will be shown later on in this section.
* Eq. (3.6) implies that tlis operator p2 (V - rj)2 - {P(V) - P{ij) - P'fyj) (V - rj)} is posi-

tive (semi) definite.
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Proof: In order to prove the lemma we consider the function

0(0 = (P(Vt) + (l _ ,) JL P(Vt)}A,
dt

where the operator V, is defined by

Vt = (1 - / ) » ; + tV.

Clearly,

x = F,
d/

= />'(>?) ( F - q ) .

(3.8)

(3.9)

(3.10)
r=o

The left-hand side of (3.6) is given by |0(1) - 0(O)| and according to the mean-
value theorem we have

- < Z > ( 0 ) = -^-

for some value T with 0 < T ̂  1. Hence,

t = t / A

< P2

Here \\P"(V,)\\ is finite, since

(3.11)

(3.12)

(3.13)

(iii) Derivation of a lower bound: From (3.4) and (3.5) we have

tfitf) -#2{!;\rj) = N {/»(F) - P(rj) - P'(V) (V-r)) +

Using the Bogoliubov-Peierls inequality, cf. (2.5),
(3.14)

(3.15)

for arbitrary hermitean operators A and B, and also the lemma (3.6), it follows
that

(3.16)

18
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For sufficiently large values of A, i.e.

A>p2, (3.17)

we have

max MX2 (I I n)\ • (3-18)

(iv) Derivation of an upper bound: Using (3.14), the Bogoliubov-Peierls inequality
(2.5) and the lemma (3.6), we have

* MX* (SI y)] + Ni <jf ,(£) - j f 2

£ MX2 (f I»?)] + (A + p 2 ) « F ) ^ (4, „ - »?)2

+ (A + P2) <(v - ivy^^fy*^. (3.19)

Now the third term of the right-hand side of (3.19) vanishes in the thermodynamic
limit, since in view of (1.2), the trial hamiltonian ^ 2 (f I »?)> given by (3.5), is a
sum of one-particle operators. This implies that

(V{k) F t f ) ) ^ , , , = m * ) ) * ^ , , , <K(0>*1«.,), for * ^ /, (3.20)

and therefore, using (1.2),

2 I « n * ) 2 > <n*»2 ^ 1 (3.21)
* = 1

so that the right-hand side of (3.21) vanishes in the thermodynamic limit.
We now consider the second term in (3.19). For each I and ./V we choose a

parameter r)N so that

%-<^> J f a < 4 , , w , = 0. (3.22)

Obviously, eq. (3.22) has a solution in r)N for some value ^ with —M<r)N<M,
since for »? = — M the left-hand side of (3.22) is negative, whereas for r\ — M it
must be positive. Hence,

MXi/m < MXz (I | if*)] + (A+ p2) M
2N ~». (3.23)

(v) Minimax formulation for the free energy: Since the trial hamiltonian Jt?2'(£ IV)
is a sum of one-particle operators, the associated free energy per particle and its
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derivatives in general exist in the thermodynamic limit N-* oo*. From (3.18)
and (3.23), we then have

= lim A t ^ i ( O ] = max f[*2 (f | r,)]. (3.24)
Wl

Noting that the thermodynamic limit in eq. (3.24) exists uniformly for |f| < M,
it follows from (3.3) that

« min max / [ # 2 (I | jfl]. (3.25)
\l | |

In eq. (3.25) the free energy per particle has been expressed in terms of the free
energy of a trial hamiltonian which is linear in the operator V. Eq. (3.25), how-
ever, contains an arbitrary parameter A which arises from (3.2).

(vi) Molecular-field equation: Rather than eq. (3,25), it would be convenient to
have a formulation of the free energy per particle in terms of a trial hamiltonian
involving only the polynomial P. The following reasoning will lead us to such a
formulation.

Let i]0 be such that

A* 2 (i I Vo)] - max A*2 (f I V)] • (3-26)

Then, in view of (3.16), after taking the thermodynamic limit, cf. (3.17),

< ( r - } / 0 ) 2 W > = 0. (3.27)

Hence rj0 is a unique function of £ satisfying

Vo = »?(!) = < V>*llv. (3.28)

Moreover, at the absolute minimum, we have from (2.24)

(3.29)

On the other hand, taking the thermodynamic limit in eq. (3.22), cf. (3.28), it fol-
lows that

V® = <V>* a «!,(«))• (3.30)

Since from (3.5) and (1.6)

J#>2 (S\S) = jflr.„(£) = N{TN + !>(£) + P'(Z) (VN - £)}, (3.31)

* Of course we exclude a pathological dependence of V(k) on k.
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the free energy per particle is given by, cf. (3.25),

A*?] = mm/[*?„{£)], (3.32)

where M is the set of values f satisfying

(3-33)

which is equivalent to eq. (1.7). Hence eq. (1.4) has been proved in the simple
case (1.1), (1.2).

The generalizations mentioned at the end of section 1 will be treated in a fol-
lowing paper. This will introduce some nontrivial complications in the lemma (ii),
the derivation of the upper bound (iv) and the derivation of an appropriate gen-
eralization of the definition of the set Jt.

4. Example

In this section we discuss an example which has been investigated previously by
Thompson32). The hamiltonian is defined by

JfN= -N{BS + P(S)}. (4.1)

(4.2)

Here B is an applied magnetic field and

k=\

where Si = ± 1 refers to the spin of particle k. The polynomial P(S) is given by

P(S) = J2S
2 +JtS4. (4.3)

In ref. 32 some features of the phase diagram of this model were treated in the
ferromagnetic case J2 > 0, / 4 > 0. A more general polynomial including higher
powers of S2 has been discussed in refs. 30, 31 in connection with higher-order
critical points.

Although this model is a rather trivial example of eq. (1.1), it may be of interest
to consider its phase diagram in some more detail. Moreover, the example will be
used to illustrate two underlying features of the treatment in section 3, namely
the restriction £ e Jl on taking the minimum in eq. (3.32) and the fact that min-
max in eq. (3.25) cannot be replaced by maxmin.
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The trial hamiltonian corresponding to (4.1) is given by, cf. (1.6),

•*V. N(D = - N {(B + />'(£)) 5 + Ptf) - SP' (I)}

and the free energy per particle is

/ [J f ] = min/[jf t r(0]

(4.4)

= min { -P(f) + IP ' (f) - /8~»In 2 cosh /? (B + /"(I))},

where .// is the set of values I satisfying the molecular-field equation

= tanh /? (i5 + />'(£))•

(4.5)

(4-6)

Here the "minimizing" | e ^/ is the magnetization per particle. Note that we do
not restrict ourselves to the case J2 > 0, 74 > 0.

-1.0

Fig. 1. big) vs. £ for e = 2. For the curves labeled by A, B, C and D we have chosen: rB = 3.7,
TD = 4.3, TC = 4.9 and TA = 5.8. The values for the intermediate curves are: TBD = 4, TDC = 4.6

and TCA = 5-J. The dots form the spinodal curve.

In order to investigate the molecular-field solutions § e Jt we first consider
BjJA as a function of f. With the notations*

(4.7)

* Here we assume that / 4 T4 0.
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we find, cf. (4.6),

b = b(£) = T artanh £ - />'(£) = T artanh f - 2£ (e + 2£2). (4.8)

For different values of T and e, £(£) as a function of £ can behave in four different
ways, indicated by A, B, C, D in fig. 1. Also the intermediate curves which sepa-
rate one type of behaviour from another have been given. Moreover, we have in-
dicated the spinodal curve which is the locus of points b'(§) = 0.

A partial distinction between A, B, C and D can be made by considering the
zeros of the slope of b($), i.e.

V® = T (1 - £2)-* - />"(*) = T (1 - £2)- ' - 2 (B + 6£2). (4.9)

The zeros of b'($) can be found from the relation

T = r(£2), 0 < ; £ 2 < l , (4.10)

where

r(e) = />"(!) (1 - f2) = TI {(« + 6)2 - (12£2 + e - 6)2}. (4.11)

The function r(£2) assumes its maximum for I2, = (6 — e)/12, which belongs to
the interval [0, 1] if |e| < 6. In that case eq. (4.10) has two solutions in £2, pro-
vided that

max {/-(0), /(I)} = max {0, 2e} < T < r(|?) = ^ (e + 6)2. (4.12)

For all values of e, eq. (4.10) has one solution, if

min {/-(0), r(l)} = min {0, 2e} < T < max {0, 2e}. (4.13)

In other cases eq. (4.10) has no solution.
In fig. 2 we give the phase diagram of the system under consideration for dif-

ferent values of e and T. It consists of four regions labeled by A, B, C and D. The
behaviour of 6(|) vs. £ for each of these regions has been given in fig. 1.

The regions C and D in fig. 2 correspond to (4.12), so that b($) as a function
off has two maxima and two minima, cf. fig. 1. In region B, eq. (4.13) holds and
big) has only one maximum and one minimum. In the remaining part A of the
phase diagram A(!) is a monotonic function of f. The dotted curve in fig. 1 is the
so-called spinodal curve, which can be obtained by substituting (4.10) into (4.8).

So far we have discussed the set J( of solutions of the molecular-field equation.
In the case that this equation has more than one solution we must select the solu-
tion which leads to the lowest value of the free energy. For this purpose we con-
sider the branches of the free energy /[X t r(£)] corresponding to all solutions
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$ e Jl as a function of the magnetic field b. In fig. 3 we give these branches for
the four different cases labeled by A, B, C and D respectively in fig. 1. These four
cases are characteristic for the regions A, B, C. D in the phase diagram in fig. 2,
since the slopes of the branches of the free energy are proportional to the cor-
responding values of | e Jt, cf. fig. 1 and fig. 3.

Fig. 2. The phase diagram in the e-i plane, showing the regions A, B, C and D. The dashed line
is the unphysical phase boundary between regions B and D.

In fig. 2 the regions A and B have been defined by eqs. (4.12) and (4.13). In the
remaining part of the phase diagram eq. (4.10) has two solutions in £2, Two dif-
ferent possibilities must now be considered. In region C there are two first-order
transitions in an applied magnetic field ±b0, cf. the kinks of the lowest branch
in fig. 3c. On the other hand, in case D we have one first-order transition for b = 0.

From a physical point of view, i.e. if we restrict ourselves to the lowest branch
of f[Jtf tr(f)L there is no difference between the cases B and D. This has been in-
dicaled by the dashed curve in fig. 2. The curve separating the regions C and D
in fig. 2 is determined by the limiting case that both critical fields ±b0 tend to
zero. This implies in particular that

!o)] =/W>r(0)], K

Equation (4.14) can be rewritten as

T = -2?0 {£„ artanhlo + In (I -

With (4.14)

e =
X artanh£0 -

(4.15)

2k



-3.5r -1.5r

-1.5 - 1 . 5 • 0

b)

1.5

-3.3 -2.5

-0.3
-3.7

-0.6 0

d)

0.6

Fig. 3. The branches of the free energy f= /1<#V£)], I s Jt, vs. b, cf. (4.5)-(4.7), for / 4 = 1
and the same values of e, TA , TB , TC and TD as in fig. 1.
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This curve has been evaluated numerically. In the two limiting cases £0 -»0,
lo -*• 1 we have r =2 2e } 12 and T =s (1 + e) (In 2)"1 j 0.

Finally we discuss the magnetization as a function of the magnetic field. In
fig. 4 we give the isotherms for the values of the parameters used in figs. 1 and 3,
i.e. for e = 2 (J2 = 274) and various values of T. The curves A, B, C and D are
again characteristic for the corresponding regions in the phase diagram. The dots
in fig. 4 indicate the coexistence curve which is determined by the condition that
for g ven T and b the molecular-field equation (4.8) gives two solutions £ e Jl
leading to the absolute minimum in (4.5). This curve has been obtained numeri-
cally, solving the equations &(£,) = &(£»),/[Jf,r(fi)] = / [^ l r (£ 2 ) ] , fi * fa- Note
that the coexistence curve can also be found from fig. 1 by Maxwell's equal-area
construction.

1.0

1-1.0

Fig. 4. The isotherms of the magnetization £ vs. b ftr the same values of e and T as in fig. I.

i

Remarks: The model described above may be useful to illustrate a few technical
features of the derivation given in section 3.

i) First it may be noted that the free energy cannot be obtained by minimizing
the free energy of a trial hamiltonian f[M'tr(S)] without taking into account the
restriction geJ?. In order to see this from an explicit example we consider
/[^u(£)] as a function of I for B = 0, where <#"„,*(£) is given by (4.3) and (4.4)
in the case that the four-body 'nteraction is ferromagnetic, i.e. J4 > 0.

The extrema of / [ ^ / f ) ] are given by the equation

- tanh 0P1 (I)} = 0. (4.16)

For — 6 < e < 0 and a sufficiently large value r, so that the point (F, T) belongs
to region A of the phase diagram fig. 2, eq. (4.16) has two solutions

I = ±(-£16)*, (4.17a)
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corresponding to />"(£) = 0 for £2 < 1, and a solution

I = 0, (4.17b)

corresponding to the unique solution of the molecular-field equation £ = 0, for
B = 0, in region A. Since /[«3ftr(l)] -* °o, for £ -> + oo, the solutions (4.17a)
determine the absolute minima of/[Jf,r(f)] and (4.17b) corresponds to the maxi-
mum off[JftT(£)]. Since the set Jt consists only of one point f = 0, the solution
$ — 0 is also the absolute minimum off[^f tr(£)] under the condition £ e Jt. This
feature may appear under the combined effect of ferromagnetic and antiferro-
magnetic interactions. If J2 and J*. have the same sign, P"{£) i= 0 and all solutions
of (4.16) belong to the set Jt.

ii) A second remark can be made on the minimax formulation in section 3(v).
It should be noted that the two procedures min4 and max, in eq. (3.25) cannot be
interchanged in general. Consider e.g. the special case

J, > 0, 7 4 < 0 , /3"1 < &"1 =2J2, (4.18)

corresponding to a point (e, T) with 2e < r < 0 in region B of the phase diagram
in fig. 2.

In this case the treatment with minmax in the correct order gives us a solution
J?(£) = | with | = +f0 for B = 0, where f0 > 0 is the positive solution of the
equation

/?-J artanh f0 = 2/2f0 + 4JJl. (4.19)

However, if we take the minimum first and the maximum afterwards we would
have obtained [for sufficiently large A, cf. (3.17)]

g = max min/[Jf2 (I I»?)] = max min [/If2 - (/I - J2 - 2>JAtf) if
n i n i

- (1-1 In 2 cosh /3 {2A£ -2(A-J2- 2J4t]
2) rj}], (4.20)

rather than the correct expression (3.25) for the free energy. Clearly for fixed *;,
the absolute minimum with respect to I in (4.20) is assumed at a point £(??) with

(4.21)

This can be seen by considering the difference / p f 2 (I I >?)] — fffii ( - 1
using (4.18). Obviously (4.21) is incompatible with the condition ^(fo) = £o > 0,
cf. (3.28), (3.29), for the set f e ^f, arising from the minimax-procedure.

A different example of this situation has been given in ref. 18. Such examples
can be used to demonstrate that the fundamental theorem (2.1) for ferromagnetic
operators cannot be extended to the case of antiferromagnetic operators with the
same amount of generality, cf. the discussion in section 8 of ref. 19.
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CHAPTER I I

SYSTEMS WITH SEPARABLE MANY-PARTICLE
INTERACTIONS. II

1. Introduction

In a previous paper1) we have considered a class of systems containing
many-particle interactions of the separable type. A separable m-body in-
teraction is defined by the property that the interaction V(fc,,..., km) between
particles ku..., km can be written as a product V(fe,)... V(Jtm), where V(k) is
an operator acting on the Hilbert-space of particle k. Separable interactions
include in particular so-called equivalent-neighbour interactions, for which the
interactions between particles do not depend on the distances between the
particles.

For many models with equivalent-neighbour interactions, the free energy
per particle has been evaluated and the result is usually of the molecular-field
type. Examples are, for instance, the Husimi-Temperley model for a lattice
gas2), the Ising model with equivalent-neighbour interactions3) and other spin
models4), the reduced hamiltonian in the BCS-theory of superconductivity36)
and the Dicke maser model7'8). Two-body separable interactions have been
treated from a more general point of view in refs. 9, 10. Many-body interac-
tions of this type have also been investigated""13). A more extensive dis-
cussion of the literature has been given iijj ref. 1.

Before we describe the generalization^ which will be dealt with in the
present treatment, we first give a brief review of the main results of our
previous paper. In ref. 1 we restricted ourselves to the class of systems
described by the hamiltonian

WN=N{TN+P(VN)}, (1.1)
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where TN and VN are normalized* sums of bounded hermitean one-particle
operators, i.e.

TN = N - 2 T(k), VN = N - 2 V(fc) (1.2)

and P(VN) is a polynomial in the operator VN.
In ref. 1 the free energy per particle in the thermodynamic limit, defined by

f[X] - lim /N [XN] - lim - (/3N)~' In Tr e " ^ , (1.3)

has been expressed in terms of a trial hamiltonian $f,r.N(£), which can be
obtained by linearizing %€N with respect to VN, i.e.

(1.4)

where

The minimum in the right-hand side of (1.4) is taken over the set of values
i-E.M satisfying the molecular-field equation

I = Um(VN >«•„.„««, (1.6)

where
A r l (1.7)

is the canonical average of B with respect to A.
As a first step in the derivation of eqs. (1.4)—(1.6) we expressed the free

energy per particle in terms of a hamiltonian 3i?,.N(£) = 2CN + NA(VN -£ ) 2 ,
using a fundamental theorem due to Bogoliubov Jr.9'l4) for a hamiltonian with
"ferromagnetic" quadratic operators. Applying the Bogoliubov-Peierls
inequality, (see e.g. ref. 15), and also a lemma for the average value of P( VN)
we have shown that the free energy per particle in the thermodynamic limit is
given by

Here 2£-.N(£|T7) can be obtained by linearizing the operator 9if,.N(^) with
respect to VN, cf. eqs. (3.4) and (3.5) of ref. 1. Eq. (1.8) has been proved by
deriving a lower and an upper bound for /[2i?] which turn out to be equal in
the thermodynamic limit; the lower bound is obvious for sufficiently large
A > 0; in the. derivation of the upper bound use has been made of a
factorization property for the autocorrelation function of VN. The final result
(1.4)-(1.6) has been obtained from (1.8) using again the Bogoliubov-Peierls
inequality.

* Here and from now on a normalized operator is an operator acting on the Hilbert-space of an
N particle system, divided by N.
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In the present paper the treatment of ref. 1 will be generalized in two ways.
First the polynomial P(VN) is replaced by an arbitrary analytic function of
operators VW, • • •, VS1. Moreover, these operators V'i1 need not be nor-
malized sums of one-particle operators, but can be of a much more general
type, including also short-range operators. In connection with this we can
mention the Ising model with two-spin and (long-range) four-spin interactions
treated by Oitmaa and Barber15).

With regard to this more general type of operators we mention the three
specific properties for the operators which have been used in the proof of
ref. 1.
a) The commutator between two normalized operators VN and VN (or TN)
tends to zero in the thermodynamic limit, i.e.

Vi]||->0, i fN-»* . (i.9)

b) The free energy per particle of a trial hamiltonian which is linear in the
operators VN, i.e.

Sft,.N = N% *,VJi' (1.10)

converges in the limit N-*<*> uniformly on a bounded region in the space of
the variables hi.
c) The autocorrelation function of the normalized operator Vs with respect
to the trial hamiltonian tends to zero in the thermodynamic limit, i.e.

Hm <(VN -<VN>*tr,N)%,r,N = 0. (1.11)

Eq. (1.11) is essential for the derivation of an upper bound for the free energy
per particle.

In the case of normalized sums of one-particle operators (1.2) the proof of
eqs. (1.9M1.11) is trivial, assuming that the dependence of V(k) on k is not of
a pathological nature. Eq. (1.11) is a direct consequence of the factorization

(V{k)V(k'))Xu.N = (V(k))*u,N(V(k'))Xu,N, for k* k'. (1.12)

Also, in the general case under consideration here, it turns out that the free
energy per particle can be obtained by minimizing the free energy of a linear
trial hamiltonian over a set M analogous to the one in eq. (1.6). Note in
connection with the definition of M that the average values of the operators
V" may show discontinuities because of the presence of short-range in-
teractions in the trial hamiltonian.

In section 2 we give a more precise description of the
generalizations mentioned above. The theorems for the
free energy will be formulated in section 3 and proved in
sections 4-7. An application is given in section 8.
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2. General formulation

Before we formulate the main theorenrwof this treatment, we discuss the
extensions to more general operators VN and functions P.

2.1. Generalization of the operators

In the introduction we mentioned the three properties a), b) and c) of the
operators VN, which have been used in the proof of ref. 1. These properties
suggest a close relationship between the generalization of the operators VN

and the process of taking the thermodynamic limit. In order to discuss this
process, we consider a sequence of (p-dimensional) lattice systems with N
particles* located on a subset 12N of an infinite lattice.

We shall say that the sequence of systems QN tends to infinity in the sense
of Van Hove, cf. refs. 17, 18, if for each ON there exists a collection of
disjoint equivalent cubes

CM{K), K = 1 , 2 , 3 , . . . , (2.1)

with M(N) sites, L(N) cubes being contained in flN, satisfying the con-
ditions

J) lim M(N) = °°, (2.2)

2) lim L(N) = oo, (2.3)

Furthermore, to be specific, we assume that for N' > N each cube CM. can be
constructed from cubes CM corresponding to N, i.e.

K

Af'-M(N'), M = M(N), N'>N.

The symbol S (K) is used to express that the cubes do not overlap and that the
M'lM values of K which contribute to CM(K') are determined by K'.

The process of taking the thermodynamic limit has been illustrated in fig. 1.
From now on each operator which has a subscript N denotes an operator

acting on the direct-product Hilbert space of particles belonging to one of the
systems fiN given above. In order to describe the generalization of the
operators we decompose an arbitrary hermitean operator NVN into an
operator NVN and an operator NRN- The operator NV% contains only the
interaction between particles lying inside the same cube CM{K) of the set (2.1)

*If ilN is not well defined for each value of N, one can consider a sequence DN(n, with
N(n)-»=o, if n ->=°.
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Fig. 1. Two systems with N and A/' (AT > N) particles located on the subsets ON and I2N of the
infinite lattice 12. / } * contains cubes CM(K), (M = 4, K => 1 L(N) = 5, N = 37). and ON-

contains cubes CM.(K'), (M' = 16, K' = 1 , . . . , L(N') = 7, N' = 147).

corresponding to /2N and the operator /?N contains the remaining interactions.
(The interaction terms in RN involve particles belonging to different cubes and
also particles which belong to the part of HN outside the cubes.) The
normalized operator VI, can be expressed by

(2.6)NV°N= 2 M(N)VUK),

where VU,K) is an operator acting on the Hilbert space of the particles
belonging to cube CM(K). The decomposition of the normalized operator VN

can be written as

N = V°N+RN. (2.7)

We now require that the residual operator RN tends to zero in the ther-
modynamic limit, i.e.

Hm||KN|| = 0. (2.8)

Also, to be specific, we assume that for a subdivision of a large cube into
smaller ones, as given by eq. (2.5), the interaction between different subcubes,
i.e.

M'R
MIM

(2.9)

is negligible in the thermodynamic limit, i.e.

lim sup ||/?M(N)iM(N)|| = 0. (2.10)

Furthermore it is assumed that, for sufficiently large values of N, there is a
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translational invariance, i.e.-

TVUK)T~l - VUKT) = 0, (2.11)

for a translation T transforming the cube K into one of the other cubes KT*.
Eqs. (2.8), (2.10) and (2.11) will turn out to be sufficient for our purpose.

From now on operators satisfying these conditions will be referred to as
short-range operators. Note that this concept of short-range operator is of a
rather general nature, cf. the discussion later on in this section. These
conditions ensure that properties similar to eqs. (1.9)-(1.11) are satisfied.

In particular, for short-range hamiltonians NVN the free energy per particle
has a well-defined thermodynamic limit in the sense of Van Hove, cf.
conditions (2.2)-(2.5), i.e.

/ = H m / N = lim/W>, (2.12)

where

/N = -( /3Nr ' lnTrNe-p N V /- (2.13)

and

/CM = - (j8M)-' In TrM e"flMV« (2.14)

are the free energies per particle of the system flN and the cube CM(K) resp.
Using eqs. (2.8), (2.10), (2.11) and the Bogoliubov-Peierls inequality"), we
have

|/Sr-/y*:||*M-i»i||-»0, {M,M'-K») (2.15)

and

| /N-fM ( N , |^ | | /M + ( l -^MAr ' ) | fM|^0 , (N-*<»), (2.16)

from which eq. (2.12) follows.

2.2. Discussion

It should be mentioned that eqs. (2.8) and (2.10) are satisfied for "(not too)
long-range" interactions, cf. eq. (2B.24) of ref. 19 or eq. (2.2.8) of ref. 18. To
see this, note that the action of an arbitrary operator V on the system ON can
be written as **t

NVN = 2 2 V W , (2.17)

* Equation (2.11) can be relaxed assuming that the left-hand side tends to zero for N-»°°.
** Equation (2.17) is equivalent to the definition by Ruelle and Griffiths. For comparison, note that

NVN can be written as S^cn* #(&>), where <P(<o) = N(a>) V(<i»), N(m) being the number of particles in
01.

t in eq. (2.17) we restrict ourselves to open boundary conditions. The effect of other boundary
conditions can be included in the operator RN in eq. (2.7), without affecting the line of reasoning.



where k labels the sites in JQN and where the summation over cok involves the
different subsets of /2N containing particles which interact with particle k. In
eq. (2.17) an m-body interaction V(w) between m particles ku ..., km occurs
m times, namely as one of the terms V(<oki), for / = 1 m resp. (A set a>
containing e.g. two neighbouring particles 1 and 2 corresponds to a nearest
neighbour interaction between 1 and 2 and the corresponding V(w) occurs
twice, namely as a term V(wk) for k = 1, 2 resp.).

As in refs. 18 and 19, we assume that for sufficiently large values of N the
interaction is invariant under translations from one cube to another and also
that the sum of the interactions V(«k) over an infinite lattice is finite for fixed
fc, i.e.

A) r V ( w k ) r ' = V ( w t r ) , (2.18)

where T is the operator associated with the translation from one cube CM(K)
into another cube CM(KT) and where wkT is the subset obtained from <ak after
application of the translation T.

B) 2l |V(wON^<», (2.19)
<"k

where the summation in the left-hand side is over all finite subsets cjk.
containing particle k, of the infinite lattice.

In view of (2.7), the operator RN does not contain the interaction terms
V(CD) for which « is included in one single cube. From this we have the
inequality

, LM .» _..+ (22°)
Here the first term is an upper bound for the interactions involving particles
which do not belong to one of the cubes, and MvM is an upper bound for the
interaction of the particles belonging to a cube CM with particles outside that
cube, i.e..

MvM = 2 2 HV(«*)||. (2.21)
*

In order to estimate (2.21) we consider the restricted sum of interactions with
a particle k such that the "diameter" D(<ok) of the subset <ok is larger than
some fixed distance d. From (2.19) it follows that

2 !|VW||«;»W-»O, for d-+ cc. (2.22)
<"k

Using (2.22) we can give separate estimates for the contributions to MvM from
particles kGCM lying at a distance larger than d from one of the sides of the
cube and for the contributions from the other particles in CM. We then have,
for each value of d,

"vl. (2.23)
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In eq. (2.23) it has been used that the number of sites in CM at a distance less
than d from one of the sides of the cube is bounded by 2vd M'"'"1", where v is
the dimensionality of the lattice. Since eq. (2.23) is valid for all d, we can take
as an upper bound for vM the infimum of the right-hano side with respect to d,
which is a function of the variable M. As a result we have

t'M->0, forM->°°. (2.24)

Hence, in view of (2.20), RN tends to zero if we take the thermodynamic limit
in the sense of Van Hove, so that eq. (2.8) and also eq. (2.10) are satisfied. This
shows that operators satisfying eqs. (2.18) and (2.19) are included in our
treatment.

As an example one may consider a spin model for a ^-dimensional lattice
with anisotropic Heisenberg interactions, described by the hamiltonian

NVN = Z & ' J«- • Sk: (2.25)

The decomposition (2.7) is then determined by

W°N = ' f 2 S" • J« ' ' Sk.8k(K)Sk(K), (2.26a)
K = ] k,k'

{ UN) -\

1- 2 &(K)&•(*)[, (2.26b)
K = l Jwhere

0, otherwise. {221)

The factor between brackets in the right-hand side of (2.26b) expresses that RN

contains only contributions from particles k and k' which do not belong to the
same cube.

Now RN in (2.26b) tends to zero in the thermodynamic limit under rather
general conditions. If the interactions J^. in eq. (2.25) are of finite range D, i.e.

JM- = 0, if |JTt - Rk.\ > D, (2.28a)

where Rk and Rk are the lattice sites corresponding to particles it and k', then
vld = 0 in (2.22) for d > D, and RN -• 0 because of (2.19), (2.20) and (2.23). Also
for interactions with a Kac-type dependence on the distance , i.e.

Jkk- = Jy"e~y*>-R>\ 7 > 0 , (2.28b)

RN tends to zero.

2.3. Generalization of the polynomial

In ref. 1 we dealt with the simple case of a polynomial P(VN) of one
normalized sum of one-particle operators. In order to discuss the generalization
to an "analytic" function of more operators we consider a finite number of
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normalized hermitean short-range operators V(s, i = 1 , 2 , . . . , « , which we may
assume to be uniformly bounded, i.e.

| |V5i1l«Mi<«, / = l , 2 , . . . , n , (2.29)

independent of N*'**. An arbitrary analytic function P of these operators is
determined by its series expansion, i.e.

= | ) 2 Pdu...,L)Vy...Vy. (2.30)
m = ! U im=l

In eq. (2.30) use has been made of a vector notation

VN - (V!i \ . . . ,V (
l3

) ) . (231)

Furthermore, it is assumed that

P(L »,) = p( / , /,„)*, (2.32)

so that the operator P(VN) is hermitean.
For the coefficients p(ii im) it is sufficient to impose the "analyticity"

condition:

, (2.33)

where

2 |p( i i , . . - , i - )h i , . . . i?* . . (2-34)2 2
m - l ii im = l

for some values of Mt > Mf, i = 1 , . . . , n.

* Note that for the operator given by (2.17) || VN||« »„ independent of N, c/. (2.19).
** Non-hermitean operators JN, as have been used in refs. 9, 14, can also be treated using the

decomposition J = W + /)} + i{H(/' - /)}.
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3. Theorems.

In section 2 we have given the definition of an analytic function of

short-range operators. With this definition a number of theorems can be

formulated for the free energy per ^article of a system described "by the

hamiltonian

JTN(h) = N(P(VN) - h-VK ) . (3.1)

Here P(V ) is defined by (2.30) and the coefficients p(ij,...,im) satisfy

eqs. (2.32) and (2.33). The vector V.., cf. (2.31), denotes a finite set of
i) .normalized operators V,, , l = 1,...,N, which are uniformly bounded, cf.

(2.29), and which satisfy the short-range conditions (2.8), (2.10) and

(2.11). The vector h = (hj,...,hn) denotes the fields or coupling constants

conjugate to the operators NV,,.

In this chapter it will be shown that the free energy per particle in

the thermodynamic limit, i.e.

f(h) = -- lira (SN)"1 In Tr exp [- ffl (h) ] , (3.2)
N-*»

exists and can be expressed in terms of the free energy per particle of a

reference system described by a hamiltonian which is a short-range operator.

Note that the hamiltonian (3.1) is not a short-range operator, if P

contains nonlinear terms. For example, if NVJJ describes an anisotropic

Heisenberg interaction, cf. (2.25), and NV^' the magnetization operator

in the direction of the vector H, i.e.

N Vi 1 ) = i V ^ k ' - V ' N VN 2 ) = 3 ' K • (3-3)
K 3 K K.

and if P is a quadratic function

P ( V = V N 1 ) 2 + v f ) 2 ' (3-̂
then the hamiltonian (3.1) is given by
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Apart from the usual (short-range) bilinear exchange between spins located

at k and k' and the Zeeman term, eq. (3.5) contains a four-spin interaction

of hybrid type, (i.e. long-range between the pairs with indices (k,k') and

({.,£'), and short-range between the spins k,k' a.̂ d the spins £,£'), and a

pair interaction of the equivalent-neighbour type. Four-spin interactions

can arise in compressible spin systems, in which there is a coupling
20)

between the spins and the lattice . An exactly solvable Ising model with

four-spin interactions has been treated in ref. 16. Also four-spin inter-
21)

actions are important in the framework of renormalization group theory

Equivalent-neighbour interactions can be used e.g. in the classical

. whi
23)

22)
description of demagnetizing effects . An exactly solvable model which

can be obtained from the two-dimensional super-exchange antiferromagnet

adding an equivalent-neighbour interaction has been investigated in ref. 2k,

see also refs. 25-27 for one-dimensional short-range systems with equivalenV

neighbour interactions.

In this chapter we shall prove a number of theorems relating the free

energy per particle (3.2) to the free energy per particle

fo(h) = - lim (6N)~
1 In Tr exp tBNh'V ] (3.6)

of a reference system described by the hamiltonian

Jfo>H(h) = -Nh-VN . (3.7)

I
''• First of all we have a minimax-theorem, which can be considered as a

generalization of eq. (1.8), derived in chapter I. This theorem is

formulated in terms of the decomposition of the function P in (3.1) into a

strongly concave and a strongly convex part, i.e.
P(5) = Q(5) + R(5) , (3.8)

with

^ > 0 ' (3-9)

for every (n-dimensional) vector e. A decomposition like (3.8) is always

possible, at least for the values ? satisfying |?.| < M., i = 1,...,n, cf.

(2.29), which is sufficient for our purpose. Note that the decomposition

is not unique, one may choose e.g. Q(?) = - A5'5 with A positive and

sufficiently large, similar to ref. 1, but many other choices are possible.

Using (3.8) it can be shown that
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f(n) = win max | Q(c) - C'Q'U) + R(n) - n*R'(n) + f 0( h - Q'U) - R'(n))l,
£ n
" " (3.10)

\.'ilii Q'(£; = 3Q/9£, R'(n) = 3R/Sn . The minimax-theorem can be proved

using a generalization of a fundamental theorem due to Bogoliubov Jr., see

riifs. 9, 1'-» and chapter I. In contrast with the situation in chapter I, the

special case of convex P, (i.e. Q=0, P=R), is far from trivial and requires

some subtle considerations on short-range operators in the thermodynaraic

limit. Eq. (3.10) for the special case P=P will be proved in section h, the

derivation for general P is given in section 5.

From the minima* result (3.10) we shall derive in section 6 a different

result,

f(h) = inf [ - h«m + go(m) + P(m) J , (3.11)

rn

involving the Logendre transform

go(m) = sup [h-m + fQ(h) ) (3.12)
h

of the reference free energy (3.6). Eq. (3.11) shows that the minimax

rosu.lt (3.10) does not depend on the details of the decomposition (3.8).

Eq. (3.11) can be used for various purposes. For instance, when all

operators V., are sums of one-particle operators, it can be used as a

scart ing point for Landau expansions providing an explicit realization

of various types of classical critical behaviour, see e.g. refs. 1, 11, 12

for examples, ref. 28 for a systematic classification and ref. 29 for the

relation with Lhe theory of catastrophes . On the other hand, the

inference system can contain short-range interactions, which give rise to

phase transitions, also in the absence of P(m) in (3.11), so that eq.

(3-11) can be used to study the stability of critical behav our of a system

with short-range iiiteractions under the influence of a perturbation P

describing interactions of a different nature. This problem will be treated

extensively in chapter III. Note that in the absence of P(m), eq. (3-11)

amous.ts to the inverse Legendre transform of (3-12), as is well-known from

the theory of convex functions, see refs. 32-38 and in particular refs. 33 i

3't, 38 for Legendre transformations in more than one variable. Expressions

like (3.11) have also been derived e.g. for the Ising model with quadratic

equivalent-neighbour interactions using the Laplace method or a rigorous



version of the Bragg-Williams approximation, see e.g. refs. 2, 3, 11, 39-

Introducing the Legendre transform

g(m) = sup [h-m + f(h) ] (3.13)
h

of the free energy per particle (3.2), eq. (3.11) can be rewritten in the

form

g(m) = sup inf fh-(m-m') + gn(ra') + P(m')]=CE(go(m) + P(m)] , (3.110
h m ' " ~ " ° "

where CE denotes the convex envelope, i.e. CE <j>(x) is the maximum over all

functions t|j(x) satisfying

! ,
(3.15)

<p(Xx + (1-A)y) s AiJ/(x) + (1-X)<l>(.y) , 0 < A < 1

Relations like eq. (3.1*0 have been derived for the free energy

per particle in a classical Van der Waals gas with interactions of the Kac

type , see also refs. kk and I45 for an analogous treatment of the Ising

model. For a more extensive discussion of related literature, see e.g.

refs. 39, ̂ 6, kf. It may be noted that most treatments including Kac
1+0 )-U3)

potentials are restricted to models of classical gases , Ising
kh) 1+5) U8) J+Q) 50)

models ' ' and classical Heisenberg models ' ; as far as

quantummechanical systems are considered, only a few specific models have

been treated . In the present chapter, eq. (3«1*0 will be proved

for general hamiltonians of the type (3.1) containing analytic functions of

a finite number of quantuminechanical short-range operators.

From eq. (3.1*0 we derive in section 7 a generalization of eqs. (i.k)

and (1.6). In the case of short-range operators, whiih can give rise to

first-order transitions, the molecular-field equation is more complicated,

since the average values of the operators V.. may show discontinuities in

the thermodynamic limit.

U. Convex functions.

In this section we prove the minimax-theorem (3.10) in the special case

that P is a strongly convex function of n variables. The theorem can then

be formulated as follows:

Let % be a sequence of systems described by the hamiltonian

hi



where R is a strongly convex function of n variables satisfying the second

inequality of {3-9) and the properties (2.30)—(?.3^) with P, r and X instead

of P, p and •»' . The operators V ' , i=1,...,N, are uniformly bounded, cf.

(2.29). and satisfy the short-range conditions (2.8), (2.10) and (2.11).

Then the free energy per particle f in the thermodynamic limit is given

by

f = max f,(n), (h.v)

n
where

f E lim f |IfN] , f (n) H lim f |Jf (n) | , (1..3)

cf. (1.3) for the notation. The hamiltonian 3C w(n) can ho obtained

linearizing -K. with respect to !/„, i.e.

X (n) = N{R(n) + R'(n)-(V,rn)} • (h.h)

In the proof of eq. (if.2) use will be made of two lemma's.

Lemma 1: Let V ,...,V be a finite set of bounded herraitean operators.

Let P(v) be an analytic function of these operators, as defined in sun-

section 2.3. Let p be a density operator acting on the same Hilbert space

as the operators V. Then, for all parameters n with In- < M., where 'A
(i) ~ I - I

satisfies M. > IIV II , we have the inequality

|Tr pjP(V) - P(rj) - P'(n) • (V-n)}| S p 2 Tr p(V-n)2

=
P3

5 M
n=M

where e is a real unit vector and P is defined as in eq. (2.3*0. For the

details of the proof we refer to appendix A.

Lemma 2: Let V ,...,V be a finite set of operators acting on an ?]-

particle system, described by a hamiltonian 3f , such that, for i.j=1,...,n,

ivj i } II i l-U , ' (1.8)

k2



I I [ 3V V N 1 ) ] "= M E i ( N ) ' (l4<10)

e..(N)-*O, e.(N) -> 0, if N-*-«. (Jt.11)
^u 1

Let F(v) be an integrable function of n variables satisfying the continuity

condition

n
|F(v) - F(0)| $ I F.|v.| , (14.12)

i=1 x

for some F. 3 0, i=1,...,n, and also the inequality

cf. (1.7) for the notation, for every value of v, where P is an analytic

function, as defined in subsection 2.3-

Then we have the inequality

F(0) $ C N , (It. 11*)

where

c N -*• 0, if N-»-» . (U.15)

Eq. (U.1U), which may be considered to be a generalization of the

inequalities used in the derivation of the fundamental theorem in section 2

of chapter I, will be proved in appendix B.

We will now prove eq. (U.2) by deriving a lower and an upper bound to f,

which will be equal to f (n) in the thermodynamic limit.
t "*

Lowerbound: From the Bogoliubov-Peierls inequality, see eq. (2.5) of

chapter I, it follows that

$ - <R(v ) - R(n) - R ' ( 2 ) • (v - T J ) ^ _ H v . v

Since R i s a convex f u n c t i o n ,

H(n) + R ' ( n ) • «VN>3<, _ N v > v - n) 5 R«v H > J f _ K v . ^

so t h a t

- M ' 3ff..-NW.T
 v -K

N - -If



for every value of v.

For short-range operators V and the "namiltonian (I4.1) the commutation

relations {k.9)-(h. 11 ) are satisfied, cf. appendix C. The ] omma (!4.1l;)

applied to F(v) in (I4.I6) then provides the lower hound

where e if (I..15).

Upper hound: In section 3(iv) of chapter I an upper hound vas r!"riv.-d using

the Bogoliubov-Peiorls inequality, lemma 1 auri tho factorization property

(1.12). This property could he proved easily in chapter I noting that th<'

operator MV and the hamiltonian are sums of one-particle operators V(k).

Here, however, NV_. are short-range operators and the validity of an equation

like (1.11) is not obvious. Yet, a factorization property seems to he a

basic ingredient for the derivation of an up^er hound. For that reason

averages will be taken with respect to the hamiltonian 7C fJ(i)j which can

be obtained from (I4.I*) replacing the V by the corresponding operators

V , cf. (2.6), so that 7f •fj(n) is a sum of operators acting on the

Hilbert-spaces associated with the cubes C (K ) originating from the sub-
(i)

division of the system fi , cf. (2.1)~(2.5). Since the operators HVT

occurring in 3f M(n) are short-range operators, use can be made of the

decomposition properties (2,7), (2.8) for each i, so that

with

K
and

wi th

II ->0, i f i=1,...,n, (14.21

7ft i^B^ = W !-(n) - n ' R ' ( n ) + R ' ( n ) - v ° ) .

F'rom the Bogol iubov-Peier l s i n e q u a l i t y i t follows t h a t

t U{?'



where '<(', . I'ih(Y.,), cf. (it.1). In view of the norm-estimates

I'J~ IIIf w ( n ) - ' C , T ( n ) II < r } • IIR II , N ~ IIIf - 3 f I I < r - U R [[ , ( i t . 2 5 )

w i t h

(It.26)
3n

n=M
o

c f . a p p e n d i x C, and t h e lemma ( < t . 5 J , w i t h V.., R, r , r , „ i n s t e a d o f

V, P , p ? , p 3 , wo h a v e

0 ?
N N N t , 2 t , N -

+ r 2 ^ Z u ~ * - N 7f° ( n ) If0 ( n ) + r 3 , N + 2 - 1 * " 5 N ' ^
t , N - t , N -

w i t h r _ , - > 0 , r 1 • !l R II - > 0 , i f H - > » , c f . ( U . 7 ) , ( U . 2 1 ) . S i n c e N V ° a n d

'f ..(n) are linear combinations of MdOv.^dO, cf. (2.6), acting on the cubes
t ̂  J\ — —M

C ( K ) , K = 1 , . . . , L ( K ) , we have the factorization property

vi" (nJ^M^'^Sf0 (n) ' (^.28)
t , I ' J - t , K - t , N —

for d i f f e r e n t cubes K'^K, and t h e r e f o r e

( (V° - <V°>_f0 , \ )?">vo i ) $ M2/L(W) •* 0 , i f N-»•«>. ( i t .29)
t ,N - J t , K - ;

From (it. 27) and (it. 29) we have the upper bound

f [jf ] _ f [If . . ( n ) ] $ q + r 2 ( < V ° ) l f 0 , v - n ) 2 , ( i t . 3 0 )
t ' 5 - ~ ' t , N -

w i t h q - > 0 , i f I) •+»>.

From Ct.30) and the lower bound (U.19) it follows that

liere it has been used that, for each finite value of N, rj may be chosen

such that

53)

which is a consequence of a fixed-point theorem due to Brouwer , since

the vector field <ji(n) = <VT1>,r0 , . gives a continuous mapping of the

region | n-j_ 1 S Mj,, i = 1,...,n, onto itself. In the thermodynamic limit (i.31)



reduces to

f = lim max f [W (n)] = max f (n) , (it.33)

which completes the proof of theorem {h.2).

Remark: The free energy per particle f is also given by

f=f t( D i n) .

Proof: The function f.(n) is concave in n, so that f = max f, (n) = f.(n )
"~™'™'™'" "t ™* ™ "c ^ x> ~ M

for some value n • Since R is strongly convex, cf. (3.9), we can write

R(n) = en2 + fi(n) , (U.36)

in which E>0 and R(n) is convex for |n-| S M.. Following the line of

reasoning leading to (U.19)» (with F(v) - e<(V -n) > and R instead of F(v)

and R in (h. i6)-(i(. 18) ), we obtain

which implies that n in (U.3^) must satisfy (U.35).

5. Minimax theorem.

In this section the minimax theorem (3.10) will be proved using an

extension of the fundamental theorem due to Bogoliubov Jr. This extension can

be formulated as follows.

Let a be a sequence of systems described by the hamiltonian
K

Q(VN)} , (5.D

ro

first inequality of (3.9) and the properties (2.30)-(2.3ii) with Q, q and

instead of P, p and •$ . The

properties, for i,j=1,...,n,

where Q(VW) is
 a strongly concave function of n variables satisfying the

neq

instead of P, p and •$ . The operators T^ and Vw satisfy the (commutation)

(5.2)

(5.3)



l l T , ^ 1 ' ] ! - e.(N) , (5.U)

c..(N)->0, e.(N)-*O, if N+». (5.5)

Then the free energy per particle f in the thermodynamic limit is given

f = min f (?) (5.6)

where

f = lim tJX ] , f+(5) = lim fJK H(C)] , (5-7)

t)N| { N Q'(|) • (VN-C)} • (5.8)

The thermodynamic limit of fra[<f W(C)] is assumed to exist for |?.| § M..

Note that eq. (5.6) can be considered to be equivalent to eq. (3.10) for

the special case of concave P=Q. For the validity of (5-6), however, only

the commutation relations (5-3)—(5-5) are required and no short-range

conditions are imposed on the operators V . This will turn out to be an

essential feature for the proof of eq. (3.10) for general P = Q+R.

• Eq. (5-6) will "be proved by deriving an upper and a lower bound for

fj,[Jf ] which turn out to be equal in the thermodynamic limit. (The special

case of one variable has also been treated in ref. 5^)-

Upper bound: Using the Bogoliubov-Peierls inequality and the concavity of

the function Q, we have

<Q(vK) - Q ( O - Q U ) • (vN-?)> (5)

The lemma (i*.iit), applied to F(v) in (5-9), gives

where c ">0, if U+», cf. (U. 15).

Lower bound: Using the Bogoliubov-Peierls inequality and the concavity of



Q, we have

F(v) = min

.< min

and from the lemma (^.1M it follows that

where c' ->0, if N •>•».

Eq. (5>6) is now a direct consequence of (5.10) and (5.12).

Remark: Suppose that the minimum in (5.6) occurs at 5=5 , then

and £ must satisfy the implicit equation

(5.13)

Sm i y 3 r (E )
N-*» t,K -m

Proof: Since Q is strongly concave we can write

Q(U = -e? 2 + Q(?) , (5.15)

in which e>0 and Q is concave. Using (5-15) to derive an upper bound, we

find (5.1U).

We nov proceed to prove the minimax theorem (3-10) for a sequence of

systems described by the hamiltonian (3.1) with a general function P

sarisfying eqs. (2.30)-(2.31*), in which the operators V^1 are uniformly

bounded and satisfy the short-range conditions (2.8), (2.10) and (2.11).

Here we can take h=0 without loss of generality, since the operator h*V*.

can be included in P(Vj.).

Using the decomposition (3.8) the hamiltonian (3-1), with h=0, can be

written

where

= R(VN) , (5 .17)



a>:d v/hero tho stror.gly concave function Q(V ) and tho strongly convex

fur.ction R(V ) satisfy the properties (2.3G)-(2.3M, (with Q, q, <£> and

R, r,A instead of P, p,fi ).

For the set of operators T and V under consideration the (commutation)

relations (5-2)-(5«5) are satisfied, cf. appendix C. From theorem (5-6) it

then follows that the free energy per particle fin the Iherrnodynamic limit

is given by

f = lim f 17f ] = min lim f |Jf U ) 1 , (5.18)

with

i''rom theorem C-i.2) for convex functions of short-range operators we conclude

that the free energy per particle f in the thermodynamic limit exists and is

given by

f = min max lim f [Jf NU,n) I , (5.20)

with

Jf ,,(C,n) = N|Q(e) - 5-Q'U) + R(n) - n-R'(n) + {Q'(c) + R'(n)} • V

(5.21)

Eqs. (5-20), (5.21) are equivalent with (3.10), noting that a term -Nh'V in

the hamiltonian (3-1) can be present in Q(V..) or R(V.J.

In the derivation use has been made of the validity of eq. (5-6) for a

larger class of operators involving also nonlinear terms oecurrinp; in

R(V'T) which do not satisfy the short-range conditions. However, these

conditions have been used in an essential way in the derivation of the upper

bound in theorem (h.2) for convex functions. In appendix D it is shown by

an explicit example that eq. (5-20) cannot be valid with the same amount of

generality as eq. (5-6), see also rc-fs. 1 and 55.

6. Legendre transform.

In this section we derive eq. (3-11) which relates the free energy per

particle of the hamiltonian (3-1) to the Legendre transform (3.12) of the

reference free energy.



Substituting the inverse Legendre transformation of (3.12), i.e.

fo(h) = inf [- h«m + go(m) ] , (6.1)

m

i n t o t h e minimax theorem ( 3 . 1 0 ) , we have

f(h) = min max inf [ - h»m + go(m) + Q(£,m) + R(n>m) ] , (6 .2)

§ r j m

with

Q(?,m) = Q(C) + Q'U)«(in-5) , (6 .3)
R(r;,m) = R(n) + R' (n) • (m-Tj) . (6.It)

The expression between brackets in the right-hand side of (6.2) is a convex

function of m, and has a unique maximum over n. This follows from the

strong convexity of R(n)j which implies that, for each m, R(n»in) has a

uniquely determined maximum.

Under these conditions the maximum over n and the infimum over m in (6.2)

can be interchanged , see also appendix E. Interchanging also the

infimum over m and the minimum over ?, we find

f(h) = inf [-h-m + g()(m) + P(m) ] , (6.5)
m

with

P(m) = min max [Q(?,m) + R(n,m)] . (6.6)

In
The minimum of Q(C,m) occurs at ?=m, (since Q(£) is concave), and the

maximum of R(n,m) at n=m, so that

P(m) = Q(m) + R(m) = P(m) , (6.7)

which completes the proof of (3.11).

7. Generalized molecular-field equation.

In this section we derive the generalization of the molecular-field

equation (1.6), taking into account that here the reference hamiltonian

(3.7) can be a short-range operator which can give rise to first-order

phase transitions in the thermodynamic limit. Inserting the expression

(3.12) for the Legendre transform gQ in eq. (3.11), we have
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f(h) = inf sup f (h'-h)»m + fo(h') + P(m) ]. (7-1)

m h' " " "

At fixed m, the supremum in (7-1) occurs at h1=h'(m) for which

h'-m + fQ(h') >, h"-m + fQ(h") , (7-2)

for all values of h". With the notation h"=h'+ve, with e any unit vector,

(7-2) can be written

- [fo(h'+ve) - fo(h')] S. ve-m . (7-3)

Since f0 is a concave function, its left and right derivatives with respect

to v exist and from (7.3) it follows that h' satisfies

lim - |- fQ(h'+ve) $ e«m < lim - j- fQ(h'+ve) , (l.h)

v+0 " v+0

for any unit vector e.

The infimum in (7-1) occurs at those values of m for which

(h'(m) - h)-m + fQ(h'(m)) + P(m) <; (h'(m') - h)«m' + fo(h'(m')) + P(m'),

(7-5)

for all values of m \ Using (7.2), (with h'=h'(m) and h"=h'(mf) ), and the

notation m'=m+ve, with e any unit vector, (7.5) can be written

ve«h'(m+ve) s ve«h - P(m+ve) + P(m) , (7.6)

so that m satisfies

lim e-h'dn+ve) § e«(h-P'(m)) $ lim e«h'(m+ve) , (7-7)
v+0 ~ ~ " ~ v+0

for any unit vector e. Eq. (7-7) implies that, for the values of m for

which the infimuni in (7-1) occurs, we may use for h' the value

h' = h - P'(m) . (7.8)

In connection with this relation it may be noted that for systems with short-

range interactions the function h'(m) defined by (7.^) is in general

continuous , in which case (7-8) is identical with (7-7).

Inserting (7.8) in the condition (7>^) for the supremum we obtain a

necessary, but in general not sufficient, condition to determine the

infimum. This condition which we call the generalized molecular-field

equation reads

lim - |^ fo(h - P'(m) + ve) <: e-m $ lim - ~ fQ (h - P'(m) + ve) , (7-9)
v+0 ~ ~ ~ v+0 ~ ~ ~
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for any unit vector e.

As a result the free energy f(h) can be written

f(h) = min I f.(h - P'(m)) + P(m) - ra'P'(m) ] , (7-10)
o

where siL is defined as the set of solutions m of eq. (7.9)- Tlote that in

eq. (7.10) the restriction m S '( is necessary, since at the infimum over ra

in (7. 1 ) 1 eq. (7-8) gives a correct solution to the prob]orn of taking the

supremum over h', cf. e.g. remark i) of section h of chapter I for • i

example. Furthermore, wo need the minimalization procedure over the

solutions m £ //, in order to exclude unpliysical solutions' of (7-P) which do

not correspond to the infimum.

Kqs. (7.9) and (7.10) are identical to eqs. {',!. 'i 1 ) and (<!.h;>) derive <i in

ref. 595 apart from some minor changes in notation. In thir, chapter,

(7.°) and (7.10) have been derived starting from (3.11), or (3.1*0, so that

tnese equations must also be valid in systems described by Kac-like long-

range interactions, provided that the Legendre transform g(m) of the fi-r-e

energy is given by a convex-envelope expression as in (3.1*0-

In the absence of first-order transitions (7-9) reduces to the implicit

equation

m = - -^ fo(h - P'(m) ) , (7.11)

which can be considered as a molecular-field type of equation.

Remark: Eqs. (7.10) and (7.11) have some direct applications for time-

independent correlation functions of normalized short-range operators. For

this purpose we consider a system described by the hamiltonian

where P(yM) and n(VN) are analytic functions of a finite number of

normalized short-range operators and A is a real parameter. The free

energy per particle corresponding to 7f in the thermodynamic limit is given

by, cf. (7-10),

f(x) H lim f [N{P(V ) K

N-x»

= min lim f fw{p(m) + P'(m)«(V -m) + Xlt(m) + All' (m)« (V.T-m)} ]. (7- 13)
mejVN-**. ~ " - _ _ _i, _

In the absence of first-order transitions m=m(A)e. il satisfies the
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molecular-i'iold equation (7.11). Taking tlie derivative with i'>-.-.j"-c'.. to X,

it follows that

^ -Jl(B(O))
~" A=0

n(ii»<VNp.(»).vJ-n(ii»<VNP(VB)
) ' (T-'M

c:\ also (Ji,35), (^ . I 'O. RolatLons l ike (T.l'O have also been f-staLlisiK-d
, , . . <O),61)

in an algebraic approach

8. Dick*.- manor typo of mudi-ls.

In this section wo consider tho cJaas of s,yatoms dencrj i,i• r 1 liy the

hamiltonian

In (8.1) a and a, are boson construction operators, i.e.
K. K.

( 8- 2 )

acting on the Hilbert space h . The normalized operators T. =T_. and V A act

on the Hilbert space h.. of an N pa r t i c l e system, and sat isfy the

(commutation) re la t ions

«V^k)ll S M , (3.3)
. 1 .

iilv^vJ^HU ejn), [ [ v ^ ' ^ ' i h g i i ) , (8.M

l l [ T K , V ^ k ) ] l l S e b ( N ) , ( 8 . ? )

e a ( N ) , e (W) - ^ 0 , i f N-><». ( 8 . 6 )

Tlie hamiltonian 3C acts on the direct product Hilbert space h ®h , the

constants <u and A satisfy
K K

u) > 0, I|A |//7 < «. (8.7)
k -

The second condition in (8.7) is trivially satisfied if the number of modes

k which are coupled to the W particle system is finite.
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A special case of (8.1) is the Dicke maser model, in which

NTJJ-^S?, NVJ^-J^S-, N V ^ - J ^ , (8.8)

for one mode k=1, where S. is the spin of particle i. This model has first
1 7)

been solved by Hepp and Lieb , see also ref.62 for polynomial extensions.
Q \

For the general hamiltonian (8.1) Bogoliubov Jr. and Plechko , cf.

also ref. 63i have proved a theorem which can be formulated as follows.

Theorem: The free energy per particle in the thermodynamic limit of the

class of systems described by (8.1)—(8.7) is given by

lim f [3C ] = lim f [t' ] , (8.9)

where

k k

In (8.9) the traces are taken over the Hilbert space h ®h .

The free energy in the right-hand side of eq. (8.9) can be further evaluated

applying the theorem (5.6), (using the decomposition V = V' + iV", with

V' and V" hermitean). We first give a direct proof of eq. (8.9), deriving

an upper and a lower bound for f,J3C ] - f [Jf ].

Upper bound: Consider the hamiltonian

*k.. = I "k(\ " ̂ a l^ i ) ^

Since the (Bogoliubov) transformation

is a canonical transformation, cf. e.g. refs. 61+, 65, we have

for any set of complex numbers {a, }. Applying the Bogoliubov-Peierls

inequality it follows that



> , - 1

t *
, A *w

Ak ,,(k) x x _,_ A ,.(k) f . * w
a k

* ) ( ^ v ( k ) + )
k \ N k

| x ' - ! 2 ( ( k ) + ( k ) ( k ) +

N tf
n. i\ it iv iv

In (8.11*) we have used that

a, , (8.15)
k

and we have substituted for {a, } the values{a, }

k to, H Jf.T to, N JC,
k N k N,a

Using a line of reasoning similar to the derivation of C+.1U), see appendix

F for further details, it follows from (8.A) that

>'• with c -* 0, if K •+<».

Lower bound: Consider now the hamiltonian

K it K K

with 0 <x, <1. Using the Bogoliubov-Peierls inequality we have

(8.19)
and therefore
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ln.-j--ri.inc

k k . • . - 1

li "V

V'-u, cf. a l s o (8 .3 ) »

roii^ foi1 t.ho c^t fxn ) the1

we get the lower bound

with b ^ 0 , if N -> °°, cf. (8.7).

The theorem (8.9) is now a direct consequence of eqs. (8.17) and [8.2^).

Remark: Theorem (3.11) can be used to obtain various further evaluations

of the free energy of Dicke maser type of models.

Consider e.g. the hamiltonian

k
(V ) - W } , (8.?'/;

hert; KV are hermit ear. short-range opc-ra'.ors satisfying

(J.8), {?. 10), (.?.11) and P and Q aro analytic functions, cf. (?.30)-( 2.3!0 ,

Q not necessarily being a real function.

Then the free energy per particle in the thermodynamic limit can be

written

f(h) = inf | -h-m + gfl(m) + ?(m) - |Q(m)|
2/w0]gfl(m (8.26)

viitu-e fj i s t h e f ree energy per p a r t i c l e cor responding t o / . a i . a ' a and gg(in

i s the Legondre t rans form (3 .12) of t h e f ree energy per I ' a r t i c l e fn(h)

r,f.



c o r r e s p o n d i n g t o t h e s h o r t - r a n ^ i - h a i n i ] I o n i a n -Hl i -V .

K M . ( S . / c ) can b e d e r i v e d f r o m ( 8 . 9 ) , w i t h A = 0 i f k y O , n o t i n g t h a t

t h e o p e r a t o r s P ( V N ) a n d Q C v ^ ) f o r s h o r t - r a n g e i n t e r a c t i o n s (N7 , , . . . , K V / )

s a t i s f y t h e r e q u i r e m e n t s ( 8 . 3 ) - ( 8 . 6 ) i m p o s e d o n t h e o p e r a t o r s i n ( 8 . 1 ) . T h e n

f(h) = lam y N ! , (B.'-'T)

m i d o q . ( 8 . ; . ' t ) ) f o l J o w : ; a n a d i r e c t , c o n n , q u - u f n i 1 u ' . : ' 7 ) , ( R . . ' 8 ) a n d ( ; M 1 ) .

K(], ( B . ? ( . ) u l s o l i o l d r . vh>'H the. ' o j n . - r u t , o f n V., h i ( f i . ; ' ' [ ; ) a r c n o t r w i o r t -

r a n n e , b u t a a t i i i f y t h e ( c o i a m u l . a k i o n ) iv- l ; I 1 . ioi.:-. ( ' . > . , ' ) - ( \> . ' • ) , i n l.hv y:i!-,c

t l i u t i ' ( n i ) - [Q{rn) | /(o i n Hl,rciiiR],v c o n c a v e , vV. ( | i . f ) .

ix A.

In this appendix the proof of the lemma (-1.5 )-CJ .7) will be given. We

start with an analytic function P(7), as defined in section 2.3, and an

arbitrary density operator p. Then we apply Taylor's theorem with Lagrange's

forft for the remainder, i.e.

<t,(t) = <ji(0) + t<f>'(0) + st2f'(T) , (A.1)

for some value T with 0 < T < t, to the function

<f)(t) = Tr pP(V, ) , (A.2)

where

It " -

Choosing t=1, we havo

X = Tr pfp(v) - P(n) - r'(n)-(V-n)} = ' Tr
- - - -

!'(V. )
t

(A.I4)

for come- 1 witlj 0 '•' T < 1 .

According to {2.30) we write

P(Vt (A.
m=1

so that in view of eq. (A.3)
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m=2 1,,...,1

m-1 m /a-11 m /a-1 ,. ..\

M n vt )
1 b=a+1^=1 l '

x (VV (A.6)

We now shift the factor (Vv a -n- ) to the left and the factor

to the right. This leads to

i ii_ p(V5 dt7 -
p(V i

dt7 -t; = (v-n)'P
(2)-(v-n) + p ( 3 ) , (A.T)

t=T

where

=o n m-1 m

I I P(ii»--- 5i m) I I
m=2 i.,...,i =1 a=1 b=a+1i

m

5i i 6i i. ( " v ( i ^ ) -

The contribution arising from P can be estimated as follows:

oo n

J3i,,i.,i-i l p ( i l i»"
|Tr PP

( 3 )| 5 IIP(3)

(A.8)

m — 1 m a — 1 r • \ / • \ / • \ / " i / •
I I I ll[v ( l= ),v ( l^]iiiiv ( lb )-n. II ( n II v ( l

a=2 b=a+1 c=1 Xb ^ a=1 T

+ I
m-2 m—1 m

I liv
}_n.

1
, v ( l c ) ] II

a=1 b=a+1 c=b+1
( n iiv(l

\ J,= 1 T

i i )]
lj »• • • jl m> Im=3 il5...,im=1

( n IIV(i^)ll)llV(ia)-n. ||

n=M
: M ity.y] II = p 3 ; (A.9)

cf. (2.29), (2.33), (2.3U). Note that the last line of eq. (A.9) is

identical to (^.7).

We now proceed to derive an inequality for the quantity X defined by
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(A.I*). From (A.7) and (A.9) we have

Tr

(i)-n) P ^ (v(j)I |Tr p(v(i)-n.) P ^ (v ( j )- n.)| + p, . (A.10)

The first term in the right-hand side of (A.10) can be estimated using the
1 Schwarz inequality

ft |Tr ABC| $ (Tr A A)s{Tr c'(B B)c}§ ̂  (Tr A A ) § ||BII (Tr G C ) % (A.11)

with

A = ps(v^ -n-), B = P:2 , c = (v^ -n-)ps • (A.12)
1
 IJ j

We then have

|x| i I MTr p(V^-n. )2}5 IIP.. II {Tr p(V^ '-n. )2}21 + p- , (A.13)
i,j=i L 1 10 0 j

where

cf. (2.29), (2.33), (2.34) and (A.8). From (A.13) and (A.14) we conclude

|X| « p2 { j Tr P(V
(i)-ni)

2} + p3 , (A.15)

(2)
where p2 is the largest eigenvalue of the matrix Pj . Hence, the lemma

(4.5)-(4.7) has been proved.

Appendix B.

In this appendix we prove eq. (h.tk), using the (commutation) relations

(1*.8)-(}*. 11), which can be written as

IIV^l $ M, IIIV^.V^JII § ea(N), IIJ^.V^^I $ Heb(N) ,

(B.1)
e (N), e, (N) -»• 0, if N->«,
a, D

and also the inequalities (4.12) and (4.13).

From (4.13) and the lemma (4.5) we have

F(v) < P3>N + ^ p2< (Y^ - < V N i ) \ - N r V M
) 2 ) V N v . V K '

 (B-2)
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where p, and p n are independent of v, o.'.d p ->0, if !!-"», cf. ('i.C),

(),.7), (B. ]). Applying eqs. (2.16) and C\18) of chapter I to the auto-

correlation function in (B.2), we have

- Nv-V Ij^l, (E.3)

where we have also used the estimate, cf. (B.1).

n
< 2NM {e (N) + I i.z (N)} r 2MMe(M) , (B.h)

j = 1 J a

restricting \> to the "nterval 0 ^ v. s P.., for i = 1,...,n, where £,...,{.

are arbitrary positive constants. Note that E( K ) - * O , if K-><°, independent

of v.

As a consequence of the mean value theorem we have

/ n v 1 fl >
( n ZiJ dVj ... dvn F(v) = F(vQ),
1~> n n

(B.5)
II — — u

0 0

for some vector vQ with 0 < v Q ^ 5 S... From (B.'y) and ('4. 12) we have the

inequality
n / n \-1 f1 f"

F(0) S J F.i. + n 1. ) dVj ... dv F(v) . (B.6)
i=1 -1 •"• ^i=l 1/ J I n

Applying (B.3) to the F(v) in (B.6), and using the Schwarz inequality for

integrals and (B.1), i.e.

0 . 0.
"1 1

we obtain

(B.8)

So far £,,...,£ are arbitrary positive constants. Choosing the £. such
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Lhat
f /2p 2 \2 ? i 1

Ai H Jl(N) = max j h ^ r ) , ( p 2 e(N)) \ , (B.9)

we have
n

F(0) s p + £ (F.+2M)S,(N) E c.T , (B.10)

': and eqs . (i+. 1 it) and (U.15) have been proved.

Appendix C.

In this appendix we treat some properties of the normalized short-range

operators Vw , i=1,...,n, defined in section 2.1. We first derive the

commutation relations

||[ V ^ , V ^ } ] | |= e ^ d O •+ 0 , i f N-><=. (C.1)

Using the decomposition (2.6)-(2.8) of the operators V^, i.e.

0 0 1

Ih h 5H h I Y M
K = 1 (C.2)

IIR II + 0 , i f H + » ,

and t h e norm e s t i m a t e s

I I V ^ I I S M . , I I V ^ i l S M . , ( i = 1 , . . . , n ) , (C.3)

which hold for sufficiently large M., we have

, v ] i l = II{L(K) Y [v
* K = 1

$ 2 J L ( N ) ~ 1 M . M . + M . I I R [ J ) I I + M.llR^^II + l l R ^ y ^

which proves ( C . 1 ) , cf. ( 2 . 3 ) and ( C . 2 ) .

As a c o r o l l a r y we have t h e commutation r e l a t i o n s

, V^1^ ]ll = E i ( N ) -> 0 , i f N->», (C.5)

where R(V«) is an analytic function of n variables, defined in section 2.3.

Equation (C5) follows from (2.30), (2.33) and (2.3!0, (with R, r, &
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instead of P, p, *' ), which lead to

/. •> » m n

"*<YH),vJ
l)]i« I I 1 .

m=1 2=1 V-..,i

=1 V N N Vwi V
. )

V = M 1 b'

n

(C.6)
J =

with

" - D=M

Finally, a second inequality involving r^ has been used in eq. (1+.25), i.e.

n <» m n
H $ J 7 J |r(i,,...,i)|

m=1 4-1 ip...,!,"-!

( n M. ) IIRilil) II ( n M. ) = r^llR-J . (C.8)

Appendix D.

In order to see that (5.20) or (3.10) does not hold under the same

general conditions for operators as (5.6)» we consider the hamiltonian

+ vwj), (w>0) , (D

where T^ and W_. are general operators satisfying eqs. (5.2)-(5.5). From the

Bogoliubov-PeierIs inequality it follows that

f = lim f[H_] i g , (D.2)

with

g = max lim fK[N(T + 2nwW - wp2)] , (D.3)
n N-*«

assuming that the thermodynamic limits in (D.2) and (D.3) exist. If T and.

W are short-range operators we can apply (5.20), (or (U-2)). As a result

we would have f=g.

In general, however, f can be larger than g, even if the thermodynamic
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limits in (D.2) and (D.3) exist, i.e.

f > g , (D.U)

which implies that the theorem (3.10) cannot be extended to more general

operators satisfying (5-2)-(5.5).

As an example of (D.1) we consider the hamiltonian

2 2 2
yf =; Jj(—vV + wW )« (v*w ^ 0, T — —vV ) (D.5)

where VN and Wj. are normalized short-range operators. From (D.3) and (5-6)

it follows that

with

g = max min <j>(?,n) » (D.6)

n C

<j.(C,n) = lim f [N(-2?vV + v?2 + 2nwW - wn2) ] . (D.7)

On the other hand, from (3.10) it follows that

f = min max <j>(£,n) • (D.8)

5 n

The operators V^ and VL, can be chosen in such a way that (D.6) and (D.8)

lead to the inequality (D.U), which implies that (3.10) is not valid for

the hamiltonian (D.1) with the operator T = -W,,.

Explicit examples have been given in refs. 1, 55. A very simple example

can be obtained choosing

1 N

VK = W N = N" I ok, w > v > 0 , (D.9)

where 0, = ±1 refers to the spin of particle k. In this case we have

<f>(S,n) = v?2 - wn2 - g"1 In 2 cosh 2B(v£-wn) . (D.10)

For sufficiently low temperatures, (i.e. 2gv> 1), the absolute minimum over

5 of <j>(?>T)) occurs for ( E,, n)-values such that

|| - artanh ?, (D.11)

where ?i is "the positive solution of 2£v?j = artanh Cj • The absolute

maximum over ri occurs for (£,n) such that

2Bv? = 20wn + artanh n . (D.12)

Since the curves in eqs. (D.11) and (D.12) do not intersect, the function <j>
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Joes not have a saddle-point and therefore f>g. (The equality f=g would

imply the existence of a saddle-point, see e.g. lemma (36.2) of ref. 38).

Explicitly we have

f = -S~1 In 2 > g = v£i - 8~1 In 2 cosh 2 3 ^ . (D.13)

>' equations

In eq. (D.13) it has been used that the min-max of $ occurs at ?=n=0 and

the max-min at £=?j, n=0.

Appendix E.

In this appendix we give a proof of the following theorem

Theorem: Let K(x,y) be a continuous function of the variables

J: = (Xj,... ,x ), y = (y-j,. .. ,y ), for each xGX , yeY, with X and Y

bounded regions in the x and y space. Let K have a unique maximum at

x = u(y) eX , for each y6Y, and a unique minimum at y = v(x) e ! , for

each xeX . Then

max min K(x,y) = ruin max K(x,y) , (E.1]
x y y x

with the maximum and minimum taken over xGX , y£Y .

Proof : From Brouwer's fixed point theorem it follows that the set of

x = u ( y ) (E_2)

y = v(x)

has a solution (x,y) which is a saddle-point of K, i.e.

K(x,y) $ K(x,y) $ K(x,y) , -(E.3)

for each xGX, yGY, cf. e.g. ref. 38. Using the notation

f(x) = min K(x,y) , g(y) = max K(x,y) , (E.1+)

y x

it follows from (E.3) that

max f(x) i f(x) = K(x,y) = g(y) 5 min g(y) . (E.5)
x y

Sincef(x) $ K(x,y) $ g(y) for each x£X, yGY, we also have
max f(x) 5 min g(y) , . (E.6)
x y
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and therefore

max min K(x,y) = max f(x) = K(x,y) = min g(y) = min max K(x,y) . (E.T)
x y x y y x

Remark: Eq. (E.1 ) also holds when the maximum of K(x,y) over x occurs at a

convex set U(y) C'X , for each yGY, (and the minimum over y at a convex

set V(x)CY , for each x£X) , instead of a unique point u(y), (and v(x)),

see ref. 56-

.Appendix v.

In this appendix we prove eq. (8.1T) • From eq. (8.l!i)> using the

replacement, (a=1,2) ,

T •+ T - 7 v v^™
N N L. a,k N

a,k

with

vd,k) = i( (k

we have the inequality

with

'
(2,k) =
H

_ (k)
N

(F 1 )U

( }

,k) , (
" <Vw

a,!-: k

Ot 5 K.

a,

f 5f
K,v K,v

Using also the inequality

|F({v . }) - F({0})| <
Ot 5 3\

ri,v

F |v | ,
a,k a,k

(F.7)

(with F ^ 2M, cf. (8.3) ), we have, following the same line of

reasoning as in the derivation leading from eq. (B.2) to (B.10) in

appendix B,
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w i t h

F ( { 0 } ) $ l {F + 2MH. (N) = c w , ( F . 8 )
a,k tt'k k W

i i2 -1«21A I \ 2 /|A

È(N) = Ê jN) + £ 5, (N)sa(W) , (F .10)
a,k

\K\2

I. (N) = e .(N) + Y - J s — 2Me (N) , (F .11)
o o , a), a

k k

cf. ( 8 . 3 M 8 . 5 ) , ( 8 . 7 ) .
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CHAPTER I I I

STABILITY OF CRITICAL BEHAVIOUR,
CRITICAL-EXPONENT RENORMALIZATION

AND FIRST-ORDER TRANSITIONS

1. Introduction

When one considers a compressible (Ising) ferromagnet, the critical
behaviour will be unstable. Two types of instabilities have been discussed
extensively in the literature; there can be first-order transitions or a con-
tinuous transition with renormalized critical exponents.

The first-order transitions have been discussed first by Rice1) and Domb2)
on the basis of an instability (i.e. a negative value) of the compressibility, see
also ref. 3, and by Larkin and Pikin4) on the basis of a microscopic hamil-
tonian containing magnetoelastic couplings with acoustic phonons. More
recently Oitmaa and Barber5) have derived first-order transitions in the
context of an exactly solvable Ising model with an attractive four-spin
interaction originating from spin-phonon coupling6).

Another exactly solvable model is the Baker-Essam model7) in which the
partition function can be obtained by an integration over the distances
between neighbouring spins. In the constant-volume ensemble this model
leads to renormalized critical exponents8"10). In the constant-pressure ensem-
ble there may be first-order transitions or critical-exponent renormaliza-
tion"12) and also tricritical behaviour13"16). The Baker-Essam model is a



typical example of a constrained system. More detailed treatments of com-
pressible Ising ferromagnets have been given on the basis of e-expansions in
renormalization group theory17"22).

Another type of constrained system is the Syozi model232*) for Ising ferro-
magnets with (bond) annealed impurities. The constraint is here the condition
that the impurity concentration is constant25"29). This model leads also to the
Fisher critical-exponent renormalization8-9), as can be understood from a
Legendre transformation. A different renormalization has been found by
Essam and Place30) for Ising magnets with site-annealed impurities.

From a more general point of view systems with a constrained hidden
variable have been treated by Fisher9) who also discussed several examples
and showed that the constraint would lead to critical-exponent renor-
malization. Later on Imry et al.31) pointed out that constraints can also lead to
first-order transitions31) and to tricritical behaviour3233), see also refs. 15, 16.

Instabilities will also occur as a consequence of long-range pair inter-
actions. An exactly solvable model in terms of the two-dimensional superex-
change antiferromagnet of Fisher34) has been treated by Esipov35) and Hall
and Stell36). Furthermore, the classical description of demagnetizing effects37)
can be obtained from a hamiltonian containing long-range repulsive pair
interactions, see e.g. ref. 38, p.65. As a consequence one has no first-order
transitions, a finite susceptibility, but also more subtle effects such as a
renormalization of the critical exponent 530). More detailed results have been
found using an e-expansion on the basis of a Landau-Ginzburg hamiltonian
with dipolar couplings39'40). For Ising systems with an attractive long-range
interaction there is a classical critical point41). Emery42) has treated an
n-component classical spin model which can be solved exactly in the limit
n -»oo and which leads to critical-exponent renormalization and tricritical
phenomena, see also refs. 43, 44 for related models.

In view of this one may conjecture that also under more general conditions
the critical behaviour of an Ising system, or a more general reference system
with short-range interactions and with a divergent second derivative of the
free energy, will be unstable under small perturbations of a different nature.
The perturbation can arise from additional terms in the hamiltonian such as
e.g. long-range interactions35'3*41) or four-particle interactions of hybrid
nature5'6), but also from one or more constrained hidden variables9).

It is the purpose of the present paper to present a more general formulation
and a systematic analysis of instabilities in critical behaviour. The results are
of a rather general nature and independent of a number of specific details
such as e.g. the number and (commutation) properties of the operators in the
hamiltonian, or the number and nature of hidden variables. For a brief and
partial account, see ref. 45.
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In order to give an outline of the problem we consider an jV-particle
reference system described by the hamiltonian

&0.N = ~ Nh* - VN, (l.t)

where NVN = {NVfl,..., NVff}, (n finite), is a set of short-range opera-
tors4647) and h* = {hf ,AJ} denotes the coupling constants or fields ap-
pearing in the hamiltonian (1.1). The free energy per particle in the ther-
modynamic limit is given by

/<>(**)=-Urn N-'lnTrexpf-afo,*] . (1.2)

where the inverse temperature /3 = llkT has been absorbed in h*. Starting
from (1.2) we can define the Legendre transform, see refs. 47-51,

go(m) = supffc * • m + fo(h•)], (1.3)

where the mi,m2 , . . . , m n are thermodynamic variables conjugate to
* M f h*.

Consider now the class of systems for which the free energy per particle
f(h) as a function of n external-field or coupling parameters h ,hn is
given by

(1.4)

Here go(m) has been defined by (1.3) and P(m) is an analytic function of
m\, mz,..., mn.

Let us assume that the reference free energy U(h*) has a critical point at
mc. Then, if fo(h*) has a divergent second derivative at the critical point, we
hive

for a certain unit vector e. If now the matrix of second derivatives of P(m) at
mc has eigenvalues different from zero, then P(m) dominates go(m) in the
direction e in a neighbourhood of mc and the critical behaviour of the
reference system will be unstable. This will apply no matter how small the
perturbation P(m) actually is.

Eq. (1.4) has been derived rigorously") from the hamiltonian which can be
obtained by adding a term NP(VN) to -Nh • VN where P(VN) is an analytic
function of n variables. In this hamiltonian we have a competition between a
short-range hamiltonian and an operator of a different nature. In the proof of
(1.4) which has been given in ref. 52, see also5354), use has been made of a
fundamental theorem by Bogoliubov Jr.55-5*).
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An expression similar to (1.4) but with a more general function P(m,h)
which may also depend on the field variables hu • • •, hn can be derived
starting from a general expression for the free energy in constrained systems,
i.e.

f(h)= inf sup [fo(h*(hAti}AVi}))+K(hA€i}AvM d-6)
/.. • i(\ y (11 V

where £ £q and 171,..., TJP are hidden variables and h* and K are regular
functions of hu . • •, hn, £, £„ and 171 TJP. (In ref. 9 one variable TJ has
been taken into account.)

In section 2 we review some details concerning the derivation of eq. (1.4)
and give a discussion on the instabilities in critical behaviour arising from
(1.4). In section 3 we derive eq. (1.4) with the more general function P{m,k)
starting from the constraint (1.6). We also discuss some examples of con-
straints and instabilities in critical behaviour.

In many cases it will be necessary to consider the free energy of the
reference hamiltonian in more detail. More specifically we shall assume in
section 4 that the singular part of the free energy is a homogeneous func-
tion"58) of the relevant fields ef,..., e?, i.e.

Ub"'€f ba-€*) = bfs(ef,..., €*), (1.7)

i<ak< 1. We also evaluate the Legendre transform go(m) = go(E,Z), where
E = { £ , , . . . , Er} and Z = {Zx,..., Zn.r} denote relevant and irrelevant ther-
modynamic variables conjugate to ef , . . . , ef and the irrelevant field variables
C* C*-r resp.

In section 5 we eliminate the irrelevant variables Z from the problem and
derive for the free energy /(fc) = /(e,f) as a function of relevant and irrele-
vant external fields an expression like eq. (1.4) containing a function fl of the
relevant variables E, which will be defined uniquely in terms of P(m, h).

In section 6 the convexity properties of the function FI will be used for the
classification of instabilities in the critical behaviour of the reference system.
If all the eigenvalues of the r x r matrix d2IlldEdE at E = 0 are positive, then
the function fj is locally strongly convex, the system will not undergo a
first-order transition in a neighbourhood of E = 0 and all second derivatives of
the free energy are finite. If one of the eigenvalues is negative, there will be
first-order transitions, so that the infimum, cf. (1.4), cannot be reached in a
neighbourhood of E = 0. Finally, if the lowest eigenvalue is zero, there will be
multicritical features.

The critical-exponent renormalization in the case of convex II will be
treated in section 7. The results include the renormalizations of refs. 9, 30, but
also a combination of both effects and various other renormalizations. The

72



critical-exponent renormalization is derived on the basis of the homogeneity
property (1.7) of /s(e*) and properties of the Legendre transformation.

2. Separable interactions

In this section we review some details concerning eq. (1.4) and equivalent
results which have been obtained rigorously for a class of systems described
by the hamiltonian" ")

SfN(h)= Sea.N(h)+ NP(VN),

2eo,N(h)=N(TN-h>VN).

(2.1)

(2.2)

Here NTN and NVN = {NVft NV%]}, (n finite), are short-range operators
acting on an N-particle system. Short-range operators NVN are defined by

(2.3)

and

(2.4)

for any given particle k. Here fiN is a sequence of subsets of an infinite lattice
which tends to infinity in the thermodynamic limit N -»°° in the sense of Van
Hove4647). The summation over w in (2.4) contains all subsets w C fiN, N(w) is
the number of particles and V(w) the interaction between the particles in
subset a). Equation (2.4) implies that the total interaction per particle in the
infinite lattice is finite. More specifically one may consider sums of one-
particle operators for which V(w) = 0, if N(w) ^ 1, i.e.

NVN = 2 V(k), (2.5)

where V(k) is an operator acting on particle k, or short-range pair inter-
actions, with V(w) = 0 for N(w) ^ 2, i.e.

(2.6)

in which V(k, I) denotes the interaction between the particles k and /.
The function P(VN) in (2.1) is an analytic function of « variables, i.e.

P(£, &) is analytic for |£| ^Mh(i=\ «), where M, > \\V$\\ for all N.
The operator P(VN) will contain terms (quadratic and higher order in the
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which are different from short-range interactions. For example, if NV(N is a
pair-interaction of the type (2.6) and NVff is a sum of one-particle operators,
then

(2.7)

The first term with A] in (2.7) corresponds to a four-particle interaction of
hybrid nature, which is short-range with respect to intra-pair interactions
between i and/ and between k and /, but long-range between the pairs (i, j) and
(k, I). Such operators can be used in the description of compressible Ising
ferromagnets6). Exact results have been obtained in ref. 5 by taking for NVft
the hamiltonian of the (two-dimensional) Ising model. The second term uith
A2 in eq. (2.7) corresponds to a long-range interaction of the equivaieM-
neighbour type. Such operators with A2>0 have been used in a daisies
description of demagnetizing effects38). An exactly solvable model in which
^O.N(A) is the hamiltonian of the two-dimensional superexchange Ising anti-
ferromagnet of Fisher34) and A^P(VN) = N"1/'21,/crl<r/, (a - ±1), has been
treated in refs. 35, 36. Furthermore, the terms with A2 can serve as a simplified
model for interactions of the Kac type, i.e., in d dimensions the interaction
between two particles at distance r behaves roughly like -Jyd e\p(-yr).
Rigorous results for the free energy per particle have been obtained in the
Van der Waals limit y I 0, see e.g. refs. 41, 59-62; the results are in general
equal to those for an equivalent-neighbour coupling.

For the class of hamiltonians (2.1), the free energy per particle in the
thermodynamic limit

/(A) m - lim N"1 In Tr exp[-S(fN(A)], (2.8)

where /? = XlkT has been absorbed in A, is given by eq. (1.4). In eq. (1.4) g^m)
is the Legendre transform of the free energy per particle /0(fc*) of- the
reference hamiltonian (2.2) which is linear in the short-range operators.

The proof of eq. (1.4) in ref. 52 is based on the decomposition of

P(VN)=Q(VN) + R(VN) (2.9)

into a concave part Q(VN) and a convex part R(VN), and on the minimax
result5254)

/(A) = min max[/o(A - <?'(£) -
t n

(2.10)

where Q'**dQld(- and R'^dRI&q. For concave P(VN) = Q(VN), eq. (2.10)
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reduces to the theorem by Bogoliubov Jr.55'56). The validity of this theorem for
a larger class of operators VN, including also long-range interactions, is an
essential feature of the proof of (2.10) for short-range operators. In ref. 52
also alternative expressions for /(h) have been given. Moreover, for the
Legendre transform of /(A) we have from (1.4) the result

k m

where CE denotes the convex envelope, i.e. the maximum of all convex
functions which lie below go(m)+ P(m).

Starting from (1.4) or (2.11) we can discuss the instabilities in the critical
behaviour of the reference system described by go(m) or fo(h*) due to a small
perturbation. Here we consider the two special cases that the eigenvalues of
d2Pldmdm are positive, (P(m) strongly convex), or negative (P(m) strongly
concave), resp.

2.1. P(m) strongly convex

In eq. (2.11) we can then omit the convex envelope, since gQ{m) itself is also
convex, so that

g(m) = go(m)+P(m).

From (2.12) we conclude:

(2.12)

i) If the reference hamiltonian has a critical point, i.e. a non-analytic
behaviour of go(m), at m = mc, then the hamiltonian (2.1) has also a critical
point (non-analytic behaviour of g(m)) at m = mc.
ii) There will not be any first-order transitions. In fact, the function go(m) +
P(m) cannot contain straight parts on which the external fields h = dgldm
would be constant. (This is also true if the reference hamiltonian has a
first-order transition, i.e. go(m) has a straight part on which the internal fields
h* = dgoldm are constant.) The absence of first-order transitions may be
considered as a generalization of the well-known demagnetizing effect, see
also sec\\on 3 for a more detailed discussion.
iii) For the matrix of second derivatives of the free energy we have

X = dhdh \dmdmf \dmdm dmdm/
(2.13)

which implies that the second derivatives at any critical point remain finite.
For the effects of critical-exponent renormalization, see section 7.
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2.2. P(m) strongly concave

Assume that the free energy fo(h*) of the reference hamiltonian has a
divergent second derivative at all critical points mL, i.e. at mc eq. (1.5) holds
for a unit vector e. Then for all values of m in a sufficiently small neighbour-
hood Um of any mc we must have

dmatn;
m G Um. (2.14)

On the other hand, the infimum over m in eq. (1.4) must occur at a point
where gn(m) + P(m) is convex. This implies that, for the values m G Um, g{m)
belongs to the straight portions of the convex envelope in (2.11). Hence:

i) Any critical point mc of the reference hamiltonian is unstable,
ii) There will be first-order transitions and new critical points m(). These
critical points are of a classical nature, as can be seen from a Landau
expansion of gn(m)+ P(m), which is an analytic function in the neighbour-
hood of mo. A systematic classification of classical critical behaviour can be
given following the treatment of ref. 63, or the theory of catastrophes6465).

3. Constrained systems

In this section we consider the free energy per particle in systems with
constraints from a more general point of view. We shall deal successively
with sup-constraints, inf-constraints and inf-sup-constraints.

3.1. Sup-constraints

Assume that the free energy per particle f(h) is given by

/(A) = sup /(A,

where

f(h, {TJ,}) = /0(A*(A, {r,,})) + K(h, {TJ,}).

(3.1)

(3.2)

In eq. (3.2) /0(A*) is the free energy per particle (1.2) of a reference hamil-
tonian (1.1) and h* and K are regular functions of the fields ft,,.... hn and the
hidden variables TJI, . . . , TJP. Eqs. (3.1) and (3.2) are a generalization of the
relations for p = 1 introduced by Fisher9). If /(A, {TJ,}) for fixed A is a concave
function of the variables TJ,, . . . , TJP, then the supremum in (3.1) defines unique
functions TJ,(A), . . . , TJP(A).
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3.1.1. Legendre transform
From (3.1), (3.2) and the definition, cf. (2.11), of the Legendre transform

g(m), we have

g(m)= supsup[h • m + /0(fc*(A, {*>,})) + K(h,{vi})l (3.3)
* {Vi)

Using the inverse transformation

h = h(h*Avi}) (3.4)

and interchanging both suprema in (3.3), we find

g(m) = sup sup[A(A*, {n,}) • m + /o(A*) + K(h(h*, {»*}), {T?,})]

= sup[A*.m+/0(A*) + R(m,h*)], (3.5)
**

with
R(m, A*) = sup[(fc(A*,{T,j}) - ft*) • m + K(A(A*, {i,,}), {Vi})]. (3.6)

The function R(m, ft*) is a convex function of m, i.e.

O < A < 1 , (3.7)

which is trivial because of the sup and the linear dependence on m in eq. (3.6).
From (3.5) it follows that the function g(m) is also convex,

g(ACTi + (l-A)m2)^Ag(m,) + (l-A)g(m :) , O < A < 1 . (3.8)

3.1.2. Examples
i) Consider the hamiltonian (2.1) in which P(VN) = R(VN) is convex. Then
(2.10) is equivalent to (3.1) and (3.2) with p=n and A* = A-/?'(»?), K =
R(r))- -q - R'(r)). Using the Legendre transformation (1.3), eq. (2.12) is
equivalent to (3.5), since R(m, h*) = J?(m)t. A special case is the classical
description17'18) of demagnetizing effects which can be obtained taking R(m) =
2tn • D • m, in which m = (mx, my, m:) is the magnetization per particle and D
is the tensor of the demagnetizing field.
ii) Consider an Ising system with the free energy per particle

f(V, V) = - Hm N-1 In 2 ( l l f d*« e"**)(n f d*, e"*'), (3.9)

i j ) ,

ifi = -4>2(Xi) - 7) 'X; - h ( V

+ This can also be seen from (3.6). since in view of the convexity of R(ti) the supremum occurs
at Tf = m.
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where </, j) denotes pairs of nearest neighbours and / = 1 , . . . , N the lattice
sites, 07 = ± 1. (The inverse temperature j8 = MkT has been included in 2ft,
and X,).

Special cases of (3.10), with H{xti) = 0, are:

a) e*'(A:> regular, e
02<Jf> = 8(x). (3.11)

Eq. (3.9) reduces to the Baker-Essam model7) in the constant-stress (17 = A)
ensemble12). The function J(x) describes the dependence of the exchange
coupling on the interatomic distance.

b) e*|(jr) = 5(x) + 5 ( x - l ) , e*=(;t) = 5(x). (3.12)

Eq. (3.12) gives the double-bond Syozi model27) with two different interaction
strengths J(0), J( l) ; 17 is the chemical potential for bonds / ( I ) . The n-bond
Syozi model with n different exchange couplings28'29) can be included by an
obvious generalization of (3.12).

e*2(x> = 8(x) + S(x - 1).c) (3.13)

Eq. (3.13) leads to a two-component model30) in which the magnetic field can
have two different values, h(0) = h + hloc, /i(l) = h - h\oc, where h is the
applied magnetic field and /iio,. a local field30); r\' is the chemical potential for
fields h(l).

The free energy /(TJ, TJ') for //(Jty) = 0 can be writtent

(3.14)

(3.15)

/3, h))- A\(-q, j8) - A2(tj', /3, h),

where /0(/*, h*) is the free energy of a rigid Ising model, i.e.

fa(J*, h*) = - Urn AT1 In 2 exp(7*2 OJOJ + h* 2 «r,),

with
r) / f

j ' , ]8, h) = dx (3.16)

The functions A,(TJ, /3) and A2(TJ', /3, /i) are given by

= \z

I', 0,h) = i lnff dx e^o+v^u) T (3.17)

tThe more complicated expressions for the case H(xH) * 0 will not be given here, see e.g. ref.
26.
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Here z is the coordination number of the lattice. The inverse temperature
)8 = 1/kT has been added to indicate that in (3.9), as well as in (3.15), /3 has
been included in the coupling constants, so that (3.16) and (3.17) depend in a
non-trivial way on /3. Furthermore h(x) depends on the external field h, so
that h* and Ai depend also on h. (An /i-dependence of J* and Ax e.g. through
4>\ may also be taken into account.)

From (3.14) it follows that the critical behaviour in the constant 7j, 17'-
ensemble (i.e. constant stress in the case of (3.11) and constant chemical
potential for (3.12) and (3.13)) is given by the critical behaviour of the rigid
Ising system.

From a physical point of view it is often more appealing to pass to the
ensemble in which the quantities

2
(3.18)

a '=l imAT

are constant1227'30). This can be done using the L gendre transformation

i, a') = suptizar, + o V + /0( /*, h*)- A,(T,, /3) - A2(T,', p, h)]. (3.19)

In (3.19) we should have sup, since according to its definition /(17,17') is
concave in 17 and TJ'. The function & describes the free energy of the
Baker-Essam model in the constant-volume (constant-interatomic distance a)
ensemble12), cf. (3.11), or the free energy for Ising systems with bond-annealed
impurities27), (3.12), or site-annealed impurities30), (3.13), in which the concen-
tration of bonds /(I) , or fields A(l) resp., are kept constant. Therefore the free
energy in these cases can be obtained by a sup-constraint of the form (3.1)
which leads to (3.5) with a function R(m, A*) depending on ft* via (3.15)—(3.17)
and (3:4), (3.6). Note that in all three cases (3.11)—(3.13), eq. (3.19) reduces to a
non-trivial constraint in one variable (p = 1).

3.1.3. Remarks
i) If R{m, h*) is strongly convex in m, i.e. d2R/dmdm is positive definite, then,
cf. the discussion below eq. (2.12):
a) A critical point of the reference hamiltonian at h* = h* will lead to a
critical point of the constrained system (3.1) at h = ht + (dRIdm)(m, fc?),
where m is the solution of m = -(dfoldh*)(h?)-(dRldh*)(m,h?).
b) There are no first-order transitions, i.e. no straight line segments on which
h = dgldm is constant.
c) The second derivatives of the free energy are finite.
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ii) Not always will the function /?(m, A*) be strongly convex. Especially,
when the number of constraints is smaller than the number of variables h, i.e.
p<n in eq. (3.1), one can expect that e' • (d2R/dmdm) • e' = 0 for certain
directions e'. If the reference free energy has divergent second derivatives,
i.e. (1.5) holds for an arbitrary direction e, then the constrained system (3.1)
has a critical point at which some of the second derivatives -d2fldhdh
become finite and others remain infinite. This situation occurs in the three
examples (3.11)-(3.13) in which we have only one non-trivial constraint
(p = 1) for the free energy tfi{a, a') and two variables /3 and h.

iii) From (3.5) it follows that the value A* at the supremum is uniquely
determined by, cf. refs. 52, 54,

*, e) = lim - / - fo(h* + ve) =s e • (m + —• (m, h*))
1.1 o Of \ am I

*£ lim - / - / 0(A* + ve) = /*?(**. e). (3.20)
.•10 UP

for all unit vectors e.

If the reference system has a first-order transition at h* = c. i.e. /u.0(c. e')<
fLoic, e') for a certain direction e', then for all m-values satisfying (3.20) with
h* = c, we have

For the special case R(m) = im • D • m we obtain h* = h - D • m, which is the
wellknown relation37'38) between the internal field h* and the applied field h in
the classical description of demagnetizing effects.

3.2. Inf-constraints

Assume that the free energy per particle f(h) is given by

f(h) = inf /(*, {£}), ; = 1 q, (3.22)

where

f(h, {§}) = fQ(h*(h, {$})) + K(h, {£}). (3.23)

In eq. (3.23) fo(h*) is the free energy of a reference hamiltonian and h* and K
are regular functions.

3.2.1. Legendre transform
Using the inverse Legendre transformation of (1.3), i.e.

Uh*) = 'n f l-/ i* * * + So(m)] (3.24)
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and interchanging the infima over m and {ft}, we have

/(A) = inf inf[~A*(A, {ft}) • m + go(m) + K(A,{ft})]

= inf[-/i > m + go(m)+ Q(m, ft)]

with

Q(m, h) = inf [(A - A*(A, {ft})) • m + K(/i, {ft})].

The function (?(m. A) is a concave function of m, i.e.

(3.25)

(3.26)

:,/i)< 0 < A < I, (3.27)

as follows from the infimum and the linear dependence on m in (3.26).

3.2.2. Remarks
i) If Q(m, h) is strongly concave in one direction, i.e. e' • (d2Qldmdm) • e' <Q
for a certain unit vector e', and the free energy of the reference system has
only divergent second derivatives at any critical point, i.e. eq. (1.5) holds for
any direction e, then
a) any critical point of the reference system is unstable,
b) there will be first-order transitions and classical critical points.
ii) The same conclusions a) and b) can be reached, if Q(m,h) is a strongly
concave function, i.e. e • (d2Q/dmdm) • e < 0 for all unit vectors e, and the free
energy of the reference system has at least one divergent second derivative at
any critical point, i.e. eq. (1.5) holds for a certain direction e'.

3.2.3. Examples
i) Consider the hamiltonian (2.1) in which P(VN) = Q(VN) is concave. Then
(2.10) is equivalent to (3.22) and (3.23) with q = n and h* = h - <?'(£), K =
Q(€)-£'QW- Eq. (1.4) has the form (3.25) with Q(m, h) = Q(m) = P(m).
ii) Consider now the Dicke maser type of model66"*9"54)

= N[TN + P(VN) - h • VN] a*a0)

(3.28)

where NTN and NVN are short-range operators, cf. (2.3), (2.4), a\,ak are
boson operators and P and Q are analytic functions, Q(VN) not necessarily
being hermitean. The case in which N[TN + P(VN)-h • VN] and Q(VN) are
linear in the components of the total spin has first been solved exactly by
Hepp and Lieb66), cf. also ref. 67 for polynomial extensions. Eq. (3.28) with
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short-range operators is more general, since a (reference) hamiltonian linear in
short-range operators can give rise to phase transitions.

For the reference hamiltonian

= N[TN - h • VN] + 2 <okatak - VN(aal+ a*a0) (3.29)

the free energy per particle (1.2) in the thermodynamic limit is given by

, a) = Uh) + fb - \a\2lwo, (3.30)

where /„(*) and /h are the free energies per particle corresponding to
N[TN-h'VN] and 2,k<okakak resp. The Legendre transform is given by

go(m, d) = sup[A -m + ad* + a*d + /„(*, a)] = gsr(m) + fh+ <o0\d\2, (3.31)
h,a,a*

where gSr(m) is the Legendre transform of /sr(h).
The free energy per particle for the total hamiltonian (3.28) can be shown to

be68695254), taking a = 0,

f(h, 0) = inf [-* • m + go(m, d) + P(m) + d*Q(m) + dQ*{m)]
m.d.d*

= inf[-A • m + gsr(m) + fb+P(m)- \Q(m)\2l<o0]

0|</|2] (3.32)
d,d*

with the function

il/(h, d) = - Iim AT1 In Tr txp[-N{TN + P(VN)- h • VN

+ d*Q(VN) + dQ\ VN)}1 (3.33)

Equation (3.32) gives three inf-constraints; the third type with P = 0 and
linear Q has been used in magnetothermomechanics'"3), where the effect of
lattice compressibility on the magnetic phase transition in the rigid lattice
system leads to a mechanical instability, (t(/ is a concave function which
dominates <»o\d\2 for small d), and a first-order transition.

3.3. Inf-sup-constraints

Assume that the free energy per particle is given by (1.6), i.e. eq. (3.22) in
which

f(k, {£}) = sup[/0(A *(h, {£,}, {n,})) + K(h, {§}, {T,,})] (3.34)
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is assumed to be a concave function of A and where k*(h, {£}, {*?,}) and
, {£;}, {17,}) are regular functions.

3.3.1. Legendre transform
Inserting the identity

infsup[(ft'-ft)-m'-
m' h'

<P(h) (3.35)

/(A) = inf inf sup sup[(A' - A) • m' + /o(A*(A', {$}, {17,}))
i(t\ m' »' {ltd

for an arbitrary concave function <P, cf. e.g. appendix A of ref. 52, we have,
cf. eqs. (3.22) and (3.34),

(3.36)

(3.37)

(3.38)

Using the inverse transformation of fc*(A', {$}, {17,}), i.e.

fc' = fc'(A*, {$},{„,})

and following the treatment of section 3.1.1 we find

/(A) = inf inf sup[(ft* - fc) • m' + /0(A*) + R(m', A*,

with

R(m', A*, {(,}) = sup[(A'(ft*, {§}, {TJ,}) - ft*) • m'

(3.39)

We want to investigate the stability (under very small constraints) of a
reference system with a critical point which may be chosen at fc* = 0. If we
expand the function R in terms of ft*, then

R(m\ h*, ft* + ', A * , (3.40)

where R" contains quadratic and higher order terms in A*. The term R" may
be ignored close to the critical point assuming for the moment that the
reference free energy has divergent second derivatives. This assumption,
however, should not be taken too literally, in view of the description of the
reference free energy in section 4, section 7.4 and appendix G. Omitting the
term R" in (3.40) and using the Legendre transform (1.3), we have

/(A) = inf inf[-A •m' + g^m' + R^m',

Finally, introducing the variable m =

(3.41)

with the inverse
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transformation m' = m'(m, {ft}) we obtain

f(h) = inf[-h • m + go{m) + P{m, ft)],

with

, A) = inf[* • (m - m'(m, {ft}))

(3.42)

(3.43)

Eq. (3.42) is a more general expression than (1.4), since the function
P(m, h) depends also on the variables h. In principle not much can be said on
the convexity (or concavity) properties of the function P(m,h) given by
(3.43), (3.39) and (3.40). Therefore a more detailed treatment, taking into
account the homogeneity properties of the reference free energy, is needed to
investigate the critical behaviour arising from (3.42), see sections 4-7.

3.3.2. Remarks and examples
i) The restriction to linear terms in h* in (3.40) is not necessary in the case
that the function %({TI,}) = \K{h,{€ih{vi))- h*(h,{€il{vi)) • ml has a uniquely
determined maximum over {17,} for all values of {ft} and h. (This condition is
satisfied e.g., if the function .^({TJ,}) is (quasi)concave.) In that case we may
interchange49) the infimum over m and the supremum over {TJ,} in the expres-
sion

/(*) = inf sup inf[-A*(/i, {ft}, {Vi}) • m + go(m) + K(h, {ft}, {»»,})] (3.44)

which follows from (3.34) and (3.24).
As a result f(h) can be expressed in the form (3.42) with

P{m, h) = inf sup[(fc - A*(A, {ft}, {T,,})) • m + K(h. {ft}, {r,,})]. (3.45)

ii) Consider the hamiltonian (2.1) in which P(VN)= Q(VN) + R{VN), cf. (2.9).
Then (2.10) is equivalent to eq. (1.6) with p = q = « and ft* = h - Q ' ( £ ) -
R'(i}), K = Q(£)-£-Q'(£) + R(il)-'n-R'(rt). Equation (1.4) has then the
form (3.42) with P(m, h) = P(m), cf. (3.45).

iii) Consider the anisotropic Baker-Essam model on a rf-dimensional (hyper-)
cubic lattice in which the exchange interaction /«(.*«) between neighbouring
atoms as well as the function <f>n(xn) depends on the direction S = 1 , . . . , d.
Then, by an obvious generalization of the considerations in subsection 3.1.2
the free energy il/(a ,ad) as a function of the average distances as

between neighbouring atoms in the directions S = 1 , . . . , d, can be evaluated
to be

[ d d -1

2 asVs + Wt Jf) - 2 As(Vs, /?) (3.46)



in which 7 £(17* /S) is given by the first equation of (3.16) with 4>&{xs), 17*, 7«(x«)
instead of 0I(JC), TJ, J(X) and

As(Vs, P) = 2 ln[ f dx« **M+«i*+*M f dxs &<*)+**-**,>]. (3.47)

By taking the (Legendre) transform

= inf [pax... ad + <j/(au . . . , ad)], (3.48)

one obtains the Gibbs free energy in the constant-pressure ensemble. (The
existence of the infimum in (3.48) with positive values of p, a\,..., ad is not
entirely trivial, but will be ensured under (physical) conditions on the func-
tions <fo and JB.) From (3.48) and (3,46) the Gibbs free energy can be
expressed in terms of an inf-sup constraint of the type (1.6). Furthermore
using the inequalities |m«| =s 1 for the correlations between nearest neighbours
and the concavity of the functions -7?(i7S, /8)m« - A&(-qs, (3), <t>(p) can be
expressed in the form (3.42), (3.45) with

[ ap n
. . .. * = i"[ I>J 1 | 1 , | l

d -1

+ ^{asVs ~ ^«(i?«, /3)m« - As(r)s-, /?)} . (3.49)

Equations (3.42) and (3.49) may lead to renormalized critical exponents if
P(m, ft) is convex as a function of m, to first-order transitions, if P(m, h) is
concave in at least one direction, and to multicritical behaviour, see also
sections 6.3 and 6.4, if the matrix d'Pldmdm has a lowest eigenvalue zero at
mc for suitable /3 and p. (The tricritical point in the Baker-Essam model and
compressible ferromagnets has first been discussed in refs. 13-16 from a
slightly different point of view).
iv) Finally, there might be some relation with recent results obtained using a
variational approach in renormalization group theory70"72). A variational prin-
ciple for the free energy involving a finite number of variables may lead to
constraints as treated in this section.

4. Critical properties of the reference hamiltonian

4.1. Reference free energy

In this section we give a description of the free energy per particle fo(h*) of
the reference hamiltonian defined by (1.1) and (1.2) in the neighbourhood of a
(multi)critical point C. After an appropriate choice of origin, C may be
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assumed to occur at h* = 0 with zero values m = 0 of the first derivatives of /0

atC.
Using a local (linear) transformation, the free energy can be expressed in

terms of relevant fields e f , . . . , e? and irrelevant fields f f,.,., C*-n i.e.

** = { e f , . . . , e * , Cf £*_,} = S • **, (4.1)

and

/o(**) = /o(S-' • k *) = /<,(*•) = /<>(€*, f*)> (4.2)

where e* = {ef , . . . , «?} and f* = {£? , . . . , fif.,} are r and n - r dimensional
vectors resp.

The variables e* and f* in (4.1) are chosen such that

i) critical points C of the same nature as C occur at e* = 0, also for £* ̂  0,
ii) in a neighbourhood of (e*, £*) = (0,0) there are no critical points of higher
order, (i.e. with a larger number of relevant variables),
iii) the second derivatives -d2fjd(*dS* and -d2fjdg*de* exist at the critical
points C, C and are finite,
iv) the second derivatives -d2folde*de* with respect to the relevant variables
at the critical points C, C are infinite.

More specifically we shall assume that the reference free energy can be
expressed as, choosing the standard representation for the quadratic terms,

Me*, f ) = /s(e*) - if*' f* + F(e*. {*). (4.3)

Here /,(«*) is a non-analytic function with divergent second derivatives at
e* = 0 satisfying the homogeneity property (1.7) with 5< ak < I. (We shall not
take into account terms for which ak = 5; usually divergent second derivatives
with at = { involve logarithmic corrections which require a more detailed
analysis, cf. e.g. refs. 9, 73, 74.) Eq. (1.7) implies that the first and second
derivatives of /s(e*),

£r (4"4)

satisfy the homogeneity relations57'58)

«?).
f £*).

As an example we may mention a simple ferromagnet for which r = 2,
ef = 1 - T/Tc, cf = H and

a, = 1/(2 - a), a2 = 4/(2 - a), (4.6)
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where a is the exponent of the specific heat and A = (38 the gap exponent, i.e.
0 = 2 - a - A, -y = 2-a-2A.

The second term in (4.3) originates from a contribution to the regular part
which is quadratic in the irrelevant field variables. The function F(e*, £*) is a
small correction containing regular parts, e.g. quadratic terms in c* (or
cross-terms ef£?) and higher-order terms, but also next-leading singularities
which may be neglected close to the critical point. The precise meaning of the
function F(e*, £*) being small is specified in eq. (4.10).

At first sight the simple choice (4.3) may seem a restriction of generality.
Our purpose, however, is to analyze the critical behaviour of the free energy
(3.42), in which g<£m) is the Legendre transform of the reference free energy
fo(h*) and P(m,h) an analytic function arising from a constraint of the type
(1.6). In doing so we shall obtain by choosing an appropriate function P^m, h)
a more general expression for the free energy /0(e*, £*) with also finite second
derivatives, i.e. 0 < ak < 1 in eq. (1.7). From (3.42) with general P(m, h) one
can then investigate the stability of the critical properties of the more general
/o(«*. f *) under the influence of a perturbation P(m, h) - Po(m, A), see section
7.4.

We shall now take into account the leading terms of the order b in the free
energy, where b is the parameter, cf. (1.7), that tends to zero if we approach
the critical point. Equation (4.3) can be rewritten as

where

satisfies the homogeneity relation, cf. (1.7),

-., bmtf-r) = bfh(€f, . . . , € ? , < ? , . . . , «
(4.9)

The assumption that F(e*, f*) is small may be formulated by the property

F(fca 'ef,.... btt<e*, &"2"f, • • •, bma~r) = o(bl+"), (4.10)

for some 17 > 0 , where o(b[ 1>) is a shorthand notation for a function satisfying

Hm<7(61+1|)*r(1+'') = O. (4.11)
Mo

4.2. Legendre transform

We now consider the Legendre transform g<£E, Z) of /o(€*, (*), i.e.

ME, Z) = su?[«* • E + C* ' Z + /„(€*, (•)], (4.12)
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where

£ = {£, E,}, Z = {Zt Zn.r} (4.13)

are the relevant and irrelevant thermodynamic variables conjugate to the
(internal) fields ef,..., ef and £f,..., £$-r resp.

When we ignore the term F(e*, f *) in (4.7) we obtain the Legendre
transform

gh(E, Z) = sup[e* -E + (*-Z +/„(€*, £•)], (4.14)

so that, cf. (4.8),

gh(E,Z) = gs(E) + iZ>Z, (4.15)

where

)J (4.16)

is the Legendre transform of /s(e*). From (4.16) and (1.7) it follows that
is a homogeneous function of the variables Eu..., En i.e.

«,(*'-"Ei b'-°'Er) = bg£Eu -.., Er). (4.17)

In fact

= sup
b"<c* b

= sup [ g effc1-"^ + /s(ef,..., e*

sup r2et£i+/.(eT €*)]}= bgs(E Er).
ie* b"'f'llc = \ JJ

Eq. (4.17) implies that the first and second derivatives,

6 t = | | , a r - ) * - ^ . (4.18)

satisfy the homogeneity relations

1 , . . . , bla'Er) = fea
, Er), j

rVfeIUlfi ,b]a'Er) = ba>+arlx-\,(Eu...,Er).

For the Legendre transform go(E, Z) it can be shown that

g«(E, Z) = gh(E, Z) + G(E, Z), (4.20)

where G(E, Z) is a small correction satisfying

G{b[a'E bya'En bmZu ..., bmZn-r) = o(bi+v), (4.21)
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with the same 77 > 0 as in (4.10). For a derivation, see appendix A. If we
ignore terms of order higher than b we may take

go(E, Z) - gh(E, Z), (4.22)

where gh(E,Z) has been given by (4.15). Eq. (4.22) will be the starting point of
further considerations.

5. Elimination of irrelevant variables

In this section we eliminate the irrelevant variables Z, replacing the func-
tion P(m, ft) by a new function 17 depending on the relevant variables E. We
also give a discussion on the origin of possible terms appearing in /7.

5./. Elimination of Z

Consider the free energy per particle (3.42) in which go(m) is defined by
(1.3). Instead of h* we introduced in (4.1) relevant and irrelevant (internal)
parameters h* = (e*, £*) = S • ft*. Furthermore, in eq. (4.13) we introduced
relevant and irrelevant variables

m = { £ , , . . . , £ „ Z , , . . . , Zrt_r} = S"1 • m, (5.1)

where E and Z are conjugate to e* and f* resp. and m denotes the variables
conjugate to h*, i.e. m • ft* = m • A*. The tilde in (5.1) denotes the transposed
matrix. The Legendre transform defined by (4.12) is related to go(m), defined
by (1.3), by

go(E, Z) = Urn) = sup[h* • m +fo(h*)]

(5.2)

We now express the free energy per particle /(.':? ' n (3.42) as a function of
external parameters

ft = {e, e n Cu • • • , Cn-r) = S - h , (5.3)

/(€, £) = /(*) = US'1 - h) = /(*), (5.4)

where e ,er and £x,..., £„_,. are conjugate to £ , , . . . , Er and Zu ..., Zn-,
resp. Using (3.42) and (5.2)-(5.4) we obtain

/(€, f) = inf[- ft • S'] • m + gB(m) + P(m, S~x • ft)]

= inff-ft • m + go(m) + P{S • m, S"' • ft)], (5.5)
m
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which can be written in the form

f(e, 0 = inf[-e -E-{-Z + ME, Z) + P(E, Z,«, 0], (5.6)
B,Z

with

P(E, Z, c, 0 = P(* ' « . S"1' *) = P(«. *)• (5.7)

Using the estimate Zk ~ fc"2, cf. (4.21), we have the expansion

P(E, Z, €, 0 = HE, 0, e, {) + PZ(E, «, 0 • Z + i z • Pzz • Z, (5.8)

where terms of the order b1+v with TJ > 0 have been ignored. (In the last term
the matrix Pzz(E, c, 0 has been replaced by P?z(0,0,0) = PZZ.) Inserting (5.8)
into (5.6), we have

+ P(E,0, e, 0 + Pz(E, €,£)-Z + \Z> Pzz • Z\ (5.9)

From the trivial property

inf&Z • (1 + Pzz) • Z + T - Z] = -[T - (1 + PzzYx • T (5.10)
z

it follows that

/(e, O = inf[-e • B + g,(£) + P(£, 0, e, f)

i _!/•« tc - r\ _ r\ . ft _L a v-i;«,£) - o - (i + B*z) • (pz(«, €, 0 - 0 j . (5.ii)

We now use the relations

P(E, 0, €, 0 = Po(e, 0 + PE(e, 0 • E + P"(E, €, 0 ,

Pz(E, e, 0 = Pz(0, e, 0 + PZE(e, 0 • E + P£(£ «, 0 , ( 5 < '2 )

in which P" and Pz contain only quadratic and higher order terms in the
variables E. The terms Po and Pz independent of E can be included in the
regular part of /(c, 0 . The linear terms in E can be taken into account by
introducing new relevant parameters

i = e - PE(«, 0 + (Pz(0, e, 0 - 0 • (1 + Pzzy
x • Pa<«, 0 . (5.13)

Using the inverse transformation of (5.13), i.e.

c = e -p(€ ,0 , (5.14)

eq. (5.11) can be rewritten as

/(e, 0 = inf[-e • E + g,(tf) + 77(E, i, 0 ] + /7r(«, 0 , (5.15)
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where

n(E, i, O = P" - Pz • (1 + Pzz)-' • (Pz - 0

- \(PZ + E • PZE) • (1 + Pzz)-' • (P 2 + PZE • E), (5.16)

17,(e, O = Po - kPz ~ £) • (1 + PzzTx • (Pz ~ O- (5.17)

In (5.16) and (5.17) the following abbreviations have been used:

P» - P"(E, i - p(i, a a Pi - PHE, i - p(i, 0, O,

Pz - Pz(0,« - p(«, f), f), PZ£ - Pz£(« - j»(#, f), f), (5.18)

all these functions being regular in E, i and £

5.2. Discussion

We now discuss some features of the transformation (5.13) and the result
(5.15), (5.16) for the free energy. Here we shall assume that the function P is
small.

The transformation (5.13) should be considered as a nonlinear trans-
formation; in general there are ee and e£ contributions to the second and third
term of the right-hand side of (5.13) which may be more important than linear
terms. First order contributions in P arise from the terms

eePEt(, eCPat, *£Pz&- (5.19a)

Second order contributions ~ P 2 are provided by products like

where e.g. PZEti denotes a four-fold derivative of P(E, Z, e, £) with respect to
one variable Z, one variable E, one variable e and one variable f. (Also, there
may be quadratic terms ~ ££, which have been omitted here.)

In the free energy expression (5.15), cf. (5.16), we can have quadratic terms in
E, in first order arising from EEP%E and in second order from products
EPZEPZEE and EEPZEEPZ- These terms will dominate close to the critical point
E = 0, if the eigenvalues of the matrix of second derivatives d2n/8E8E at
(E, e, f) = (0,0,0) are different from zero. If one of the eigenvalues is zero, then
other terms such as EEE and higher order terms in E may be important in (5.15),
but also terms like eEE and t,EE which depend on the external variables. First
order contributions to iEE and £EE can arise from

CEEPIEE, CEEPZEE (5.20a)
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and second order contributions ~ P2 from products

iEEPZtEEPz, EEPZEEiPZf, EiPZEePZEE,
(5.20b)

(EEP^EEPZ, EEPteEtPz, Et?mPZEE, EEPZEEPZZ£,

but there are also terms

iEEPEEe{dpldi), £EEPEEe(dpld0, (5.20c)

which arise from the linear part of the transformation (5.13), cf. also the
expression for P11 in (5.18).

Note that a function P(m), independent of h, as in eq. (1.4), which can be
derived from the hamiltonian (2.1), cannot give rise to iEE and iEE terms
apart from the term iEEPZEE in (5.20a). Also, in that case the transformation
(5.13) is a linear transformation, i.e.

S -P Z E . (5-21)

Furthermore, if P(E, Z, e, f) is a quadratic function of the variables E, Z, e,
f, the transformation is linear and no terms iEE and £EE can arise.

Finally, if the function P(m,h) is an even function, i.e. P(m,h) =
P(-m,-h), then all contributions (5.19) and (5.20) vanish. First order con-
tributions to terms cee and ee£ in the transformation (5.13) are then provided
by

eeePEftt, £«PE {«, £eePZEtc. (5.22)

First order contributions to terms HEE and i£EE can arise from

B, £iEEPZtEE. (5.23)

6. Stability of critical behaviour

In order to discuss the stability of critical phenomena we distinguish
between the following three cases:

i) The matrix of second derivatives d2WdEdE of the function /7(£, €, f) in
(5.15) at (E, i, £) = (0,0,0) has positive eigenvalues,
ii) The matrix d2n/dEdE at (E, i, f) = (0,0,0) has a negative eigenvalue,
iii) The matrix d2nidE3E at (E, i, f) = (0,0,0) has a lowest eigenvalue 0.

The cases i), ii) and iii) will be treated in subsections 6.1, 6.2 and 6.3 resp. The
different types of critical behaviour may be described in terms of a multi-
critical scaling law as given in subsection 6.4.
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6.1. Positive eigenvalues

In this case the function /7(E, 0,0) is strongly convex at E - 0, i.e.

" " (0,0,0)- e>0, (6.1)
dEdE

for an arbitrary unit vector e. Since the singular part /s(c*) of the reference
free energy has divergent second derivatives, cf. (4.5), we also have

e'WE(E>°'Q)-e^Q< forE-0, (6.2)

for an arbitrary direction e. From (6.1) and (6.2) it follows that the function

«A(E, e, f) = gS(E) + FI(E, i, £) (6.3)

is strongly convex for sufficiently small E, i and £, i.e. E E l/E, e G L/e, f G l/f,
where t/E, l/e and U( are neighbourhoods of the origin. For E outside UE the
function gs(E) may be assumed to be larger than a positive constant. There-
fore, the function ip(E, €, f) will assume its absolute minimum as a function of
E for fixed i G Ue, f G t/{, in the neighbourhood t/E, provided that /7(E, e, ^)
is sufficiently small.

Then, for i G Ue, £ G (7̂ , the infimum over E defines a unique function
E(i,Q with the property E(e, f)-^0,-if e ^ 0 , cf. (5.15), (5.16). From this the
following conclusions can be drawn:

i) The free energy /(e, f) has a critical point with E - 0 for i = 0, just as the
reference free energy /0(e*, £*) has a critical point with E = 0 at e* = 0. (In
terms of the variables e and f the critical point has been shifted, i.e. e^ 0, cf.
(5.13).)
ii) There cannot be first-order transitions for iE. U(, £ G U(, and the second
derivatives -d2fldidi (and also - d2fldede) remain finite. In fact, from (5.15) it
can be shown that

( t ( + ( ((tn
dedi \ didE/ \dEdE dEdE) \ dEdi) didi dide' '

iii) There will be effects analogous to the demagnetizing effect, if the
reference free energy /s(e*) has a first-order transition at e* = c. In fact, the
Legendre transform gs(E) of /s(e*) has then a straight portion,

- gs(E0) = c(E~ Eo), (6.5)

for a set of E-values satisfying

/x:(c, <?) = lim--j-/5(c + ve)^e • E=£ lim--j-/<(c + ve) = nUc,e), (6.6)
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for all unit vectors e, and

Uce'), (6.7)

for at least one unit vector e'. Taking into account the condition for the
infimum in (5.15), i.e.

-2= gs(E) = c = i - — IJ(E, i, f), (6.8)

one can determine the external parameters e as a function of the variables E,
for fixed internal parameters c. (In the special case that FI(E, i,g) = \E' 0 • E,
eq. (6.8) reduces to c = i- D • E, which corresponds to the classical descrip-
tion of the demagnetizing effect3738).)

Similar results have been discussed for the special cases considered in
sections 2.1 and 3.1. In section 7 a more detailed analysis of the effects of
critical-exponent renormalization will be given.

6.2. Negative eigenvalue

If the matrix d2fIldEdE has a negative eigenvalue at (E, i, £) = (0,0,0) there
can be found a unit vector «' and neighbourhoods UE, Ut and U( of the origin
so that

IJ(E, € ,£ ) •« '< S <0 , (6.9)
dEdE

for E E UE, i £ Ut, f E U( and some positive number S. On the other hand, at
the infimum of (5.15), the function il/(E,i,fl in (6.3) should be convex as a
function of E, so that

(6.10)

cf. (4.19), (6.9). This implies that a neighbourhood of the critical point of the
reference free energy, i.e. the values of b where (6.10) does not hold, cannot
be reached. Hence, there will be first-order transitions in such a neighbour-
hood.

Further away, there may be critical points of a classical nature, or other
critical points arising from the reference free energy. In the neighbourhood of
a classical critical point the function ip(E, i, f) is an analytic function of the
variables E and the critical properties can be derived from a Landau expan-
sion involving only relevant variables. The first-order transition may also end
on a critical point C of the reference system which can be described in terms
of r' relevant variables E\,..., E',., (r'^r). Following the treatment of sec-



tions 4 and 5 one can obtain a function IT of the r' relevant variables of which
the matrix of second derivatives has a lowest eigenvalue zero at C\ see
subsection 6.3.

6.3. Other cases

We are left with the case that d2n/8E8E has a lowest eigenvalue 0 at
(E, i, £) = (0,0,0). Then higher order terms ~ EEE, ~ iEE, ~ £EE, etc. can be
essential to describe the (multi)critical behaviour. If there is for example a
(EE term of the type n3(\E-E, (/73>O), then for f i > 0 the function
I7(E, i, ()3 B'7(£,c>0)+i73{|£»£ is strongly convex as a function of £ in a
neighbourhood of £ = 0, for sufficiently small e. On the other hand, for £, <0 ,
we have «' • (d2/7/d£dE) • e' < 0 for a certain unit vector «' in a neighbourhood
of £ = 0, for sufficiently small c.

For {i > 0, the free energy /(e, () will have a critical point at c = 0 arising
from a critical point of the reference hamiltonian, but with finite second
derivatives and no first-order transitions in a neighbourhood of i = 0, as
treated under 6.1. However, for £i < 0 a neighbourhood of £ = 0 cannot be
reached for small c and there will be first-order transitions, as treated under
6.2. This situation is characteristic for multicritical behaviour, see e.g. refs.
12-16, 32, 33.

If the terms ~(EE vanish, then higher order terms, e.g. ~£(EE and
~ CCtEE can affect the multicritical properties447576). In discussing the origin
of these terms it may also become important to take into account terms of the
order bHl>, which have been ignored in (5.8). From (5.6), however, one can
derive the formal expression

/(e, () = inft-e • £ + gs(£) + 3>(E, e, £)], (6.11)
E

with

9(E,e,O = inf[-f -Z + \Z'Z + P{E,Z,e, t,)]. (6.12)
z

We can now expand the function &(E, c, £) in the same way as the functions
in (5.12). The term with £ = 0 contributes to the regular part, the linear terms
in £ can be taken into account introducing new parameters c and a different
function p(i, £). The quadratic and higher order terms in £ can be expressed
by a function 77(E, i, () analogous to the one in (5.15). One may now have
terms ~ 1&EE arising from terms ~ EZZ and ~ EEZZ in P{E, Z, e, f), which
have been ignored in (5.8). An example is given in appendix B, where we also
discuss some features arising from such terms.
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6.4. Multicritical scaling

To discuss multicritical scaling we expand the function /7(£, e, £) in (S.16),
or the more general 17 arising from (6.12), as a power series in E,

nk,.,.ks(i,£)Ekl...Eki, (6.13)

where the prime indicates that we can restrict ourselves to terms with indices
k\,..., ks, (s 2* 2), satisfying

Jo-a^ssl. (6.14)

The function if>(E, i, f) in (6.3) may be regarded as a homogeneous function of
the variables E and the coefficients /7k|.,.fcj, i.e.

iff[{b]~"kEii},{b>~** "*•>*"' + akinill...k,}] = b*p[{Ek},{nk],,.k}]. (6.15)

For the function

},{fl»,...*J] = inf[-€ -E + M>*/(e,f)-i7r(e,0, (6.16)

cf. (6.3) and (5.15), we have the homogeneity property

}Ankl.,.ks}]y (6.17)

cf. the derivation of (4.17).
Using the estimate 'ik ~ b"\ (ak > J), cf. (6.17), we can expand the functions

nk,...ks up to linear terms in c,

nki... *,(«, # = itf, ...*,(£)+2' ni,... kj, itf )«i, (6.18)

with k,,... ,ks satisfying (6.14), taking only into account terms with a sum-
mation index / for which

(6.19)

For the singular part of the free energy / s as a function of e and the
coefficients If and i7' we have the homogeneity property

(6.20)

which may be used in studying the multicritical behaviour.
As a special case we mention the tricritical point in compressible Ising

ferromagnets, cf. refs. 13, 15, 16, 32, 33.
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7. Critical-exponent renormalization.

In this section we discuss the case of a small strongly-convex II as treated
in section 6.1. We shall show that close to the critical point there is a
"complete" critical-exponent renormalization in which case all second
derivatives of the singular part of the free energy tend to zero with well-
defined (renormalized) exponents. Sufficiently far from all critical points (or
for sufficiently small IT) no difference can be seen between the singular
behaviour of second derivatives of the actual free energy and the reference
free energy, and there will be no renormalization of critical exponents.

For the sake of presentation we will first derive the homogeneity properties
in the case of a "partial" critical-exponent renormalization in which some of
the second derivatives diverge and others remain finite. This type of critical
behaviour may show up in intermediate regions, i.e. not too far from and not
too close to the critical point, but also in special cases in which the lowest
eigenvalue of the matrix d2FIIdEdE is zero, see subsection 6.3. The two cases
of complete renormalization and unrenormalized exponents follow as corol-
laries of the treatment of partial renormalization.

So far we have only taken into account a reference free energy for which
the singular part has divergent second derivatives, cf. (4.3). In a final remark
a more general reference free energy containing also finite (cusp-like) second
derivatives, i.e. 0<ak < 1 in eq. (1.7), will be taken into consideration.

7. h Homogeneity properties

In order to discuss the homogeneity properties (in the case of partial
critical-exponent renormalization) let us assume that the relevant variables E
can be decomposed into variables

l £r}, (7.1)Ea = {E, Eq}, Eh =

so that

/7(E, i, £) = n°(Ea, €,() + n"(Ef» i, f). (7.2)

Assuming "continuity of the pressure"47'77) for the reference system, i.e. the
free energy f^h*) is strictly concave and go(m) has continuous first deriva-
tives (ft* = dgoldm), we have at the infimum in (5.15) that

ia=H;(E<"Eb)+ * f c = H (Eai Eb)+wb ( 7-3 )

which yield unique solutions Ea(i, £), Eb(i, £) since 17(E, i, £) is assumed to be
a strongly convex function of E, cf. section 6.1.

Let us also assume that in a certain region of external parameters i and £,
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we have the inequalities, (which are satisfied in a trivial way with q = r far
from all critical points and with q = 0 sufficiently close to the critical point),

a"b (7.4)BEa\ dEa \dEb\ dEb

so that in eq. (7.3) for ea, as well as in (5.15) for the free energy /(«, f), we can
neglect TI". Under these conditions we shall derive the homogeneity property
for the (dominant) singular part of /(«, £).

From (5.15) and (7.4) we have

/(€, 0 = inf [-€„ • Ea - ib - Eb + g>(Ea, Eb) + nb(Eb, i, £)] + 77r(e, £). (7.5)

(7.6)

(7.7)

Using the partial (inverse) Legendre transform

a, Eb) = inf[-efl • Ea +g,(.Ea, Eb)],

we have
/(€, f) = inf[-€fc • Eb + 4>£ia, Eb) + Tlb(Eb, i, f)] + I7r(e, Q.

Here <£s satisfies the homogeneity relation, cf. the derivation of (4.17),

Eq+ Er), (ak>k).(ak>b- (7.8)

From (7.8) we see that the variables ik with k^q behave like b"K Fur-
thermore, since nr(i,Q contains a term - j f f ' f independent of P{E,Z,e,()
and since TIb is a strongly convex function of Eb, so that for small £ terms like
££Eb, CCEbEb cannot influence the phase diagram, we also may use the
estimate £ ~ b "2. Then we can restrict ourselves to linear terms in ia and f in
the expansion of nb, i.e.

nb „)+nb(Eb,
The infimum over Eb in (7.7) is determined by the equation

(7.9)

£). (7.10)

Here the first term involving J7o is the dominant term, cf. (7.4), (7.9). From
(7.7) and (7.10) it can be shown thatt

, f), (7.11)

t The notation for the scaling fields ef, «t should not be confused with the one for the relevant field
variables of the reference system in section 4. In the remark at the end of this section, however, a free
energy of the form (7.11) will be regarded as a new reference free energy.
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where «?(eb) is the unique solution of the equation

i t = f g (*?(€„),€„) (7.12)

and where <P(i, f) is a small correction which can be omitted. The proof of
(7.11) is not entirely trivial and is given in appendix C.

Ignoring the term <P(c, £) and using

where

/(

with

= €&(«

*(€f)

€,0 = <

?)»

is the inverse

* ? ) + <*«,

transformation

(e.*,€f,D

of ««• = • « it) in (7.12),

(7.13)

we obtain

(7.14)

e, f). (7.15)

The function <£s in (7.14) satisfies the homogeneity relation, cf. (7.8),

<fc(&M b°<€*, b ' -^*'eJ+ 1 , . . . , 6 '-"'€*)

(7.16)

Expanding the function p(e, f) in the transformation (5.14) to linear terms in
ia and f, i.e.

p(ia, it, O = Po(€6) + pa(ib) • €„ + pc(ib) • f (7.17)

we have to leading order

e« = e* -pg f tCc f t ) - p j » ( € f ) ) • €* - p?(€fc(e«) • £

e* = efc(ef) - pbo(ib(et)), (7.18)

where"po and po denote the components k^q and /c>q resp. of the vector
Po. In the second equation, for tb, we have ignored terms involving ia = c?
and f which go with o{bm) and ft"2 resp., whereas in view of (7.16) and the
fact that /7o in (7.12) and (7.9) contains only quadratic and higher order terms
in £*, e? and ib tend to zero with ©(fc"2""), (17 >0).

Equations (7.14), (7.15) and (7.18), in which all functions i7§, nb
a, 77£, pg, p"a,

p" and po are regular functions of cf, are a general representation of the free
energy /(€, f) given by (7.5).

7.2. Partial critical-exponent renormalization

As a consequence of (7.16) we have for the second derivatives
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**!. et) (7-19)

the homogeneity relations

*+1,..., b°'e*)

= b l-™X»(eT e J , e j + 1 , . . . , € ? ) (7.20)
with

a'k = ak, k = l,...,q,

a'k=l~ak, k = q + l,...,r.

Equations (7.20) and (7.21) imply that, (b I 0),

i) Xk, diverges with b1'""-"', if k,
ii) Xk, tends to zero with b"k*ar\ if k, I > q,

iii) Xki ~ bak~a>, (k>q,l*£ q), diverges if ak < a\ and tends to zero if ak > at.

The results (7.16), (7.20) and (7.21) are characteristic for a partial renor-
malization of critical exponents. The physical interpretation of (7.20) is not
trivial, since the transformation (7.18) from c j , cf to ea, eb is in general a
nonlinear transformation. In special cases, however, simplifications occur, see
appendix D.

7.3. Corollaries

As an application we now consider the general case of a (small) function
II(E, i, f) which is strongly convex at (J?, i, £) = (0,0,0) as treated in section
6.1.

i) Sufficiently far from the critical points (for small e and f), we have the
inequality bmax(2a*"1)>||i7||, where ||/7|| denotes the largest eigenvalue of
d2n/dEdE. We may neglect the function 77(E, i, f), so that we have (7.4), (7.5)
with q = r, i.e. E = Ea. Therefore, (7.20) holds with a'k - ak, for k = 1 , . . . , r,
leading to the same exponents as the second derivatives of the reference free
energy. Furthermore, in view of (7.16) with q = r, (a* >2), the regular part
(7.15) reduces to J7r(i, f). Finally, since there are only variables «? — «* in this
case, the first equation of (7.18) reduces to a linear transformation, in which
po, p" and P ; are constant. Note that the transformation coefficients originate
from the linear terms in E in P(E, Z, e, f), cf. (5.12M5.14), whereas the
function JJ(E, €, £), which has been neglected, arises from quadratic and
higher order terms in E, cf. (5.16).
ii) Sufficiently close to the critical point we have the inequality tmin<-2a'k~u < S,
where S > 0 is the lowest eigenvalue of d2n/dEdE at (E, i, f) = (0,0,0). We
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then have eqs. (7.4), (7.5) with q = 0, i.e. E = Eh, and (7.20) holds with
a I = 1 - ak for k = 1 , . . . , r. As a consequence all second derivatives of the
free energy remain finite, cf. the regular part (7.15), and the singular parts Xkl

tend to zero with b"k+ttl~\ This situation is characteristic for the case of
complete critical-exponent renormalization. Furthermore, since we now only
have variables «? = €*, the second equation of (7.18) is a nonlinear trans-
formation c = €(e*)-po(«(«*))• In the special case that \<ak < i i-e. \<a'k<
2, (k = 1 , . . . , r), all nonlinear terms in the transformation may be neglected,
cf. appendix D, but this condition will not be satisfied in practice, if the

j magnetic field is one of the relevant fields.
iii) In intermediate cases, i.e. not too far from and not too close to the critical
point one may have eq. (7.4) with both Eu and Ej,, (0 < q < r), under suitable
assumptions for the function 77(£, e, £). In principle, one could distinguish
between 2r - 2 of such regimes corresponding to all partial Legendre trans-
formations (7.6), although it is by no means obvious that all these regimes
would have a clear physical meaning in actual cases. From (7.20), (7.21) one
finds that certain second derivatives Xu diverge at the critical point, whereas
others, i.e. those with k, I > q, or k > q, I =s q and ak > at, tend to zero. This
situation corresponds to partial critical-exponent renormalization. Examples
are the Fisher renormalization9) with a' - -al(l-a), 8' = 8, or the renor-
malization in ref. 30 with a' = a, 8' = 1/5. Partial critical-exponent renor-
malization can also exist down to the critical point, in the special case that the
lowest eigenvalue of d2MdEdE vanishes at (£, i, C) = (0,0,0). Such a situation,
however, is not stable under small perturbations which can give rise to

\ multicritical features, cf. section 6.3.

As an example of i)-iii) we give in appendix E the four possible sets of
exponents in case of a simple ferromagnet with two relevant variables
€,= l - r / T c , e2 = H.

In the treatment presented here, the properties of critical-exponent renor-
malization have been derived on the basis of homogeneity relations and
(partial) Legendre transformation. In the simple case of one relevant variable
(r = 1), it is worthwhile to use an iterative procedure for the solution of
implicit equations. Such a procedure provides also higher order (confluent)
singularities which contribute to terms of the order bl+7), (17 > 0), in the free
energy and which have been neglected in the general treatment of this paper.
The case with one variable is discussed in appendix F.

7.4. Remark

So far we have considered a reference free energy with divergent second
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derivatives, i.e. eq. (4.3) in which the singular part satisfies the homogeneity
relation (1.7) with 2 < a* < l..It is now straightforward to take into account a
more general situation in which some second derivatives diverge, say \ < ak <
1, (fc = 1 , . . . , q), and others remain finite, 0 < ak < 2, (k = q + 1 , . . . , r). (Here
we exclude values a* = 2 which usually would require logarithmic corrections
and further analysis, cf. e.g. refs. 9, 73, 74.) To see this note that a general
expression for the reference free energy is provided by eqs. (7.14), (7.15), (7.18)
in section 7.1, which has been obtained from the simple expression (4.3) after
adding a suitable function P(E, Z, e, £) in (5.6).

To, be specific, if we choose a function i7(E,e,£) in (5.15) which depends
only on the variables Eh = {Eq+U . . . , Er}, i.e. 77" = 0 in eq. (7.2), then in view
of the analysis in section 7.1 we obtain a free energy of the form

+ C(€|f) + d ( € f ) • €*
(7.22)

£ - & • £ + small terms.

Here <f>s satisfies the homogeneity property (7.16) which is of a more general
type than (1.7), since, in view of (7.21), \<a'k<l for k = l,...,q and
0 < a'k <2 for k = q + 1 , . . . , r. The functions C, Ca, Q are regular functions of
the variables eb = {e*+i,..., ef} which can be expressed in terms of the
functions ib, J7&, TIb

a, Il\ and 77r(e, f) in (7.15).
The variables e* can be found from e by a transformation of the type

e? = ea + A(ch) + Aa(ch) - ca + A((eb) • f,
(7.23)

ft = B(eb),

in which A, Aa, Ac and B are regular functions of €b. These functions can be
obtained taking the inverse transformation of (7.18), or also from the func-
tion ef(ib) in (7.12) and the definition e? = ia in (7.13) using the explicit
expression for i in terms of e and £ which can be obtained linearizing the
right-hand side of (5.13) with respect to the variables ca and f.

Equations (7.22) and (7.23) can be considered to be a general expression for
the free energy of a reference system, in which some of the second deriva-
tives of the singular part diverge and others have a cusp-like behaviour,
involving a homogeneous function of nonlinear scaling fields, see e.g. refs. 78,
79,44. (This result is of course of a formal nature and does not imply that the
behaviour of such a reference system should be interpreted in terms of a
simpler system as in eq. (4.3), subjected to a number of constraints leading to
eq. (5.6).) The stability of such a reference system may now be discussed on
the basis of a function n(E,i,Q of the form (7.2), in which i7fc(£j,,e,f)
contributes to the reference free energy and 11" (Ea, c, f) is a small pertur-
bation which will affect the critical behaviour. (Of course one may also
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evaluate the Legendre transform go(E, Z) of (7.22), see appendix G for further
details, and discuss the stability of critical behaviour on the basis of (5.15).)

Then, following the line of reasoning of section 6, we are led to the
following conclusions:

i) If 77"(£a,0,0) is strongly convex as a function of Ea in a neighbourhood
of Ea = 0, then there is a critical point at i = 0, just as the reference hamil-
tonian has a critical point at e* = 0. There will be no first-order transitions, the
second derivatives of the free energy are finite and close to the critical point
there is a complete critical-exponent renormalization described by (7.20),
(7.21) with a'k - 1 - ak for k = 1 , . . . , r.
ii) If 82naldEadEa has a negative eigenvalue at (Ea, c, £) = (0,0,0), then the
critical point of the reference hamiltonian cannot be reached, there will be
first-order transitions which may terminate in classical critical points or on a
critical point of the reference system, cf. section 6.2.

% iii) If the lowest eigenvalue of d2naldEadEtt is zero there may be multicritical
behaviour, see also the discussion in section 6.3.

*
t

Finally, if the reference free energy has a critical point with only finite
second derivatives, i.e. e* = e$, E = Eb, see (7.20), (7.21) with a'k — 1 - a* for
fc = l , . . . , r , then the critical behaviour will be stable under small pertur-
bations. Only a finite perturbation can give rise to qualitatively different
effects such as e.g. multicritical behaviour14-15), where at the multicritical point
one may observe "inverse" critical-exponent renormalization (a* = I-a'k).

Appendix A

To give a proof of (4.21) we start from the relation
M m'

Mim,}) = g*({ro,}) + J dm' j dm": JCtfmfl), (A.I)
o o

cf. (4.12), (4.14), in which m = {mi , . . . , mn] denotes an n-dimensional vector
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with relevant components mk = Ek, (k = 1 , . . . , r), and irrelevant components
mi+r = Zi, (I = 1 , . . . , n — r), conjugate to the fields ef and £f resp. appearing
in eq. (4.1) for the vector h*. The matrix K is given by

K=(xh + vr'-x,-1 = -x~h
l • Y • xj • (i + y • xA-v (A.2)

with

Xh=- d2fhldh*dh*, Y = -d2Fldh*dh*. (A.3)

For values m satisfying my = £> '""'m,-, in which a i , . . . , ar are given by (1.7)
and Oj = 2 for j = r + 1 , . . . , n, use can be made of the estimates, cf. (4.9),
(4.10),

From (A.4) we have

leading to

\Kpq\ = 2 (~l)"{Xh' • (V -Xft'^lpq ^ i — IliclHlPlI ̂ >****"*"**"~'- (A.6)

Inserting (A.6) into (A.I) we arrive at the relation

")• (A.7)

Equation (4.21) follows immediately from (A.7) identifying {rhu ..., mn} with
{E\,..., Er, Z\, • • • i Zn-r}.

Appendix B

In this appendix we discuss the influence of terms like ££EE in /7(E, e, f) on
the basis of the example

/(e, £) = inf[-e£ - £Z + IEP + |Z2 + A(E)Z + 1
2B(E)Z2]. (B.I)

E.Z

Equation (B.I) has the form (5.6) with one variable E, one variable Z,
ME, Z) = \E\X + \Z2 and a simple function P(E,Z) = A(E)Z + \B(E)Z2 which
depends only on E and Z. In eq. (5.9) the term {B(E)Z2 has been ignored,
apart from an E-independent contribution {PzzZ2.

The infimum over Z occurs at

Zinf = (£ - A(E))/(1 + B(E)), (B.2)
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I

so that

/(e, f) = mf[-eE + \E\* - i(f - A(E))2I(\ + B(E))]. (B.3)
E

Assuming that 2 < x < 3 , i.e. /s(€*)~|e*|2-a with 0 < a < i x = (2 - a ) / ( l - a ) ,
we may expand

2E
2, (B.4)

and

/(e, f) = inf[|E|* - Jf2 + E{-e + fA, + if2B,}
E

+ |E2{fA2 + |f 2B2 - (A, + fBi)2}]. (B.5)

Note that in eq. (B.5) we have two £2E2 terms, one arising from Bit i.e. the
EZ2 term in P(E, Z) and the other one from B2, i.e. the E2Z2 term in P(E, Z).

Equation (B.5) leads to a first-order transition, if the right-hand side for
fixed e and f has two equal infima. This will occur, if the coefficient of E
vanishes and the coefficient of E2 is negative, i.e.

e = £A, + if2B,, (B.6)

fA2 + k2B2 - (A , +1Btf < 0. (B.7)

We now discuss different cases:

i) If Ai ?*0, i.e. P{E,Z) contains a nonvanishing EZ term, then the function
THE, f), cf. (5.16), in the right-hand side of (B.5) is concave for small f and
there is always a first-order transition, see section 6.2.
ii) If A\ = 0, A2 T* 0, i.e. P(E, Z) contains a nonvanishing E2Z term, then the
function TJ(E, f), if we neglect terms ~f2, is convex for A2C > 0 and concave
for A^ < 0 . For f = 0 the free energy has divergent second derivatives at
e = 0. For A2g > 0, we have a critical point with E - 0 at e = If 2Bi with finite
second derivatives of the free energy, for A2t, < 0 there is a first-order
transition at e = |f2Bi» see the discussion on E2f terms in section 6.3.
iii) If A\ = A2 = 0, then, as a consequence of the f2E2 terms in (B.5), we have
a critical point at E — 0 with finite second derivatives, if B2 < \B2, and a
first-order transition for B\ > 2B2, provided that f * 0. Here the coefficients B\
and B2 arise from EZ2 and £2Z2 terms in the expansion of P(£ , Z). For f = 0
the critical behaviour is identical to that of the reference system.

We now consider the second derivative of /(e, f) with respect to the
variable f at f = 0 in the cases ii) and iii) with Ax = 0, where we do not have a
first-order transition for f = 0. From (B.I) and (B.2) we have
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xu f=0

1
1 + B{E)

1

V(E) A(E)B'(EY\ dZinf|
B(E) (l + B(E))2j de \(=

V(E) A(E)B'(E)]2dEinf

1 + B(E) ' L1 +B(E) (1 + B(E))2J de

where, ignoring the last term in the right-hand side of (B.3),

sgne, de
1

x(x -

(B.3)

(B.9)

Expanding the right-hand side of (B.8) with A, = 0 tip to quadratic terms in
E, we have

dEinf
XK = 1 - B,Einf - $B2 - B\)El< + AlE (B.10)

in which the three terms with Bu |B2-Bf, A\ behave like J€/x|l/(x"I)sgne,
le/xl2*"1', |«/;c|(4~x)/(*~I)resp. Thus we have derived three singular contributions
to the susceptibility xa for f = 0 which arise from EZ1, E2Z2, E2Z terms resp.
in P(E,Z), see also refs. 75, 76 for similar results derived using a renor-
malization group approach starting from a Landau-Ginzburg hamiltonian.

To give an example of the effect of nonlinear transformations, let us
consider the Legendre transform of (B.I) in the special case that A{E) - 0, i.e.

) = sup[eE + (Z + /(e, f)] = CE[|E|* + ^Z2 + \B(E)Z2]. (B. 11)
«f EZ

Using the new variable

Z = Z{1 + B(E)}"2

eq. (B.ll) can be rewritten

E,Z
(B.I 3)

Ignoring the nonlinear features of (B.12) and replacing the convex envelope
over E and Z in (B.I3) by the convex envelope over E and Z, one may infer
g(E, Z) = \E\X + 2Z2, which is wrong, also because it does not lead to any
first-order transition for B\ > \B2, cf. the discussion under iii).

Appendix C

To prove eq. (7.11) we note that the solution of (7.10) can be expressed as

Eb = €?(efc) + €'b(ia,«(,, f), (CA)
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where et{ib) has been defined by (7.12) and where e'b{ea,eb,0 >S a small
correction. In fact, in (7.10) the first term dFIoldEb will contain linear terms in
Ek, (k>q), which behave like b ' ~ \ (ak>$)- On the other hand, d<t>JdEk,
(k > q), tends to zero with the power b\ the coefficients IIb

a and /I* tend to
zero with a positive power of b, and the components e(, (/ «s q), of ea, and £
behave like &"' and bm resp.

Inserting (C.I) into (7.10) we obtain

+ higher order terms. (C.2)

In eq. (C.2) it is of interest that e'h(ia, ib, f) tends to zero with fc(l+"'/z, where
TJ > 0 ; the precise form of e'b will not be used for the derivation of (7.11).

Inserting (C.1) and (7.9) into (7.7) we find (7.11) with

= - € „ • el, + <k(ea, €?(«„) + e'b) - tfisda,

€'„, ib) - nb
0(eUib), €„)

e'b, eb) - nb
a(ef(eb), eb)} • ea

b) + e'b, eb) - n^eHib), ib)} • ?

= \e'b'L-e'b, (C.3)

where L is a matrix which depends on ej,. The derivative in (C.3) has been
taken at the point Eb = et(eb) + e'b, so that the last step follows using (7.10).
Since the right-hand side of (C.3) is of the order b 1+1\ with positive 17, the term
<P(e, f) in (7.11) can be omitted.

Appendix D

In this appendix we discuss some simplifications which may occur in the
transformation (7.18) and in eq. (7.15) for the regular part <£r(e?, ef, f).

i) If for all critical exponents ak, we have \<ak<l, then, with (ej)k ~ b"k,
(«£)* ~ b1""*, cf. (7.16), the elf-dependence in p" and p" can be neglected, as
well as third order terms ~ efetet in pg and quadratic terms ~ efe^ in pt-
Furthermore, /7* and 77*, which contain only quadratic and higher order terms
in ef, cf. (5.16), (7.2), (7.9), can be neglected. If in addition \<ak<\, the
terms ~ efet in pg can be neglected, so that (7.18) becomes a linear trans-
formation. However, if the magnetic field is one of the relevant variables, i.e.
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ef = H, ak = 81(8 + 1), the condition [< a* <ij will not be satisfied in practice
for all k.
ii) In the case of two relevant variables ef, ef, such that d2<f>Jdef2~ b 1 ' 2 " ' - ^
and d2<f>Jdef~ 62aj~'-»0, we have ef = e*, ef = e?. Then the quadratic term
~ e ? 2 in po in (7.18) can be neglected, provided that 2 ( l - a 2 ) > a , . This
inequality implies also that the ej?-dependence in p" and pa

(, i.e. the nonlinear
terms in the transformation (7.18), can be ignored. As a further consequence
of this inequality the terms /7* and J7* in (7.15) which, by definition, are at
least quadratic in ef, can be neglected. Also, when we express /7r(e, f) in
(7.15) in terms of e j , ef,£, all quadratic terms involving ej are of the order
bx*v, (17 >0), provided that ax > a2.

As an example we consider a ferromagnet with relevant variables 1 -
TITC, H. If the exponent of the specific heat is renormalized9), i.e. a2 =
1/(2-a), a\ = 8/(8+ 1), which is e.g. the case in the Baker-Essam model in
the constant-volume ensemble12) or the bond-annealed Syozi model27), then
the inequality a 2 < a\ <2(1 - a2), or equivalently 1 / (1 - a )<8 < 2 ( 1 - a ) / a ,
will be satisfied in practice. As a consequence the transformation (7.18) can be
considered to be a linear transformation and terms like e*ej and e*2£ in the
regular part 4>t can be ignored. In the opposite case in which the exponent of
the susceptibility is renormalized30), i.e. ax= 1/(2-a), a2= 8/(8 + 1), the in-
equality will not be satisfied and nonlinear terms in (7.18) and couplings eje*
and e$2{ in (7.15) can be important.

Appendix E

As an example of critical-exponent renormalization we consider a ferro-
magnet with two relevant variables ex = 1 - 77 Tc, e2= H in the simple case
that

277,E2 + 2772E!, (77,,/72>O). (E.I)

We may then distinguish between four different regimes,

I b2a'-l>nub2a^>n2,
II b2"'-1 <l 77,, ft2"3"1 > n2,
HI b2a'-1 > nu b2a2~l <§ n2,
i v b2a^<n

leading to new critical exponents a\, a'2 and a', /3', y', 8', A', which in the four
regimes are given by
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a\ a! a' 0' V «' 4'

I 0| aj a 0 v 5 4
II 1-a, «j -a/(l-a) 0/(1-a) r/(l-a) fi 4/(1 - a ) (E.2)
III a, 1 - a , « 4 —y 1/5 0
IV l - o , 1 - a , - o r / ( l - a ) 4/(1-a) -y/(l-a) US 0/(1 - a ) .

Regime I corresponds to the case of unrenormalized critical exponents far
from the critical point; regime IV to the case of complete exponent renor-
malization close to the critical point. In regimes II and III there is a partial
renormalization, i.e. Fisher renormalization9) in regime II and the renor-
malization found in ref. 30 in regime III. Partial renormalization can occur in
an intermediate region, but also close to the critical point, if one of the
constants fl{ or 772 is zero. This is the case, (cf. section 3), for the constraints
(772 = 0) in the context of compressible Ising ferromagnets12) and the bond-
annealed Syozi models27). The classical description of the demagnetizing
effects373*) and also the site-annealed model of ref. 30 provide a natural
constraint with 772 * 0. In practice, however, it may not be easy to distinguish
between the exponents in regimes II and IV.

Appendix F

In the case of one relevant variable, (r = 1), the critical exponent renor-
malization, but also higher order (confluent) singularities can be obtained from
an iterative procedure. We consider the example

^ (F.I)

where x = (2 - a)/(l - a) > 2 and 77 > 0.
Introducing

y = 7E' z = W\\n\ ' (R2)

eq. (F.I) can be rewritten

/(«) = ̂  inf [-y +1 z|y|* + k2 ] . (F.3)

The function under the infimum of^(F.3) is an analytic function of y and z, for
y* 0, with a positive second derivative with respect to y. The infimum in (F.3)
must occur for y* 0 and therefore the solution of the inf as well as f(e) can
be expressed as analytic functions of z. In fact,
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(F.4)

As a result the different terms of f(e) behave like e2, e2Mx'2\ e
2+2<*-2),..., or

more generally e
2+m(Jt-2>. The first term (m = 0) is the regular part, the second

term is the effect of critical-exponent renormalization, (x - 2 = a/(l - a)), and
the third and higher order terms give confluent singularities. In the mo/e
general case of a convex function /7(£) involving also terms ~ E3 and higher
order terms the free energy will contain singular terms of the type €

2+mlx-2)+n
t

where m and n are non-negative integers.

Appendix G

In this appendix we evaluate the Legendre transform

g(E,Z) = sup[e -E + f •Z + / ( e , 0 ] (G.I)

of the free energy /(«, f) given by (7.22), in which the relation between the
coordinates e*, ef and ea, eh, £ is given by (7.23). In (7.23), A(eb) contains
quadratic and higher order terms in eh and A((eh) is at least linear in eb. (The
linear terms in A(eh) and the constant terms in Ac(eb) have been included in
the definition of the coordinates ea.)

From (7.23) we have

eh = eh(ef),

ea = [1 + AaiedefW1 • (e* - A(eh(cf)) - A((eh(ct)) • f). ( G ' 2 )

Inserting (G.2) and (7.22) into (G.I) and taking the supremum over f, we find

ef], (G.3)

Eb

g(E,

where

r(E,

Z)

z,

ra{Ea,

= sup
*>%

€f) =

€t) =

C(ef)
+ \{Z

f, ef) + r(E,

I - Ea • [1 + /

+ C((ef)-E
Ca(«f) + E u - [ l + i

z,

»«(

«f))]"'• (G.4)

The supremum over ef can be evaluated using the considerations of
appendix C. In fact, in view of the estimate d^Jdef ~ o(btl+vV2) for some TJ > 0,
cf. (7.16), the supremum over ef occurs at

et = &>(£, Z,e*) + <o'(E,Z, ej), (G.5)
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which is of the order



(3.40) for the variables ef. In fact, the supremum can be evaluated following
the treatment in this appendix, using (7.22), (7.23) and a relation like

/„(**) + R(m\ h*, {§}) = <k(«2, €?) - iff - ( + D(m\ ef,

+ Da(m', ef, {£•}) • e* + Df(w', mt, {ft}) • ff,
(G.13)

leading to eq. (3.42) with a function P(m, A) which may be different from the,
one given in (3.43).)

For the function F(E, Z, Et) in (G.12) it can be shown that

Z, Et) = \Eb • Ybb(Ea, Eb, Z)-Eb + \Z- YZZ(Ea, Eb, Z) • Z

+ Eb • ybz(£u, Eb, Z) - Z, (G.14)

in which Vw, and Kzz are strictly positive definite for sufficiently small Ea, Eb

and Z. Equation (G.14) may be derived from (G.4) and (G.9) and the relation

Ef = Ub(Ea, Eb, Z)-Eb + Uz(Ea, Eb, Z) • Z, (G. 15)

in which the matrix Ub is nonsingular. Here it has been taken into account
that C(e?) and A(«i,(c?)) are at least quadratic in ef and that C{(ef) and
4f(«i,(e?)) do not contain terms independent of ef.

From (G.12) and (G.14) it can be inferred that the critical behaviour of a
reference free energy described by (7.22) and (7.23) will be unstable under
small perturbations like e.g. Ea • A • Ea, in which A is a constant matrix,
independent of Eb, Z, c, £.
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CHAPTER IV

STABILITY OF CRITICAL BEHAVIOUR IN SCHOFIELD'S LINEAR MODEL

UNDER PERTURBATIONS INVOLVING TOO (RELEVANT) VARIABLES

1. Introduction.

In the previous chapter we considered the class of systems for which the

free energy per particle is given by

f(h) = inf I-h-m + go(m) + P(m,h) ] . (1.1)
m

Here h = (h15...,hn) denotes.a finite set of coupling constants or external

fields, m = (m,,...,m ) the thermodynamic variables conjugate to h, and

g (m) = sup [h*-m + fo(h*) ] (1.2)
h*

is the Legendre transform of the free energy per particle fQ(h ) of a

reference system with short-range interactions as a function of (internal)

coupling constants or fields h* = (h?,...,h*). The analytic function

P(m,h) can depend on the variables m as well as the variables h. Such a term

can arise e.g. from a perturbation with a long-range nature in the

hamiltonian, or from one or more constraints imposed on the system, cf.

sections 2 and 3 of chapter III for examples and references to the

literature.

In chapter III we studied from a general point of view the stability of

the critical behaviour of the reference system under small perturbations

P(m,h). In case that fQ(h*) has a critical point with one or more divergent

second derivatives, a very small term P(m,h) in general will lead to

different critical behaviour, such as e.g. a critical point with finite

second derivatives, or to first-order transitions terminating in classical

critical points.

In order to be more specific we shall investigate in this chapter in

some detail a special case of two (relevant) variables, (e.g. temperature

and magnetic field), i.e.

f(h13h2) = inf [-hjmj - h2m2 + go(m1,m2) + jITjiiij + ;ln2m2 ] , (1.3)

,m2
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godiij.nij,) = sup^ [h*mj + h*m2 + fo(h^,h*) ] , (1.M
hlshz

where fg(h*,h*) satisfies the homogeneity property

fo(b
aih*> bazh*) = bfo(ht,h|) , (1.5)

with 5 < a. <1, (i=1,2). Eq.. (1.5) implies that f0 has a critical point at

h* = h* = 0, with critical exponents ot = {Za.^-})/^, 3 = (i-a2)/a1 ,

y = (2a2-i)/als A = a 2/a p 6 = a2/(i-a2).

From (1.5) it .follows that gQ(mlsm2) satisfies the homogeneity property

go(b
1-aimj, b1-a2m2) = bgo(mi,m2) , ,. (1.6)

which implies that the second derivatives of g0 will tend to zero for

m^nij+O, so that for (small) JI^O, n2#), the behaviour of f(h1,h2) for

small hj,h2 will be dominated by the term iJIjirij + sll2m2.

The general treatment in the previous chapter leads to the following

conclusions:

i) If nj> 0, n 2>0, the system with free energy (1.3) will have a critical

point at h^hjsO, Depending on the magnitude of b, IIj, JI2, there may be

four regimes I, II, III, IV, characterized by different sets of critical

exponents, as described in appendix E of chapter III.

ii) If one of the coefficients IIj or n2 is negative, the critical point at

m1=m2=0 of the reference system is unstable and a neighbourhood of m1=m2=0

will not be reached. There will be first-order transitions which may

terminate in classical critical points.

These features will be made more explicit using the linear model of

Schofield to describe the reference system. This model will be defined in

section 2; in section 3 we investigate the effects of critical-exponent

renormalization in the case of positive IIj and H2 . In section k the first-

order transitions and classical critical points are treated in some detail

for negative n2, the special case that IT2 < 0, n2 >0 is treated in section 5-

2. The linear Schofield model.

This model has been introduced in ref. 1, cf. also ref. 2, to give a

simple description of systems satisfying the homogeneity property (1.5). The

model describes rather accurately several magnetic and fluid systems, cf.

e.g. refs. 3, k and also, for a review of experimental results, refs. 5, 6.
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In this section ve give a slightly modified, but equivalent, description

which is convenient in view of the Legendre transform (1.2). Other variants

and extensions of the linear model ' , which have been used in the

description of critical phenomena, will not be taken into consideration

here.

According to the Schofield parametrization and eqs. (1.5), (1.6), the

function g0 and its first and second derivatives can be expressed in terms

of the variables b and 6, with b > 0 , - 1 $ 6 $ 1 , i.e.

Hj) = G(9)b , (2.1)

h? = 3gQ/3mi = ̂ ( e j b ^ , i=1,2 , (2.2)

a.+a.-i
k.. = 32g0/3rn.8m. = K. .(e)b

 x J , i,j»1,2. (2.3)

f
Here the variables b and 9, for -1 < 6 <1, are defined by the

parametrization

1-a.
m. = M.(9)b 1 , 1=1,2 . (2.it)

For e=±1, (corresponding to a first-order transition at h*=0 below the

critical temperature of the reference system), mj and m 2 satisfy

m, = MjC-Dt 1"* 1 = M,(Db 1- al 5
(2-5)

In the (restricted) linear model it is assumed that

M^e) = p^e^ei), M2(e) = p2e , K n(e) = K , (2.6)

where \i1, y2, K, 6J are positive constants. Furthermore, for a., i=1,2, it

is assumed that

\ < & i < 1 , 1+aj < 2a2 , (2.7)

corresponding to the conditions 0 < a < 1 and 1 < y < 2 for the critical

exponents of the reference system.

The other functions of 6 can now be determined using the relations

2 2

I (i-a.)K!.(e)M.(8) = I (a.+a.-DK..(e)M!(e) , (2.8)

2
a.H.(e) = I (i-a.)K..(9)M.(6) , (2.9)

117



2

G(e) = I d-a.)H.(e)M.(e) , (2.10)
i = i 1 1 1

which follow from (2.1)-(2.U). (The primes denote derivatives with respect

to 9).

From (2.7) and (2.8) we have

2(2aj-i) VjK

( ) ( 2 1 1 )

with
2a2+3a,-3

s = _ fl \ , (2.13)
2a2-aj-1

and therefore, cf. (2.9),

H^e) = ̂ (e 2-^) , C2.1U)

H2(e) = n2e(e|-e
2) , (2.15)

with
2a2-al-1

2a2+ai-2 ^1
K ' (2"16)

2a2-a1-i) p
2K

) (2.17)
2(2a1-i)(2a2-a1-i

'2 (2a2+a1-2)(lta2-3)

2 (i-aj)(2a2+a2-2)
3

(2a2-1)(2a2-al-i

(2.18)

(2.19)

Taking into account that the largest value of 6 will occur for }'2(6) = 0

below the critical temperature, we have

e2, = 1 (2.20)

and therefore

2 (2a2-i)(2a2-a1-i)

(2a2-i)(2a2+a1-2)

(2.21)

(2.23)

Then finally K l l 5 K 1 2 and K22 can he rewritten
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(2-25)

K22(e) = ̂  (1+se2) . (2.26)

.» Here the coefficients n15 12» Pis P2
 satisfy 'the relation (2.23) and s is

J defined by (2.13).

/" From eq. (1.3) the free energy f(hj,h2) as a function of the external

fields hj and h2 can be expressed as

2
f(hj,h2) = min fgo(m1,ra2) - £ (hfftu + U^^) ], (2.27)

nij ,m2 €J i=1

where J denotes the set of values mj,m2 satisfying the implicit equations

h. = h* + n.m. , i=1,2 , (2.28)

with the functions h* = 3go/8m., cf. (2.2). In terms of the variables b,6

these values m,,m2 can be paramatrized by (2.U), or correspond to h2=0 and

satisfy (2.5). Accordingly, we have from (2.27), using (2.1), (2.2),

(2.*0, (2.5), (2.9), (2.10),

f(hj,h2) = min (f^h^hj), f2(hlsh2)} . (2.29)

Here

fjChj,^) = min f- b I (a.H.(e)M.(e) + §n.M2(e) b1"2ai )"], (2.30)
b.eeJj '- i=i x J

in which Jj denotes the set of solutions b,6, (b>0, 6 < 1), satisfying

i = b
ai(H.(e) + UM^B)^'2^) , i=1,2, (2.31)

and

f 2 (h 1 5h 2 ) = min - bCajKj(1)Mj(1) + gnaM
2(i) b 1 " 2 a i ) - g h ^ / n J , (2.32)

b£J2 L. J

where J 2 denotes the set of solutions b sat isfying

hj = b a i ( H 1 ( D + 11^(1) b 1 - 2 a i ) . (2.33)

In (2.32) the minimum over m2 has been taken explicitly. The relation

m2 = - 3f2/3h2 = h2/n2 (2.3^)
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is identical to the relation between the magnetization and the external

magnetic field under the influence of demagnetizing effects, (the

demagnetizing factor D corresponding to !I2). We therefore refer to the

solutions involging J2 as solutions of the demagnetizing phase. Note that

f2 can only contribute to the minimum in (2.29) if n2 is positive. (For

negative n2 , the stability condition that the susceptibility is positive

is not satisfied, and solutions involving Jg can then be ignored). In the

following the solutions involving Jj will also be called solutions of the

normal phase.

3. Critical-exponent renormalization.

In this section we discuss the case that

IIj > 0, n2 > 0 . (3.1)

Then the function between brackets in the right-hand side of (1.3) is a

convex function of mlsm2. As a consequence the value of nij,m2 at which the

infimum occurs is uniquely determined for each hj,h2 and there are no first-

order transitions. The free energy f(hj,h2) has a critical point for b=0,

or

ha = h2 = 0. (3.2)

A. Demagnetizing phase.

For hj> 0 and |h2| ̂  hD, with

hD = n2M2(D b
1" a 2, M2(1) = -M2(-1) , (3.3)

b is the solution of (2.33), there is a demagnetizing phase, cf. (2.3*0,

(2.5). The second derivatives

X,. = -32f/3h.3h. (3.M

of the free energy (1.3) in this phase are given "by

al Hl ( l ) 2ai-1 I"1

I-«1)M1(I) *
ai + M • (3.5)

x 1 2 = o, x 2 2
 = n2 ,
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i.e. the magnetic susceptibility x22 ^
s constant.

In the two regimes (i) and (ii), such that

(i) b2ai"1 » n, ,

(ii) b2ai~1 « na ,

the second derivative x ^ can be described by

(i) v-»i'"H" j _ 2 a i Jii).J_ f. _ alHl^i;
 L2ai-i]

"l 1"al Ml 1
 ( 3 < 7 )

In regime (i) we have, cf. (2.33),

(i) (1-a^Mjd) / hj ya 2a ri)

1-a2
(3.9)

al

In regime (ii), however,

( 3 l 1 0 )

q)
In (3.10) and (3.11) we have a Fisher renormalization for the critical

exponents a and (3, describing the specific heat and the boundary of the

demagnetizing phase.

More specifically, XJI c a n t e approximated by XJJS A = (i),(ii), with

precision X, 0 < X << 1, if the condition

(1-A)XU < X
A
U < d + M x n (3.12)

is satisfied. Eq. (3.12) is equivalent to

I • ^ A - ( i ) . (3.13)

_ 1 njd-a^Mjd)
a H (1) / r ' f o r A = ( i i ) . (3.11+)a H (1)

B. Normal phase,

Outside the demagnetizing phase, the second derivatives of the free

121



energy (1.3) are given by

x •= (k + n ) " 1

n2) - K
2
2

n2 + K22(e)b
2a2-1

-1 nl + Kn(e)b
2ai-1 J

in which b and 9 satisfy (2.h), and

fX-. v-,,>i k,, k,,,i fll, 0

[3.15)

X =
ll

12

k =

k12 k22

n =
o n

(3.16)

Starting from (3.15) we can distinguish between four different regimes:

i. b 2 a i " 1 » n1 , b 2 a 2 - 1 » n2 ,

ii. b 2 a i " 1 « nx , b 2 a 2 " 1

III. b >> IT, , b

"2 '

n2 ,

iv. b 2 a i" 1 « n
n 2 •

The susceptibility in these four regimes can be described by matrices x »
A =

with A = I,II,III, IV, which have a homogeneous singular part x > i.e.

(3.17)

A

aA a A

a a for h. ~ b
I

A
a.
l

Eq. (3.18) leads to the critical exponents

, A
1

a = 2 - —T- , B = , y =

al A al

The matrices x a r e given by:

I.

X1 = k = {Kn(9)K22(9) - K
2
2(9)}

2aA-1

~Â A " aA
a

(3.18)

(3.19)

-1
-K12(e)b

1-ai-a2

Kn(e)b
1-2a2

3.20)

which is the susceptibility matrix of the reference system. Eq. (3.20) has

the form (3.18), with unrenormalized critical exponents, i.e. aj=aj, a2=a2,

and
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= 6 .

II.

II

(3.22)

In this case we have eq. (3.18) with a, = 1-a., a2 = a2, leading to the

critical exponents, cf. (3.19),

a « _ 3 .. _ Y _ « _ . A <• - *
( 3' 2 3 )

The exponents (3.23) correspond to the Fisher renormalization of critical

exponents, see also chapter III for further references to the literature.

The specific heat has a cusp, (aT_<0), the susceptibility diverges,
II

( Y I T > 0 ) , and the mixed derivative \. diverges also, since a2 >aj, cf.

(2.7).

-1mJ-2al _n"VIII.
Ill

(3.2U)

^1IEq. (3.2U) has the form (3.18), with aj = aj, a2 =1-a2, and therefore

we have

« m
(3.25)

10)corresponding to the renormalization found by Essam and Place . The

specific heat diverges, the susceptibility has a cusp and the mixed

derivative tends to zero.

iv.

n;1 - n-2Kn(e)b
2ai-1

(3.26)

In this case we have a complete critical-exponent renormalization, i.e.
IV

1-a,
IV 1-a2, and

a
IV 1-a ' PIV ~ 1-a ' rIV • - i i ' Aiv = i > siv = i> (3-27)

and all second derivatives are finite.
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We now investigate the conditions under which the susceptibility x can

approximated by t

X, 0 < X « 1, i.e.

A ? •
be approximated by the susceptibility x > A =1,11,III,IV, with precision

, (3.28)

where the inequality A < B means that the matrix g - A is positive definite.

For the four regimes we obtain the following conditions from eq. (3.28), see

appendix A for some details of the calculation,

I. Xkjj - IIj > 0 ,

(Xkn - I l^Ukjj - n2) - X2kj2 > 0 , (3.29)

I I . v̂ Hj - k n > 0 ,

x2njk22 ± x { ( n r k n ) k 2
2 + ^ ^ 2 2 - n2n2} - n2k2j > o , (3.30)

i n . /xn2 - k22 > o ,

x2ji2kH ± x{(n2-k22)k2
2 + k n k 2 2 - i^n2} - njkf2 > o , (3.31)

iv. /^iij - ki;i > 0 ,

(/x"n, - k..)(/x'n, - k , , ) - k2 > 0 . (3.32)
1 11 2 22 l i

For the calculations in the rest of this section, (and also in the

following sections), it will "be convenient to introduce a new variable

p = |K/nJb2ai-1 (3.33)

to describe the "distance" to the critical point and a new parameter

Vz 2a2-1

n = — |x/n|pn , P = -r— r , (3.3U)
n2 1 ^ ^aj-i

to characterize the relative magnitude of n and 1I2. The second derivatives

of gQ can then be expressed as, cf. (2.3), (2.2*0-(2.26),

k n = |n.|p , (3.35)

12 j ^ , (3.36)

k22 = |n2/n|(i+se
2)pp , (3.37)

with s defined in (2.13) and



t=^J. (3.38)

Note that s-t >0 in view of the conditions (2.7) imposed on a.^ and a2.

Using (3.35)-(3.37), the conditions (3.29)-(3.32) can be written in

terms of p, 6 and n, i.e.

I. Xp-1 > 0 ,

(xp-i)(xjT1pp-i) + (txP-s)xif1ppe2 > o , (3.39)

I I . p - /T < 0 ,

(p2+A)Un~1pp-i) + (tp2 + (s-t)p + sx)xrf1ppe2 > 0 ,

(p2-x)(xrf1pp+0 + ( t P
2 + (s-t)p - s m i r V e 2 < 0 , ( 3 - U o )

i n . (n"1
P

p-vT) + sn"1
P

pe2 < 0 ,

(xP-i)(n""
2p2p + x) + [(s-t)xp + {(s+t)xP - 2s}n"1pp]n"1

P
pe2

+ s(txp-s)n"2p2pe > 0 ,

(xP+i)(n~
2p2p-x) + [(s-t)xp + {(s+t)xP + 2s}n"1P

p]n"1 p e 2

+ s(txp+s)n~2p2pe < 0 , (3.U1)

iv, p-/T < 0 ,

pp-/x') + (tP-s/x')n"
1ppe2 > 0 . (3.U2)

We shall now investigate in particular for which values of p eqs.

(3.39)-(3.^2) are satisfied for all 9, (0$ 9 < 1), in the regimes I, II,

III, IV. In that case one should always pass through such a regime in

approaching the critical point within the normal phase.

To be specific, we shall assume here and in the following that the gap

exponent satisfies

A > | , (3.1+3)

so that t >0.

Regime I: From (3.3 9) we have the condition:

gx(p) < 0, i f p > ^

gj(p) > 1, if j< p < ̂  , (3.1tlt)

125



"ith

pp

From (3M) i t follows that

A
f p > », , if (f) p « i ,

with pj the solution of

gj(p) = 1, max { j , f|jp } < p < ̂|- . (3.1*7)

Regime I I : Eq. (3.1*0) for all 6 with 0 ^ 6 < 1 implies

P - /T< o, X J T V - 1 > o, g2(P) < o , (3.1*8)
with

g2(p) = P
2-^ + {(t+i)p2 + (s-t)p - (s+i)x}xn"1P

p . (3.1*9)

From the first and second inequality in (3.1*8), we have
2

n < X^P+1 , (yV < P < /T . (3.50)

Eq. (3.50) ensures that we have a regime II for 6=0. In order to have this

regime for all values of 8, we must require that
1

) < 0 , (3.5D

which leads to the condition

1

< A , (3.52)

with

A2 a

Then for all values of p satisfying
1

[{(s-t)2 + Ms+2)(t+2)X}*-(s-t)l ^ - ^ ^ X , (X « 1).(3.53)L J s-t

s of p satisfying
2

(f) P < P < P2 , (3.5!*)

e p < vA is the positive solution of

g2(p) = 0 , (3.55)
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we have regime II for all 9. Note that for small X the condition (3.52) for

II for all 0 $ 6 < 1 is much more stringent than (3.50) for n, if 9=0.

Regime III: From eq. (3.^1) for 9=0 it follows that

i f V - /T< 0 , Xp-1 > 0 , (3.56)
or J_

I < p < (n/£)p . (3.57)

If we require regime III for all 6, then the first and second inequality in

eq. (3.*»1) follow from the third one and eq. (3.56). It is therefore

sufficient to require that

g3(p) < 0 , (3.58)

with

g3(p) = -X(Xp+i) + (s-t)Xpn"
1pP + {(s+i)(t+i)Xp + (s+i)2}(n~1pP)2.(3.59)

If now

g3(j) < 0 , (3.60)

i.e.

lfV P < A3 , (3.61)
with

1 A. = I(s+1)~ (s+t+2)~ {(s-t) + 8(s+1)(s+t+2)x}2 - (s-t) \ <*—r X ,

(X « 1), (3.62)

2
then there is a regime III for all values 0 ^ 6 < 1, if

j < P < P3 , (3.63)

wheri p. > — is the solution of

g3(p) = 0 . (3.61+)
2

Again condition (3.61) for 0 $ 6 < 1 is much stronger than (3.57) for 6=0.

Regime IV: From eq. (3.^2) we have

P < iff, g,,(p) > 1 , (3.65)

with

g^(p) E £_ . (3.66)

Therefore we have the condition
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(3.67)

where p, is the smallest positive solution of

Sl)(p) = 1 . (3.68)

As a conclusion, there are regimes I and IV for all positive values of

II, (JTj being positive), cf. (3.^6), (3.67), whereas regimes II and III

occur for sufficiently small and sufficiently large II resp., cf. (3.52),

(3.61).

k . Negative JI2 •

In this section we investigate the case that n2< 0. We first note that

the infimum in (1.3) can only occur at a point (mj,m2) such that the matrix

of second derivatives of the function between brackets (...] is positive.

This gives the stability condition

k,, + n, > 0 ,
Ct.D

(k n + n1)(k22 + n2) - k12 > 0 ,

which can be expressed in terms of p and 6, cf. (3.35)-(3.37),

p + sgn TIj > 0 , (̂ .2)

(p + sgn IIjKi + np"P) + (tp + s sgn nj)62 > 0 . (U.3)

Furthermore, for n <0 there is no demagnetizing phase and the external

fields as given by (2.31) can be expressed as

efj + K i + j n ^ e ^ p " 1 } ,
* (k.k)

A. Ili positive.

We consider first the case that sgn n. = 1, II < 0
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I
Fig. 1. Stability curve and the curve h2=0 in the p,6-plane for IT 1 > 0, n2 <0.

In fig. 1, the drawn curve is the stability curve

tp + S
(h.6)

and the shaded area is the unstable region of the p,9-plane. (it can easily

be shown from (4.6) that 86 /3p<0 for the stability curve.) The dotted

curve is the curve h2=0, given by, cf. (4.5),

2
e=o and e2 = i+np~p, p>(-n) p . (4.7)

. For 6 > 0 we have m? =u28 > 0, and the infimum in (1.3) must be realized

at a positive value of h2. The condition h2> 0 implies 8 < 1+Hp ,

corresponding to the region enclosed by the dotted curve in fig. 1, and a

curve ii2 = c, with c >0, lies in the stable part of the p,6-plane.

Since in a stable part of the p,6-plane the variable h, must change

monotonically on a curve h 2=e, there cannot be a first-order transition

for positive h2. In fact, if hj has a stationary point P on a curve with

h"2=c, the curves with constant hj and h2 resp. must touch at the point P

and P must lie on the stability curve, since, (in the nij,m2-plane), cf.

(2.28),

. 2

. (4.8)
dh] dm2 dm2

1 J
k22+n2

Consider now the value h2 = 0. If 8=0 and p decreases from °° to

(-11) , then increases from -» to h. , with

sgn

On the branch with 9^0, hj increases from h-|c to °°, if p increases from
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(-n)1/p to -.

For hj >fi , we have 8 >0, if h2 + 0, and 6< 0, if h 2+ 0; there is a

spontaneous magnatization and a first-order transition when we pass through

0. The point p = (-11) p, 6=0, 0, is a classical

critical point. As go(nij,m2) is analytic in a neighbourhood of this point,

the free energy (1.3) around this point can be found from a Landau

expansion.

B. negative.

We now consider the case that sgn IIjS-1, IT < 0. From (it.2) and (It.3)

we have the conditions

p > 1

(-I - nP
•

~p)
tp-s if p > f-.

np-p)
s-tp

(U.10)

(it.11)

(it.12)

(i) If -II >(s/t):p, then (U. 12) gives instability for p< s/t and the

stability curve is determined by (it.11). This stability curve has 39 /3p<0,

so that this case is analogous to the case of positive IIj in subsection A.

(Note that on the stability curve in this case 9 •*• » for p+ s/t.)

(ii) If -n<(s/t) p, then (it.11) is trivially satisfied and the stability

curve is determined by (it.12). We first consider the case that

Fig. 2. Stability curve and curve h 2 = 0 in the p,8-plane for
2

In fig. 2 the shaded area is again the unstable part of the p,6-plane. Note
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that in this case the dotted curve h2 = 0 has a second ii ̂ersection point,

(with 9 > 0 ) , with the stability curve. In fact, the intersection points

can be found from eqs. (U.7) and (U.12) with equality sign. We find

9=0, or p = (s+1)/(t+i) = {Ks+1)}2 , (It.13)

so that there is an intersection point with 6>0, if and only if

In that case a curve h2 =c passes through an unstable portion of the

p,6-plane for sufficiently small c >0. As a consequence, there are first-

order transitions for sufficiently small |h2| .

On the other hand, if (U.1U) is not satisfied, i.e. if

{I(s+1)} P < -II < (s/t)P, we also have 36 /3p >0 on the stability curve,

but now the curves h2 =c, with c> 0, lie in the stable region of the

p,9-plane, and there are no first-order transitions.

We now investigate the case, (it. lit) in more detail. From (it.5) and

(it.12) with equality sign it follows that h2 on the stability curve is

given by

h2 = P
a2/(2ai-1)(i+np-p)£(p-i)Wi) - (t+Up}(s-tPr* ,'2

so that

(it.15)

f(s+3) - (t+3)p}(s-t)p 3.
2 { ( S + 1 ) - (t+i)p}(s-tp)(p-1) ~ 2

The function between brackets in the right-hand side of (U.16) is

monotonically decreasing in p for

max {(-n)1/p, 1} < p < Hs+1)2 .

(U.16)

(h. 17)

Values of p > J(s+1) are not of interest, since we can restrict ourselves

to h2 >0. To see the monotonicity we introduce the variable

s-tp
x = p-1

(it.18)

and the function between brackets in (it.16) can be written as

3 F I"1

<|>(x) = a,/(2a,-1) + i>(x) - -x pIT I {(s+x)/(t+x)}p + n ,
with

so that

(U.20)
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2 f 1 ^ 2

using that x>1 and st=3-s-t<3 . Therefore <j>(x) is an increasing function

of x for II < 0. For x + 1, (p t J(s+1 )2), we have <j>(x) + -°° and for

p + max {(-n) p, 1}, <{>(x) •*• +oo.

As a consequence there is one and only one value p in the interval

(1+.17) satisfying <j>(x) =0, so that

(po) = 0 . (U.22)

Eq. (it.22) implies that on the stability curve h, increases from 0 to L =
1 /

h9(pri) , if p increases from max {(-fl) , 1} to p ; h. decreases from

Thus for all values

2c

2
h_ to 0, if p increases from p to 5

0 < h < hp , the curve at constant h2 contains a part lying in the unstable

region of the p,8-plane and there must be first-order transitions at

constant h,. For h,> ho the curve at constant h lies in the stable regi'

of the p,6-plane implying that there is no first-order transition.

Qualitatively the phase diagram in h"lSK2-space is given in the figures 3a

and 3b.

rac

'/c

Fifr. 3a Fig. 3b

Phase diagrams in the h1 5h2-plane for negative Ii(or n 2 ) . Fig. 3a i s

charac te r i s t i c for I ^ X ) , II <0, or 1 1 ^ 0 , IT < -{g(s+1)} P . In f ig . 3b we

have IIj < 0, -{g(s+1 )}2p< n < 0.

From fig. 3b we note that
' w ' l e r e i h,-value of the

triple point corresponding to the first-order transition at h2"*0. This can

be seen from the inequality
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h1(pc) (h.23)

which can be derived easily taking into account that h.(p) on the stability

curve has a minimum at p = p and that p = 3 ( S + 1 ) in the intersection point

with 9 ̂  0 of the curve h = 0 and the stability curve.

5. The case ITj <0, JI2 >0.

In this section we investigate the possibility of first-order

transitions in the case Hj < 0, H2 > 0, Since II2 is positive, we must also

take into account the solutions of (2.33) corresponding to the

demagnetizing phase. The second derivatives of the free energy in this

phase are given by (3.5), but now with IIj< 0. The stability condition is

X u > 0 , or

(5.1)

which in view of the parametrization (3.33), cf. also (2.6), (2.1*0, (2.21),

(2.22), (2.2U), can be expressed as

p > K [5.2)

On the other hand, the boundary of the demagnetizing phase, cf. (3.3), is

given by

h D =
-1

= V (5.3)

so that h_ is an increasing function of p. Eqs. (5.2) and (5.3) imply that

for all values h 2 with

(5.1*)

there must be a first-order transition -co the demagnetizing phase. In fact

the intersection point of a curve with h 2 = c , 0 < c < h_ , in the normal

2 2

phase (0$6 <1) with the boundary of the demagnetizing phase (8 =1) occurs

at a value p smaller than S ( S + 1 ) and therefore in the unstable part of the

demagnetizing phase, cf. (5.2),

Furthermore, first-order transitions at h 2 = c , (c>0), can arise if the

curve h 2 = c in the normal phase contains a part lying in the unstable region

of the p,G-plane. To investigate this in more detail we consider the
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stability conditions (U.10)—(U.12). For positive II eq.

and the stability curve is given by

is trivial

(5.5)

2 2
i.e. for larger values of 9 (with 9 < 1), the point (p,9) is a stable

solution. For fixed n>0, the behaviour of the stability curve in the p,9-

plane is slightly more complicated than in the preceding section, but a

detailed treatment is not necessary in order to derive for which values of

h 2 there should occur a first-order transition. The behaviour of h 2 on the

stability curve is given by eq. (U.15) but now for n positive. Note that h2

is positive on the stability curve for the values p satisfying 1 <p< 5(S+1)':

which implies that for all intersection points of the stability curve with

(5.6)

0
0 = 1 , we must have

h 2 < h D c

as h 2 = lL is an increasing function of p.

We shall now prove that for sufficiently small values of n>0 there is

one and only one maximum fi_ (n) of h 2 lying on the stability curve with

<1. This implies that for all values h , satisfying

!h2| < K2c(n) , (5.7)

there is a first-order transition. To prove eq. (5.7) and to determine the

critical field hp (n) we first note that the extrema on the stability curve

are determined by <|>(x) =0, where <|>(x) has been defined by (4.19). The

condition <|>(x) =0 defines a function Jl(x) which is given by

,-ni-1
q - 3p[

s+3'
s-1

(5.8)

(5.9)

On the other hand we must have 9 < 1 and from (5.5) and (5.8) we find the

inequality

q - 2\ji{x) > 3px

The function q-2^ can be written, cf. (^.20),

(x-3):

x(x-i:

so that (5.10) is equivalent to

(5.10)

(5.11)



f, o}3

3(s-t)(p-q) + (*2V K ° • (5'12)

Since s>t and p>q, eq. (5.12) is satisfied for

1 < x < xQ < 3 , (5.13)

where x0 is the solution of (5.12) with equality sign,

xQ • 3 - (L-9)
3{(/C+3)s - (>̂ ?-3)3} , (5.1*0

L = 9 + (s-t)(p-q) . (5.15)

It can now be proved that Il(x), defined by (5-8), is an increasing

function of x in the interval (5.13). From (5.8) we have

^ T (tS) { } n ( x ) , (5.16)

with

,,(x) = 6(s+x)(t+x)(s-t) g - {3p - (q-2*)}(s-t)2(q-2^) . (5.17)

Using the inequalities (5.10) and (5.12) we find

n(x) > 6(s-t)(s+x)(t+x) g - (x-D{(s-t)(q-20)}2

_ 3(s-t)q(x-3)2(3x-1) (x-3)U(x2-1Ox+3) > 2x(x-3)U „ n ,,, .n)

> x(x-D2 (x-1)2

p
Also, the function 6 (x) defined by

3p(q - 2<|>(x))~1 = x62(x) , (5.19)

obtained from (5.5) and (5.8), increases monotonically from 0 to 1, if x

increases from 1 to xQ, since

o oh

ae (x) ̂  2x(x-3) e (x) ^ Q (520)

** 3(s-t)p(x-i)2

Hence, for all values of H satisfying

0 < n < n(xn) = (xn-

we have one and only one extremum h_ of h- on the stability curve. It can

easily be shown that this extremum is a maximum. This is trivial if the

stability curve (5.5) has only one intersection point with 9 =1, as h2+0,
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if p+1. Consider now the case that n is such that there is more than one

intersection point. Let (p ,6 ) denote the position of the extremum of h2

on the stability curve, and (PJ,1) the intersection point of the stability
2

curve with 8 =1 for the largest value of p satisfying p< p . Furthermore,

let the value of h, at (p ,6 ) be given by h and the values of h =hjs in

(p.,1) and (p ,1) by h and h resp. Then for all values 8z 8 , we have at

(pc,9), cf. (5.5),

90 c c --• .- ̂  cc — . ̂  - - ,

and therefore h < h. < ii_ . (5.23)
a b î c

As a conclusion, we find that there is a value 11=11 , satisfying (5.21),
s

so that first-order transitions occur at al l values

|h2 | < h , if 0 < n < n ,
liL I < iL , if n > n ,
2' Dc s

where the critical field £„ = hp (n) is given by, cf. (^.5),

0 , (5.25)

x being the solution of n=n(x ), cf. (5.8), and 6 = 8(x ), cf. (5.19),

(or (5.5)); the critical field iL =h D c(n) has been defined in (5.^). The

value n is given by II = H(x ), with x the solution of
S S 5 S

cf. (5.25) and the relation

/S+x s
P, (

for 0 < n < Il(x )• Eq. (5.26) has only one solution x , since the left-hand

side decreases monotonically from °°, for IU0, to a value less than one, for

II =n(x0), as 0~(xo) = 1.

So far we have investigated for which values of h2 there will be at

least one first-order transition. A complete treatment of the phase diagram,

however, would require a more elaborate analysis. In fact, at constant

magnetic field, one may have: a second-order phase transition to the
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demagnetizing phase; a first-order transition in the normal phase followed

by a second-order transition to the demagnetizing phase; a first-order

transition from the normal phase to the demagnetizing phase; a first-order

transition in the normal phase followed by a first-order transition to the

demagnetizing phase. All first-order transitions terminate in classical

critical points. For special values of n there will be multicritical

"behaviour "but these possibilities will not be analyzed further in this

thesis.

Remarks.

i) It may be noted that the conclusions in this chapter are universal in

the sense that they are independent of the specific values of aj en a2,

provided that the inequalities (2.7) and (3.^3) are satisfied.

ii) A reference system in which the specific heat and the susceptibility

have a cusp-like behaviour can also be taken into account. For example, if

the reference free energy is given by

fo(h?,h£) = *0(h*,h*) - sA~
1h*2 - sA~1h|2, (5.28)

where A~ ,A~ > 0 and <j>. satisfies the homogeneity property (1.5) with

0<a. < 5, then the Legendre transform (1.1+) can be evaluated to be

/ \ mm i f » A - m l 4 - — A T « 4. — A m / ̂  O O ̂

apart from small correct-ion terms. Eq. (5.29) leads to an expression for

the reference free energjrfsimilar to (1.3), with TI1 and IT2 replaced by Aj

and A2 resp. This implies that the considerations in section 3, and there-

fore also the Schofield model, nay be used to describe a reference free

energy with finite second derivatives. Furthermore, the critical

properties of such a reference system are stable under small perturbations

n., as I IT - | << A. , see also section 7.k and appendix G of chapter III for a

more systematic discussion.

iii) A quadratic form depending only on mj and m2 may be considered as an

approximation to more general perturbations P(mj,m2,hj,h2), depending on

the external fields hj and h2 as well, provided that the eigenvalues of the

quadratic part are different from zero. Such perturbations can rise in a
o)

general way from constraints imposed on the reference system , cf. e.g.

section 3 of chapter III. Important examples are e.g. the Baker-Essam

model for compressible Ising ferromagnets and the Syozi model
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for Ising systems with bond-annealed impurities, see chapter III for a more

complete discussion of the literature. However, if one of the eigenvalues

of the quadratic part vanishes, one may have more complicated nulticritical

behaviour, and further details of P(mpm2>h1,h2) can be essential for the

critical properties, see e.g. ref. lk.

iv) The special case II2=0 has been previously investigated by Dohm and

Kortman using also a Schofield model for the reference system. For

IIj>0 there is a Fisher renormalization close to the critical point, for

nj<0 there are first-order transitions for sufficiently small values of the

magnetic field h 2 with a classical critical point at hp (0). For It.=0 one

has the critical behaviour of the reference system. A physical example is

given by the tricritical point in compressible Ising ferromagnets, see e.g.

refs. 15, 16.

Appendix A.

In this appendix we give an outline of the proof of eqs. (3.29)-(3.32),

starting from the inequality (3.28). Eq. (3.28) is equivalent with the

inequality

-X(/)~ 1 < £~1 - (xA)~1 < A(xA)"1 , (A.1)

since 0 < A < B # 0 < B " < A ~ . Eq. (3.29) i s a d i rect consequence of

(A.1), (with (x )~ = k» X~ =k+n). Eq. (3.30) can be obtained from eq.

(A.1), using that

, 11,-1

(x ) Jl rk u

, IIs-1 -1

(x ) - x n,-k

kllk22

k n k 2 2

(A.2)

Eq. (3.31) follows, interchanging the subscripts 1 and 2 in (3.30).

Finally, eq. (3.32) follows as a special case from the relations

o < k <

(A.3)
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in which

x U ) = n"1' f (-k-n~1)n (A.U)
= n=0 " =

is the "£. -order approximation" of x = (k+Il)~ . Eq. (A. 3) can be proved

easily using the identities

= = = = ' = = = = = =

I where A. = n~s»k«ll~5. Since x. = H~ a n d X - X = 2~ - n~ *Jt«n~ we

have from (A.3) that

_ TV

o < k < / X n « » o < x-x < *x
M 0 < Y-Y I V < JZiTl'^-x) ** 0 < Jf1 - X < /?X . (A.6)

= = = — = = =
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SAMENVATTING.

Een belangrijk probleem in de statistische mechanica is de afleiding van

thermodynamische eigenschappen van veeldeeltjessystemen, uitgaande van

microscopische wisselwerkingen tussen de deeltjes. In veel gevallen is het

voldoende om de vrije energie per deeltje te bepalen, waaruit de thermo-

dynamische eigenschappen afgeleid kunnen worden. Deze eigenschappen zijn

in het algemeen afhankelijk van de dracht van de wisselwerkingen tussen de

deeltjes.

Een speciale klasse van veeldeeltjessystemen is de klasse van korte-

drachtssystemen, waartoe o.a. de systemen behoren waarin de wisselwerking

tussen de deeltjes een eindige dracht heeft, d.w.z. alleen verschillend van

nul is als de afstand tussen de deeltjes niet te groot is. Voor korte-

drachtssystemen heeft men bewezen dat de vrije energie per deeltje bestaat

ir. de thermodynamische limiet. Een exacte berekening van de vrije energie

in twee en meer dimensies is tot op heden niet gevonden, afgezien van een

aantal uitzonderingsgevallen zoals bijvoorbeeld het tweedimensionale Ising

model in afwezigheid van een magneetveld. De laatste jaren heeft men veel

inzicht gekregen in het kwalitatieve gedrag van deze systemen door gebruik

te maken van benaderingsmethoden. Zo heeft men bijvoorbeeld kunnen vast-

stellen dat veel kortedrachtsmodellen een (universeel) kritisch gedrag in

de buurt van een faseovergang vertonen, waarbij het dominante singuliere

deel van de vrije energie aan een homogeniteitseigenschap voldoet en een of

meer susceptibiliteiten (tweede afgeleiden van de vrije energie) divergeren

met welgedefinieerde kritische exponenten.

In de eerste twee hoofdstukken van dit proefschrift wordt een klasse

van (quantummechanische) modelsystemen beschouwd, waarin behalve inter-

acties van korte dracht ook (extreem) langedrachtswisselwerkingen kunnen

voorkomen en meerdeeltjesinteracties van een gemengd karakter. Voor deze

klasse wordt een exacte betrekking afgeleid, waarin de vrije energie uit-

gedrukt wordt met behulp van de Legendre getransformeerde g. van een

referentiesysteem met uitsluitend kortedrachtswisselwerkingen en een

(storings)term P die voortkomt uit de langedrachtsinteracties. In het

geval dat men de vrije energie van het referentiesysteem exact kent, geeft

deze betrekking ook de vrije energie van het systeem met langedrachtsinter-

acties exact. Maar ook als van het referentiesysteem alleen globale

eigenschappen bekend zijn, bijvoorbeeld het asymptotische gedrag in de



buurt van een kritisch punt, dan kunnen met behulp van deze betrekking al-

gemene conclusies worden getrokken»

Bij het bewijs wordt gebruik gemaakt van de opsplitsing van P in een

concaaf gedeelte Q en een convex gedeelte R. Voor concave P=Q is de relatie

een generalisatie van een fundamenteel theorema van Bogoliubov Jr. Een

eenvoudig bewijs van dit theorema (voor kwadratische Q) kan men vinden in

hoofdstuk I. Het algemene bewijs voor willekeurige P en (quantummechanische)

kortedrachtswisselwerkingen vereist een zorgvuldige behandeling van de

j thermodynamische limiet en wordt gegeven in hoofdstuk II.

In het derde hoofdstuk van dit proefschrift wordt aangetoond dat het

kritische gedrag van een kortedrachtssysteem geheel van karakter verandert

onder invloed van extreem langedrachtswisselwerkingen. In het bijzonder,

als de functie P (sterk) convex is, ssijn er geen eerste-orde faseovergan-

gen (discontinuïteiten in eerste afgeleiden van de vrije energie), en is er

een kritisch punt met susceptibiliteiten die een doornvormig (cusp-like)

gedrag hebben met gerenormaliseerde kritische exponenten. Als het referen-

tiesysteem een kritisch punt heeft met divergerende tweede afgeleiden en P

(sterk) concaaf is in één richting, dan zijn er eerste-orde overgangen, die

kunnen eindigen in een klassiek kritisch punt.

In de praktijk moet men echter rekening houden met het feit dat niet

alle variabelen relevant zijn, d.w.z. op essentiële wijze bijdragen tot

het kritische gedrag. Als voor P=0, d.w.z. in het referentiesysteem, één

»t van de variabelen irrelevant is, dan behoeft dit nog niet in te houden dat

dit ook voor P̂ O het geval is. Een algemene behandeling van dit soort pro-

blemen wordt in hoofdstuk III gegeven.

Analoge conclusies gelden ook voor kortedrachtssystemen waaraan zekere

inherente beperking-en zijn opgelegd (constraints on hidden variables). Voor

dergelijke systemen kan namelijk een betrekking afgeleid worden, die de

vrije energie uitdrukt met behulp van de Legendre getransformeerde gp van

het referentiesysteem en een (storings)term P, die in dat geval tevens af-

hangt van uitwendige koppelingsconstanten en/of -velden.

In het laatste hoofdstuk wordt een speciaal voorbeeld, met twee rele-

vante variabelen m. en nu, en met P(mj,m2) = sïïjinj + gl^n^, meer in detail

uitgewerkt. Bij de beschrijving van het referentiesysteem wordt gebruik ge-

maakt van het lineaire model van Schofield.
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STUDIEOVERZICHT.

Na in juni 19^9 het eindexamen gymnasium g te hebben afgelegd aan het

Charlois Lyceum in Rotterdam, begon ik in september van dat jaar natuur-

en wiskunde te studeren aan de Rijksuniversiteit te Leiden. Het kandidaats-

examen natuurkunde en wiskunde met sterrenkunde legde ik af in juni 1973 en

het doctoraalexamen natuurkunde met bijvak wiskunde in mei 1975• De experi-

mentele stage werd doorlopen bij de werkgroep Thermometrie onder leiding van

Dr. M. Durieux. In juni 1975 trad ik in dienst van de Stichting F.O.M, om

bij de groep Theoretische Vaste Stof Fysica/Leiden, welke onder leiding van

Prof.dr. P.W. Kasteleyn en Dr. H.W. Capel staat, het onderzoek te verrich-

ten dat aan dit proefschrift ten grondslag ligt. De Stichting F.O.M,

stelde mij in staat in 1976 aan de zomerschool over kritische verschijnselen

en faseovergangen te Banff (Canada) deel te nemen.

Het eerste hoofdstuk kwam tot stand in nauwe samenwerking met

Dr. P.A.J. Tindemans. Gedurende het gehele onderzoek heb ik mogen profite-

ren van de levendige interesse er: de vele suggesties van Dr. J.H.H. Perk.

Het typewerk werd uitstekend verzorgd door mevrouw S. Hélant Muller-

Soegies.
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