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CHAPTER I

SUPERSYMMETRY AND SUPERGRAVITY I.

1. Introduction

Supergravity is a theory of fundamental interactions. Basically it

describes gravitation and a new interaction mediated by a fermionic field,

called the gravitino field. This results in a special symmetry between

them, supersymmetry, whence supergravity derives its name.

Though all experimental data on gravitation are in good agreement with

the general theory of relativity, we wish to point out, that there exist

a number of good reasons for an attempt to extend this theory. We will

discuss each of these in turn.

In the first place general relativity has not been shown to be a

consistent quantum theory, as the other theories of fundamental interactions

are. As a classical theory it describes very well the macroscopic phenomena

of gravitation, but on the microscopic level its character and its relation

to the other basic processes are unclear.

Three other fundamental forces are known in nature: the electromagnetic,

the weak and the strong interactions. These interactions are thought to be

transmitted by the quanta of certain fields. For the electromagnetic

interactions these are the photons; for weak interactions they are the so

called massive vector bosons, while the strong forces are mediated by

massless gluons. The last ones are responsible for the binding of quarks -

inside the proton and other heavy particles.

In view of this it seems desirable that gravitation should also be

described in terms of a quantized field. The quanta of this field will be

called gravitons; they are massless and carry two units of spin. However,

attempts to construct this theory directly from general relativity have not

been very successful. In particular the technical complications of

renormalization, which is a procedure necessary to avoid infinite results

in quantum field theories, have not been overcome. In supergravity on the

other hand these complications are often absent, at least in the lower

order approximations.



A second reason to study supergravity lies in the prospect of

constructing a theory which unifies gravitation with other interactions. The

three types of fundamental forces discussed above are all described by so

called gauge theories. These field theories exhibit very special symmetries,

which may allow their unification into one theory. This has for example

been accomplished successfully for the weak and electromagnetic interactions

in the Weinberg-Salam model.

It is a very attractive idea to incorporate the strong interactions and

gravitation in such a theory as well. This theory would then describe all

known elementary processes in nature and would contain a minimum number of

free parameters. Thus it would possess great predictive power. At present

supergravity is the only theory which offers prospects in this direction.

Finally supergravity is a very interesting theory because it exhibits

the property of supersymmetry. This is a symmetry between the two basic

classes of particles in nature: the bosons, which carry an integral number

of units of spin, and the fermions, with half integral spin. In all

existing theories of fundamental processes there is a complete dichotomy

between bosons and fermions. Only supersymmetry is able to overcome this

and treat both on an equal basis.

In order to achieve supersymmetry one has to match the bosonic graviton

of general relativity with a fermionic spin — field. This field is called

the gravitino field, and the combined theory of this field coupled to

general relativity constitutes supergravity.

We would like to stress here, that supergravity encompasses general

relativity, and therefore is not in contradiction with experimental

evidence. In fact the new features of this theory lie not primarily in its

description of gravitation, but in its possible incorporation of other

interactions and the predictions on these interactions that may be derived

from it. Thus it is essentially a theory of particle physics and its

applications will presumably be found in the realm of microscopic phenomena.

2. Supersymmetry—

In this section we will illustrate the concept of supersymmetry in a

simple example. This will then be used to discuss some general features of

supersymmetric field theories.

Supersymmetry is a symmetry between bosons and fermions. Therefore any

supersymmetric theory must contain both kinds of fields. A simple model is
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provided by the scalar multiplet, which consists of a scalar field A, a

pseudoscalar B and a real (Majorana) spinor field Ji . Therefore this set of

fields has two spin 0 and two spin 5 degrees of freedom. The Lagrangian for

these fields is simply

/- -JO pA)
2 - JO^B)2 - l$ft - Jm2A2 - |m2B2 - £*** . (2.1)

The action, the space-time integral of (2.1), is now invariant under the

following set of infinitesimal transformations

6 A = ei|i ,

6B = ieYs* , (2.2)

where e is a global, i.e. space-time independent, Majorana spinor, whose

anticommuting components parametrize the supersymmetry transformations.

Indeed, the Lagrangian (2.1) transforms into a total derivative:

(2.3)

Of course, the action is invariant under translations and Lorentz

transformations as well.

This example demonstrates the main properties of supersymmetry. In the

first place supersymmetry requires equal numbers of bosonic and fermionic

degrees of freedom. For example, in the scalar multiplet we have two of

each.

Secondly, in order to obtain the result (2.3), it is crucial that all

fields have equal mass. This is a general property of supersymmetry, which

has direct implications for phenomenology, as we will see.

The third feature that should be mentioned here is the commutator

algebra of supersymmetry. When we take the commutator of two supersymmetry

transformations (2.2), we obtain a translation with parameter -2ejY £2»

e.g.:

(2.10

which is again an invariance of the action.

*) For notations and conventions see appendix A.



However, an important remark has to be made. When we calculate the

same commutator on i|i, we find besides this translation an additional term:

[«2.«ll* = 2e1YMe23u* + ( ^ Y ^ h ^ - h a ) * . (2.5)

This additional term vanishes upon use of the classical field equation

for IJJ, the Dirac equation:

(Jl+m)i(i = 0. (2.6)

For this reason the commutator is said to close only on the classical

level, or on shell, where this field equation may be inserted. With this

proviso, however, the result (2.h) holds uniformly on all fields.

We will now discuss the consequences of these observations. We have

seen that supersymmetric field theories must be based on multiplets

containing equal numbers of boson and fermion states. However, in nature no

such mass degenerate sets of bosons and fermions are known, except for the

massless photon and neutrino. Therefore if supersymmetry is a property of

the physical world, it must be realized in a broken manner, i.e. there

must exist some mechanism by which bosons and fermions acquire different

effective masses. This mechanism could be of the Higgs-Kibble type, where

some field has a non-vanishing vacuum expectation value, which contributes

to an apparent mass of another field. Or the mechanism might be of a

dynamical character, the effective mass resulting from specific interactions.

Another reason why supersymmetry is not realized manifestly in the

known physical world could be, that it only plays a role at the sub-quark

level. In any case the energy at which supersymmetry becomes important must

be much higher than the ones available at present.

Turning to the commutator algebra of supersymmetry, we first comment on

its general structure. The commutation relations of two supersymmetry

transformations have the same form on all fields which obey their

corresponding equations of motion. Analogous results hold for conmutators

involving other infinitesimal symmetry transformations, such as translations

and Lorentz transformations. Therefore there is a well defined algebraic

structure underlying this whole set of infinitesimal transformations. In

particular one can define generators Q of supersymmetry, together forming

a Majorana spinor, which obey anticommutation relations:
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Here P is the generator of translations. Hence P differs from the momentum

k by a factor -i:

The abstract algebraic structure which involves the generators of super-

symmetry, translations and Lorentz transformations is called the graded

Poincare algebra.

Secondly we comment on the fact that the graded Poincare algebra is

realized on fields satisfying the classical equations of motion only. This

situation is characteristic of supersymmetry and will be encountered several

more times in the following. One might ask, whether this restriction is

essential. Indeed it is not and can be lifted here and in most cases by

introducing so called auxiliary fields, i.e. fields which do not correspond

to physical degrees of freedom. Whether this is always possible, is

however not known.

Finally we want to point out what happens, if we consider local super-

symmetry transformations, i.e. supersymmetry with space-time dependent

parameters. There is a simple but powerful theorem which states, that the

commutator of two infinitesimal symmetry transformations of an action is

again a symmetry transformation of that action, modulo terms which vanish

on shell. We have seen this in our example, where two supersymnetry

transformations gave a translation.

How the global transformations are a special case of the local ones.

Hence the commutator of two local supersymmetry transformations, if these

can be defined consistently, yields at least a local translation, or what

amounts to the same, a general coordinate transformation. As a consequence

local supersymmetry can only occur in theories which possess general

coordinate invariance, and these theories necessarily contain the

gravitational field. We conclude that a theory of local supersymmetry must

incorporate a description of gravitation. Such a theory is therefore called

a theory of supergravity.

We end this paragraph by mentioning that the Lagrangian density (2.1)

can be extended in a supersymmetric fashion to include non-trivial inter-

action terms as well. For our basic observations they do not lead to any-

thing new, however, and therefore we have not dealt with them here.
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3. Extended supersymmetry

In the last paragraph we found, that supersymmetry is intimately

connected with space-time symmetries. In this paragraph we will show that

internal symmetries may be introduced in supersymmetric theories as well.

In Poincare supersymnetry, which has the graded Poincare algebra as its

basic commutator algebra, the maximal internal symmetry that can be

accommodated consistently is SO(N). If such an internal symmetry is present,

one speaks of extended or SO(N) supersymmetry . We will demonstrate the

principles in a simple S0(2) model.

In order to construct this, we first introduce another 0(1) multiplet,

the vector multiplet. It contains a massless vector field V with spin 1

and a spin \ Majorana spinor field <f>. Again we have two bosonic and two

fermionic degrees of freedom. The Lagrangian density is

(3-D
with

3 V - 3 V

It has the usual electromagnetic gauge invariance:

SV = 3 A ,

while the supersymmetry transformations for the fields read:

6V = ey 4 ,
u U

66 = -F o e .

The commutator algebra is basically the same as that of the scalar

multiplet, except for an extra term in the V commutator:

(3.2)

(3.3)

(3.h)

This term represents a gauge transformation of V and is perfectly allowable.

We can now fuse this multiplet with the massless scalar multiplet as

follows. The total Lagrangian for the fields is:

£ = -iFjv - J
 ( )

*) The original supersymmetry without internal symmetry is often referred to

as 0(1), SO(1) or K=1 supersymmetry in analogy.
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It is invariant under the combined supersymmetry transformations (2.2) and

(3.3). However, it is obvious that the roles of <j> and <|» can be interchanged.

This implies that there exists a second s-st of supersymmetry transformations,

where V goes into <|» and A and B go into <£, etc. The full set of trans-

formations thus becomes:

6A

6B

6$ ~ Jf(A+iy5B)ej - F^a^e., .

Notice that we have taken the opposite sign for A and B in the second set of

transformations.

In fact, the Lagrangian (3-5) is invariant under two-dimensional

rotations in the +-<|i-plane and the spinors can be combined in a S0(2) doublet

if;1, i=1,2. Under such rotations the transformation rules (3.6) are inert, if

we rotate the parameters e simultaneously by an equal amount. This means

that we put the spinor parameters in a doublet of S0(2) also.

The Bose fields V , A and B must be singlets under S0(2) and from (3-6)

we see, that it is most conveniently done by putting V in a S0(2) scalar

representation, while assigning A and B to antisymmetric tensor

representations A J and B t). In this notation eqs. (3.6) take the manifestly

S0(2) invariant form:

s\ - ^

6Bij'
(3-7)

uv uv

This multiplet is known as the S0(2) vector (gauge) multiplet. The

Lagrangian (3-5) becomes:

(3.8)

This example clearly demonstrates how SO(N) supersymetry comes into

existence. One starts with N independent sets of supersynaetry
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transformations on different multiplets of fields. One then tries to

combine these in SO(N) representations, such that the N Majorana spinor

parameters e1, i«1,...,N, can be rotated into each other, while

simultaneous transformations of the fields render the whole theory form

invariant. If this procedure can be implemented, a SO(N) symmetry is

obtained in the theory.

It is this possibility of fusing supersymmetry with internal symmetries

that provides the framework for unification of supergravity with other

interactions.

h. Supergray iry

Any theory possessing local supersymmetry must include a description of

the gravitational field and is therefore a theory of supergravity. We will

now present the theory of 0(1) Poincare supergravity. It derives its name

from the fact that the algebra of its symmetries forms a local version of

the graded Poincare algebra without any internal symmetries. The model

consists of the usual Einstein-Cartan version of gravitation coupled to

a real massless spin 2 field, the gravitino field <|i . The Lagrangian is

given by

We will first explain the quantities appearing in this expression. The

parameter K is the gravitational coupling constant. It has the dimension

[m~ ] and is related to Newtons constant G by

In our formulation gravitation is described by a single field ea (p,a*=1,... ,1»),

the vierbein field, with the property that the metric tensor is given by

g = 6 ve
ae b . (2*.3)

Contraction with a vierbein changes local Lorentz indices a into world

indices \i and vice versa. These indices refer to the transformation character

under local Lorentz and general coordinate transformations resp.; e is the

matrix inverse of ea and e=det e its determinant. Ra is the curvature

tensor, related to the usual Riemann tensor R<jUV by

*) In our conventions we follow ref. 3«



Rab m eaebaRp # {kk

yv p auv

It can be expressed in terms of another quantity, the spin connection u .

This is not an independent field, but is an expression in terms of the

vierbeins and the gravitino field:

•to •

In terms of u the curvature tensor is given by

<Bb . a b _ a b , a c b b e a t , , , ,
R = 3 to - 3 u> - (d) to - l o o i ) . ( 4 . 6 )
)1V V V V U V VC |l VC

Finally we have defined the covariant derivative

Vo • (3P - C ' A - (J|-7)

This completes the definition of the Lagrangian C*.1). The corresponding

action is invariant under the following local supersynmetry transformations:

6 e a « KEYa* ,
s " 9

 V (k.8)
5 ^ - - D e ,
STll K (I '

where D is defined as in (U.7) and e is now space-time dependent. The

action is also invariant under general coordinate and local Lorentz trans-

formations with parameters £ and e respectively:

. a a. .A -A. a . a b
6eu = "eA3U5 ' C V u + £ t% '

6* - -*,3 ?A - 5*3. * + lea .* .
u A u A y abTu

Having thus established the theory, we proceed by discussing its aain

properties. The field equations corresponding to <>.__ read:

with E v = 8 v l . , R 3 R" .

The first equation is a covariantized version of the Rarita-Schwinger

15



equation for free massles spin -̂  particles. The second equation is the

usual Einstein equation with on the right-hand side a term representing the

energy-momentum tensor of the gravitino field. Notice, however, that our

curvature tensor is defined in terms of the u given by (H.5), vhich
at> **

differs from the oi encountered in the geometrical formulation of

gravitation by the I/I -dependent terms.

This i|) -dependent part of w is a manifestation of yet another property

of supergravity, which is torsion. Physically torsion means that the

curvature is not only determined oy the mass density but also by the spin

density. Obviously the spin density here is due to the gravitino field.

Mathematically torsion manifests itself in non-symmetric affine connections

rp . These quantities are defined in terms of the vierbein field by

VP = e
pD e a = e p (3 e a - a, \ e h ) , ( U . l l )

u v a u v a u v i i b v

and in our case they satisfy

rp _ rp = ̂  i> yp^ . (it.12)

Obviously they are not symmetric.

In the action, torsion gives rise to ̂  -interactions. This one sees by

substitution of the expression for u into R . These interactions

discriminate between supergravity and usual geometrical versions of the

theory of gravitation. However, since spin — fields have not yet been

observed in any fundamental process, this does not lead to experimental

consequences. Moreover these interactions are very weak, being short range

and proportional to K 2. Therefore there does not seem to be much hope in

general for establishing torsion experimentally.

We finish this section on supergravity with an examination of the

commutator algebra of the supersymmetry transformation Ct.8). On the

vierbein the commutator has the form

le^lej - ISGU
X) + &LU

X"lh) + «B( f K\)] e* , (H.13)

where £ * -2e,Y E., and 5_, 6T and 6_ represent general coordinate, local

Lorentz and supersymmetry transformations respectively, as defined in (k.8)

and (It.9), with the (field-dependent) parameters indicated.

We note that the commutator is different from that of global super-

symmetry. This is to be expected, since also the algebra of space-time

16



transformations changes. For example, two local translations do in general

not commute, while global translations do.

For the gravitino field the conmutator has the same structure as in

(U.13), except for terms proportional to R , whiuh vanish on shell. This

is familiar from previous discussions. However, its consequences reach

much farther here, since it affects the definition of the quantum theory

corresponding to (U.1). In the usual procedure for theories with a local

invariance explicit use of the off shell closure of the algebra is made.

Hence we either have to find a formulation of supergravity with closed

algebra, or we have to invent a generalization of the quantization procedure

where on shell closure of the algebra suffices. Both can be done and we will

return at length to the problem later.

5. Synopsis

In this chapter we have introduced the concepts of supersyauetry and

supergravity. We have seen, that supersynmetry is a powerful principle,

which might solve some important problems in the physics of fundamental

processes. In particular we have explained how local supersymmetry

naturally leads to a theory of gravitation. It is this application with

which we will be concerned mostly in later chapters.

The presentation of our material is organized as follows. In chapter II

we will give a more precise and technical definition of supersymmetry. We

will return to the examples presented in this chapter for a discussion of

two important topics.

The first one concerns the off shell closure of the supersynmetry algebra

using auxialiary fields. We have already briefly touched upon this problem

in a discussion of the scalar multiplet.

The second one is the generalization of globally supersymmetric field

multiplets to local ones, in order to couple them to supergravity.

In chapter III we present the theory of S0(2) supci-gravity. We construct

the linearized version of the full multiplet, including auxiliary fields,

of this theory, as well as of certain matter multiplets.

In chapter IV we give the extension of these results to all orders in the

coupling constant K. We also present the full Weyl nultiplet for H*2 and

discuss the coupling of matter multiplets.

In the last chapter, V, we will present the quantization procedure for

theories with local gauge invariance and it. generalization for theories

17



with non-closing, or open, gauge algebra's.

We have included two appendices. In appendix A we give a summary of our

notations and conventions. In appendix B we give an alternative to the

graded Poincare algebra: the graded conformal algebra. This supersymmetry

algebra is of importance in connection with the Weyl multiplet.
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CHAPTER II

SUPKRSYMMETRY AND SUPERGRAVITY II.

1. Preliminary

Symmetries play an important role in field theories. For one thing,

they can establish relations between different processes described by the

theory. Also they may imply conservation laws for certain charges connected

with the fields. And, very importantly, they may prescribe the form of

interactions occurring in the theory.

A field theory possesses a symmetry, if its physical content is not

affected by a certain set of field transformations. This means, that the

action functional, from which one derives the dynamics of the fields, is

invariant under these transformations. Usually, in order to obtain

invariance, one must change the fields rigidly over all space-time. That

is to say, the parameters of the transformations have a fixed value at all

places and times, and the theory exhibits a global symmetry.

However, sometimes it is possible to realize the symmetry in such a way,

that the strength of the field transformations may vary at different space-

time points. We then have a local or gauge invariance. In general a gauge

invariance is connected with the introduction of some kind of interaction

into the theory.

Supersymmetry is a symmetry with the special feature, that its

parameters are anticommuting Majorana spinors. As a result it generates

conserved spinorial charges Q , which satisfy anticommutation relations.
a 3

Furthermore it can be realized locally by introducing massless spin -r gauge

fields in addition to gravitation. Thus one arrives at supergravity.

Some of these aspects were already discussed in chapter I. Others will

be examined more closely in the present chapter. We start by formally

defining the algebraic structure of supersynmetry, the graded Poincare"

algebra. We analyse its representations in terms of particle states,

paying special attention to their spin content. Then we give some

realizations of the full closed algebra on multiplets of fields. This is an

extension of results obtained in chapter I. In conclusion we discuss the
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coupling of supersymmetric matter multiplets to supergravity.

2. The graded Poincarg algebra

From the example in 1.2 we have drawn the conclusion, that the

infinitesimal supersymmetry transformations have a uniform commutator

algebra on all fields. In particular we found, that the commutator of two

such supersymmetry transformations yields an infinitesimal translation, which

indicated that supersymmetry is intimately connected with space-time

symmetries.

In this section we will formalize these results and discuss the abstract

algebraic structure underlying supersymmetry and space-time transformations.

These last ones obey a Lie algebra, known as the Poincare algebra. Inclusion

of supersymmetry promotes this Lie algebra to a graded Lie algebra. We will

define these notions first [1 ] .

A Lie algebra L is a set of elements X , which span a linear vector
a

space and which obey commutation relations

fXa>V " cabV (2'1)

Hence the commutator of two elements of L is again an element of L. The

quantities c ., called structure constants, clearly obey

c cc * -c, .
ab ba

They are not arbitrary, but restricted by imposing on the X the Jacobi

identity:

[Xa, [Xb,Xc]] + [Xfe, [Xc,Xj] + [Xc, tXa,Xbl] « 0 . {2.2)

It follows, that the structure constants have the property

4cL+ 4 4 + 4 4 - °. < 2- 3 )

which is equivalent to the statement, that the matrices (c ) must form a
a K

representation of the algebra (2.1).

A grading representation of a Lie algebra is defined as a set of anti-

commuting elements Q , which transform under a representation of the Lie

algebra and satisfy the following (anti-)comautation relations and Jacobi

identities:

20



i

[X ,Q ] = q6
a a âo

Substitution of the rules (2.1) and (2.^) into the identities (2.5) gives

three constraints on the structure constants q and s ., analogous to the

relation (2.3).

The above definitions are quite general. We will now consider the

special case of the Poincare algebra [1,2]. The usual Poincare algebra

consists of the generators of infinitesimal translations P , and Lorentz

transformations M . To obtai.n the graded Poincare algebra, these are

supplemented by a set of anticommuting elements Q , transforming as a
a

Majorana spinor under Lorentz transformations. The full algebraic structure

[P..P,] = 0,

[M ,M 1 = 6 M , + 6 ,M - 6 ,M - 6 M ,

(2.7)

It is straightforward to verify, that this algebra obeys the Jacobi

identities (2.2), (2.5). Clearly the infinitesimal translations, Lorentz

and supersymmetry transformations in our examples of 1.2 satisfy the

relations (2.6) and (2.7). Hence the grading elements of the Poincare

algebra can be identified as the generators of infinitesimal supersymiaetry

transformations.

One can extend the graded Poincare algebra to include internal

symmetries as well. This is done as follows. Consider H copies of the

grading
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With these one can trivially generalize the graded Poincare algebra to:

[Pp,<] = 0,

(2'8)

The key observation is now, that one may take JQ } to be the grading
a

representation of some internal symmetry algebra as well. When the

generators of infinitesimal transformations of this symmetry are denoted by

T., we define a graded Lie algebra:

( 2 9 )

At the same time the T. transform as scalars under Poincare1 transformations:

[P ,T. ] = 0,
u ° (2.10)

[M ,T.] = 0.1 uv' iJ

The problem one has to solve is, whether one can find structure constants

fk. and t?S in (2.9), such that the Jacobi identities (2.2), (2.5) hold
1*' 1 r

for all combinations of elements T . , P , M , Q . This is indeed possible

and hence JQ } can be a set of grading elements for both the Poincare and an

internal symmetry algebra simultaneously. However, the class of allowed

internal symmetries is rather restricted. Substitution of eqs. (2.9) into

(2.2) and (2.5) results in the following requirements on f.. and t?s:

a. the f*. obey eq. (2.3):

f* f? - f* f? = ff.f* ; (2.11)
lX. jm jfc lm ij Jim '

b. similarly the first of the relations (2.5) implies:

c. the t.s must be real and antisymmetric in r and s,if T. is antihermitean.

k rs"Consequently the f.. and t. both are matrix representations of the algebra

(2.9). Furthermore, since there are only gN(N-i) independent real anti-

symmetric NxN matrices, the t.S can generate at most an S0(N) internal

symmetry. Therefore also the T. cannot belong to an algebra larger than
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SO(N). In this way the Q become the generators of SO(N) extended super-
a

symmetry, of which an example was given in 1.3.

All possible modifications of the above scheme for a quantum field

theory in a Hilbert space with positive definite metric were given by Haag,

Lopuszanski and Sohnius [3 ]. They showed that the maximal algebra which can

be realized by the charges of such a theory is the product of the graded

Poincare algebra and SO(N),' the only possible modification being the

occurrence of central charges. These are charges which commute with all

other elements of the algebra. The modification therefore has the form:

r<5 T<5 » • 3'
[X,Z ] = 0, [X,Y ] = 0, for all X.

This result holds for finite multiplets of massive fields. In the

massless case a further generalization is possible. Here one may obtain a

realization of the graded conformal algebra [It]. This algebra is discussed

in appendix B. As shown there, also a chiral invariance exists. Hence the

introduction of pseudoscalar charges is possible, which increases the

number of internal symmetry generators allowed from JN(N-1) to N2. Thus

the maximal internal symmetry becomes U(N), rather than SO(N). Central

charges are allowed in massless representations as well.

3. Particle multiplets of supersymmetry

We will now determine the particle states in globally supersymmetric

quantum field theories [1,2]. These are characterized by their quantum

numbers, such as mass, spin, momentum etc. In contrast to usual

relativistically invariant field theories, where the squared mass and spin

are fixed for a given particle multiplet, we will find here, that

particles of both integer and half integer spin are present within the same

multiplet. In stead multiplets of supersymmetry are characterized by the

squared mass and a new quantum number, called superspin.

Since we do not wish to distinguish particle states differing only in

the value of the momentum k, we will restrict ourselves to the manifold

of states with fixed k. In fact, because the squared mass, m^ = -k k ,

is a Casimir invariant of the global graded Poincare algebra, we only have

to consider states with fixed four momentum k . The condition for an

*) k =.iP , see 1.2.
V U

I
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operator X to leave the four momentum of a quantum state invariant is:

= 0. (3.1)

Obviously the operators satisfying (3.1) act as a subalgebra of the graded

Poineare algebra on the states |k >. This is called the little algebra of

the graded Poincare algebra.

We will now first analyse the case m2=0. We will use the special

representation of the Dirac matrices described in appendix A. In this

representation the Majorana condition for the spinor Q , r=1,...,N, reads:

]7

It is convenient to introduce the operators Q +, defined by

<£ = |(Qi ±iQ2 )• (3.3)

Taking for the four momentum of our states

k = (O,O.,co,ioi),
we find for the anticommutator of the Q's:

) a b= -2iU(Y3+iYIt)ab6
rS , (3.U)

or equivalently:

r r s*N rs
Q ,S, \ = 2u6 (1-2ia=t4) -u • (3.4a)

1 a b ' 3 ab
In terms of the operators Q this becomes:

{Qr,QS+} = 2w6rs , ' (3.5)
r t

while all other anticommutators, including {Q+,Q+ f , vanish. From this

last property it follows, that in the Hilbert spaces of physical states Q

has the trivial representation

and therefore we will leave it out of further consideration. Clearly, the

Qr satisfy (3.1), and hence they belong to the little algebra. The same

holds for possible internal symmetry generators T.. The full little algebra

consists of the elements

f r r+ i , ,-,

Here we have defined:



Kx = -iJj + M1(2, (3.T)

N2 = -iJ2 + M ^ .

These statements may be verified by direct computation. From (3.7) we see,

f that the J. are just the usual angular momentum operators. They satisfy:
*' 1

[J. ,J. ] = ie. ., J, ,

fP ,J.] = -ie... 6. P. .
y i ljk ky j

Therefore J3, the component of J in the direction of the three momentum k ,

is the helicity operator. The complete algebra of the elements (3.6) reads:

(Qr,QS } = 2(o6rS , [T.,Qr] = t^SQS ,1 — — ' l — l —

[J3,Q
r] = sQ1", [J3.K!] = iN2, (3.9)

rt r +
[J3,Q_ 1 = -§Q_, [J3,N2] = -iNj.

All other (anti)commutators are zero on states |k >. From this it follows

that the eigenvalues of J3 and those of the internal symmetry generators

determine completely the particle content of the theory. Also from (3.9) one
r rt

concludes that Q and Q act as helicity raising and lowering operators

respectively, changing the helicity of a state by ±5 unit.

It is now easy to construct the finite multiplets of zero mass particle

states. Suppose we have a singlet state |k ,A>, A representing the
r

helicity, which acts as the vacuum state for the operators Q :

Qr|k ,A> = 0 .
- V

. , Clearly A is the maximal helicity for states constructed from |k ,A) .

' By applying the operator Q k times, we obtain a set of (. ) states with
t . . K

; helicity A-gk:
\ \

|k ,A-ik,[r ...r ] >= (2U)"
k/2Qri ...Qrk+|k A> . (3.10)

M A K — — }X

The multiplicity (, ) is easily understood "by realizing, that all Qr's

anticommute. Hence the states (3.10) are antisymmetric in rj r., and

form an irreducible representation of SO(N). The state with lowest helicity,

A-jN, is again a singlet. Furthermore the particle multiplets, which are

finite by construction, consist of a total of
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k=0 k

states. However, in Lagrangian field theories all states are accompanied

by their CPT-conjugates. Hence in these theories their number usually

doubles to 2 . A n exception occurs, when the particle multiplet is self-

conjugate. This is the case if X=sN, since for this X all states occur in

pairs of opposite helicity. Such a situation is found in S0(8) supergravity

[5 ],which therefore is equivalent in particle content to the S0(7) theory.

We now turn to massive multiplets. We will describe these in the rest

frame, where

k^ = (0,0,0,im) .

We define a new operator / , called the superspin, by

where

a, = ie. ., a. . .
k ljk ij

In an analogous way we construct a new operator from the internal symmetry

generators:

r i «rT rs s /n *«\

= T. + i— Q t. Q . (3.12)
l l ton l

These operators satisfy the usual angular momentum and internal symmetry

commutation relations:

However, in contrast to J. and T. they commute with the Q's:
K. X

The little algebra now consists of the elements

"*"2 ? p o ~*"2
while y = 2 7 and y = ? v. are Casimir invariants. In fact 7 is

K 1 2
appropriate generalization of the Pauli-Lubanski operator W , with
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/

W = e k M
y uvpa v pa

Therefore the massive representations of 80(N) supersymmetry are

characterized by the squared mass m 2, by the quantum number j of the super-

spin n y which has eigenvalues j(j+1), and by the eigenvalues of / .On

the other hand the states in a multiplet are distinguished by the third

component of the superspin /$ as well as of the ordinary spin J3, and by

the eigenvalues of the <?C's that can be diagonalized simultaneously.

In fact, the little algebra is given by the relations (3.13) and (3.1*0.

complemented by the anticommutators

Srs 6rs
. T- ̂  . = m6

io, {Q ,Q_ } = m«

All other anticommutators vanish as before. Also we have

(3.16)

[/3,J31 = 0 , f J3,Qj I - J(£, U3,of 1 - - iq f . (3.17)

As a consequence of this (3.16) represents an algebra of spin-raising and

-lowering operators, which is twice as large as in the massless case.

To construct the massive particle multiplets, we start with a (2J+1)-

fold set of states |k ,> X *-j,...5+j, on which Q^ and Q^ give zero:

= 0 , Qr|k , 0 . (3.18)

These states have the special property, that they are eigenstates of^3

and J3 simultaneously, with the same eigenvalue A. This is immediately

seen by writing (3.1') in the form:

/ •
(3.19)

r r+

Subsequent application of the spm-raismg and -lowering operators Q +, Q_

on |k ,X> results in the construction of a complete multiplet. We find

(2j+1)x(J)x(J) states

(3.20)
y

They have a superspin component ^ 3
= * » while their ordinary spin in the

z-direction is

J3 = X-|k+gi.

The whole multiplet consists of (2j+i)2 states, with spin along the

z-axis running from X-5N to X+5N, and X=-j,...,+j. However, in a Lagrangian
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field theory only full spin multiplets with spin quantum numbers

J * S(S+1), J3 = -s,...,+s,

occur. Hence we have to group the states into sets of (2S+1) members, each

set corresponding to a massive local field of spin s. As an example,

consider the multiplet of states in N«1 supersymmetry which has superspin

j * | . It has four subsets of states corresponding to the four values ofy^:

/s"i. J.-J. I"
Applying spin-raising and -lowering operators gives us a complete set of

states with

J3 = (2' I' z> '» 1» 2' l» °« °» ~b ~h "'» -'• ~b ~b ~2) '
which corresponds to the components of one spin 2 field, two spin | fields

and one spin 1 field.

For convenience we have included two tables, in which are listed some

massless and massive field multiplets of SO(1) and S0(2) supersymmetry.

They are classified according to highest helicity X for the massless fields

(table 1), and superspin j in the massive case (table 2;.

In conclusion we remark, that SO(jf) Poincare supergravity is always

constructed from massless supermultiplets with helicities 2,...,2-|N,

supplemented by CPT-conjugate states. As a result, fields with spin s>2

become necessary for N>8. For instance, by allowing spin § fields one

could realize S0(9) or S0(10) supersymmetry. Such an internal symmetry is

large enough to account for the present phenomenology of elementary

particles. Free field theories for spin | have indeed been constructed [51-

Unfortunately, no complete interacting spin i field theory is known to exist.
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i

table 1. Massless representations

of SO(1) and S0(2) super-

symmetry, classified

according to spins and

highest helicity X.
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1

\

0

so(i)

1

2

1

!

1

2

1

1

1

2

1

i

1

2

0

S0(2)

1

6

U

1

1

1

6

It

i

1

it

5

0

table 2. Massive representations

of SO(1) and S0(2) super-

symmetry, classified

according to spins and

superspin j.

k. Auxiliary fields

In chapter I we have discussed several field theoretical models in

/ which the graded Poincari algebra was realized. In all these examples,

however, one needed the classical field equations in order to obtain a

closed commutator algebra. It is possible to remove this restriction on the

field commutators by introducing auxiliary fields.. Auxiliary fields do not

correspond to dynamical degrees of freedom. They can be replaced both in

the action and the transformation rules by their field equations to reproduce

the original form of the theory, without any change in physical content.

Their only function is to close the commutator algebra off shell. Moreover,

since auxiliary fields are non-dynamical, they often have unphysical

dimensions.

It has a number of advantages to have a fully closed coaaiutator algebra.
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In the first place, without auxiliary fields couplings between multiplets,

and transformation rules, become explicitly model dependent. This is

easily understood, when one realizes that the equations of motion by which

the auxiliary fields are eliminated, will of necessity be model dependent.

Because of this it is virtually impossible to construct general invariants

without having the full multiplets at one's disposal. These invariants are

important to provide the general form of Lagrangians, especially with

interactions between coupled multiplets, and to find the quantum corrections

to a certain classical action.

Secondly, for locally invariant field theories a closed gauge algebra

facilitates considerably the construction of the corresponding quantum

theory [? ] . With closed algebra the usual Faddeev-Popov procedure applies.

The generalization of this scheme to theories with open off shell algebra

exists, but is rather complicated.

A further point of importance is raised by the existence of invariants

of higher order in derivatives. In such invariants the dimensionalities of

the fields are different from the original ones and former auxiliary fields

may become propagating [8]. In that case they are no longer auxiliary and

cannot be eliminated by their field equations.

Finally, the auxiliary fields also facilitate translations of super-

symmetric field theories into superspace formalism. However, we will not

be concerned with such formulations here.

We will illustrate the use of auxiliary fields in the scalar multiplet

of N=1 supersymmetry. Here one needs one auxiliary scalar field F and one

pseudoscalar G. The full transformation rules including these fields are:

SA = e* ,

6E = iey5ii ,

6* = J((A+iY5B)e + (F+i-y5G)e , (lt.1)

6F = £** ,

6G Z

From the rules one may verify that on all fields the commutator has the

.form (2.7):

[6s(e2),«3(ei) ]= 6 pU A) , (

where 6 (£.) denotes the translation with parameter
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as inv

This result holds without using any field equation. Therefore the algebra of

•> the transformations closes independently of the Lagrangian for the fields.

; The specific Lagrangian (1.2.1) can be extended to become invariant under the

transformations (U.1) as follows:

£ * -g(3 A ) 2 - s(3 B ) 2 - gfjty + gF2 + iG2 + m(AF+BG) - — W . C».3)

The field equations for the auxiliary fields are:

F = -mA, ,, , .

G = -mB.

These equations are algebraic in character and hence F and G are not

independent dynamical variables. Upon substitution of (U.k) into the

transformation rules (k.i) and the Lagrangian (U.3), we reobtain eqs.

(1.2.1) and (1.2.2). This shows the equivalence of the two formulations.

From the Lagrangian C+.3) we deduce, that the dimensionality of the

auxiliary fields here is [m2] . More generally we note that the relative

dimensions of fields in a multiplet are fixed by the algebra and

transformation rules. In respect to this we observe, that the dimension of

e is determined by (It.2) to be [m~s ] . The absolute dimensionality, however,

depends on the action one takes for the fields. Also the division into

physical and auxiliary fields for a multiplet can only be given after

specifying the Lagrangian.

One can introduce auxiliary fields for the other multiplets we have

mentioned in a similar way. Here we give the result for the vector multiplet.

It has one pseudoscalar auxiliary field D, with the transformation rules:

6V = EY • »p 'pT

6* = -F o E + iYsDe , (1».5)
Tp _uv pv I3 '

6D =

iThe Lagrangian density becomes:

It can again be combined with the massless scalar multiplet in an S0(2J •

vector gauge multiplet, with auxiliary fields and closed algebra [9]. The '

result will be presented in chapter III. j

We also give the full multiplet of N*1 Foineare" supergravity [101. In i

this case we have a set of auxiliary fields consisting of one scalar S, one

pseudoscalar P and one axial Lorentz vector A . The action is defined by
a
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/~T> • - = " - h R - ieUVP<I* Y Y D * - f (S2+P2-A2). (U.7)
' Pomcare 2 K 2 U 5 v pra 3 a

It is invariant, up to a total derivative, under the local supersymmetry

transformations

. a - a,
V V

2
8\b = — D e + lA 7ee - y ne ,

6S = - |eyR P , (1*.8)

6P = - I £Y5Y-RP ,

5Aa = f ^ ( R a " ̂  YaY-R
P) -

In these equations we have used the notations

R^ is the supercovariantized version of the gravitino field equation. The

commutator of two transformations (U.8) on any field has the form:

[V 611 - 6G(?X) + 6s(" f «fy + 5L^\ah " ̂ ^ a b " + "aab)eJ *
(U.10)

with C-, as before.
A

This result is identical to the previous one (I.U.13), modulo the part

of the Lorentz transformation depending on the auxiliary fields. However,

this part vanishes on application of the field equations for S, P and A , as
EL

expected. Again we stress, that the transformation rules (̂ .8) are model

independent and remain valid in particular, when one couples matter

multiplets to the Poincare Lagrangian. This example shows, that auxiliary

fields can be found for locally supersymmetric field multiplets as well.

In the following we will often make use of the linearized version of

supergravity. This is the free field part of (It.7), invariant under global

transformations (̂ .8) in the limit K=0. T O take this limit correctly

requires some care. It is done properly by first defining the tensor field

ha:

In terms of h we have
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to . = -rr (3 h_ - 3^h ) + 0(K 2 ) ,
uab /2 a V b ayy ' (l» 12)

e = 1 + x h + 0 ( K 2 ) .

Substituting this in the Lagrangian and transformation rules, and then

taking the limit K->0 gives:

A . « -s3.h .3 h + j3.h, 3 h - ?3,h 3,h/>-lin. X yX p vv X Xu v vy X yv X uv

+ s3,h 3,h - je * YrY 3 • - A(S2 + P2 - A2) , (*».13)
X uy X vv ** y\>paTy'5'v pTa 3 y '

with the transformation ru les :

6S = -5EY5«R , {h.ik]

6p = _ i EY,Y'R ,

3i - 1

where the linearized Rarita-rSchwinger equation i s :

R = E y y 3 1
y uvpa 5 v p a

However, in the following we will usually describe the linearized version

in terms of the vierbein by resubstitution of eq. (U.11). The free field

theory (i+. 13) and (U.1U) is also called the flat space limit of (h.7) and

(U.8), since the gravitational interaction has been switched off. In this

case we need no longer distinguish world and Lorentz indices.

Two final remarks on auxiliary fields are in order here. In the first

place, sometimes a commutator algebra of supersymmetry transformations

closes without auxiliary fields. For later reference we give here the

example of the so called tensor multiplet. It contains an antisymmetric

tensor T , a pseudoscalar B and a Majorana spinor i|i, with:

6T = 2ea * ,
yv yv '

6B * ieY,* , (*».15) £

To these fields corresponds the Lagrangian: ;

•£- sO.T. ) 2 - J(:
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It has the gauge invariance

6mT = e 8 A . (-''.17)

T uv uvpa p a

Because of this T represents a spin 0 field [111 • The gauge

transformation (k.13) is also necessary to close the algebra. Notice, that

in spin content this multiplet is equivalent to the massless scalar multiplet.

However, in the massive case the tensor represents a spin 1 field, which

is incompatible with the representations of Poincare supersymmetry. Hence

no massive version of this multiplet exists.

The second remark we want to make is, that auxiliary fields are in

general not unique. We have given here only minimal sets of fields necessary

to close the commutator algebra.

5. Matter coupling

In principle there are two ways to construct models in which super-

gravity interacts with matter. The first is based on combining the graviton

and gravitino with the matter fields in one multiplet of extended super-

symmetry. One takes a singlet spin 2 field, representing the graviton,

and an N-tuplet of gravitino's. Then, for N > 2 , one adds lower spin

fields as necessary to complete the multiplet. If one succeeds in realizing

local extended supersymmetry on these fields, one has found a theory of

extended supergravity, which contains its own matter fields. This

attractive scheme is unique to supersymmetric theories, since only super-

symmetry combines fields of different spin in one multiplet.

The other possibility is to couple a multiplet of global supersymmetry

to some supergravity model by generalizing it to local supersymmetry. This

involves two things: on the one hand one has to find transformation rules

for local supersymmetry, by introducing supergravity fields into them. On

the other hand one has to extend the invariants of the global multiplet to

the local case. This is the analogue of the minimal coupling procedure in

electromagnetism and Yang-Mills theories.

However, in supergravity minimal coupling is by itself usually not

sufficient. There are essentially two reasons for this. In the first place,

as we have seen, the algebra of the supersymmetry transformations changes

when going from global to local supersymmetry. In particular commuting

translations have to be replaced by non-commuting general coordinate

transformations. Secondly supersymmetry transformations involve

J



derivatives of fields. In minimal coupling these are replaced by covariant

derivatives. This introduces extra, non-linear terms in the transformation

laws of the matter multiplet. Although these two mechanisms often conspire

to make supercovariant derivatives a good first step towards extending a

global multiplet to a local one, the resulting rules are generally not

correct. Moreover, the non-linearity of the transformations implies that

Lagrangians become complicated and certainly they are not obtained by

minimal 'substitution.

In many cases, however, a multiplet of global supersymmetry can be

coupled to supergravity using the so-called Noether procedure. In this

procedure one starts from the global transformation rules and Lagrangian

and adds terms to both, order by order in the coupling constant <, so as

to achieve invariance at every stage. The method can also be used to

couple supergravity to itself, starting from the linearized theory. Both

applications will be encountered in our later work. For this reason we

illustrate the Hoether procedure here for a very simple case [12 ] . From

this example it will be clear how both the changes in the transformation

rules and the Lagrangian, in going to local supersymmetry, are obtained.

Consider the massless scalar multiplet of global supersymmetry. The

auxiliary field F transforms as a total derivative:

6F = Ijty . (5.D

Therefore its space time integral is invariant and F can be taken as a

Lagrangian density, invariant under the global supersymmetry rules (^.1).

Of course, one may also start from the more complicated action (J+.3), with

m=0, but for our purpose the choice of F as a Lagrangian suffices. We will

now extend F as well as the rules (1*.1) to the case of local super symmetry.

When e becomes space-time dependent, F is no longer a good Lagrangian,

since an extra term is needed:

S/L = O.Sh"* , (5.2)

in 6*!l to obtain a total derivative. From the transformation rules of the jf

supergravity fields (U.8) one sees that the variation (5.2) is generated by .}

a term

K T 11 / xz n \

•JP if YMI() 15.3J

in the Lagrangian. This term of first order in K is called a Noether term,

since it has the form
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where J is the Noether current of global supersymmetry:

This is sufficient to achieve local invariance of the action up to order K° .

However, varying the Noether term (5-^) gives also rise to variations

&£ proportional to K. We cancel these either by new terms in JC or in the

transformation rules of the matter fields. As a result we obtain a

Lagrangian density:

£ = e F + -| ̂ « Y * - K(AS + BP) , (5.6)

which is again invariant up to terms ^ 3 e under transformations:

<5F = ef#i|/ - |- yv{$ (A+iY5B) + F + iYc^)*
 + £ r Y 5 4

 + KTI)IM . (5.7)

The other fields still transform according to the global rules. We briefly

indicate how (5.6) and (5.7) are determined. The factor e in front is

necessary to obtain a proper coordinate invariant action. It is also needed

to cancel a term KEY'^F from the variation of ip in the Noether term. The

variations Sty ̂ S,P of this same term vanish with other ones coming from the

new term K ( A S + B P ) . All remaining variations of the Lagrangian (5.6) cancel

either among themselves or against those from the new 6F (5.7), except for

one, which reads:

03 e. (5.8)

To get rid of this one, we have to introduce a new Koether term in JL>, of

order K 2:

^ iFyv(A+iY5B)*v . (5.9)

We now have succeeded in constructing a local invariant up to order tc. The

I •- whole procedure can be repeated in the next order, K 2 . MO new terms in the

Lagrangian are thereby found. It turns out to be sufficient to change the

transformation rules of the scalar multiplet to:

SA = eifi ,

8B = ieY5i|> ,

6i|) = #P(A+iY5B)e + (F+iYsG)e , (5.10)

6P = e(0p 2&
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In (5.10) we have introduced the notation D P for supercovariant derivatives:

Dp

t p 2 s p '

\

(5 .11)

Explicitly:

(5.12)

where 6 (I/I ) is a supersymmetry transformation with parameter lj
s p

DPA = 3 A - ^ I * .
p p 2 Ty r '

DPB = 3 B - —• 3 vc* ,p p 2 v\i'Sv ».

DPi|) = D ip - 4 {#P(A+iy B) + F + iycG}i() .p p d 5 op

One may verify also, that the transformations (5.10) satisfy the algebra

(U.10). Hence we have succeeded not only in constructing a new, locally

invariant Lagrangian:

A. = e[F + | iF«y* - K(AS+BP) + *g- (5.13)

but also in obtaining a set of local supersymmetry transformations for the

scalar multiplet with closed algebra. Actually, the transformation rule of

G was found just by requiring the closure of the algebra, since it does not

play a role in the variation of «£. . Note, that minimal coupling is correct

for A, B and i|i, but not for F and G. Evidently it is neither of any use in

obtaining the Lagrangian (5.13). This Lagrangian may of course be completed

still further by adding the Poincare action (k.7) for the gauge-field

multiplet.

We now comment on the uniqueness of the procedure. There are two

sources of possible ambiguities. In the first place one may start from

different Lagrangians in flat space. In general, this does not lead to

different transformation rules for the fields, up to trivial field

redefinitions, as follows from the closure of the algebra.

An exception to this occurs, when the Lagrangian has other local

invariances beside space-time and supersymmetry. In that case one is

liable to miss terms in the transformation laws which correspond to such a

symmetry transformation. However, this immediately shows up in the

commutators, where one finds extra terms of precisely this type. Therefore

these ambiguities are not fundamental.

Of course this is no longer true when the auxiliary fields are not

present. In that case the equations of motion, and consequently the

Lagrangian, do play a role in the transformations and commutator algebra.

The second source of ambiguities are the Noether terms 1131 • To see

this, note that one may always add other conserved currents H^ to it; if
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3 Hp = 0 , (5.1U)

then the "improved" Noether current

j<V = Ju + Hu (5.15)

can still be coupled to the gravitino field 1J1 to cancel lower order

variations with 3 e:

6( | ^J' u) = [^l)3'v = O^ejj" . (5.16)

The last step follows after partially integrating the term with Uv and using

(5-1*0- Such an improved Noether term may lead to completely different

higher-order K terms in the Lagrangian. We conclude therefore that a

Lagrangian for a given multiplet follows uniquely from its flat space

expression only in so far as the Noether terms are unambiguous.

We mention here, that an alternative procedure to find the transformation

rules, e.g. (5.10), is to start with the global ones and try to add terms to

obtain commutators of the required form (it. 10). However, without any hint

for the commutator algebra and at least some transformations this is almost

impossible in practice, because of the large number of terms and

coefficients one usually has to keep track off.

As a last remark we comment on the renormalizability of theories in which

supergravity interacts with matter. Extended supergravity theories, just as

N=1 supergravity itself, seem to have very good renormalizability properties.

However, these results do not carry over to the case where external

matter multiplets are coupled to them. For instance the coupling of an Ii=1

scalar or vector multiplet to Poineare supergravity leads to irremediable

divergencies [1h],

References

[1] See e.g.: P. Fayet, S. Ferrara, Phys.Bepts. 32C (1977);

[2] See e.g.: D.Z. Freedman, lectures given at the Cargese summer school

on "Recent developments in gravitation" (1978); Plenum (1979), New York;

f3] R. Haag, J. Lopuszanski, M. Sohnius, Nucl.Pbys. B88 (1975) 257;

[h] M. Kaku, P.K. Townsend, P. van Nieuwenhuizen, Phys.Lett. 69B (1977),

30!*; .

[5] B. de Wit, D.Z. Freedman, Nucl.Phys. BV30 (1977) 105;

B. de Wit, Nucl.Phys. B158 (1979), 189;

38



E. Cremmer, B, Ju l i a , Nucl.Phys. B159 (1979) 1**1;

[6] F.A. Berends, J.W. van Holten, P. van Nieuwenhuizen, B. de Wit,

Nucl.Phys. B15l* (1979), 261;

J.W. van Holten, "Supergravity", proc. supergravity workshop, Eds.P.van

Nieuwerihuizen and D.Z.Freedman (1979), North-Holland; other re fs . therein;

[7] R.E. Kallosh, Zh.Eksp.Teor.Fiz. Pis'ma 26 (1977) 575; Nucl.Phys. BH*1

(1978) 11*1;

E.S. Fradkin, T.E. Fradkina, Phys.Lett. 72B (1978) 5^3;

B. de Wit, M.T. Grisaru, Phys.Lett. TUB (1978) 57;

G. Sterman, P.K. Townsend, P. van Nieuwenhuizen, Phys.Rev. PIT (1978)

1501;

B. de Wit, J.W. van Holten, Phys.Lett. 79B (1978) 389;

[8] S. Ferrara, M.T. Grisaru, P. van Nieuwenhuizen, Nucl.Phys. B138

(1978) 1*30;

B. de Wit, S. Ferrara, Phys.Lett. &VB (1979) 317;

[9] P. Fayet, Nucl.Phys. B113 (1976) 135;

R. Grimm, M. Sohnius, J. Wess, Nucl.Phys. B133 (1978) 275;

[10] S. Ferrara, P. van Nieuwenhuizen, Phys.Lett. 7**B (1978) 333;

[11] P. van Nieuwenhuizen, Nucl.Phys. B66 (1973) !*78;

[12] S. Ferrara, P. van Nieuwenhuizen, Phys.Lett. 76B (1978) l*0l*;

[13] S. Ferrara, F. Gliozzi, J. Scherk, P. van Nieuwenhuizen, Nucl.Phys.

B117 (1976) 333;

[il*] P. van Nieuwenhuizen, J.A.M. Vermaseren, Phys.Lett. 65B (1976) 263;

P. van Nieuwenhuizen, J.A.M. Vermaseren, Phys.Rev. Di6 (1977) 298.

39



CHAPTER III

LINEARIZED N=2 SUPERGKAVITY

In this chapter we vill describe the linearized version (K=0) of S0(2)

supergravity with auxiliary fields. We start by giving the full theory in

terms of physical fields only. This is followed by a discussion of the two

W=1 multiplets basic to the construction of the theory, the spin (;J,1)

multiplet and the linearized Poincare supergravity multiplet, both with

auxiliary fields. Next we present some global N=2 supermultiplets and their

decomposition in terms of N=1 multiplets. The insights thus gained are then

used to fuse the fields of linearized IJ=1 supergravity with those of the

spin (•£, 1) multiplet into a multiplet of linearized S0(2) supergravity

containing auxiliary fields. Its decomposition in terms of submultiplets is

thereby found. We also discuss some properties of the linearized U(2)

conformal supergravity theory and a non-minimal auxiliary field representation

we find for K=1 Poincare supergravity.

2. SO(2) super gravity

S0(2) supergravity [1] is a theory of Poincare supergravity which

displays a global S0(2) internal symmetry. It can be constructed by fusing

the linearized 11=1 supergravity multiplet with the spin (•gji) multiplet and

generalizing the result to local supersymmetry.

The global spin (4,1) multiplet consists of a vector spinor ^ and a

vector B , transforming as

S\ji = -|/2 F(B) aye

where F ( B ) p a = 3pB0 - 3aBp.

The Lagrangian density for these fields is

"^ = -ae f r y M - 5F2 . (2.2)
pvpcru 5 v pTa yv

Besides under the transformations (2.1), the action is also invariant under



gauge transformations 6_ and 6m of the fields:
n D

6R«V = V '
SB\ ' V ' (2'3)

The N=1 supergravity multiplet and its linearized form were described in

S II.h.

The two spin -g fields JJJ1, i«1,2, of these multiplets now combine in a

doublet of S0(2), as do the spinor parameters e1. The graviton,

represented by the vierbein e a, isanS0(2) scalar, while the vector field

becomes an antisymmetric S0(2) tensor of rank 2, B 1 J. By the Noether

procedure one can then generalize the result to local supersyametry to

obtain the transformation rules [2]:

r a -i a.i
6e = ICE y I ,

V V

«tj = f D / + Ĵ (F(B)jJ + f /2 ** *t])S°y/ (2.k)

6Bij = -/2 e [ i *J] .

The invariant action is constructed from the Lagrangian density

?;1 •J'jft + i
In this expression R1 denotes the covariantized Rarita-Schwinger equation:

while F1J is the dual of F1J:

The commutators of the transformations (2.U) have the form

IS Ac , ) , « J e , ) l - 6 n(CX) + 6 (eh + « T ( E ) + SR(A i j) , (2.8)
S 2 " l ^ SO Li aD i3

where the parameters are defined as follows:

for the general coordinate transformation we have:

€* = -2l\y\i i (2.9)

for the supersymnetry transformation:



for the local Lorentz transformation

and for the gauge transformation on B1*':

(2-11)

(2.12)

On the fields e and B ** the algebra (2.8) closes off shell. For ifi1 on the

contrary, it holds upon use of the classical field equations only.

We wish to improve this situation by introducing auxiliary fields.

However, to find a complete set of auxiliary fields is a considerable

problem [2,3] . Its solution will constitute the main topic of this chapter.

We comment here on the physical interpretation of the theory. Besides

the global S0(2) symmetry and the local supersymmetry the Lagrangian (2.5)

possesses the local U(1) invariance (2.3), generated by the gauge

transformations on the vector field B . This gauge invariance is necessary

to obtain the correct number of physical boson states. As a consequence the

vector field can be interpreted as the electromagnetic field and S0(2) super-

gravity as the unification of supergravity and electromagnetism. Also the

spin =• fields can be combined in a complex Dirac spinor, by which procedure

the global S0(2) becomes an equivalent global U(1) symmetry. However, under

the local U(1) this complex spinor has zero charge.

The advantage of this theory above the usual Einstein-Maxwell form of

gravitation and electromagnetism is found in its quantum properties. For

example, the photon-photon scattering amplitude, which diverges in the

Einstein-Maxwell theory, is finite in S0(2) supergravity on the one loop

level [U].

It is also possible to gauge the S0(2) internal symmetry of the theory,

i.e. to promote it to a local symmetry [51- In this case the vector field

becomes the gauge field of S0(2), making use of the isomorphy of the S0(2)

and U( 1) groups. In fact one makes the global U(1) symmetry of the complex

spin ~ field local and identifies it with the local U(1) of the vector field.

Hence the spinor can now couple to the vector field with non-zero charge.

This theory can again be interpreted as a unification of gravitation and

electromagnetism. However, it contains a masslike term for the spin -4

fields, with mass proportional to the charge q:

q
m = — ,

K
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i while there is a cosmological constant also. This cosmological constant

' gives rise to difficulties in the interpretation and quantization of the

theory [5,6] . In particular the concept of mass is problematic. Further-

more, if one takes the charge to be that of the electron,

q2 _ j _

I kv w 137 '

the value of the cosmological constant exceeds all observational upper

limits by orders of magnitude.

A possible solution to this problem is to break local supersymtaetry by

taking the cosmological constant to be zero [6]. This procedure then leads

to a consistent theory of massive charged spin -z fields, in the sense that

no anomalous propagation occurs, and coupling to electromagnetism and

gravitation takes place in a flat background space. However, since this

goes at the expense of giving up supersymmetry, this is no longer a theory

of supergravity.

3. Basic W*1 multiplets

The procedure we will follow in constructing the auxiliary field

formulation of S0(2) supergravity is in principle analogous to the one we

described for the theory without auxiliary fields in the preceding section.

We start with the linearized versions of the N*1 supergravity and spin (—,1)

multiplets with auxiliary fields. We fuse these into a multiplet of

linearized S0(2) Poineare supergravity and then complete the construction by

extending the results to all orders in the coupling constant ic.

In this chapter we implement the first part of

the program, to obtain a linearized theory. As a preparation we discuss

here the full N=1 multiplets with auxiliary fields.

Of the spin (̂ ,1) multiplet there exist two versions. The original one

was found by Ogievetski and Sokatchev [7]. However, it cannot be combined

with the N*1 supergravity multiplet [8]. In order to accomplish this, a

change in the field content of the jnultiplet is necessary. In this way the

second multiplet was found [2,3]• These are the only versions of the

multiplet [9] .

The second multiplet, the only one relevant to us, contains two

Major ana spinors x and A, of dimension -jj- and ̂  respectively, one Majorana

vector spinor 1> , a vector gauge field B , an axial vector field A , a
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vector field V , an antisymmetric tensor t , a scalar M and two pseudo-

slavars N and P. The invariant action is given by the Lagrangian

) = -*V\i - ̂F(B)
M/

 + 2*X + 2*'X + **JV
 +

+ IA2U + lv* - in
2 - in2 - P 2 . (3.1)

Here if> and B represent the physical spin -r and 1 fields, while all other

ones are auxiliary. R is the linearized version of (2.6). The Lagrangian

(3.1) is invariant up to a total derivative under the local gauge

transformations (2.3):

R V V (3.2)
5BW'

as wel l as under r i g i d supersymmetry t r ans fo rma t ions :

6i|i = - g / 2 F(B) a y e - (V + iyJV )e - \z yKy t e + iy f P E ,Tp pa pa u v 5 | i ' * pvpa'5'v pa T5 u

8B = -/2 eip
M V

s(M

(3.3)

fit = - 2 E O y - e e Y c Y R »
UV (JV | j v p o 5 ' p a

6M = e( X + 20A),

SN = i e y s ( x + 2JlA),

6P = ieY_(x - sY'R).

If we count the number of field components and subtract the gauge degrees of

freedom, we find that there are 20 bosonic and 20 fermionic components,

denoted by 20+20 for short. That the numbers are equal follows from the

non-singularity of the supersymmetry transformations.

The multiplet described in (3.1)-(3.3) corresponds to an irreducible

representation of Poincare supersymmetry. However, from the field

transformations (3-3) one sees, that it is possible to extract three

different submultiplets. Here we use the term submultiplet to denote any set

of field components transforming only among themselves. These submultiplets



correspond to other irreducible representations of the graded Poincare

algebra and are described by different Lagrangians. As a result some of the

auxiliary fields of the (-4>1) multiplet become propagating as members of

such a submultiplet. We will now describe these submultiplets of (3-3)-

The ones that are most crucial to our construction of S0(2) supergravity

are an N=1 tensor multiplet and a scalar multiplet. Both were discussed in

II.lt, where also their quadratic Lagrangians were given. The tensor

multiplet is generated by the following field components:

T = -t + 5/2 F(B) ,

B = P, (3-1*)

* = X - 5Y'R •

One may verify from (3.3), that they transform exactly according to

(ll.lt. 15), modulo a gauge transformation of the type (II.U.17).

The scalar multiplet is defined by the components:

A = M, F = 3«V,

B = N, G = 3-A, (3.5)

* = X + 2*A,

transforming as in (II.lt.1).

Both these multiplets contain U+h bosonic and fermionic components.

This leaves 12 + 12 components of the original (4,1) multiplet. They do not

correspond to a standard multiplet, but to a multiplet of U(1) confonnal
*)supersymmetry. Such a superconformal multiplet does of course contain

Poincare submultiplets. However, these cannot be described in terms of the

fields themselves, but only in terms of their higher spin components,

which are obtained by applying non-local projection operators on the

the fields. Hence there do not exist local Lagrangians for these Poincare

submultiplets. For this same reason the superconformal multiplet must be

described by a Lagrangian which is of higher order in derivatives:

i 2 i 2 i r \2 i - 2

I where t is the dual of t (cf. 2.6).

' *) Confonnal supersymraetry is described in appendix B.

1*5



We now turn to the SO(1) supergravity multiplet. It has 12+12

components. Its action and transformation laws were given in II.lt. We will

restrict ourselves here to the linearized version only. We see that it has

two submultiplets [10,11] . The first one is an N=1 scalar multiplet

consisting of the auxiliary fields S and P, the scalar Riemann curvature R,

the divergence of the axial vector field 9'A, and the contracted Rarita-

Schwinger field equation yB. The assignment of the k+h components

corresponding to (ll.lt. 1) is:

A - S , F = - | T ,

B = P, G = 3-A . (3.7)

i> = -i-y-R.

The remaining 8+8 components together form the multiplet of U(1) conformal

supergravity [12]. This theory is the supersymmetric extension of the Veyl

theory of gravitation. It consists of the highest spin components of the

fields ea, I|J and A , whose transformation rules were given in (II.k.8).

The linearized Lagrangian for this theory is:

4 ° • £ <R - IR2) - w ( H - V
- i(p(AW • (3-8)

As explained in more detail in § 6, this Lagrangian describes in fact the
T T

transversal and traceless parts of R and R , denoted by R and R :
pv p pv u

T T
3 Rx = 0, R = 0 ,
P (IV UU

T T (3.9)
3 R = 0, y R1 = 0 . VJ Vl

'1 One sees, that both (3.6) and (3.8) are quadratic in the corresponding
4 SO(1) field equations.

k. Multiplets of S0(2) supersymmetry

Before we explain the construction of the complete S0(2) supergravity

multiplet, it is convenient to have some results concerning other S0(2)

supermultiplets at our disposal. Two such multiplets and their quadratic

Lagrangians will be presented in this section.

The first multiplet is the S0(2) vector-gauge multiplet [131. Its

transformation rules follow from combining the scalar and vector multiplets

U6



given in II.h by the procedure described in 1.3- One finds:

BiJ = i5[i 0] 9
5 ..

,1 = _0 F(V) e1 - jJ(A1J + iYKB
1J)eJ - (F1J

pa po 5

I 6G1J = ie1Y5?i(/
J + (j>+j ; traceless),

1
f. where F(V) is again the field strength of V . The Lagrangian for this

multiplet reads:

The commutator algebra closes off shell, yielding the usual translation 6

and a gauge transformation 6y on the vector field V :

with

Because V is a gauge field»the multiplet contains 8 + 8 components. However,

the equations of motion show, that there are k+k physical degrees of

freedom, corresponding to massless particles of spin (i,i,s,0,0).

A related multiplet is the S0(2) tensor-gauge multiplet. It consists of

a tensor field T , antisymmetric in both pairs of indices, a singlet

Lorentz scalar A, a symmetric traceless pseudo-scalar B **, and a spinor

doublet x > with two auxiliary fields: a scalar F and a pseudo-scalar G.

These fields transform as follows:

6T ij = 2efio X
JJ,

UV |iVA

.. -i i
<SA = e x »

6B1J = ieScX0 + (i+*0» traceless) ,

?. .. . . . . . {k.k)
6X1 = *(A61J + iYsB

1J)eJ + y^J^f3 * (F + lYjOe1 ,

60 = iiS^x1 •

We can reduce this multiplet to its constituent N=1 multiplets by

hi



consistently setting ez=0 everywhere. In this way one may verify, that the

tensor-gauge multiplet [h.k) is a fusion of the N=1 tensor multiplet (II.It.15)

with a massless scalar multiplet (II.U.1). It has the same gauge invariance

SJT1* = e H i j , (U.5)

T pv uvpa pa

as we found in the N=1 case. With this gauge invariance the commutators of

the transformations (U.1+) close on all fields, including T :

Again (i+.5) implies that there are 8 + 8 components in the multiplet, while

the spin content is (j,|,0,0,0,0). This corresponds precisely to the mass-

less particle multiplet with highest helicity X=| of table II.3.1, provided

we take a doublet highest helicity state in stead of a singlet. The spin

content also follows from the Lagrangian:

A =uyj
It is equivalent to the massless scalar-spinor multiplet described in refs.

[13,1h] . However, contrary to the sealar-spinor multiplet, it cannot be

used to describe the massive case. This is analogous to the N=1 case.

5. The construction of the S0(2) supergravity multiplet

We are now prepared to come to the main problem of this chapter, the

construction of the full linearized S0(2) supergravity multiplet. In order

to accomplish this we take the H=1 linearized supergravity and spin ('JJI )

multiplets and try to combine these in an S0(2) covariant fashion. We may

expect some problems, since these multiplets have different numbers of

components. However, a good strategy will be to start with the fusion of

some of their submultiplets, which contain equal numbers of components.

, Later one may then try to find any missing components by extending the

remaining N=1 submultiplets to the N=2 case in a suitable manner. We will

now describe this procedure in detail.

In first instance the only submultiplet of 0{1) Poineare supergravity

which comes into consideration is the scalar multiplet

(S,P, - h*R, - J^, 3'A) , (5.D

presented in (3.7). On the other hand, the spin (̂ ,1) multiplet has the

tensor submultiplet (3-*0. As we have shown, it is possible to combine



these two N=1 submultiplets in an S0(2) tensor-gauge multiplet (4.4). This

immediately suggests the S0(2) assignments of the fields: the axial vector

field A and the scalar S from 0(1) supergravity become S0(2) singlets, the

pseudo-scalars of (5.1) and (3.4) fuse to form a symmetric, traceless tensor,

and "both t and B are antisymmetric S0(2) singlets. To combine the two

spinors into a doublet seems troublesome at first sight, but it should be

realized, that (3.4) and (5.1) may still originate from a common field

representation, since they are presumably to be obtained from that by

different reduction procedures. Therefore we simply take the multiplet (3-3)

and double the spinors ifi and x into doublets, choosing x - SY*R as the

spinor components of the S0(2) tensor multiplet.

One then finds, that the scalar curvature cannot fully represent the F-

component of this multiplet, since the supersymmetry variation of R will

never yield terms proportional to ejlx • As a result the F-component must be

a linear combination of R and some other field, which is as yet unknown.

We can summarize the above by stating, that one of the submultiplets of

S0(2) supergravity will be a tensor multiplet with components:

A = S ,

Bij = pij

i i \ i (5-2)

G = 3«A ,

where D is still to be determined. At this stage we may note, that indeed

the (2,pO and (—,1) multiplets of N=1 do not contain a sufficient set of

auxiliary fields for the S0(2) supergravity multiplet. We have introduced

an extra spinor x a*id an unknown scalar component D, which neither originate

in the (̂ -,1) nor in the (2,—) multiplet. The reason for this, as noted, is

that the minimal representation of SO(1) supergravity, with 12+12

components, cannot be fused with the 20 + 20 components of the spin (p-,1)

multiplet. Instead we have to use a non-minimal representation, which also

contains 20 + 20 components. The missing 8+8 components have to be found by

direct construction.

Therefore our next step is to further generalize the multiplet (3.3) to

S0(2). To obtain closure on the vector and axial vector fields it turns out

49



to be necessary that V in (3-3) is assigned to an antisymmetric S0(2)

singlet representation, whereas A must be extended to a symmetric traceless

tensor. At this point one then has found the transformation rules for

*1» X1, t1^, B^, V1**, A1^, A , S and P,

with a few arbitrary coefficients. For certain values of these coefficients

one can show by explicit calculation, that the algebra closes on these fields

modulo gauge transformations on \}> , B J, V1J and A J. This gives the

following partial results for the S0(2) supergravity multiplet:

6 t i j = -2llia Xjl - e zl\,y RJ1 ,yv uv yvpa '5'p a '

6AU = 2 llysK +
 " 1 Y 5 Y M ( X 1 " ^Y"R l ) ' ( 5 ' 3 )

eA1'' = - i e S V + i e 1 ^ ^ XJ + ( i - ^ j ; traceless) ,

6V1 J - - S [ i RJ' + e( iY Xjl ,

fiS = ^ ( x 1 - SY'R1) ,

6P1J = ieS^x 0 - 5Y'R°) + (i-^-j; traceless) ,

6D = e^x1 ,

where

It will turn out that the commutator algebra of (5.3) closes, and the field

| components form two irreducible multiplets, one of which is the tensor
1 multiplet (5.2), the other the multiplet of U(2) conformal supergravity.

Again this superconformal multiplet only contains the highest-spin field

components, as is evidenced by the gauge invariances introduced for the

spin -r and vector fields.
3The field components of the (:r,i) multiplet that have not yet been

incorporated in an S0(2) multiplet are exactly those of the scalar multiplet

(3.5), which corresponds to the lower spins contained in these fields.

Since x1 is an S0(2) doublet, A will have to be extended to a doublet also in
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order to obtain the spinor components x1 + 2JIX1. The auxiliary field

components 3*V and 3*A form an antisymmetric singlet and traceless

symmetric S0(2) tensor respectively. Furthermore one demands, that the

S0(2) fields into which X is to transform do not affect the closure on

V J and A " already obtained. In this way one obtains uniquely that the full

S0(2) completion of (3-5) is a vector-gauge multiplet (!*.1).

As a consequence M and N become antisymmetric singlets of S0(2), while

ew vector field V i.as to be

thus consists of the components

a new vector field V i.as to be introduced. The S0(2) vector-gauge multiplet

(V^, Mij, H1"3, xi + 2JlXi, 3.Vij, 3-AiJ) . (5-5)

The only field component not yet assigned to a S0(2) submultiplet is now 3«V,

but one sees immediately that it fits exactly the role of D in (5-3).

This completes our construction. To summarize the results we give here

the full set of fields and transformation laws of linearized S0(2) super-

gravity. It contains the vierbein e , a doublet of Majorana vectorial
i ^ ii

spinors ̂  and the vector gauge field B as physical components, and

furthermore the following auxiliary fields: two doublets of spinors x aXi&

X1, an antisymmetric tensor t J, three axial vector fields A and A ,
ii vv i, M M '

two vector fields V and V , two scalars S and M , and three pseudo-
. . U M • •

sclars P1J and N1J. In all there are 1*0+1*0 components. The fields B J,

t1J, V1J, M1J and N1J are antisymmetric S0(2) singlets, whereas A10 and

PX<J are assigned to the symmetric traceless representation of S0(2). Under

rigid S0(2) supersymmetry transformations these fields transform as follows:
.a -i a.i
oe = KE y i> >

6X1

j
e
j + 3-Ve1 + (F(V)JJ -

a X
jl - e c'VyB^

MVA MVPO '5'p O
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( (5>6) continued)

SA1^ = -ie1Y5R
t' + ie\5Y x

J + 2ie1y59 A
J + (i-̂ -j; traceless), (5-6)

6S = ^(xi-iy.R1) ,

(SP1"̂  = ie1Y5(x^ - ivR°) + (i++j; traceless) ,

Although (5.6) refers to global supersymmetry, we have included a term

3 e in S\jiX to indicate the gauge invariance of IJJ1 under local Karita-

Schwinger transformations. The Lagrangian density for tne multiplet reads:

- S2 - i

(5.7)

The first term has to be linearized as in (II.1*.13).

The full S0(2) theory with auxiliary fields will be invariant under

local supersymmetry, Maxwell and Lorentz transformations, as well as

general coordinate transformations. At the linearized level the algebra

closes with the infinitesimal supersymmetry transformations (5.6). In

particular the commutator of two supersymmetry transformations acting on the

fields is given by:

as in (2.8), but now with parameters:

h -2 wi'

(5.9)

JJ + f
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The Lagrangian (5.7), the transformation rules (5-6) and the algebra all

reduce to the ones given in § 2, when the field equations of the auxiliary-

fields are imposed.

6. Discussion

We have presented in (5.6) the full spin (2, -p-, —, 1) multiplet with

auxiliary fields of lineari-zed S0(2) supergravity. At the level K=0 the

commutator algebra of these transformations closes. The construction was

done by fusing the N=1 spin (—, 1) multiplet with a multiplet of N=1 super-

gravity. This was not the usual minimal multiplet of the theory, since

more components were needed to match those of the spin (-p-,1) multiplet.

However, we did not know the required non-minimal multiplet in advance.

Hence we had to construct it in the course of our work. For this it was

very important, that we could go step by step, first generalizing K=1 sub-

multiplets independently to the N=2 case and putting all information to-

gether afterwards to obtain the complete S0(2) supergravity set of fields.

As a byproduct of this procedure we have immediately found a

decomposition of the S0(2) multiplet into submultiplets. These sub-

multiplets are the following. There is the 11=2 tensor-gauge multiplet (5.2)

with components:

[-tjj + J/2P(B)jj, S, PiJ, x1 - 5Y-R1, - £ + 3-V, 3-A) , (6.1)

transforming as in (i*.1*). The general Lagrangian was given in (U.T) and

becomes in terms of the fields (6.1):

+ JO'V-^+iO-A)2 . (6.2)

It contains 8 + 8 components. Then there also is the vector-gauge multiplet

(5.5). Its transformation rules were given in (h.1) and its Lagrangian

becomes:

+ J(8'Vij)2'+ JO.A i j) 2 . (6.3)

It contains 8 + 8 components as well.

Finally, the remaining 12+12 components form the N=2 version of

conformal supergravity. It describes the highest spin components of the
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EL X X 1

graviton e , the gravitino it , the axial vectors A and A and the vector
1J / i jfield Vlj, as well as the tensor field t1J - /2F(B)ij and its dual, and

P R uv yv

finally the scalar component 3'V-— . Their transformation rules are gi

in (5.6), while the quadratic Lagrangian becomes:

4 (R2 |R2) e (R1 - *Y Y'Ri)YKY 3 (pvpo p 3'p' '5'v p

- J(8jItJj)
2 • 3O-V - f ) 2 . (6.M

Thus we have found four invariants for the fields of the linearized S0(2)

Poincare multiplet. The Lagrangians /£„, /?y and £ are all of higher

order in derivatives compared to Poincare supergravity and in fact quadratic

in the field equations of this theory. Still they are of importance for

Poincare supergravity also, since they might occur as one-loop counter

terms to the Poincare Lagrangian £ in a quantum theory with interactions.

In that case the particle content of the theory changes drastically. This

phenomenon was discussed for N=1 supergravity in ref. (11), In our case the

most general linearized one-loop Lagrangian has the form:

^ T 4 ^ , (6.5)

with arbitrary parameters a, B, Y and m2. In general the states arising in

X! are massive particle states. Therefore the physical states described

by (6.5) must cover twice as large a range of spins as their massless

counterparts. An analysis for general U, based on the assumed existence of

massive multiplets as contained in ~ , vas carried out in ref. Ii5]» The

ideas presented there can be verified by our results.

The particle content of A is found by studying wave equations and

propagators derived from it [11,16] . One finds a massless spin (2, —, p", 1)

multiplet as expected. However, one also finds a massive multiplet with

superspin j=1, as described in table II.3.2. This multiplet is realized by

the following components:

f-RT , RiT, P(V)it5, F(A)ij, F(A) ,3 (tij-/2Fi<3 ),3 t ^ . x ^ Y ^ . a - V - f ) .VK yv v uv' uv' uv u uv uv v uv'A 3 3KJ

(6.6)

Here the superscript T denotes the highest spin components:



r
pvwith

ig(e e + e e ) - le e JF.
pp vc pa vp 3 uv pa pa

3 3

(6.7)

epv

Hence

3 R
P Vi

0, R,1 0.

Also one has:

R
i T

R1 - 19 y y
y 3 uv v

3-R = 0, yB = 0.

The fields (6.6) all satisfy the wave equation:

(6.8)

(6.9)

(6.10)

Hence they only have a real mass if a<0. However, one may show that with

this restriction the residues of the propagators for these fields become

negative [11,16] . Therefore the states in this multiplet represent un-

physical ghosts.

There are two other multiplets of massive particle states contained in A..

They correspond to the massive versions of the N=2 vector and tensor

multiplets respectively. Both have positive norm states and represent

physical degrees of freedom. The first one, generated by the field

components:

satisfies the wave equation:

(6.11)

- - > • - 0, y>0

The other set consists of the components:

They obey the Klein-Gordon equation:

s,

(a - 0 , B>0

(6.12)

(6.13)

(6.1I1)

Contrary to the massless case, both multiplets (6.11) and (6.13) have the

same spin content, corresponding to j=0 (cf. table II.3.2):
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(1, 2, 1,1, 2, 0+, 0+, 0", 0~, 0~).

The basic observation in this respect is, that the massive tensor field

represents a spin 1 state, while in the massless case it has spin 0. This

discontinuity is crucial in obtaining the correct number of spin 1 states in

£, as predicted in [151 •

Furthermore we have twice as many spin 1 states as in the massless

multiplets, because the spinors in (6.11) and (6.13) satisfy Klein-Gordon

equations, rather than Dirac equations. Their propagator reads:

which represent two positive norm states with mass |x|>0. This concludes our

analysis of the linearized S0(2) Poincare supergravity multiplet.

We now turn to consider in a little more detail the U(2) Weyl multiplet,

consisting of the fields:

( e a , *\ V ^ , A i j , A , t i j / 2 F , t / 2 F , f)
1 u' Ma' u ' v v uv pv' uv uv* 3 3ic (6 16)

Under supersymmetry they transform as in (5-6), provided we interpret the

vector fields as gauge fields. The. U(2) internal synmetry of this multiplet

is realized on the chiral components of the fields (6.16). To make it

manifest, we introduce chiral spinors:

where upper and lower indices denote a transformation character according to

the 2 and 2 representations respectively:

A1

+
A. * A.U
i J

(6.18)

with U. a unitary 2 X 2 matrix. For the chiral components of the spinors
i ^ i

ij; and x defined by:

xl = x1 - ly*1 , (6.19)

we can use the same notations (6«17)» since they transform as in (6.16)

also. The tensor fields are in antisymmetric singlet representations of

SU(2), while under U(i) the tensor t1^ - V^F1^ transforms into its dual and

vice versa. Hence we introduce the (anti) self dual combinations:
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T (t 2 F ) (t /2F ), T . . = (tij / 2 F ) (t /2F )
pv vv uv yv uv uvij pv yv JJV JJV

(6.20)
whose U(2) character is in accordance with (6.18). The auxiliary field of

the multiplet is:

Dc H 3*V - i • • (6-20)

Like the vierbein e , it does not transform under U(2). Finally we turn to

the vector fields A , A1J, V1J. A does not transform under the global U(2)

symmetry. However, it does possess the gauge invariance:

6A = 3 A . (6.21)
U V

Hence it can, and will, become the gauge field of U( 1) in the local theory.

Similarly, the gauge fields A1"' and V ** combine in an SU(2) vector

representation:

A j j = 4 j + K* • (6-22)

under global transformations, but become SU{2) gauge fields in the loca

version of the Weyl multiplet. Thus, under local SU(2) transformations:

6A1. = 3 A! + AiAk0 + A
1, A'^ , (6.23)

uj v o k yd uk j '

where A. is a traceless, hermitean 2x2 matrix. The justification for

these U(2) assignments can be found in the invariance of the Lagrangian.

In our new notations it becomes:

Moreover, the supersymmetry transformations turn out to be in accor«te: • jiv.h

this U(2) transformation character of the fields also, e.g.:

6 T = - * 4 e o • x "*" t^c ( 3 r 'I' » •• £ 3 i — u 3 r i » , + o 3 » 1p v p v A c 3 v [ p v ] p v p a p a p p [ p v ] v p [ p
!
; This completes our discussion of linearized N=2 supergravity.
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7. The N=l reduction

We have stressed already several times, that the N*1 reduction of the

S0(2) Poincare multiplet does not give back the minimal N*1 multiplet of

Poincare supergravity (11.^.8). Instead we find a larger multiplet

containing 20+20 components, which we will present now.

In addition to the vierbein e , the i|) and the auxiliary fields A , S

and P, there are two Majorana spinors x ar-d A, a vector V and an axial

vector Af, all of which are auxiliary. They are contained in the following

linearized Lagrangian:

^' = - ~ 7 R - 2 * ^ + A* - S2 - P2 + 2xX + 2A0A + =lA'2 - ̂ V^ . (7.1 )

This Lagrangian is invariant up to a total derivative under rigid super-

symmetry transformations:

- a - a,

% = f V + iysV ~ iY5A;e ~ Yp(S + iY5P - ̂ 5 * ^ '
SX = - Kit + iY5A')e + (S + i75P - iY5^)e ,

6X = a-Ve - iy5

S\ = 2 ̂ 5 R
U
 + "TrS

Y|i(x ~ i v R ) »

6S = e(x - 5Y*R) »

6P = ieY5(x - 5Y'R) •

We remark, that the quantity

2X(x + fX) + lA^2 - |V2 , (7.3)

appearing in (7.1), is a mass Lagrangian for the N=1 spinor multiplet:

(Vp, A^, X, x+^X) .

Such a multiplet is characterized by the transformation rules:

<SA' = itu

l»v(jr



This multiplet is not a proper submultiplet, since the transformation rules

(7-2) for V , A1, X and x+7* contain terms depending on the other fields in

" addition to (7.U). Furthermore the minimal auxiliary field representation

of SO(1) supergravity is not a submultiplet of (7-2) either. Hence this set

• of auxiliary fields for N*1 is not reducible to the minimal one. However, a

\ connection between them was found by Siegel [171. vho showed, that there is

• a one-parameter family of auxiliary fields for SO(1) supergravity, which

ij contains both the minimal set and the set (7-2) as special cases.

if Apart from this, the multiplet (7-2) can be decomposed into sub-

\ multiplets. In fact there are four of them, which we will list here. The

| first is the scalar multiplet:

(S, P, X - h'-R, 3-V - ̂  , 9-A) . (7.5)

It was fused with the tensor submultiplet (3-*0 of the spin (-x, 1) multiplet

into the S0(2) tensor-gauge multiplet (5>2).

Then there is a vector submultiplet, generated by:

(Vy, X + 20A, 3-A') , (7.6)

which was combined with the scalar submultiplet (3.5) to form the S0(2)

vector gauge multiplet (5-5). Both (7-5) and (7.6) contain U +k components.

Another k + h of these can be fitted in an axial vector multiplet. This

is just a vector multiplet of reversed parity:

Six - fr-R) = - | Y5a-F(A'-2A)c + (3-V - -̂ -)e , (7.7)

6(3-V - ^ ) = Ittx - §Y'R) •

The last 8+8 components form the multiplet of U(1) conformal supergravity

(3.8), with components (ea, * , A +A 1)- These, with the fields (7-7). can

be extended to the N=2 Weyl multiplet by combining them with the spin (-g, 1)

multiplet described in (3.6).

8. Conclusion

We have obtained the linearized multiplets and Lagrangians for 11*2

supergravity, both the Poincare and Weyl theories, with auxiliary fields.

These multiplets, as well as their N=1 reductions, contain many sub-

multiplets. The submultiplets were discussed in the .first place in order to

show, how the N=2 multiplet could be understood, and constructed, in terms

59



of N=1 multiplets. Another application of tiie submultiplets is, that they

may be considered as abstract matter multiplets, which may be coupled to the

supergravity fields, if their extension to the local theory exists. This

subject will be discussed in the next chapter. For convenience of the reader

we collect here the N=2 multiplets that we have discussed. In the last two

columns we list the places, where the transformation rules and Lagrangians

can be found.

Table 3: multiplets of N=2 supergravity.

Multiplet

Poincare

Weyl

Vector

Tensor

fields

ea,*1,B1J,X1,X
1,A ,A1J,V1J,V ,t1J

p \i u (j y ]i v u v

S,P,M1"',N1J

transf.
rules

(5.6)

(5.6)

(4.1)

(lt.it)

I
Lagrangian

(5.7)

• (6J0

(6.3)

(6.2)
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CHAPTER IV

THE FULL N=2 SUPERGRAVITY THEORY

1. Introduction

In the foregoing chapter we have constructed the linearized S0(2) super-

gravity multiplet with a minimal set of auxiliary fields and its quadratic

Lagrangian. We have discussed its transformation rules and suhmultiplets

under glohal supersymmetry. Using this as a starting point we will now

derive the fully coupled S0(2) supergravity theory, with this auxiliary

field configuration [1-1*] . Our derivation will be order by order in the

gravitational coupling constant K, following procedures outlined in chapter

II. The results are fairly complicated, but can be understood more easily

by the introduction of superconformal notions f*,5l . The insight thus

gained is also useful in obtaining the generalization of the submultiplets

to local supersymmetry, as will be illustrated for the vector multiplet [h].

2. The self-coupling of S0(2) supergravity to order K

In this section we will present the extension of the global S0(2)

supergravity multiplet to a local one, to first order in the gravitational

coupling constant K. Our derivation goes in three steps. First we discuss

the commutator algebra, which can be found to order K from the global

theory as in (ill.5.8) and (ill.5.9). By imposing this algebra we can find

the transformation rules of the fields. Finally we extend the Poincare

Lagrangian (ill.5.7) hy the Noether procedure to an invariant action for the

locally supersymmetrie theory. We stress, that the results obtained here

generally refer to order K, even when we do not state this explicitly all

the time.

We start with the commutator algebra (ill.5.8) and (ill.5.9). The
parameters of the general coordinate, Lorentz en supersymmetry trans-
formations 6 (£ ),6 (e ) and 5 (e*) are obtained to order K from the

\j A ij ao s 3

transformation rules of the global multiplet. This is possible, because the

linearized supersymmetry transformation of e contains an explicit K and



that of \ji a term — 3 e . In the global theory this last term is to be

interpreted as an independent gauge transformation of to . However, it is an

essential part of the supersymmetry transformation law, if one considers the

linearized theory as the zeroth-order version of the locally supersymmetric

one. Using this, one can calculate 6-(£,) and 6T(e , ) to order K from the

commutator on the vierbein; to find e^ to this order, a calculation of

& (e,) i n zeroth order from the commutator on <Ji suffices. When we assume

the commutator algebra to hold uniformly on all the fields, we have thus

obtained it to order K for the whole multiplet.

It now becomes possible to find the transformation rules of the fields

by requiring them to satisfy these commutation relations.

We begin by making explicit a few assumptions which we will hold

understood throughout our derivation. We also present arguments for them,

but their final justification is of course, that they lead to consistent

results. In the first place we interpret the space-time indices of the

gauge fields of S0(2) supergravity as world indices, while those of the

other fields are taken to be local-Lorentz indices. The reason for this is,

that we want only the gauge fields to transform with derivatives on the

parameters. Hence we have the following set of fields:

% ' V U 'at' a' a 'a ' a'S'P 'M >K >A 'x ' ' (2- '

Related to this is the assumption, that the gauge fields appear in the

transformation rules of the auxiliary fields only in covariant combinations

with respect to their various local symmetries. This is to avoid terms with

derivatives on the parameters in the gauge algebra. For this same reason we

will supercovariantize all derivatives and curvatures in the transformation

laws of the auxiliary fields.

Finally, we assume that terms of a certain power in the fields occur in

the field variations only in a fixed order of K. This we argue as follows.

The linearized supersymmetry transformations are of order — , when not field

dependent, and of order K" when linear in the fields. In the commutator they

give rise to transformations which contain one more power, both of K and of

the fields. To close such a commutator on all fields, one needs to

introduce order K variations which are quadratic in the fields. These can

again be used, as we will do, to calculate the commutator to next higher

order in K, which is then automatically also next higher order in the

fields. Continuing this argument one finds, that field transformations of
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order icn are always of the (n+1)st power in the fields. This observation is

especially important, when we have to write down all allowed variations of

a field in a certain order of K, for the dimensionality and the prescribed

power of the fields put severe restrictions on the possible terms.

With these assumptions in mind we begin the calculation of commutators

in order to find the field transformation laws. The first one we examine is

that of A1

u
We notice, that the result

(2-2)

with e as in (III.5.9)» is obtained only, if the parameters e. _ are

space-time independent. To find the same result, in lowest order, for

local parameters requires variations of &\ji which have the schematic

structure:

(cf. III.5-9).

terms in 6I|I :

This is realized by the introduction of the following new

where Sty
lin.

is the linearized transformation (HI.5.6). The term with

\j> \j> can be absorbed in a covariantization of the electromagnetic field

strength with respect to supersymmetry:

y v JIV 2 y v *

The result (2.U) can be further simplified by performing some Fierz

rearrangements. This leads to:

-1 = - D e1

\l K U

t
pa

5

Pid)opo
Tpa' '

(2.6)

The quantity n J was defined in (III-S-1*). The surprising result of these

modifications is, that the commutators of e and

order K with their original transformation rules:

modifications is, that the commutators of e and B close completely in
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-l a,i
K£ Y % ' (2.7)

Therefore we do not have to change these rules, while that of ij/1 can be

modified further only to the extent, that this closure is not affected. The

only possible terms in 6ifi which still need examination are of the type:

ifp -* K A A E . • (2.8)

However, in order to maintain the closure on e and B , such terms are

necessarily of a form, that they can always be absorbed in a redefinition of

the auxiliary Bose fields: V , A , A , etc. Hence we may choose (2.6) to
61 9. .3. — . — —

represent the complete variation of \ji .
^ i

Our next step is then to try to close the commutator of rji itself. By

concentrating on specific terms in it we may obtain information on the

transformations of A1 and the auxiliary Bose fields, which we will hence-

forth denote collectively by B. In particular we can find how A1

transforms into a bilinear combination of itself. Schematically:
A •* KAAE. (2.9)

This can be seen as follows. Under supersymmetry ifi transforms into:

as in (2.U). Therefore we will get terms in the commutator, which are

quadratic in A and linear in IJJ , from the sequence of variations:

i|i •+• KiiT\ex •* K
2(i()Ae 2)Ae 1. ( 2 . 1 0 )

Because e^ depends on A1, we do indeed need such terms to give:

(2.11)

However, the structure of the terms from (2.10) does not coincide with

(2.11). Hence we need variations of other fields to contribute in (2.11) as

well. These can come either from the A variation of the type (2-9) by:

i|i -> KiJiAej -»• K2i()(AAe2)e1 , (2.12)

or from transformations of the Bose fields, of the form:

B -f K2i)iAAe. (P. 13)

As argued before, we expect terms with i// , like (2.13),to come onlj from
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supercovariantizations; in this case from covariant derivatives of A in

;- the Bose-field variations, where we replace:

M H 2 s \x ~ u

Our strategy is therefore, to parametrize all possible transformations (2.9),

i; simultaneously using these in the supercovariant derivatives (2.1b), to find

•J the variations (2.13). We then calculate the commutator of i|i and choose

the parameters in SA in such a way, that the result (2.11) holds. This

establishes the quadratic terms (2.9) in 6A uniquely:

lin.

Adhering to our principle, that no 1(1 's are allowed in the transformation

rules of the auxiliary fields, except in supercovariant quantities, we

see that no other variations of A are possible. Hence (2.15) represents

the complete transformation of A1.

We now continue with the derivation of the tranpformation rules for the

auxiliary Bose fields. Two types of variations are possible in order K:

B -y KBijie, icBAe . (2 .16)

The first one must come from supercovariantization of the Rarita-Schwinger

equations:

5'v( p a

The second one must be determined from the commutators on ij» and A . In
» i

particular the commutator of i/( is not allowed to produce terms of the
. i

form KBAEJE., while those in the commutator of A have to add up to the

Lorentz transformation 6 (e , ), with field-dependent parameter e , as

described in (III.5.9). As a result one uniquely finds the rules:
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abA ab '5'c d

6S = e i( X-SY-R
P) i + 2iKE kY.^P k j , (2.18)

6Pij = P ) 8

6V = e S (x1 + 2jlPA1 - ka-Tlt3AJ' + K(M - IYCN) 1 ^" 5 - K^A1] - 2e1DPA1

^ ^ ^A^ - 2iKe1Y a A V ,
cL 3 uD D

i j = e f i ( x
j l + 2 ^ V J - K0-Tj]kAk + K(M - i

with

Tij _ tij _ / 2 Jij # (2.19)
pv viv pv

According to our earlier discussion, all space-time indices in (2.18) are

Lorentz indices. The consistency of this assignment may be verified from

the commutators on these Bose fields themselves, which yield precisely the

general coordinate and local Lorentz transformations corresponding to such a

transformation character.

The only field variation we have not yet determined is that of x"""- This

we will obtain now by requiring closure of the commutator on the auxiliary

Bose fields. As a first step we supercovariantize again all derivatives and

curvatures in the linearized result. After that still many other types of

variations are possible in order K, and unfortunately they all appear:

X1 •* KX(3<|i)e, <Xxe, KX(3X)E, KBBC. (2.20)

To parametrize these and calculate the coefficients from the Bose field

commutators, i s not an easy matter. We have however gone through t - ie .-hole

procedure to find the resu l t :
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/ = - 2 0 V j e j + DP-VE
i + 2(DPV^ - iyKVTA^ - % AikA?J -

S i O D 3. D 2 3> *3

A i ( v
3, £L

Esq. (2.6), (2.7), (2.15), (2.18) and (2.21) define the local S0(2) super-

gravity multiplet to first order in K. One may verify, that the commutator

algebra indeed has the form (ill.5.8), (III.5.9) on all the fields.

We now have to extend the Lagrangian (ill.5.7) to first order in K. This

is done by the Noether procedure. First one adds to the global Poincari

Lagrangian a Noether term:

f ̂Aether = " f ̂ X ' (2'22)

by:

to absorb variations proportional to 3 e1 in lowest order. Here J11a is given

+ (Mji - iYsH
ji)Y11) • (2.23)

It is not the exact Noether current Ĵ . ,, , defined as the coefficient of

3 e in the variation of the global Lagrangian:

^Poincare " Aether */ + total derivative • &•*)

The reason for this is, that the Noether current itself contains t|i , and

hence would generate extra variations with 3 e in (2.22). To compensate

for this, the corresponding part of JllJ has a factor I in front.

We now continue with the Lagrangian:

4oincare ( g l o b a l ) +/CNoether '

and add terms to it such that it transforms as a total derivative under the

new transformation rules in order K. Again this is only possible up to

terms proportional to 3 e1. To cancel these we have to introduce a Noether

term in order K2. The complete result of this procedure reads:
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- S2 - J(

20V

(2.25)

3. The self-coupling of the S0(2) supergravity multiplet to all orders

We now extend our results to all orders in K. AS "before we use the

field variations to order < to calculate 6_(£,), &T(£ * )
 a nd S-ic ) in the

G A L ab S 3
commutator to order K 2. it turns out, that only e gets an order <2

' . ii
contribution, which comes from the covariantization of F(B) and can be

absorbed in the combination T J, defined in (2.19):

, Eab " - ^ e k a b :. -l(Tab + T5*ij)4-
 2 - > a b n

i J + nijcab)eJ. (3-D

The other parameters] .r,emaip .undianged.- To close the commutators one and
B1J the same, rule Ŝ 1;,'-̂ eqi (2.6), suffices.'" In fact, it turns out that

< •' ' i

with this algebi-a and"this variation of <j/ they close to all orders in K.

Using eq. (2.15) for <5>, 'and full supercovariantizations to all orders in

the Bose-field transformation rulfes,j the commutators on i)*1 and A1 them-

selves close as well. This suggests, that we do not have to introduce new

variations for Uie Bose fields eiy-.?r, beside this full covariantization.
'-• -%• '. • i

Therefore we try to clqse. tfhe algetra on all fields by only adjusting <$x •
This is indeed possible" and one finds: , , '

fix1 = fix11 + K^c^iA^YcAA^- ^ o - T J V ) , (3.2)

where 6xXI refer:; to the result 4?.?1), but now with full super-
. K " -'*:'s ii ""••

covariantizationr; and the complete T .

One may check, that with ̂ ."hose changes in the; transformation rules the

Lagrangian (?.?5) at-ill transforms, irfto a total ..derivative. Hence it is

already complete. Collecting our results, , wer-are-now in a positioi to



t, of transformations:

e1 - J(M+

(3-3)

6S = i*(X - h-R1")1 + 2i«kY5XjPkJ ,

6P i j = ( i^Y^X- iY'RP)J - 2i« iY5xJS - ^e^X^P^Jg ,

6Va = e ^ C x 1 + 2^XX - ko'TljXJ* + K(M- iYsM)10XJ - KJTX1) - 2eiDPXi
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The commutator of two such transformations is given by (ill.5-8) with

parameters £, and e, as defined in (ill.5-9) and e as in (3-1). The

Lagrangian density is given by (2.25). These results constitute the complete

theory of S0(2) Poincare supergravity.

h. Concerning the structure of the Poincare multiplet

Equations (3-3) and (2.25) form the central result of this chapter: the

transformation rules and classical action of S0(2) Poincare supergravity. In

principle one could now go on to construct the corresponding quantum theory,

and study aspects like renormalizability, BRS-transformations, symmetry

breaking, etc. However, our theory is rather complicated and it would be

very useful, if we had some way of gaining more insight into its structure

on the classical level.

In fact we have some cues to a better understanding of the Poincare

theory. To begin with, we know that the linearized multiplet contains a

number of submultiplets, each with their own Lagrangian. One way to obtain

more information on the coupled S0(2) supergravity multiplet is to analyse

what happens to these submultiplets in the local theory.

Moreover, we know from M=1 supergravity, that the results, in particular

for the gauge fields, become much more transparent when considered in the

light of the superconformal theory 15]. This suggests, that also in H=2

supergravity we fojus our attention initially on the components of the Weyl

multiplet, and especially on the gauge fields it contains. On the

linearized level these were:

e a, K,1, A , Aij', V i j . (1..1)

They gauge general coordinate invariance, Q-supersymmetry and chiral U(2)

transformations respectively. The superconformal theory contains more local

invariances (see app. B): local Lorentz invariance, S-supersymmetry,

dilatations and special conformal transformations. However, their gauge

fields either drop out of the theory completely (as for dilatations), or

they are not independent fields, but can be expressed in terms of the other

fields, as u is determined in terms of e and iji1 [6].

One now has to find, which components of the local Poincare multiplet

correspond to the gauge fields of the local Weyl multiplet, as repri. ;er:' d

on the linearized level by (!*.!)• If one has identified these, it bt-omes

possible to construct the full Weyl multiplet by just rewriting the Poincare
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transformation rules. This will be done below. Although it is not

necessary to be familiar with the superconformal algebra, it may be useful

to know that in the Weyl multiplet one may expect the appearance of two

independent local supersymmetries, called Q- and S-supersymmetry, ehiral-

U(2) transformations and scale transformations, or dilatations. These will

be identified in the derivation of the Weyl multiplet. In fact we will find,

that it is possible to decompose the Poincare transformations of the field

components belonging to the Weyl submultiplet into field dependent super-

conformal transformations of the kinds mentioned above. This statement can

also be reversed to say, that the superconformal transformations of the Weyl

multiplet are reflected in the variations of the corresponding Poincare

components. Once this is recognized, the Poincare multiplet becomes much

more manageable.

Consider first the fields V1J and A 1 J, which are the gauge fields of

SU(2) on the linearized level. They have the following Poincare super-

symmetry transformation:

<5(Aij + iVi<j) = 2i((eiy53 X*
5 ) g + £

fi3 Xj ') + ... (h.2)

Eq. (1*.2) can be interpreted as an SU(2) gauge transformation of these

fields with hermitean parameter:

when e is a global spinor parameter. In the local case this is impossible,

since one needs variations with A3 e also. To provide these, we redefine

the vector fields as follows:

V v

which leads to the desired result:

Hence we interpret '^LJ and -V1J as the gauge fields of chiral SU(2) in the

local Weyl multiplet. For A , which does not transform under the SU(2)

'transformation (U.3)» a redefinition of this type is not necessary, and we

take

J) = A (U.6)
p u

as the U(1) gauge field. The consistency of the assignments (luU), (h.6) is
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/ shown by rewriting the transformation rule of lj/1:

CH . lk'7)

where D is the U(2) covariant derivative:

V Note, that (4.7) contains a chiralSU(2) transformation on i))1 with the same

IV field-dependent parameter (4.3) as before. Explicitly we can write it as:

with

(see III.6). As is clear from this, the chiral U(2) transformations of ifi1

in the Weyl theory can indeed be recognized in its Poincare transformation

rule. The other terms in Sifi1 will be identified later as a Q-super-

symmetry transformation:

Q^u ~ K y EQ ~ *° Yy eQ

with parameter

E J - e1 , (4.12)

and an S-supersymmetry transformation:

with parameter

In t h i s approach iji1 clearly i s the gauge f ield of Q-supersymmetry. Next we

turn to the variation of the U(2) gauge f ields {k.k) and (4 .6) . They read:

Y5YVJ(x|v) ^ J r ^ ^ 5 ( ^ )
^ D j ^ (Kre1Y5X

0) + ( i - ^ j ; t r ace less ) ,

. - i / 1 T,P\i . - i /nCH 1 nCH^i i - i , ik k»
i e Y 7 ( x f Y ' R ) i s Y(R | V ' H 5 V ( l C n e )

73



Here we use the notation:

with the same definition of the ehiral-U(2) covariant derivative as in (*).8

This shows, that ip and e are in the same chiral representation, as is x •

The chiral derivative on X1 is defined by:

D J V - D/ + § (7JJ + iy 5^ - iY
Using this we can verify, that J} J + i 1h transforms indeed precisely as a

Yang-Mills gauge field of SU(2):

6(jQ^ + i Z ^ ) = | D^HAiJ + (Q-, S-supersymm. transf.). (1».18)

The results simplify further if we use the notations (k.12) and (h.lh), and

define:

.i DiCH j DiCH _,_ i i ^-^9)

\ = \ ~ I V R + S\Xc '
which leads for example to:

The fields x 1 and T 1 ^ are the "matter" fields of the Weyl multiplet, as

opposed to the gauge fields. The field $ is not an independent variable,

since it is expressed in terms of the other fields of the Weyl multiplet.

To give it a meaning, we note that the principal term in its transformation

rule is:

Hence it acts as the gauge field of the S-supersymmetry transformations we

have encountered above. This interpretation is supported by our further

results. In particular we can write the transformation rules of the fields

Xc a n d T a b a s :

<x c • • •
Here X) stands for the covariant derivative with respect to Lorentz and

U
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ohiral-U(2) symmetry, as well as Q- and S-supersymmetry:

K = in-2 vv-t w • (k-23)
Likewise {%. IJJ1,)0 means the completely covariantized curvature of i))1, and

the quantities .j? are those of the U(2)-gauge fields:

The F are the ordinary Yang-Mills field strenghts.

Finally D is the auxiliary field of the Weyl multiplet. In terms of

Poincare fields it reads:

D = D P . V - f R P
+ f j(V i j) 2 + (A i j) 2 - 2V2

g | (14.25)

Its transformation is given by:

2iC is the complete supercovariant derivative of x > "the covariantization

with respect to U(2) being identical with that of E , eq. (U.8). With this

result we have obtained a complete multiplet, with the field content:

transforming according to:

traceless),

f SJ
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( (h.28) continued)

+ i

If one substitutes for e^ and A1J their definitions, (i+. 1U) and (t.3), one

reobtains the Poincare transformation rules. However, the fields in (h.28)

form a real multiplet by themselves if their transformation rules hold for

arbitrary, field-independent parameters e~, e_ and A , and have a closed
H b

commutator algebra. This turns out to be the case. From (h.28) and the

definition of ij> , eq. (•U. 19)» one may verify, that the commutators yield the

same result on all fields:

, 6g] = 0 ,

with

eab *

= 2 iS aab eQ '

»t Y5 YX X k 2 YS

, i ic A i-j . j
S = " 2 Y EQeS*X '

AD

I while ^..(A J ) and ^ ( A 1 d ) stand for the following chiral U(2)
\ Oil Ori

I transformations:
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On the right-hand side of the commutator [6g, 6 ] , one finds a new type of

transformation, the dilatation 6_. This transformation multiplies the

field by a real number:

6D(A)ij) = aA<j> . (it.30)

The strength of the transformation is determined by the number a, which is

called the Weyl weight of the field. This Weyl weight may actually be found

for the fields by calculating the commutator of S- and Q-supersymmetry. For

example, one finds:

6 (A)ea = -Aea ,
D V ".' (k. 3D

The eqs. (U.28) imply an important result: for all the components of the

Poincare multiplet which enter into the Weyl submultiplet, the Poincare

supersymmetry transformations can be decomposed into transformations of the

superconformal group, with field dependent parameters, as follows:

(U.32)

Moreover, the Weyl multiplet itself turns out to transform linearly under

the full, local transformation group, except for pure covariantizations.

How much of this can be carried over to the other components of the Poircare

multiplet, will be the subject of the next section.

5. Some results for the submultiplets

In our analysis of the structure of the N=2 Poincare multiplet of

supergravity, we have discovered a local version of the Weyl submultiplet,

which has much simpler transformation rules than the original Poincare

fields. Moreover, using notions borrowed from the superconformal theory, we

found, that the Poincare1 transformation rules could be decomposed into a

number of simpler variations, at least for the fields occurring in t)-e Weyl

submultiplet. However, we are also interested in what happens to thi other

components, belonging in the linearized theory to either the vector or the
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tensor sutanultiplets. It is the purpose of this section to show, that one

may profit from the results, obtained for the Weyl multiplet, here also. We

first must point out, that the notion of submultiplet acquires a different

meaning in the local theory from that in the global one.

. The Weyl multiplet, which is a multiplet of supergravity gauge fields,

is a real submultiplet in the sense, that its fields transform only among

themselves . This is the case at least, when one takes into account all the

local symmetries of this submultiplet. For the vector and tensor multiplets,

which can also be viewed as abstract "matter" multiplets, this is no longer

true. Their transformation rules become non-linear in the coupled theory,

and these non-linear terms contain fields of the original gauge multiplet,

which do not belong to the submultiplet proper. We interpret this result as

an indication that the extension of each submultiplet to local supersymmetry

contains the Poineare fields of W=2 supergravity manifestly as background

fields. Such an extension of a global-supersymmetry multiplet to a local

one with coupling to the supergravity fields, will still be called a matter

multiplet. If only the field components of the Weyl multiplet enter as

background fields, we will use the term "conforraal matter multiplet".

Because they contain more symmetries, conformal multiplets will in general

be simpler as far as their supersymmetry structure is concerned. Both the

vector and tensor multiplets turn out to be conformal matter multiplets.

To illustrate the above ideas, we present here the vector multiplet of

the locally supersymmetric theory. As a submultiplet of Poincare super-

gravity it is realized by the components:

W = V - lejJ1*1 ,
V P V

(5.D

+ iK2 (-MikXkY5A J + iK
ikAkA J + J.\n5 ) s •
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One can see, that this is a conformal matter multiplet from its Poineare

transformations, which can "be decomposed into Q- and S-supersymmetry and a

chiral-SU(2) transformation by the same rule (^.32) as for the Weyl multiple!.

We will first give the transformation laws for the multiplet (5.1), and then

comment on its derivation. In terms of the fields defined in (5.1) and § h

we find:

- (F-iy5G)
ij

ej (5.2)

(A-iY5B)
ij

ej + |

# + f i l ^ C ^ - i(Aik)gF
kJ + (i-j; traceless).

We have used % as before for the covariant derivative with respect to all

the symmetries of the Weyl "aiiltiplet. Furthermore we introduced a

generalized field strength of W :

Again, if one substitutes expression (H.3) and (1».11() for A J and E , one
o

obtains the Poincare transformations of the fields. We see, that the rules

(5.2) are still linear in the fields of the vector multiplet itself, the •

non-linearities being almost entirely the result of covariantizations. The

L single exception to this is the transformation rule of W . However, if we

express it through its field strength (5-3), its transformation rule

becomes a covariant expression also:

The derivation of the rules (5-2) involved using the Poincare rules to find

the expression for 6W , 6A J and 6B ^ from (5-1). At that point it was

convenient to abstract from the specific representation of the vectc :•

multiplet. We found e^1, 6F1J and 6G1J from the linearized results and the
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requirement of closure of the commutator of two Poincare transformations.

Subsequently we could decompose the Poincare transformations by the same

rule as for the Weyl multiplet. This established the result (5.2). The

identifications of "P1, F and G to all orders, as in (5-1)> were only

made afterwards.

6. Conclusions and outlook

We have constructed the full interacting theory of S0(2) Poincare

supergravity with a minimal set of auxiliary fields. This supergravity

multiplet has complicated transformation rules, but can be understood much

better, when we recognize its decomposition into submultiplets. This is

analogous to the results obtained for the global theory. These submultiplets

themselves appear very simple, when formulated in terms of superconformal

symmetries. In particular their transformation rules turn out to be proper

covariantizations of the linearized ones with respect to all local symmetries

of the Weyl multiplet.

One can also view the vector and tensor multiplets as independent matter

multiplets, which can be coupled to supergravity, either as conformal or

as Poincare multiplets. In that case one needs to construct invariant

actions for them, as we have done in the linearized theory. However, the

tensor multiplet turns out to have the wrong Weyl weight and the Lagrangian

(111.6.2) cannot be generalized to the interacting case [k]. On the other

hand, for the vector multiplet it is possible to extend the global action

(111.6.3) to a local invariant by the Noether procedure.

To find the most general invariants of N=2 multiplets requires however

a set of multiplication rules for these multiplets and a corresponding

action formula, as exist in H=1 supergravity [7]- Such a multiplet

calculus then allows the study of renormalizability and the Higgs mechanism

for local N=2 supersymmetric field theories. Hence the theory becomes more

interesting phenomenologically, especially with a suitable set of vector

multiplets coupled to that of supergravity. A drawback of this scheme is,

•that coupling of such matter fields spoils the renormalizability believed

to exist for the pure supergravity theory [8].

Another reason to study these aspects of the theory lies in the hope,

that some features of higher N extended supergravity theories, which have

more realistic phenomenological properties, can be studied in this
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mathematically simpler model. For all these applications, however, it is

crucial to have a formulation of the theory with closed gauge algebra, as is

provided by our set of auxiliary fields.
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CHAPTER V

COVARIANT QUANTIZATION OF SUPERGRAVITY

! 1. Introduction

!:, In this chapter we will discuss the quantization of supergravity- We

i
will do this in the framework of the covariant quantization procedure [1].

This procedure is centered around the construction of a generating functional

I for Greens functions, called the path integral. Since physical quantities

calculated from this path integral are to be gauge independent, the path

integral has to be a gauge invariant object itself. However, in the usual

prescription for the quantization of gauge theories the gauge invariance is

not manifest, but is implied by the existence of a special global

invariance of the generating functional, called B.R.S. invariance [2]. For

the Greens functions this B.R.S. invariance results in a set of diagrammatic

identities, known as generalized Ward-Takahashi identities. These

identities are crucial in the proofs of unitarity and renonnalizability of

gauge theories in the context of perturbation theory.

Because B.H.S, invariance plays such an important role, it can be used

as a guiding principle in the construction of path integrals for gauge

theories. This will be exploited in the following. We will show, that the

usual covariant quantization procedure, as established for gauge theories of

the Yang-Mills type, is not correct for theories with an open gauge algebra,

such as supergravity without auxiliary fields [3,^ ] . But we can modify

this procedure by imposing a generalized form of B.E.S. invariance on the

theory. This generalized B.R.S. invariance on the one hand determines the

path integral, up to the usual freedom in choice of gauge fixing condition;

I on the other hand it leads to the correct Ward-Takahashi identities, ensuring

gauge invariance of the S-matrix elements.

This chapter is organized as follows. In section 2 we outline the

standard procedure for quantization of gauge theories with closed comutator

' algebra. In section 3 we apply it to the theory of S0(2) supergravity in

the formulation with auxiliary fields. We then discuss, what happens when

the auxiliary fields are eliminated. This leads to the conclusion, that in
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a formulation without auxiliary fields the standard quantization procedure

cannot be applicable. The reason can be traced back to the non-closure of

the commutators off-shell in this formulation, which is related to the

existence of so-called equation-of-motion symmetries. A general discussion

of equation-of-motion symmetries and their role in field theory is the

subject of section h.

Sections 5 and 6 are devoted to the establishment of the correct

quantization procedure for gauge theories with open gauge algebra. The

proof of generalized B.R.S. invariance of the path integral goes by induction

with respect to the number of ghost fields. The lowest order results, which

suffice for the case of supergravity, are presented in section 5- They can

be verified explicitly for S0(2) supergravity by comparison with section 3-

The induction step, necessary to prove B.B.S. invariance to all orders, is

given in section 6. In V.7 the gauge invariance of the theory is proven

and some properties of the B.K.S. transformations are discussed. Finally

conclusions are drawn, and some general remarks made, in section 8.

2. The covariant quantization procedure

We will first review the standard covariant quantization procedure for

gauge theories. For details we may refer to many available expositions,

such as refs. [1], Suppose we have a theory with fields if1, where the

index i denotes all parameters on which the fields depend, e.g. space-time

parameters, Lorentz indices, internal symmetry indices, etc. Classically

the dynamics of the fields is derived from an action S[$],vhich is minimized

to give the field equations:

-^r- S = S . = 0 . {2.1)
64.1 5l

The corresponding quantum theory is defined by the path integral:

^ = N j D<j> exp i(S[<j>] + J ^ 1 ) . (2 .2)

Here the functions J. are external sources for the fields $ ; Dij> denotes

the functional integration measure and N is a normalization factor. The

expectation value of an arbitrary function of the fields, 0[$], in the

presence of the sources J. is calculated from ZfJ.J by:

exp i(S[<j>] + J ^ 1 ) . (2-3)
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Suppose now, that the classical action S[<|>] possesses an invariance under local

transformations, parametrized by n independent parameters £a:

S .R1
,1 a

(2.1*)
0 , <x*1,...,n.

We assume, that the gauge algebra closes, i.e. that the commutator of two

transformations (2.k) is again such a transformation, possibly with field

dependent transformation parameter:

a a .
(2.5)

with

r o ,
a = ^

if 5 is a commuting parameter,

if £ is an anticomnuting parameter. (2.6)

The function f]L, which may depend on the fields, is known as the structure

function of the transformations (2.1+).

In constructing the path integral one must now deal with the problem of

how to treat the superfluous gauge components of the fields in the functional

integral. The solution of this problem is laid down in the following

prescription. One replaces the action in (2.2) by an effective action, in

which all field components, including the unphysical gauge components,

appear. However, this effective action is constructed in such a way, that

all unphysical components either decouple from the theory or are cancelled

by a set of so-called ghost fields. These ghost fields have unphysical

statistics: they are anticommuting, when they have integer spin, and

commuting in case they have half integer spin.

Explicitly this prescription takes the following form. To the classical

action one adds a gauge fixing term of the form:

'fix -tn (2.7)

where F is a set of n independent functions of the gauge fields. This term

breaks the gauge invariance of the action, and introduces:- the unphysical

field components into the theory. Hence the theory now violates unitarity.

which hasThis is restored by adding a term containing ghost fields c , c
a

the form of a gauge transformation on F with parameter c , multipled by an

antighost c a, which acts as a Lagrange multiplier:
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That the effective action only describes the physical components of the

theory is formally a result of the ghost field equations:

F -R^c3 = 0 , (2.9)

which assures the gauge invariance of F and consequently of the effective

action as well. The complete effective action now reads:

Se?f = S^ ~ K + **XAcB • (2-10)

Furthermore the functional integration measure has to be extended to include

the ghost fields as well:

D<j> •* DfcDcDc*'. (2.11)

Eqs. (2.10) and (2.11) define the path integral for the gauge theory under

consideration.

Although the effective action (2.10) has lost its manifest gauge

invariance, it does possess an invariance under a set of transformations

with a global anticommuting parameter A, defined by:

-,i Di a,Si> = R c A ,

6ca =-4f« Yc
eAc^ , (2.12)

6c*a = -AFa .

These are the B.R.S. transformations [21. On (f1 they have precisely the form

of a gauge transformation with parameter c A. Hence they reflect the

original gauge invariance in the full effective action, S _f. The important

step in the proof of B.R.S. invariance of (2.10) is the cancellation of the

terms:

-ic"*aF .(RJf^ - R* -Rj + (-1)aA<V .RJ)cPAcA , (2.13)

in the variation of the ghost action. This is guaranteed by the closure of

the gauge algebra (2.5)- Hence this closure is crucial for the correctness

of the above prescription. Actually one may prove that the B.R.S.

invariance (2.12) is a necessary condition for the gauge invariance of the

S-matrix elements, calculated with the path integral defined by (2.10),

(2.11).
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3. Quantization of S0(2) supergravity

The classical field equations for the auxiliary fields in supergravity

are algebraic in character. In fact all auxiliary fields are zero

classically. Hence they can be eliminated from the action, without

changing the physical content of the theory. However, this is no longer

true in the quantum theory. In the effective action the ghost terms appear

and because of this the auxiliary field equations are modified. We will

I treat here the example of S0(2) supergravity. In the formulation with

I auxiliary fields, the gauge algebra closes and we may use the quantization

i. procedure described in V.2. We will restrict ourselves to supersymmetry

i and take the gauge fixing term:

. (3-1)

:The corresponding ghost action becomes

Sghost " 2~c*1*ci ~ * 2c*V*jcW;

5 J • (3.2)

Here c and c are the Majorana spinor ghost and antighost respectively,

while the bar denotes conjugation as usual. The field equations for the

auxiliary fields now read:

-2i<e~1(S*iY5c
j)

(3-3)

tl = l*.ceca c ,
ab ab *

X1 = V = M 1 J = N 1 J = 0
EL

*) We ignore the problem of Nielsen ghosts (6J, since they are not

relevant to our discussion
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The equation for x""" is complicated, but of no importance to us here.

Inserting (3.3) back into the action one obtains the following modified ghost

terms [5] :

: 2c $c — K c Y $ c f Y\

• JK e L(C c M C c / - (c Ycc lit Ycc 'J

i 2 -1r ,-*i a *j w-i j% . ,-*i a *j w-i JVT
• k e l-(c Y C ) ( C Y C ) + (C Y Y CC °)(C Y YCC )l
o a t> a «

Thus elimination of the auxiliary fields introduces quartic ghost terms in

the effective action. Such terms can never be obtained by applying our

previous covariant quantization procedure to the theory formulated in terms

of physical fields only. Failure of this procedure was to be expected,

since the gauge algebra does not close in this formulation of the theory.

Hence it is clear, that the quantization procedure has to be modified in

this case. Such a procedure for quantization of a gauge theory with open

gauge algebra is in principle even more general, since it could also be

• used, when no closed version of the algebra exists. To develop this

procedure will be the subject of the rest of this chapter.

k. Equation of motion symmetries

It has become clear from the foregoing discussion, that non-closure of

the gauge algebra is an important feature in the quantization of field

theories. Therefore we will devote this section to an explanation of the

role of equation-of-motion terms in the gauge algebra.

Suppose again, that we have a field theory of fields $ described by a

classical action S[$], which is invariant under gauge transformations R £ ,

as in (2.U). The classical field equations are

S . = 0 . (U.1)

Because of this we will refer to S . as an "equation of motion", even when

the fields are evaluated off-shell, i.e;vwhan (U.1) does not hold. We now

come to an important point: besides the gauge transformations R , there

exist infinitely many other invariances of the action, which are of '.ho ̂ ype:

64,1 = s n
J i , ()4.2)

»J
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where n is an arbitrary function of the fields, except for the

requirement:

11 1+a.a. i;
nJ1 = (-D x V J . (U.3)

Here the numbers a. are defined analogously to (2.6):

0 , if'^1 is a commuting field,
a. = I i (h.k)

^ is an anticommuting field.

r 0 , if'^1 i
a. = I i

^ 1 , if <f> i

As a consequence of {k.2), the equation:

•; s . x 1 = o , ( i t .5 )

has the general solution:

X1 = K Y + S . n
j i , (U.6)

o ,j

with arbitrary Y™ and n1J •

The transformations (h.2) do not correspond to superfluous degrees of

freedom, since they vanish on shell. In this respect they do not present

a problem in the quantization of the theory. However, we note that one can

always add a transformation of the equation-of-motion type to the gauge

invariances R
a

R'1 = R1 j i

o o

With nJ1 satisfying (̂ .3) this is still an invariance of the classical

action. Clearly, different choices of R lead to different ghost

Lagrangians and therefore to different effective actions.

Another problem is posed by the commutator algebra of the transformations.

Suppose we perform two successive gauge transformations on the classical

action. The invariance, expressed by (2.U), implies:

s .i£ .RJ + (-i)ap ̂  &i s ..RJI£ - o . (k.8)
,1 <x,j p ,ij B a

Next we interchange the two transformations and subtract the result from

(U.8). Thus we find the generalized commutator of two gauge transformations

; on S (cf. (2.5) ):

i S [R-J R J } = 0 . (fc.8)

' This means that [R1 .R^} is itself an invariance of the action, and by (k.6)

it can be written:

88



This is the generalization of (2.5) and states, that the commutators of any

two gauge transformations of a theory always close modulo equation-of-motion

terms. The quantities fj. and n-1 in (It. 10) are called generalized structure
pot pet

functions.

Sometimes it is possible to remove the second term on the right-hand side

of (̂ . 10) by a redefinition of the gauge transformations, as in (*t.7). Then

this is clearly a reasonable thing to do, because quantization becomes

straightforward. However, it is not always possible to do this, as is shown

by the supergravity theories formulated in terms of physical fields only.

We have seen, that our previous quantization procedure then fails. In

general it can also be seen from eq. (2.13), which leads to the result:

where we have used (i*. 10). Eq. C4.11) does not vanish off-shell and B.R,S.

invariance is violated.

Summarizing we conclude, that equation-of-motion symmetries pose two

kinds of problems in the quantization of gauges theories. In the first

place, even for a fixed gauge condition F , the ghost action is not

uniquely defined. Secondly, with the quantization prescription given in

V.2 we do not obtain B.R.S. invariant effective actions. We will now solve

this last problem. We will derive a new prescription for the construction

of S „_, which is invariant under generalized B.R.S. transformations. We

will also show, that this theory leads to a gauge independent S-matrix.

Hence the first problem is solved implicitly.

5. Quantization of gauge theories with open gauge algebra

As one may expect from the example of S0(2) supergravity, the solution

to the problems described above is to be found in the introduction of higher

order ghost interactions in the effective Lagrangian, accompanied by a

suitable extension of the B.R.S. transformations. Indeed we will prove the

following theorem:

There exist quantities M a
n ^'(n), x1"'"'11 (n), obtainable solely

in terms of the gauge transformations and their commutators, such tfat Uie

effective action for any gauge theory is:



Seff = S~ ^ ^ V

and that this effective action is invariant under a generalization of the

B.R.S. transformations:

5((i = (R + I F. ...F. M (n)c ...c Jc A ,
al n>2 12 •'"n an" " a l

6ca = f-g f™ + 7 F. ...F. X n ^(n) 0 n-.-c )c Ac , (5-2)

6c*01 = -AFa .

Here and in the following we use the notation:

F. = 5*°F . ,
(5.3)

a.a.
P.. =S*°F .. = (-1) * JF.. .

The proof of this theorem goes by induction with respect to the number of

ghost fields . In this section we will present it up to terms quadratic

in F.. This shows the general procedure and is moreover completely

sufficient for the case of S0(2) supergravity. We suspect it to be

sufficient for higher N supergravity theories as well. The generalization

of our proof to all orders will be discussed in the next section.

We begin by noting, that S _f and the B.R.S. transformations reduce to

the usual ones, (2.10), (2.12), in lowest order in F.. Hence in this

order we find again (i*.1i), which can be written:

Clearly this variation can be cancelled by a new term in &$ , as in (5-2);

we only have to define

a.+a +1 .. /c .

MjJ(2). (-1) 1 V „ £ • (5"5

.However, such an extension of <5<f introduces other new variations in S „,

besides one that cancels (5.1*). Using (5-1) and (5-2) the complete

variation of Seff to second order in the antighosts becomes:

*) For S-matrix elements this is equivalent to induction with respect to the

number of loops in the diagrams.
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W A . (5-6)

In fact, the last term is a new variation of ij)1, which has to cancel the

net effect of the other variations with S , in (5-6) in the same way the

variation with M(2) had to cancel (5-1*). Similarly, the term with X( 1)

comes from a new variation of the ghost, designed to cancel the other terms

in (5.6), which are not explicitly proportional to an equation of motion.

We will now show this cancellation mechanism in some more detail.

In the first place the variation of -gF vanishes with those of the

antighosts c , as may easily be verified to all orders in F.. Hence we do

not consider these. Furthermore, the terms with F.. in (5-6) cancel after

some rewriting to cast them into the same form, using (5.3). Taking M(2) as
(2)

in (5-5), we can now write S'S „„
BKS el1 as:

a.+a,,

BRS eff

(a,+a,) . a +a +a.(1+a.)
\ a p A j

a a +a (a +a +a )
» j K Y K a P

with
a (a +a_+a.)Y a 6 °n^J .R1 - (-'6a,I Y

(5.7)

(5.8)
Y.i'Sa '

This is the commutator of a gauge transformation and a transformation of the

type:

, ,i _ ij-Bot (5.9)

where £. is an arbitrary parameter. Note however, that (5-9) is not an
J

invariance of the action in general. We will now prove, that one ca: de'"ine

M(3) and X( 1) such that (5.7) vanishes. This is done by evaluating t.ie

commutator [n>R}» (5.8), and substituting the result into (5-7). The



evaluation is carried out by calculating the Jacobi identity for three gauge

transformations. Using its cyclic nature and contracting it with ghosts, it

reads:
a. . . . . .

(-1) - R1

a
.R} y - R .[R .R^

a,J B >k y a,j l B,k y

Inserting (t.10) this leads to:

^ * Rk fA fV

0 . (5.9)

(-1) X

R - f f0 )Y P<x BY

a.a.+a,(a.+a +ao) .

2S

0 Y J = 0 .

Eq.. (5.10) has the generic form:

AA + S .Bjl = 0 .

(5-10)

(5.11)

In order to solve it, it is necessary to make a clear cut separation between

gauge invariances and equation-of-motion symmetries. We do this by defining

gauge transformations to be invariances of the action which do not vanish

on shell. Therefore the R, can not be proportional to a field equation.

With this convention, we proceed to solve eq. (5.11). On shell this reduces

to:

which, in view of the above, implies that A has the structure:

AA = S .AjA .
,3

Then (5-11) becomes:

S .«-o
aj & i + a x

R y
x + B

ji) = o.

By eq. (k.6) this has the solution:

(5.12)

(5.13)

(5.1*0

1+a, a. ., .
k jjki

Applying this result to (5-10) leads to the equations:

0 ,

(5.15)

(5.16)
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... .. , a.a.+a (a.+a +a.
-nf f\ + Inf vR

k} + (-1) 1 J Y J a B

1+a.a. . .. ..

which are the analogues of (5.13) and (5.15). However, we have used an extra

piece of information, which is that the left-hand side of (5.17) is
, ,1+a.a.

multiplied by a factor (-1) *• J upon interchange of i and j; hence on the

right-hand side of (5.17) this symmetry has been imposed as well. This
kii

results in a complete cyclic symmetry of n . :

MY3a

a a.+1 . . a.a.+1
— t 1 ̂ J Ji^l __ / * N 1 J

(2)
Finally we can insert (5.17) into (5.7) and find, that 6J, 'S .„„

isKb ell
we identify:

a.+a.(a, +1) . .,
(-1)6 J k MS(3)

a+a +a.(i+a.) ..
" 6 X ^

(5

vanishes

(5

(5

.18)

i f

.19)

.20)

which was what we set out to prove. As a result of our analysis we have

also found the relations (5.16) and (5.17). Eq. (5.16) expresses the fact,

that the structure functions form a representation of the algebra (It.10),

where U J
O plays the role of n ^ . This provides an interpretation of X(1).

YfSa YP

Eq. (5.17) gives an expression for the commutator [n,R}. Such a commutator,

and its generalization [M(n),R} for n>2, will play an important role in the

proof of invariance to all orders.

It has been shown by Kallosh [h], that the results derived above suffice

for N=1 supergravity. This follows from the vanishing of M(n), X(n-i) for.

n>3. Townsend [5], has calculated the quartic ghost terms for S0(2) super-

gravity by this procedure and arrived at our result (3.*»). He has also

calculated the quartic ghost terms for all higher N theories (N<8), and they

turn out to have the same form (3.1»). However, he has not shown the

vanishing of the higher order quantities M(n), X(n). Hence we do not know

whether the result is complete for N>3.

6. Results to all orders

We will now continue the proof of B.R.S. invariance to arbitrary order.

In order to keep the discussion clear of intractable minus signs, we will for
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definiteness assume that we have only Bose fields and gauge parameters. Hence

we have anticommuting ghosts and F.. The general case is then obtained by a

consistent introduction of minus signs for Fermi fields and parameters every-

where, but this does not alter the various steps of the proof as outlined

below.

We will assume the rfi^ order variation of S „„, (5-1)> to be zero for

all n<N-1, where N is a given integer. This variation reads:

/ -\ ( [i, i . •. i ] ji . . .i,
«£& „ = F. ...F. \-R hn 2 U

o (n-1) + mo
 n '(n+DS . +BRS eff ij 1^ u an-..a2 otjB Ban...cij ,j

+ Ma

n-1
+ ][
k=£

[
+ kM

(n-1)! M

' 2 fa,a2
Ma ...a.t

, . . M 3 a n " 1 .(n-k;l> c c . . .c A . (6.1)

Square brackets denote.complete antisymmetrization of all independent

combinations of indices, except for indices that carry a hat "*". To show,

that one can find quantities X(N-1), M(N+1), such that (6.1) also

vanishes for n=N, we proceed as follows. We assume, that for all n<N-1,

the quantities X(n-1) and M(n+1) satisfy:

M
i ...i,
n *

[ij i ...i2lq
(n) -ff' M ; " ' 1 . ^

2 a,a, a ...o-Sp

n-1
I

and



k=1

k.'(n-k)! ..^n-k"'1!,

ji ...i , .,]
. n n-k+1

, +

V-Vk+i'
(k) +

n n-k+1. 1

The quantity A(n) above is defined by:

i .. .i, i ...i,

a
n"-

ai «Y >i

0 .

ay
M

r,q an...a1f

? (k-1 )!(n-k+1)!

k=2 n

Xk-T i, ...i ]k n1
(k)X

>+1-k)

A-r"1! V-V

with

A(0) = Ü

(6.3)

(6.5)ay Aß ß ay»q

We must now prove, that (6.2),and (6.3) are also satisfied for n*N. Since

we know them to hold for n=1, we have then completed their proof to all

orders by induction. The essential element of the proof is the calculation

of the Jacobi identity for two gauge transformations and a transformation

of the type:

(6.6)

with arbi t rary £(n). This Jacobi identi ty reads:

i . . . i . k i , i . . . i -k
D 1 R J], .M.n -. (n)] + 2[[R \ n a 2

M
n 1

1 M l n ' " l 2 k

, j "
= o.

(ó. 7)
When we eva lua te i t for n=N-1, and use expression (U.10) for |K,R] and

(6 .2 ) for the commutator:
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i ...i.k 1 ...X,

we find:

[R1
 kMa

n
 ft (n)] = R* kMa

n
 a

2 U ; - Md
n

 a
X(n) kI

ind:
i M . . . i , i i M . . . i , [i, i M . . . i . j

S ± D M J(H) = S t- {
M

a . . . a <»)>(1
RJ ~ R

e , q V . . . a (N)

N-1

k«2

Jq

Vak+1

(N-k-1)

(6.8)

(6.9)

Since the summation in the right-hand side of (6.9) involves only k>2, we

may use eq.. (6.3) to evaluate the quantities:

(N-k-1) 5 A ? . W k + 1 ( M - k - i )

Vr-Vi

(M-k)S , . (6.10)

Eq. (6.3) is actually a recurrence relation for the quantities B(n). Since

B(0) * 0, they would imply all B(n) to vanish, if no antisyaaetrizations

were involved. Due to these antisynaetrizations, however, non-trivial

solutions exist of the form:

B' (0) , for n«1 ,

k-2
•c^c cac n...c , for itt2.

(6.11)

96



f:X
Here the quantities YV (n) are symmetric in p and X. When one substitutes

this result into (6.9)> one now makes the important observation, that owing

to the symmetries of the factors YW (n), all terms of the form:

M (k) M,
\1 u • • Aa • •

,A > 2,

cancel. This leaves us with the result:

* * * i 2 1

(6.12)

This has a form, which is a direct generalization of eq. (5.11) and can be

solved analogously. It leads to the desired result, that one can write:

i,,...i, i.,...i,
-iNf" M

<*1«2

N (N)

1S."~£- ft. I

[i ...i. i ...i ]
kM > «..<k)x" „ *

( fii iij'-'io] „R v „«
V aN...a2 Oj

6 aM al
'C C ...C

,0
(6.13)

(6.11.)

Choosing this for X(N-1) and M(N+1) in (5.1) and (5.2), we have indeed:

6BRSSeff ° *

Substitution of (6.13) into the Jacobi identity (6.7) with n«N, finally

proves eq. (6.3) in next order. Hence the proof of (6.2) and (6.3) by

induction is complete.

7. Discussion

We have proven, that the effective action (5.1) is invariant under the

generalized B.R.F transformations (5-2). Of course this is not sufficient

to ensure, that S ._ defines the correct path integral. We must still sizov-,

that B.R.S. invariance guarantees the gauge independence of the quantum
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theory. The proof is simple and completely analogous to the one for

theories with a closed gauge algebra [1].

We will first derive the following general theorem:

a B.R.S. transformation on the expectation value of any function 0 of the

fields can always be absorbed in a redefinition of the source terms in

the path integral.

To prove this statement, we construct a generalized path integral:

Z[J,H] - j D* exp i(Seff + J^
1 + HO) . (7-0

By performing a B.R.S. transformation on it and assuming the integration

measure to be gauge invariant, we find:

-iA < V B R S * 1 + H6BRS° > J,H " ° ' (7'2)

Taking the derivative with respect to H and evaluating the result at H«0 then

gives:

which is the desired result.

The following step is now to show, that an infinitesimal change of gauge

in the path integral can be written as a B.R.S. transformation on a certain

function. Explicitly, if we change the gauge:

F •+ F +XG , (l.h)
a a a

then the change in the path integral is, to first order in A:

ZfJ.] +

i\ ( -FaG •c
a

i ...i,
n 1

~1J-1 "1 n>2 *£"

One sees immediately, that (7-5) can be written:

V*"al
(n)e n...c 2)c ' > . (7.5)

J

(7-6)

By our theorem this can be compensated by a simultaneous redefinition of the

source terms:

(7-7)

Clearly this is zero, when the sources are B.R.S. invariant:
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0 . (7.8)

However, we may also invoke a general theorem in field theory, that path

integrals, which differ only in the source terms, give rise to the same

S-matrix elements [1]. This establishes the gauge invariance of the quantum

theory, provided we make some restrictions. The above argument presupposes

that B.R.S. invariance is not spontaneously broken. Furthermore the sources

need to be physical, i.e. they must satisfy:

(FaJi) - 0 , (7-9)

for arbitrary gauge fixing functions F™ (see ref. [1.b]) •

We now want to discuss a property of the B.R.S. transformations them-

selves. If we take the commutator of two B.R.S. transformations, the

argument which also led to (I*. 10) shows, that it closes upon use of the

effective field equations. However, it turns out that a stronger condition

holds, which is, that the B.R.S. transformations are nilpotent upon use of

the effective equations of motion. Indeed one may verify, that:

"* a3\a2alC F

BRS

(terms containing YM (n) ) \ , (7.10)

6S
eff

Sc

This is to be compared with the strict nilpotency of
Dtio

and fi_DOc
a in

Yang-Hills theory. However, the nilpotency condition (7.10) for c

holds in both cases. These observations may be important in restricting

possible higher order counter terms to S __ [I.a].

8. Conclusion

We have shown how to quantize supergravity, both in a formulation with

and without auxiliary fields. Moreover we have generalized the covariant
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quantization procedure to arbitrary gauge theories with open gauge algebra.

This shows, that a closed commutator algebra of the gauge transformations is

no prerequisite for obtaining a consistent quantum theory. The most

conspicuous feature of this procedure is the introduction of higher order

ghost terms, both in the effective action and the B.R.S. transformations.

Incidentally this, and the gauge algebra, show that theories with open gauge

algebra are most likely to be found among theories with dimensionful coupling

constants, such as gravity.

It would be interesting if we vere able to understand these higher order

corrections from a more general point of view. For example one might ask

whether there is a relation between open gauge algebra's and auxiliary fields.

At present we know only, that elimination of auxiliary fields leads to open

gauge algebra's. Whether there always corresponds a closed algebra with

auxiliary fields to any open gauge algebra is an unanswered question.

Finally there is an interesting observation by Otten [71, who showed

that the generating functional for proper vertices has a set of local

invariances with open commutator algebra. This generating functional is the

Legendre transform with respect to the sources of the logarithm of the path

integral:

- J.*1 , (8.1)

with

(8.2)

It turns out that r has precisely the form (5.1), vith the quantities

M(n) generated by the algebra of local invariances, as discussed.

With this remark we conclude our discussion of the quantization procedure

for theories with an open commutator algebra of local gauge transformations.
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APPENDIX A. Notations and conventions

In this place we collect the notations and conventions used throughout

the text concerning representations of the Loreritz group and Dirac algebra.

When we consider global Lorentz invariance, we denote vectors by Greek

indices u, v, ..., and spinors by Latin indices a, b,... . Both run from

1 to •(. We use the Pauli metric

6^ - diag. (+,+,+,+),

with imaginary time components of four-vectors:

(A.I)

(A.2)
M t

Hence there is no need for distinguishing upper and lower indices. The

four-dimensional Levi-Civita tensor is defined in terms of the permutation
, - e(x&y6symbol o t

uvpa

e * s1Z3H * +1, (pvpo) • even permutation of (I23fc),
jjvpo uvpa

-1, (uvpa) * odd permutation of (1231*),

0, otherwise . (A.3)

Three-dimensional ordinary space vectors carry Latin indices i, j,...,

running from 1 to 3. The three-dimensional Levi-Civita tensor is

e.. * 5??' * e..
ilk ilk n RJt

In all cases repeated indices will imply a summation, unless explicitly

stated otherwise.

When we discuss local Lorentz invariance, we need to distinguish

between world indices u,v,... and local Lorentz indices a,b,... . In this

case we will suppress spinor indices, hence no confusion with local Lorentz

indices can arise. Vierbeins e* and their matrix inverse e^ convert local

Lorentz tensors into world tensors and vice versa, as discussed in I.U.

Consequently we have world tensors with upper and lower indices, related by

a contraction with the metric tensor

6 ,e ae\
ab u v

(AJO

or its inverse gIJV. The sumation convention for world indices implies a

contraction over g .

The Levi-Civita symbol with world indices is defined as in (A.3):
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yvpcr
5123»f = 1 e e ae be°e d

yvpa e abed u v p a * (A.5)

where

det e

Hence e is no longer a tensor, but a tensor density.

Next we discuss the Dirac algebra. We will do this in the context of

global Lorentz invariance. When considering the local case the Dirac

algebra remains unchanged when one defines all elements with local Lorentz

indices.

With our metric convention (A.1) the Dirac algebra is defined by

(A.6)y Y + Y y = 2 6'y v v u yv

Hence

p
1 (no summation over u) • (A.7)

Ty 'v

The standard irreducible representation of this algebra is four-dimensional

and has hermitean y-matrices:

(A.8)

From these elements we define the following quantities:

Ys = Y1Y2Y3YH » Y5 ~ Y5»

a
uv

Y Y -y y ) > a --au v v y yv yv

(A.9)

The a form a representation of the Lorentz algebra:

yv* 01$ y$ vot voi y£

The set of sixteen k x U-matrices

6 o n - 6 no
va \>B v$ ya

(A.10)

i s complete. Hence any h x It-matrix X can be expanded in terms of the 0 :

Tr(X0J)0J . (A.11)

In particular all 0 except 1 are traceless:

Tr 0 J - (0J)oj> - 0 .as.

We define a charge conjugation matrix C by

C Y
 T " -Y C ,

c2 = 1, c * -cT.
(A-12)
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Here the superscript T denotes transposition. From (A.12) we derive:

T "1

T -1
° "V (A.13)

T -1
Co C • -0

|iv

Vu'

The four-dimensional representation space of the Dirac algebra is called

spinor space. The elements of this space, the spinors, transform

covariantly under the representation of the Lorentz group generated by o :

ty = ltVV(a ) ,*. . (A.iU)

As a consequence they can be used to construct relativistically invariant

field theories, in which they represent fields with spin \. For consistency

they have to be anticommuting, i.e. they are elements of a Grassmann

algebra:

Vb + Va - ° '
Free spinor fields satisfy the Dirac equation:

(7+m)li - 0 ,

where we use the notation

V u

The Pauli conjugate ^ of a spinor is defined by

• * *\ •

It satisfies the equation

A Majorana spinor is defined as a self conjugate spinor:

Ta abTb

Using (A.13) and (A.15) ve find for Majorana spinors:

JY • * o « ?o <p .

(A.15)

(A.16)

(A.17)

(A.18)

(A. 19)

(A.20)

(A.21)

The completeness relation (A.11) may be used to expand the direct product of

two spinors:



(A'22)

This is sometimes called the Fierz rearrangement formula. A number of

useful (anti-)commutation relations is given below. Writing

[A,B] >

{A,B} •

' AB-BA,

= AB+BA,

one may derive:

{y ,y •
y v

[ = 26
1 y

\ ~ °

(A.23)

ha ,
yv'

%vXpY5Yp '
(A.2U)

[a,a l
uv pa

6 o + 6 a - 6 0 - 6 a .
vp ya ya vp yp va va yp

Sometimes it is convenient to have an explicit representation of the Dirac

algebra. In terms of the Pauli matrices a. :

(?;)• •. • (° 1) • •. - c -0 •
there is a representation:

/ 6- -ia.

* i

with

yv

u - 2 5 )

(A.26)

(A.27)

(A.28)

We end this appendix by explaining some notations employed in manipulating

internal symmetry indices. As with the space-time indices, repeated internal

symmetry indices will imply a summation. We have the following conventions

on symmetrization:

If*

(yv) - (ij) ,

w h e n {vv) " (ilt) '

and C = iYi,Y2 * (a .̂2J •

105



antisymmetrization is denoted by square brackets:

xfl yJ J M X1YJ _ XJyi .

symmetrization is denoted by round brackets:

finally the symmetric traceless part is denoted by applying an s to the

synmetrization bracket:

when i,j,... • 1,...,N. This is also written eacplicitly:

x d yJJs , xiyj +(i++j; traceless).
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APPENDIX B. The supereonformal algebra

In this appendix we will describe a supersymmetry algebra more general

than the graded Poincar£ algebra. This is the graded conformal, or super-

conformal, algebra which includes the Poincare algebra as a subalgebra.

However, it can only be realized in field theories which do not contain an

intrinsic mass. This is due to the scale invariance present in super-

eonformal theories. The nice feature of this algebra is, that is allows

incorporation of chiral U(N) internal symmetries, which seem preferable to

the SO(N) symmetries of the Poincare theories.

The graded conformal algebra is based on the ordinary Lie algebra of

conformal space-time transformations. The elements of this Lie algebra are

the space-time translations P , the Lorentz transformations M , conformal

boosts K and dilatations D.^'Their commutation relations read:

[P

tPu
[M

V

,D] =

»V
V ' M K X liX vk

1

+

i V ) ,

VK llA
- 6

V

: ,DI

M ,
x vX

= -v
- \ x M

(B.1)

All other commutators vanish.

A grading of this algebra can be obtained by adding two Hajorana spinor

elements, Q and S, and a U(1) chiral charge A. The Q's form the grading

representation of the ordinary Poincare subalgebra contained in (B.I), while

the S play a similar role with respect to the subalgebra of conformal boosts

K and Lorentz transformations M. If these subalgebra*s are combined in a

non-trivial way as in (B.1), the dilatation D is necessary to close the

algebra. To obtain the full graded algebra, we have to include the chiral

U(1) transformations as well. This leads us to the following set of (anti-)

commutators, in addition to (B.1):

[A,S ] = - 3(Y S) ,

fsa,sb} = 2(KOab,

2DC
ab

[D,Qa] = -I
(B.2)

107



Again the other commutators are tacitly under-stood to be zero.

Exactly as in the case of Poincare supersynmetry one can include other

symmetries, besides the U(1) transformations, by extending Q and S to

grading representations of some internal symmetry algebra as well. Making

use of chiral invariance a reasoning similar to that in II.2 shows, that

this extra internal symmetry is SU(N), at least when no central charges

are present. Hence the total internal symmetry is U(1)*SU(N) * U(N).

However, in contrast to the Poincare case, the U(N) charges A, B appear

in the graded conformal algebra itself, since they are necessary to close

the anticommutator of Q and S, as in (B.2). Writing out the commutation1

relations on a chiral basis, '

Q r « i(i-Y,)Qr,

i(i+Y5)Q
r,

(B.3)

we obtain:

t s,a
1 .!•„

.8*1 - -«
s' a

I A*s"a T H °s°a *
(B.U)

2 ( % V C ) M M V

We have written the SU(N) generators in terms of the fundamental

representation:

„ _r
(r,s,m,n) 0 . (B.5)

Notice, that for N"1* the chiral charge A becomes a central charge,

appearing only in the anticommutator of Q and S. Hence in this case the

internal symmetry is reduced to SU(U).
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SAMENVATTING

Supergravitatie is de naam van een aantal theorieën die de fundamentele

wisselwerking tussen elementaire deeltjes pogen te beschrijven. De een-

voudigste hiervan beschrijft alleen de zwaartekracht, of gravitatie, en

één nieuwe hypothetische wisselwerking, die overgebracht wordt door een

massaloos zgn. ijkdeeltje, het gravitino. De bijzonderheid van het gravitino

is, dat het een halftallig aantal eenheden spin bezit, ni. ç . Zulke deel-

tjes noemt men fermionen. Alle bekende wisselwerkingen in de natuur worden

overgebracht door ijkdeeltjes met een heeltallige spin, bosonen geheten.

De beschrijving van de gravitatie in deze theorie, als klassieke velden-

theorie, is dezelfde als in de algemene relativiteitstheorie van Einstein

(1916). Door het uitbreiden van deze theorie met het gravitino krijgt hij

echter een aantal bijzondere eigenschappen.

De eerste hiervan is, dat supergravitatie tot een consistente quantum-

theorie van de gravitatie kan leiden. Dit houdt in, dat de zwaartekracht

kan worden beschouvd als een fundamentele wisselwerking op microscopisch

niveau, die het gevolg is van de uitwisseling van zgn. quanta tussen ele-

mentaire deeltjes. Deze quanta zijn energiepakketjes, behorend bij een be-

paald type veld. De quanta van het gravitatieveld worden gravitonen genoemd.

Dat een dergelijke beschrijving van de zwaartekracht mogelijk is, is geens-

zins triviaal. In het bijzonder is het in een quantumtheorie van de gravi-

tatie nooit eerder mogelijk gebleken een consistente wiskundige procedure

te definiëren, die tot eindige resultaten leidt.

Een tweede eigenschap die supergravitatie onderscheidt van de algemene

relativiteitstheorie is, dat de eerstgenoemde een bijzondere symmetrie bezit,

supersymmetrie. Hieraan ontleent supergravitatie zijn naam. Deze symmetrie

houdt in, dat het graviton en gravitino kunnen worden opgevat als twee as-

pecten van eenzelfde wisselwerking. In het bijzonder zijn de natuurkundige

wetten, die een waarnemer vindt in een wereld die door supergravitatie wordt

beschreven, onafhankelijk van hoe hij de wisselwerking opsplitst in een

graviton- en een gravitinocomponent. Dit wordt uitgedrukt door te zeggen,

dat supergravitatie de ijktheorie van supersymmetrie is.

De derde bijzondere eigenschap van supergravitatie is gelegen in de

beschrijving van wisselwerkingen met de materie. Zulk een beschrijving is
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essentieel in iedere gravitatietheorie. In supergravitatie kan men de ijk-

deeltjes, die verantwoordelijk zijn voor de andere fundamentele interacties,

en de deeltjes waaruit de materie is opgebouwd opnemen als verdere compo-

nenten, van hetzelfde stel velden, dat ook het graviton en gravitino be-

schrijft. Supergravitatie is dus mogelijk een geunificeerde theorie van alle

deeltjes en wisselwerkingen, die er in de natuur zijn. Deze bijzondere en

tot op heden unieke -eigenschappen maken het zeer de moeite waard super-

gravitatie te bestuderen.

In dit proefschrift wordt uiteengezet, hoe men theorieën van supergra-

vitatie construeert. Na twee algemene inleidende hoofdstukken wordt in het

bijzonder de theorie uitgewerkt die supergravitatie unificeert met een vorm

van elektromagnetisme, de zgn. S0(2) supergravitatie. De volledige Lagran-

giaan, waaruit de veldvergelijkingen volgen, wordt gegeven, alsmede de

transformatieregels voor de velden onder supersymmetrie. Deze laten de actie,

de integraal van de Lagrangiaan over ruimte en tijd, invariant. De regels

zijn gecompliceerd, maar kunnen beter begrepen worden in termen van een

grotere symmetriegroep, nl. conforme ôupersymmetrie, waaronder deelverzame-

lingen van de velden transformeren. Tenslotte wordt besproken, hoe men

uitgaande van de Lagrangiaan een consistente quantumtheorie kan definiëren.

Een deel van het in dit proefschrift beschreven onderzoek is gepubliceerd

in Nucl.Phys.B. De in hoofdstuk IV beschreven resultaten werden verkregen

mede in samenwerking met dr.A.Van Proeven van de Kath. Universiteit te

Leuven, België. Mevr.S.Hélant Muller-Soegies verzorgde het typewerk. De

omslag werd ontworpen door dhr.W.Verzantvoort.
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