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CHAPTER 1

SUPERSYMMETRY AND SUPERGRAVITY I.

1. Introduction

Supergravity is a theory of fundamental interactions. Basically it
describes gravitation and a nev interaction mediated by a fermionic field,
called the gravitino field. This results in a special symmetry between
them, supersymmetry, whence supergravity derives its name.

Though all experimental data on gravitation are in good agreement with
the general theory of relativity, we wish to point out, that there exist
a number of good reasons for an attempt to extend this theory. We will
discuss each of these in turn.

In the first place general relativity has not been shown to be a
consistent quantum theory, as the other theories of fundamental interactions
are. As a classical theory it describes very well the macroscopic phenomena
of gravitation, but on the microscopic level its character and its relation
to the other basic processes are unclear.

Three other fundamental forces are known in nature: the electromagnetic,
the weak and the strong interactions. These interactions are thought to be
transmitted by the quanta of certain fields. For the electromagnetic
interactions these are the photons; for weak interactions they are the so
called massive vector bosons, while the strong forces are mediated by
massless gluons. The last ones are responsible for the binding of quarks -
inside the proton and other heavy particles.

In view of this it seems desirable that gravitation should also be
described in terms of a quantized field. The quanta of this field will be
called gravitons; they are massless and carry two units of spin. However,
attempts to construct this theory directly from general relativity have not
been very successful. In particular the technical complicetions of
renormalization, which is a procedure necessary to avoid infinite results
in quantum field theories, have not been overcome. In supergravity on the
other hand these complications are often absent, at least in the lower

order approximations.




A second reason to study supergravity lies in the prospect of
constructing a theory which unifies gravitation with other interactions. The
three types of fundemental forces discussed above are all described by so
called gauge theories. These field theories exhibit very special symmetries,
which may allow their unification into one theory. This has for example
been accomplished successfully for the weak and electromagnetic interactions
in the Weinberg-Salam model.

It is a very attractive idea to incorporate the strong interactions and
gravitation in such a theory as well. This theory would then describe all
known elementary processes in nature and would contain a minimum number of
free parameters. Thus it would possess great predictive power. At present
supergravity is the only theory which offers prospects in this direction.

Finally supergravity is a very interesting theory because it exhibits
the property of supersymmetry. This is a symmetry bLetween the two basic
classes of particles in nature: the bosons, which carry an integral number
of units of spin, and the fermions, with half integral spin. In all
existing theories of fundamental processes there is a complete dichotomy
between bosons and fermions. Only supersymmetry is able to overcome this
and treat both on an equal basis.

In order to achieve supersymmetry one has to match the bosonic graviton
of general relativity with a fermionic spin g-field. This field is called
the gravitino field, and the combined theory of this field coupled to
general relativity constitutes supergravity.

We would like to stress here, that supergravity encompasses general
relativity, and therefore is not in contradiction with experimental
evidence. In fact the new features of this theory iie not primarily in its
description of gravitation, but in its possible incorporation of other
interactions and the predictions on these interactions that may be derived
from it. Thus it is essentially & theory of particle physics and its
applications will presumably be found in the realm of microscopic phenomena.

2. Supersymmetry
In this section we will illustrate the concept of supersymmetry in a
siﬁple example. This will then be used to discuss some general features of

supersymmetric field theories.
Supersymmetry is a symmetry between bosons and fermions. Therefore any

supersymmetric theory must contain both kinds of fields. A simple model is
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provided by the scalar multiplet, which consists of a scalar field A, a
pseudoscalar B and a real (Majorana) spinor field 1*). Therefore this set of
fields has two spin O and two spin } degrees of freedom. The Lagrangian for
these fields is simply

L= -%(auA)2 - 3(auB)2 - gy - m2A2 - In2B? - lmgy . (2.1)

The action, the space—time.integral of (2.1), is now invariant under the

following set of infinitesimal transformations

SA =€y ,
6B = ievsy , (2.2)
8¢ = (F-m)(A+iygBle ,

where £ is a global, i.e. space-time independent, Majorana spinor, whose
anticommuting components parametrize the supersymmetry transformations.

Indeed, +the Lagrangian (2.1) transforms into a total derivative:
6L =3 (-fey #A+ivsBIV). (2.3)

Of course, the action is invariant under translations and Lorentz
transformations as well.

This example demonstrates the main properties of supersymmetry. In the
first place supersymmetry requires equal numbers of bosonic and fermionic
degrees of freedom. For example, in the scalar multiplet we have two of
each.

Secondly, in order to obtain the result {2.3), it is crucial that all
fields have equal mass. This is a general property of supersymmetry, which
has direct implications for phenomenoclogy, as we will see.

The third feature that should be mentioned here is the commutator
algebra of supersymmetry. When we take the commutator of two supersymmetry
transformations (2.2), we obtain a translation with parameter -2517u52,
e.g.¢

[65,6,]A = 2ElyuezauA . (2.4)

which is again an invariance of the action.

*) For notations and conventions see appendix A.



However, an important remark has to be made. When we calculate the

same commutator on Y, we find besides this translation an additional term:
[62,8110 = 2e,v,e,0,0 + (E,v,€1 )y, (Fm)y. (2.5)

This additional term vanishes upon use of the classical field eguation

for ¢, the Dirac equation:

(F+m)y = 0. (2.6)

For this reason the commutator is said to close only on the classical
level, or on shell, where this field equation may be inserted. With this
proviso, however, the result (2.%) holds uniformly on all fields.

We will now discuss the consequences of these observations. We have
seen that supersymmetric field theories must be based on multiplets
containing equal numbers of boson and fermion states. However, in nature no
such mass degenerate sets of bosons and fermions are known, except for the
massless photon and neutrino. Therefore if supersymmetry is a property of
the physical world, it must be realized in a broken manner, i.e. there
must exist some mechanism by which bosons and fermions acquire different
effective masses. This mechanism could be of the Higgs-Kibble type, where
some field has a non-vanishing vacuum expectation value, which contributes
to an apparent mass of another field. Or the mechanism might be of a
dynamical character, the effective mass resulting from specific interactions.

Another reason why supersymmetry is not realized manifestly in the
known physical world could be, that it only plays a role at the sub-quark
level. In any case the energy at which supersymmetry becomes important must
be much higher than the ones available at present.

Turning to the commutator algebra of supersymmetry, we first comment on
its general structure. The commutation relations of two supersymmetry
transformations have the same form on all fields which obey their
corresponding equations of motion. Analogous results hold for commutators
involving other infinitesimal symmetry transformations, such as translations
and Lorentz transformations. Therefore there is a well defined algebraic
structure underlying this whole set of infinitesimal transformations. In
particular one can define generators Qa of supersymmetry, together forming

a Majorana spinor, which obey anticommutation relations:

{Q.§ ) =2¢, ., (2.7)
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Here P,J is the generator of translations. Hence Pu differs from the momentum

ku by a factor -i:
P = -ik .
v u

The abstract algebraic structure which involves the generators of super-
symmetry, translations and Lorentz transformations is called the graded
Poincaré algebra. '

Secondly we comment on the fact that the graded Poincarg algebra is
realized on fields satisfying the classical eguations of motion only. This
situation is characteristic of supersymmetry and will be encountered several
more times in the following. One might ask, whether this restriction is
essential. Indeed it is not and can be lifted here and in most cases by
introducing so called asuxiliary fields, i.e. fields which do not correspond
to physical degrees of freedom. Whether this is always possible, is
however not known.

Finally we want to point out what happens, if we consider local super-
symmetry transformations, i.e. supersymmetry with spsce-time dependent
parameters. There is a simple but powerful theorem which states, that the
commutator of two infinitesimal symmetry transformations of an action is
again a symmetry transformation of that action, modulo terms which vanish
on shell. We have seen this in our example, where two supersymmetry
transformations gave a translation.

Now the global transformations are a special case of the local ones.
Hence the commutator of two local supersymmetry transformations, if these
can be defined consistently, yields at least a local translation, or what
amounts to the same, a general coordinate transformation. As a consequence
local supersymmetry can only occur in theories which possess general
coordinate invariance, and these theories necessarily contain the
gravitational field. We conclude that a theory of local supersymmetry must
incorporate a description of gravitation. Such a theory is therefore called
a theory of supergravity.

We end this paragraph by mentioning that the Lagrangian density (2.1)
can be extended in-a supersymmetric fashion to include non-trivial inter-
action terms as well. For our basic observations they do not lead to any-

tting new, however, and therefore we have not dealt with them here.
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3. Extended supersymmetry

In the last paragraph we found, that supersymmetry is intimately
connected with space-time symmetries. 1In this paragraph we will show that
internal symmetries may be introduced in supersymmetric theories as well.
In Poincaré supersymnetry, which has the graded Poincaré algebra as its
hasic commutator algebra, the maximal internal symmetry that can be
accommodated consistently is SO(N). If such an internal symmetry is present,
one speaks of extended or SO(N) supersymmetry *). We will demonstrate the
principles in a simple S0(2) model.

In order to construct this, we first introduce another 0(1) multiplet,
the vector multiplet. It contains a massless vector field Vll with spin 1
and a spin 2 Majorana spinor field ¢. Again we have two bosonic and two

fermionic degrees of freedom. The Lagrangian density is

& 102 1=
= - - o1
~ EFuv LTY I (3.1)
with
F =93V -3V .
'Y | TRV u

6Vu = BuA (3.2)

while the supersymmetry transformations for the fields read:

€
Yu¢ >

v
s {3.3)
6¢ =-F o €.
PR TRV
The commutator algebra is basically the same as that of the scalar
multiplet, except for an extra term in the vu commutator:
[62,61]Vu = 2e,v,8,3,V, - au(EElyvezvv) . (3.%)

This term represents a gauge transformation of Vll and is perfectly allowable.
We can now fuse this multiplet with the massless scalar multiplet as
follows. The total Lagrangian for the fields is:

¢ _1p2 _ 3 2 _ 2 2 _ 1Tas _ 1T (3.5)
L iF, é(auA) 2(3 B)? - 33d¢ - 2dv .

*) The original supersymmetry without internal symmetry is often referred to
as 0(1), 80(1) or N=1 supersymmetry in analogy.
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It is invariant under the combined supersymmetry transformations (2.2) and
(3.3). However, it is obvious that the roles of ¢ and ¢ can be interchanged.
This implies that there exists a second s«t of supersymmetry transformations,
where Vp goes into ¢ and A and B go into ¢, ete. The full set of trans-

formations thus becomes:

8V, = v b + Epv ¥,
A = El" - Ez¢:
6B = ig,vg¥ - ig,vgd, (3.6)

S = ‘va°pv51 - I(A+iysB)ez,

i

G‘P H(A"iYSB)El - Fp\,opvez .

Notice that we have taken the opposite sign for A and B in the second set of
transformations.

In fact, the Lagrangian (3.5) is invariant under two-dimensional
erations in the y-¢-plane and the spinors can be combined in a S0(2) doublet
¢, i=1,2. Under such rotations the transformation rules (3.6) are inert, if
we rotate the parameters ei simultaneously by an equal amount. This means
that we put the spinor paremeters in a doublet of S0(2) also.

The Bose fields Vu, A and B must be singlets under SO(2) and from (3.6)
we see, that it is most conveniently done by putting Vu in a S0(2) scalar
representation, while asgigning A and B to antisymmetric tensor
representations Ai'j and Blj. In this notation egs. (3.6) take the manifestly

50(2) invariant form:

-]
<
[}

R
sald = E[ltJ] , :
e . (3.7 .
seid = ie[lvswal ,

i _ _ i _ . ij
Sy Fuvauve #(A+iygB) Ve .

This multiplet is known as the S0(2) vector (gauge) multiplet. The
Lagrangian (3.5) becomes: !

'=_12_1 i.j2_1 ijZ_-ii
e R O L R S L [ [ (3.8)

This example clearly demonstrates how SO(N) supersymmetry comes into
existence. One starts with N independent sets of supersymmetry

13
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transformations on different multiplets of fields. One then tries to
combine these in SO(N) representations, such that the N Majorana spinor
parameters ei, i=1,...,N, can be rotated into each other, while
simultaneous transformations of the fields render the whole theory form
invariant. If this procedure can be implemented, a SO(N) symmetry is
obtained in the theory.

It is this possibility of fusing supersymmetry with internal symmetries
that provides the framework for unification of supergravity with other

interactions.

4. Supergravicy

Any theory possessing local supersymmetry must include a description of
the gravitational field and is therefore a theory of supergravity. We will
now present the theory of 0(1) Poincaré supergravity. It derives its name
from the fact that the algebra of its symmetries forms a local version of
the graded Poincaré algebra without any internal symmetries. The model
consists of the usual Einstein-Cartan version of gravitation *) coupled to
8 real massless spin %-field, the gravitino field wu. The Lagrangian is

given by
S e v.ab vpU= ,
R L AR X (&.1)

We will first explain the quantities appearing in this expression. The
parameter k is the gravitational coupling constant. It has the dimension

[~'] and is related to Newtons constant G by

k2 = 8xG. (4.2)
In our formulation gravitation is described by a single field eﬁ (u,a=1,...,1),
the vierbein field, with the property that the metric tensor is given by

ab
= . Y,
€y 6a.beuev (k.3)
Contraction with a vierbein changes local Lorentz iadices a into world
indices p and vice versa. These indices refer to the transformation character

u

under local Lorentz and general coordinate transformations resp.; ey is the

matrix inverse of eﬁ and e=det e: its determinant. R:: is the curvature

tensor, related to the usual Riemann tensor Rguv by

*)} In our conventions we follow ref. 3.

14



RS = 2RO . (4.4)

uv [ py
It can be expressed in terms of another quantity, the spin connecticn mib.
This is not an independent field, but is an exoression in terms of the

vierbeins and the gravitino field:

1) A A v . C
©ap = -z{ea(auebA - 3Aebu) + eaeb(ave)‘cjeu - (a++b)}

2 (o -
-5 {“’.,(Ya“’b RARE “’Ju“’b} . (4.5)

In terms of mib the curvature tensor is given by

ac b be a). (4.6)

ab ab ab
R = w -n W
nove pove

]

=3 w. -23w - (w
uv nv v u

Finally we have defined the covariant derivative

., 8b

Dvg = (3, - 33 o, )W . (4.7)
This completes the definition of the Lagrangian (4.1). The corresponding
action is invariant under the following local supersymmetry transformations:

Ssea = ey ,

e, (4.8)

stu = ;-Due R
where Du is defined as in (4.7) and € is now space-time dependent. The
action is also invariant under general coordinate and local Lorentz trans-

formations with parameters EA and eab respectively:

5e3 = -e;'auaA - Exaxei + eabe: ’

o, = -wAaHEA - 5Aax¢u + 5eab°ab*u' (-9)
Having thus established the theory, we proceed by discussing its main
properties. The field equations corresponding to AaSG read:‘

R =2 e v v 0¥, = 0.

R: - 55“13 = %Z— VAo ﬁﬂfﬂrwpp,,,0 . | (x.10)
with R: = R"m"A , Rz R: .

The first equation is a covariantized version of the Rarita-Schwinger

15
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equation for rree massles spin-% particles. The second equation is the
usual Einstein equation with on the right-hand side a term representing the
energy-momentum tensor of the gravitino field. Notice, however, that our
curvature tensor is defined in terms of the wab given by (4.5), which
differs from the wab encountered in the geomezrical formulation of
gravitation by the wu-dependent terms.

This wu-dependent part of m:b is a menifestation of yet another property
of supergravity, which is torsion. Physically torsion means that the
curvature is not only determined by the mass density but also by the spin
density. Obviously the spin density here is due to the gravitino field.
Mathematically torsion manifests itself in non-symmetric affine connections

Pﬁv . These quantities are defined in terms of the vierbein field by

P _ P a P a _ a _b

ruv = eaDuev = ea(auev ®, b8y ) {4.11)
and in our case they satisfy

P P ,'ﬁa Yo . (h.12)

Hv v 2 Tp v

Obviously they are not symmetric.
In the action, torsion gives rise to w“—interactions. This one sees by

substitution of the expression for uﬁb into Riv' These interactions
discriminate between supergravity and usual geometrical versions of the
theory of gravitation. However, since spin g-fields have not yet been
observed in any fundamental process, this does not lead to experimental
consequences. Moreover these interactions are very weak, being short range
and proportional to k2. Therefore there does not seem to be much hope in
general for establishing torsion experimentally.

We finish this section on supergravity with an examination of the
commutator algebra of the supersymmetry transformation (4.8). On the
vierbein the commutator has the form

18,56, 1} = [8,(8") + 8, (6%3") + 5( S ehy 12 (4.13)
where EX = -2Elyxe2, and GG’ BL and GS represent general coordinate, loczal
Lorentz and supersymmetry transformations respectively, as defined in (%.8)
and (4.9), with the (field-dependent) parameters indicated.

We note that the commutator is different from that of global super-

symmetry. This is to be expected, since also the algebra of space~time

16
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transformations changes. For example, two local translations do in general
not commute, while global translations do.

For the gravitino field the commutator has the same structure as in
(4.13), except for terms proportional to Ru, which vanish on shell. This
is familiar from previous discussions. However, its consequences reach
much faurther here, since it affents the definition of the quantum theory
corresponding to (4.1). 1In the usual procedure for theories with a local
invariance explicit use of the off shcll closure of the algebra is made.
Hence we either have to find a formulation of supergravity with closed
algebra, or we have to invent a generalization of the quantization procedure
where on shell closure of the algebra suffices. Both can be done and we will

return at length to the problem later.

5. Synopsis

In this chapter we have introduced the concepts of supersymmetry and
supergravity. We have seen, that supersymmetry is a powerful principle,
which might solve some important problems in the physics of fundamental
processes. In particular we have explained how local supersymmetry
naturally leads to a theory of gravitation. It is this application with
which we will be concerned mostly in later chapters.

The presentation of our material is organized as follows. 1In chapter II
we will give a more precise and technical definition of supersymmetry. We
will return to the examples presented in this chapter for a discussion of
two important topics.

The first one concerns the off shell closure of the supersymmetry algebra
using auxialiary fields. We have already briefly touched upon this problem
in a discussion of the scalar multiplet. '

The second one is Lhe generalization of globally supersymmetric field
multiplets to local ones, in order to couple them to supergravity.

In chapter III we present the theory of S0(2) supergravity. We construct
the linearized version of the full multiplet, including auxiliary fields,
of this theory, as well as of certain matter multiplets.

Chrwdat

In chapter IV we give the extension of these results to all orders in the
coupling constant x. We also present the full Weyl multiplet for N=2 and
discuss the coupling of matter multiplets.

In the last chapter, V, we will present the quantization procedure for

theories with local gauge invariance and it. generalization for theories

17
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with non-closing, or open, gauge algebra's.

We have included two appendices. In appendix A we give a summary of our
notations and conventions. In appendix B we give an alternative to the
graded Poincaré algebra: the graded conformal algebra. This supersymmetry
algebra is of importance in connection with the Weyl multiplet.
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CHAPTER TI

SUPERSYMMETRY AND SUPERGRAVITY II.

1. Preliminary

Symmetries play an important role in field theories. For one thing,
they can establish relations between different processes described by the
theory. Also they may imply conservation laws for certain charges connected
with the fields. And, very importantly, they may prescribe the form of
interactions occurring in the theory.

A field theory possesses a symmetry, if its physical content is not
affected by a certain set of field transformations. This means, that the
action functional, frcm which one derives the dynamics of the fields, is
invariant under these transformations. Usually, in order to obtain
invariance, one must change the fields rigidly over all space-time. That
is to say, the parameters of the transformations have a fixed value at all
places and times, and the theory exhibits a global symmetry.

However, sometimes it is possible to realize the symmetry in such a way,
that the strength of the field transformations may vary at different space-
time points. We then have a local or gauge invariance. In general a gauge
invariance is connected with the introduction of some kind of interaction
into the theory.

Supersymmetry is a symmetry with the special feature, that its
parameters are anticommuting Majorana spinors. As a result it generates
conserved spinorial charges Qa’ which satisfy anticommutation relations.
Furthermore it can be realized locally by introducing massless spin g-gauge
fields in addition to gravitation. Thus one arrives at supergravity.

Some of these aspects were already discussed in chapter I. Others will
be examined more closely in the present chapter. We start by formally
defining the algebraic structure of supersymmetry, the graded Poincaré
algebra. We analyse its representations in terms of particle states,
paying special attention to their spin content. Then we give some
realizations of the full closed algebra on multiplets of fields. This is an

extension of results obtained in chapter I. In conclusion we discuss the
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coupling of supersymmetric matter multiplets to supergravity.

2. The graded Poincaré algebra

From the example in I.2 we have drawn the conclusion, that the
infinitesimal supersymmetry transformations have a uniform commutator
algebra on all fields. In particular we found, that the commutator of two
such supersymmetry transformations yields an infinitesimal translation, which

indicated that supersymmetry is intimately connected with space-time

symmetries.
In this section we will formalize these results and discuss the abstract

algebraic structure underlying supersymmetry and space-time transformations.
These last ones obey a Lie algebra, known as the Poincaré algebra. Inclusion
of supersymmetry promotes this. Lie algebra to a graded Lie algebra. We will

define these notions first [1] .
A Lie algebra L is a set of elements X.s which span a linear vector

space and which obey commutation relations

(X% 1 = c;bxc. (2.1)

Hence the commutator of two elements of L is again an element of L. The

quantities czb, called structure constants, clearly obey

¢ ¢
€ab * “Cpa’

They are not arbitrary, but restricted by imposing on the xa the Jacobi

identity:
X, [xaX 11+ [, [x X 1] + [x,, (X% 1] =0 . (2.2)
It follows, that the structure constants have the property

Lk L k .t k
Cak’be ¥ “bkSca ¥ Cckab = 0 » (2.3)

which is equivalent to the statement, that the matrices (ca): must form a

representation of the algebra (2.1).
A grading representation of a Lie algebra is defined as a set of anti-

commuting elements Qa s Which transform under a representation of the Lie

algebra and satisfy the following (anti-)commutation relations and Jacobi

identities:

20



[xaaQa] = qaaQBa (2.4)
- 8- - -
{Q,:95} = sygX,s

[X,»1%0 1] + [x,,1Q,,% 1] + [Q .[x_,x, 1] = 0
[x,-{9,,05}1] + {Q.0q.%, 1} + {ag.la X 1} =0, (2.5)
[9,105:0, 1) + [Qg. 10,50 1] + [).19,,95}] = o

Substitution of the rules (2.1) and (2.4) into the identities (2.5) gives
three constraints on the structure constants qgm and 538’ analogous to the
relation (2.3).

The above definitions are quite general. We will now consider the
special case of the Poincaré algebra [1,2]. The usual Poincaré algebra
consists of the generators of infinitesimal translations Pu’ and Lorentz
transformations Muv' To obtain the graded Poincaré algebra, these are
supplemented by a set of anticommuting elements Qa’ transforming as a

Majorana spinor under lLorentz transformations. The full algebraic structure

is:
[Pu,Pvl = 0,
[Mu\),PA] = Gv)‘Pu - au)‘P\), (2.6)
= + - - M .
[Muv’MKA] GvKMuA 6uAMvK GvAMuK GUK v
[Pqua] = 0,
[Mw,Qa] = -(cw)abQ,b, (2.7)

{Qa’ab} = 2Pab'

It is straightforward to verify, that this algebra obeys the Jacobi
identities (2.2), (2.5). Clearly the infinitesimal translations, Lorentz
and supersymmetry transformations in our examples of I.2 satisfy the
relations (2.6) and (2.7). Hence the grading elements of the Poincaré
algebra can be identified as the generators of infinitesimal supersymmetry
transformations.

One can extend the graded Poincaré algebra to include internal

symmetries as well. This is done as follows. Consider N copies of the

grading {Qa}:
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With these one can trivially generalize the graded Poincaré algebra to:

r -
[PLI’Q&] - 0,

S r
[Mu\),Q&] = "(qu )a.bQ’b’

r =Sy _ rs
{Qa’qb} = 2Pt "

(2.8)

The key observation is now, that one may take {Q:}to be the grading
representation of some internal symmetry algebra as well. When the

generators of infinitesimal transformations of this symmetry are denoted by

Ti’ we define a graded Lie algebra:

- ok
[Ti’Tj] RS (2.9)
{T.,qF} = t3°¢° ]
i’%a i ®a’

At the same time the Ti transform as scalars under Poincaré transformations:
Pyl = 0 (2.10)
[Muv’Ti] = 0,

The problem one has to solve is, whether one can find structure constants

f?. and tgs in (2.9), such that the Jacobi identities (2.2), (2.5) hold

for all combinations of elements Ti’ Pu’ Muv’ Q;. This is indeed possible

and hence {Q;} can be a set of grading elements for both the Poincaré and an
internal symmetry algebra simultaneously. However, the class of allowed
internal symmetries is rather restricted. Substitution of egs. (2.9) into

(2.2) and (2.5) results in the following requirements on f?j and t?sz

a. the f?j obey eq. {(2.3):

) g _ ]
£ o - f?zfim = fijftm . (2.11)

b. similarly the first of the relations (2.5) implies:

_ ok . Trs,
= fijtk 3 (2.12)

c. the tis must be real and antisymmetric in r and s,if Tiis antihermitean.

rs
[ti ,tj ]

k and tgs both are matrix representations of the algebra

(2.9). Furthermore, since there are only 3N(N-1) independent real anti-
symmetric Nx N matrices, the tgs can generate at most an SO(N) internal

symmetry. Therefore also the Ti cannot belong to an algebra larger than
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S0(N). 1In this way the Q: become the generators of SO(N) extended super-
symmetry, of which an example was given in I.3.

All possible modifications of the above scheme for a quantum field
theory in a Hilbert space with positive definite metric were given by Haag,
Lopuszanski and Sohnius [3]. They showed that the maximal algebra which can
be realized by the charges of such a theory is the product of the graded
Poincaré algebra and SO(N), the only possible modification being the
occurrence of central charges. These are charges which commute with all
other elements of the algebra. The modification therefore has the form:

r s

[5,8%) = 2p_ 6" + 6_2"% + (y5)_ Y5,
: Qb ab ab ab (2.13)

(x,z°%1 = 0, [X,Y°] =0, for all X.

This result holds for finite multiplets of massive fields. 1In the
massless case a further generalization is possible. Here one may obtain a
realization of the graded conformal algebra [4]. This algebra is discussed
in appendix B, As shown there, also a chiral invariance exists. Hence the
introduction of pseudoscalar charges is possible, which increases the
number of internal symmetry generators allowed from zN(N-1) to N2, Thus
the maximal internal symmetry becomes U(N), rather than SO(N). Central

charges are allowed in massless representations as well.

3. Particle multiplets of supersymmetry

We will now determine the particle states in globally supersymmetric
quantum field theories [1,2]. These are characterized by their quantum
numbers, such as mass, spin, momentum etc. In contrast to usual
relativistically invariant field theories, where the squared mass and spin
are fixed for a given particle multiplet, wc will find here, that ‘
particles of both integer and half integer spin are present within the same
multiplet. In stead multiplets of supersymmetry are characterized by the
squared mass and a new quantum number, called superspin.

Since we do not wish to distinguish particle states differing only in
the value of the momentum i, we will restrict ourselves to the manifold
of states with fixed k. 1In fact, because the squared mass, m2 = —kuku*)’
is a Casimir invariant of the global graded Poincaré algebra, we only have

to consider states with fixed four momentum ku' The condition for an

*) k =.iP , see I.2.
u u
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operator X to leave the four momentum of a quantum state invariant is:
P ,X]{k > = 0. .1
[ 0 1] " (3.1)

Obviously the operators satisfying (3.1) act as a subalgebra of the graded
Poincaré algebra on the states lku). This is called the little algebra of
the graded Poincaré algebra.

We will now first analyse the case m?=0. We will use the special
representation of the Dirac matrices described in appendix A. In this

representation the Majorana condition for the spinor QZ, r=1,...,N, reads:

r .t
Q]_ = IQL; °
r ot {(3.2)
Qz = —1Q3 .
It 1s convenient to introduce the operators Qf, defined by
. +
r .
Q= 3l +iqz ). (3.3)
Taking for the four momentum of our states
k, = (0,0.w,10),
we find for the anticommutator of the Q's:
r =s . . rs -
{Qa’Qb} = —21m(Y3+1Y4)ab5 > (3.4)
or equivalently:
.I-
r s rs .
{q .5, } = 208" "(1-2i03,) , - (3.ha)
In terms of the operators Qi this becomes:
r st rs .
{a ,a_ } = 2ws™” , (3.5)

+ .
while all other anticommutators, including {Qi,Qi } » vanish. From this
last property it follows, that in the Hilbert spaces of physical states Q:

has the trivial representation

and therefore we will leave it out of further consideration. Clearly, the
Qf satisfy (3.1), and hence they belong to the little algebra. The same
holds for possible internal symmetry generators Ti' The full little algebra
consists of the elements

{Qf,Qf+,J3,N1,N2,Ti} . (3.6)
Here we have defined:
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Ti= 5 eiaMge  (Ldk) = (1,2,3);
Ny = -iJ, + M,,, (3.7)
N, = -iJ, + M,,.

These statements may be verified by direct computation. From (3.7) we see,

that the Ji are just the usual angular momentum operators. They satisfy:

[J.,7.]1= 1ie... J,_,
127 1jk k (3.8)

[Pu’Ji] _lEijkﬁktu .

Therefore J3, the component of 3 in the direction of the three momentum Py N
is the helicity operator. The complete algebra of the elements {3.6) reads:

OO LI C ) Lo

[95,°1 = 3q, [74,8,] = iN,, (3.9)
.l-

(75,67 1= -3"T, [3,,0,] = ~iN,.

All other (anti)commutators are zeroon states |ku). From this it follows
that the eigenvalues of J; and those of the internal symmetry generators
determine completely the particle content of the theory. Also from (3.9) one
concludes that Qf and Qf act as helicity raising and lowering operators
respectively, changing the helicity of a state by #3 unit.

It is now easy to construct the finite multiplets of zero mass particle
states. Suppose we have a singlet state Iku,A), A representing the

helicity, which acts as the vacuum state for the operators Qf:
r
k ,A) =0,
Q_lx,s
Clearly A is the maximal helicity for states constructed from Iku,A) o
By applying the operator Qi k times, we obtain a set of (g) states with
helicity A-3k:

- r.t rt
{ku,x-%k,[rl...rk] Y= (2w) k/2@1_1 _k |ku,l Y. {3.10)

The multiplicity (:) is easily understood by realizing, that all Qf's
anticommute. Hencé the states (3.10) are antisymmetrie in Tpsseesly, and
form an irreducible representation of SO(N). The state with lowest helicity,
A-3N, is again a singlet. Furthermore the particle multiplets, which are

finite by construction, consist of a total of
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k=0
states. However, in Lagrangian field theories all states are accompanied
by their CPT-conjugates. Hence in these theories their number usually
doubles to 2N+1. An exception occurs, when the particle multiplet is self-
conjugate. This is the case if A=iN, since for this A all states occur in
pairs of opposite helicity. Such a situation is found in SO(8) supergravity
[5 l,which therefore is egquivalent in particle content to the SO(T) theory.

We now turn to massive multiplets. We will describe these in the rest

frame, where
ku = (0,0,0,im) .

We define a new operator d7£, called the superspin, by
_ 1 rt r
H=% - ol (3.11)

¢
where
% T €15x%j

In an analogous way we construct a new operator from the internal symmetry

generators:
2 i rirs.s
;=T Y09 9 . (3.12)

These operators satisfy the usual angular momentum and internal symmetry

commutation relations:

[]k’]l] = ity o

157, §71= fli{.jyl: , (3.13)

[/ 7i1=0.

However, in contrast to Jk and Ti they commute with the Q's:

[f-1=0, [9,q;1=0. (3.14)

The little algebra now consists of the elements

1.
(@9 » /s %t s (3.15)

while iz-'-'f{!]i andﬂ"2 = f&'i

appropriate generalization of the Pauli-Lubanski operator Wﬁ, with

>
. . e . - 2 .
are Casimir invariants. In fact 1s the
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Wu = euvpokvMpo .
Therefore the massive representations of 30(N) supersymmetry are
characterized by the squared mass m2, by the gquantum number j of the super-
spin ;72, which has eigenvalues j(j+!), and by the eigenvalues of 72 . On
the other hand the states in a multiplet are distinguished by the third
component of the superspin 473 as well as of the ordinary spin J,, and by
the eigenvalues of the 5;‘5 that can be diagonalized simultaneously.

In fact, the little algebra is given by the relations {3.13) and (3.1k4),

complemenied by the anticommutators

+ +
[Q5.a5 ) =ms™, {505} =ms" . (3.16)
All other anticommutators vanish as before. Also we have
r 3T rt it
[f3s931=0, [35,0, 1=, [J50 1=-xq, . (3.17)

As a consequence of this (3.16) represents an algebra of spin-raising and
~-lowering operators, which is twice as large as in the massless case.
To construct the massive particle multiplets, we start with a (2j+1)-

fold set of states Iku,> A ®==Jseeastj, on which Q: and Qf give zero:
r"' I ( 8
qQ, Iku,A) =0, Q_]ku,A) =0, 3.18)

These states have the special property, that they are eigenstates of/ig
and J, simultaneously, with the same eigenvalue A. This is immediately

seen by writing (3.11) in the form:

.r.
Jo= s @ (3.19)

. . . . t
Subsequent application of the spin-raising and -lowering operators Q:, Qf

on Iku,l> results in the construction of a complete multiplet. We find
(25+41) x (1) x (}) states

—(k+2)/2 _S s, r.+ r T
lku’ A-3k+3n, [rl...rk,sl...sl]> =m (k+2)/2 Q+1".Q+1Q_1 cen Jk Ay,

{3.20)
They have a superspin component 7;=A, while their ordinary spin in the

z-direction is

J. = A-3k+3R.

3
The whole multiplet consists of (2j+1)22N states, with spin along the

z-axis running from A-3N to A+IN, and A=~j,...,+j. However, in a Lagrangian
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field theory only full spin multiplets with spin quantum numbers
-
J2 = s(s+1), J3 = =54.0.4%5,

occur, Hence we have to group the states into sets of (2s+1) members, each
set corresponding to a massive local field of spin 8. As an example,
consider the multiplet of states in N=1 supersymmetry which has superspin

j‘%. It has four subsets of states corresponding to the four values of %,’:

Fi=d bt §

Applying spin-raising and -lowering operators gives us a complete set of
states with

J3 = (29 %’ g’ 19 1s %9 %’ 0: 09 “‘215 -%: -1’ "1:"53’ -%9 ‘2> 3

which corresponds to the components of one spin 2 field, two spin % fields
and one spin 1 field.

For convenience we have included two tables, in which are listed some
massless and massive field multiplets of SO(1) and SO(2) supersymmetry.
They are classified according to highest heliecity A for the massless fields
(teble 1), and superspin j in the massive case (table 2.

In conclusion we remark, that SO(N) Poincaré supergravity is always
constructed from massless supermultiplets with helicities 2,...,2-3N,
supplemented by CPT-conjugate states. As a result, fields with spin s>2
become necessary for N>8. For instance, by allowing spin g fields one
could realize SO(9) or S0(10) supersymmetry. Such an internal symmetry is
large enough to account for the present phenomenology of elementary
particles. Free field theories for spin g have indeed been constructed [5].

Unfortunately, no complete interacting spin g field theory is known to exist.
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s so(1) s0(2) table 1. Massless representations

o | 1 1 of S0(1) and 50(2) super-
symmetry, classified

21 2 |1 . .
according to spins and

1 1 1 11211 highest helicity A.

)\+2§1%2%1%

s s0(1) so(2) table 2. Massive representations

s | 3 of S0(1) and S0(2) super-
symmetry, classified

22| L[ 9 . .
according to spins and

11 ]12(1 61 4| superspin j.

i 1{2{1 {4 {6]|un

0 1{2|(1]L4]s

R IR

k., Auxiliary fields

In chapter I we have discussed several field theoretical models in
which the graded Poincaré algebra was realized. In all these examples,
however, one needed the classical field equations in order to obtain a
closed commutator algebra. It is possible to remove this restriction on the
field commutators by introducing auxiliary fields. Auxiliary fields do not
correspond to dynamical degrees of freedom. They can be replaced both in
the action and the transformation rules by their field equations to reproduce
the original form of the theory, without any change in physical content.
Their only function is to close the commutator algebra off shell. Moreover,
since auxiliary fields are non-dynamical, they often have unphysical

dimensions.
It has a number of advantages to have a fully closed commutator algebrsa.
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In the first place, without auxiliary fields couplings between multiplets,
and transformation rules, become explicitly model dependent. This is
easily understood, when one realizes that the equations of motion by which
the auxiliary fields are eliminated, will of necessity be model dependent.
Because of this it is virtually impossible to construct general invariants
without having the full multiplets at one's disposal. These invariants are
important to provide the general form of Lagrangians, especially with
interactions between coupled multiplets, and to find the quantum corrections
to a certain classical action.

Secondly, for locally invariant field tlheories a closed gauge algebra
facilitates considerably the construction of the corresponding guantum
theory [T] . With closed algebra the usual Faddeev-Popov procedure applies.
The generalization of this scheme to theories with open off shell algebra
exists, but is rather complicated.

A further point of importance is raised by the existence of invariants

of higher order in derivatives. In such invariants the dimensionalities of

the fields are different from the original ones and former auxiliary fields

may become propagating [8]. In that case they are no longer auxiliary and

cannot be eliminated by their field equations.

Finally, the auxiliary fields also facilitate translations of super-
symmetric field theories into superspace formalism. However, we will not
be concerned with such formulations here,

We will illustrate the use of auxiliary fields in the scalar multiplet
of N=1 supersymmetry. Here one needs one suxiliary scalar field F and one

pseudoscalar G. The full transformation rules including these fields are:

SA=¢gp ,

§B = iEysy

8y = F(A+iygBle + (F+iygGle , (h.1)
8F = ey ,

6G = iEYssw .
From the rules one may verify that on all fields the commutator has the
.form (2.7):

[8(e2)s8(e1) 1= 8,(5,) (4.2)

where GP(EA) denotes the translation with parameter

EA = ZEzYA€1 .
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This result holds without using any field equation. Therefore tne aigebra of
the transformations closes independently of the Lagrangian for the fields.
The specific Lagrangian (I.2.1) can be extended to become invariant under the

transformations (4.1) as follows:
£ = -is(auA)2 - 5(auB)2 - 39w + 1F2 + 362 + m(AF+BG) - % wo. (4.3)
The field equations for the auxiliary fieids are:

F = -mA, (k.4)

These equations are algebraic in character and hence F and G are not

independent dynamical variables. Upon substitution of (4.4) into the

* transformation rules (4.1) and the Lagrangian (4.3), we reobtain egs.

(1.2.1) and (I.2.2). This shows the equivalence of the two formulations.

From the Lagrangian (4.3) we deduce, that the dimensionality of the
auxiliary fields here is {m?] . More generally we note that the relative
dimensions of fields in a multiplet are fixed by the algebra and
transformation rules. In respect to this we observe, that the dimension of
e is determined by (4.2) to be lm-%] . The absolute dimensionality, however,
depends on the action one takes for the fields. Also the division into
physical and auxiliary fields for a multiplet can only be given after
specifying the Lagrangian.

One can introduce auxiliary fields for the other multiplets we have
mentioned in a similar way. Here we give the result for the vector multiplet.

It has one pseudoscalar auxiliary field D, with the transformation rules:
V. =E
u EYD‘ > ) .
6¢u = -fuvouve + iygDe , { .5?
8D = ieysd¥é .
The Lagrangian density becomes:
2 - 2
K= 3r2 — 13de + 107 . (4.6)
uv
It can again be combined with the massless scalar multiplet in an SO{2)

vector gauge multiplet, with auxiliary fields and closed algebra [9]. The
result will be presented in chapter III.

We also give the full multiplet of N=1 Poincaré supergravity [10]). In
this case we have a set of auxiliary fields consisting of one scaslar S, oOne

pseudoscalar P and one axial Lorentz vector Aa. The action is defined by
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. . = . -&_pg _ 1 HVPoz - & (g24p2_p2
‘~ Poincaré 5 Bm2e YYDy, -3 (8P-AL). (4.7)

It is invariant, up to a total derivative, under the local supersymmetry

transformations

a - a
Se” = ke
u Y‘pus

qu

85 = - 3gyerP , (4.8)

2 .
=D e 4+ 1A € = €
K u uYS Yun »

5P =-—;—Ey5y-RP,
3i- (gP_ 1., . .gP
SAa > eys(Ra -3V R7) .

In these equations we have used the notations

(s + 1'YSP - 1'Y5‘) s

W= W=

n=
p_ vpo 4 ik _K )
Ri=3 €, y_,,\r\)(D,J > Yshy - 3 vpn)wd . (%.9)

RP is the supercovariantized version of the gravitino field equation. The
commutator of two transformations (4.8) on any field has the form:

- L A :
[5,,8,1 = 8,(6,) + 8 (=5 &%) + 8 (%, ~ 2E (o n + o Je,)
{L.10)

with EA as before.

This result is identical to the previous one (I.L4.13), modulo the part
of the Lorentz transformation depending on the auxiliary fields. However,
this part vanishes on application of the field equations for S, P and Aa, as
expected. Again we stress, that the transformation rules (L.8) are model
independent and remain valid in particular, when one couples matter
multiplets to the Poincaré Lagrangian. This example shows, that auxiliary
fields can be found for locally supersymmetric field multiplets as well.

In the following we will often make use of the linearized version of
supergravity. This is the free field part of (4.7), invariant under global
transformations (4.8) in the limit x=0. To take this limit correctly

requires some care. It is done properly by first defining the tensor field

h —:
u
a a K a

=8 + h . 4,
Cu w72 N (h.11)

In terms of hua we have
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K 2
Yhab ~ V2 (aahbu - abhau) + ole®) (4.12)
= K 2
=1+ + .
e 1 72 huu 0(x*)
Substituting this in the Lagrangian and transformation rules, and then
taking the limit «+0 gives:
Afl. =-33.h .3 h + 33.h, 9 h - 43.h 3.h

in. ATud Tuvy AAU Vv v Auv A uv
- }s? + P2 - a2), (4.13)

+1 -1
Ealhuualhvv EeuvpoqusY

vapwo
with the transformation rules:
Ghuv = V2 ev ¥, »

= .3 1 -
qu 32 (alhvu)olve + 175Aue Y€

85 = -3Ey°R , (L.1k)
8P = - i €Y_Y*R
> YSY ?
_3i= 1 .
GAIJ =% EYS(RH -3 Yu'Y R) ,

where the linearized Rarita=Schwinger equation is:

Ru = Euvpoysyvapwo y

However, in the following we will usually describe the linearized version
in terms of the vierbein by resubstitution of eq. (4.11). The free field
theory (4.13) and (4.1%) is also called the flat space limit of (4.7) and
(4.8), since the gravitational interaction has been switched off. In this
case we need no longer distinguish world and Lorentz indices.

Two final remarks on auxiliary fields are in order here. In the first
place, sometimes a commutator algebra of supersymmetry transformations
closes without auxiliary fields. For later reference we give here the
example of the so called tensor multipiet. It contains an antisymmetric
tensor Tuv’ a pseudoscalar B and a Majorana spinor ¢, with:

GTuv = 2eauv¢ ’

8B = ify¥ , (4.15)

Sy = ilysBe - YuavTuve .

To these fields corresponds the Lagrangian:

g 2 _ 1 1Tyy - (4.16)
L= Ha,T )% - 33 B)2 - ey
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It has the gauge invariance

820 = Cuupc®ols - (h17)
Because of this Tuv represents a spin 0 field [11] . The gauge
transformation (4.13) is also necessary to close the algebra. Notice, that
in spin content this multiplet is equivalent to the massless scalar multiplet.
However, in the massive case the tensor represents a spin 1 field, which
is incompatible with the representations of Poincaré supersymmetry. Hence
no massive version of this multiplet exists.

The second remark we want to make is, that auxiliary fields are in
general not unique. We have given here only minimal sets of fields necessary

to close the commutator algebra.

5. Matter coupling

In principle there are two ways to construct models in which super-
gravity interacts with matter. The first is based on combining the graviton
and gravitino with the matter fields in one multiplet of extended super-
symmetry. One takes a singlet spin 2 field, representing the graviton,
and an N-tuplet of gravitino's. Then, for N>2, one adds lower spin
fields as necessary to complete the multiplet. If one succeeds in realizing
local extended supersymmetry on these fields, one has found a theory of
extended supergravity, which contains its own matter fields. This
attractive scheme is unique to supersymmetrie theories,. since only super-
symmetry combines fields of different spin in one multiﬁlet.

The other possibility is to couple a multiplet of global supersymmetry
to some supergravity model by generalizing it to local supersymmetry. This
involves two things: on the one hand one has to find transformation rules
for local supersymmetry, by introducing supergravity fields into them. On
the other hand one has to extend the invariants of the global multiplet to
the local case. This is the analogue of the minimal coupling procedure in
electromagnetism and Yang-Mills theories.

However, in supergravity minimal coupling is by itself usually not
éufficient. There are essentially two reasons for this. In the first place,
as we have seen, the algebra of the supersymmetry transformations changes
when going from global to local supersymmetry. In particular commuting
translations have to be replaced by non-commuting general coordinate

transformations., Secondly supersymmetry transformations involve
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derivatives of fields. In minimal coupling these are replaced by covariant
derivatives. This introduces extra, non-linear terms in the transformaticn
laws of the matter multiplet. Although these two mechanisms often conspire
to make supercovariant derivatives a good first step towards extending a
global multiplet to a local one, the resulting rules are generally nct
correct. Moreover, the non-linearity of the transformations implies that
Lagrangians become complicated and certainly they are not obtained by
minimal ‘substitution.

In many cases, however, a multiplet of global supersymmetry can be
coupled to supergravity using the so-called Noether procedure. In this
procedure one starts from the global transformation rules and Lagrangian
and adds terms to both, order by order in the coupling constant k, so as
to achieve invariance at every stage. The method can also be used to
couple supergravity to itself, starting from the linearized theory. Both
applications will be encountered in our later work. For this reason we
illustrate the Noether procedure here for a very simple case [12] . From
this example it will be clear how both the changes in the transformation
rules and the Lagrangian, in going to local supersymmetry, are obtained.

Consider the massless scalar multiplet of global supersymmetry. The

auxiliary field F transforms as a total derivative:

8F = 3y . (5.1)

Therefore its space time integral is invariant and F can be taken as a
lagrangian density, invariant under the global supersymmetry rules (L.1).
Of course, one may also start from the more complicated action (L4.3), with
m=0, but for our purpose the choice of F as a Lagrangian suffices, We will
now extend F as well as the rules (L.1) to the case of local supersymmetry.
When € becomes space-time dependent, ¥ is no longer a good Lagrangian,

since an extra term is needed:

L = (auE)yuw s {5.2)

in 6£ to obtain a total derivative. From the transformation rules of the ;;
supergravity fields (4.8) one sees that the variation (5.2) is generated by 5
a term ;
KT yu :
2 WYY {5.3) :

in the Lagrangian. This term of first order in k is called a Noether term,

since it has the form

35



favuh X AN et

2

K« _H
5 ﬁuJ (5.%)

where J" is the Noether current of global supersymmetry:

¥ = My, (5.5)

This is sufficient to achieve local invariance of the action up to order k0 .

However, varying the Noether term {(5.L) gives also rise to variations
oL proportional to k. We cancel these either by new terms in &£ or in the
transformation rules of the matter fields. As a result we obtain a

Lagrangian density:

i

=eF + g Toyy - x(AS + BP) , (5.6)
which is again invariant up to terms maue under transformations:

or = (B0 - 5400 (arivgd) + 7+ iv oy, B vheany) . 6D
The other fields still transform according to the global rules. We briefly
indicate how (5.6) and (5.7) are determined. The factor e in front is
necessary to obtain a proper coordinate invariant action. It is also needed
to cancel a term key*yF from the variation of ¢ in the Noether term. The
variations qu'bS,P of this same term vanish with other ones coming from the
new term k(AS+BP)}. All remaining variations of the Lagrangian (5.6) cancel
either among themselves or against those from the new §F (5.7), except for

one, which reads:

8& = ~2¢f o™ (A+iy B)a k. (5.8)
To get rid of this one, we have to introduce a new Noether term in l:, of
order k2:

k2 = uv,, ..

S U0 (A+1y513)npv . (5.9)

We now have succeeded in constructing a local invariant up to order k. The
whole procedure can be repeated in the next order, «2. No new terms in the
Lagrangian are thereby found. It turns out to be sufficient to change the

transformation rules of the scalar multiplet to:

8A = gy ,
6B = ievys¥ ,
Sy = Ep(A+iY§B)e + (F+iysGle , {5.10)

6F = £(pP + %'5 ysk + kn)y ,
6G = iEys(#P + 32'5 ysK = kn)y .
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In (5.10) we have introduced the notation DE for supercovariant derivatives:

p_ K
Dy =D, =384, (5.11)

where 6s(w ) is a supersymmetry transformetion with parameter wu. Explicitly:

u
T K=
DA-BuA-?wuw,
Dn _ ik =
DB =3B - st (5.12)
Py, = L P :
DY =D -3 { (A+iyB) + F + ”56}"’“ .

One may verify also, that the transformations (5.10) satisfy the algebra
(4.10). Hence we have succeeded not only in constructing a new, locally

invariant Lagrangian:
. _ 2 _ .
K = e[F + 5 Fovv - «(as+BP) + 5§ 0" (arivgBly ], (5.13)

but also in obtaining a set of local supersymmetry transformations for the
scalar multiplet with closed algebra, Actually, the transformation rule of
G was found just by requiring the closure of the algebra, since it does not
play a role in the variation of £, Note, that minimal coupling is correct
for A, B and ¥, but not for F and G. Evidently it is neither of any use in
obtaining the Lagrangian (5.,13). This Lagrangian may of course be completed
still further by adding the Poincaré action (L4.7) for the gauge-field
multiplet.

We now comment on the unigueness of the procedure. There are two
sources of possible ambiguities. In the first place one may start from
different Lagrangians in flat space. In general, this does not lead to
different transformation rules for the fields, up to trivial field
redefinitions, as follows from the closure of the algebra,

An exception to this occurs, when the Lagrangian has other local
invariances beside space~time and supersymmetry. In that case one is
liable to miss terms in the transformation laws which correspond to such a
symmetry transformation. However, this imm~diately shows up in the
commutators, where one finds extra terms of precisely this type. Therefore
these ambiguities are not fundamental,

Of course this is no longer true when the auxiliary fields are not
present. In that case the equations of motion, and consequently the
Lagrangian, do play a role in the transformations and commutator algebra.

The second source of ambiguities are the Noether terms |13] . To see

this, note that one may always add other conserved currents H" to it; if
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¥ =0, (5.14)
u
then the "improved" Noether current

g¥ = g% 4 gt (5.15)
can still be coupled to the gravitino field wu to cancel lower order
variations with Bue:

8( % EUJ'“) = (auE)J'“ = (auE)Ju . (5.16)

The last step follows after partially integrating the term with 4" and using
(5.14). Such an improved Noether term may lead to completely different
higher~order k terms in the Lagrangian. We conclude therefore that a
Lagrangian for a given multiplet follows uniquely from its flat space
expression only in so far as the Noether terms are unambiguous.

We mention here, that an azlternative procedure to find the transformation
rules, e.g. (5.10), is to start with the global ones and try to add terms to
obtain commutators of the required form (%4.10). However, without any hint
for the commutator algebra and at least some transformations this is almost
impossible in practice, because of the large number of terms and
coefficients one usually has to keep track off.

As a last remark we comment on the renormalizability of theories in which
supergravity interacts with matter. Extended supergravity theories, just as
N=1 supergravity itself, seem to have very good renormalizability properties.
However, these results do not carry over to the case where external
matter multiplets are coupled to them. For instance the coupling of an N=1
scalar or vector multiplet to Poincaré supergravity leads to irremediable

divergencies [14].
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CHAPTER III

LINEARIZED N=2 SUPERGRAVITY

1. Summary

In this chapter we will describe the linearized version (x=0) of 50(2)
supergravity with auxiliary fields. We start by giving the full theory in
terms of physical fields only. This is followed by a discussion of the two
N=1 multiplets basic to the construction of the theory, the spin (231)
multiplet and the linearized Poincaré supergravity multiplet, both with
auxiliary fields. Next we present some global N=2 supermultiplets and their
decomposition in terms of N=1 multiplets. The insights thus gained are then
used to fuse the fields of linearized N=1 supergravity with those of the
spin (231) multiplet into a multiplet of linearized S0(2) supergravity
containing auxiliary fields. Its decomposition in terms of submultiplets is
thereby found. We also discuss some properties of the linearized U(2)

conformal supergravity theory and a non-minimal auxiliary field representation

we find for N=1 Poincaré supergravity.

2. 80{2) supergravity

80(2) supergravity [1] is a theory of Poincaré supergravity which
displays a global SO(2) internal symmetry. It can be constructed by fusing
the linearized N=1 supergravity multiplet with the spin (331) multiplet and
generalizing the result to local supersymmetry.

The global spin (%,1) multiplet consists of a vector spinor wu and a

vector B , transforming as

1
6¢u -1v/2 F(B)paapaYUE (2.1)

GBu -2 Ewu s

where F(B) =3B -3 B.
pc po ap
The Lagrangian density for these fields is
tc = w3 v _ 1 2
2€ ooV sV = iy - (2.2)

Besides under the transformations (2.1), the action is also invariant under
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gauge transformations 6R and 6B of the fields:
6R¢u = 3ue,
§.B =23 A, 2.
8B, = 9, (2.3)
The N=1 supergravity multiplet and its linearized form were described in

§ II.k,

The two spin % fields ¢i, i=1,2, of these ?ultiplets now combine in a -
doublet of SO(2), as do the spinor parameters €. The graviton,
represented by the vierbein ez, is an80(2) scalar, while the vector field

becomes an antisymmetric SO(2) tensor of rank 2, B;J. By the Noether
procedure one can then generalize the result to local supersymmetry to

obtain the transformation rules [2]:

se? = KElYa¢l ,
u
. .
vl =2ty + £ v w' Al Y, e (2.4)

8l = _yo gt wj] .
U U

The invariant action is constructed from the Lagrangian density
_ _ i o s s s
2 = - —JI-R - éwlnl - 1[F(B)1J) - E-/é wl(F““ + y FPV)1dyd
uv s v
up vo=[i le* w + —-e"“°°wly *J¢ ¥ Jy. (2.5)

k2
-5 (ee v, L

In this expression R; denotes the covariantized Rarita-Schwinger equation:

1A = éhekvpoY Y.D wl (2.6)

R
while 9 is the dual of F'9:
uv uv

Fiduv _ 1 _wveopij (2.7)

2e pa
The commutators of the transformations (2.4) have the form
A i ij
lds(ez),ﬁs(el) 1= 5G(E )+ 65(83) + GL(Eab) + SB(A ), (2.8)

vhere the parameters are defined as follows:
for the general coordinate transformation we have:

g = -2elvke; 5 (2.9)
for the supersymmetry transformation:
3 2 g ik 3 (2.10)
Y]
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for the local Lorentz transformation

A ~i ~ij i,
e = & Uap k2 el(F + ysF)abez 3 (2.11)

and for the gauge transformation on B;J:

ij | opapid _ 2 =M1 Jj]
N = £7By '.<"2€1 €5 . {2.12)

On the fields ei and Bij the algebra (2.8) closes off shell. For wi on the
contrary, it holds upon use of the classical field equations only.

We wish to improve this situation by introducing auxiliary fields.
However, to find a complete set of auxiliary fields is a considerable
problem [2,3] . Its solution will constitute the main topic of this chapter.

We comment here on the physical interpretation of the theory. Besides
the global S0(2) symmetry and the local supersymmetry the Lagrangian {2.5)
possesses the local U(1) invariance {?.3), generated by the gauge
transformations on the vector field Blj. This geuge invariance is necessary
to obtain the correct number of physical boson states. As a consequence the
vector field can be interpreted as the electromagnetic field and SO(2) super-
gravity as the unification of supergravity and electromagnetism. Also the
spin % fields can be combined in a complex Dirac spinor, by which procedure
the global SO(2) becomes an equivalent global U(1) symmetry. However, under
the local U(1) this complex spinor has zero charge.

The advantage of this theory above the usual Einstein-Maxwell form of
gravitation and electromagnetism is found in its quantum properties. For
example, the photon-photon scattering amplitude, which diverges in the
Einstein-Maxwell theory, is finite in S0(2) supergravity on the one loop
level [L4].

It is also possible to gauge the S0(2) internal symmetry of the theory,
i.e. to promote it to a local symmetry [5]. 1In this case the vector field
becomes the gauge field of S0(2), making use of the isomorphy of the S0O(2)
and U{1) groups. In fact one makes the global U{1) symmetry of the complex
spin g-field local and identifies it with the local U(1) of the vector field.
Hence the spinor can now couple to the vector field with non-zero charge.

This theory can again be interpreted as a unification of gravitation and
electromagnetism. However, it contains a masslike term for the spin g

fields, with mass proportional to the charge q:

m=

%o

ho

R S,
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while there is a cosmological constant also. This cosmological constant
gives rise to difficulties in the interpretation and quantization of the
theory [5,6] . In particular the concept of mass is problemat.ic. Further~

more, if one takes the charge to be that of the electron,

9?2 1

TR T
the value of the cosmologiéal constant exceeds all observational upper
limits by orders of magnitude.

A possible solution to this problem is to bresk local supersymmetry by
taking the cosmological constant to be zero [6). This procedure then leads
to a consistent theory of massive charged spin g fields, 1in the sense that
no anomalous propagation occurs, and coupling to electromagnetism and
gravitation takes place in a flat background space. However, since this
goes at the expense of giving up supersymmetry, this is no longer a theory

of supergravity.

3. Basic N=1 multiplets

The procedure we will follow in constructing the auxiliary field
formulation of SO(2) supergravity is in principle analogous to the one we
described for the theory without auxiliary fields in the preceding section.
We start with the linearized versions of the N=1 supergravity and spin (331)
multiplets with auxiliary fields. We fuse these into a multiplet of
linearized S0{2) Poincaré supergravity and then complete the construction by
extending the results to all orders in the coupling constent «.

In this chapter we implement the first part of
the program, to obtain a linearized theory. As a preparation we discuss
here the full N=1 multiplets with auxiliary fields.

Of the spin (331) multiplet there exist two versions. The original one
was found by Ogievetski and Sokatchev [7]. However, it cannot be combined
with the N=1 supergravity multiplet (8]. 1In order to accomplish this, a
change in the field content of the multiplet is necessary. 1In this way the
second multiplet was found [2,3]. These are the only versions of the
multiplet [9] .

The second multiplet, the only one relevant to us, contains two
Majorana spinors x and A, of dimension g-and g-respectively, one Majorana

vector spinor &u, a vector gauge field Bu, an axial vector field Au’ a
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vector field Vu, an antisymmetric tensor tuv’ a scalar M and two pseudo-

slavars N and P. The invariant action is given by the Lagrangian

: = -3p 8 2 v 3 1.2
“£(3/2,1) = - R - E(F(B)uv) + 2xh + 232 + el +
MRS L a8 (3.1)

Here wu and Bu represent the physical spin g and 1 fields, while all other
ones are auxiliary. Ru is the linearized version of (2.6). The Lagrangian

(3.1) is invariant up to a total derivative under the local gauge

transformations (2.3):

o (3.2)
6BBu = auA »
as well as under rigid supersymmetry transformations:

YgY bt o€+ iYsYuPe,

8 = ~IoF ~ (Vv +iyAde -3
vy 3 (B)pccchus ( ot ivg u)e 3 viaa

€
uveo
8B = ~vV2 &
u wu ? .
=1 s 1 ey 1 s
§r = gopctpcs + 175Pe + Ve - > YSKE + 3(M + 1YSN)e,

8y = Jopctpcs - opo(F(v)pc + 175F(A)po]e + 21751Pe,

§V. = -ER + ¢ + 2€3_ A
s " W e (3.3)
GAu = -1eysRu-+1eysyux + 2leysauA ’
8t = -2e0 x - € €
uv uv

M = elx + 28r),

R
uvp0€Y5Yp a?

8N = iEYs(X + 23)\)5
§p = iey (x - 2v*R).

If we count the number of field components and subtract the gauge degrees of
freedom, we find that there are 20 bosonic and 20 fermionic components,
denoted by 20+ 20 for short. That the numbers are equal follows from the
non-singularity of the supersymmetry transformations.

The multiplet described in (3.1) - (3.3) corresponds to an irreducible
representation of Poincaré supersymmetry. However, from the field
transformations (3.3) one sees, that it is possible to extract three
different submultiplets. Here we use the term submultiplet to denote any set

of field components transforming only among themselves. These submultiplets

Ly
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correspond to other irreducible representations of the graded Poincar@
algebra and are described by different Lagrangians. As a result some of the
auxiliary fields of the (%,1) multiplet become propagating as members of
such & submultiplet. We will now describe these submultiplets of (3.3).

The ones that are most crucial to our construction of S0(2) supergravity
are an N=1 tensor multiplet and a scalar multiplet. Both were discussed in
IT.%, where also their quadratic Lagrangians were given. The tensor

multiplet is generated by the following field components:

= - + 3
Tuv tuv 1v/2 F(B)uv >

B=P, (3-1‘)
¥ =yx=- 2R .
One may verify from (3.3), that they transform exactly according to

(I1.4.15), modulo a gauge transformation of the type (II.L.17).
The scalar multiplet is defined by the components:

A =M, F = 3.V,
B =N, G = 3-A, (3.5)
gy =x + 2¢A9

transforming as in (IT.k.1).

Both these multiplets contain 4+ 4 bosonic and fermionic components.
This leaves 12+ 12 components of the original (331) multiplet. They do not
correspond to a standard multiplet, but to a multiplet of U(1) conformal
supersymmetry.*) Such a superconformal multiplet does of course contain
Poincaré submultiplets. However,. these cannot be described in terms of the
fields themselves, but only in terms of their higher spin components,

which are obtained by applying non-local projection operators on the
the fields. Hence there do not exist local Lagrangians for these Poincaré
submultiplets. For this same reason the superconformal multiplet must be
described by a Lagrangian which is of higher order in derivatives:

A= meoo(By = TRy 3 (R - by veR) - 30x = frB)A(x - LreR)

€uvpo

- A2, - 2430 (t, ~/2r(B) ))? - 303 E )7, (3.6)

where t  is the dual of t__ {cf. 2.6).
uv uv

*) Conformal supersymmetry is described in appendix B.
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We now turn to the SO(1) supergravity multiplet. It has 12+ 12
Its action and transformetion laws were given in II.k. We will
We see that it has

components.
restrict ourselves here to the linearized version only.
two submultiplets [10,11] . The first one is an N=1 scalar multiplet
consisting of the auxiliary fields S and P, the scalar Riemann curvature R,
the divergence of the axial vector field 3+A, and the contracted Rarita-
Schwinger field equation yeR. The assignment of the 4 +14 components

corresponding to (II.%.1) is:

R
A=S5, F = - Sx ?
B=r"P, G=23-A. (3.7}
¥ = -3y+R.

The remaining 8+ 8 components together form the multiplet of U(1) conformal

supergravity [12]. This theory is the supersymmetric extension of the Weyl

theory of gravitation. It consists of the highest spin components of the

fields eﬁ, wu and Au’ whose transformation rules were given in (II.L.8).

The linearized Lagrangian for this theory is:

(1) 1 (g2 2 ® L 78 .
~y o T EI.(Ruv - %R ) - euvp0<Ru - oYY R)YSYvap(Ro - %YGY R) -
2
- %[F(A)uv) . (3.8)

this Lagrangian describes in fact the
transversal and traceless parts of Ruv and Ru’ denoted by Ruv and Rf :

As explained in more detail in § 6,

3R, =0, R. =0,
B uv Hu ( )
T T 3.9
R = R*=0.
au u % "M
One sees, that both (3.6) and (3.8) are quadratic in the corresponding

S0(1) field equations.

L. Multiplets of S0(2) supersymmetry

_ Before we explain the construction of the complete SO(2) supergravity
multiplet, it is convenient to have some results concerning other S0(2)
supermultiplets at our disposal. Two such multiplets and their guadratic
Lagrangians will be presented in this section.

The first multiplet is the S0(2) vector-gauge multiplet [13]. 1Its
transformation rules follow from combining the scalar and vector multiplets
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given in IT.% by the procedure described in I.3. One finds:
v, = Eivuwi s
sald - gld wjl ,
R L L
st = -o Fv) et -l 4 iy el - (7N L iyt -
pove E[iﬂwj} )
5Gij = iEiysawj + (i<+j 3 traceless),

where F(v)uv is again the field strength of Vu' The Lagrangian for this
multiplet reads:

R R CY SR O R LR T A L L R U
The commutator algebra closes off shell, yielding the usual translation Bp
and a gauge transformation Gv on the vector field Vu:

[6,.8,] = GP(E)‘) + cv(-zéiwei - 22%(15‘j + iysBij)e‘z’) , (4.3)
with

EA = EEZYAei .

Because Vu is a gauge field,the multiplet contains 8+ 8 components. However,
the equations of motion show, that there are b+l physical degrees of
freedom, corresponding to massless particles of spin (1,3,3,0,0).

A related multiplet is the SO(2) tensor-gauge multiplet. It consists of
a tensor field Tig, antisymmetric in both pairs of indig§s, a singlet
Lorentz scalar A, a symmetric traceless pseudo-scalar B'Y, and a spinor
doublet xi, with two auxiliary fields: a scalar F and a pseudo~scalar G.
These fields transform as follows: ’

st 19 o ogliy Il
uv HV

84 =ext,
6B* = igty_x) + (i<»j; traceless) ,
i i; i3y d ij 3 i (h.4)
8x = (a7 + iy, B et + YuavTuve + (F + 175G)e s
§F = Elﬁxl s

G = iElysﬂxl .
We can reduce this multiplet to its constituent N=1 multiplets by
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consistently setting e?=0 everywhere. In this way one may verify, that the
tensor-gauge multiplet (4.4) is a fusion of the N=1 tensor multiplet (II.L.15)

with a massless scalar multiplet (II.4k,1). It has the same gauge invariance

ij _ ij
82 0 = Euvpodols’ 2 (k.5)
as we found in the N=1 case. With this gauge invariance the commutators of

the transformations (4.4) close on all fields, including T;i:

= 1 ij =-{1i k. . 3k, k
[6,,8,1= Gp(ix) + GT('zeouvxnguv + 28 Ty v (AS + iy, B )52)- (4.6)

Again (4.5) implies that there are 8+ 8 components in the multiplet, while

the spin content is (%,3,0,0,0,0). This corresponds precisely to the mass—

less particle multiplet with highest helicity A=} of table II.3.1, provided
we take a doublet highest helicity state in stead of a singlet. The spin
content also follows from the Lagrangian:
_ 1 1j 1 2 1 1j.2 4=l 1 1.2 12
= 3(3 T - 3(3 A)" - 5(3 B -3 + 3F° + 367 . L.
Lp =i m0) - 3o a)" - 3 8)° - 3" + 3 (4.7)

It is equivalent to the massless scalar-spinor multiplet described in refs.

[13,14] . However, contrary to the scalar-spinor multiplet, it cannot be

used to describe the massive case. This i1s analogous to the N=1 case.

5. The construction of the S0(2) supergravity multiplet

We are now prepared to come to the main problem of this chapter, the

construction of the full linearized S0(2) supergravity multiplet. 1In order

to accomplish this we take the N=1 linearized supergravity and spin (231)

multiplets and try to combine these in an S0(2) covariant fashion. We may

expect some problems, since these multiplets have different numbers of
components. However, a good strategy will be to start with the fusion of
some of their submultiplets,
,Later one may then try to find any missing components by extending the

remaining N=1 submultiplets to the N=2 case in a suitable manner. We will

which contain equal numbers of components.

now describe this procedure in detail.
In first instance the only submultiplet of 0{(1) Poincaré supergravity

which comes into consideration is the scalar multiplet

R
(8,P, - JZ"Y'R, - —2“;, 9°4) , (5.1)

presented in {3.7). On the other hand, the spin (%31) multiplet has the

tensor submultiplet (3.4). As we have shown, it is possible to combine
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these two N=1 submultiplets in an SO(2) tensor-gauge multiplet (4.%). This
immediately suggests the S0(2) assignments of the fields: the axial vector
field Au and the scalar S from 0(1) supergravity become SO(2) singlets, the
pseudo-scalars of (5.1) and (3.4) fuse to form a symmetric, traceless tensor,
and both tuv and Bu are antisymmetric S0(2) singlets. To combine the two
spinors into a doublet seems troublesome at first sight, but it should be
realized, that (3.4) and {5.1) may still originate from a common field
representation, since they are presumably to be obtained from that by
different reduction procedures. Therefore we simply take the multiplet (3.3)
and double the spinors wu and X into doublets, choosing xi - %y-Rl as the
spinor components of the S0(2) tensor multiplet.

One then finds, that the scalar curvature cannot fully represent the F-
component of this multiplet, since the supersymmetry variation of R will
never yield terms proportional to Eﬂxi. As a result the F-component must be
a linear combination of R and some other field, which is as yet unknown.

We can summarize the above by stating, that one of the submultiplets of

S0(2) supergravity will be a tensor multiplet with components:

9 = 19 4+ Jor(B)M
uv uv Hv
A =8,
ptd - pid ,
. . . (5.2)
1 1 1
Y =X - %Y'R >
R

S - = +
F S+ D
G = 2°A,

where D is still to be determined. At this stage we may note, that indeed
the (2,%) and (%,1) multiplets of N=1 do not contain a sufficient set of
auxiliary fields for the S0(2) supergravity multiplet. We have introduced
an extra spinor x and an unknown scalar component D, which neither originate
in the (%,1) nor in the (2;%) multiplet. The reason for this, as noted, is
that the minimal representation of SO(1) supergravity, with 12+ 12
components, cannot be fused with the 20+ 20 components of the spin (331)
multiplet. Instead we have to use & non-minimal representation, which also
contains 20+ 20 components. The missing 8+ 8 components have to be found by
direct construction.

Therefore our next step is to further generalize the multiplet (3.3) to
80(2). To obtain closure on the vector and axial vector fields it turns out

n9
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to be necessary that Vu in (3.3) is assigned to an antisymmetric S0(2)
singlet representation, whereas Au must be extended to a symmetric traceless

tensor. At this point one then has found the transformation rules for

lpls Xls t;‘\],a BlJa VlJ AlJ, A s S and P,

with a few arbitrary coefficients. For certain values of these coefficients
one can show by explicit caiculatlon, that the algebra closes on these fields
modulo gauge transformations on w s B1J V;J and A J This gives the
following partial results for the SO 2) supergrav1ty multiplet:

a -1ai

Geu = ke Y w >

i y ij j i . i3V . . i ij_d

= -3 - /2F + - + -

5!!)“ z( oo .2 (B)po)OpOYue (Vu 1*151-\u e 1y5Aue e,
8l = _yp gli, J]

u - -‘“l . . . -
sx* = -2fn"ded + pet + (F(V)lJ - iy F(A) <o g od

uv uv

ij o =l il ~[i Jl

Gtuv 2€ ouvx Euvpos Y5 Y R s
i=-i i i

éAu =5 €y, R ie YSY (x - 3y*R ) R {5.3)
GA;J = —iz Y RJ + it YSY x? + (i<>j; traceless) ,

ij -[i J] =li_ _dl
sV = - + €

N e R ' Y, X
§s = e°(x* - R,
sptd = iEle(xJ - 3y*R) + (iej; traceless) ,
= EYFx ,

where

15 o qgld 4 50 pid _ 5y gsld 4 1g 413

n? = 85677 + iy.P 1754(6 + Eopotpo . (5.4)

It will turn out that the commutator algebra of (5.3) closes, and the field
components form two irreducible multiplets, one of whieh is the tensor
multiplet (5.2), the other the multiplet of U(2) conformal supergravity.
Again this superconformal multiplet only contains the highest-spin field
components, as is evidenced by the gauge invariances introduced for the
spin g-and vector fields.

The field components of the (%,1) multiplet that have not yet been
incorporated in an SO{2) multiplet are exactly those of the scalar multiplet
(3.5), which corresponds to the lower spins contained in these fields.

Since xlis an S0(2) doublet, A will have to be extended to a doublet also in

50



ST en

order to obtaln the splnor components x + 2$A . The auxiliary field
components 3V i and 3°-A 1 form an antisymmetric singlet and traceless
symmetric SO(2) tensor respectively. Furthermore one demands, that the

89(2) fields into which Ai is to transform do not affect the closure on

v ang A;j already obtained. In this way one obtains uniquely that the full
80(2) completion of (3.5) is a vector-gauge multiplet (4.1).

As a consequence M and N become antisymmetric singlets of S0(2), while
a new vector field Vu nas to be introduced. The S0(2) vector~gauge multiplet
thus consists of the components

v, wld, W, aoml, aevid, 5ty | (5.5)
The only field component not yet assigned to a S0(2) submultiplet is now 3.V,
but one sees immediately that it fits exactly the role of D in (5.3).

This completes our construction. To summarize the results we give here
the full set of fields and transformation laws of linearized S0(2) super-
gravity. It contains the vierbein eﬁ, a doublet of Majorana vectorial
spinors w and the vector gauge field B i as physical components, and
furthermore the following aux111ary flelds two doublets of spinors x and
Ai, an antisymmetric tensor t J, three axial vector fields A and A
two vector flelds V and V J, two scalars S and M J, and three pseudo-
sclars P 13 and N J In all there are 40+ 40 components. The flelds B J

lJ, V1J M i and N 1 are antisymmetric 50(2) singlets, whereas A J

uv

P1J are assigned to the symmetric traceless representation of SO(2) Under

rigid S0(2) supersymmetry transformations these fields transform as follows:
se” = KElyawl
chp: =—D £ -g[tl‘] /2F(B)1J}cr Y £ +(V 1yAJ)£J+1yA et -y n eJ,
§BM = /2 s[ ] Jl
u u

7 = 30T+ iy el - et - 30y el ¢ e

i _ ij J 1J ij J
= + + -
8x -2#n 3eve' (F(v) iy F(A)uv) W
ij o o=l 31 -[i Jl
Gtuv 2€ ouvx euvpoe YSYpRa ’
_i-i i, .ei i g0
A, =5 e VR +ie vy, (x IyeR) , (5.6)
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( (5. 6) contlnued)
GA -ig?t Yg RJ4-1E Y 5Ty xJ + 21e ysa AJ + (i+>j; traceless), (5.6)

5V1J = gl RJI + 2liy xJ] + opliy AJ]
Lo . | L
sV =y (x' +28at) - 28t
" € Yu(x ? ) ET3 AT
88 = e (x -3y-RY) ,
6P = iElys(xJ - 3y*RY) + (i«>j; traceless) ,
ol = 2T 4 oy |
sN'd = iEIlys(xJ] +opdl .

Although (S 6) refers to global supersymmetry, we have included a term

2 el in dw to indicate the gauge invariance of w under local Rarita-

Schwinger transformatlons. The Lagrangian den51ty for the multiplet reads:

T o e - 1-i i _1 ij 2 + -i.1 i 1 ij 2
Afp 3Z B - 3R - LF(B) )7 + 2X"A" + 2% ind, A
£ 82+ 3+ 3?2 - gerd)® - atd)? - 8 - 3t

(5.7)

The first term has to be linearized as in (II.L.13).

The full S0(2) theory with auxiliary fields will be invariant under
local supersymmetry, Maxwell and Lorentz transformations, as well as
general coordinate transformations. At the linearized level the algebra
closes with the infinitesimal supersymmetry transformations (5.6). In
particular the comautator of two supersymmetry transformations acting on the
fields is given by:

= i X ij
[6,08,1 = 84(£,) + 8_(e) + 8,(e_ ) + 6. (ad) , (5.8)
as in (2. 8), but now with parameters:
_ i
EA = EEQYAEI N
i _ J 3. =fi _jl J
€3 K(ely € )(wA + YAA 1) + 2e(e)” ey’ + el i ez Y5)A
=i A J
(( €)Y eg + Eyy EZ)YA + e[

vy e YAY Jad
- —(el D%g + 2oP° €3)9, M (5.9) :
- A lJ ij
€ab = -2817 82 rab ~ Kel( ab " Y2F(B ) + ys(t - /2F(B) ) € :
- 2K€1(0 nid + nido ab €9s

2 o= -2e¥YAegB;J + = 2 /é‘ll J] .
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The Lagrangian (5.7), the transformation rules {5.6) and the algebra all

reduce to the ones given in § 2, when the field equations of the auxiliary

fields are imposed.

6. Discussion

We have presented in (5.6) the full spin (2, 23 %, 1) multiplet with
auxiliary fields of linearized SO0({2) supergravity. At the level =0 the
commutator algebra of these transformations closes. The construction was
done by fusing the N=1 spin (%,1) multiplet with a multiplet of N=1 super-
gravity. This was not the usual minimal multiplet of the theory, since
more components were needed to match those of the spin (%31) multiplet.
However, we did not know the required non-minimal multiplet in advance.
Hence we had to construct it in the course of our work. For this it was
very important, that we could go step by step, first generalizing N=1 sub-
multiplets independently to the N=2 case and putting all information to-
gether afterwards to obtain the complete S0(2) supergravity set of fields.

As a byproduct of this procedure we have immediately found a
decomposition of the S0(2) multiplet into submultiplets. These sub-
multiplets are the following. There is the N=2 tensor-gauge multiplet (5.2)

with components:

ij 1 ij ij i 1 i R
(6,0 + 2/2F(B) 3, 5, P I, %" - ByeRY, - 5o+ 80V, 3ea) (6.1)
transforming as in (4.4%). The general Lagrangian was given in (4.7) and
becomes in terms of the fields (6.1):
G = 1 ij-l/ ij 2_1 2-1 ij2-1 i_l.i i_l‘i
£y = i(a, (2 - a/armI) F - 30,907 - 10 71907 - 3 -brer ) -drend)

+ 300V =22+ 3(202)° (6.2)

It contains 8 +8 components. Then there also is the vector-gauge multiplet

{5.5). Its transformetion rules were given in (4.1) and its Lagrangian

becomes:
£y = -HF0 )7 - 2097 - 2 w7 - diteenhiatdeen)
+ Hovid)Z 4 p(aaldy2 | (6.3)

It contains 8 +8 components as well.
Finally, the remaining 12+ 12 components form the N=2 version of

conformal supergravity. It describes the highest spin components of the
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graviton eﬁ, the gravitino ¢t, the axial vectors Au and A:J and the vector
field V:J, as well as the tensor field t;g-—VéF(B)é% and its dual, and

finally the scalar component 3-V-—§% . Their transformation rules are given

in (5.6), while the quadratic Lagrangian becomes:

. (2) _ 1 2 1p2 i 1 i il i
A;W B ;7.(Ruv - 3R ) - Eu\)po(Ru -3y R )YSYv ap(Ra"3YaY R™)

-3¢ - beraod - berh) - (Fa) )2 - HFm))” - Hrni)?

+

%(au(t;i;i - /eF(B)iﬂ))Z - %(auﬁiﬁ)z + 3(3-V - -33;)2 . (6.4)

Thus we have found four invariants for the fields of the linearized S0(2)
Poincaré multiplet. The Lagrangians /fT, Afv and Aféz) are all of higher
order in derivatives compared to Poincaré supergravity and in fact gquadratic
in the field equations of this theory. Still they are of importance for
Poincaré supergravity also, since they might occur as one~loop counter
terms to the Poincaré Lagrangian.f in a quantum theory with interactions.
In that case the particle content Ef the theory changes drastically. This
phenomenon was discussed for N=1 supergravity in ref. (11). In our case the

most general linearized one-loop Lagrangian has the form:
_ (2) 2 2
z-afw +B-CT+Y£;,+mK3P. (6.5)

with arbitrary parameters o, B, y and m?2. In general the states arising in

R are massive particle states. Therefore the physical states described
by (6.5) must cover twice as large a range of spins as their massless
counterparts. An analysis for general N, based on the assumed existence of
massive multiplets as contained in 4C, was carried out in ref. [15]. The
ideas presented there can be verified by our results.

The particle content of £ is found by studying wave equations and
propagators derived from it {11,16] . One finds a massless spin (2, %3 é% 1)
multiplet as expected. However, one also finds a massive multiplet with
superspin J=1, as described in table II.3.2. This multiplet is realized by

the following components:

1 T iT ij ij 1i_ sopld 7id i3l oaw R
(K Ruv’ Ru i F(V)uv’ F(A)uv’ F(A)uv’au(tuv %zFuv)’autuv’X 3Y R ’av-.3K).
(6.6)

Here the superscript T denotes the highest spin components:
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T o 1
Ruv = lz(eupevc + eucevp) - 3euvepc]Epc (6.7)
with auav
euv = Guv - o
Hence
R, =0, R =o0. (6.8)
[T A% Hu .

Also one has:

iT 1 1 i
R =R - 29 R
- T T (6.9)
iT iT )
9+R°" =0, +y*R = 0.

The fields (6.6) all satisfy the wave equation:
(@ + X
a+5-)6=0. (6.10)

Hence they only have a real mass if a<0. However, one may show that with
this restriction the residues of the propagators for these fields become

negative [11,16] . Therefore the states in this multiplet represent un-

physical ghosts.
There are two other multiplets of massive particle states contained ind.

They correspond to the massive versions of the N=2 vector and tensor
multiplets respectively. Both have positive norm states and represent
physical degrees of freedom. The first one, generated by the tield
components:

(F(V)W, x* o+ 28, asvid, a-a*d, MY, NYY) , (6.11)
satisfies the wave equation:

2
(o - %—)cb =0, Y>0. (6.12)

The other set consists of the components:

.. 1 i . . ..
(a“(t;g - 72—1?;'3 . x© = 3yeRY, 3oV - 3o 3°A, S, ) | (6.13)
They obey the Klein-Gordon equation:
2m2
(@ -=7)¢=0, B>0 . (6.14)

Contrary to the massless case, both multiplets (6.11) and (6.13) have the

same spin content, corresponding to j=0 (cf. table 11.3.2):
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(1, 3, 3, 3, 2,0, 0, 0,0, 0).

The basic observation in this respect is, that the massive tensor field
represents a spin 1 state, while in the massless case it has spin 0. This
discontinuity is crucial in obtaining the correct number of spin 1 states in
L as predicted in [15] .

Furthermore we have twice as many spin 3 states as in the massless
multiplets, because the spinors in (6.11) and (6.13) satisfy Klein-Gordon

equations, rather than Dirac equations. Their propagator reads:

nf?=%{,lx+,ll), (6.15)

which represent two positive norm states with mass |A|>0. This concludes our

analysis of the linearized S0(2) Poincaré supergravity multiplet.
We now turn to consider in a little more detail the U(2) Weyl multiplet,

consisting of the fields:

a i ,ij ,ij 15 _ popld ;13 _poptd A_1opl s B
(eu, Vo V0 A A B - YRR G, £ - VRR 0, xC - AR, oY 3")(6.16)

Under supersymmetry they transform as in (5.6), provided we interpret %the
vector fields as gauge fields. The U(2) internal symmetry of this multiplet
is realized on the chiral components of the fields (6.16). To make it
manifest, We introduce chiral spinors:

i
€

m

1 i = 1 i
14y e, €. = 3(1-v.)e” ,
5 1 > (6.17)

El %El( 1+Y5) ’ Ei H %El(‘l’Ys) s

in

where upper and lower indices denote a transformation character according to
the 2 and 2 representations respectively:
Al s U;A'J .

A, » AU,
1 Jd 1

{6.18)

with U a unitary 2x2 matrix. For the chiral components of the spinors
W; and xz defined by:

i_ i i
Xe Tx = 3R, (6.19)

we can use the same notations (6.17), since they transform as in (6.18)
also. The tensor fields are in antisymmetric singlet representations of
sU(2), while under U{1) the tensor t;-\” - /2F:3 transforms into its dual and

vice versa. Hence we introduce the {anti) self dual combinations:
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o il - (1-,1~J /2F1']) - (tl‘] VoRdy, o= (gid - /oRtd) o (t ./2F13) .
- uv uv uvij uv ny
(6 20)
whose U(2) character is in accordance with (6.18). The auxiliary field of
‘ the multiplet is:

: < R
Dc Z 3V - 3¢ ° . (6.20)
Like the vierbein eﬁ, it does not transform under U(2). Finally we turn to

———

the vector fields Au, A:J, vid, Au does not transform under the global U(2)

symmetry. However, it does possess the gauge invariance:

BAu = BuA . (6.21)

Hence it can, and will, become the gauge field of U(1) in the local theory.
Similarly, the gauge fields Aij and Vij combine in an SU(2) vector
representation:

A;ixj = Aij + ivi'j , (6.22)
under global transformations, but become SU(2) gauge fields in the locs-
version of the Weyl multiplet. Thus, under local SU(2) transformations:

i i ik itk

SALs = QNS+ AR+ AN (6.23)
uj TR Kue Tk §°?

vhere AL is a traceless, hermitean 2x2 matrix. The justifieation for
these U(2) assignments can be found in the invariance of the Lagrangian.

In our new notations it becomes:

(2) 1 (52 _ 1g? 1y ye .
L, ‘F‘Rw'aﬂ)"awpomu YYR)TB(R- - $v,v'R,)

2
(R. ly Y°R; )yvap(Ro - by rR . (F(A) ) IF(A)WJI

ellvpo 1p
ij - - i
+ %(auTuvla)(a T ) + 3D 3%, lx - 3x.39x, - (6.24)
Moreover, the supersymmetry transformations turn out to be in accords: - 1ith

this U(2) transformation character of the fields also, e.g.:

Y i__1 i_iemidd 2 2ige i
8x,, 3yuavae. +D, et 3 0°F(A) ;€ %m F(A)e , (6.25)
ij o yzli, 91, yold Jl _ il il
STv € OhvXe T3 (a[uv Capoo¥s = Cuol o1 %velle u])

This completes our discussion of linearized N=2 supergravity.
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7. The N=1 reduction

We have stressed already several times, that the N=1 reduction of the
S0(2) Poincaré multiplet does not give back the minimal N=1 multiplet of
Poincaré supergravity (II.%.8). Instead we find a larger multiplet
containing 20+ 20 components, which we will present now.

In addition to the vierbein ei, the wu and the auxiliary fields Au, S
and P, there are two Majorana spinors x ard A, a vector Vu and an axial
vector AL, all of which are auxiliary. They are contained in the following
linearized Lagrangian:

2 _2

L=~ 7R - WR, Aﬁ - 82 ~ P2 + 2%A + 2%AA + - v

2
uc (7.1}

This Lagrangian is invariant up to a total derivative under rigid super-

symmetry transformations:

a -a
[ =
eu KEY ¢u ’
=2 . s A . .
qu == Due + 1y5Aus - 1y5Aue - yu(S + iy P - 175A)e R
A = - ¥+ iysﬁ')e + (s + iysP - iYsl)e .

§x = 3-Ve - iyso-F(A')e - 23(s + iysP - iysl)e .

v, = Eyu(x + 28)) - 2€aux s (7.2)
sAr = -iEysRu + iEYSYuX + EiEvsauA ,
SA =-% EYSRu + iEvsvu(x ~ 3Y*R) , :
88 = e(x - 3yR) ,
§P = iEys(x - 3v°R) . i
We remark, that the quantity ‘
2 (7.3)

k]

n
is a mass Lagrangian for the N=1 spinor multiplet:

X(x + ) + %ALZ -3

appearing in (7.1),
(Vu, AL, A, x+3A) .

Such a multiplet is characterized by the transformation rules:

e VR,

v, = evu(x + ) - ESYHA s
SA' = iE A) + i A

w = iEvey, (o + A + devgdv 2, 7.1
sA = ‘%‘(y + ]‘-YS" )E s

S(x + ) = 23 (F + dvgh')y e .
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This multiplet is not a proper submultiplet, since the transformation rules
(7.2) for Vu, AL, A and x+JA contain terms depending on the other fields in
addition to (7.4). Furthermore the minimal auxiliary field representation
of S0(1) supergravity is not a submultiplet of (7.2) either. Hence this set
of auxiliary fields for N=1 is not reducible to the minimel one. However, a
connection between them was found by Siegel [17], who showed, that there is
a one-parameter family of auxiliary fields for S0(1) supergravity, which
contains both the minimal set and the set (7.2) as special cases.

Apart from this, the multiplet (7.2) can be decomposed into sub-
multiplets. In fact there are four of them, which we will list here. The
first is the scalar multiplet:

R
(S, P, x - 2y*R, 3V - 3¢ * 3.4} . (71.5)

It was fused with the tensor submultiplet {(3.4) of the spin (%,1) multiplet

into the S0(2) tensor-gauge multiplet (5.2).
Then there is a vector submultiplet, generated by:

(Vus X+ 28, 3-a') , (7.6)

which was combined with the scalar submultiplet (3.5) to form the S0(2)
vector gauge multiplet (5.5). Both (7.5) and (7.6) contain 4+l components.
Another 4 +4 of these can be fitted in an axial vector multiplet. This

is just a vector multiplet of reversed parity:
' . = ig - 1ly.
s1(ar - 2a) = ievgy (x - {vR)

8(x - 4y+R) = -% Y50 F(A'-2h)e + (3+V - —3R;)e s (1.7)

8(aV - ) = Elx - yR) .
The last 8+ 8 components form the multiplet of U{1) conformal supergravity
{3.8), with components (e:, wu, AuinAL). These, with the fields (7.7), éan
be extended to the N=2 Weyl multiplet by combining them with the spin (%,1)
multiplet deseribed in {3.6).

8. Conclusion

We have obtained the linearized multiplets and Lagrangians for N=2
supergravity, both the Poincaré and Weyl theories, with auxiliary fields.
These multiplets, as well as their N=1 reductions, contain many sub-
multiplets. The submultiplets were discussed in the first place in order to
show, how the N=2 multiplet could be understood, and constructed, in terms
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of N=1 multiplets. Another application of tiie submultiplets is, that they
which may be coupled to the

may be considered as abstract matter multiplets,
This

supergravity fields, if their extension to the local theory exists.

subject will be discussed in the next chapter.

we collect here the N=2 multiplets that we have discussed.
vwhere the transformation rules and Lagrangians

For convenience of the reader
In the last two

columns we list the places,

can be found.
Table 3: multiplets of N=2 supergravity.

Multiplet fields transf. |{ Lagrangian
rules
. - a i _ij .1 1 ij ¢id ij
Poincaré eu,wu,BuJ,A s X ,Au,AuJ,VuJ,Vu,tui (5.6) (5.7)
s,P,MYY N
a 1 .1 51 13_spopld $1d_sopid .
Weyl e a0 sV Toh Th st Y /ch,tw /2FW (5.6) {6.4)
i i R
X -%Y'R » 3V ~3m
Vector vu,M1J LN gt jaev?d  3entd (4.1) (6.3)
i 1 i3 ij ia .21 .0 R o,
Tensor tw 72—Fuv,S,P SX =3Y°R 53V ~5500A (b.4) (6.2}
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CHAPTER IV

THE FULL N=2 SUPERGRAVITY THEORY

1. Introduction

In the foregoing chapter we have constructed the linearized SO(2) super-
gravity multiplet with a minimal set of auxiliary fields and its quadratic
Lagrangian., We have discussed its transformation rules and subtmultiplets
under global supersymmetry. Using this as a starting point we will now
derive the fully coupled S0(2) supergravity theory, with this auxiliary
field configuration {[1~4} . Our derivation will be order by order in the
gravitational coupling constant x, following procedures outlined in chapter
II. The results are fairly complicated, but can be understood more easily
by the introduction of superconformal notions [4,5] . The insight thus
gained is also useful in obtaining the generalization of the submultiplets

to local supersymmetry, as will be illustrated for the vector multiplet [L].

2. The self-coupling of S0(2) supergravity to order k

In this section we will present the extension of the global S0(2)
supergravity multiplet to a local one, to first order in the gravitational
coupling constant k. Our derivation goes in three steps. First we discuss
the commutator algebra, which can be found to order k from the global
theory as in (III.5.8) and (III.5.9). By imposing this algebra we can find
the transformetion rules of the fields. Finally we extend the Poincaré
Lagrangian (III.5.7) by the Noether procedure to an invariant action for the
locally supersymmetric theory. We stress, that the results obtained here
generally refer to order x, even when we do not state this explicitly all
the time.

We start with the commutator algebra (III.5.8) and (III.5.9). The
parameters of the general coordina?e, Lorentz en suﬁersymmetry trans-
formations BG(EA)’SL(Eab) and Gs(e;) are obtained to order x from the
transformation rules of the global multiplet. This is possible, because the

. s . a . ..
linearized supersymmetry transformation of e, contalns an explicit k and

S ee kP



that of wi a term %-auei. In the global theory this la§t term is to be
interpreted as an independent gauge transformation of ¢;. However, it is an
essential part of the supersymmetry transformation law, if one considers the
linearized theory as the zeroth-order version of the locally supersymmetric
one. Using this, one can calculate GG(EA) and 6L(Eab) to order x from the
commutator on the vierbeiny to find eé to this.order, a calculation of
Gs(ez) in zeroth order from the commutator on ¢: suffices. When we assume
the commutator algebra to hold uniformly on all the fields, we have thus
obtained it to order « for the whole multiplet.

It now becomes possible to find the transformation rules of the fields
by requiring them to satisfy these commutation relations.

We begin by making explicit a few assumptions which we will hold
understood throughout our derivation. We also present arguments for them,
but their final justification is of course, that they lead to consistent
results. In the first place we interpret the space-time indices of the
gauge fields of S0(2) supergravity as world indices, while those of the
other fields are taken to be local-Lorentz indices. The reason for this is,
that we want only the gauge fields to transform with derivatives on the
parameters. Hence we have the following set of fields:

(ei,wi,Bi'j,tiﬁ,Aa,Aij,vij,va,s,Pij,Mij,Nij,Ai,xi) . (2.1)
Related to this is the assumption, that the gauge fields appear in the
transformation rules of the auxiliary fields only in covariant combinations
with respect to their various local symmetries. This is to avoid terms with
derivatives on the parameters in the gauge algebra. For this same reason we
will supercovariantize all derivatives and curvatures in the transformation
laws of the auxiliary fields. )

Finally, we assume that terms of a certain power in the fields occur in
the field variations only in a fixed order of x. This we argue as follows.
The linearized supersymmetry transtormations are of order &-, when not field
dependent, and of order kU when linear in the fields. In the commutator they

give rise to transformations which contain one more power, both of « and of

" the fields. To close such a commutator on all fields, one needs to

introduce order k variations which are quadratic in the fields. These can
again be used, as we will do, to calculate the commutator to next higher
order in x, which is then automatically also next higher order in the

fields. Continuing this argument one finds, that field transformations of
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order k" are always of the (n+1)St power in the fields. This observation is
especially important, when we have to write down all allowed variations of
a field in a certain order of k, for the dimensionality and the presecribed
power of the fields put severe restrictions on the possible terms.

With these assumptions in mind we begin the calculation of commutators
in order to find the field transformation laws. The first one we examine is

that of ¢:. We notice, that the result
i_1 i
[6,58,19) = £ 2 e5 + -ov (2.2)
with e; as in (III.5.9), is obtained only, if the parameters ei , are
E]
space-time independent. To find the same result, in lowest order, for

local parameters requires variations of Gwi which have the schematic

structure:
i
cxpu > Aaue, wvaue, (2.3)

(ef. III.5.9). This is realized by the introduction of the following new
terms in 6¢;:

i i

Y- =6
¢u v

k oo, Jezli Jly _ (=3 Jy.v,i
ullin. R Al U I I CR S v

+

2@+ 2oty guilivnd + £Ely gy wdhy o)

+

1ozl dezd g TyoVad o Kzl d 4 2 iy p0.j
Be(@ v un + 240 T - HEe w8+ Bo ul)e™N (2.4)
where 6¢;llin is the linearized transformation (ITI.5.6). The term with
E:wg can be absorbed in a covariantization of the electromagnetic field

strength with respect to supersymmetry:

Sovid o oprmyid 4 £ g pliyd]

F(B)w F(B)w 5 72 b - (2.5)
The result (2.4) can be further simplified by performing some Fierz

rearrangements. This leads to:

J . i
]s + 175Aus

i_2_ i TR ) NN RO ¥ NPT S

- AN, + - +
59, = % DPr:: +.(Vu_. kP, "2 Je .TY?(AH 1“(%75" )g
1410 _ o p1d) PO, (d ij_ 3
z(t‘m 2 ch) Yy YN e

-[i,§1y,J =i ,J J
- k(e""a )wu - k(e YeX )sYSwu . (2.6)

The quantity n-Y was defined in (III.5.4). The surprising result of these
1]

u close completely in

modifiecations is, that the commutators of ei and B

order k with their original transformation rules:
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a _ -i .
6eu =KkeY Y, (2.7)

Therefore we do not have to change these rules, while that of w; can be
modified further only to the extent, that this elosure is not affected. The

only possible terms in Smt which still need examination are of the type:
¥ > KAAe. : (2.8)

However, in order to maintain the closure on ez and Bij, such terms are
necessarily of a form, that they can always be absorbed in a redefinition of
the auxiliary Bose fields: V;j, A;J, @a, etc. Hence we may choose (2.6) to
represent the complete variation of w;. .

Our next step is then to try to close the commutator of w; itself. By
concentrating on specific terms in it we may obtain information on the
transformations of Ai and the auxiliary Bose fields, which we will hence-
forth denote collectively by B. In particular we can find how Ai

transforms into a bilinear combination of itself. Schematically:

A = kAXe. (2.9)
This can be seen as follows. Under supersymmetry wi transforms into:

¥ > kbhe,

as in (2.4). Therefore we will get terms in the commutator, which are
quadratic in A’ and linear in w:, from the sequence of variations:
2 2 By
b > kpney > k“(Prey)rey . (2.10)
Because eg depends on Al, we do indeed need such terms to give:
i_ =[1,314 d i 4 J ~[i,ily 3 =i ,d J
[csz,dllu;u —...+.<(u;:u A )£3+K(puY5A )Sysss-m(e3 A )wu-'c(esysx )stu"
(2.11)

However, the structure of the terms from (2.10) does not coincide with
(2.11). Hence we need variations of other fields to contribute in (2.11) as

well. These can come either from the Ai variation of the type (2.9) by:

¥ > kpre; > k2p(Are,)e; (2.12)
or from transformations of the Bose fields, of the form:

B > k2yAre. {r.13)

As argued before, we expect terms with w;, like (2.13),to come onl; from
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AT e

e

. . . . . . . . i,
supercovariantizations; 1n this case from covariant derivatives of A™ 1in

the Bose-field variations, where we replace:

auxi > Duxi -5 ss(wu)xi z Dixi . (2.14)
Our strategy is therefore, to parametrize all possible transformations (2.9),
simultaneously using these in the supercovariant derivatives (2.14), to find
the variations (2.13). We then calculate the commutator of wi and choose
the parameters in 62" in such a way, that ?he result (2.11) holds. This

establishes the quadratic terms (2.9) in 63 uniquely:

i_ 4,1 _oaisid
82 ST |15, — KA (xYed) . (2.15)

Adhering to our principle, that no wu's are allowed in the transformation

rules of the auxiliary fields, except in supercovariant quantities, we

see that no other variations of A’ are possible. Hence (2.15) represents

the complete transformation of At
We now continue with the derivation of the transformation rules for the

auxiliary Bose fields. Two types of variations are possible in order «:

B + kBye, KkBie . (2.16)

The first one must come from supercovariantization of the Rarita-Schwinger
equations:

iu iP _ 1 _uvpo i, kepid, =01.31y,3
R + R S € ’YSY\){DD\PU + 2(Vp MU )

i E I I U J
-3 KYS(A + ic(y YSA )s]wo

i #1dy08, i & pidyd
+ 3 KYsprc -fleng -2 F )™y vg - 5y n" )
2 _ -
+ 5= (I KT <¢1Y5)\J)SY5‘Pg} : (2.17)

The second one must be determlned from the commutators on w and A In

perticular the commutator of w is not allowed to produce terms of the

form KBAslsz, while those in the commutator of At have to add up to the
Lorentz transformation GL(sab), with field-dependent parameter €.y 28

described in (III1.5.8). As a result one uniquely finds the rules:
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ij o _ozli §Y _ _ ed=li  R3lP
Gtab 2e 0abx sab € YsYe'g >

- io.-i ip
GAa = le7y v x - 1€ YsoabRb ,
svid o gy (314 oglipPdl _glig JIP | cliy gy pydlkk
a a a a 5"a
Tn . T - . X k(1
- 1Ke[175AJ]Aa - %Ke[l(T-iysT)agIkybA - ke nk[lYaAJI .

ij =i j =i P.§ .-i 3P . =i . ik
SAY = J J_ J J
o (15 Y5Y X + 2i€ YSDaA ie YSRa + ike YS(V-FlYSA)a A
=1i,] 1. =1 ~y 3k k. -k ki J
+ -3
KE A Aa 3ike (Ysi“FT)ab YAt ike'n YsYaA )S .
§s = El(x-%y-RP)l + 2iKEkY5AJPkJ . (2.18)

.. . . . . 1 K]
sptd = (iles(x_ 1y-rF)Y - 2iKE1y5AJs ] )g

_oioopiL o Pd i oo wyidyd iy =i P i
8V, =y (X +2B A - JkoeT AT + k(M- iyN) ™Y - wlAT) - 287D 2
TR T I DAMRSNURPRY: 5 S S | i
+ - + -
KE™ N yaA ke (V 1y5A)a A 2ike YSGabA Ab .

smd = E[i[xj]+ amP;\j]- KG-Tj]k}\k+K(M-iy5N)j]k>\k - K(ﬁ-iysm;\j]) )

Ni'j iE[iys[xj] + ?EP)\"“ - KG'Tj]k)\k+ k(M- iysN)j]kkk - k(¥ - iysl()\j]) R

with

T;:]) = t;:]) - V2 ﬁ;g . (2.19)
According to our earlier discussion, all space-time indices in (2.18) are
Lorentz indices. The consistency of this assignment may be verified from
the commutators on these Bose fields themselves, which yield precisely the
general coordinate and local Lorentz transformations corresponding to such a
transformation character. '
The only field variation we have not yet determined is that of xi. This
we will obtain now by requiring closure of the commutator on the auxiliary
Bose fields. As a first step we supercovariantize again all derivatives and
curvatures in the linearized result. After that still many other types of

variations are possible in order k, and unfortunately they all appear:
xl + «x(3y¢)e, kixe, kA(dA)e, «kBBe. (2.20)

To parametrize these and calculate the coefficients from the Bose field
commutators, is not an easy matter. We have however gone through t e -hole

procedure to find the result:
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o5 ; =-2¢P ij J+DP°V€ +2(D "1Y DP ij _ -% A;kA.};j -iKYSVikAlt:j)-oabej
(B P - [xiys(n[uwv])l’)sys)c““ej
+.<ei(x5(2x5 v 2pfd - %Y-ij)-.?Ai + &(V'E’;k)2 + E(Aik)z
S3? - 202 C 3 + 2iey (skt - YRS
+ n<(Pikl(kj +£ikij)ej -imrscr-Tijhsj - hK(Sﬁij - iYSPij - %O'Tij)njkek
+£elitm 4y Btk L@ - @y adigrad (2.21)

Esq. (2.6), (2.7), (2.15), (2.18) and (2.21) define the local S0(2) super-
gravity multiplet to first order in k. One may verify, that the commutator
algebra indeed has the form (III.5.8), (III.5.9) on all the fields.

We now have to extend the Lagrangian (IXI.5.7) to first order in k. This
is done by the Noether procedure. First one adds to the global Poincaré

Lagrangian a Noether term:

5 _ ok =iu i

“Noether = " 2 J ul[.l ’ (2.22)
to absorb variations proportional to auel in lowest order. Here 'V is given
by:

o s . . s ‘5 ) .. s

T = 32 PR(B) + v F())ITY 4 T (oMt 4 (- iy )T - pyted?

+ (et -y YY) (2.23)

It 1s not the exact Noether current JN:: ether? defined as the coefficient of

Bus in the variation of the global Lagrangian:

.

_ =in i . .
sL Poincard = ENoether aue + total derivative . (2.24)

The reason for this is, that the Noether current itself contains 1].- » and
hence would generate extra variations with 3 el in (2.22). To compensate
for this, the corresponding part of J in has a factor 3 in front.

We now continue with the Lagrangian:

fPoincaré (global) + "Noether ’

and add terms to it such that it transforms as a total derivative under the
new transformation rules in order k. Again this is only possible up to
terms proportional to 3 e'. To cancel these we have to introduce a Noether

term in order k2. The complete result of this procedure reads:
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L poineare = 3 R - ;EIR - é[Fli(B))z 2m1: 1w B)+y5F(B)]““lJ v

120 L1 31 zui v -1 uvpo-l J

BK 4 ¢v (w v + p 5 0)

_ a2 _ ypldy2, 1,142 2, 10,4142
8% = 2(PU)7+ e 17+ AL+ i(A)

U M A R T
+ Xaxt + 2¢PA1 - Kyunleﬂ - (¥ - iYsl)lJY'wJ
+ %Kﬁy-wl - k(M - iysN)lJy-¢J-+iKYSKA1 - Ko-TlJAJ]

2=1.1<j wv, J 1 2 -1 HVeos i J 5]
- 2 - 5 . .
Y A A0S 5K 'JJquwa\ Y A (2.25)

3. The self-coupling of the 80(2) supergravity multiplet to all orders

We now extend our results to all orders in k. As before we use the
. . iy -
1 8
field variations to order k to calculate 6G(£A)’ L(Eab) and Gs(aa) in the
commutator to order k2. it turns out, that only Eab gets an order k2
contribution, which comes from the covariantization of F(B)ig and can be

absorbed in the combination T1J defined in (2.19):

J
ab

|_-.
Lu

(T” )e (3.1)

ij -1
b YST )e 2K61(0

. a
Temain. unchanged.- To cleose the commutators on eu and

(2.6), sufflces. In fact, it turns out that

with this algebra and ‘hlq variation of w they close to all orders in k.
Using eq. (2.15) for sx> ard full supercovarlantlzatlons to all orders in

the Bose-field transformat;on rulég the commutators on ¢ and A them-

e,

Uhl

selves cloge as well. This suggc . that we do not have to introduce new

variations for ﬂm>Bosefieldoc1L“ be51de ‘this full covariantization.

Therefore we try to clcw"e ;.he algehra on all flelds by only adjusting 6)( .

This is indeed p0551ble ahd onm finds:

sx' = lel + K S IAJYSKls‘— XJO'TJRAR) N (3.2)

where &y I refers to the resu}t ((.H1), but now w{?h full super-

U

covarlantlzatlonv and the completﬂ T J
One may check, *hau with W’oso Lhanges in the transformatlon rules the

Lagrangian (z- 5) sLill 1rauoforn» 1nto a total. dcr1vat1ve. Hence it is

already complete. Collecting our réﬁuluu, we;aye~now in a positior to
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= ke o

Sy
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1(Au +1|<(|pu75). )s)yse 30T Y€
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+ det d(rey )0 ehIhd @y gad
ij _ =0 Jl Cd-[l J1P
Stap = ~2€ T X" - Eyp YRy o
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_ .=i i .- iP
SAa = ig ysyax - i€ YsaabRb

svid = gy (31, o ligRdl _ Elan]P + ey +iy_a)ilEE
a a a 5 'a
- =M1, ,J] W b Jlk -k kli_j]
- ike Ty A A - dke (T+75 )ab Yb). ken Y A .
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spd = (i'g'lys(x.. h-RP)‘] - 2ixEly Ads - KElllk]PkJ)S

v, =[x+ 8L - JeoertInd 4 (m- ivg 0 - end) - 2"11)le

=i 1.1 J_ s ij,d _
+ ke Y2 KE (V+ 1Y5A)a X 2ike Ysuabx Ab .
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The commutator of two such transformations is given by (III.5.8) with
parameters g, and e; as defined in (III.5.9) and €.y 85 in (3.1). The
Lagrangian density is given by (2.25). These results constitute the complete

theory of S0(2) Poincaré supergravity.

4. Concerning the structure of the Poincaré multiplet

Equations (3.3) and (2.é5) form the central result of this chapter: the
transformation rules and classical action of SO(2) Poincaré supergravity. In
principle one could now go on to construct the correspording quantum theory,
and study aspects like renormalizability, BRS-transformations, symmetry
breaking, etc. However, our theory is rather complicated and it would be
very useful, 1if we had some way of gaining more insight into its structure
on the classical level.

In fact we have some cues to a better understanding of the Poincard
theory. To begin with, we know that the linearized multiplet contains a
number of submultiplets, each with their own Lagrangian. One way to obtain
more information on the coupled S0(2) supergravity multiplet is to analyse
what happens to these submultiplets in the local theory.

Moreover, we know from N=1 supergravity, that the results, in particular
for the gauge fields, become much more transparent when considered in the
light of the superconformal theory [5]. This suggests, that also in N=2
supergravity we focus our attention initially on the components of the Weyl
multiplet, and especially on the gauge fields it contains. On the
linearized level these were:
ei’, up;, A, A;J, v;'] . (5.1)

They gauge general coordinate invariance, Q-supersymmetry and chiral U(2)
transformations respectively. The superconformal theory contains more local
invariances (see app. B): local Lorentz invariance, S-supersymmetry,
dilatations and special conformal transformations. However, their gauge
fields either drop out of the theory completely (as for dilatations), or
they are not independent fields, but can be expr?ssed in terms of the other
fields, as mﬁb is determined in terms of ei and w: [6]1.

One now has to find, which components of the local Poincaré multiplet
correspond to the gauge fields of the local Weyl multiplet, as reprcsert -d
on the linearized level by (4.1). If one has identified these, it be ‘omes

possible to construct the full Weyl multiplet by just rewriting the Poincaré

T1



(iR L Y

2t

transformation rules. This will be done below. Although it is not
necessary to be familiar with the superconformal algebra, it may be useful
to know that in the Weyl multiplet one may expect the appearance of two
independent local supersymmetries, called Q- and S-supersymmetry, chiral-
U(2) transformations and scale transformations, or dilatations. These will
be identified in the derivation of the Weyl multiplet. In fact we will find,
that it is possible to decompose the Poincaré transformations of the field
components belonging to the Weyl submultiplet into field dependent super-
conformal transformations of the kinds mentioned abcve. This statement can
also be reversed to say, that the superconformal transformations of the Weyl
multiplet are reflected in the variations of the corresponding Poincaré

components. Once this is recognized, the Poincaré multiplet becomes much

more manageable.
Consider first the fields V:J and A;J, which are the gauge fields of

SU(2) on the linearized level. They have the following Poincar& super-
symmetry transformation:
15 4 svid) 2 pif(zhy 5 a0) + 2lip 21y 4

s(a? + v ) 2i((¢ Y50 )g + €70 ) + ... (4.2)
Eq. (4.2) can be interpreted as an SU(2) gauge transformation of these
fields with hermitean parameter:
R P (CR R CO M-I CL (1.3)
when e is a global spinor parameter. In the local case this is impossible,
since one needs variations with Aaue also., To provide these, we redefine

the vector fields as follows:

B i, gliyd)
TR (4.1)
.Ou =AC+ m(wuvsa )g »
which leads to the desired result:
5, 540y 22 4l 4 ..
a0+ 178y 225 (4.5)

Hence we interpret E?iJ and -433 as the gauge fields of chiral SU(2) in the
local Weyl multiplet. For Au, which does not transform undes the SU(2)

‘transformation (4.3), a redefinition of this type is not necessary, and we

take
A = ‘ (4.6)

H u

as the U(1) gauge field. The consistency of the assignments (h.4), (L.6) is
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shown by rewriting the transformation rule of wi:

i_2CHi , .iJ J_1 ij_J -[1,J] s | J
qu - Du € 30T Ve - % yu(Kn ev) K[e Ao+ (e Ygh )SYS)*u
CH (L.7)
where Du is the U(2) covariant derivative:
CHi_ . i,k qpid . pii, . 4 idy.3
Du € D e+ (1’u - iy A + iy uG eV . (4.8)

Note, that (4.7) contains a chiral SU(2) transformation on w: with the same

field-dependent parameter (4.3) as before. Explicitly we can write it as:

. i_.,1,d s +3

OSU(Z)wu 1Aj‘l’u , SSU(2)wui 1WujA ] (4.9)
with

i i = 1oy et

‘llu = 2(1+75)wu ’ \l’ui z 3(1 YS)U’“ ’ (x.10)

(see III.6). As is clear from this, the chiral U(2) transformations of w:
in the Weyl theory can indeed be recognized in its Poincaré transformation

rule. The other terms in Gw; will be identified later as a Q-super-—

symmetry transformation:

i 2 CHi . .ii
syt = =D et - loom € 4.1
qwu K poq ¢ Yu Q ( )

with parameter
e =¢e', (4.12)

Q
and an S-supersymmetry transformation:
i 1 i
Gswu =Tk s o (4.13)
with parameter
s enided | (k.1h)

In this approach w; clearly is the gauge field of Q-supersymmetry. Next we

€

turn to the variation of the U(2) gauge fields (4.h4) and (4.6). They read:

CH)j]

13 =—ﬁ 1. Pj]_-%i CH_3 . ~[1i
6?; € Yu(x 3Y°R) € (Ru 3V, YR * (xn

G s s CH CHG i .
sAY = ity (x--%\r-RP)J - ighy (B - by yer)d & ity (knd¥ek)
v . s w3 L WS (k.15)
+ %} DﬁH(KEIYSAJ) + (i<>j; traceless),
_ i 1Pyl smi (pCH 3o o CHyi _i-i . ik k
Gﬂu iEygy (x-3v°R )" - ie YR, =4y YRT)T - 3 ¥, v5(en e

13

1k k) +§DCH(.<5H iy,



Here we use the notation:

giuCH _ 1 E:uvpoysy (DCHlpl + h e T YU‘Pi) , (%.16)

with the same definitlon of the chiral-U(2) covariant derivative as in (4.8).

[¢]

This shows, that w and €' _are in the same chiral representation, as is xl.
The chiral derlvatlve on A is defined by:
CH,i i,k i, . iy . T
AT = + = j. + £ - "4,6 . .
D, DAY+ 5 (V0 + iy g 17?. el (h17)
Using this we can verify, that ,Q;J + i @iJ transforms indeed precisely as a

Yang-Mills gauge field of SU(2):

G(AT;J + iZ‘:J) = % DﬁHAlJ + (Q-, S-supersymm. transf.). (4.18)
The results simplify further if we use the notations (%.12) and (4.14), and
define:
Xz =xi_ %Y'Rlp ,
- . . . (4.19)
¢1 - R1CH 1 -RICH 2 X1
u " 3'Yu'Y .’:"Yu e ?
which leads for example to:
i . -l L gl L oo ] )
- = . .2
a?u ge g %, * ¥ ey - Dy (4.20)

The fields xl and Tlg are the "matter"” fields of the Weyl multiplet, as
opposed to the gauge fields. The field ¢; is not an independent variable,
since it is expressed in terms of the other fields of the Weyl multiplet.

To give it a meaning, we note that the principal term in its transformation

rule is:
i_2 cHi
5¢u = Du Eg ¥ et (k.21)

Hence it acts as the gauge field of the S-supersymmetry transformations we
have encountered above. This interpretation is supported by our further

results In particular we can write the transformation rules of the fields

x and Tab as:

6723 = ocle? (quw“ ,
. - L G .. i
ze = ;HE lgsa + % @l(aﬁig - 175?1L§):g - 21751Lﬁ)uv613)'0uve%
+ DceQ s doertded + 2 (L (1) 000 : (4.22)

Here %ﬁ stands for the covariant derivative with respect to Lorentz and
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chiral-U(2) symmetry, as well as Q- and S-supersymmetry:

20 = D0 - S eg(v) - 5 8g(e,) (4.23)

Likewise (& wil)c means the completely covariantized curvature of w;, and

the quantities ij are those of the U(2)-gauge fields:

1§ o pgyid 4 & gligd] _a gl §]
j((zﬁuv N F(Zjuv 2 ¢[u¢v] 1‘J[l»l viXe
; ij _ ij ;_ 3i -1
ADE = P+ L (B veed g + 3 vy v s (4.24)

; _ i =i 31 -i i
J{(E)W = F(—‘?)uv - ll;Kw[uYSd’i] + 81 K v,[:l[uyv]ysxc

The Fuv are the ordinary Yang-Mills field strenghts.
Finally D, is the auxiliary field of the Weyl multiplet. In terms of

Poincaré fields it reads:
- nF. kK P Kk ijy2 ijy2 42 \idy2 ijy2
DC—D V-3R +h{(va)+(Aa)-¢.va-(l4)-(N)
+ Kil{le + 2ptat - Wyer T 4 i.cysml - KU-TIJAJ} . (k.25)

Its transformation is given by:

S O (4.26)

25 is the complete supercovariant derivative of xl, the covariantization
with respect to U(2) being identical with that of sl, eq. {4.8). With this

result we have obtained a complete multiplet, with the field content:
a 1 4i) ij ij i
(ehs vn 209,80, A, 1l 50 D) (h.27)

transforming according to:

Bei = ngyawu »
vk =§D5Heé - JooTiy, gz Lyeg+ sl 4 (b )g¥s¥D 5
-f’ij = iEév yux‘ci - i3375¢ﬂ + iﬁivse‘si + %DSHAij + (i«+j; traceless),

3

2
23 i,igi, 4 _1gi
dﬂu = ersvuxc + 3 EQYsty — 5 B

{L4.28)

0 e

i
éTab

1]

-[1 C UV
(3[“‘41 ) a -b L]
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( (4.28) continued)

sx; = ab(#CT ot l(ﬂ(? - iysz(ﬂ);i - 2i75)17(-4')uv61'3 u""e%
+ Dcez1 + %G-T eg + E [A[l‘”+ (Al‘])sv_r,]xJ >
-igfc 1
GDC = EQ, X

If one substitutes for eé and Aij their definitions, (4.14) and (L4.3), one
reobtains the Poincaré transformetion rules. However, the fields in (L.28)
form a real multiplet by themselves if thelr transformatlon rules hold for
arbitrary, field-independent parameters EQ, e and Atd and have a closed
commutator algebra. This turns out to be the case. From (L4.28) and the
definition of ¢;, eq. (4.19), one may verify, that the commutators yield the

same result on all fields:

[64(2)s 8,(1)] = 8,(6") + 6, (e ) + 8.(e]) + d(eb) + 8.,(a%)

[6g 8] = 8y(e" 0] + Sg(e'3) + 6,(0) + 8o (ar™) (k.29)
(842 851 =0,
with
EA = - 2Eiylei s
eab = EAw}\ab - Kzi(Tab * Ysiab)ijeg ’
e;b = 2eso beé
Ei =3¢ "y (4.292)
b = £ s d@edl) - pdElly ) - £y dE))
3 Ys1x (ez[ Y5Ya® 1]) >
E'é =-3 YAGS vl
A = -g 31 ’

while GCH(AlJ) and GCH(A'IJ) stand for the following chiral U(2)

transformations:
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i3y . Mpld _ gl !
soW™) = 8y (B~ D) + 8 (A, (k.29b)

iy L=l g1 sl ] R
Sog(A' ) SU(2)( ieg ey 1(€5Y5EQ)S] + 6U(1)( > ESYSEQ) .
On the right-hand side of the commutator [GS, GQ] s, one finds a new type of
transformation, the dilatation GD. This transformation multiplies the

field by a real number:

sD(A)¢ = ald . (k.30)

The strength of the transformation 1s determined by the number a, which is
called the Weyl weight of the field. This Weyl weight may actually be found
for the fields by calculating the commutator of S- and Q-supersymmetry. For

example, one finds:

s (M)e® = —pe?
D u (k.31)

i 1
GD(AN,LI -3

]

1
3
-

The eqs. (4.28) imply an important result: for all the components of the

Poincaré multiplet which enter into the Weyl submultiplet, the Poincaré

supersymmetry transformations can be decomposed into transformations of the

superconformal group, with field dependent parameters, as follows:

(el = (1@ BT+ @Eadg) .
(4.32)

i i3 d
. . + +
8poincars 6Q(€ ) SS(KH e”) 6SU(2
Moreover, the Weyl multiplet itself turns out to transform linearly under
the full, local transformation group, except for pure covariantizations.
How much of this can be carried over to the other components of the Poincaré

multiplet, will be the subje.t of the next section.

5. Some results for the submultiplets

In our analysis of the structure of the N=2 Poincaré multiplet of
supergravity, we have discovered a local version of the Weyl submultiplet,
which has much simpler transformation rules than the original Poincaré
fields. Moreover, using notions borrowed from the superconformal theory, we
found, that the Poincaré transformation rules could be decomposed into a
number of simpler variations, at least for the fields occurring in tre Weyl
submultiplet. However, we are also interested in what happens to thc other

components, belonging in the linearized theory to either the vector or the

K
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tensor submiltiplets. It is the purpose of this section to show, that one
may profit from the results, obtained for the Weyl multiplet, here also. We
first must point out, that the notion of submultiplet acquires a different
: meaning in the local theory from that in the global one.

. The Weyl multiplet, which is a multiplet of supergravity gauge fields,
is a real submultiplet in the sense, that its fields transform only among
f themselves . This is the case at least, when one takes into account all the
local symmetries of this submultiplet. For the vector and tensor multiplets,
which can also be viewed as abstract "matter™ multiplets, this is no longer
true. Their transformation rules become non-linear in the coupled theory,
and these non-linear terms contain fields of the original gauge multiplet,
which do not belong to the submultiplet proper. We interpret this result as
an indication that the extension of each submultiplet to local supersymmetry
contains the Poincaré fields of N=2 supergravity manifestly as background
fields. Such an extension of a global-supersymmetry multiplet to a local
one with coupling to the supergravity fields, will still be called a matter
multiplet. If only the field components of the Weyl multiplet enter as
background fields, we will use the term "conformal matter multiplet".
Because they contain more symmetries, conformal multiplets will in general
be simpler as far as their supersymmetry structure is concerned. Both the
vector and tensor multiplets turn out to be conformal matter multiplets.

To illustrate the above ideas, we present here the vector multiplet of

the locally supersymmetric theory. As a submultiplet of Poincaré super-

gravity it is realized by the components:

-1.1
W =V =k A
u u wu’
ald = yid ,
g = §d ,

ylo= s ot (e - iy W9 - g8t + iy f8TY - gertI )
(5.1)

Fid = pPuvtd 4 ok (y + gFr = 1yerEY ] o eveyid

+ 2 (UITAE 4 1 IRy AR s XYy

n e et L

pFeatd - 2in<(ilys(x+¢PA - .-:y°RP)J)S - kVea?d

[»]
He
[P

n

+

ket kx4
i (- EREy 29 4 iR 4 Tryghd)g.
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One can see, that this is a conformal matter multiplet from its Poincaré
transformations, which can be decomposed into Q- and S-supersymmetry and a
chiral-SU(2) transformation by the same rule (14,32) as for the Weyl multiplel
We will first give the transformation laws for the multiplet (5.1), and then

comment on its derivation. 1In terms of the fields defined in (5.1) and § X

we find:
ow, = EéYu‘i‘i -~ KEQ(A + iy B)l‘jwﬂ s
sald = Eéi\vj] s
s8Hd < iEéiYS‘i‘j] .
syl < —oabﬁr a B £ A4-1Y5B)ijsg - (F-iYSG)iJEé (5.2)

. i .
- (A-iyB) i J + ; (AllJ] + (A J)SYSJWJ ,
6F1J=E[J$ yl 4 1(A[1k kJ],
Q
i - ooi oy i[ik]kj T B
§G IEQYJI ¥+ SA G - 3(A )SF + (i<>j; traceless).

We have used D° as beforc for the covariant derivative with respect to all
the symmetries of the Weyl =nltiplet. Furthermore we introduced a
generalized field strength of Wu:

J

c _ € i i, k% -i . ij
T = Fap(W) = 5 ¥ ¥+ 5 V(A + iy, By (5.3)

K (pdkpdk _ Loikadk
+ (A kTab iB kTab)

Again, if one substitutes expression (4.3) and (4.1h4) for AY ana e;, one
obtains the Poincaré transformations of the fields. We see, that the rules
(5.2) are still linear in the fields of the vector multiplet itself, the
non-linearities being almost entirely the result of covariantizations. The
single exception to this is the transformation rule of Wu. However, if we
express it through its field strength (5.3), its transformation rule

becomes a covariant expression also:

> = _=i_ gc _ i

S"fab CQY[a b]¥ 2€So b? . (5.4)
The derivation of the rules (5.2) involved using the Poincaré rules to find
the expression for Swu, 6A™Y and 6B*Y from (5.1). At that point it was
convenient to abstract from the specific representation of the vectc:»

multiplet. We found GWI, 8F'Y and 8G9 from the linearized resuiis and the

9
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requirement of closure of the commutator of two Poincaré transformations.
Subsequently we could decompose the Poincaré transformations by the same
rule as for the Weyl multiplet. This established the result (5.2). The

identifications of ¥, F*9 and ¢ to a11 orders, as in (5.1), were only

made afterwards.

6. Conclusions and outlook

We ha;e constructed the full interacting theory of S0(2) Poincaré
supergravity with a minimal set of auxiliary fields. This supergravity
multiplet has complicated transformation rules, but can be understood much
better, when we recognize its decomposition into submultiplets. This is
analogous to the results obtained for the global theory. These submultiplets
themselves appear very simple, when formulated in terms of superconformal
symmetries. In particular their transformation rules turn out to be proper
covariantizations of the linearized ones with respect to all local symmetries
of the Weyl multiplet.

One can also view the vector and tensor multiplets as independent matter
multiplets, which can be coupled to supergravity, either as conformal or
as Poincaré multiplets. In that case one needs to construct invariant
actions for them, as we have done in the linearized theory. However, the
tensor multiplet turns out to have the wrong Weyl weight and the Lagrangian
(III.6.2) cannot be generalized to the interacting case [4]. On the other
hand, for the vector multiplet it is possible to extend the global action
(I11.6.3) to a local invariant by the Noether procedure.

To find the most general invariants of N=2 multiplets requires however
a set of multiplication rules for these multiplets and a corresponding
action formula, as exist in N=1 supergravity [7]). Such a multiplet
calculus then allows the study of renmormalizability and the Higgs mechanism
for local N=2 supersymmetric field theories. Hence the theory becomes more
interesting phenomenologically, especially with a suitable set of vector
multiplets coupled to that of supergravity. A drawback of this scheme is,
that coupling of such matter fields spoils the renormelizability believed
to exist for the pure supergravity theory [8].

Another reason to study these aspects of the theory lies in the hope,
that some features of higher N extended supergravity theories, which have

more realistic phenomenological properties, can be studied in this
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mathematically simpler model. For all these applications, however, it is

crucial to have a formulation of the theory with closed gauge algebra, as is

provided by our set of auxiliary fields.
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CHAPTER V

COVARIANT QUANTIZATION OF SUPERGRAVITY

1. Introduction

In this chapter we will discuss the guantization of supergravity. We

will do this in the framework of the covariant quantization procedure [1].
This procedure is centered around the construction of a generating functional
Since physical quantities
the path

for Greens functions, called the path integral.
calculated from this path integral are to be gauge independent,
integral has to be a gauge invariant object.itself. However, in the usual
prescription for the quantization of gauge theories the gauge invariance is

not manifest, but is implied by the existence of a special global

invariance of the generating functional, called B.R.S. invariance [2]. For

the Greens functions this B.R.S. invariance results in & set of diagrammatic
identities, known as generalized Ward-Takahashi identities. These
identities are crucial in the proofs of unitarity and renormalizability of
gauge theories in the context of perturbation theory.

Because B.R.S. invariance plays such an important role, it can be used

as a guiding principle in the construction of path integrals for gauge

theories. This will be exploited in the following. We will show, that the

usual covariant quantization procedure, as established for gauge theories of

the Yang~Mills type, is not correct for theories with an open gauge algebra,

such as supergravity without auxiliary fields [3,4] . But we can modify
this procedure by imposing a generalized form of B.R.S. invariance on the

theory. This generalized B.R.S. invariance on the one hand determines the

path integral, up to the usual freedom in choice of gauge fixing condition;
on the other hand it leads to the correct Ward-Takahashi jdentities, ensuring
gauge invariance of the S-metrix elements.
This chapter is organized as follows. In section 2 we outline the
standard procedure for quantization of gauge theories with closed commutator
In section 3 we apply it to the theory of S0(2) supergravity in
what happens when

algebra.

the formulation with auxiliary fields. We then discuss,

the auxiliary fields are eliminated. This leads to the conclusion, that in
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a Formulation without auxiliary fields the standard quantization procedure
cannot be applicable. The reason can be traced back to the non-closure of
the commutators off-shell in this formulation, which is related to the
existence of so-called equation-of-motion symmetries. A general discussion
of equation-of-motion symmetries and their role in field theory is the
subject of section L.

Sections 5 and 6 are devoted to the establishment of the correct
quantization procedure for gauge theories with open gauge algebra. The
proof of generalized B.R.S. invariance of the path integral goes by induction
with respect to the number of ghost fields. The lowest order results, which
suffice for the case of supergravity, are presented in section 5. They can
be verified explicitly for SO0{2) supergravity by comparison with section 3.
The induction step, necessary to prove B.R.S. invariance to all orders, is
given in section 6. 1In V.7 the gauge invariance of the theory is proven
and some properties of the B.R.S. transformations are discussed. Finally

conclusions are drawn, and some general remarks made, in section 8.

2. The covariant gquantization procedure

We will first review the standard covariant quantization procedure for
gauge theories. For details we may refer to many available expositions,
such as refs. [1]. Suppose we have a theory with fields ¢i, where the
index i denotes all parameters on which the fields depend, e.g. space-time
parameters, Lorentz indices, internal symmetry indices, etc. Classically
the dynamics of the fields is derived from an action S{¢],wkich is minimized

to give the field equations:

L s:s.=0 (2.1}
8¢
The corresponding quantum theory is defined by the path integral:

z2[3;1 =8 J D¢ exp i(Sl¢] + Ji¢i) . (2.2)

Here the functions Ji are external sources for the fields ¢l; D¢ denotes
the functional integration measure and N is a normalization factor. The
expectation value of an arbitrary function of the fields, O[¢], in the

presence of the sources J, is calculated from ZLJi] by:

CIO PR ID«# Ol¢] exp i(S[e] + J,07) . (2.3)
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Suppose now, that the classical action S[ ¢] possessesan invariance under local
transformations, parametrized by n independent parameters £%:
i ia
8¢~ = RaE »
i
i a
We assume, that the gauge algebra closes, 1i.e. that the commutator of two

transformations (2.4) is again such a transformation, possibly with field

(2.4)

=0, a=1,.0. 40,

dependent transformation parameter:

[Ri’jRg} 2 Ri,jR‘g— (-1)H"‘H“’R[i;’J.RfL = R;fga , (2.5)
with
o, if ga is a commuting parameter,
a7 {I . if £% is an anticommuting parameter. (2.6)

The function f7 » which may depend on the fields, is known as the structure

function of th:utransformations (2.4).

In constructing the path integral one must now deal with the problem of
how to treat the superfluous gauge components of the fields in the functional
integral. The solution of this problem is laid down in the following
prescription. One replaces the action in (2.2) by an effective action, in
which all field components, including the unphysical gauge components,
appear. However, this effective action is constructed in such a way, that
all unphysical components either decouple from the theory or are cancelled
by a set of so-called ghost fields. These ghost fields have unphysical
statistics: they are anticommuting, when they have integer spin, and
commuting in case they have half integer spin. .

Explicitly this prescription takes the following form. To the classical

action one adds a gauge fixing term of the form:

= -1 2
Sfix EF(! s (207)

vhere Fa is a set of n independent functions of the gauge fields. This term
breaks the gauge invariance of the action, and introduces the unphysical
field components into the theory. Hence the theory now violates unitarity.
This is restored by adding a term containing ghostiieldscu, c*u, vhich has
the form of a gauge transformation on Fu with parameter cB, multipled by an

antighost o'*, which acts as a Lagrange multiplier:

8k
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= ¥ ig
Sghost =c Fa,iRBc (2.8)

That the effective action only describes the physical components of the

theory is formally a result of the ghost field equations:

ig
«,ifg¢ =0 (2.9)

which assures the gauge invariance of Fa and consequently of the effective
action as well. The complefe effective action now reads:

~ _ 102 —%0, iR
B pp = SI01 - B+ C Fa’iRBc . (2.10)

Furthermore the functional integration measure has to be extended to include

the ghost fields as well:
D¢ -+ D¢DeDe™ . (2.11)

Egs. (2.10) and (2.11) define the path integral for the gauge theory under
consideration.

Although the effective action (2.10) has lost its manifest gauge
invariance, it does possess an invariance under a set of transformations

with a global anticommuting parameter A, defined bLy:

§o° = Rc"A,
sc% = —%fZYcBAcY . (2.12)
8¢ = Ar®

These are the B.R.S. transformations[2]. On ¢i they have precisely the form
of a gauge transformation with parameter ¢®A.  Hence they reflect the
original gauge invariance in the full effective action, Seff' The important
step in the proof of B.R.S. invariance of (2.10) is the cancellation of the
terms:

*U.F

q -
-5C

iB _ o p g gt
a,i(RBqu - By R+ (=1) Ru,th]c At , (2.13)
in the variation of the ghost action. This is guaranteed by the closure of
the gauge algebra (2.5). Hence this closure is crucial for the correctness
of the above prescription. Actually one may prove that the B.R.S.
invariance (2.12) is a necessary condition for the gauge invariance of the
S-matrix elements, calculated with the path integral defined by (2.10),

(2.11).
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3. Quantization of S0(2) supergravity

The classical field equations for the auxiliary fields in supergravity

are algebraic in character. In fact all auxiliary fields are zero

Hence they can be eliminated from the action, without
However, this is no longer

classically.
changing the physicsl content of the theory.
In the effective action the ghost terms appear
We will

true in the quantum theory.
and because of this the auxiliary field equations are modified.
treat here the example of S0(2) supergravity. In the formulation with

auxiliary fields, the gauge algebra closes and we may use the quantization

procedure described in V.2. We will restrict ourselves to supersymmetry

and take the gauge fixing term:

1oyt _ (3.1)
*)

The corresponding ghost action becomes

g _ 25*1]?5C1 _ KZ *1YA¢1CJYUW + Kc*l(’v J - iy ‘ +1Y ﬂé’ ij )JnlJ)C
ghost
27 =% 2= oF J

llAJ] iwd g (4’175"3)50 1qu5cJ

+

9 fi 3 lowi .
¢ cll)\‘]]c*lyow‘] - PEy ) T “yst ) (3.2)
*! are the Majorana spinor ghost and antighost respectively,

The field equations for the

i
Here ¢™ and c

bar denotes conjugation as usual.

while the
auxiliary fields now read:
~1-%i i
S = ~2ke € ¢,
ij . =l -] j
P = _2ike” (G Yst) g *
_ 31 -1-xi i
Aa = 2|<e c yaysc s
ij _ =1,~%i J
Aa ike (c Y Y€ )S N (3.3)
Vi o Ke—1—*[1Y cJ] ,
a
1 o pa=t=xli o 1
ton hee  'c 0.5 >
W'o=v =Y =nNY=0.

*) We ignore the problem of Nielsen ghosts (6],

since they are not

relevant to our discussion
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The equation for xl is complicated, but of no importance to us here.

Inserting (3.3) back into the action one obtains the following modified ghost

terms [5]

- 24 -
*lﬁc - c*ly*wchy"wi

Sghost

1
ko

1 ei wi i e w5
ke [(E te J)(clc'J) - (e 17 R TE 1ysc'])]

1 - —* *j\ =i j
+ éKze [~(c *lya *y et v, ¢y + (3 1YaY50 J)(clYavst)]

dy | (3.4)

i
L

1 2e-1(5*iYac*i)(E,jYac
Thus elimination of the auxiliary fields introduces guartic ghost terms in
the effective action. Such terms can never be obtained by applying our
previous covariant quantization procedure to the theory formulated in terms
of physical fields only. Failure of this procedure was to be expected,
since the gauge algebra does not close in this formulation of the theory.
Hence it is clear, that the quantization procedure has to be modified in
this case. Such a procedure for quantization of a gauge theory with open

gauge algebra is in principle even more general, since it could also be

* used, when no closed version of the algebra exists. To develop this

procedure will be the subject of the rest of this chapter.

4. Equation of motion symmetries

It has become clear from the foregoing discussion, that non-closure of
the gauge algebra is an important feature in the quantization of field
theories. Therefore we will devote this section to an explanation of the
role of equation-of-motion terms in the gauge algebra, .

Suppose again, that we have a field theory of fields ¢1 described by a
classical action S[¢], which is invariant under gauge transformations Riga,

as in (2.4). The classical field equations are

s.=0 (4.1)

Because of this we will refer to S 3 as an "equation of motion", even when
the fields are evaluated off—shell, i.e:when (4.1) does not hold. We now
come to an important point: besides the gauge transformations Ra, there
exist infinitely many other invariances of the action, which are of “he type:

=g g , (4.2)

8¢ sd :
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‘on 8 (ef. (2.5) ):

where nJl is an arbitrary function of the fields, except for the
requirement:

s 1+a.a. 13
= (<1) iTdpt (4.3)

Here the numbers a, are defined analogously to (2.6):

0 , if ¢* is a commuting fielad,
a, = { . (h.b)
1 1, 1if ¢1 is an anticommuting field.
As a consequence of (4.2), the equation:
s.x*=o0, (4.5)
51
has the general solution:
' =R+ 5 09, (4.6)
o sd

with arbitrary Y* and nij .

The transformations {4.2) do not correspond to superfluous degrees of
freedom, since they vanish on shell. In this respect they do not present
a problem in the guantization of the theory. However, we note that one can
always add a transformation of the equation-of-motion type to the gauge
invariances Ri :

R&i =R+ s’jnii . (4.7)
With ngi satisfying (4.3) this is still an invariance of the classical
action. Clearly, different choices of R; lead to different ghost
Lagrangians and therefore to different effective actions.

Another problem is posed by the commutator algebra of the transformations.
Suppose we perform two successive gauge transformations on the classical
action. The invariance, expressed by (2.4), implies:

s .RF BRI+ (-1)aB(a“+ai)s mRl =0 . (4.8)

si a,) B s1J B a *

Next we interchange the two transformations and subtract the result from

(4.8). Thus we find the generalized commutator of two gauge transformations

i ody o
S,i[Ra,jRB} 0. (L.8)

This means that [R; jRg} is itself an invariance of the action, and by (4.6)
E]

it can be written:
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jﬁg} =R £y + 28 .n3 . (%.10)

IR Y B ,j Ba

R K.
-

This is the generalization of (2.5) and states, that the commutators of any
two gauge transformations of a theory always close modulo equation~-of-motion
g J; in (%.10) are called generalized structure

B

terms. The quantities f o and 7
functions.

Sometimes it is possible to remove the second term on the right-hand side
of (4.10) by a redefinition of the gauge transformations, as in (4.7). Then
this is ciearly a reasonable thing to do, because gquantization becomes
straightforward, However, it is not always possible to do this, as is shown
by the supergravity theories formulated in terms of physical fields only.

We have seen, that our previous gquantization procedure then fails. In
general it can also be seen from eq. (2.13), which leads to the result:

Jji B, ¥
S,jnsyc Ac’ (k.11)

-0y

SgrsSerr =¢ To,i

where we have used (%.10). Eq. (4.11) does not vanish off-shell and B.R.S.
invariance is violated.

Summarizing we conelude, that equation-of-motion symmetries pose two
kinds of problems in the quantization of gauges theories. In the first
place, even for a fixed gauge condition Fa, the ghost action is not
uniquely defined. Secondly, with the quantization preseription given in
V.2 we do not obtain B.R.S. invariant effective actions. We will now solve
this last problem. We will derive a new prescription for the construction

of Seff’
will also show, that this theory leads to a gauge independent S-matrix.

which is invariant under generalized B.R.S. transformations. We

Hence the first problem is solved implicitly.

5. Quantization of gauge theories with open gauge algebra

As one may expect from the example of S0(2) supergravity, the solution
to the problems described above is to be found in the introduction of higher
order ghost interactions in the effective Lagrangian, accompanied by a
suitable extension of the B.R.S. transformations. Indeed we will prove the
following theorem: ) . .

There exist quantities M;E:::;i(n), X;E:::ii :;(n), obtainable solely ;
in terms of the gauge transformations and their commutators, such tiat the

effective action for any gauge theory is:
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2 i, _ _ in...il a a, @,
Sepp = 5 - 2F + F, (R~ + I o F B Mt n)e e T)e T, (5.1)
e 1 1 nz2 2--. n no-- 1

5l

"

and that this effective action 1is invariant under a generalization of the

B.R.S. transformations:

|
t
4 i i i...i a a, o
: 1 = - 1
do 8¢ = (R + J-F, ...F. M n Yn)e M. 2]c A,
oo al n>2 12 1 an-.-ul
:] i...1 a o
; o 1 = = n la n 15y B, ¥
N a Se = (3£, + ) F. ...F. x (n)e "..ic T)efAet , (5.2)
1 BY n31 11 i, @ ...alsy
Gc*a = oAF% .

Here and in the following we use the notation:

ﬁi = E*aFa i?
: ' (5.3)

= -k &0
F..=c¢"F .. =(-1) 2 9F,, .
1) o,1j Ji

The proof of this theorem goes by induction with respect to the number of
ghost fields *). In this section we will present it up to terms quadratic
in Fi' This shows the general procedure and is moreover completely
sufficient for the case of 80(2) supergravity. We suspect it to be
sufficient for higher N supergravity theories as well. The generalization
of our proof to all orders will be discussed in the next section.

We begin by noting, that Seff and the B.R.S. transformations reduce to
the usual ones, (2.10), (2.12), in lowest order in ?i. Hence in this
order we find again (4.11), which can be written:

a.(1+ai)

(1) - Jji B, ¥ J
SpReSers = s,jFinByc Ac' (1) . (5.h)

Clearly this variation can be cancelled by & new term in 6¢1, as in (5.2);
we only have to define
+1
(5.5)

5 i3 257t 45
‘. = -1 .
Mgr(2) = (-1) Nay

.However, such an extension of 6¢1 introduces other new variations in Seff’
besides one that cancels (5.4). Using (5.1) and (5.2) the complete
variation of Sgps to second order in the antighosts becomes:

i *) For S-matrix elements this is equivalent to induction with respect to the

number of loops in the diagrams.
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LA ek

(2) 7P
GBRSSeff FlJ k By

kJ(5)eBe¥agrt c“ + PR MkJ 2)cBeVac®
iToed k

+ F, R F M9 (2)cBeY + 37 7 Mil(0) R C %peBeY

Jie K BY J By ",k
1= Ji B.A Y 1 JA B vy, a
- 2F F. MBA(Z)C fyac Ac? + F, RA XB a(l)c clhe
+ s FFME(3)c B . (5.6)

k 175 YBa s

In fact, the last term is a new variation of ¢i, which has to cancel the
net effect of the other variations with S in (5.6) in the same way the
variation with M(2) had to cancel (5.4). Slmllarly, the term with X(1)
comes from a new variation of the ghost, designed to cancel the other terms
n (5.6), which are not explicitly proportional to an equation of motion.
We will now show this cancellation mechanism in some more detail.

In the first place the variation of —%Fi vanishes with those of the
antighosts c*a, as may easily be verified to all orders in Fi' Hence we do
not consider these. Furthermore, the terms with Fij in (5.6) cancel after
some rewriting to cast them into the same form, using (5.3). Taking M(2) as

n (5.5), we can now write 6(2)

BRS eff as:
. . .(a.+a ) .
(2) i A ajtagta;lastay)  yii
SppaSers = = (-1) FiFj (-1) S,lMYBa(3) +
a +a _+a.+a (a.+a,) . a tagta, (1+a.) .
1 a B TAUTKR Ty ALk 1 B8 J J
-3(-1) RIX (o, (1) + 3(-1) Rx3g, (1)
. ) +a a +a ta )
ki A kj i 8588y B'pd ik ). ovB.0
+3(n Malyg = [nBa,iRy} - (-1) R}, i"ga } cle¥en ,
(5.7)
with ) .
. . . a (a +a_+a. ..
kJj iy - _KkJ i_ Y a B J' k 1]
In Ba 1RY} - Ba,iRy (-1) RY,i Ba (5.8)

This is the commutalor of a gauge transformation and a transformation of the

type:

i_ i Be (5.9)
8 = . .
n¢ nBaEJ s
where Ega is an arbitrary paramecter. Note however, that (5.9) is not an

invariance of the action in general. We will now prove, that one ca: de‘ine
M(3) and X(1) such that (5.7) vanishes. This is done by evaluating L..e
commutator [n,R}, (5.8), and substituting the result into (5.7). The

a1

AR
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evaluation is carried out by calculating the Jacobi identity for three gauge

transformations. Using its cyclic nature and contracting it with ghosts, it

reads:

(10 B gy Y - R i) ReTefet <o (5.9)

Inserting (4.10) this leads to:

(_”a (Rl(fsa,kR: ua BY) * 2S ( ni; 38 * [ng:,kR:} *
. (_1)a 185%e, (aJ+a +a ) )) YeBe® = g . (5.10)
Y,k Ba
(5.10) has the generic form:
o, (5.11)

R A +5 .B
2d

In order to solve it, it is necessary to make a clear cut separation between
gauge invariances and eguation-of-motion symmetries. We do this by defining
gauge transformations to be invariances of the action which do not vanish

can not be proportional to & field equation.

on shell. Therefore the R;
On shell this reduces

With this convention, we proceed to solve eg. (5.11).

to:
R;A)‘ =0/ (5.12)
which, in view of the above, implies that AA has the structure:
aA* =5 a0, (5.13)
2d
Then (5.11) becomes:
a.{a.*a,)
5 . ((-n 3 T Mgigdh oy gdly g, (5.14)
sd A
By eq. {k.6) this has the solution:
a.(a.+a,) . .. ..
(-1) 4 1 Ay A“ + gt o Ric“ +8S kaJl ,
?
‘s 1+a. 8. s - (5.15)
Dle = (=1) k JDJkl .
Applying this result to (5.10) leads to the equations:
. a a.(a. +a, )
Bror u JA 1 Y B a .
-1 f - f f + 25 .U -1 =0 16
(-1 ( Buak Y a” By sJ YBa (=1) ]C ¢c ? (s )
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R

.a. +ay(a .+a % ) .

Ji A Ji a; 3 kJ
+ 1 =
“Mafye ¥ Mo,k y} (-1) Ry,k"Ba
JA a5 J J, 1A kji
R}‘U +( 1) R Uyaa s x"ea (5.17)

which are the analogues of (5.13) and (5.15). However, we have used an extra
piece of information, which is that the left-hand side of (5.17) is

.. “1+a.a. A . .
multiplied by a factor (-1) 1 J upon interchange of i and j; hence on the

right-hand side of (5.17) this symmetry has been imposed as well, This

results in a complete cyclic symmetry of nsg; :
YBa "ygo * "yeo :

Pinally we can insert (5.17) into (5.7) and find, that G;R; ot vanishes if

wve identify:
+a (a 1)

8g MidK(3) =1 1dk

(=1) YB“(3) anBa N (5.19)
a ta ta (1+a )

(-1)* B J xi’;a(ﬂ Uﬂga , , (5.20)

which was what we set out to prove. As a result of our analysis we have
also found the relations (5.16) and (5.17). Eq. (5.16) expresses the fact,
that the structure functions form a representation of the algebra (4.10),

where UJ plays the role of nd B . This provides an interpretation of X(1).

YBa
(5.17) gives an expression for the commutator [n,R}. Such 2 commutator,

and its generalization [M(n),R} for n>2, will play an important role in the
proof of invariance to all orders,

It has been shown by Kallosh [4], that the results derived above suffice
for N=1 supergravity. This follows from the vanishing of M{(n), X{n-1) for.
n>3., Townsend [5], has calculated the quartic ghost terms for s0(2) super-
gravity by this procedure and arrived at our result (3.4). He has also
calculated the quartic ghost terms for all higher N theories (N<8), and they
turn out to have the same form (3.4). However, he has not shown the
vanishing of the higher order quantities M(n), X(n). Hence we do not know

whether the result is complete for N>3.

6. Results to all orders

We will now continue the proof of B.R.S. invariance to arbitrary order.

In order to keep the discussion clear of intractable minus signs, we will for
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definiteness assume that we have only Bose fields and gauge parameters. Hence
we have anticommuting ghosts and Fi' The general case is then obtained by a
consistent introduction of minus signs for Fermi fields and parameters every-
where, but this does not alter the various steps of the proof as outlined
below.

We will assume the nth order variation of Sopp» (5.1), to be zero for

all n<N-1, where N is a given integer. This variation reads:

[i, i ...1i 1 Ji...1
- - 1
aéQés ep = Fi oo F, {-R xk» 2V 1)+ M P (n+1)s . +
e 1 il 0w an...a2 alB Ban...al 2d
1.4 [i, i ...i,]q i...d
1 1 2 1
+ M, an(n) Rg - RB Man a (n) - % fg an a Bu(n)
1oy g 2q 0.0y LPRCSCPRL

nzl (k=1)!(n-k)! (M[ik"'il(k) in"'ik+1]q(n) +

+
K=o (n-1)? ety 2q O .-.0y B
[1, ...1 1...1 | o ay
M ; x P v (n-k)\} Be e . (6.1)
T R ]

Square brackets denote complete antisymmetrization of all independent
combinations of indices, except for indices that carry a hat """. To show,
that one can find quantities X(N-1), M(N+1), such that (6.1) also

vanishes for n=N, we proceed as follows. We assume, that for all n<N-1,

the quantities X(n-1) and M(n+1) satisfy:

{ 1n...11(n) sl _ [1l 1n...12]q Mln...11
an...ul »q B B8,a an...al

n=1 ' oo [iaeidy i ol
(k=1)!(n-k)! ( k n' RS )

M (x) M
k=2 (n=1)! @pened) A HRP RN -
[i, ...1 SR | 1 a a
1
s KL ox P ua(n-k))} el =
oo etyBl 0t Oy %1%
[y i ...i,] Jienni 8
= {R Xan 02 uB(n-U —nMBan 1(n+1)S .}ch noe’, (6.2)
u SEPRL AN SRR sJ

and

gk




11 i i)
{R 1f pu n 2 (n-1) + nXun 2 v (n)S,j) +

A
H \ yBa] an...u2 n...azy o

n-2 ., i ...i1 i...1
k! (n-k)! M n=-k (n-k)(Au n n-k+1 (k) +

+ ]
ke {n-1)! PR AT yBa] LIPPRL e
Ji_...1 ] a a
+ (ko)X a““k” g § .)}c”csc nel=o0. (6.3)
n' " n-k+1 1® 9

The quantity A(n) above is defined by:

1 e..d i...1 [i Q&1 |
1
ASB n al(n) = i H(n) - Rg o % o ! ;J(n)
Y o e Boa ...y oy ,q 2q o ey Y

i i ...1 i...d
i RN

i
+
2 Ay TRy oghgn T Ay gk

X M n+l) +
2 Tay an...al AB n AB @ reea QY ay,q an...als( )

NE - S SUPPE A8 I
(k)Xa 0',B(n+1—k)

k% s

§ Le=n)t(nogen): { L
*
Koo n! @ _qeeeyY

-~

[1 veol i...1]
k=1 1y 4 n k™ A
. . (k-.)xa ) QIB(n+1-k)} (6.4)

with

A i q.M

A(0) = 3(£7 £F - R . 6.
(0) = 3(£h £ - RAH ) (6.5)
We must now prove, that (6.2),and (6.3) are also satisfied for n=N. Since
we know them to hold for n=1, we have then completed their proof to all
orders by induction. The essential element of the proof is the calculation

of the Jacobi identity for two gauge transformations and a transformation
of the type:
i eeedi GeeoB
5ot = Mgt Syg % B (6.6)

with arbitrary E(n). This Jacobi identity reads:

[[Ri .Rj] Mln...llk(n)] + 2[[R11 Mln."IZk(n)] .RJ cYchan...c 1 =g,
Bsd Y ok an...al Y,k o ety .J B

Whén we evaluate it for n=N-1, and use expression (4.10) for |R,R] and

(6.2) for the commutator:




: ln“'l k i 1 ceed k(n) Min---il(n) Rk , (6.8)

; \[RY;kMun...a (n)] = 7 i @ eeeay @ ey N 3

. we find:

L 1.eeel i ...1 [1 ...1 la

' | et PR ] q 2

S,iND (W) = s,i“{“au...a (“),qRB B.q"au...al ()
i...d
- dmeg XL
l 2 N...aa H

i, ...1 i ...

1]

=k)? ( kK "lyy M ® ] % ¥e1-x)
ak...al »q & ...ak+1a

? [i,...i fi S | a
o AL 3 S ¢ X k))} LR B
k...a "] an...uk+1 aya,
{i i, . ...1,] N-2 fi ...i
g ¥ B=177 22y + ) EEERCUL KTl
-1 " ulalﬂ un_1...u2 N-1)? ay---au
i ...1 1
. ( a8 ¥-1 K1 (k1)
Ot O
S W | « a
’N-k)xsa -1k o (HK)s .)}ch Woel, (6.9)
N- 1...uk GN »d

Since the summation in the right-hand side of (6.9) involves only k>2, we
may use eq. (6.3) to evaluate the quantities:

i o-.l i o.-l
o N-1 k+1(N—k-l) T\ S M k)
b L MELEEL W b Ly M RLEL WY
Ji, ,eeed
- (N-k)X, VR W i), (6.10)

B“N-1"'ak+1 alaN o

Eq. (6.3) is actually a recurrence relation for the quantities B(n). Since
B(0) = 0, they wowid imply all B(n) to vanish, if no antisymmetrizations

were involved. Due to these antisymmetrizations, however, non-trivial

solutions exist of the form:

i i A

(! 1 M

1?,_"3cl u](” R, YyBc l(0) s for n=1 ,
ied, 8 o @, [11 A 1n...12|

" (n) cVebe%% Mic ' = {RA YYBG o - (n-1}

YBa LR

1.

o [iieedd
+ ] k! (n-k+1-Ln Ol gy B ]kn(n-k}‘cvcscuc .-.cnlsfcl'nza-

k=2 Aak 1...a yaaa uk (6.11)

|
;
i
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Here the quantities Yux(n) are gymmetric in p and A. When cne substitutes
this result into (6.9), one now makes the important observation, that owing

to the symmetries of the factors Y"A(n), all terms of the form:

M, (k)M (DY (N-k-2-1) , k.22 2,

cancel. This leaves us with the result:

fo..d 1, i ,e..il) N-2., , iewd
N eI(N) 1 (Au -1 2 oy e g K Nkt k™02 )

§.D R :
sy N-1 "y aNalB Ay_qee-0y k=2 N-2)! ak“.azl
S TN S | a a [i, vi, ,...1i.]
- — 2
.y N-1 k+2 (N—k—2))c8c N elzlpg ¢ ¥ (r-2) .
aNulB aN_1...uk+1 N-1 "
16.12)

This has a form, whieh is a direct generalization of eq. (5.11) and can be

solved analogously. It leads to the desired result, that one can write:

1 eesd [i i ..ei ]q i eeal

1 2 1

(MuN (W) . Rg - RB : aN a (v) -5Nf: a MaN a BH(N) *
N...al +Q 2Q N % 1%2 N° %3

. “i‘ (k=1)(N=k)? (th'“ll Mlﬂ"'1k+1]q(u+1_k)
]
K (N=-1)¢ @ eeed)5q aN"°uk+lB

=2
[i ...1 AP T | o o
N 03 S (N-—k)])'csc Hove !'=
k.l. 3 u N... k+1 l 2
[i, i,...1,] Jie.ed a a
= (R N ®-1)-mM N we1)s .)cec N .ct. (6.13)
L e alB Ban...a °d

Choosing this for X{N-1) and M(N+1) in {5.1) and (5.2), we have indeed:

(Mg .4 (6.14)

SpRsSerr .

Substitution of (6.13) into the Jacobi identity (6.T) with n=N, finally
proves eq. (6.3) in next order. Hence the proof of (6.2) and (6.3) by

induction is complete.

7. Discussion

We have proven,.that the effective action (5.1) is invariant under the
generalized B.R.F transformations (5.2). Of course this is not suffizient
to ensure, that Seff defines the correct path integral. We must stil® z:ow,
that B.R.S5. invariance guarantees the gauge independence of the quantum
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theory. The proof is simple and completely anslogous to the one for

theories with a closed gauge algebra [1].
We will first derive the following general theorem:
a B.R.S. transformation on the expectation value of any function 0 of the
fields can always be absorbed in a redefinition of the source terms in

the path integral.

To prove this statement, we construct a generslized path integral:
R i
Z[J,H] = I D¢ exp 1(seff + Ji¢ + HO) . (7.1)

By performing a B.R.S. trensformation on it and assuming the integration

measure to be gauge invariant, we find:

-iA (J § 0 + HGBRSO ,J =0 . (1.2) ’

BRS oH

Taking the derivative with respect to H and evaluating the result at H=0 then
gives:

i
(8 pps0 >J x - (Ji(cmso )o>J R (1.3)

whieh is the desired result.
The following step is now to show, that an infinitesimal change of gauge

in the path integral can be written as a B.R.S. transformation on a certain
function. Explieitly, if we change the gauge:

F, +F +16, (7.4)

then the change in the path integral is, to first order in A:
Z[Ji] + Z[Ji] +
icaed o a, a
- - 2
+ ik (F% 43 (R eI R R oM Made Yo e 'y, (7.5) 1

n
a8 Tigead
n> 2 n n 1

One sees immediately, that (7.5) can be written:

<y D -
8219,] = ia aA‘GBRs(c ca) ’g- (7.6)

By our theorem this can be compensated by & simultaneous rederinition of the

source terms:
82[J;) = i ¢J; an( S¢)c G, s - {(1-7)

Clearly this is zero, when the sources are B.R.S. invariant:

fa + N I as bl nitre 4 o
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i
Ji(GBRs’ )=0. (7.8)

However, we may also invoke & general theorem in field theory, that path
integrals, which differ only in the source terms, give rise to the same
S-matrix elements {1]. This establishes the gauge invariance of the quantum
theory, provided we make some restrictions. The above argument presupposes
that B.R.S. invariance is not spontaneously broken. Furthermore the sources
need to be physical, i.e. they must satisfy:

(Flay =0, (7.9)

for arbitrary gauge fixing functions F* (see ref. [1.b]) .
We now want to discuss a property of the B.R.S. transformations them~
selves. If we take the commutator of twc B.R.S. transformations, the
argument which also led to (4.10) shows, that it closes upon use of the
effective field equations. However, it turns out that a stronger condition
holds, which is, that the B.R.S. transformations are nilpotent upon use of
the effective equations of motion. Indeed one may verify, that:
in...izik

' -Gl(n+1)c

. éS .
2 3 eff (.ik ~
Spret” = M, { Iy (M (2)+ E oy f M

am1...c(!3 )cuzﬂl
6¢k a0)

&S . i ...1,1 v v
+—eff (-xm (e T aF,  Fx "2 S(me i ‘)c"c"},

6ca vluh n>2 12...

85 ieeed v v\ V
6123Rsca = AR {-—(?g (Xk 1)+ § oF. F xP© i ¢ (n)e Mue z)v: lokch

172 “k Vi HA n>2 Lypae 1 "V ey uA
85
+ —eii (terms containing Yux(n) ) } s {7.10)
5¢
§S
2 *q eff
... = AA .
2
BRS 1 sc*
«
This is to be compared with the strict nilpotency of GBRS’I and snnsca in
~

Yang-Mills theory. However, the nilpotency condition (7.10) for c
holds in both cases. These observations may be important in restricting
possible higher order counter terms to Seff [1.a}.

8. Conclusion

We have shown how to quantize supergravity, both in a formulation with
and without auxiliary fields. Moreover we have generalized the covariant
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quantization procedure to arbitrary gauge theories with open gauge algebra.
This shows, that a closed commutator algebra of the gauge transformations is
no prerequisite for obtaining a consistent quantum theory. The most
conspicuous feature of this procedure is the introduction of higher order
ghost terms, both in the effective action and the B.R.S. transformations.
Incidentally this, and the gauge algebra, show that theories with open gauge
algebra are most likely to be found among theories with dimensionful coupling
constants, such as gravity.

It would be interesting if we were able to understand these higher order
corrections from & more general point of view. For example one might ask
whether there is & relation between open gauge algebra's and auxiliary fields.
At present we know only, that elimination of auxiliary fields leads to open
gauge algebra's. Whether there a.lwé.ys corresponds a closed algebra with
auxiliary fields to any open gauge algebra is an unanswered question.

Finally there is an interesting observation by Otten [7), who showed
that the generating functional for proper vertices has a set of local
invariances with open commutator algebra. This generating functional is the
Legendre transform with respect to the sources of the logarithm of the path
integral:

Topeld 1=1n 203;] - 56", (8.1)
with

i__ 8
¢ = 33; (1n Zl.1 ). (8.2)
It turns out that I‘e e has precisely the form {5.1), with the quantities
M(n) generated by the algebra of local invariances, as discussed.

With this remerk we conclude our discussion of the quantization procedure

for theories with an open commutator algebra of local gauge transformations.
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APPENDIX A. Notations and conventions

In this place we collect the notations and couventions used throughout
the text concerning representations of the Loreritz group and Dirac algebra,
When we consider global Lorentz invariance, we denote vectors by Greek
indices u, v, ..., Aand spinors by Latin indices a, b,... . Both run from
1 to 4. We use the Pauli metric

Gw = diag. (+,+,+,+), (A.1)

with imaginary time components of four-vectors:

p, = (8:p,) = (F.ip") . (a.2)
Hence there is no need for distinguishing upper and lower indices. The
four-dimensional Levi-Civita tensor is defined in terms of the permutation
symbol 6:3:2 :

1234 _

€ Lvpo po s, {uvpo) = even permutation of (i23k),

~1, (uvpo) = odd permutation of (1234),
0, otherwise . (A.3)

Three-dimensional ordinary space vectors carry Latin indices i, Jseees
running from 1 to 3. The three-dimensional Levi-Civita tensor is

L., o= 8123 o o

ele ijk ijku.

In all cases repeated indices will imply a summation, unless explicitly
stated otherwise.

When we discuss local Lorentz invariance, we need to distinguish
between world indices u,v,... and local Lorentz indices a,b,... . In this
case we will suppress spinor indices, hence no confusion with local Lorentz
indices can arise. Vierbeins e: and their matrix inverse ez convert local
Lorentz tensors into world tensors and vice versa, as discussed in I.h.
Consequently we have world tensors with upper and lower indices, related by

a contraction with the metric tensor

g =8 ee, (A.L)

or its inverse g'’. The summation convention for world indices implies a

contraction over 8,y
The Levi-Civita symbol with world indices is defined as in (A.3):
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_ s1234 _ 1 abed
Euvpo Guvpa =% Cabcd euevepec 4 (a.5)

where
e = det ea .
u

Hence Euvpo is no longer a tensor, but a tensor .density.

Next we discuss the Dirac algebra. We will do this in the context of
global Lorentz invariance. When considering the local case the Dirac
algebra remains unchanged when one defines all elements with local Lorentz
indices.

With our metric convention (A.1) the Dirac algebra is defined by

+ = . .
Y, t Y, 26uv (A.6)
Hence
yﬁ =1, (no summetion over u) . (A.T)

The standard irreducible representation of this algebra is four-dimensional

and has hermitean y-matrices:

Ty A.8
L (A.8)
From these elements we define the following quantities:
1.
Y5 = Y1Y2Y3Vy » Y5 = Y5
1 : (4.9)
v = E(Yuyv -Yqu) * T ™ %
The qu form a representation of the Lorentz algebra:
. (a.10)

= + - -
[qu’oaB] GuBOva Gvaguﬁ Guaovﬁ 6vBUua
The set of sixteen 4 x 4-matrices
Iy _ ) .
{0 } = {13Y53Yu’1YuY511/2 qu}
is complete. Hence any U x h-matrix X can be expanded in terms of the o’:
x=7 1 or(xo”)o” . (a.11)

J
In particular all OJ except 1 are traceless:

e o) = (o)) =0,

We define a charge conjugation matrix C by

Cy. T = -YUC s
s (A.12)

c2 =1, C=-cl.
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Here the superseript T denotes transposition. From (A.12) we derive:

T -1

Cy C = -y,
poq (a.13)
C(Ys’u) C = gy

T -1
v C = Ty

Co
The four-dimensional representation space of the Dirac algebra is called
spinor space. The elements of this space, the spinors, transform
covariantly under the representation of the Lorentz group generated by qu

(A.14)

TR\
&y, = z¢ (ow)ab#’b .

As a consequence they can be used to construct relativistically invariant

field theories, in which they represent fields with spin 3. For consistency

they have to be anticommuting, i.e. they are elements of a Grassmann

algebra:

Vb Vb, =0 . (a.15)
Free spinor fields satisfy the Dirac equation:

(#+m)y = 0 , (a.16)
where we use the notation

f=ay . (a.17)
The Pauli conjugate ¥ of a spinor is defined by

v = w*yu . (a4.18)
It satisfies the equation

$im) =0 . (A.19)
A Majorana spinor is defined as a self conjugate spinor:

b, = cabib . (A.20)
Using (A.13) and (A.15) we find for Majorana spinors:

‘ (a.21)

Vr ¥ =0=%o, .
The completeness relation (A.11) may be used to expand the direct product of

two spinors:

ol - T 0,

y

—y L,
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Vol = -R(B0) 1, - @) (vg) ) - (v ) (v )

+ 3($cuvw)(c ) (a.22)

uv’ab

+ E(aYSYuW)(YSYu)ab

This is sometimes called the Fierz rearrangement formula. A number of

useful (anti-)commutation relations is given below. Writing

{A,B] = AB-BA,

(A.23)
{A,B} = AB+RA,
one may derive:
brpov b =28 > Dyov,1 = ho
{Yu’YS} =0 » lo,,v51=0,
{Yu’cvl} = Eu\))\pYSYp ’ [Yu’avll = Y)\611\) - szui\’ (A.24)

1 1
{cuv’cpc} 2euvpoYs 2(sup vo uo vp)’

[auv,a ]1=6 o + 6 -4 -8

g o s
pa vp uo Ho vp Bp vo VO up
Sometimes it is convenient to have an explicit representation of the Dirac

algebra. In terms of the Pauli matrices o; ¢

01 0 -1 1 0 .
91 = (1 o) > 02 % (i 3) » 93 % (o -1) ’ (a.25)
there is a representation:
€ -io. AR [ 8-
Yi = (idi o l), YH = (’9’ _1)9 YS = (._1 '9‘) » (A.26)
with
i Gk © P
2 fijk (e- ck) » vhen (w) = (13) ,
% = (a.27)
ife o; .
5("1 %) , when (wv) = (ib) ,
. € o
and C = iy,v; = (02 02) . (a.28)

We end this appendix by explaining scme notations employed in manipulating
internal symmetry indices. As with the space-time indices, repeated internal
symmetry indices will imply & summation. We have the following conventions

on symmetrization:
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antisymmetrization is denoted by square brackets:

xB 3l axiyd _xdyl

R

symmetrization is denoted by round brackets:
X ) o dyd 4 xdyd
| finally the symmetric traceless part is denoted by applying an s to the

symmetrization bracket:
A e R L T

vhen 1,j,... = 1,...,N. This is also written explicitly:

i,
i

YJ)s = xtyd +(iesj; traceless).

ERERT 93 Ny
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APPENDIX B. [The superconformal algebra

In this appendix we will describe a supersymmetry algebra more general
than the graded Poincaré algebra. This is the graded conformal, or super-
conformal, algebra which includes the Poincaré algebra as & subalgebra.
However, it can only be realized in field theories which do not contain an
intrinsie mass. This is due to the scale invariance present in super-
conformal theories. The nice feature of this algebra is, that is allows
incorporation of chiral U(N) internal symmetries, which seem preferable to
the SO(N) symmetries of the Poincaré theories.

~ The graded conformal algebra is based on the ordinary Lie algebra of
conformal space-time transformations. The elements of this Lie algebra are
the space-time translations P , the Lorentz transformations M , conformal

boosts K and dilatations D.*-Their commutation relations read:

[Pu’ka] = 6uka-'6uka’ [Kﬁ’MvA] = 6uvKi = sulxv’
(P ,D1 =P, (K .Dl = =K ,
u u T} u (B.1)
[Pu,Kv] = 2(6WD - MW) R
[Muv’MKA] = Gukmvk + vaMuA = GuKMvA - GkauK :

All other commutators vanish.

A grading of this algebra can be obtained by adding two Majorana spinor
elements, Q and S, and a U(1) chiral charge A. The Q's form the grading
representation of the ordinary Poincaré subalgebra contained in (B.1), while
the S play a similar role with respect to the subalgebra of conformal boosts
K and Lorentz transformations M. If these subalgebra's are combined in a
non-trivial way as in (B.1), the dilatation D is necessary to close the
algebra. To obtain the full graded algebra, we have to include the chiral
U(1) transformations as well. This leads us to the following set of {anti-)

comutators, in addition to (B.1):

[Pussa] = '(YuQ)a s [Kana] = (Yus)ﬂ.’

[Muvssa] = "(qus)as [Muv’qa] = -(Uu\’Q)as g
[D9sa] = %Sﬂ.’ [DaQa] = -%Qas (B.2) :E
[4,8,1= - 3(y8),, [4,9,1 = 3(v4Q),> '
{8,05,} = 2(kc) , . {q,.q} = -2(¥c) 4,

{Sa’qb} = 2DCqy, + Z(quc)abuuv + (Ysc)abA .
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Again the other commutators are tacitly understood to be zero.

Exactly as in the case of Poincaré supersymmetry one can include other
symmetries, besides the U(1) transformations, by extending Q and S to
grading representations of some internal symmetry algebra as well. Making
use of chiral invariance a reasoning similar to that in II.2 shows, that
this extra internal symmetry is SU(N), at least when no central charges
are present. Hence the total internal symmetry is U{1) xSU(N) = U(N).
However, in contrast to the Poincaré case, the U(N) charges A, B: appear
in the graded conformal algebra itself, since they are necessary to close
the anticommutator of Q and S, as in (B.2). Writing out the co-nutat/:iéryi‘,’

e e

relations on a chiral basis, A

Q" = 3(1-v,)a", 5" = 3(1wy,)s",
r r (B.3)
Q= H1+yg)Q, s, = 3(1-y5)s’, 2
vwe obtain: S
] A
[A’Sr,a.I = (-f-‘)sr,l. ’ [A'Qr,l.] = (l- )Qr,l. ’
[a.8;1= - (%-1)3: , [a,q ) = - (%-1 Q.
r r 1.,r r r 1.,r
[By» t,a.l = +6tss,a. ] 6sst,a.’ [Bs’Qt,aI = +6tqa,a'l 6sQl:,a’
r ot tor . 1 rot r t t,r 1  r,t
[Bx5,1= -85, + 5 6,5, ° [Bs’qa] = 0ty 5
(B.4)
t t t
{sa,qr,b}s(i(uys)[cr(anc + 200, O+ CA)+I'CBr))‘b R
Yy e (101 r _ _ _hert .
{st,a,qb} (z(l v ) (8, (2pC 2(awc)nw CcA) hcnt) A
We have written the SU(N) generators in terms of the fundamental
representation: J .
[B:,B:] = -6:3:' + GzB:; (rys,myn) = 1,...,N; B: =0. (B.5)

Notice, that for N=l the chiral charge A becomes a central charge,
appearing only in the anticommutator of Q and S. Hence in this case the

internal symmetry is reduced to SU(h).
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SAMENVATTING

Supergravitatie is de naam van een amntal theorieén die de fundamentele

wisselwerking tussen elementaire deeltjes pogen te beschrijven. De een-
voudigste hiervan beschrijft alleen de zwaartekracht, of gravitatie, en
€én nieuwe hypothetische wisselwerking, die overgebracht wordt door een
massaloos zgn. ijkdeeltje, het gravitino. De bijzonderheid van het gravitino
is, dat het een halftallig aantal eenheden spin bezit, nl. g-. Zulke deel-
tjes noemt men fermionen. Alle bekende wisselwerkingen in de natuur worden
overgebracht door ijkdeeltjes met een heeltallige spin, bosonen geheten.
De beschrijving van de gravitatie in deze theorie, als klassieke velden-—
theorie, is dezelfde als in de algemene relativiteitstheorie van Einstein
(1916). Door het uitbreiden van deze theorie met het gravitino krijegt hij
echter een aantal bijzondere eigenschappen.

De eerste hiervan is, dat supergravitatie tot een consistente quantum~
theorie van de gravitatie kan leiden. Dit houdt in, dat de zwaartekracht
kan worden beschouwd als een fundamentele wisselwerking op microscopisch
niveau, die het gevolg is van de uitwisseling van zgn. quanta tussen ele-
mentaire deeltjes. Deze gquanta zijn energiepakketjes, behorend bij een be~
paeld type veld. De quantae ven het gravitatieveld worden gravitonen genoemd.
Dat een dergelijke beschrijving van de zwaartekracht mogelijk is, is geens-
zins triviaal. In het bijzonder is het in een quantumtheorie van de gravi-~
tatie nooit eerder mogelijk gebleken een consistente wiskundige procedure
te definiéren, die tot eindige resultaten leidt.

Een tweede eigenschap die supergravitatie onderscheidt van de algemene
relativiteitstheorie is, dat de eerstgencemde een bijzondere symmetrie bezit,
supersymmetrie. Hieraan ontleent supergravitatie zijn naam. Deze symmetrie
houdt in, dat het graviton en gravitino kunnen worden opgevat als twee as~
pecten van eenzelfde wisselwerking. In het bijzonder zijn de natuurkundige
wetten, die een waarnemer vindt in een wereld die door supergravitatie wordt
beschreven, onafhankelijk van hoe hij de wisselwerking opsplitst in een
graviton- en een gravitinocomponent. Dit wordt uitgedrukt door te zeggen,
dat supergravitatie de ijktheorie van supersymmetrie is.

De derde bijzondere eigenschap van supergravitatie is gelegen in de
beschrijving van wisselwerkingen met de materie. Zulk een beschrijviag is
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essentieel in iedere gravitatietheorie. In supergravitatie kan men de ijk-
deeltjes, die verantwoordelijk zijn voor de andere fundamentele interacties,
en de deeltjes wasruit de materie is opgebouwd opnemen als verdare compo-
nenten, van hetzelfde stel velden, dat ook het graviton en gravitino be-
schrijft. Supergravitatie is dus mogelijk een gelinificeerde theorie van alle
deeltjes en wisselwerkingen, die er in de natuur zijn. Deze bijzondere en
tot op heden unieke .eigenschappen maken het zeer de moeite wasrd super-
gravitatie te bestuderen.

In dit proefschrift wordt uiteengezet, hoe men theorieén van supergra-
vitatie construeert. Na twee algemene inleidende hoofdstukken wordt in het
bijzonder de theorie uitgewerkt die supergravitatie unificeert met een vorm
van elektromagnetisme, de zgn. SO(2) supergravitatie. De volledige Lagran-
giaan, waaruit de veldvergelijkingen volgen, wordt gegeven, alsmede de
transformatieregels voor de velden onder supersymmetrie. Deze laten de actie,
de integraal van de Lagrangiaan over ruimte en tijd, invariant. De regels
zijn gecompliceerd, maar kunnen beter begrepen worden in termen van een
grotere symmetriegroep, nl. conforme supersymmetrie, waaronder deelverzame-
lingen van de velden transformeren. Tenslotte wordt besproken, hoe men

uitgaande van de Lagrangiaan een consistente quantumtheorie kan definiéren.

Een deel van het in dit proefschrift beschreven onderzoek is gepubliceerd
in Nucl.Phys.B. De in hoofdstuk IV beschreven resultaten werden verkregen
mede in samenwerking met dr.A.Van Proeyen ven de Kath. Universiteit te
ILeuven, Belgi@. Mevr.S.Hélant Muller-Scoegies verzorgde het typewerk. De
omslag werd ontworpen door dhr.W.Verzantvoort.
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