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,,Alle Wahrbeit ist einfach" — Ist das nicht zwiefach eine Luge? —

F.W. Nietzsche



Chapter 1

Motivation and outline

In recent years one of the main topics of high energy physics has been the study of the
properties of the Z boson, called Z physics. The obvious reason for this is the fact that
in 1989 SLC at Stanford, USA and LEP at Geneva, Switzerland began operating. Both
these e+e~ accelerators can run at energies around 91 GeV, where a Z boson can be
produced almost at rest in the laboratory frame. The cross section for this production
has a sharp resonance peak at this energy. Although the Z itself decays before it can be
detected, the properties of the Z can be studied in great detail with LEP and SLC, by
examining the decay products. It is for the first time that any of the bosons associated
with the weak interaction can be studied with high accuracy. Already it has led to more
precise measurements of some of the standard model parameters (notably M%, the mass
of the Z) and to a high precision test of the standard model in comparing its predictions
with measurements (e.g. Tz, the width of the Z).

It is clear that one wants to compare theory with experiment at a level of precision
that is given by the highest precision the experiments can reach. In order to achieve
this one has to evaluate the theoretical predictions for measurable quantities with at
least the experimental accuracy. Before LEP and SLC began running there were e+e~
accelerators operating at lower energies. For the measurements at those accelerators
it sufficed to evaluate the theoretical predictions perturbatively up to first order in the
fine structure constant a, which at those energies had an estimated precision of a few
percent. There are two main reasons why the same evaluations applied to LEP/SLC are
less precise. Combined with the slightly higher statistics expected for LEP, compared to
previous e+e~ machines, this implies that due to the advent of accelerators like LEP and
SLC the evaluations of the theoretical predictions had to be improved upon.

The first reason why the aforementioned evaluations at lower energies become less
precise at LEP/SLC energies is that in the latter case the loop corrections due to the
weak interaction start to play an important role, since the typical weak interaction energy
scale has been reached. While previously these corrections could be neglected, they now
have to be calculated in first order. The second reason is that the first order corrections
due to quantum electrodynamics (QED) are larger at LEP/SLC than at e.g. PETRA.
This is illustrated in fig. 1.1, where the total cross section for e+e~ —* /*+/x~ is shown.
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Fig. 1.1. The total cross section for muon pair production. The dashed curve
corresponds to the Born result, whereas the solid curve shows the first order QED
corrected result. The arrows indicate roughly the positions of PETRA (left) and
LEP (right). The cross section is given in nanobarn, the energy in GeV. A cut on
the invariant mass squared (sf) of the muon pair of 0.2s was applied.

The lowest order cross section and the first order QED corrected cross section are plotted
over a range of energies that includes both PETRA and LEP/SLC. The first order QED
correction at PETRA is about +10%, whereas at the Z resonance it is roughly —35%.
The implication of this is that one has to take higher order QED corrections into account
at LEP/SLC, since the first order correction is —35% and the precision aimed for is
below 1%.

The weak "orrections have been calculated analytically by a number of groups, all
agreeing on the rtsults, a review of which is given in [1]. The reason that these calculations
can be done analytically is that the weak corrections are loop corrections only, i.e. there is
no contribution from the production of an extra final state particle. Hence the kinematics
of the process <mder consideration are not changed, in contrast to QED corrections,
where a part of the correction is given by the emission of one or more photons. The
influence of this so-called bremsstrahlung on the kinematics is very complicated. One
has to integrate over all situations where the extra photons remain undetected. These
phase space integrations for the QED corrections are in general very difficult to perform
analytically. Moreover the kinematics will be different for every experiment. Thus one
has to resort to numerical integration for the QED corrections.

In the literature two approaches to the problem of calculating QED corrections are in
use. One way is to calculate as many steps (integrations) analytically as is possible and to
do the rest numerically. This is known as the semi-analytical method. In most cases only



the last integration is done numerically. A large part of this thesis, up to and including
chapter 5, deals with this approach. The other approach is to calculate all integrations
numerically. Since this involves multi-dimensional integration this is usually done using
Monte Carlo techniques. The last part of this thesis is devoted to these methods.

In this thesis a number of calculations of higher order QED corrections are presented.
The calculations all apply to the standard LEP/SLC processes

r+ c- — + / f ,

where / stands for any fermion. Perhaps the most typical cases are the ones where / ^
(~,i'r- In such cases the above process is only possible via annihilation of the incoming
< +t~ pair. At LEP/SLC this mainly occurs via the production and the subsequent decay
of a Z boson, i.e. the cross section is heavily dominated by the Z resonance. These
processes and the corrections to them, treated in the semi-analytical way, are discussed
in chapter 2. The case f — e~ ('Bhabha scattering') is a more difficult one, because
thot process can also occur via the exchange of a virtual photon in the t-channel. In
fact the latter contribution is dominant at small scattering angles. Therefore one has
to exclude the lower scattering angles if one is interested in Z physics. Having excluded
that region one has to recalculate all QED corrections, which is done in chapter 3. The
techniques introduced there enable us to calculate the difference between forward and
backward scattering, the forward-backward asymmetry, for the cases / ^ c~,ve, which is
the subject of chapter 4. In chapter 5 we return to the case f — e~. At small scattering
angles, where Bhabha scattering is dominated by photon exchange in the t-channel, this
process is used in experiments to determine the luminosity of the c+c~ accelerator. Hence
an accurate theoretical description of this process at small angles is of vital interest to the
overall normalization of all measurements at LEP/SLC. Chapter 5 gives such a description
in a semi-analytical way. The last two chapters discuss Monte Carlo techniques that
are used for the cases / ^ c~ ,vr. Chapter 6 describes the simulation of two photon
bremsstrahlung, which is a second order QED correction effect. The results are compared
with results of the semi-analytical treatment in chapter 2. Finally chapter 7 reviews
several techniques that have been used to simulate higher order QED corrections for the
cases / ^ i~,vr.

Several authors have contributed to the field of higher order QED calculations. Many
contributions are reviewed in [1]. Throughout this thesis the results will be compared
with other theoretical evaluations wherever possible.

Reference

[1] "I Physics at LEP 1 " , CERN 89-08, 3 volumes,
eds. G. Altarelli, R. Kleiss and C. Verzegnassi.



Chapter 2

The Z line shape

2.1 Introduction

The purpose of this chapter is to review the evaluation of the Z line shape. The aim
is to obtain a theoretical accuracy of about 10 MeV in the position and width of the
peak. Moreover the normalization for the prediction of the total cross section should be
accurate within 0.3%.

For the total cross sections we are interested in the following channels

€+e--^ff, f?e-,»e. (2.1.1)

From the measurement of these total cross sections information on the Z mass and on the
partial and total widths of the Z should be obtained. The neutrino pair production cross
section is indirectly measured in the neutrino counting experiment. Moreover, it is the
simplest channel and as such a good illustration for the corrections. We focus on total
cross sections. We assume that the experiments can make corrections like for acceptance
such that the total cross section can be obtained. The question of the influence of cuts
on the total cross sections should be answered by Monte Carlo studies. On the other
hand the results presented in this chapter can serve as a particular test case for the event
generators.

For the calculations in the Standard Model we use the on-shell (OS) renormaliza-
tion scheme. The results depend on the following parameters: M%, rnlop, Mu and a , .
The lepton masses are known experimentally. The quark masses represent a suitable
parametrization of the dispersion relation results for the hadronic vacuum polarization.
The values used in this thesis are (in GeV)

mu = md = 0.041, rnc = 1.5, mJ = 0.15, mb = 4.5 . (2.1.2)

In the calculations we also need Mw, which is calculated from the input parameter G^,
the muon decay constant, through the quantity A r .

In this chapter we consider three main topics:



A. Total cross section with non-photonic (electroweak) corrections.

B. Inclusion of photonic (QED) corrections.

C. Approximate analytic formulae, applicable to topics A and B.

Topic A is treated in section 2.2, together with the part of topic C that applies to it.
In several subsections the following points will be discussed: the lowest order predictions
and some qualitative features; total and partial widths of the Z; total cross sections
including vertex, self energy, 7 Z mixing corrections and finally simple parametrizations
of the electroweak corrected cross sections. In section 2.3 the various possible QED
corrections are discussed. After that the most important one, i.e. initial state photon
radiation, is considered. A short comment on the inclusion of final state radiation is made
and numerical results are presented. Finally approximate analytical results are obtained.

It should be stressed that almost all the calculations presented in this chapter have
been done by several groups and that agreement exists between the different computer
programs [1]. Here we present one of these calculations.

2.2 Total cross section with non-photonic corrections

2.2.1 Input parameters and si

As mentioned in section 2.1 the input parameters in the actual calculations are Mz,mtOp,
MH and as. From the muon decay constant G^ or from

A = - ^ - = (37.281 GeV)2 (2.2.1)

one determines Mw- In lowest order the relation reads

M&s\n2dw = A. (2.2.2)

Here we have introduced the quantity sin2i?n/, which in the on-shell renormalization
scheme [2] is given to all orders by

sirriV = 1 - -TJY . (2.2.3)
M

Inserting this relation in eq.(2.2.2) yields an equation that is quadratic in s'm2 dw. Both
roots of this equation lie in [0,1] and are therefore acceptable. One has to compare theory
and experiment for another quantity, in order to decide between the two possibilities. For
instance the scattering process

!/„ + e~ -» Vp + c" (2.2.4)



is a candidate for such a comparison [3]. This singles out the root

(2.2.5)

which expresses sin2 ii\v in terms of the input parameters of the theory. From this equation
the sign of sin <)w is still not determined. However this sign is irrelevant.

The inclusion of electroweak radiative corrections in muon decay modifies eq.(2.2.2)
to

M^sin2i?w = - 4 r - - (2-2.6)

The quantity A r and its dependence on the parameters of the theory have been discussed
many times. A review is given in [4]. Here it suffices to say that A r also depends
on sin2t?iy. Since this dependence is non-trivial it is not feasible any more to solve
eq.(2.2.6) for n]n2i)w analytically. Therefore one usually writes

, 2 , 1 1 / 4 / 1 1
sin " • * = 2 - 2 ^ - ^ 1 ^ ; ( 2-27)

and solves this equation ileratively for shi2dw.
The leading higher order effects due to a large top mass are not included in any of

the calculations presented here, since these calculations are based on [5]. The lead-
ing rnt effects can be incorporated using ref. [6]. These effects are only noticeable
for mt > 150 GeV, and are small even then.

2.2.2 Lowest order widths and cross sections

In lowest order the partial width of a Z decaying into a fermion pair is given by

with
gj = (I] - Qj sin2iV)/(siruVcos 0w)

gf = - Q j . s i n 2 i ? w / ( s i n $ c s t ? )

and A'c representing the number of colors.
Making use of the tree level relation (2.2.2) and eqs.(2.2.1),(2.2.3) the lowest order

width can also be written in terms of 6\,

(2.2.10)



At tree level, when sin2 $w and hence Mw are determined using eq.(2.2.5), this represen-
tation gives the same results as eq.(2.2.8). In higher order however, determining sin2i?^
with eq.(2.2.7), the results from the two representations differ. We shall come back to
these two representations later on.

The total width is given by
.(0)

/
• / / •

(2.2.11)

It should be noted that in the massless fermion case the partial width (2.2.8) reduces to

r (0) r\ iT^ AT h Jf I I — l2 i I 4- l2 \ / A A 4 /%\

zLtt = r - + r + = TNcMz 1.9/ I2 + \9f\) (2 .2.12)
where the - , -f sign refers to the helicity of / , the helicity of / being opposite.

The total cross section in lowest order for reaction (2.1.1) with massless fermions
reads

2

<7o(.s) =
4TTQ2 Nes* £ QeQf (2.2.13)

The Ae,A/ term in the cross section corresponds to the helicity combination —Ae, Ae,
— A/, A/ for e+, e~, f and / . It is clear that in the neutrino case only the At/ = —1 terms
contribute. For Tz we take in lowest order F^' from eq.(2.2.11). Using the definition
(2.2.12) for decay widths into specific helicity states we can rewrite the total cross section
in terms of widths and partial widths:

ao{s) = Ncs

where

xeXf = ± A e A r

(2.2.14)

(2.2.15)

Here the ± sign corresponds to Jj = ^ \ of the final state. The partial and total widths
are the lowest order expressions of eqs.(2.2.8) and (2.2.11). Carrying out the summations
one finds

0o(s) = 5 — + — 11 M — - , (2.2.16)
(1 - A/J/s) + A/jF|/.s2 [s s \ s J] s

with

Co = Q)NC .



The first term in eq.(2.2.16) is the Breit-Wigner form for a spin 1 resonance, the last
term is the pure QED cross section. The constant C[ in front of the interference term is
positive for realistic sin2 d\y values and is smallest for muon pair production.

The representation (2.2.16) for the total cross section is introduced for two reasons.
Firstly the parameters have a direct physical meaning and secondly it will lead to a good
approximative formula for the electroweak corrected expression. At the moment all the
widths are still lowest order expressions.

At this point some qualitative features of eq.(2.2.16) may be noticed. Considering
Mz, Tz, Cn, Ci and CQ as parameters, the peak height (crmax) and the positions of
the maximum {y/smax) and the half maxima (y/s±) can be obtained by considering oQ{s)
in a small region around s = A/f. In the calculation one can expand in parameter
combinations

7 = rz/Mz , (2.2.18)

and CI/CR and I2CQ/CR, all of which are small. The higher order terms in these
combinations can be neglected. The results are

Consider first the neutrino case, where Cj = CQ = 0. The peak position is shifted to the
right by \j2Mz, compared to a pure Breit-Wigner resonance, where the peak is located
at -y/Smax = Mz- The shift is caused by an extra factor s in the numerator. The average
of y/s^ and y/II is shifted somewhat more, namely ^2Mz- Furthermore the apparent
width y/s^ — y/JZ is decreased by \")2Yz-

For the other fermion channels the one photon exchange is present. This increases
the distance between the half maxima since the pure QED term only marginally changes
over half a width but contributes to the peak value. Since the relative importance of the
QED term is largest for muon pair production this effect will there be most noticeable.

2.2.3 The corrected partial and total widths

As it will become clear in the next subsection we need the first order corrections to
These can be divided into four classes:

1. Non-photonic loop corrections

2. Photonic loop corrections and radiative decay



mtop

90

130

170

Mil
10

100
1000
10

100
1000

10
100

1000

sin2 dw
0.2300
0.2316
0.2347
0.2254
0.2270
0.2303
0.2200
0.2217
0.2250

Tz
2480
2483
2475
2488
2491
2483
2498
2501
2493

165.9
166.2
165.9
166.3
166.7
166.4
166.9
167.3
167.0

83.2
83.4
83.2
83.5
83.6
83.4
83.8
C4.0
83.8

295.7
295.9
294.6
297.2
297.3
296.1
299.1
299.2
298.0

^z-di
381.7
382.0
380.6
383.3
383.7
382.3
385.5
3859
384.5

Fz-bl
378.6
378.9
377.5
378.2
378.5
377.2
377.5
377.9
376.6

Table 2.1. Results for total and partial widths of the Z including all corrections.
The Z mass was taken to be 91.17 GeV. All widths are in MeV, the masses are
in GeV.

3. QCD corrections

4. Decay into three or more particles

In refs. [7, 8, 9] the non-photonic corrections in the OS scheme have been discussed
extensively. The calculations use different gauge choices and field ^normalizations, but
the results for the physical quantities are the same. A conclusion that can be drawn is
that the results for F ^ l . / , given by eq.(2.2.10) is in general much closer to the one loop
corrected result than the result given by eq.(2.2.8). In fact eq.(2.2.10) in general is a
good approximation for the width, at least for mtop < 120 GeV.

The photonic corrections give a multiplicative factor (1+SQED), where

QED =
(2.2.22)

which is Qj times 0.17%. It should be noted that although we discuss the QED corrections
to the cross sections in section 2.3, we include here the QED correction to the width.
The reason is that it will have an effect on the propagator, as we will see in the next
subsection.

The QCD corrections are obtained by multiplying the quark decays by the factor (1 +
Its measured value [10] is

CD ((34 GeV)2) = 0.047 ± 0.009 . (2.2.23)

From the running of the coupling constant a, one then obtains for our purposes

SQCD ((92 GeV)2) = 0.040 ± 0.007 , (2.2.24)



mtov
90
130
170
90
130
170

sin2 •dw

0.2316
0.2270
0.2217
0.2316
0.2270
0.2217

Tz
2.483
2.491
2.501
2.483
2.491
2.501

"mm

1.997
1.998
2.000

41.398
41.417
41.452

91.153
91.153
91.153
91.154
91.154
91.154

89.914
89.910
89.904
89.921
89.918
89.913

92.410
92.414
92.419
92.406
92.410
92.415

Table 2.2. Results for the peak cross section and the peak positions for muon
production (upper half) and hadron production (lower half) including only efec-
troweak corrections. The Z and Higgs masses were fixed at 91.17 and 100 GeV
resp. All energies are in GeV and cross sections in nanobarn.

or as = 0.12. For the bb channel the mass dependent QCD correction [11] is actually
used. In practice SQCD in eq.(2.2.24) then takes the value 0.045 ± 0.007. The error on
the total width induced by the error on SQCD is about 10 MeV.

Besides the non-photonic loop corrections also decays into three or more particles
represent corrections to the lowest order width. Two types were already treated above
in the form of QED and QCD corrections. Of the other possible decsys only the decay
(calculated from the expressions in ref. [12])

Z-^Hff (2.2.25)

is of relevance, but only when M « < 10 GeV. The other decays are negligible [13].

In table 2.1 results for the total and partial widths of the Z are listed for a range of
top masses. The results are obtained with the program ZSHAPE [14]. The differences for
the various values for mtop are quite noticeable. The Higgs mass is kept fixed, since the
differences due to variation in Mn can only be seen if M// is varied in a very large range.

2.2.4 Total cross section with electroweak corrections

The lowest order total cross section for massless fermions is given in eq.(2.2.13). The
cross section is of order a2 except at the resonance position where it is of order a 0 . As
stressed in ref. [15] one should therefore consider the O(a) corrections to Tz- Since Tz
is related to the imaginary part of the self-energy it means that the one loop corrections
to the propagator are not sufficient but that two loop corrections should be taken into
account in the resonance region.

Besides the modifications of coupling constants by vertex corrections and the intro-
duction of very small box diagrams, the electroweak corrections amount to the replace-

10



ments [5]

I _> l (2

s-Ml^MzYz - s-Ml + W ( 2 2 2 7 )

where

(2.2.29)

These expressions are obtained from a Dyson series summation involving the renormalized
one particle irreducible self-energies T,-,^,T.zz and T,-,z- Besides the above propagators
one has also to include a -)Z mixing propagator, which takes the form

v ^ • (2.2.30)

In these expressions the real parts of L\ and E^ are taken in first order. The imaginary
part of T.z is considered up to second order. That is, also the imaginary part of Ezz
should be evaluated in second order. This is done by the following approximation

ImE^(A/I) , (2.2.31)

where the latter expression is related to the first order corrections to the width. All correc-
tions to the width contribute to eq.(2.2.31) except for the wave function renormalization
of the Z and -)Z mixing contributions. This can be seen by expanding (2.2.27) in the
resonance region

(2 2 32}

where

UZ{M2
Z) = R

r
e 2{M\) (2.2.33)

and

MzVz = ^

The denominator in eq.(2.2.34) represents the wave function renormalization of the Z. It
gives a first order correction to Tz- When one also considers the real part of the second

11



term in eq.(2.2.29) one effectively takes a part of the second order correction of the real
part of D/ into account. The effect of this has been discussed in [5]. For high top masses
{"hop > 150 GeV) slight deviations from the results presented here occur. It should be
stressed that for a conclusive discussion of this effect the full second order calculation of
Re TJZ should be performed.

In the replacement (2.2.27) it is not only of importance that corrections to Yz or
equivalently to ^z(fi) are taken into account. Also the energy dependence of ImE,z(s)
is crucial. It shifts the peak position with —35 MeV with respect to a constant width
formula [16, 17]. In a qualitative discussion below we come back to this point.

Besides the propagator effects vertex corrections replace the couplings gj and gj by
.^-dependent form factors. The overall normalization is affected by these corrections. The
box diagrams turn out to be very small in the Feynman-'t Hooft gauge and can therefore
be neglected in this gauge when calculating the total cross section.

In table 2.2 we give results for the electroweak corrected cross section for muon pair
production and for hadron production. In the table the quantities amax, ,/smaz and y/s±
are listed.

2.2.5 Approximate expressions

As mentioned in the previous subsection the modification of the total cross section (2.2.13)
due to electroweak corrections is in essence due to an introduction of ^-dependent form
factors which replace the coupling constants g±, and the changes (2.2.26), (2.2.27) and
(2.2.30) of the propagators. Thus in several places in the original formula s-dependent
quantities replace the original constant ones. Also the values for s = A / f are different
from the lowest order quantities.

In the region of the resonance the s-dependence of Ez(.s) in eq.(2.2.27) is crucial,
the other ^-dependences have a small influence. The s-dependence of 1m S^(.s) near the
resonance can be well approximated by the replacement

.s - Mz

1

1 + *7 s-

where we have introduced

Mi = A/z/\/l+72,

(2.2.36)

The other s-dependent corrections can be taken at s = A / | . Effectively we get new
coupling constants ^ ( A / J ) and

e2

( 2 - 2 3 7 )

12



where

(2.2.38)

In the constants g±{Mz) also form factor effects are incorporated. This is not done for
the coupling to the photons. The imaginary parts of the form factors and S^ are neglected
at this point.

We now end up with the following approximation for the electroweak corrected total
cross section lor massless fermions.

CQ
I I I I T -

S°\s!
where now

c,

CQ

0

=

=

-Ml

12,

A'K

M

4

W

1

i'Y
TTP I

1 +

-A i

+

72

'l).v.. •

(2.2.39)

(2.2.40)

In this case [%, Vj and I ± are the electroweak corrected partial widths without QED and
QCD corrections. For b quarks the pure QED part now becomes the massive QED part,
but in C[ we use the massless approximation.

The approximation (2.2.39) describes the exact electroweak corrected cross section
within 0.2% in the range [Mz — T^, M% -f V?}. The values for maxima and half maxima
obtained from (2.2.39) are within 1 MeV from the values in the tables.

Also for the approximate formula (2.2.39) one can derive expressions for the quantities

(2.2.41)

(2.2.42)

(2.2.43)

Most of the changes with respect to eqs.(2.2.19)-(2.2:21) are due to the replacement
(2.2.35), which can be accounted for by Mz,Vz —* MzAz- The resulting peak posi-
tion is now ^72A/^ below Mz, whereas before the replacement (2.2.35) it was \f2Mz
above Mz- Also it is apparent that the distance between the half maxima has decreased.
The effects due to the one photon exchange have hardly changed, as these effects them-
selves are rather small and almost all corrections to them can be neglected.

13



2.3 The photonic or QED corrections

2.3.1 The relevance of various QED contributions

When one considers the full first order QED correction to the line shape, one finds a
contribution from initial state radiation, final state radiation and from the interference
between initial and final state radiation. When no cuts on the outgoing fermions are im-
posed the final state radiative correction is just eq.(2.2.22) and is therefore small. When
a stringent cut on the fermion pair invariant mass is applied the correction can become
negative and large. This is discussed in subsection 2.3.3. The size of the interference con-
tribution to the total cross section is negligible [19, 20, 21]. Thus mainly the initial state
radiative corrections remain. They are sizable due to the occurrence of large logarithms
of the type

/, = l o g - ^ . (2.3.1)

It is clear from the large first order corrections found in refs. [19, 22] that higher order
QED corrections are required for the description of the line shape. Let us list all initial
state corrections up to and including order a1 for muon pair production:

e + e " -> n+n~ , (2.3.2)
e+e~ -* / / V 7 , (2.3.3)

e + e - _+ / ^ - 7 7 , (2.3.4)

e + e " -» n+n~ff . (2.3.5)

The cross section for the first of these reactions is required with first and second order loop
corrections. For the second process one loop corrections have to be calculated, whereas
the last two reactions themselves give rise to O{a?) corrections to the first one. For the
last process the case / = e~ is dominant, hence we will only discuss that case.

When we consider c+e~ scattering at a laboratory energy yfs, the above reactions
(2.3.3) — (2.3.5) give rise to differential cross sections dcr/ds' with s' the square of the
muon pair invariant mass. Their contribution to the total muon pair cross section is
obtained by integration over s'. The relative sizes of dajds' make it possible to neglect
the contribution of (2.3.5). This is based on the following considerations. Reaction
(2.3.5) consists of four different parts:

A. Bremsstrahlung of an e+e~ pair from the initial e+e~ states;

B. Bremsstrahlung of a fi+(i~ pair from Bhabha scattering;

C. The interference between the diagrams of A and B;

D. The two photon reaction producing a muon pair.
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The formulae and relative sizes are discussed in [23, 24]. In the region s'/s > 0.2 the
cross sections da/ds' from (2.3.3) and (2.3.4) dominate the contributions from A, B, C
by more than 2 orders of magnitude. This is also true for D but in a more restricted
region. In fact da/ds' from D becomes greater than da/ds' from photon emission for
•s'/.s < 0.3. So if one wants to study muon pair production through the formation of a
Z, the two photon initiated muon pairs should be removed from the data. One way is
to apply a cut on s'. In that case the QED corrections given below should also invoive
this cut. This is not a problem, but one should then also take into account the effect
of this cut on the final state radiative correction, which is not any more eq.(2.2.22), but
a SQED depending on ,s' and the minimum value of s'. It is easy to incorporate this
factor in the convolution to be discussed below. The inclusion of the final state QED
corrections in this way is treated in subsection 2.3.3. In the following discussion we ignore
the two-photon initiated muon pairs and consider the reactions (2.3.3) and (2.3.4) as the
dominant contributions and do not restrict the allowed s' range. Thus we are left with
initial state photon radiation.

2.3.2 Initial state photon radiation

One way to consider initial state photon radiation is to perform a standard but involved
second order calculation for the initial state. One has to calculate double bremsstrahlung,
the one-loop corrections to single bremsstrahlung and the two-loop vertex corrections.
The result can be written in the form

I

a(,s) = JdzG(z) *„(*=), (2.3.6)
•0

where the cross section including weak corrections is denoted by au,(sz), i.e. the result
of section 2.2.4. The invariant mass of the produced fermion pair is given by

(2.3.7)

where
Jw2

— - < :Q < = < 1 , (2.3.8)

Unless specified differently the cut-ofF invariant mass zos will be Am*. In general G(z)
has the following expansion

G{z) = * ( 1 - : ) + ^ (£) ( )

( ) " n. A ' + ••• . (2.3.9)
1 = 0

Here the large logarithm (2.3.1) has been made explicit, which at LEP energies (~100
GeV) approximately has the value 24. The quantities a,} are divided into two parts. One
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part is proportional to 6(1 — z) and contains only virtual and soft photon corrections such
that ,s' remains greater than 5(1 —e). The other part proportional to i?(l — z — e) contains
hard bremsstrahlung, possibly accompanied by virtual and soft photon corrections. The
6(1 — z) term involves logarithms

I = loge, (2.3.10)

which in the convolution (2.3.6) will cancel similar terms arising from the t?(l — z — e)
terms. In the full second order calculation the coefficients alt,i = 0,1 and a2 l , i = 0, 1,2
are obtained. Instead oi performing the explicit second order QED calculation one may
apply the QCD structure function approach to QED problems. This has been advocated
in refs. [25, 26, 27, 28J. Usually this method is used to obtain the leading logarithms,
i.e., the terms

xl
n (2.3.11)

( -
in eq.(2.3.9) up to a certain n.

When a number of terms of the form (2.3.11) has been obtained, certain parts of ann

generalize t^ higher n values. Then it is often possible to carry out the summation over n
in eq.(2.3.9) for those parts of the terms ann that are related to soft photons. The latter
represents a specific exponentiation of some terms in the first order result.

We now discuss the present knowledge of the terms an i . The first order terms have
been known for quite some time (e.g. refs. [19] and [22]), the explicit second order
calculation [23, 29] gives all a2 l . In the structure function approach the coefficient a22 is
obtained [25, 26, 27, 28] and agrees with the explicit second order calculation. It is also
possible to get the complete subleading logarithms in the structure function approach.
This has been done in ref. [23], where the coefficient a2\ was found to be in agreement
with the explicit O(n2) calculation For a-m there is only the explicit way of calculation
possible.

From the results of these calculations ii. becomes clear that certain terms can be
resummed, and the division in 6(1 — z) and i?(l — z — e) terms is not necessary any more.
The result of one particular way of doing this reads [23]

-6", (2.3.12)

with

2o _

6" = 6[' +6? , (2.3.13)

6\'+s = | ^ L + 2C(2)-2) ,

" 2
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6" = ~

X = ( - l ± l ! l o g z + (! + *) llog* + * - l W (2.3.14)

log~ log(1"z) + l[ogz ~ \
z)-log2z-log2 + - -

ilog2z log(l - z)

- Z- Li2(l - z) - ^logzlog(l -z) + C(2)logz - jlogz - log2z)

+ (1 + z) ( J L i - ( l - z) - 2 S U ( 1 - z ) - log( l - z ) L i 2 ( l ~ z ) - \
I 1 OK

- -(1 - 5z) Iog2(l - z) + -(1 - 7z) logz log(l ~z)--z Li2(l - z)

+ (-1 + yar) C(2) + ( | - z) log(l - z) + 1(11 + 10z)logz

In these definitions the polylogarithms L\n(x) and Sn,p(x) have been introduced (cf.
refs. [30] and [31J) and the Riemann zeta function <(2) = x 2 /6 and <(3) ss 1.2020569.

The terms <^+ 5 , <5^+s originate from first and second order virtual and soft photon
corrections. Similarly 8\{ and Sf

2' originate from single and double hard bremsstrahlung.
When G(z) is expanded up to order (a/n)2 we find the complete second order result

of ref. [23]. The form G(z) contains however all higher order terms related to soft photon
emission.

2.3.3 Final state photon radiation

The final state QED corrections can be formulated in such a way that they can be
incorporated in an integral of the form (2.3.6). In fact all that need be done is to multiply
the integrand by

^ f \ i S / , / ZQ \ ZQ / I ZQ \ \ O

F(z) = 1 + '- log—7 12 log 1 + ~ l + « ~ ) ) + 7+
5T [ TUj \ \ Z / Z \ 2 Z / J 4
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« 7 + 2«2)]- (2315)

Here z0 = smin/s is the lower bound on the square of the final state fermion pair mass
divided by s. It therefore also is the lower bound on the integration variable z. The large
logarithm log(s/mj) appearing here contains the mass m.j of the final state fermions, in
contrast to me for initial state corrections. Furthermore it is clear that for z0 <£ z this
factor reduces to (1-\-&QED)- If on the other hand zo<,z, the coefficient of log(.s/mp does
not vanish and hence the final state corrections are significantly larger than (1 + SQ^D).

In fact they will become negative in this case.
One can also exponentiate the soft photon contributions to F(r) , which results in

-=?(*;*-) (!-H (?)")•

The exponent is defined as

j3f = f log -^y — 1) • (2.3.17)

2.3.4 Numerical results

The total cross section with electroweak corrections as listed in table 2.2 is now corrected
for QED effects with eqs.(2.3.6) and (2.3.12). The results are in table 2.3.

The main features are a reduction p of the peak height, shifts As/smax, Ay/T± of the
peak and half peak positions. Considering hadron production we find approximately

p = 0.739 ± 0.001 ,
= 109 ± 1 MeV ,

57 ± 1 MeV , V.S.W)
= 419 ± 2 MeV.

v '
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89.0 90 .0 94.0

Fig. 2.1. Muon pair line shape curves including successive stages of corrections:
only non-photonic corrections (fine dashed line), first order QED corrections ap-
plied to the previous one (dashed line) and second order exponentiated corrections
applied to the first curve (solid line). The masses are Mz = 91.17, MH = 100
and mtop = 130 GeV and the minimum s' value used is 4m 2 .
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mtop

90
130
170

90
130
170

sin2 dw
0.2316
0.2270
0.2217

0.2316
0.2270
0.2217

Tz
2.483
2.491
2.501

2.483
2.491
2.501

1.487
1.488
1.490

30.584
30.607
30.646

yJSmax

91.261
91.261
91.262

91.262
91.263
91.263

89.962
89.958
89.953

89.978
89.975
89.970

92.841
92.846
92.853

92.823
92.829
92.836

Table 2.3. Results for tlie peak cross section and the peak positions for muon
pair production (upper half) and hadron production (lower half) including all
corrections. The Z and Higgs masses were fixed at 91.17 and 100 GeV resp. All
energies are in GeV and cross sections in nanobarn. The minimum s' value used
is 4m2 for muons and (10 GeV)2 for hadrons.

The indicated errors represent the spread in the table. For muon pairs we find

0.001 ,
1 MeV,

1 MeV ,
2 MeV.

We see that the distance between the half peak positions increase since Ay/si is much
larger than A^/sZ. When we define the ratio r as the ratio between the distances after
and before the convolution, i.e.,

(2.3.19)

- ~ \Z*_ He/ore
(2.3.20)

we find throughout the table approximately

r ~ 1.145
r ~ 1.153

for hadrons,

for muons. (2.3.21)

For T four decimals are given in order to see the difference between the hadron and muon
channels. The differences between the muon pair case and the hadron case can be at-
tributed to the pure QED term in the electroweak corrected cross section, i.e. the last
term in (2.2.39). This term contributes about 0.5% to the peak value before convolution
and is not decreased, but increased by the convolution. Typical for the first order correc-
tion is an increase of 60% [32]. This explains the somewhat larger factors p and r and
the difFerent values for Ay/s±. The neutrino case is in all these respects very similar to
the hadron case.

In figure 2.1 we illustrate the effects of the QED radiative corrections for muon pairs.
The electroweak corrected cross section is depicted (fine dashed line) together with the
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first order QED corrected (dashed line) and the second order exponentiated QED corrected
cross section (solid line). This curve is evaluated according to eqs.(2.3.6) and (2.3.12),
whereas the first order QED corrected one uses (2.3.6) and (2.3.9) up to the order o
term. It is clear that the first order correction overestimates the effects and that the
second order exponentiated form pushes the line shape slightly back to the ncn-QED
corrected one. The minimum s' value used is 4m^.

2.3.5 Approximate analytical results

In order to obtain analytical formulae for the line shape including non-photonic and pho-
tonic corrections one necessarily has to make a number of approximations. The first
approximation is to use eq.(2.2.39) for the electroweak corrected cross section aw{s') in
the convolution (2.3.6). However since we now want to include final state QED and QCD
corrections, the constants appearing in eq.(2.2.39) are now taken to be

+6QED)(l -f SQCD)l/\ (2.3.22)

Ml(l+72)(

c, = T ^

CQ = l*Qy(M2
z)Nc(l+6QED)(l+6QCD) .

The partial width Tj contains electroweak and QCD corrections, but not the QED correc-
tions. The latter is included as overall factor in all three constants CR, CI and CQ. We
use the integration variable x, defied by s' = s(l — x), so that one part of the integrand
is given by aw(s(\ - x)).

As second approximation the function G(l —x) in eq.(2.3.6) is taken in the first order
exponentiated form, which means that <^+ s and 8% are omitted. For the convolution of
the pure QED term even the exponentiation can be omitted and the first order result [32]
is used.

Thirdly, the integration region for the exponential part of G is extended to [0, co], for
the other part of G the region [0,1] is used and for the QED part the original integration
region is kept. Due to the transformation (2.2.35) we can directly use some results of
ref. [33]. One has the integrals

J0 = & ldx 2 o X 7~r-2 = T}0-24>(cos(J) , (2.3.23)
J X2 - 7.T)X COS ( + T]2

with

sin(
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T) = Va2 + 62, cos( =

a = Mils - 1 , 6 =

and from the 6^ part

B

(2.3.24)

with

a + 1 a
/I = arctan— arctan- ,

The analytic approximate cross section is represented in terms of these integrals

a(s) =

(2.3.27)

with

-Iog—(21og(l-— j-log

£ (?1 _ i _ 2log (l - log . (2.3.28)

The expression (2.3.27) is within 0.4% a good approximation to the line shape in the
region [Mz — 3Fz, Mz + F^]. It applies to the lepton and quark channels.

From the approximate formula (2.3.27) one can derive expressions for amax, y/smaT

and Y/SJ". One finds [35]

= Mz [l - \ (2.3.30)
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v/SI = MZ l + - ^ 7 l + / ? - - 7 + ' , q (2.3.31)

An important feature of the above formulae is the enhanced importance of the one photon
exchange diagram, on the one hand because the resonance peak is lowered by a factor
Y and on the other hand because the one photon exchange diagram is enhanced by a
factor C'Q/CQ (= 1.657 for muons). The cause for the former effect is the soft photon
radiation, which is dominant when near resonance. The cause for the latter effect is the
hard photon radiation, probing the 1/s photon propagator, present in the one photon
exchange diagram. Also the photon radiation distorts the peak in such a way that below
the maximum the slope of the peak becomes steeper, while at the same time above
the maximum the cross section does not decrease as rapidly as before, as it becomes
favorable to emit radiation. This in turn means that the influence of adding the one
photon exchange diagram on y/sl is considerably larger after convolution (i.e. /̂slfT
shifts more to the right), whereas the shift of yjsl to the left, due to the QED channel,
is reduced. This results in a shift of the average of y/sZ and y/sl to the right and an
increase of the distance between these half maximum positions.
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Chapter 3

Large angle Bhabha scattering

3.1 Introduction

Ever since electron positron collisions were studied Bhabha scattering has been measured.
The purpose was twofold: to determine the luminosity from small angle scattering and to
test QED from large angle scattering. Even at PETRA energies the electroweak contri-
butions were still small. Generally speaking the radiative corrections were not exceeding
the 10% level for standard experimental cuts on energy and acollinearity of the detected
particles. First order radiative corrections were adequate.

At LEP/SLC energies Bhabha scattering again serves as a luminosity monitor at small
angles and as a test of the electroweak theory at large angles. One may also be interested
in it as a background for other physics signals. As an example, radiative Bhabha scattering
may give rise to a single photon in a neutrino counting set-up. For all these different
purposes different parts of the Bhabha scattering cross section play a dominant role and
may get considerable contributions from radiative corrections.

For small angle Bhabha scattering the one photon t-channel contribution is the most
dominant part. As far as the radiative corrections are concerned they are expected to be
similar to those at lower energies. When experimental cuts are not too tight the corrections
should be smaller than 10%. Complete first order calculations for LEP/SLC energies, also
incorporating first order weak corrections, are available [1]. A priori the second order
correction is not expected to be sizable, but the required experimental accuracy may
force the theoretical calculations to be at the 0.5% level. In that case some studies of
second order corrections are needed to assess the precision of first order corrections.

For large angle Bhabha scattering the s-channel Z exchange is dominant. This part
certainly requires initial state second order QED corrections and higher order soft photon
corrections. Also the weak corrections should be incorporated: in first order in the vertex
corrections and up to and including second order in the imaginary part of the Z-self
energy. This has been extensively discussed in line shape studies, see e.g. ref. [2]. For
large angle Bhabha scattering the s-channel is mainly Z exchange and the t-channel mainly
one photon exchange. So one has a resonance and a background term. This background
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term is sizable and is not necessarily corrected in the same way as the resonance. One
knows from mupair production that the resonance undergoes a large negative correction,
whereas the background (being here one photon exchange in the s-channel) gets a sizable
positive correction. Since the background in Bhabha scattering is far more important than
in mupair production a detailed study of second order corrections to the whole Bhabha
process is necessary. A required accuracy of 0.5% would bring the treatment of Bhabha
scattering much closer to the line shape evaluations of other fermion processes. That is
the main goal of this chapter. It means that the standard model can be tested in Bhabha
scattering, or in other words, information on the Z partial width Fee can be extracted
with about the same accuracy as in the case of the other partial widths.

There are many ways to obtain some idea of the corrected Bhabha cross section. One
may apply a first order event generator like in ref [1], or for small angle Bhabha scattering
an event generator with multiple photon emission [3]. To first order calculations one may
add some higher order effects from soft photons [4] like has been done for the J/ip [5].
It is however hard to claim that those approaches reach an accuracy of 0.5% or even 1%,
since they all make some unwanted approximations, e.g. not treating the electroweak
corrections to the required accuracy or omitting O{a2) hard bremsstrahlung.

So we have to establish a strategy which goes beyond the previous evaluations. The
most ideal solution would be to develop an event generator which takes into account
the relevant weak corrections and generates events with many soft and at least two hard
photons. It should also ideally generate these events in a large section of phase space so
that it can be applied to small and large angle Bhabha scattering and to neutrino counting
background calculations. Since the relevant peaking of radiative Bhabha scattering is
quite different for those different applications it is a very demanding task to generate all
these structures in one multipurpose event generator. Therefore we adopt a more modest
strategy, which can give at least relevant results for some realistic situations.

Our main objective is to get a description of the Z-line shape in Bhabha scattering with
an accuracy of 0.5%. The evaluation should incorporate reasonably realistic experimental
cuts, like an angular range, a minimum energy of the detected particles and a maximum
acollinearity between them. These cuts make the treatment of the Z-line shape in Bhabha
scattering different and more complicated than in mupair production. A semi analytical
procedure, i.e. partly analytical partly numerical, should give a total Bhabha scattering
cross section with these cuts. The evaluation should achieve the following goals. The
weak corrections should be incorporated as in ref. [2], i.e. improving on the results of
[1]. A complete first order QED correction should be implemented. Second order QED
corrections should be included in the leading log approximation. Some soft photon effects
should be taken into account in all orders. Both the second order QED corrections and
the higher order soft photon ones are mainly relevant for initial state corrections. Note
that in O(a2) the subleading logarithms are not taken into account in contrast to the
pure s-channel total cross section evaluations of refs. [2] and [6]. Of course the QED
corrections are dependent on the imposed cuts. The methods and input we employ are
the following. For the weak corrections we rely on refs. [7, 8). For the QED corrections we
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use the structure function method for differential cross sections. For the implementation
of cuts this is necessary. Although the structure function method has been applied to total
s-channel cross sections in QED [9, 10, 11, 6], the application to differential cross sections
has been far less studied. This chapter can be considered as a considerable extension of
ref. [12] where corrections to some differential cross sections were discussed. A very large
fraction of the chapter is devoted to this. Since we want to clarify what assumptions go
into the calculations many details are given. With some simple changes the formalism
can also be applied to the forward-backward asymmetry in mupairs and to small angle
Bhabha scattering. These questions will be addressed in chapters 4 and 5.

The actual outline of this chapter is as follows. Section 3.2 presents the general
formalism of the structure function method for multidifferential cross sections and exem-
plifies some difficulties in Bhabha scattering. Section 3.3 uses this formalism and shows
how the specific experimental cuts can be implemented in the method. The addition of
an acollinearity cut is discussed in section 3.4. Whereas so far only leading log terms were
treated sections 3.5 and 3.6 discuss non log terms from the initial and final state radia-
tion. Section 3.7 gives the specific details for the case of Bhabha scattering, whereas the
results are discussed in section 3.8. Some relevant formulae are collected in an appendix.

3.2 The structure function method and a simple toy model

In this section we will review the steps that lead to the formulae for the total and some
differential cross sections for 2 —• 2 processes in the leading logarithm approximation
(LLA) for QED corrections. Next we will discuss a way to impose certain specific cuts on
the momenta of the two outgoing particles.

First we have to define the kinematics of the process at the Born level in a form
suitable for higher order corrections. At a later point we will discuss how to calculate the
QED corrections to that process. Consider therefore a purely fermionic 2 —> 2 process
and call the momenta of the two incoming particles plt p2 and the momenta of the two
outgoing particles p:i and p4. Obviously energy-momentum conservation then takes on
the form

Pi + P2 - P3 -f PA • (3.2.1)

We will assume throughout this chapter that all four particles may be considered massless,
except if this would give rise to collinear divergences:

p] = 0 ( i = 1 , . . . , 4 ) . (3.2.2)

In the center of mass frame of the incoming particles we can write

, o , o , I ) ,
, 0 , 0 , - 1 ) , (3.2.3)
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where we defined s = (pi + p2)2- the energy of the incoming particles squared. Defining
furthermore E3 as the energy of p3 in this frame, i?3 as the angle between p3 and pit <p3

as the azimuthal angle of p3 and likewise for p^, we have

P3 = ^ 3 ( 1 , cos 1^3sini?3 , sin<^3sini?3 , cosi?3 ) ,

P4 = Ei ( 1 , cos<^4sintf4 , sin<^4sini?4 , costf4 ) . (3.2.4)

The ranges for these angles are i9, (E [0, TT] and pi £ [0, 2TT]. The two particle phase space
reads

1 «P#» ^ P 4 rU), , v

(27T) £rj3 Itj4

l dE3 dE4 <fcosi?3 rfcosi?4 d<p3 dip4 x (3.2.5)
4 (2TT) I sin i?4 sin î >4|

j - / J?3sini?3cosv?3\ / /_ v
d\(p4- arccos — :— 6 Ws - t3 - E4) X

\ — E4sinv4 1 v '

S(E3 sin i?3 sin y?3 + £4 sin i?4 sin y?4) 6 (#3 cos i?3 + £ 4 cos i?4).

In this equation we have defined the arcco-ine to be double valued, i.e. to have values in
[0,2w\. Integrating over the two azimuthal angles i^3 and <̂ 4 using the cylindrical sym-
metry (choose e.g. </?3 = 7r/2) and one of the ^-functions respectively (which determines
cp4 then to be 37r/2), we arrive at

dPS2 = ~ dFJ3dEtdcos43dcastiAx (3.2.6)
2(27r) sini?4

6 (y/s — E3 — EA 6 (£3 sin i?3 — E4 siiu?4) 6 (E3 cosi?3 + £J4 cosi?4) .

Introducing the Mandelstam variables

'1 = (Pi -Ps) 2 = -/?3\A(1 -cost?3) ,
U, = (P2-P3)2 = -i53\/s(l +COS1J3),
t2 = (P2-P4)2 = -E4yG(l+costi4),

u2 = (Pl-P4)
2 = -E4NA(l-cosz?4), (3.2.7)

we can re-write (IPS? in terms of these invariants:

dPS2 = - ? - A, (fu, d<2 rfu2 6(a + <, + «,) £(f, - <2) «(«i - "2) • (3.2.8)
87T.S

Incorporating the spin averaged square of the (Born) matrix element \M\2 corresponding
to the particular process and the flux factor l/(2.s), the differential cross section (at Born
level) becomes

14 I
a \M\2 S(s + U + u,)S(U - i2) 6(Ul - u2). (3.2.9)

dt\du\dt2du2
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Fig. 3.1. A picturization of the mass factorization. The central circle denotes the
hard scattering process.

This result coincides with the result given in [12j, when we integrate over t2 and u-i
(assuming they can have any value that is kinematically allowed, i.e. assuming we impose
no cuts on the momentum p%), and when we identify |A^|2/(167r) with the <xfi occurring
there.

So far we have only dealt with the 2 —> 2 process. The question is how to calculate the
QED corrections to eq.(3.2.9) in the LLA. This is done by allowing energy to be radiated
off each of the 'external' momenta p i , . . .,p4. The rate at which this happens is governed
by the splitting functions. The splitting functions are related to the collinear divergences
(or 'mass singularities') present in perturbative quantum field theories [13, 14]. These
divergences take on the form

Lm = l og^ - , < ? 2 » m 2 , (3.2.10)

the so-called large logarithm of the scale Q2 divided by the square of the mass m of the
radiating particle. Because of the universality of the collinear divergences, the splitting
functions are process independent. In this chapter we will only be concerned with those
cases where the radiated energy is carried by photons, so that the particles that correspond
to the external momenta do not change (i.e. we concern ourselves with diagonal splitting
functions only).

This mechanism is illustrated by figure 3.1, where the circle in the center of the
picture denotes the hard scattering 2 -» 2 process, with modified momenta. These
'internal momenta' are given by

Pi = Xip, 2 = 1 , 2

Pi = -pi i = 3 , 4 . (3 .2 .11)
X ,
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The fractions x, determine how much energy is lost. We will have to integrate over these
fractions. One can also define invariants using the p;, which are related to the previous
ones by

X2

h = — h , u

The mass factorization theorem then states [15]

s4 d4a fdxj fdx2 fdx3 [dx4

= ^-u2 . (3.2.12)

fdxi fdx2 fdx3 fdx4

= I— I— I— -T
J x\ J x2 J x j J x\

dt\du\dt2du2 J x\ J x\ J x\ J x\ dt\du\dt2du2

(3.2.13)

The T(xi) are the splitting functions, used for the initial state radiation, the T>(xi) are
the fragmentation functions, used for the final state radiation. The a stands for the
so-called reduced cross section, which is free of collinear divergences and hence does not
contain the logarithm /,„,. This reduced cross section in general contains ^-functions
reflecting kinematical constraints to make the process possible. These i?-functions can
yield restrictions on the x,.

This method is taken over from QCD, where a is the 'mass factorized' cross sec-
tion, which does not contain any collinear poles (for these are absorbed in the splitting
functions), but which does depend on the mass factorization scale Q2. We now apply
the inverse of the mass factorization method to predict the large logarithms for the QED
corrected cross section a. For the generic form of the splitting functions we refer to [12].
Here we restrict ourselves to the LLA, which means thai for O(al) corrections in the final
result for a we only consider the terms proportional to L'm. This implies that in the LLA
the reduced cross section a should not contain QED corrections and therefore is identical
to the Born approximation. Moreover, in the LLA the V(x,) and the T>(x,) are identical.
Up to second order in a, the form of the diagonal part of F is, in the LLA

F(x) = S(l-r) + ^-Pjs(x)lm + ^ ( ^ M {Pff®P/j)(x)L2
m. (3.2.14)

Here Lm is the large logarithm as in eq.(3.2.10) and Qj is the fractional charge of the
radiating light fermion (which we will leave out when considering electrons or muons, since
then Q2 = 1). The choice of the scale Q2 in Lm is a non-trivial one, the justification
of which can be found in an exact calculation. For numerical studies the applied scale
need not be identical to the one that is justified this way, thus mimicking non-leading log
effects. This might bring the numerical result of a LL calculation closer to the result of
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an exact calculation. The function PJJ is the Altarelli-Parisi splitting function [16] and
has the form

^ ] iii (3.2.15)i
The first term represents the virtual and soft photon corrections, whereas the second term
is due to hard photon emission. The variable e is the soft photon cut-off, which drops
out in the end result. The convolution symbol &> is defined by

1 1

(f0g)(x) = Jdxi Jdx2 f(xi)g(x2) 6(x - Xlx2) . (3.2.16)
0 0

For the hard 2 —> 2 process we can use eq.(3.2.9), with all invariants replaced by their
'hatted' counterparts. Using eq.(3.2.12) to eliminate the 'hats', one finds

— - — \M\2 x V x V x (3 2 17)
dt lduldt2du2 Io7r

6(xxX2X3S + Xiti + X2UX) 6(xxX4tX - X2T3t2) S(x2X4tlX - XXX3U2).

Inserting this in eq.(3.213) results in

<4~ J \ \ ~-*2,4

arc = jdxx jdx2 jdx3 jdx, V(xx)Y(x2)V{x3)V(x4) ^ - \M\2 x
J J J J 1O7T

' • - o o o o

<S(xix2X3.s -f xxtx + x2ux) 6{xxx4tx — x2x3t2) 8{x2x4ux —
(3.2.18)

In this formula it is implicitly understood that the matrix element M describes the hard
scattering process px,fi2^—* p3,p4. Using energy-momentum conservation for these mo-
menta one can write \M\2 as a function of s and tx only.

Equation (3.2.18) can be used as a starting point for a number of different kinds of
calculations. As an introduction let us consider the situation where we arc interested in
the one-particle inclusive differential cross section with respect to cos j?3, i.e. dcr/d cosi?3)

where all other variables have been integrated over, imposing no cuts. The fact that
we impose no cut on the energies of the outgoing particles implies that we can take
V(x) ~ 6(1 — x), for the integral of V(x) over the full x range will yield unity anyway, as
one should expect on the basis of the KLN theorem [14]. On top of that we can integrate
over the variables t2 and u2 using two of the <5-functions. We obtain, maintaining the
fragmentation function for p3 for the moment

i i

- / — /—Y(i\)Y(x2)'D(x3)——-\M.\ 8(x\Xix3s-\-xxt\-\-X2U\).
J Xi J x-j lO7r

(3.2.19)

d t x d u x - J x x J x 2 J x 3
 v " v " v J ; 1 6 T T
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Changing the variables back to E3 and costf3 we get

1 1 1
do (dx\ fdxi f dx-\ E% —- o

-—- = /—i / — - /—r(x,)r(x2)r>(x3) —|,M|2 (3.2.20)
db3 dcosv3 J Xi J x2 J x3 Sirs

o o o
x6 f xix2x3s — E3\fs [xj(l — cos ??3) + x2(l + cos i?3)]J ,

so that, having integrated over the full E3 range using the one remaining <S-function and
setting £>(x3) = 6(1 - x3)

/<ix2r(x,)r(x2)- 7 2 ^ - - (3.2.21)
J K w V ;[x1(l-cost?3) + x2(H-cosi?3)]2 8w V ;dcosti3

Having written | .M| 2 in terms of s and f j , we note from the 6-function in eq.(3.2.20),
that /*i can be expressed in our integration variables as

. _ xxtj_ _ -x\x2s[\ -cosd3) 2
1 x3 i | ( l -cost?3) + ar2(l +cosi?3) '

Since we intend to calculate corrections to Bhabha scattering we want to investigate the
corrections to the pure t channel, as a toy model. Set therefore \M\2 = 64n-2Q2i2/f,i9(s —
Am2

e), W
e are left with the integral

da 8ira?
1 , ,2 fdXl /dx2r(x1)r(x2)^(x1x2 5-4m2) . (3.2.23)

— COS&3)
2 J J X\

Calculating this integral to one order in a, one finds

! + T~ Lm 4 | °S(1 -J*min - l o g X m ldcosi)3 s (l-cosu3)2

+ + + ^ ^ ) l . (3.2.24)

Here j - m ( n is the lower bound on the integration variables x\ and x2. Without any cuts
(except possibly on cos i)3, that we still may or may not integrate over), this lower bound
is given by 4m2./s. For specific values of cosi?3 however, the lower bound can get of the
order me/y/s. The corrections in eq.(3.2.24) will diverge as l/armin, which at least is of
the order y/s/me ! This is significantly more severe than a logarithmic divergence, which
one knows to be present in such cases. Therefore something will have to be changed
to remove this behavior, which renders the calculation useless. As will become clear
in the remainder of this chapter, the 1/x divergence is avoided by requiting the other
particle to have a non-vanishing angle with the incoming beams as well. That is, the 1/x
behavior can be seen as a remainder of the 1/(1 + costf4)

2 pole of the matrix element
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squared, which we integrated over (by integrating over the full range of t2 and u2). This
means that we have to impose an angular cut on both outgoing particles at the same
time, when calculating the radiative corrections to a process with (photonic) t-channel
scattering. Therefore our calculation for Bhabha scattering requires cuts on both the
outgoing particles.

3.3 Incorporating cuts in the LL calculation

In the previous section we argued that we need cuts on the momenta of both outgoing
particles, so in this section we present a way to do this for the structure function method.
The applied cuts are symmetric in two ways: we apply the same cuts for either particle
and we require the same minimum angular separation with either of the incoming beams.
To be specific we demand

f £3(4 > EQ ,
I |cosi?3i4| <cm = cosi9

The quantity EQ is the minimum ene-gy of the outgoing particles and $min their minimum
separation angle with the beam axis. In terms of the invariants this means at least

- ± s ( l + c m ) < th2,uli2 < -EOyfi(l-cm). (3.3.2)

However this is not the full story. Due to the relations between the invariants, the allowed
region for e.g. u} will depend on the value for tx. It is easy to deduce that

m a x ( — s — tx , ti — ) < «i < mm (—2E0\/s — ti , ti — ) . (3.3.3)
\ 1 -cmj \ 1 +cm/

The calculation of the total cross section starts from the multi-differential one given by
eq.(3.2.18). Cuts are incorporated by setting the integrand to zero if one or more of the
invariants lie outside the above intervals. This we do by multiplying the integrand with
tf-functions:

- c m

^ ) (3-3-4)

and similarly for t2, u2. We now have a multi-dimensional integral over a rather non-trivial
integration volume. There are of course many ways to solve this problem, one of which
we describe in this section. The order of integration can make a lot of difference. We
discuss one particular order, in which the integration volume is most easily expressed. The
discussion of this integration will unavoidably be technical.
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This specific order is only suited to calculate the total cross section, though up *J this
point all results are suited to calculate differential cross sections as well. We integrate
over u\, t2 and u2, using the three ^-functions. Note to this end that

6(xix4ti — x2x3t2)

X\X2X3

- X-±iX) 6
x2 1/ (,- lx2x3

x

S [U2 - - X 2 X 4 5 -tX\ ) ,
V I x3 1/

(3.3.5)

from which the expressions for ult t2 and u2 in terms of the remaining integration variables
can be read off. Care has to be given to the ^-functions. The difference with the situation
before the integration is that in the i?-functions we have replaced ux, t2 and w2 by the
expressions given by eq.(3.3.5).

The ^-functions in (3.3.4) and the ones for t2 and u2, give 8 i?-functions in our
integrand, whereas we have only 5 integration variables. This might suggest that there
axe a few obsolete ones. This depends on the integration order. The choice is first to
integrate over x3 and ar4 (the relative order of these two not being relevant), then over
^i and finally over x\ and x2. The boundaries on those integration variables are, defining

Eo

_ ix 1 - xi/x2 '
S Xi

(3.3.6)

The lower boundaries on x3 and x4 therefore depend on iu which is possible, because we
integrate over ii later. The boundaries for it in turn depend on the values of X\ and x2:

for x i > x2,

t l,max —

-XjX2S XX- Eg

1 + cm ' XiSl-Xl/x2

for x2,

(3.3.7)

for x i > x2,

for x i < x2.
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The integration over x, and x2 therefore separates into two distinct regions, which are
related by the interchange xt <-> x2. Also the lower boundaries for x3 and x4 interchange
under xx <-> x2. Furthermore it can be shown that given the values for X\ and 12 either
the first or the second 'column' in eq.(3.3.7) yields the most restrictive boundaries for
both ti§min and ilmax. The boundaries on z, and x2 are given by the requirements

X,+X2 > 2 £ 0 , (3-3.8)

implying xK2 > E0(l - cm) .

This results in the following general expression for a total cross section under the specified
cuts:

1 f dxi f dx2 ' T * . |Af|2(3r lJ2a,<i)

tl.min

1

x Jdx3V(x3) Jdx4V(x4) . (3.3.9)

Here we have written the result as compactly as possible, but it needs an additional
remark. As all the integration boundaries stem from the ^-functions, the integrals have
to be defined to be zero as soon as the lower boundary is larger than the upper boundary,
since then the product of the two i?-functions vanishes. That is, the more correct way to
write the integrals would be

0 t\,,max

Jdix-d{U - h,min)H-U + kmaz) instead of Jdtt . (3.3.10)

Furthermore in eq.(3.3.9) we have explicitly indicated in terms of which variables the
matrix element squared has to be written in order to use this equation.

Using this result we can come back to the toy model of the previous section, i.e. a
matrix element squared \M\2 = 64ir2a2s2/t\. As in the previous section we will impose
no cut on the energy of the outgoing particles, so we will leave out the final state radiation.
Also the boundaries for i\ in eq.(3.3.7) simplify by taking EQ = 0. In first order in a,
when at least xt = 1 or x2 = 1 we can combine the x\ and the x2 integral into one
integral over x

M /U)l Tk*2*^ (3.3.11)
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In the last line we carried out the <i integration and used its boundaries for EQ = 0. The
integral over x yields

4ita2 f 4cm aLm \ 8cm

m 2 x m i n

The Born term here obviously is the one in eq.(3.2.24), integrated over cos$3 from —cm

to cm. In the first order corrections we again have a term l/xmin. But fortunately there
is a significant difference in the way this term appears compared to eq.(3.2.24) and in
the value xm i n now has. Both differences are due to the one extra cut we imposed: that
also the vector p4 has an angle with the beam axis between i?min and 180° — i?m,n. The
difference in the l/xmtn term is the factor (1 — c m ) / ( l + c m ) in front. Moreover the value
for xmin can be obtained from eqs.(3.3.8), knowing that either xt = 1 or x2 = 1 (and
using EQ = 0). We find

2"min = ~. ! • (3.3.13)

Hence the incorporation of cuts automatically leads to a lower bound on x at O(a).
Therefore the t?(i — 4m*) that was used in section 3.2 is not needed here.

The l /xm i n term now is of order unity times aLm/n and therefore does not pose a
problem any more. Of course the limit cm —> 1 cannot be taken, but that is a characteristic
of photonic t-channel scattering, already at the Born level.

At this point we address the question how to use eq.(3.3.9) in a practical situation
for numerical results for a total cross section. Generally speaking the problem is that
we still have 5 integrations. Doing all 5 analytically would be very hard, if only for
the difficulties the boundaries present. Performing them numerically also poses many
problems, especially because the order of integration is so important, in connection with
the form of the integration boundaries. This makes this formulation rather unfit for
a 5-dimensional Monte Carlo integration, unless one is able to map the variables more
conveniently. Therefore a combination of analytical and numerical integrations is probably
the best solution.

Thus the first integration to do analytically is the integration over x3 and x4. It has
to be decided then to which order in a we want to calculate the leading log final state
corrections. We will calculate the first and second order corrections. The first order
corrections have to be convoluted with the initial state corrections and hence have to be
calculated for arbitrary x t and x2 values. For the second order corrections it is sufficient to
convolute without initial state corrections. Therefore these corrections can be calculated
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for X) = x2 = 1. Calculating the first order final state corrections for arbitrary xj and x2

we have
1 i

Jdx3V(x3) Jdx4V(x4) = I + ~Lm

4,min + ~Zx3,min + ^X4,min • (3.3.14)

The lower boundaries X3,mtn and x4imir i are given by eqs.(3.3.6). From the dependence
on i\ in these boundaries it is immediately clear that the integral over it will be more
involved when including these first order final state corrections. If however we set the
energy cut Eo to zero, we have x^min = x 4 m j n = 0 and hence all first order final state
corrections vanish. This property holds to all orders in a LL calculation, as is guaranteed
by the KLN theorem [14].

The second order final state corrections for x\ = x2 = 1 have the form

\ ( ^ r ) [~2C(2) + 2L'2 0 ~ ^°) + 2^° ( 2 + ^°) l o g 0 ~ ^°) (3315)

+4 log2 (l - Eo) - \E0 (2 + Eo) log Eo + Eo + ^£0
2 + l-E3

0 + ^

times the Born cross section. For Eo = 0 the KLN result is recovered. For realistic
Eo values these corrections are tiny, e.g. for Eo = | we find —0.1% times the Born cross
section.

We want to postpone the discussion of the ^-integration, for this depends strongly
on the matrix element squared for the process at hand. It suffices to say here that
we will opt to do this integration analytically. The last integrations are the ones over
x\ and x2. These we will do numerically. Again we have to decide to what order we
want to calculate the corrections, for this is independent from our choice for the final
state corrections. Again however we will discuss the possibilities to calculate second order
corrections, because in some cases the initial state corrections are very large [2]. Moreover
as in some of these cases these corrections mainly come from soft photon radiation, we
will discuss soft photon exponentiation as well.

The integral over x t and x2 has an integrand that is a function of x\ and x2 separately.
Note that in the matrix element squared the dependence is only on Xix2l but that in the
integration boundaries for £lr x3 and x4, see eqs.(3.3.6) and (3.3.7), xj and x2 do occur
separately, though it is arranged in such a way that the integrand is symmetric under
xi <-> x2 (due to a property of the integration boundaries that was noted before). As will
become clear this is a disadvantage when calculating these integrals. Therefore we will
separate the integral into a part that includes the dominant part of the corrections and
that is a function of x }x2 only and a part that includes the rest. That is, we write

1 1 i t

jdxx jdx2T{xx)Y{x2) /(x,,x2) = Jdx1jdx2r(x1)r(x2)[f{xlx2,l) +
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f(xl,x2)~f(xlx2,l)]. (3.3.16)

The integration over the fractions xj 2 is over the full range from 0 to 1, because the
^-function constraints are included in the function / . The first term in eq.(3.3.16) is
the dominant part. The last terms cancel when xi = 1 or x2 = 1 or both, and thus
contributes only to the second and higher order hard photon corrections. The first term
can be written as a one-dimensional integral

) = Jdz<p(z)f(z,\), (3.3.17)
0 0 0

where we defined (having an e+c~ initial state)

I I

V(z) = JdxlJdx2V(xl)r(x2)S(z-xlx2)
0 0

= 6(\-z) + -I\,{z)Lm + l-(-)2(Pee0Pee)(z)L2
m. (3.3.18)

Again we only considered the diagonal splitting functions up to and including order a2.
It is this dominant part where soft photon exponentiation can be carried out. This can
be done by using the following form for <p(z):

_ cxp (g/ ,m) cxp(-/?7fi)
ponK-J — V(l + ft)

6'3'{z) , (3.3.19)
« \ n /

with

2

— Lm. (3.3.20)
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Expanding the first form of eq.(3.3.19) yields the second one, which starts to deviate
in O(a3). In the first form the F(l + ft) stands for the F-function, not for a splitting
function. To avoid any confusion we will not use the F-function in the remainder. Notice
that the form (1 — z)~1+p contains a tail into the hard photon part. Therefore this is the
soft photon distribution extended over all photon energies.

The part with f(Ti,x2)—f{xix2,1) is a 2-dimensional integral that cannot be reduced
to a 1-dimensional one. Therefore exponentiation in terms of one variable is not possible
for this term. But for this term it is not needed either, since it exhibits no soft photon
peaking behavior that needs to be resummed. If therefore soft photon exponentiation has
to be performed for a specific problem, it is sufficient to perform it for the term on the
first line of eq.(3.3.16).

This completes our general discussion on the calculation of the LL corrections for a
total cross section applying the cuts specified in eq.(3.3.1). We can summarize the result
as follows. The first step is to calculate, preferably analytically, the ^-integral of the square
of the (process dependent) matrix element times the (universal) factor given by (3.3.14).
A final result then arises from performing (e.g. numerically) a one-dimensional integral
of this intermediate result times a 'flux function1 (ip(z)). If higher order corrections
on the initial state are needed, one has to calculate a two-dimensional integral as well,
though over a non-dominant hard photon part. Soft photon exponentiation is possible.
This method is applicable to photonic t-channel scattering processes, for which cuts are
essential. For a specific process one now has to specify the matrix element and the scale
Q2 appearing in the logarithm Lm.

In the following section we will treat the question of incorporating an additional cut,
namely on the acollinearity, within the framework of this type of LL calculation.

3.4 Incorporating an acollinearity cut

It is possible to incorporate yet another cut in the calculation of the LL correction: a
cut on the acollinearity of the final state fermions. Though the treatment of this cut is
rigorous, as is the treatment of the cuts on the angles and the energies, it is dealt with
in a different way. Therefore we devote a separate section to it.

First let us define the acollinearity (

(=\7T-l(p3,p4)\ . (3.4.1)

The variables in which this quantity can be expressed in the LLA are the angles of p3 and
Pt with the beam axis. The cosines of these angles depend on our integration variables:

COS 173 =

cost?4 = - 1 + 2 1 - — - (3-4.2)
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The difference in sign is due to the fact that both angles are defined with respect to the
same direction (i.e. px) and that p3 and p4 have to lie back to back at Born level. The
acollinearity is then given, in this LL approach, by

C = IC'I , C = * - ^3 - t>4 . (3.4.3)

The angles i73|4 lying in the interval [0, JT], the acollinearity has its values in [0,TT] as
well. The azimuthal angles do not play a role here because that information is lost
in the leading log approach. Although we in principle have an analytical formula for the
acollinearity in terms of the integration variables, using eqs.(3.4.2) and (3.4.3), the sum of
two arccosines in that formula makes it impossible to invert that relation straightaway. In
the actual numerical calculation ie inversion will be done numerically. For the discussion
it is useful to introduce the quaii.uy

Ac — cosi?3 + cosi?4 ,

that obviously will not contain these arccosines:

Ac-2{X2~Xl){Xl+X2) *' (3.4.4)
xX (1 /x - x2/xx)ix + x,x2s + <i/(£i + xtx2s)

The method to incorporate a cut on the acollinearity hinges on the fact that the variable
C is a monotonously increasing function of the quantity Ac. This enables us to determine
the maxima and minima of (' by determining the ones of Ac. This we do by considering
the derivative of Ac with respect to tx, at fixed xt and x2. The minima and maxima of
( ' give the ones for the acollinearity £. Together with the zeroes of £, that correspond
to the zeroes of Ac, we have all the ingredients we need. First a few remarks on the
expression for Ac are in order.

In the LL approach the incoming particles with momenta px and p2 radiate off some
energy and retain only xxpx and x2p2 of their momenta. Then the particles, having these
reduced momenta, scatter. In the center of mass frame in which this 'hard' scattering
takes place, the final state particle momenta p3 and p4 are produced back to back. In
order to go back to the laboratory frame one has to boost these momenta (this boost is
zero if xx = x2, since in that case these two frames coincide). Finally the particles with
momenta p3 and p4 radiate off some energy and retain only the fractions x3 and x4 of
their original momenta, enc'ing up with p3 and p4. The radiation off the initial state and
the final state is collinear with the momentum of the particle from which it is emitted.
The difference between the laboratory frame and the center of mass frame of the 'hard'
scattering is due to initial state radiation only. The boost between these two frames is
collinear with the incoming momenta, i.e. along the direction of the beam axis. It is only
this boost that causes a non-zero acollinearity. With this picture in mind one notices a
few features of the above form for Ac.

• Ac does not depend on x3 or x4. This is because the final state radiation is collinear
with the particle emitting it.
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• Ac vanishes if xj — x2 —> 0, for in that limiting case the two frames mentioned
above coincide, and the two particles are produced back to back in the laboratory
frame.

• Ac vanishes if ij —• 0 or if iix = —t\ — Xii2.s —• 0. For iv = 0 and for ui = 0
all momenta are directed along the beam axis. So the boost is collinear with the
outgoing momenta themselves, and cannot introduce an acollinearity between them.

We want to know at what values for ix the quantity Ac has a maximum or a minimum.
Therefore we calculate the derivative with respect to i\ and find

dAc ,
< ^ . (3.4.5)

The proportionality factors can only give zero if X\x2{x2 — x\) = 0. The case xix2 =
0 is taken to be excluded by our previously defined cuts on cosd3A and on E3t4 (see
eqs.(3.3.8)). For xx — x2 = 0 we already know from the above discussion that the
acollinearity is zero, independent of the value of t\. The conclusion is then that the
quantity |Ac|, and hence also the acollinearity, has a maximum at t\ = ~^xix2s. Using
the cuts as defined by eq.(3.3.1), leading to the tx integration boundaries (3.3.7), one
can check that this value for h is always between these integration boundaries. In other
words, the maximum acollinearity for given xi and x2 is always present in the integration
over tx. Having found no other zeroes for dAc/dtx, the minima for the acollinearity are
then obtained at the integration boundaries for t\.

We now focus on the numerical implementation of the acollinearity cut. The cut
on the acollinearity leads to three possible situations. The first possibility is that the
maximum allowed value for the acollinearity is larger than all those that can be obtained
within the ^-interval. In that case the i\ integration can be carried out as before. The
second possibility is that this maximum value is smaller than all those that can be obtained
within the f]-interval. In that case the integral over i\ has to be set to zero. The most
awkward situation h on ever is when within the U interval one can have values both above
and below the maximum acoiiinearity. In that case one has to find the two values for tu

let us call them ia and 4 , where this maximum acollinearity is obtained. Because it is
very hard to do this analytically, we will do this numerically. This can he implemented
using standard search routines, without taking too much CPU time. The only thing we
have to do then is to calculate the it integral over two separate intervals, namely from
h.min to ia and from tb to tl<max (unless of course one of these intervals turns out to be
empty, which still is a possible outcome).

3.5 The non-log terms for the initial state

In this section we discuss the non log terms arising from initial state radiation, whereas in
the next section those of the final state will be considered. We deal only with the terms
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first order in a. The reason is twofold. The required precision of the radiative corrections
often calls for the complete O(a) corrections. Nevertheless the separation of the complete
0{a) correction into a LL and a non log part is essential for the following reason. When
the non log term is small compared to the LL part, it justifies the scale chosen in the LL
part. In such a case the second order LL term k expected to be far more important than
the second order subleading terms and those can therefore be neglected. In the explicit
numerical calculations for large angle Bhabha scattering we shall use Q2 = s and shall
justify this by showing that the non-log terms are indeed small. This is the subject of
section 3.8.

The way in which we shall calculate the O(a) non log term should incorporate the
experimental cuts. This can most easily be done numerically. However a numerically stable
procedure should be adopted. A full O(a) calculation from which the LL calculation of the
preceding sections is subtracted is numerically rather difficult since one has to integrate
a strongly peaked cross section. Instead of this we integrate the difference of two cross
sections which both peak similarly. The first one being the exact one and the second
one a modified collinear approximation. The last one is chosen to lead to the O(a) LL
expression of the last sections. The integration deals with that part of the cross section
where the photon is harder than e\\fs- Below this value, for a suitably small e, the O{a)
correction is just a factor times the Born cross section. The contribution to the total
cross section from this part comes from a one dimensional integral over t. The factor
contains O(a) virtual and soft corrections. Since we are interested in the non log terms
one should remove the LL terms from the known analytical expressions. In appendix 3.A
we give some details.

It should be noted that although we only explicitly mention here non log terms from
the initial state and in the next section from the final state, we shall also include terms
due to the interference between initial and final state and box diagrams. They are not
LL terms and should be included in the exact O(a) corrected matrix elements squared to
get the full O(a) correction in the end result.

The rest of the section is devoted to the derivation of the approximate hard brems-
strahlung cross section which leads exclusively to the 0{a) LL result of the previous
sections. The expression will take the form of a universal factor times a specific process
dependent reduced cross section. Although an expression like eq.(3.2.13) is well known,
the approximate collinear bremsstrahlung cross section leading to it is not discussed in de-
tail. It is this approximate cross section that we need. The main point about its derivation
is to obtain the procedure to go from the five momenta p\,..., p<«, k to the four momenta
p l y . . . , p 4 , such that both p? + f2 - p$ - ft - A" = 0 and # + p £ - p g - p ? = 0 is
preserved throughout.

Let us start by writing down the phase space for the three outgoing particles in terms
of the variables we want to use:
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dE3dtt3 8 cos Z(p

We have defined J53, S73 (&0, H*) to be the energy and solid angle of p3 (kM). All variables
are defined in the pi -f p2 CM frame. Furthermore we defined

9 2 2
«* / = P3 = P4 1

m? = pf = P L (3.5.2)

not to be neglected at this moment, as we will hit collinear singularities otherwise. For
convenience the charge of the fermions is taken to be ±e. The angles of k and p3 are
taken with respect to pi . The ^-function is left, because our objective is to integrate over
the photon angles and end up with a Born-like phase space plus an integral over some
fraction x that is related to the photon energy k0. In the Born-like phase space we will
need some ^-function to relate E3 and the angle of p3 (with respect to whatever we will
choose then) through the fraction x.

We now specify the approximate matrix element in two steps. First we take

- e2 j_ j2
(3.5.3)

with the definition x = 1 — kQ/(^y/s). This matrix element squared is a good approx-
imation for the full hard photon matrix element squared in those cases where pi and k
are collinear [17]. We shall use it also outside the collinear situation: in fact we are going
to integrate over the full range of the photon angles. This can be done as it leads to
a good prescription yielding the structure function method. It is clear that taking this
form for the matrix element, we only hope to produce the structure function formula for
the corrections on the pi line. The p2 line can be treated analogously, the final state
momenta will be treated in the next section. Another point we want to stress is that in
the way eq.(3.5.3) is written down, the four momenta that go into the Born-like matrix
element Mo~, do preserve energy momentum conservation.

As a second step also M^ and the phase space undergo an approximation. Since
Py-k11 depends on the photon angles an integration over the photon variables in eq.(3.5.3)
would not lead to a factorized form. Therefore we fix the photon angles in A4o*, to the
collinear case. In other words: fixpj*—fcM to bep^ l— ko/(^y/s)) = xp^, within MQ~, only.
However we are still confronted with a dependence on the photon angles in the relation
between ft3 and E3, defined by the ^-function in the phase space defined by eq.(3.5.1).
Also for this relation we take the typical 0^-values, where k is collinear with pV With
these two changes we have
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(3.5.4)

We can observe two features. Firstly the integral over the photon angles can now be
done, regardless of the form of May. Secondly we have a problem with the momenta
that we have to insert in Mo-,. Taking the momentum xpi follows from the above
discussion, and taking p2 is obvious since it is a fixed incoming momentum. However
taking p3 and p4 to complete the set of four momenta is clearly wrong, for this would
violate energy-momentum conservation.

From what we have done so far it can be deduced what we have to do. We still
have one 6-function to fix one of the integration variables. Let us say, for argument's
sake, we choose as integration variables cosi?3 and </?3 (and of course x). Then from the
<!>-function in eq.(3.5.4) the value for E3 follows. Using the mass relation pi = m 2 , the
whole momentum p3 is then known. However since this is not the same momentum p3

as the one we started with (the one we would have built using the original momentum
k^), we will denote the new one by ^3. Analogously we define pf = xpf and p% = p%.
The last momentum /)£ now follows from energy-momentum conservation. It will now
be shown that the above approximate matrix element actually leads to the results of the
structure function method. First the angular photon integration is performed

Jfa 1 m;
(Pl-k)

= 2TT

= 2 , 1

l + x 2

log
4 m?

x(l-x)*
(3-5.5)

where in the last line we expressed k0 in terms of x and took the small mass limit mj <C -s.
Inserting this in eq.(3.5.4) we get

^ JdE3
l-E3^/l-m}/EidQ3 (3.5.6)
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fdx
f— 6 ( (1 - x)y/sJEi - m } c o s i ? 3 -xs + (l+ x)E3y/s) x

J JO

l 1 \ M ( ) \o I I 1 O S — 2 ~ 1 \M^{puP2,P3,P*)\ •
lit \_ 1 — x mf 1 — x\

In the last step we re-arranged the argument of the ^-function and changed the order
of integrations. In this final result we recognize on the first line a familiar form of the
2-particle phase space, if we add to it the ^function of the second line with x = 1, which
is

The third line is the integral over the hard part of the first order LL splitting function
(plus a non-log part stemming from the mass term in (3.5.3)) times a Born-like matrix
element. We have also indicated explicitly the momenta p\.... ,p4. Note furthermore that
an explicit argument for the logarithm has emerged, quite independently of the specifics of
the matrix elements. Finally we can make the correspondence with previous sections more
evident. Eq.(3.5.6) can be compared to eq.(3.2.20) when integrating over i/?3, yielding a
factor 2n, and including the flux factor l/(2.s) and neglecting m/ where possible. In fact,
if we do this and change variables to t{ and uu instead of E3 and cosi?3, we find

^JdPS3\Mly\
2 = jg-jJdtKlm J^Sixs + xti + uJx (3.5.7)

a \\+x2 s 2x 1

[ l J
When we compare this result to eq.(3.2.19), (3.2.14; and (3.2.15) we see that the correct
LL term is reproduced with scale Q2 = s and in addition a non log term. The last term
originates from the second term in eq.(3.5.3), i.e. a term proportional to m'f. Thus the
first term of eq.(3.5.3) together with the modified Moy and phase space gives the LL
term. Although we now have obtained the answer for our approximate matrix element
squared we have found more, i.e. an additional term proportional to 2x / ( l — x). This
term arises naturally from the collinear approximation and makes the residue of the soft
photon pole Lm — 1 instead of Lm, Since soft photons constitute a sizable part in the
corrections it is necessary to replace /? = 2aLm/7r in eq.(3.3.20) by

0 = — (Lm-l) . (3.5.8)

When doing so, one should replace m2 in eq.(3.5.3) by m2/x in order to obtain 2/(1 — x)
in eq.(3.5.7). Thus we have defined an approximate cross section which leads to the LL
expression with /? given by eq.(3.5.8).

The numerical integration of the difference of the exact and four approximate cross
sections over the phase space allowed by the cuts is most easily done by Monte Carlo

46



integration techniques. The approximate cross sections contain the collinear radiation
from the incoming and outgoing particles. One generates for an incoming p, and p2 the
momenta p3l p4 and k, where p3 and p4 are required to satisfy the cuts. From this set
one constructs four other sets of momenta e.g. the set p l r p2, p3, p4 and fraction xx

corresponding to initial state collinear radiation from the particle with momentum px. The
other sets correspond to collinear radiation from the other particles. This is discussed in
the next section for final state radiation. The combination of matrix elements is smooth
enough to obtain a reliable non log result by a Monte Carlo integration technique.

3.6 The non-log terms for the final state

In the previous section we discussed a method to obtain the non-log terms for the initial
state corrections, in this section we want to do the same for the final state corrections.
Most of it is analogous to the initial state corrections. The approximate matrix element
squared is however not quite the same. We start again by writing down the phase space

dPS3 = — 1 — kodk0dilk dE3dQ3 JEl - mj x (3.6.1)

S (s — 2\/sk0 — 2\/sE3 + 2E3k0 1 — cos l{p3,

We defined E3, Q3 (k0, Qh) as the energy and solid angle of p% (k"). All variables are
defined in the p\ + p2 CM frame and all angles are taken with respect to pi. Again we
will keep the ^-function. The approximate matrix element squared we start with reads

1 - x {p3-k) (p3'ky
(3.6.2)

with the definition x = E3/(E3 + k0). It is a good approximation to the exact matrix

element in those cases where p3 is collinear with k. Note that the momenta going into

M<yy in eq.(3.6.2) obey energy-momentum conservation. Just as in the p'evious section

we fix the direction of k in May and the ^-function to be collinear with p3. This results

in

dE3dil3x

(3.6.3)

Once more we have created a form where we can easily do the integration over the photon
angles, but where we have to be careful which momenta to insert in M^. We choose as
integration variables cosi?3 and <p3. Having chosen those, E3 follows from the ^-function
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in eq.(3.6.3). Using the mass relation pi = m2 we then know all components of the
altered version of p3, which we will call p3. The incoming momenta are fixed beam
momenta, so define px = px, p2 = p2. Having fixed three out of four momenta we have

P< = Pi +P2 ~ P3-
The next thing to do is to integrate over the photon angles, which yields

fdllk

(3.6.4)

In the last line we expressed k0 in terms of x and E3 and assumed that m2 <C E$. We can
insert this in eq.(3.6.3), setting mj to zero where possible. We change the integration
over A:o into one over a; and obtain

2. x
(3.6.5)

a
1 — x

log
m

2x

Also here we recognize on the first line a familiar form for the 2-particle phase space,
in combination with the ^-function if it were taken at x = 1. The rest is the integral
over the hard part of the first order fragmentation function (plus a non-log part coming
from the mass term in the matrix element) times a Born-like matrix element. In order
to make the relation to the previous sections more evident, we have to include the flux
factor 1/(2^) and integrate over the angle <p3 in order to compare to eq.(3.2.20). We
furthermore change variables from E3 and cost?3 to tx and u\. This results in

l - r l
If fdx

= ——x dtidui / —S(xs + i, + uj) X
16?T52 J J x

(3.6.6)

2x

to be compared with eq.(3.2.19). Once again, as we noted below eq.(3.5.7), we see that
the residue of the soft photon pole is Lm — 1 rather than Lm.

There is however an important difference between this result and the one obtained in
the previous section for the initial state: the argument of the logarithm is not a constant
here. In this argument E3 or x, one of our integration variables, appears. Nevertheless
we usually assume, when calculating the LL corrections along the lines of section 3.2,
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that the scale Q1 is independent of the integration variables. We can solve this problem
by taking a collinear factor that integrates to a logarithm with a scale Q2 that does not
depend on any of the integration variables. In principle we are free to do this, as long
as we also calculate the other part of the corrections, i.e. the non-log terms. Keeping in
mind that that was exactly what we were setting out to do, we can take another collinear
factor. By changing the collinear factor we are merely shifting contributions from the LL
part to the non-log part and vice versa. Our choice will be to take a modified collinear
factor in eq.(3.6.3), namely

e
2 | 1 + x 2 1 m)

1 - x E3k0 (l - cos l(p3,k)J\ - 4m}/s) (p3-k)
(3.6.7)

It can easily be shown that after integration this yields the same result as in eq.(3.6.4),
but with the argument 4£>|/mJ of the logarithm replaced by s/m2j, which indeed is
independent of all other integration variables. Also the convergence of the numerical
Monte Carlo integration is still sufficient with this approximation instead of the one of
eq.(3.6.3).

Finally we want to comment on the mass rnj in the case of final state corrections. After
eq.(3.6.4) we have neglected it wherever possible, but in principle this is not necessary for
the derivation. However, if mj were comparable with E3, the argument of the logarithm
in eq.(3.6.4) would be close to unity and hence the logarithm would not be large, let
alone leading. Therefore there is not much sense in allowing mj to become rather large
and still only do a 'leading log' calculation. Having said this we will now turn to Bhabha
scattering, with mj = m€, i.e. m/ is very small.

3.7 Bhabha scattering

In this section we want to discuss the specifics of Bhabha scattering when implementing
the methods of the previous sections. Since we consider the matrix elements squared for
the processes e+e~ —+ e+e~(j) as well known [18], both in terms of dot products and in
terms of spinor products, we can implement the calculation of the non-log terms using
the methods of sections 3.5 and 3.6 (and using the FORTRAN program VEGAS to do the
Monte Carlo integration [19]) without much further discussion. The only point we want
to come back to at the end of this section is what variables we want to choose as the
integration variables. For the LL calculation, on the other hand, we need to write the
matrix element squared for e+(pi)e~{p2) —> e+(p3)e~(p4) in terms of the invariants s
and t only, in accordance with the discussion at the end of section 3.3. Furthermore we
will have to integrate this matrix element squared times the final state correction factor
given by eq.(3.3.14) over the invariant t. Finally, in order to complete the calculation, we
will have to include the pure weak (non-QED) corrections at some point. In this section
we will give the desired form of the matrix element squared in terms of s and t, in which
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the weak corrections can be incorporated and we will give the ingredients for carrying out
the integration over t.

The Born matrix element squared for the process e+e~ —» e+e~ can be written as

\MBoTn\2{s,t) = (47ra)2][V.-/.-, (3.7.1)

where

r _ t2 + U2 r _ t — U r _ t j _ 1
*1 — 2 > i 2 — e i ' 3 - g i M — *i

and where the VK, are constants at Born-level. Ii{h) is the (anti)symmetric part of the
s-channel squared contributions, for

-If- = 1(1+ cos2tf),

t — U
= cost?,

with •d the angle between say the incoming e+ and the outgoing e+. As we want to use
the methods of sections 2 and 3, we have to write this in terms of s and t only, as we have
indicated already in eq.(3.7.1) (in order to use this in eq.(3.3.9), s and t then have to be
replaced by x}x2s and ^ respectively). Using s + t + u = 0we therefore eliminate u:

h=2^ + 2/3 + h , h = 2/3 + /4 .

The W, are mainly combinations of coupling constants and s-channel propagators, but
they can be written in a way that enables the inclusion of first order pure weak (non-QED)
corrections.

\ ( K + | 2 - |Ps,_|2)2 + Re

W3 =

^ 6 = ~rp>{Pt,+ zt,+ + Pt,-Zt-) + 2 I 2Mi (2
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(3-7.3)

The contributions Vi,2 come from the interference between the s- and the t-channel and
are given by

V2 = 2 Re [,£+zJ+ + rff_,J_ + *.2f+z?.+ + zl_zl_ ] . (3.7.4)
Here we have defined

P.A = -[{Qe + F^(s))-^A
e(s)}[x,(s)}l/\ (3.7.5)

where x~t(Z)(s)IS t n e renormalized •j(Z) propagator function as a function of the momen-

tum transfer s and FZj ' is the (axial-)vector form factor for the Zff vertex due to pure

weak (non QEO) vertex corrections, as is F1 j for the 7 / / vertex. For the t-channel
quantities we defined

where Ey(z)(t) is the renormalized self energy of the f(Z) as a function of the momentum
transfer t and £-,?(<) is the 7-Z mixing. The square roots in eqs.(3.7.5)r(3.7.6) are
implicitly understood to be complex valued ones, defined on the same Riemann sheet
as the logarithm (independent of the choice of the particular Riemann sheet). For the
explicit form of the quantities x-i,z and S-y,̂ ,7^ and ^ A w we refer to [7, 8] (in [8]
however the F^A^ are defined with the opposite sign). From these explicit expressions
one can see that pSt\, z,,\ are complex valued whereas pt,\, zt,x are real. We will leave out
the contributions from the ZZ and WW boxes, for we have checked that on resonance
these contributions do not exceed 0.1%, whereas off resonance (i.e. at y/s = 120 GeV)
they are at most 0.2%.

Taking the expressions from the above references means that we follow the renor-
malization scheme outlined there. Here we only want to remind the reader that in this
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scheme e.g. the masses of the Z, the Higgs boson and the top quark are input param-
eters, whereas e.g. the mass of the W, the width of the Z and sin2 dw are calculated
parameters (from the muon decay constant GM). Finally we should remark that we calcu-
late the light quark contributions to the vacuum polarization in the t-channel (t.~,(t)/t)
using a parametrization of the dispersion integral over the hadronic total cross section
in e+e~ collisions. Motivation to do so can be found in [20], together with the exact
procedure.

Thus by suitably defining p,:\ and z,fX etc. one can incorporate the self-energy cor-
rections and the pure weak vertex corrections in the above form for \M\2. However it is
obvious from eq.(3.7.6) that ptt\ and zti\ depend on t through the one loop corrections.
This prohibits one to integrate the /, over t, considering the W, as constants. Neverthe-
less we do need to calculate this integral, as indicated by eq.(3.3.9). To do this integral
analytically with t-dependent W,- is too cumbersome. Performing it numerically would be
possible but would add one more numerical integration slowing down the whole calcula-
tion. A practical solution to this problem is the following. For the contributions without
QED corrections (i.e. the contributions with T(xi) = P(x.) = 8{l - x.) in eq.(3.3.9))
one can do this integration numerically, for in this case it is a one dimensional integration
over a smooth function. For the rest of the contributions it is sufficient to approximate
the pure weak corrections by calculating them only at one particular value of t and assume
that they are the same at all other values of t. In fact it turns out that this is a rather
good approximation if this particular t is chosen to be

= -2s,
-f xrx2 - c m ( l - x1x2)'

(cm is the cosine of the minimum separation angle i?mtn as defined in eq.(3.3.1).) Some
motivation for this choice can be given, since it has to do with the value ior t as occurring
in eq.(3.2.22). But the real requirement is to minimize the deviations from the exact
calculation. This can only be checked a posteriori. Combined with the fact that the
approximation is made for the QED correction terms only, we have checked that the
deviations from the exact calculation are of the order of 0.1% and hence that they are of
no experimental relevance.

Having done this, the integration over t for these contributions can be done by inte-
grating the very simple integrands /;. Using the results of section 3.3 however, we want
to include final state radiation at this point, by including the factor given by eq.(3.3.14)
in our integrand. Apart from the trivial integrals for the lowest order term, we now have
integrands of the form

/, /(a,6,0 = /, flog (l - -±_) + l--L- + i—L-J .
[ \ a + btj 2a + bt 4 (a + bt)2\

The values for a and b follow from the lower boundaries of x3 and x4 as given by
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eqs.(3.3.6):

a = f , b = -
E

(from*,),

(fromx4).
(3.7.7)

Written in this way we cannot take Eo = 0 any more, but we have to remember that
in that case we know the final state LL corrections to vanish anyway. However for non-
vanishing Eo we have

2 1 \fl 1 \

~Ta + bt) '

/ *«/( . .6 ,0 = I ( . . - ^ ,„,._,+«,

Jdlf(a,b,t) =

l
J
dt)f(a,b,l) = log ?—

t a

*t 1/ l* ~r t/fc

T. / W \ T. / bt\
- L i 2 +Li2

V a " 1 / V a)

a — 1

1 b_
~4a2a + bt

The expressions for the integrals

;f(a,b,t)and

can be obtained from the last two in eq.(3.7.8) by means of the substitution

t -* t - A/ | and a-+ a + bM\.

(3.7.8)
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Several arguments of logarithms will become negative in these expressions. Therefore
these are implicitly understood to be complex valued. A check on the results is that the
imaginary parts should vanish in the end, as we started with real valued integrands.

The above expressions appear to have singularities if either b —> 0 or a —* 1. These
two limits can be taken using expansions for the integrals when necessary:

•«£>>•«*>•

la\a — I)

jdt\f{a,b,t) = ^

From these expressions it is clear that the limits 6 —> 0 and a —* 1 are incompatible:
they can not be taken both at the same time. However a = 1 and 6 = 0 only occurs if
#1 = x? = Eo. AS can be seen from eq.(3.3.8) this is at the very edge of the phase space.
It can be checked that though the above expressions yield a singularity in the integrand
at i j = x2 = £o. the integral over xi and x2 over a finite area remains finite.

Summarizing the results so far, we have the following situation. We can substitute
the explicit form of the integrals for the /,. These are then functions only of a, b,
tmin and tmax, and hence, using eqs.(3.3.7) and (3.7.7), only of xt and x2 (and of the
fixed parameters cm and Eo). This means that from this point onwards we can do the
integrations, i.e. the ones over x\ and x2, numerically.

At this point we can improve our results for the higher order corrections in a very
straightforward way, by making the following observation. As has been known for a long
time [21], and as has been mentioned in sections 5 and 6, not only the terms 1 / (p-k) art
of a universal nature: also the terms —m2 / (p-k)2 are. This means that it is the factor
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^•{Le - 1) = /3 that becomes the exponent, rather than ^fLe, when performing soft
photon exponentiation (see [21J). Therefore we can improve the higher order corrections
by taking this expression for j3 in eq.(3.3.19). Doing so one cannot claim to have taken
all next to leading log terms into account, but one has accounted for the most important
ones. A measure ior how well this works can be obtained from the first order corrections,
by comparing the LL result with the full O(a) result. In the next section we will come
back to this point.

In the remainder of this section we want to focus on the Monte Carlo integration to
calculate the first order non-log terms. As stated at the beginning of this section we use
the integration routine VEGAS. The pseudo-random number generator we use is called
RANMAR and is introduced and discussed in [22]. The matrix elements we use are well
known in the literature, so the only problem left is the choice oi variables. We have a 5-
dimensional integral at hand and we use a general purpose integration routine. Hence re is
best to choose those variables in which the integrand varies most steeply. We will •• hoose
k0, the energy of the photon, cos x)k and ^ , the angles of the photon with respect to the
incoming e+ , and costf3 and <£>3l the angles of the outgoing e+ with respect to the photon.
Notice that by choosing cos t^. both the peaks arising when the photon gets coilinear with
either incoming particle are easily localized, i.e. at costf* = ± 1 . By choosing cosi?3 the
same can be said for the situation where the photon is coilinear with the outgoing e+

(cos i/3 = l ) . So we are left with the situation where the photon is collinear with the
outgoing e". But in that case the outgoing e+ has to lie back to back with the photon
ci.d the outgoing e~. Hence this peak is easily localized at cost?3 = — 1. Moreover the
peaking towards soft photons is localized at the lower end of the k0 integration. Thus
every peak in the integrand is localized in terms of only one of our integration variables.
This is important for a program like VEGAS to work smoothly.

Having motivated our choice we will now give the expression for the phase space in
terms of the chosen variables, together with the algorithm to construct events.

1 £3
kdko dcosdk d<pk dcosi?3 d<p3. (3.7.10)-2ko(l - cosv3)

The energy of p3 is given in terms of the basic 5 variables by

8(l-2ko/y/5)
3 ~ 2 ^ 2 * ( 1 c o s t f ) ' ( '

Using the basic integration variables and E3 we can construct &M and p3. In doing so we
have to rotate p3, for its angles were defined with respect to k. Th» momentum p% then
follows from energy-momentum conservation.

In the above we have neglected the electron mass me. We are allowed to do so because
the integrand does not have any collinear divergences any met : for we have subtracted
the four collinear matrix elements from the full one. The resulting integrand therefore is
finite in all parts of the phase space, even when taking me = 0 (but of course only as
long as we have k0 > e^y/s, where e\\/s is the soft photon cut-off).
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The integration variables are assigned values in the following ranges

c o s t ? * , c o s t ? 3 € [ — 1 , 1 ] ,

<pk,<P3 € [ 0 , 2 T T ] .

For the upper bound on k0 we maintained the electron mass to ensure that the invariant
mass of the final state e+e~ pair does not become lower than 4m^. We remind the reader
that in the numerical non log calculation also the interference between initial and final
state radiation is taken into account as has been discussed in section 3.5.

3.8 Results and discussion

We have implemented all that has been discussed in the previous sections in a FORTRAN
program. In this section we want to check its results against other more limited calcu-
lations by omitting parts of the full calculation. Moreover we present the new results
of the full calculation. Although the second order final state corrections of eq.(3.3.16)
are included in this program, the results presented in this section do not contain these
corrections because they are very small (~ 0.1%). Furthermore all the results have been
obtained using the scale choice Q2 — s, a justification of which can be found in the fact
that the non-log terms turn out to be small.

The main check that is available is to compare with the program BABAMC [1]. In
BABAMC all pure weak and all QED corrections are calculated to one order in a. There-
fore this can serve as a check on our first order corrections. Since BABAMC is an event
generator, we can apply cuts on both angle and energy of the outgoing particles, and
therefore we can also check the way we implemented those cuts in our calculation. Un-
fortunately the treatment of the pure weak corrections in BABAMC is very different from
what has become customary since BABAMC was made, so in order to check our program
we had to make a version where this treatment of the pure weak corrections was taken
over from BABAMC. Moreover we took the value for the Z width that BABAMC uses (if
the user does not specify otherwise), which was 2.27 GeV. For the input parameters we
used Mz = 91.1 GeV, MH = 100 GeV and mtop = 100 GeV. We calculated the total
cross section at four points for the total center of mass energy: three points around the
Z peak and one point away from it. At each point we imposed four different sets of cuts,
namely

Eo = 0

Eo = 0 [ }
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89.1

91.1

93.1

120.0

'Born'
5628.

700.6

6199.

1516.

3841.

336.3

2354.

70.7

BABAMC

5275.±6.
499O.±6.

545.±2.
522.±2.

5741.±9.
5433.±9.
1125.±3.
1070.±3.
4168.±3.
3946.±3.
464.±1.
452.±1

2349.±6.
2211.±6.
76.4±.l
73.5±.l

LL O(a)
5281.
4939.
543.7
517.9

5744.
5377.
1120.
1057.
4176.
3911.
462.4
449.6

2353.
2188.

76.2
73.5

O(a)
5269.±5.
4974.±5.
544.91.1
520.2±.l
5742.±5.
5415.±5.
1128.±1.
1069.±1.
4171.±4.
3938.±4.
464.5±.l
452.0±.l
2351.±2.
221O.±2.
76.1±.l
73.2±.l

5358.±5.
5O25.±5.
565.0±.l
539.8±.l
5833.±5.
5469.±5.
1178 ±1.
1119.±1.
4143.±4.
3875.±4.
428.9±.l
415.7±.l
2382.±2.
2218±2.
77.1±.l
73.9±.l

C(a2)+exp.
5352.±5.
5010.3:5.
556.2±.l
531.0±.l
586O.±5.
5497.±5.
1177.±1.
1118.±1.
4158.±4.
3892.±4.
440.7±.l
427.5±.l
2382.±2.
2219.±2.
77.0±.l
73.8±.l

Table 3.1. Results for the total cross section compared with BABAMC. The
four lines per value for yfs (GeV) correspond to the four sets of cuts defined in
eq.(3.8.1). All cross sections are in picobarn. Here LL O(a) means the result
including leading log first order corrections, whereas O(n) stands for the exact
first order corrected result. The O(a2) entry then furthermore includes second
order leading log corrections and the rightmost column then includes soft photon
exponentiation on top of that.

We have listed the results in table 3.1. The entry listed under 'Born' is the total cross
section in Born approximation, but including the pure weak corrections at O{a). All
entries to the right then list the cross sections when including QED corrections at several
levels. A number of remarks can be made on the basis of this table.

• The full O(a) corrected result agrees with BABAMC, as indeed it should.

• The leading log result already is very nea. to the full O(a) corrected result. The
differences are almost negligible for Eo — 0 and are of the order of 1% for Eo =
^ x \\fs- This we take to be the a posteriori justification ior not calculating non
leading log effects in higher orders.

• The C ( Q 2 ) corrected results differ appreciably from the O(a) corrected ones. Es-
pecially on resonance these differences are large, larger in fact than the difference
between the LL O(a) and the full O(a) results. This of course is the reason for
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89.1

91.1

93.1

120.1

'Born'
548.2

370.2

1956.

1321.

552.5

373.0

11.37

7.67

FPAIR

403±l
394±1
268±1
264±1

1448± 5
1420± 5
969±3
954±3
600±1
587±1
399± 1
392±1

29.0±.l
27.1±.l
16.6±.l
16.1±.l

LL O{a2)
400.1
389.3
268.2
262.2

1437.
1403.
967.5
946.0
594.4
579.2
397.6
388.6
28.8
26.6
16.2
15.7

404.1±.7
394.2±.l
270.2±.l
265.0±.l
1452.±1.
1421.±1.
973.4±1.7
956.1±.3
599.4±.2
584.9±.l
400.0±.l
391.6±.2
29.2i.l
26.7±.l
16.5±.l
15.8±.l

C?(a2)+exp.
400.6±.7
390.8±.l
267.8±.l
262.7±.l
1447.±1.
1416.±1.
969.8±1.7
952.6±.3
607.7±.2
693.1±.l
405.6±.l
397.1±.2
29.0±.l
26.6±.l
16.4±.l
15.7±.l

Table 3.2. Results for the total cross section compared with FPAIR. The four lines
per value for y/s (GeV) correspond to the four sets of cuts defined in eq.(3.8.1).
All cross sections are in picobarn.

calculating these higher order corrections. The calculation is completed by exponen-
tiating the soft photon contributions, which is important when slightly off resonance
(i.e. at 89.1 and 93.1 GeV), where the cross section is rapidly varying as a function
of 5 and where hence soft photon corrections are dominant.

• Away from the resonance (i.e. at 120 GeV) the O(a2) may still be important, but
soft photon exponentiation is not interesting any more. This is due to the fact that
soft photon corrections are not the dominant ones here.

In comparing with BABAMC we have checked our O(a) correction?. It would be nice
also to have a check on the higher order ones. For the t-channel contributions there is
no program available to compare the higher order corrections with. For the s-channel
however there is. We will compare with the program FPAIR [17], which is a Monte
Carlo program including O(a2) initial state corrections and O{a) final state corrections.
We did a number of runs at the same points in energy as we took when comparing with
BABAMC, but now we calculated the s-channel contributions only, with muons as the final
state fermions. In comparing we now could take the version of the pure weak corrections
that was discussed in section 3.7. An entirely different problem however was that we had
to leave out the interference between initial and final state QED corrections and the QED
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Smai

180°
20°
10°
5°

180°
20°
10°
5°

BABAMC
575O.±5.
5619.±5.
55O5.±5.
5329.±5.
1127.±2.
11O8.±2.
1087. ±2.
1O56.±2.

LL O{a)
5744.
5633.
5534.
5380.
1120.
1112.
1104.
1090.

O(a)
5749.±7.
5629.±7.
5506.±7.
5336.±8.
1127.±1.
11O9.±1.
1O89.±1.
1O57.±1.

O(a2)
5838.±7.
5725.±7.
5611.±7.
5461.±8.
118O.±l.
1163.±1.
1144.±1.
1115.±1.

0(a2)+exp.
5865.±7.
5753.±7.
564O.±7.
5492.±8.
1179.±1.
1162.±1.
1143.±1.
1114.±1.

Table 3.3. Results for the total cross section (in picobarn) using an acollinearity
cut, compared with BABAMC. All entries are calculated at y/s = 91.1 GeV. The
upper half of the table is for an angular cut of 10°, the lower half for an angular
cut of 42°.

box diagrams. Having done that the results of the two programs could be compared. The
results for the same set of cuts as used for table 3.1 are listed in table 3.2. In this table
the third and fifth column from the left can be compared. From table 3.2 we conclude
that our calculation agrees with FPAIR and hence that our O(a2) corrections are in good
shape. As in the case of the comparison with B A B A M C we observe that the result of
the LL calculation comes close to the result of the full calculation. Also again we see an
influence of the soft photon exponentiation when around the Z resonance, but not away
from it.

Having compared with BABAMC and with FPAIR we know the O(a) and O{a2)
corrections to be correct. Also we know that the cuts on the energies and angles of the
outgoing particles have been incorporated correctly. The correctness of the cut on the
acollinearity can be deduced from table 3.3. Once again the full O(a) corrected results
coincide with the B A B A M C results. Differences with table 3.1 for (maI = 180° are merely
statistical fluctuations. It is also clear from the table that in the LLA the result for the
total cross section deviates a little more from the fully corrected result, once a rather
stringent cut is applied on the acollinearity. The fact that this efFect is compensated
when adding the non-log contributions is another check of the program.

Next we want to investigate the implications of the higher order corrections for some
physics results. Experiments at LEP/SLC are already well on their way in measuring,
among other things, large angle Bhabha scattering [23]. As a typical angular region we
will consider scattering between 42° and 138°. In this region the s-channel contributions
dominate. Nevertheless there is a still sizable t-channel contribution (about 13% for
the Born approximation) that will turn out to have a noticeable efFect on the influence of
higher order corrections. Despite that, one can still consider quantities that are of interest
in pure s-channel processes, such as the peak height of the Z resonance (amax), the peak
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1600
a

1200 -

800 -

MOO

Fig. 3.2. The total cross section as a function of the energy, using an angular cut
of 42° and an energy cut of 10 GeV. The first curve (long dash) corresponds to
the Born result, including pure weak corrections, the second curve (short dash)
includes first order LL QED corrections and the third line (solid line) has second
order exponentiated LL QED corrections.
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\JSmar

91.16
90.96
91.14
91.06

/
89.
89.
89.
89.

s_

91
32
30
28

v/
92
92
92
92

s+
.41
.17
.77
57

2.50
2.85
3.47
3.29

^max(pb)

1318.
1495.
1094.
1136.

Table 3.4. Peak height and positions for Bhabha scattering with Mz = 91.17 GeV.
The first line corresponds to only s-channel contributions at Born level, including
weak corrections. Lines 2-4 correspond to lines 1-3 of figure 3.2, so the second
line in this table is for Born s- and t-channel, including pure weak corrections,
the third line includes first order LL QED corrections and the last line has second
order exponentiated LL QED corrections. All positions are in GeV.

position {y/smax) and the two positions where the peak is reduced to half its peak height
{^/s±). In figure 3.2 we have plotted three curves to demonstrate the effects on these
quantities. For the input parameters we took Mz = 91.17 GeV, A/// = 100 GeV and
mtop = 100 GeV. We required a minimum energy for the outgoing particles of 10 GeV,
but imposed no cut on the acollinearity. The first line corresponds to the Born result
including pure weak corrections. The second line then includes LL O{a) QED corrections,
whereas the third line includes LL O(a2) exponentiated QED corrections. In table 3.4 the
values for the above mentioned quantities are listed together with the result for s-channel
scattering only (at Born level). Especially interesting are the differences between the last
two lines in this table, as they show the need for calculating higher order corrections once
more. Particularly noteworthy are also the differences between the values for s/s^- , /sT,
which may be seen as the apparent width of the Z resonance. Table 3.4 shows that upon
including the t-channel contributions, this quantity increases with respect to the apparent
width from the s-channel.

A similar picture can be made when calculating the total cross section in the angular
region from 10° to 170°. Because of the dominance of the t-channel contributions in
this region, the Z resonance is not as significant any more. In particular there is no
sense any more in looking for the positions where the peak is at half its maximum height.
The curves for the total cross section with and without QED corrections are given in
figure 3.3. Notice that in this figure the differences between the first order and the higher
order corrected curves is still apparent In other words, although the result is dominated
by the t-channel contributions, the higher order corrections are still needed. This gives
rise to the question whether these higher order corrections would still be needed if the s-
channel contributions were entirely negligible. Therefore we have calculated the t-channel
contributions and their corrections separately. We have listed the results in table 3.5. Here
we have included results from an O(a) calculation with an exponentiation of soft photons.
We see that such an approximation is not reliable. The O{a2) hard bremsstrahlung still
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Fig. 3.3. The total cross section as a function of the energy, using an angular cut
of 10° and an energy cut of 10 GeV. The conventions are the same as in figure 3.2.

62



89.1

91.1

93.1

120.1

'Born'
4475.

177.6

4286.

170.8

4104.

162.9

2477.

96.57

LL O(a)
4453.
4126.
172.4
165.1
4264.
3951.
165.8
158.8
4083.
3783.
158.1
151.4
2464.
2278.
93.60
89.50

O(a)
4427.±16.
4116.±21.
170.8±.2
163.8±.2
4224. ±18.
3936.±18.
164.7±.2
157.0±.2
4044.±18.
3792.±16.
156.9±.2
149.8±.2
245O.±9.
2288.±9.
92.8±.l
88.6±.l

£>(a)+exp.
4425.±16.
41O4.±21.
170.6±.2
163.6±.2
4223.±18.
3925.±18.
164.5±.2
156.8±.2
4O43.±18.
3781.±16.
156.8±.2
149.6±.2
2449.±9.
2281.±9.
92.7±.l
88.5±.l

O(a2)
4487.±16.
4135.±21.
172.4±.2
164.8±.2
4282.±18.
391O.±18.
166.3±.2
157.9±.2
4100.±18.
38O9.±16.
158.4±.2
150.7±.2
2484. ±9.
2299.±9.
94.7±.l
90.2±.l

C?(a2)+exp.
4489.±16.
4139.±21.
172.6±.2
164.9±.2
4284.±18.
3914.±18.
166.4±.2
158.1±.2
41O2.±18.
3812.±16.
158.5±.2
150.8±.2
2486.±9.
2301.±9.
94.8±.l
90.2±.l

Table 3.5. The t-channel contributions and their corrections. The four lines per
value for y/s (GeV) correspond to the four sets of cuts defined in eq.(3.8.1). All
cross sections are in picobarn.

gives a surprisingly large contribution. This canj>e explained as follows. The part of the
Born matrix element squared that is given by \M\2 = 647r2a2.s2/*"2 is by far the dominant
part. The second order initial state leading log corrections to this part can be calculated
for Eo = 0 to be

A<r =
Ana2 (ah

(3.8.2)

- 2 Li 2C(2)1 - | log i
J 2 1

It can be seen that for cm values close to unity the above expression contains terms
proportional to 1/(1 - cm), just like the Born term. This in contrast to the first order
corrections given by eq.(3.3.12). Therefore the O(a) LL corrections are suppressed with
a factor (1 —cm) with respect to the Born term, whereas the O(a) non-log terms and the
O(a2) LL corrections are not. This explains why in tabel 3.5 the O(a2) LL corrections
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can get of the order of the O(a) LL corrections.
In eq.(3.8.2) i f f l,-n is an ad hoc lower bound on the fractions x i i 2 , introduced for

argument's sake. In the above example this lower bound is assumed to be small. If no
cuts on energies or acollinearity are imposed, xmin is of the order of me/y/s. Since in the
LL approach masses have been neglected wherever possible, the exact mass dependence
of this lower bound cannot be determined here. In a realistic calculation it is therefore
better to introduce an energy cut Eo » me to avoid problems with mass terms.

Finally it should be noted that we have checked that the suppression factor (1 — cm)
for the O{a) LL corrections is a consequence of taking symmetric angular cuts, i.e.
integrating from t?mm to 180 — i?min . This means that for luminosity type of calculations
this suppression factor is not present.

Appendix 3.A: The first order virtual and soft QED corrections

For completeness we list here the form of the first order virtual and soft QED corrections
in a way that is suited for application to both s- and t-channel diagrams.

The QED vertex corrections to the s-channel diagrams can be incorporated by adding
a contribution that is a factor times the lowest order diagrams, the factor being

For the t-channel diagrams one merely has to replace s by t. In this formula the photon
mass A is the IR regulator that has to cancel in any physics result and e is a small offset
to fix the analytical continuation.

For the box contributions we find that we can write their contribution as factors
times the lowest order diagrams (having one virtual photon less), provided we do so per
helicity combination of the particles involved. We define Aj to be minus the helicity of
the outgoing positron and A2 as the helicity of the incoming electron (this choice is made
irrespective of the particular channel). One of course has to sum the result over helicities
explicitly, since usually only the sum is desired. For a specific helicity combination however
the 77 boxes in the s-channel yield the following factor times the lowest order s-channel
photon exchange matrix element

(S,0} , (3.A.2)

with

A'n(sJ) = £
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,t) = £ ^G(s,t)-G(s,u) +2 log-^— log^if] , (3.A.3)

i t s (s + 2t)
l

The t-channel analogues can be obtained by s *-*• t. The contribution from the 7 Z boxes
in the s-channel can be written in a similar way:

Ql {Vz(s, t) + A,A2^
z(a, t)} , (3.A.4)

with

t + i

M2

using the shorthand notation

•{
(s channel boxes)

A/J (t channel boxes)

Tz is the O(a) corrected total width of the Z, expressions for which can e.g. be found
in [24]. Again the t-channel analogues are obvious. Finally the soft photon contributions
are given by tlie soft factor S times the lowest order matrix element squared, 5 being

Here we have defined e to be the soft photon cut-off in units of ^y/s and furthermore

Be = log ^ - 1 ,

Bint = 2 l o g - .

65



The dilogarithm function is defined by

Li2(z) = - j dt ,
o

for complex z values that do not lie on the dilogarithmic cut.
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Chapter 4

The forward backward asymmetry

The precision experiments at LEP require an accurate knowledge of radiative corrections.
For the Z line shape accurate evaluations are f liable [1]. For Bhabha scattering the
situation has recently been improved [2]. The resonance shape for a total Bhabha cross
section restricted with respect to the angles and energies of the e+ and e~ in the final state
has been evaluated with high precision. To be specific, as to the photonic corrections the
O{o) correction has been included exactly, the O{a2) is evaluated in the leading log (LL)
approximation, whereas the soft photons have been resummed. The weak corrections
are taken in O(a) except in the propagators which contain some O(a2) effects [1J. The
technique of that evaluation can also be applied to the forward-backward asymmetry
AFB •" mupair production. This technique is based on the structure function approach
for differential cross sections, which was discussed for QED corrections in ref.[3j.

It is worthwhile to apply the method to AFB- The present situation for AFB is
summarized in ref.[4]. In particular various AFB calculations [3, 5, 6, 7, 8] are compared.
From the review it is clear that there is room for improvement. The weak corrections
have been calculated by a number of groups [9, 10] and agree. The differences arise in
the photonic corrections. There are several O{a) calculations, but the situation for the
O(a2) corrections is less established. Some calculations take O(a2) in LL into account,
but only one evaluation does this with the correct flux function. Others use for AFB the
same flux function as for total cross sections, whereas in ref.[3] it has been shown that
for hard photons this is not correct. There is however another serious problem with all
semi analytical calculations reviewed in [4]. None of them incorporates energy and/or
acollinearity cuts, so that the results cannot be applied to realistic situations.

The present calculation wants to improve on the above sketched situation by including
these cuts and wants to avoid incorrect flux function procedures. The latter is achieved
by the structure function approach for differential cross sections. It is closely related to
that of ref.[2], except that the angular ranges are different. We shall indicate below how
this affects the integration boundaries. We also discuss two possible definitions of AFB
which arise naturally.

The forward-backward asymmetry can be defined in a number of ways, all of which are
equivalent in the Born approximation. We will consider two definitions. In both definitions
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the asymmetry is defined as the difference of forward scattering and backward scattering
divided by tha sum of these two:

AFB = ^ ^ • (4.1)
&F + aB

However the ingredients op and OB differ for the two definitions we want to consider.
Define

c+ = cosi?+ = cosz(e+ , / )=

c_ = cosi?_ = cos Z fe ,f)= (p2,P4)

The definition for ap and <jg that is commonly used for theoretical calculations is

aFA : c_ > 0 c+ arbitrary,
<TBI : c_ < 0 c+ arbitrary. ^ " ^

that is, one looks at one particle only. We will refer to this definition and its associated
Ays a s definition 1. Since in experiments one usually detects the other particle, it makes
sense to take as a second definition

<7Fi2 : c+,c_ > 0 ,

Only events with a large acollinearity between / and / can contribute to the difference
between these two definitions. Hence the definitions coincide at the Born level. Moreover
in general the difference can be reduced by imposing an acollinearity cut. In the remain-
der the method is sketched to calculate the asymmetry according to both definitions.
Numerical results are presented and compared with the literature.

The starting point is to calculate the cross section for specific angular and energy
cuts. Moreover an acollinearity cut can be applied. The precise cuts that are imposed are
defined by

Ej > E+ x i^/i , (4.5)

Ef > EQ x iv/s ,

S ^ S,max •

In the leading log approximation (LLA) the cross section including QED and weak cor-
rections can then be written as

a = —r
64n

X2,mm " fj m m

1

x Jdx3V(x3) JdxAV{x4). (4.6)



This formula was derived in [2] for a somewhat more limited set of cuts. The notation and
definitions are taken over from [2]. Although tx is now an integration variable, it originates
from U = (xi/x3)(pi—p3)2. The quantity \ Yl \M\2{s,t) is the spin averaged Born matrix
element squared, including pure weak corrections, F(x) is the splitting function and 1>{x)
the fragmentation function. Both T(x) and V(x) depend on a scale Q2 and the initial
state fermion mass me (F) or the final state fermion mass mj (V). We shall return to
the matter of the scale choice later on. For the masses mej of the fermions the small
mass limit is taken. The boundaries on the integration variables stem from the cuts that
are imposed. Therefore if the lower bound on an integration variable becomes larger than
the upper bound, the integration has to yield .pro, since in that case the two cuts cannot
be satisfied at the same time.

The boundaries on X3 and X4 are given by

X3,min —
1 -

<", 1 - Xi / j 2

(4.7)

The lower boundaries on x3 and x4 therefore depend on / ] , which is possible, because we
integrate over ix later. The boundaries for it in turn depend on the values of x\ and x2 .
Introducing the notation

= COS l ? m +

C M _ = COS t ? m _

c m + = cos

cm_ =
(4.8)

the i\ boundaries are

t I,mm —

max

max

mm

min

-x,x2s

1 T
for x, > x2,

- J i s i J 2 - it I forx,<x2,

'
X2 - En

1 - Xi/X2
for X j>x 2 ,

for xi < x2.

(4.9)
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From the requirement that <i,mm < <],max one can derive that

1 -
^2 V 1 - Cm+ 1 + CM-

•̂ 2 / I — C M + 1 + Cm-
L̂ 1

T <-M+ 1. — Cm_

xi + x2 > £0
+ + £ " . (4.10)

These restrictions on xi2 are not complete, but the full ones are rather complicated.
However the full ones are all included in the requirement f i , m , n < htmax, which can
be easily implemented if the integrations over x, and x2 are done numerically. The
acollinearity cut can also be implemented in a numerical way, determining the allowed tx

region by a numerical search for the boundaries [2].
Equation (4.6) can be written as

i i

o = Jdxljdx2V(xl)r(x2)f(xux2), (4.11)
0 0

where the integration over the fractions xl<2 is over the full range from 0 to 1, because
the boundaries are included in the analytically evaluated function / using ^-functions. In
general the function / is not symmetric in its arguments. However since the integration
is a symmetric one, we only need the symmetric part of / :

Using the function / ' ' """ exponentiation can be carried out following the procedure
outlined in [2]. It can furthermore be shown that if the same cuts are applied for both
particles, i.e.

<~m- = cm+ and cw_ = cM+ and E£ = EQ ,

the function / is automatically symmetric.
This completes our discussion of the LL calculation of the total cross section with cuts

as defined in eq.(4.5). At first order the non-log QED contributions can be calculated
in a numerical way, so that the first order corrections are complete. A discussion of this
non-log calculation can be found in [2].

It is easy to see that using the cuts as defined in eq.(4.5) one can calculate the forward-
backward asymmetry according to both definition 1 and definition 2. In principle one can
even calculate the cross section for a small bin in the angle of one of the particles ('angular
distribution'). However one must be careful choosing the scale Q2. The requirement on
the choice is that the first order LL contributions are dominant over the non-log ones,
which can be checked because we perform a complete first order calculation. This then
justifies calculating only the LL corrections at higher orders.

71



88.17

89.17

9017

91.17

92.17

93.17

94.17

Forward
'Born'
109.9

234.0

567.7

1014.9

668.1

338.3

195.8

LL O(a)
77.1
73.4

154.3
150.4
358.6
354.5
689.2
684.3
583.1
577.7
371.0
365.3
251.9
246.3

O(a)
77.9(1)
73.6(1)

155.7(1)
150.9(1)
361.8(2)
356.2(2)
695.5(3)
687.6(4)
587.6(3)
580.8(3)
373.3(2)
367.0(1)
253.2(2)
247.4(1)

0{a2)
84.2(1)
79.4(1)

169.9(2)
164.7(1)
398.3(2)
392.0(2)
741.4(5)
733.6(4)
578.7(3)
571.9(4)
352.9(2)
346.9(1)
235.9(1)
230.1(1)

Backward
'Born'
188.7

330.6

662.6

983.3

540.5

230.0

112.7

LL O{a)
140.0
136.3
230.8
226.9
440.3
436.1
704.1
699.3
518.4
513.0
300.2
294.6
190.8
185.1

O(a)
140.8(1)
136.6(1)
232.3(1)
227.1(2)
444.0(3)
437.6(3)
710.4(6)
701.5(4)
522.6(4)
514.1(2)
301.9(3)
295.2(1)
191.6(1)
185.7(1)

O(a2)
148.7(3)
144.1(1)
248.5(2)
243.5(1)
479.9(3)
474.1(2)
744.3(5)
737.0(6)
504.1(2)
497.1(2)
277.7(2)
271.7(1)
173.4(2)
167.5(1)

Table 4.1. The LL and non-log first order corrections to the forward and backward
cross sections for mupair production. The column under the heading LL O(a)
contains the cross sections with first order LL corrections, the column with O{a)
lists the fully corrected first order result. The column with O(a2) includes on
top of that the second order LL corrections plus soft photon exponentiation. The
numbers between brackets indicate the estimated numerical error in the last digit.
For each energy the first line displays the results for definition 1 (see text) and the
second line for definition 2. All cross sections are in picobarn, energies in GeV.

For the forward-backward asymmetry we have chosen Q2 = s. To indicate that for

this choice the LL corrections are dominant, we have listed the first order LL corrected
results and the fully first order corrected results for both the forward and the backward
cross section for muon pair production in table 4.1. The results have been obtained by
an extended version of the analytical Bhabha program (ALIBABA) of [2]. In this case
no energy or acollinearity cuts were applied. The input parameters were specified to be
Mz = 91.17. MH = 100 and mtop = 130. all in GeV. The fact that in this table the
LL corrections are dominant does not necessarily imply that the same scale works as well
for angular distribution type of calculations. These calculations would therefore require
additional careful study. However for the asymmetry we can conclude from table 4.1 that
in higher order only the LL corrections are needed. Therefore we can now turn to the
higher order corrected results.

The results are collected in tables 4.2-4.4. Table 4.2 presents results without energy
and acollinearity cuts, whereas table 4.3 shows results with cuts on energy and acollinear-
ity. For convenience the exact O(a) results are given together with the full results, i.e.
including LL O(a2) and exponentiation. It is clear that with an aimed experimental ac-
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88.17
88.67
89.17
89.67
90.17
90.67
91.17
91.67
92.17
92.67
93.17
93.67
94.17
94.67

'Born'

-0.264
-0.218
-0.172
-0.125
-0.077
-0.031
0.016
0.061
0.106
0.149
0.191
0.231
0.269
0.306

O{a)
def. 1
-0.288
-0.244
-0.198
-0.150
-0.102
-0.053
-0.011
0.028
0.059
0.085
0.106
0.124
0.138
0.152

def. 2
-0.300
-0.252
-0.202
-0.152
-0.103
-0.055
-0.010
0.028
0.061
0.087
0.108
0.127
0.142
0.157

ZFITTFR

-0.279
-0.235
-0.189
-0.141
-0.093
-0.046
-0.002
0.037
0.069
0.096
0.118
0.137
0.152
0.165

ALIBABA

def. 1
-0.277
-0.235
-0.188
-0.140
-0.093
-0.045
-0.002
0.037
0.069
0.097
0.119
0.138
0.153
0.166

def. 2
-0.289
-0.242
-0.193
-0.144
-0.095
-0.046
-0.002
0.037
0.070
0.099
0.122
0.141
0.157
0.171

Table 4.2. The forward-backward asymmetry for mupair production without any
cuts. The rightmost two columns show the result for the two definitions of the
asymmetry, corrected at O(a2) (plus exponentiation).

88.17
88.67
89.17
89.67
90.17
90.67
91.17
91.67
92.17
92.67
93.17
93.67
94.17
94.67

'Born'

-0.264
-0.218
-0.172
-0.125
-0.077
-0.031
0.016
0.061
0.106
0.149
0.191
0.231
0.269
0.306

O(a)
def. 1
-0.295
-0.248
-0.199
-0.149
-0.100
-0.053
-0.010
0.028
0.059
0.086
0.106
0.125
0.142
0.157

def. 2
-0.296
-0.248
-0.200
-0.150
-0.101
-0.054
-0.009
0.029
0.060
0.086
0.108
0.127
0.143
0.159

ZFITTER

-0.289
-0.240
-0.191
-0.142
-0.093
-0.045
-0.001
0.038
0.071
0.099
0.122
0.142
0.159
0.174

ALIBABA
def. 1
-0.285
-0.238
-0.190
-0.141
-0.093
-0.046
-0.002
0.038
0.071
0.098
0.121
0.141
0.158
0.173

def. 2
-0.286
-0.239
-0.190
-0.141
-0.093
-0.045
-0.002
0.037
0.071
0.099
0.123
0.143
0.160
0.175

Table 4.3. The forward-backward asymmetry for mupair production using an
energy cut of \y/s on both final state particles and an acollinearity cut of 10°. The
rightmost two columns show the result for the two definitions of the asymmetry,
corrected at O(a2) (plus exponentiation).
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89 90 91 92 93 94

Fig. 4.1. The difference AAFB — AFB.X — AFB,I between the two definitions of
the asymmetry without cuts as a function of the energy.

88.17
88.67
89.17
89.67
90.17
90.67
9117
91.67
92.17
92.67
93.17
93.67
94.17
94.67

mtop = 90
-0.280
-0.236
-0.190
-0.142
-0.095
-0.048
-0.004
0.036
0.069
0.095
0.118
0.136
0.151
0.164

Tnntop — 1 3 0
-0.277
-0.235
-0.188
-0.140
-0.093
-0.045
-0.002
0.037
0.069
0.097
0.119
0.138
0.153
0.166

mtop = 170
-0.275
-0.233
-0.187
-0.140
-0.091
-0.045
-0.001
0.039
0.071
0.098
0.120
0.138
0.154
0.168

Table 4.4. The topmass dependence of the fully corrected asymmetry without
cuts, using definition 1.

curacy SAPB = 0.0035 [4] the corrections in O{a2) as considered in this chapter have to
be taken into account Also the influence of cuts is non negligible. The same holds for
the difference in definitions for AFB for the case of no cuts. The acollinearity cut clearly
decreases the difference between the definitions. For convenience the difference is plotted
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in fig 4.1.
In order to show in another way the relevance of the radiative corrections table 4.4

collects predictions for different top masses. The changes caused by varying the top mass
are smaller than the changes caused by going from O((\) to O(n2) corrections.

Finally, both tables 4.2 and 4.3 contain results of a new not yet published calculation
by Bardin et al., which is an extension of [11]. The calculation uses definition 1 for
A{.'H. considers some O(a2) corrections and can implement energy and acollinearity cuts.
Within the above mentioned experimental accuracy there is no difference between the two
calculations. Therefore we conclude that the predictions for Ayn including higher order
photonic corrections are now well under control even for realistic experimental cuts.

It is clear that the same program can be applied to the forward-backward asymmetry
for quarks, as long as masses can be neglected.
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Chapter 5

Small angle Bhabha scattering

5.1 Introduction

The accuracy with which one wants to measure the luminosity at LEP is higher than at
previous electron positron machines. This requires a theoretical knowledge of the small
angle Bhabha scattering cross section with a precision of at least 0.5%. Since at small
angles Bhabha scattering is dominated by one photon exchange in the t-channel the high
precision requirement is a demand on an accurate QED calculation. Although in principle
it is straightforward to perform such a QED evaluation, in practice higher order QED
corrections are complex and time consuming. The present paper wants to improve on the
present knowledge of small angle Bhabha scattering and wants to provide a benchmark
for future evaluations.

In order to appreciate the problem let us briefly summarize the present situation.
Additional material can be found in ref.[l]. Suppose the idealized small angle Bhabha
measurement determines the cross section for the scattering of a positron over an an-
gle t?+1 where the detected positron and electron have an acollinearity angle ( < (max

and have energies E± > Emin. Theory has to provide da/dil+ as defined by these kine-
matical conditions or this cross section integrated over a small i?+ range. When one
wants to calculate this cross section in lowest order plus a complete order a correction,
the procedure has been discussed at great length in ref. [2]. One has

/
/ daB das \

{ ArrB \

(5.1.1)

where dQ^dk0 describes the photon phase space. The O(a) correction contains virtual
corrections By from loop diagrams and gets a contribution from real bremsstrahfung.
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The exact bremsstrahlung cross section daB can be approximated for soft photons (k0 <C
Kbeam) by a simple factorized cross section das. When the photon phase space is isotropic
up to some photon energy ki (not necessarily soft) the bremsstrahlung cross section
approximated by das and integrated up to the energy kx gives an analytic contribution
Ss(kl) da°/dil+. Since the approximation of daB by das may not be accurate enough
the second t m in eq.(5.1.1) corrects for this. The third term describes the emission of
hard an isotropic bremsstrahlung. The acollinearity and energy conditions determine kx

and the t?7 integration range. The way in which eq.(5.1.1) is divided into various parts
is convenient since the infrared divergences cancel explicitly in the analytical expression
for <V + <M^i)- Moreover the integral over the difference of daB and das is convergent
since the infrared divergences cancel. The technical problem now is the precise evaluation
of the third term. Due to a complex peaking structure of this cross section a numerical
integration requires great care [2]. One could even perform this integral analytically [3],
which gives an improvement in computational speed but is not required for the needed
precision. It should be noted that the quantity kx can be varied to lower values, the only
effect is that the last integral (k0 > k\) will also have an isotropic photon emission part.
The final answer remains the same.

It should be stressed that the above procedure, based on eq.(5.1.1) is exact. Nothing
is neglected. The method has been applied to Bhabha scattering in [4], even in the case
where the J / 0 resonance is present [5]. Since the exact daB is rather complicated when
all electron masses are kept, one can use high energy approximations as introduced in
refs. [6] and [7], which are valid for s, —t ^%> m2

e. This will speed up the calculation.
So far we have considered an ideal measurement which can be described in terms of

simple kinematica! cuts. This is not a necessity but has only been done for convenience.
More complicated cuts, like i?7 + E± > Emin or exclusion of certain azimuthal angle ranges
can also be imposed on the numerical integration of the hard bremsstrahlung cross section
(the last term in eq.(5.1.1)). Such things have in fact been done by experimentalists in
the past. The calculation remains exact in order a.

To implement cuts it is however more convenient to have an event generator [8] which
simulates at the same time radiative (k0 > k}) and non-radiative (k0 < fcj) events. The
soft photon energy fci should then be very small for two reasons. One is that the soft
photon does not influence the kinematics of the hard particles and the other is that we
can neglect the second term in eq.(5.1.1). The latter is required by the fact that we need
positive probabilities to generate events. The last term in eq.(5.1.1) is positive since it is
a cross section, the second is however a difference of cross sections. The first term should
also be positive. Since we know from the analytic expressions that for very small kA the
factor 1 +6y +<S>(^i) becomes negative, we find a lower limit for k^. Since ki cannot be
made arbitrary small any more the omission of the second term in eq.(5.1.1) introduces
necessarily an error in the event generator ("the k0 problem", see also chapter 7). It is
only because we want to generate events with weight one that we need a division of the
cross section into positive parts. For Bhabha scattering a pure QED event generator was
introduced in ref. [9] and one containing weak corrections in ref. [10]. In the literature
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they are sometimes referred to as OLDBAB and HABAMC
In summary, the O(n) correction can be calculated exactly when we use eq.(5.1.1).

Also weak corrections can be easily included. An event generator makes it easier to
implement any kind of cuts, but will introduce some inaccuracy. While writing this paper
we received a preprint [11], which compares an event generator to analytical results for a
toy model of Bhabha scattering.

71 'is the order a correction is not a problem, even for involved experimental cuts. The
crucial question is whether higher order corrections are needed. For the previous electron
positron machines they have not been used. As we shall see below the typical O{n)
correction is about —8% for the idealized small angle Bhabha measurement. This means
that we could have to worry about the O(<\2) correction when we require an accuracy
of 0.5%.

The main objective of this paper is to argue that the O(a2) correction cannot be
neglected. The most convincing way to show this is to perform an explicit exact O{u2)
correction calculation. This has been possible for the mupair total cross section [12],
since there one could restrict the calculation to initial state radiation and since the phase
space integrations did not involve any cuts. For Bhabha scattering we do not have these
simplifications, so one is faced with a much more involved second order calculation. It is
doubtful whether such an evaluation will be carried out in the near future. Nevertheless
one would like to answer the question whether O{a2) corrections are needed. This can be
done by considering leading log (LL), i.e. (aL/n)n parts of the radiative corrections, where
L — \og{Q2fm2), with Q2 a suitable scale like ,s or /. For the total mupair cross section
the LL contribution can be obtained by using the structure function method [13, 14] with
scale .s. A comparison with the explicit calculation [12] containing also the subleading
and non-log terms gives further support to the relevance of the LL calculation.

In this paper we shall evaluate the O{a2) LL contributions to the small angle Bhabha
cross section. We have to apply the structure function method to differential cross
sections. For QED the method has been described in [15] and applied to large angle
Bhabha scattering [16] and to the forward-backward asymmetry in mupair production [17].

The difference with the previous applications is the choice of scale. Since small angle
Bhabha scattering is dominated by the t-channel one photon exchange diagram, whereas
large angle Bhabha scattering is predominantly s-channel Z-exchange, it seems natural to
choose t as scale.

An exact order a calculation should be compared with a LL calculation with scale t and
when the LL part is dominant (80% or more) it makes sense to perform a LL calculation
of order a 2 with the same scale t. The precise t value choice will be discussed below, but
of course Q2 should obey Q2 — — t » m], otherwise there are no LL terms present.

The outline of what we shall do is as follows. In section 5.2 we define a set of cuts for
an ideal luminosity measurement. Then we show the size of the exact O(a) correction
and the LL part. Moreover the O(a) correction is compared to the event generator of
ref. [10]. Also a comparison is made with a more general event generator BHLUM1 [18]
which avoids the k0 problem by an exponentiation procedure for soft photons. It generates
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only one hard photon but in principle many soft photons. It contains a part of the O{a2)
corrections, but can also be run in the O(o) approximation.

Then we evaluate the LL O(a2) correction plus an exponentiation of soft photons in
even higher orders. This is also compared with the complete BHLUMI event generator.
A marked difference arises. Our higher order correction has a different sign from the
correction given by BHUJMI. In section 5.3 we investigate the origin of the discrepancy
by performing analytical calculations. The conclusions are summarized in section 5.4.

5.2 Numerical results

The idealized small angle Bhabha measurement we will discuss is defined by the cuts

/•:± > / • ;„„ . (5.2.1)

Here #+(-) is the angle of the outgoing positron (electron) with respect to the incoming
positron (electron) and /•'+(-) is the energy of the outgoing positron (electron). For the
numerical studies we will take i)min = .'5° and i)rnaJ. = N° and Amt( l = ^A*,,,,,,. No other
cuts will be imposed. Note however that the above ones imply among other things a
maximum acollinearity and a maximum photon energy. The specific values for the angles
are realistic for some current experiments. For other experiments slightly lower values are
used. We have checked explicitly that this does not affect the qualitative features of our
resultr.

For this idealized situation one can calculate the total cross section using the methods
of refs. [16, 17] and the program ALIBABA. This means that the O(n) corrections can be
calculated exactly, whereas the higher order corrections are evaluated in the leading log ap-
proximation (LLA). It is therefore important which scale is chosen for this approximation.
We will show that in O(o) the choice

Q2 = -t(0maT) = | .s(!-rosii r a a J) (5.2.2)

is a good choice. That is, with this choice the LL O(n) corrections constitute ,>, 90% of
the complete O(a) QED correction. Therefore it is expected that with this choice also
in higher order the LL corrections are dominant.

At O{a) we can compare our results to results obtained with the event generators
BABAMC and BHLUMl. Because the treatment of the weak corrections and of the hadronic
contribution to the photon self-energy are different in the various programs, all programs
were modified to reproduce the BABAMC treatment. This choice was not made because
the B A H A M C treatment is the best one, but because this was the most convenient solution
to implement. Taking over the BABAMO treatment implies the following:

1. All corrections are strictly of O{a), i.e. there is no convolution between for instance
weak corrections and QED corrections.
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87.17
89.17
91.17
93.17
95.17

Born
+weak
45.48
43.64
41.39
39.25
37.75

BABAMC

42.07±0.04
40.30±0.04
38.38±0.04
36.42±0.04
34.98±0.04

ALIBABA

O(a)
41.94±0.09
40.34±0.09
38.33±0.08
36.47±0.09
34.91±0.12

LL O(a)
42.17
40.43
38.47
36.49
35.03

Table 5.1. Results for the cross section corrected to O(a), obtained with dif-
ferent programs. Born+weak stands for the Borr cross section including weak
corrections. The input parameters were Mz = 91.1 T GeV, MH — 100 GeV and
mtop — 130 GeV. All energies are in GeV, cross sections in nanobarn.

2. Propagator corrections are not resummed (i.e. no Dyson summation).

3. The hadronic contribution to the vacuum polarization is calculated from the ana-
lytical formulae (in contrast to calculating it as a dispersion integral over the total
hadronic cross section).

With these modifications the results of the programs BABAMC and ALIBABA for the ide-
alized luminosity measurement are shown in table 5.1. The entry Born+weak means a
calculation of the Born cross section and the order a weak corrections. By our definition
weak corrections mean non-photonic corrections. The QED corrections are the photonic
corrections i.e. those due to real or virtual photons. In this terminology the photon vac-
uum polarization belongs to the weak corrections and is therefore in order a included in
Born-f weak. The other entries contain besides Born+weak also the order a QED correc-
tions to the Born cross section and not to the weak corrections, i.e. strict O(a). The
completely order a corrected results are seen to agree within 0.2%, which is comparable to
the standard deviation and which is better than the desired 0.5% accuracy. All first order
QED corrections with respect to Born are roughly —7.8%. We also ran the program BH-
LUMI in the O{a) mode. For the cross section at 87.17, 89.17 and 91.17 GeV agreement
with the values in the table was found. For the other energies we were confronted with
many events with negative weights. Even for ki = 0 . 1 £ j t o m many events with negative
weights occurred. Since this ki value is already very high and will lead to a non-negligible
contribution from the second term in eq.(5.1.1), one has to conclude that there is no
point in trying to choose kt even higher. Therefore we were not able to compare the
O(a) corrected cross section with BHLUMl for the energies 93.17 and 95.17 GeV. For the
more interesting mode of BHLUMl with higher order corrections such problems are not
present.

Concluding the discussion of the O(a) corrections, it should be noted from table 5.1
that the LL O(a) corrections, calculated with the scale (5.2.2) are dominant. In fact they
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\

87
89
91
93
95

f's

.17

.17

.17

.17

.17

Born
+ 'weak'

45.41
43.57
41.33
39.20
37.70

41
39
38
36
34

'O(a)'

.69±0.08

.95±0.08

.06±0.07

.07±0.07

.78±0.08

BHLUMI

41.39±0
39.80±0
37.62±0

04
04
04

35.70±0.04
34.34±0 04

ALIBABA

41
40
38
36
34

.88±0.08

.14±0.08

.21±0.07

.23±0.07

.94±0.08

Table 5.2. Results for the higher order corrected cross section. Note that the
Born+'weak' and the 'O(a)' entry are defined differently from the corresponding
ones in table 5.1 (see text). The input parameters were Mz = 91.17 GeV,
Mf/ = 100 GeV and mtop = 130 GeV. All energies are in GeV, cross sections in
nanobarn.

give more than 90% of the O{a) QED corrections.
Results for the higher order corrected cross section are shown in table 5.2. The results

in this table were obtained by running BHLUMI and ALIBABA with all corrections included.
For BHLUMI the parameters were KEYRAD=100 and EPSCM=10~3. For ALIBABA the
options were I O R D E R = 4 , I F I N A L = 2 and NONLOG=1. Table 5.2 gives rise to the following
remarks.

A. The 'weak' corrections are defined differently than the ones in table 5.1.

B. The 'O(a)' entry is defined differently from the O{a) entry in table 5.1.

C. BHLUMI and ALIBABA disagree by about 1.2% in the total result.

D. ALIBABA gives a positive higher order correction with respect to the 'O(a) ' result.

As to point A, the difference with table 5.1 is that a Dyson summation is made for the
propagators and that the hadronic vacuum polarization has been calculated by means of
a dispersion integral over the total hadronic cross section [20]. We thus have a dressed
Born approximation in the first column. As to point B, the QED O(a) evaluation now
is a convolution over this dressed Born approximation. This means that the vacuum
polarization effect in the photon t channel propagator is also convoluted by O(a) QED
effects, whereas in table 5.1 only the Born cross section without vacuum polarization
effect is convoluted. In practice it means that an increased cross section gets a first order
QED correction, which in itself is of the order of —8%. In the convolution this yields an
order a corrected cross section which is smaller than the one of table 5.1. Concerning
point C and D, a small difference of 0.2% can be understood from the Dyson summation
in ALIBABA and its absence in BHLUMI. So there remains a difference of about 1%.

What is left are the pure QED higher order corrections. When compared with the
'O{a)' result BHLUMI gives a correction of about -0 .8%. The program ALIBABA gives a
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positive higher order correction of +0.4%. It is the purpose of the next section to explain
this difference by performing some analytical calculations.

First however we want to clarify the situation by describing exactly which corrections
are taken into account in the ALIBABA results. Schematically these results contain a
number of terms:

a = JdzI(z)aw(z,s)F(z) (5.2.3)

+ jdxi Jdx? I2{xi,T2)oo{x\,x2,s)

+ F2 aw(s) + N .

The first term is an integral over a product of an initial state LL QED correction fac-
tor I(z), a Born cross section including weak corrections, aw(z,s), and a final state
LL QED correction factor F(z). The factor I(z) contains initial state LL QED cor-
rections up to and including second order in a, plus soft photon exponentiation. The
factor F(z) contains final state LL QED corrections up to and including first order. The
second term in eq.(5.2.3) originates from the fact that at O(cy2) not all initial state LL
QED corrections can be written as a one-dimensional integral. Although this has been
possible in the case of mupair production [12, 13, 14], this is not so for Bhabha scattering
due to the cuts [16]. Therefore a two-dimensional integral is left for some of the O(a2)
initial state LL QED corrections (see also next section). These corrections are again a
convolution of an initial state factor ( ^ ( ^ i , ^ ) ) times a Born cross section a0. Since the
corrections in I2 are already of O{a2), the Born cross section appearing here is not cor-
rected for weak effects. This is done to gain computational speed for the two-dimensional
numerical integration. The 0{a2) LL QED corrections are completed by including the
O(a2) final state LL QED corrections, which can be written as a factor F\ times the Born
cross section aw(s). This explains the third term.

Concluding from the above all leading log QED corrections up to and including O(a2)
and including initial state soft photon exponentiation are incorporated in the first three
terms in eq.(5.2.3). Almost all of these corrections are convoluted with the weak cor-
rections. The only exception is ^(a-^a^oo. which is already of O(a2) and hence is
small (~0.5%). Since the weak corrections are about 6%, leaving out the weak correc-
tions when calculating the integral over /2(3-i,a-2)

<7o is well justified.
The last term in eq.(5.2.3), which is called N, includes the O(a) QED non-log terms.

These terms are calculated by numerical integrations, which for the hard photon part
is a five-dimensional one. With our scale choice these terms contribute <, 10% of the
complete O(o) QED correction or, equivalently, <, 1% of the total result. Therefore
these terms do not need to be convoluted with the weak corrections. Moreover it can
be inferred that one can neglect the higher order non-LL QED corrections, which are
expected to be about 10% of the complete O(a2) exponentiated QED corrections, i.e.
roughly 0.05%.

It is amusing to note that the higher order results of ALIBABA in the special case of
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table 5.2 lie closer to the BABAMC values in table 5.1 than to the BHLUMI results. From
the discussion above it is clear that this is a numerical accident.

5.3 Analytical formulae

The cross section for the luminosity measurement is heavily dominated by the part of the
spin averaged matrix element squared that in Born approximation is given by

(5.3.1)

At Born level this is responsible for 99.7% of the total cross section, using the same cuts
as before. Therefore taking this particular matrix element can serve as a toy model to
try and understand some of the features of the higher order QED corrections. This is
done in the following by analytically calculating the O{a) and O(a2) leading log QED
corrections to this matrix element. It is clear that some of the finer details will be lost in
this toy model e.g. the effect of the vacuum polarization. We shall however be able to
explain the negative O(a) correction and the positive O(a2) correction.

The basis of the calculation is eq.(6) of ref. [17]. With an approximation in the second
order terms coming from the convolution of O(a) initial state corrections with O(a) final
state corrections, this leads, for the idealized small angle Bhabha cross section, to

a —
47TO2 1

F{x0) Jdx2 ree(x2) (5.3.2)

o

Vxl X2/

( X ,

Here we defined

1 - cos dmin

1 + cos \9min

i

JdrVn(x)

Vm ~
1 - COS t7

1 + COS J?
J} =

10

•TO = (5.3.3)

Vec(x) stands for the electron splitting function and T>ee(x) for the electron fragmenta-
tion function, which are equal in the LLA. The derivation of eq.(5.3.2) involves careful
examination of the integration boundaries for xx and x2. The fact that t}M.m < 1 while
7/ <, I has been used.

Two different situations can arise, due to the i?-functions in eq.(5.3.2). The one
situation is characterized by xQ < r\, the other by x0 > rj. If x0 < T/ all tf-functions are
needed. If on the other hand x0 > TJ, one can leave out the factor i? (x2 — TJXI) and
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hence the integration area is somewhat easier. For our idealized luminosity measurement
we have tfmin = 3°, i9mar - 8° and Emin - \Ebeam, yielding r/ ss 0.3745 and x0 = \.
Therefore we will only discuss the case io > V- Nevertheless we have calculated the other
case too. of which it is worth mentioning that there the second order corrections become
significantly larger for i 0 —* 0, because of the much larger phase space and the peaking
behavior of the integrand. However xo —+ 0 does not seem to be very realistic in view of
the current experiments.

For x0 > rj the expression for the cross section including LL O{a) corrections is

a =
47TQ

--v) (2log(l - x0) Ix 0 ))

^ log.ro] (5.3.4)

We use the notation /? = (2a/ir)(L — 1). This expression yields a LL O(a) correction of
about —8.1% for our cuts. This is a sufficiently good description of the O(a) correction
in table 5.2. For the LL 0{a2) corrections we find, neglecting the convolution of O{a)
initial state corrections with 0{a) final state corrections altogether

A<7 = logx0log(l - x0)

V + — - 8— - 4-S + 3r,x0 + -
2

16— - 8-i- + 8-2 - Arjxl - 4r/ - 8T/X0 Iog(l - x0)

- - L i 2 ( x 0 ) + + -) C(2) + ^ - r/ + 16 I o g 2 ( l - x 0 )

(5.3.5)

For the numerical example these terms add up to +0.4%. in good agreement with ta-
ble 5.2. Thus the results of ALIBABA are confirmed by the qualitative analytical calcula-
tions. Next we try to understand why BHLUMI appears to be so different.

The event generator B H L U M I includes higher order corrections via exponentiation of
the soft photon distribution. This is done in a so-called exclusive way, which cannot
be easily reproduced by a simple analytical formula. One can however compare with a
formula for the first order exponentiated distribution for inclusive quantities. We take the
first o<*er exponentiated form of the distribution proposed in eq.(12) of ref. [19] in the
expectation that it represents some of the features of BHLUMI. This results in

47m2 1
a = F(x0) (5.3.6)
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as an alternative for eq.(5.3.2). Here T stands for the F-function, not for a splitting
function. Also the final state corrections can be taken in the first order exponentiated
form

F(x0) = (1 - xof (l + f/?) _ ip (2 _ Xo _ lxg) . (5.3.7)

It can be checked easily that this form reproduces eq.(5.3.4) for the Born term and the
first order LL corrections. The second order LL corrections calculated from this expression
however are different:

-\i)xl - 8Vx0 - 16— -
x

fo + 2 4 fo + 12l
v v n J

+ UTJXQ + 477x0 + 2T? l ogx 0 — 8»;Li2(xo) — 77X0 — 4J7XO — 10 1- -rj
1 1 x0 2

+ (I677 - - ) <(2) + & + ̂  + 3 ^ _ 10^ + HIl . (5.3.8)
\ Vj V V V *! ty J

This contributes —0.1% to the total cross section, in contrast to eq.(5.3.5).
To understand where the positive contributions leading to eq.(5.3.5) come from one

can do the following. One can write eq.(5.3.2) as

1 1

a = jdxx jdx2 r(x,)r(x2)/(x,,x2) , (5.3.9)
0 0

by introducing f(xx,x2). Since / is symmetric in its arguments the Born term and most
of the corrections are contained in the part given by

1 1

= Jdxx j
0

1

jdx2 rix,)r(x2)/(x,x2,l) . (5.3.10)
0

More specifically ax contains the Born term, the complete LL O(a) correction and all
higher order LL virtual and soft photon corrections from the initial state. For <j\ the two
integrations can be reduced to a one-dimensional integration [16]. The remaining terms
are given by

1 1

<72 =

1

jdx2 T(x,)r(x2) [/(X,,X2)-/(X1X2,1)] . (5.3.11)
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The contribution from a2 starts at O{a2) and is due to two hard photons. In fact it
turns out that for the idealized luminosity measurement the LL O{a2) corrections coming
from <r2 dominate the complete LL 0{a2) correction. This can be demonstrated by
neglecting a2 completely, in which case eq.(5.3.5) reduces to

ACT = logx0log(l - x0) - T? log2 x0

(5.3.12)

This would lead to a LL O{a2) contribution of - 0 . 1 % . Hence the contribution from a2

is 0.5%. Since all virtual and soft photon corrections are contained in alt this 0.5% is
entirely coming from corrections due to two hard photons.

In rof.[18] it is stated that double hard bremsstrahhmg is not included. Therefore 0.5%
of the discrepancy can be traced back to this aspect of BJILUMJ. The remaining 0.5%
difference can come from different sources. As we have seen in the previous section some
O(a') ® O(aJ) (i,j < 2) effects can be neglected and others cannot. Moreover it is
very well possible that the actual efFective algorithm in BHLUMI is not accurately enough
-epresented by eq.(5.3.6), which could account for the difference.

5.4 Conclusions

The demand of an accuracy of 0.5% in the theoretical prediction for small angle Bhabha
scattering forces us to consider O{a2) corrections. For an idealized luminosity measure-
ment both numerical and analytical evaluations show this necessity. Moreover, it is clear
that double hard bremsstrahlung has to be taken into account. Also one has to justify
where O(a%) ® O{a3) (i,j < 2) corrections are kept and where they are omitted.

Although our evaluation gives an answer to a specific luminosity measurement, one
prefers in general a higher order event generator. The only candidate to which we could
compare ( B H L U M I ) gives a marked difference of 1.2% with our results. Part of the
difference can be removed when two hard photons are included in the generator. We
suspect that the remaining discrepancy can be removed when all the subtleties of products
of corrections are taken into consideration. The results of the present paper can serve as
a benchmark for future event generators, which include multiple photon emission.

Two additional comments should be made. In an actual luminosity measurement an
event where a photon and an electron satisfy the selection criteria of a positron and
electron may in practice be added to the luminosity sample. We want to note that this
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contamination can be evaluated in the structure function approach (the unseen lepton
going in the beam pipe). One needs the l\e splitting function instead of fee and the
Compton cross section instead of crw. An analytical evaluation gives a 0.01% contribution
to the cross sections of table 5.2.

Another question is whether multiple bremsstrahlung is the only important O{a2) ef-
fect. In the case of the s-channel process lepton pair production was explicitly shown to be
negligible in comparison to two photon emission [12}. Here we checked only the emission
of an electron positron pair from an incoming electron by means of a I \ e ® Ve~, contri-
bution. The contribution to the small angle Bhabha scattering is of the order of 0.01%.
If in an actual luminosity measurement an event, where two electrons or two positrons
satisfy the selection criteria of a positron and electron, is added to the luminosity sam-
ple, this contribution is multiplied by two. The emission of a virtual photon decaying
into an c+c~ pair and the corresponding electron loop insertion into the vertex correc-
tion [12] have not been calculated for Bhabha scattering, but are for mupair production
below 0.2%. The contribution from two-photon processes is negligible due to the cuts.

Keeping in mind the accuracy of the numerical calculation, the neglect of subleading
O(n2) logarithms and the neglect of c+e~ pair emission we expect our evaluation of the
idealized luminosity measurement to have a precision of 0.5%.
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Chapter 6

Two photon bremsstrahlung

6.1 Introduction

During the last years there has been considerable progress in the field of high precision phe-
nomenology of the Standard Model. In particular the computation of radiative corrections
for the muon/quark pair production process at LEPl, e+e~ —> / / , has been completely
performed to the one loop, or O{a), level [1]. These corrections can be divided into
'purely weak' ones and QED ones; the QED corrections can be described by all Feynman
diagrams where a virtual or real photon has been added to the Born level graphs, while
weak corrections consist oi all other one loop diagrams. Due to the possibility of having
additional particles (i.e. bremsstrahlung photons) in the final state, the QED effects are
for practical applications best described with the use of Monte Carlo techniques (although
extremely important and useful analytical results have also been obtained [2, 3]).

It is well known that, at least around the Z resonance, one loop corrections are in
general not sufficient for a reliable and accurate phenomenc.ogical description, and higher
order corrections have to be taken into account, at least in the QED sector. It has been
established that the weak corrections are typically small, provided we express the Born
level cross section in terms of judiciously chosen parameters; this results in the use of
the so-called 'improved' or 'modified' Born formulae, for which many different forms have
been proposed [4]. Assuming that we write the cross section with the one loop weak
corrections in this way, the purely weak higher order corrections can be neglected at the
level of accuracy aimed for in the LEP experiments. This leaves us with the problem
of dealing with the higher order virtual photon and bremsstrahlung effects. The most
important and wel! known way of treating these higher order QED effects is the so-called
soft photon exponentiation. First treated in a consistent and thorough manner in the
classical paper by Yennie, Frautschi and Suura (YFS) [5], this amounts to a resummation
of the leading terms in all higher order virtual and real photon graphs, where the total
amount of energy radiated off by the bremsstrahlung photons is restricted to be below
some value AE <C Ef,, where E\, = \/s/2 is the beam energy.

While theoretically attractive, this approach to the radiative corrections can nowadays
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not be considered adequate. The use of an energy cutoff Afc is only an attempt to
implement the influence of experimental cuts, however crudely: in typical experimental
situations, A A' is not a fixed number but may for instance depend on the production
angles of the fermion pair *. Also, the bremsstrahlung photons cannot always be treated
in the soft photon approximation: in particular when a photon is emitted close to the beam
direction, or collinear with one of the produced fermions, its energy may be a quite sizable
fraction of Eb under realistic experimental conditions. So, in the summation of the higher
order effects, nonleading terms may become relevant, of which the precise exponentiation
prescription is not at present known, although a number of promising Ansatze exists [6].
The last drawback in the use of YFS exponentiation is the fact that the formulae as
they appear in [5] concern only inclusive cross sections, that is, cross sections in which
integration has been performed over the photon momenta. If one is only interested in the
total cross section a or the fermion angular distribution da/dQj this is of course desirable,
but for a Monte Carlo treatment it is less adequate since in a Monte Carlo simulation
(where every event must have a well defined, positive probability) we want to know the
exclusive, multidifferential cross section d<7/d£lfdkidSl1dk2d£l2 • • 'dkndQn (where &, and
$7, denote the energy and solid angle of bremsstrahlung photon i), for arbitrary n.

In an extremely important and beautiful paper, Jadach and Ward [7] have shown that
the YFS approach of [5] can in fact be transformed so as to give information on the
above complete multidifferential distribution, and they have presented an algorithm for
actually generating such distributions. Whereas in this way one of the main obstacles
to 'exclusive exponentiation' has been overcome, a number of nontrivial issues remain to
be settled. In the first place, the Jadach-Ward approach [7] is only valid at present for
initial state radiation. The radiative corrections from the final state fermions as well as the
interference between initial and final state radiation remains to be adequately implemented
in a similar algorithm. In the second place, the use of exclusive exponentiation enables us
to use the full matrix elements for each order in the QED perturbation series: however,
in all existing implementations at most only the O(a) level is treated exactly, and the
higher order matrix elements are implemented only approximately.

It is the purpose of this chapter to describe the implementation of the two loop
bremsstrahlung matrix element, that is, the matrix elements for e+e~ —> / / 7 7 , where
the photons are emitted from the initial state. For massless fermions and electrons, these
matrix elements have been given by the CALKUL collaboration [8] for the case of photon
exchange and are therefore not appropriate for LEP physics: we generalize this treatment
to the case of photon and Z exchange. In addition, the CALKUL group has indicated how
mass effects are to be taken into account [9]: however this treatment is not really suited
to computer implementation, and we also extend and improve on that. An additional
feature of our result is that we give separate helicity amplitudes so that the possibility of
polarized e+c~ beams is included.

The layout oi this chapter is as follows. In section 6.2 we present all the necessary

"Here and in the following, 'fermion' stands for muon, tau lepton, their associated neutrino types, or
any of the light quarks.
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formulae for the matrix elements, based on the use of spinor techniques [10]. A good deal
of the section is devoted to a discussion on how these formulae are to be used in an actual
Monte Carlo program: in particular the question of how to compute the mass effects turns
out to be far from trivial. In section 6.3 we describe the implementation of our results
in the Monte Carlo program FPAIR. This program simulates carefully the emission of up
to two hard bremsstrahlung photons from the initial state, and up to one from the final
state. Not complete yet in the sense that we have not included exponentiation so far, its
strength is rather in the precise description of explicitly hard photon events. We describe
all algorithms leading to the full simulation. In section 6.4 we compare our results with
some other formulae and algorithms present in the literature. In particular, we are in a
good position to compare FPAIR with the Monte Carlo program DYMU2 by Campagne
and Zitoun [11]. Since DYMU2 also generates up to 2 photons from the initial, and up to
1 from the final state, it is ideally suited to this kind of comparison. It should be noted
that in 0YMU2 the alternative structure function approach [12] to the higher order QED
effects has been adopted. This provides an interesting possibility of checking the structure
function approach against a more exact treatment, which both have their advantages and
drawbacks. Finally, in section 6.5 we draw our conclusions and indicate the directions of
further development.

6.2 Matrix elements

In this section we present the matrix elements for the process

+ / h, A2) , (6.2.1)

where the two photons are emitted from the initial state electron and positron. In
eq.(6.2.1) we have indicated the momenta as well as the helicity indices A = ± of the
various particles. Since we are also going to consider collinear photon radiation, where
the masses of the e+c~ cannot be neglected, the helicities A+ and A_ are to be taken as
independent of each other: on the other hand, we shall take the final state fermions to
be massless in this section, and helicity conservation along massless fermion lines implies
that in our convention (which is described in detail in appendix A, but which differs from
the convention used in chapter 2) the helicity indices for both / and / must be equal.
Since it will turn out that we also need the zero and one photon amplitudes we shall also
give them: these have of course been given many times in the literature, but we include
them for completeness and in order to be able to work in a consistent mannei in the case
of collinear radiation.

For computational tools we use the so-called spinor techniques which are described in
great detail in [10]. We present a summary of the most important results in appendix A
for completeness. The basic quantity is the so-called spinor product which we define as

(6.2.2)
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for massless fermions (i.e. /vf = pi — 0) the product vanishes if A| — A2 but if one or
both momenta are massive it is also nonzero. Another point of importance is the choice
of the polarization vector £$t{k,) of photon i = 1,2. It turns out to be most convenient
to use also a spinorial form:

= ^ * U ^ 2 ^ ( 6 2 3 )

As demonstrated in [10], this satisfies the usual requirements for definite helicity states
(e±-ki) — 0, ( t±-e±) = 0, (£+•£_) = —1 and (£+)* — s*L. The vector q* is an auxiliary
massless vector with (g,-kt) ^ 0, a choice of which fixes a gauge choice for the external
photon i. The representation (6.2.3) also has the nice property that in each gauge
invariant subset of diagrams q[L can be chosen completely arbitrarily, without the need to
take into account relative complex phases which plagued the original CALKUL results [8].
The freedom of choice of qf allows an optimization of the calculation, which we employ
as follows. In initial state radiation, all bremsstrahlung photon lines are attached to the
c+e~ fermion line which starts with ii\+(p+) and ends with uA_(/?_). In case one considers
the electrons to be massless, one has to have A+ = A_ = Ae. One can then make the
following helicity dependent choice for q, for photon i:

M _ i P- if <*.- = K , (6 2 4)

which leads to a considerable simplification of the calculation since many Feynman dia-
grams are made to vanish. A few remarks are in order here. In the first place, although
this may not be completely obvious from the above formulation, the choice (6.2.4) is in
fact equivalent to the original CALKUL gauge choice. There is however a difference due
to the fact that the CALKUL group only considered Abelian gauge theories (i.e. QED)
with all particles strictly massless, while the above definition is completely applicable to
nor,abelian bremsstrahlung (i.e. QCD) with arbitrary fermion masses as '.veil. Secondly,
it should be noted that we are allowed to make a choice for <?, for each bremsstrahlung
photon independently, which is necessary to make the definition (6.2.4) workable for the
case of more than one photon. In the last place, there is a price to be paid for the
simplification of the calculation in the use of eq.(6.2.4): as can be seen from eq.(6.2.3),
the polarization vector e introduces an additional denominator into the matrix element,
which goes like J(p+-k) or J(p^-k). Hence when the photon becomes collinear with
either p+ or p_ the matrix element will superficially diverge more strongly than the ex-
pected lfy(p±-k). Of course this is compensated for by cancellations in the denominator
(as described in detail by the CALKUL group in [13]) but it indicates that in collinear
situations the choice (6.2.4) is less adequate. Since anyway in such situations we cannot
neglect the electron mass and therefore A+ and A_ do not have to be equal, we shall
employ a different choice for collinear photons:

ki is collinear with p_ ,
ki is collinear with p+ . ' '
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This way, the individual components of c," will remain of order unity even in collinear
situations. This implies that, under this alternative choice (6.2.5) only those Feynman
diagrams have to be taken into account in which the photon line is actually attached to
the external leg of the fermion with which it is collinear [9J. With 'collinear' in the above
we mean a kinematical configuration where, say, (p+ • k) is much smaller than all the other
momentum transfers in the problem, but not necessarily so small that it is comparable
with m], where m( is the electron mass. In other words, our approach assumes that there
is a possibility of kinematical configurations where the strong ordering m] -C (/>+•£,-) <C ••>
holds: in that case, the two gauge choices (6.2.4) and (6.2.5) will lead to results that
are smoothly connected, although in the choice (6.2.4) we neglect all mass terms, and in
the choice (6.2.5) we neglect many of the Feynman diagrams. Below, we will study this
question in more detail and show that our approach is in fact possible at LEP energies.

Let us start with the no bremsstrahlung case. It turns out to be convenient to de-
fine the combination of Z and photon propagators and their associated couplings to the
incoming and outgoing fermions as

r ( s ) = + ( }

which is appropriate when the fermions are considered massless. Here, Qf, vF and a(,
stand for the electron charge, vector and axial vector coupling, and similarly for Qj,
vj and a/. The A , j are the helicity indices of the electrons and fermions. Note the
difference with eq.(2.2.14), due to the difference in helicity-convention. The argument .s
is the momentum transfer in the photon and Z propagator, and My, Vy are the mass
and width of the Z. The above definition can of course be trivially extended to take into
account the effects of the photon and Z self-energy correction effects as amply described
in the literature [4],

The helicity amplitudes .Vfo(A+, A_; \j) for the no bremsstrahlung case and for mass-
less <+t~, where A+> ,\_ and \j denote the helicity indices of the t + , <~, and / / ,
respectively, can now be written quite simply as follows:

,V/fo(A, A; A7) = 2/Y/'.\,A/(^).s.\,-.\(;'+,ri).s_.VA(r2,;j_)

1

,s

Ma(X.-\:\j) = 0 . (6.2.7)

where helicity conservation along the electron line is explicitly indicated, and the set of
vectors r'/^'-j is the following helicity dependent permutation of q^q^'-

, \ / (91.92) if A/ = A , , , 1 Q ,
(r"r2) = I ( * . * , ) i fA / = -A . (6-2"8)
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In eq.(6.2.7) we have neglected an irrelevant overall complex phase. The three equivalent
forms for M0(X, —A; A/) follow immediately from the momentum conservation p+ -f p_ —
<7i +<l2- they are given here since we shall encounter them again in the bremsstrahlung case.
The above formulation is obviously well suited for compact and easy-to-check computer
implementation, and we shall put the results for single and double bremsstrahlung in the
same form.

For single bremsstrahlung we have helicity amplitudes Mi(X+, A_; Xj; \\) which now
depend on the photon helicity as well. It turns out that the relevant index is not the
helicity index Aj of photon 1 itself, but rather the helicity relative to that of the electrons.
As before, the helicity amplitudes with A+ ^ A_ are zero: the 8 nonzero ones are given
by

M,(A,A:A / ; A) = -2^ e G'A, A / (^) . 'V+(^)x

.s.Xi_A(p+,p_ks.\ _A(n,r2) {s_AiA(p_,r2)}2 ,

M,(A,A;A/;-A) = +2iQtGx,x,(s')N_(kl)x
s_A,A(p+,p_)s_A,A(r1,r2){.s\v_A(p+,r,)}2 , (6.2.9)

with

A'A(*I ) = n : ~ — , : n , (6-2.10)
•*-A,.\( A'l, P-r k \ , - A (P+ , P- )S-\,\ (P- - A-i )

and s' = (qi + q2)
2 is the invariant mass of the final state fermion pair.

For double bremsstrahlung we now have of course two photon helicities entering in

the amplitude ,Vf2(A+, A_; Xj\ Xx, A2). Its 16 nonzero values are the following:

.H2(A,A:A/; A. A) - -2iQf s G.y^s^N^k^N^k,) x

M2(\.\;\f;-\.-\) = -2iQesGx,Xf(s')N4ki)N_(kl)x

.s_A,A(p+,p_).s_AiA(r,,r2) {tsA|_A(p+,

,M,(A,A;A/; A,-A) = -2iQf s Gx^is^N+ik^N^) x

( ^ ) ( A ) (

1

X A A , -A T , , p + 5 _ A | A p + ? p _ S A . - X T , , , *_A,A 1 , P - J ,

yVf2(A,A:A,;-A, A) = {X2(A, A; A/; A, -A)}fc]_fc2 , (6.2.11)
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with

A ± = ( 7 > ± - * , - k 2 ) 2 • ( 6 .2 .12 )

It should be noted that if the photon helicities are equal the resulting amplitude has
a quite simple form. It reduces as in the one photon case to the Born level amplitude,
multiplied by two infrared factors' (as compared to one factor in the single bremsstrahlung
case): note, however, that in the presence of bremsstrahlung the various 'Born type'
forms that arise are no longer numerically equivalent. In fact this simplification has been
shown by the CALKUL group to persist to arbitrary order for those helicity amplitudes
where all photon helicities are equal [8J. The same is observed in QCD where a similar
factorization for multigluon scattering for which the form of the amplitudes where two
gluons have helicity opposite to all the other ones was first conjectured by Parke and Taylor
in [15] and later proved rigorously by Berends and Giele [16]. For the cases where the
photon helicities are opposite no such simplification is observed: in particular 'composite
denominators' like A + are not wholly compensated by a combination of Dirac matrices
in the numerator, whereas in the equal helicity case they are. As a consequence the
behavior in the various collinear limits is more complicated in the opposite helicity cases:
still, when A + —> 0 the numerator also vanishes, as can be seen from the concurrence
of the products ,sAi_,\(/»+, f - i ) , .s_.\,\(^,/>+), and s-\,\{k2, kt) with 1/A+, which go to
zero if ;7_, k\ and k2 are all collinear. This has a consequence for the case of triple
bremsstrahlung which we shall discuss below.

We now turn to the issue of the mass effects. As mentioned above, mass effects
become relevant when for instance (p+-ki) becomes comparable to m*. In that case,
(p+-ki) <C s and we are allowed to neglect many Feynman diagrams, namely those that
do not contain (/>+-A,)~ l explicitly as a propagator. These considerations lead us to the
following strategy for computing the mass effects. Let us consider a Feynman diagram
where one or more photons are emitted collinearly with />+: all these diagrams start with
the c+ external leg, to which the collinear photons are attached. In this part of the relevant
diagrams, which is equal for all those diagrams that we have to take into account, all
occurring momentum transfers are comparable to each other and much smaller than the
large momentum transfers like ,s (by our definition of collinearity). After this 'collinear'
part of the diagrams, we encounter the first vertex where a large momentum transfer
takes place. It can easily be seen that after this vertex, no more small denominators can
occur in the electron propagator until we reach the other extreme end of the diagram,
where a collinear part may occur due to those photons that are collinear with /)_. We
see that the diagrams are decomposed naturally into collinear parts where all momentum
transfers are small (and we may have to keep the electron mass), and a 'hard scattering'
part where we have to take into account all diagrams but where we can certainly neglect
the electron mass. It is obvious that this decomposition is not strictly gauge invariant
and we therefore have to be careful in choosing the gauge of the collinear photons, for
which as we have argued above the choice (6.2.5) is appropriate.

We shall now derive the expressions for collinear photon radiation. This is most simply
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described by the following explicit example. Consider a process where a photon with
momentum k[l and helicity + is radiated collinearly with the electron, with momentum
pi and helicity +. As argued above, in the gauge of eq.(6.2.5) we only have to consider
diagrams which contain the collinear part

r.'t-»(p_,+;*,,+)= l - ( ) L - J t i + m f ) M M » + (/'-) - (6-2.13)
2 { k )

By using the definition of / of eq.(6.2.3) and the identities

j-+me = u+(p_)u+(p_) + u_(p_)ii_(p_) ,

^ = «+(*,)«+(*-,)+ « _ ( * I ) « - ( * I ) , (6.2.14)

we can immediately decompose the above collinear part to write

+*_,+M'1K.+(P-<*i)«-(*i)} , (6.2.15)

where already 5 out of the 8 terms have dropped out because of the symmetry properties of
the spinor products and the fact that the s+,+ and s_,_ vanish for two massless vectors.
We will now further simplify eq.(6.2.15) by considering the order of magnitude of the
various terms. In the collinear limit, the denominator is of order O(m2

e) \ and this would
give rise to a cross section behaving like O(m~A). As is well known, however, the actual
behavior of the cross section is rather 0{m~2). Therefore, the numerator of eq.(6.2.15)
has to exhibit cancellations that brings its peaking behavior down by O(me). Thus, we
may expand the numerator of (6.2.15) and neglect terms that are of order O(m2), which
will not give a noticeable contribution to the cross section (in the same sense in which we
neglect a number of Feynman diagrams in the collinear situation). We have the following
orders of magnitude for the various quantities appearing in this numerator:

.s+i±(p.,A-,) = O(me) ,

-) + O(mr) . (6.2.16)

Here we have introduced

/W£ l • (6.2.17)

'Note that, since we use the gauge choice (6.2.5), we tak* q11 to be explicitly not collinear to pt or
so that the product s_i+(Jfci,g) remains of order C^(l) in the collinear situation.
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With this information we find that eq.(6.2.15) can be rewritten as follows, where we have
dropped terms of order O{m;) and higher in the numerator:

C ( / > - , + : A i . + ) = 7 = x { s + . _ ( / > _ . * i ) u + ( / » _ )

+ y\s+,+ (P-h)u-{?-)}• (6.2.18)

Note that the spinor products with qu as an argument have cancelled: this is in fact a
proof that to the order in rne that we are working in, our result is indeed gauge invariant.
We see from eq.(6.2.18) that the effect of the collinear bremsstrahlung can be viewed as
turning the definite helicity state u+(p_) into a linear combination of two helicity states
» + (/>_) a n ^ «-(/>-). e a c n w i t n a different weight. In fact, because we have argued that
all mass effects have been properly taken into account and from this point on we can
treat the remainder of the amplitude as describing the scattering of massless particles, we
can assume that (/>_ — A-i)" is a massless vector as well, and we have

» ± ( / ) _ ) ~ — • = = = - . (6.2.19)
y/i-y'i

Hence we are allowed to use

C{-](p-.+,hx,+) = Ai+\p-.+,kl.+)u + (p--kl)

+ .•tl_"'(/>-.+,A-1. +)«_(/)_ -A-,) , (6.2.20)

with

At\P..+,kl.+) = n ^ . (6.2.21)

Here we have used the explicit expression ,s+,+ (/>_. k{) = ?nryi in order to illustrate the

fact that for strictly massless electrons the coefficient . 4 _ ( / ; _ , - f , A-|,-)-) vanishes. It is

of course straightforward to derive similar expressions for the other helicity cases, and for

the case of collinear radiation from the positron as well. In general, we have

r ( - ) ( / > - . A _ . A - i , A i ) = — = : ^—r—^-7-^——

l-Al.-\p., A_. A-,, A,)«_(,,_ -A-,

/l(_+)(p+,A_,A-1,A,)i'_(p+-A'>) . (6.2.22)
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The explicit expressions for A[
± are given in appendix B. The case of double collinear

radiation can be treated in the same way: in this case, terms up to order 0{m?) in the
numerator must be kept, and also we have to take into account two diagrams instead of
only one. We have

= /1+" )(p_. A_, A-,, A,, A-2, \2)u+(p--kl-k2) +

^ lL -^p - , A_, t , , A,, A--2. A 2 )«_(p- -A-, -A-2) , (6.2.23)

2 - rnj]

_, A-,, A,, A-2, A2)f-+(p_ - A-, - A-2) +

/i (_" )(p+,A_,A-,,A1 ,A-2 ,A2)S_(p_-A' I-A-2) . (6.2.24)

where again the explicit expressions are given in appendix B. We now turn to the im-
plementation of these results in the computation of collinear amplitudes. In the case of
single bremsstrahlung collinear with the incoming electron, it is clear that we can write
the amplitude as

M1 {p+, A+ , /?_, A_ , A-j, A,; <7,. q2, X;) =

M0{p+ - A+,p_ - A-i, + ; <ji, </2, Ay ).-llir
>(/>_. A_, A-,, A,)

+ Mu{p+. A+ , />_ - A-,, - ; r/i, c/2. Ay J/ i! ."^/ ' - . A_. A-,, A,)

= -M 0 (p + ,A + , p_ -A- l ,A + : < 7 I , 9 2 ,A / ) / l A ; ) (p_ ,A_ ,A- , ,A I ) , (6.2.25)

where in the last line we have used the conservation of helicity along the massless electron-
positron line in Wo- Note that the momentum argument p'i in ,Vf0 now has changed
into //! - k[\ This is important for the following reason. In any physical amplitude or
cross section, overall momentum conservation holds, and consequently there are infinitely
many different ways to write the cross section as a function of the external momenta.
If the actual arguments used in Mo,i,2,»- do in fact satisfy momentum conservation, ail
these alternative formulations will give the same numerical value for the cross section: but
if they do not satisfy momentum conservation differing formulations will lead to different
results. In eq.(6.2.25), any of the equivalent formulations will give the same result: if we
would have used u(;;_) instead this would not be the case.

For single photon bremsstrahlung collinear with the incoming positron, we of course
have
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= . M u ( / » + - / - 1 . A _ . / > _ . A _ : V , . y . , . A / ) , l t ) ( / J + , A + . A - 1 . A 1 ) . (6.2.26)

In the case of double bremsstrahlung there are more possible collinear situations: we
can have one photon collinear with one beam, two photons collinear with the same beam,
or one photon collinear with one of the beams each. If only one of the photons, say ky is
collinear with, say />_, we can immediately write the extension of eq.(6.2.25):

MAl>+ • A + . />_ • A- • kt. A, .2. \y. ij,. 7,. \j) =

= Ml(p+.\ + .p--kl.\+A--i.\i:,h.<1-i..\j)A{-\p-..\-.kl.\1) , (6.2.27)

with obvious changes for radiation collinear with the positron. In case the two photons
are both collinear with the electron, we of course find

M>{p-.. A+ . p., A_. k{. A, .2. A,,: q{. q2. \}) =

Note that as in the case of single bremsstrahlung, in eqs.(6.2.27) and (6.2.28) only one
of the helicities survives in the final answer, since always either the positron or electron
can be taken as massless. In the case where each of these has its own collinear photon
this does no longer hold, and we have, when k\ is collinear with p_ and k> with / ) + :

M2(p+ • A + . /»_, A_. A-,, AL , 2 . Ao; </,. q2, \j) =

= Mu(P+-k2. + . ; ,_ -* - , .+ : <h,o.2. \f) x A{
+

+)(P+,\+,k2. A . M V ' I / ' - - A_. A-,. A,)

+ M a ( P + - k 2 , - , p . - A - , , - ; 9 l . ,/2. A y ) x , \ ( _ + ) ( ; ) + . A + . A-,, X 2 ) A { : } ( p ^ A _ , k 2 , \ 2 ) .

(6.2.29)

In this expression we have a coherent superposition of the two opposite helicity com-
binations of the incoming fermions: since we evaluate the cross section at the level of
helicity amplitudes this is not a problem but if one would rather use the more standard
techniques using traces in the squared matrix element extremely cumbersome expressions
would arise. This can be easily seen from the fact that for instance the massless helicity
amplitudes each contain either only (7+ \ ; or only G~,\r whereas in eq.(6.2.29) we have
a nontrivial complex linear combination of G + i \ and G'-,.^ in every amplitude.

The above expressions suffice for a completely well defined algorithm to evaluate up to
the two photon bremsstrahlung matrix elements in all possible kinematical configurations.
The extension to the case of final state collinear radiation is of course straightforward.
The only thing left for a computer implementation of the above formulae (in which we
have indicated all arguments explicitly in order to show how the actual computer code
looks in practice) is a way to determine, for a given event, whether or not to use the
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massless expression, or any of the appropriate collinear o..^s. Obviously, we need to
ensure a smooth transition from the noncollinear, massless case with all diagrams but
fewer heiicity combinations, and the collinear, massive case with fewer diagrams but all
heliciiy combinations. Due to our definition of collinearity such a smooth transition is in
fact possible: if we let a photon become more and more collinear with a beam the point
where we can start neglecting diagrams comes before the point where we start having to
account for m,. Some experimentation has lead us to the following algorithm, for each
photon / we dpfme the quantity

/, = log[^4l , (6.2.30)
( * )

which for massless electrons is just the rapidity of the photon. If for a given event (i.e.
configuration of generated momenta) / j > 15 we call k\ collinear with p+; for / ] < -1">
we call it collinear with />_. Note that for / ] = 1 r> the angle between kt and /7+ is
about 1 mrad, wh'rh is still a lot larger than m*f E£. Next, if \f-j\ > 10 we also call k>
collinear (obviously, we also have to check this with /•[ and k± interchanged). The reason
to relax the condition on the second photon is the following. If k2 is only slightly less
collinear than k\, say, f2 = 1-1.5, one may run into problems: calling A', collinear and
ki noncollinear, one would neglect terms like (p+'k[) with respect to terms like (p^-k^),
which are in fact of comparable magnitude: so we would have to call both of them either
collinear or noncollineaf. This dilemma is best solved empirically, considering events with
l r ) < / i < H) and 10 < f-j < 11 we found that the 'collinear' and the 'noncollinear'
treatment give results agreeing to within a fraction of 10~"\ This justifies the smoothness
of the above procedure.

Before finishing this section we want to remark that of course eqs.(6.2.25) and (6.2.27)
are of course not strictly necessary. Because only one heiicity contribution is nonnegligible,
we may of course also consider the squared form of the amplitude, implicitly summed over
the spins: for instance if ^i is collinear with /;_, this reads

P - - ^ ) \ 2 = \Mu{p+.p--k-l)\
2x IHp.A't) . (6.2.31)

with

_ l + 0 - . r , ) 2 m ? ( l - x . )
— - — - - -j— , ^ O . / . J Z ;

• n ( / ' - - A - | ) ( / > - - * i )

which is of course nothing but the well known Altarelli-Parisi type splitting function for
massive fermions. For the double bremsstrahlung case the corresponding factor can be
derived for the case of eq.(6.2.28) but, as already remarked above, not for the case of
eq.(6.2.29). In both cases the amplitude level expressions are anyway simpler than the
squared ones. However we have checked that we get equivalent results by squaring and
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summing the explicit A's in the double collinear case, or first squaring the matrix elements,
and then working out the collinear situation (using, of course, the same axial gauge in
both cases). That is, the following equality holds in the collinear limit up to terms of
order m 3 :

A_,Ai,A2

X

[
 )

, 2 2
l~X1-X2

(6.2.33)

— m2

7
2— mi +

i- + m)

+

Another remark is in order here. We have been able to express the collinear amplitudes
for single bremsstrahlung in that for the nonradiative process, and the collinear one for
double bremsstrahlung in that for the single bremsstrahlung process. Likewise, in the case
of triple bremsstrahlung we might envisage reducing the collinear amplitude to the one
for double bremsstrahlung with a collinear factor. However we think that at that point
the quality of the approximation may start to deteriorate for the following reason. The
nonradiative and single bremsstrahlung amplitudes can be written in a robust iorm, that is,
the numerical result of their evaluation can be seen to be stable if the argument momenta
p+ or p_ are not strictly massless: therefore we are allowed to make the approximation
that for instance p+ — k\ is proportional to p+ if k\ is sufficiently collinear with p+. As
remarked above, in our expression for the double bremsstrahlung amplitude an number of
numerical cancellations are still apparent in the numerator, cancelled by similar (but not
identicil!) ones in the denominator. Consequently we have less control over the stability
of the V'nal answer when photons become slightly collinear (but not collinear enough to
warrant going over to the collinear expression). It is therefore not clear yet how such an
expression will behave when we shall replace p+ — k3, say, by p+. It appears that it would
be extremely useful if a simple and robust expression for the double bremsstrahlung cross
section could be constructed. We doubt, however, that this is possible.

6.3 Generating events

In addition to expressions for the matrix elements, also algorithms to generate events
distributed according to this matrix element are needed. Because this distribution peaks
sharply, generating such events efficiently is not trivial when two bremsstrahlung photons
occur.

Let us first discuss the phase space, P5 4 . For the four particle final state
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k° - k°

Fig. 6.1. A Dalitz plot for the fffj phase space. Along the axes are the two
photon energies.

one has

dPSA = r r -
1 1

(2r)»
X

x 6<4\P+

) d4k2

\ - m))

- k2) . (6.3.1)

The factor \ is the statistical factor for two identical bosons in the final state, whereas
the factor l/2s is the flux factor and s = (p+ -f P-)2 is the C M . energy squared of the
incoming particles. As basic variables we will choose s' = (q2 + <7i)2, the invariant mass
squared of the final state fermion pair, k®, the energy of one of the photons, ft{ and J72-
the solid angles of both the photons and fi}, the solid angle of q\, where the * indicates
that it is defined in the C M . frame of the final state fermion pair. These variables have
been chosen because the matrix element peaks in most of them. One then has

1 1

2 5
1 1
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Fig. 6.2. The distribution of the weights (in units of 1000 events per bin) for
double bremsstrahlung at y/s = 91.17 GeV (left), 87.17 GeV (right, solid line)
and 95.17 GeV (right, dashed line).

where
s - *' -

-2k°(l - cos L(kuk2)) *
(6.3.3)

The final state fermions will be treated as massless, m/ = 0, since this was also done for
the matrix element. The square of the matrix element is approximated by

(6.3.4)

where we used

With the notation

G(s') = G,,Xf(s')\2

P =

one has for the approximant in terms of our basic variables:

(6.3.5)

(6.3.6)

(6.3.7)

app " (*?)2(*2°)2(;>2 - chip' - 4)
( 6 o 8 )
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The integration over il'j is trivial. The next integral we perform is the A-(,' integral, from
A-1,' - A-o up to A-,1 — k;nnj., where A-c) is the distinction between soft and hard photons and

, u • (6-3.9)
- cos

This upper boundary introduces an extra dependence on the angle between the two
photons. Performing the integral with this boundary therefore would leave us with a dis-
tribution for the photon angles that we would not be able to generate. Instead, exploiting
the A| «-> kj symmetry of the problem, we integrate over A" from A\, up to

and multiply by two. As can seen from the Dalitz plot 5.1 we now have overestimated
area / / by a factor 2 and we have added a contribution from area / , which was not there
before. We correct for this when generating A" values, by assigning a weight equal to
1 for events in area / / / , equal to | for events in area / / and equal to 0 for events in
area / , and then applying weight rejection. This way one is able generate the distribution
of eq. (6.3.4).

Having done the A" integration one has

/"- ( 6 3 1 0 )

The advantage of the procedure followed so far is that the integration over J), and i\2 is
now extremely simple, yielding

The approximate total cross section resulting from the s' integration is given in appendix C
for completeness. At this point we will assume that this s' distribution (6.3.11) can be
generated in some way. As it still is a rather complicated distribution, due to the behavior
of Ct'(s'), we used a general purpose routine. The algorithm, then, is as follows.

1. Generate s' according to the distribution (6.3.11).

2. Generate r, according to \/{p — ci) and flip the sign in 50% of the cases. Generate
ip according to a flat distribution. Repeat this procedure for Q2

3. Generate A" according to

1
77T +
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between the boundaries k0 and \{\/s - \/s'). Notice that both terms are positive
definite over this k° range. The energy of the other photon is then given by
eq. (6.3.3).

4. Apply weight rejection with the following weight:

0 if k°<ko
\ if ko<k\
1 if k%>k

w = { \ if ko<k%< kaymm

aymm

5. Generate Sl'j, that is cosi?* and <p*, both according to a flat distribution. The
resulting momenta q? and q\ have to be boosted to the lab frame.

6. Apply weight rejection with as weight

H \M\
- 3 - . (6.3.12)

app

The last step ensures that in the end one generates the distribution as given by the
complete matrix element. Since it is clear that step 1—5 can be done very fast, the
efficiency of this algorithm is determined by the efficiency of the last step. For reasonable
efficiency one needs a weight distribution that is sharply peaked and bounded from above
by a value not too far from the peak. For a typical set of values for the input parameters
(Mz = 91.17 GeV, s\n2tiw = 0.2270) we show the result for this weight distribution in
figure 6.2. From these histograms it appears the weight rejection is in fact quite efficient
at all energies.

Being able to generate events with two hard photons (with kf > k0), in order to have
an event generator that is complete up to and including order a 2 , one also needs events
with one hard photon or even no hard photon at all. From the Monte Carlo point of
view these are not very difficult to generate. The only difficulty is including the two loop
virtual and soft photon corrections. But since these have been calculated analytically [2],
one can simply use those results. We employ the following algorithm.

• Approximate the no hard photon distribution by

2 e V G ( , ) , (6.3.13)

which can be generated trivially, and weigh this with the full lowest matrix element,
divided by the above approximation. The factor 6VS contains the complete order
a and order a2 virtual and soft photon corrections as calculated in [2]. The above
approximation gives rise to an approximate total cross section

*<*2sG(s) , (6.3.14)
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which will be modified to the exact cross section for this type of events by multiplying
by the average of the weights.

• Approximate the 1 hard photon distribution by

(6.3.15)
which leads to an rpproximate total cross section of

°\lr = T- l o S"^ fds> f - ^ + A) s*G(s'). (6.3.16)
vv 3s ml J \s — s' s /

The result when integrated over s' has been listed in appendix C as well, for com-
pleteness. The distribution (6.3.15) can be generated, assuming once more one has
a way of generating the resulting daapp/ds' distribution. One then has to weigh the
events with the complete matrix element, where one loop virtual and soft photon
corrections have been included. To make the approximation (6.3.15) better one can
include e.g. a factor

1 + — I 2 log Ao (log-^— — 1 j -f - l o g — - H 2 1 (6.3.17)
7T \ V m1 J 2 m2 3 /

to take into account part of the virtual and soft photon corrections already. This
makes the weight rejection step more efficient. The complete one loop virtual and
soft photon corrections can once again be taken from [2]. It should be noted however
that if one does so, one lacks the cos d" dependence of the virtual photon corrections
to the single hard bremsstrahlung matrix element. Also another remark is in order
here. Because the one hard photon contribution is the only one where virtual and
soft photon corrections appear up to one loop, this is the only contribution that
can become negative when including such corrections and lowering the value of k0.
The restriction that this contribution remains positive turns out to restrict k0 to
k0 > 10~4p+ • This seems to be low enough for all practical purposes.

We have implemented the generation of the no photon distribution and the one hard
photon distribution as well. In the next section we will present some numerical results.

6.4 Numerical results

In the Monte Carlo program FPAIR we have implemented up to double photon bremsstrah-
lung from the initial state using the methods described in the previous sections. Weak
corrections have been included by using the library of the program ZSHAPE (see [6]). We
also incorporated one loop final state QEO corrections using a somewhat modified version
of the techniques described in [23]. In this section some results are presented.
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81.17
83.17
85.17
87.17
89.17
91.17
93.17
95.17
97.17
99.17

101.17

ZSHAPE

38
49

.2

.8
74.9

142
411

1471
611
283
175
125.
96.

0
5
1
6
6
9
5
9

FI'AIR

no cuts
38.1±0.1
49.8±0.1
74.8±0.1

141.7±0.2
410.7±0.4

1471.4±1.5
612.1±0.6
283.8±0.3
176.0±0.2
125.4±0.1
96.9±0.1

cuts
32.9±0
43.9±0
67.3±0

130.0±0
381.l±0

1372.7±1
568.4±0
261.0±0
158.8±0.
107.3±0.
71.7±0.

.1

.1
1
2
4
5
6
3
2
1
1

DYMU2
no cuts
38.0±0.1
49.7±0.1
74.9±0.1

142.3±0.2
412.2±0.4

1473.3±1.5
617.8±0.6
285.3±0.3
176.1±0.2
125.4±0.1
96.7±0.1

cuts
33
44
68

131
385

4±0
4±0
2±0
8±0
9±0

1375.4±1.
574
263
159
107

70

6±0.
2±0.
4±0.
0±0.
3±0.

1
1
1
1
4
5
6
3
2
1
1

Table 6.1. Monte Carlo and semianalytical results for the total cross section. Input
parameters and cuts are given in the text.

81.17
83.17
85.17
87.17
89.17
91.17
93.17
95.17
97.17
99.17

101.17

MUCUT

-0.699
-0.631
-0.519
-0.364
-0.180

0.007
0.127
0.189
0.232
0.272
0.343

FPAIR

no cuts
-0.676
-0.623
-0.522
-0.369
-0.187

0.003
0.126
0.185
0.220
0.242
0.257

cuts
-0.695
-0.631
-0.521
-0.364
-0.184

0.001
0.125
0.189
0.233
0.275
0.344

DYMU2
no cuts
-0.674
-0.617
-0.513
-0.366
-0.180

0.005
0.128
0.185
0.220
0.245
0.260

cuts
-0.691
-0.623
-0.511
-0.359
-0.175

0.006
0.129
0.191
0.235
0.285
0.358

Table 6.2. Monte Carlo and semianalytical results for the forward-backward asym-
metry. The Monte Carlo estimate for the standard deviation of these results is 2
in the last digit. The flags used in MUCUT were igs=l , iexp i= l , iexpf= 0,
interf=0, i f i n a l = l , inorm=l, isof t2= l , delta=0.2. Input parameters and
cuts are given in the text.
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da

r 10°

10- i

10- 2

-1 -0.5 0 0.5 a 1
COS V

30 60 90 120

Fig. 6.3. The COSJ? (left) and Ey (right) distributions at y/s = 120 GeV. No
cuts are applied. The distributions are given by DYMU2 (dashed line) and FPAIR
(solid line).

da da

10

-1 -0.5 0.5 „ 1
cosu

30 60 90 120

Fig. 6.4. The cos d (left) and E^ (right) distributions at y/s - 120 GeV. Canonical
cuts are applied. The distributions are given by DYMU2 (dashed line) and FPAIR
(solid line).

As the input parameters we use / = yT, Mz = 91.17 GeV, Mn = 100 GeV,
mtop = 130 GeV, which leads to s i n 2 ^ = 0.2270 and Tz = 2.491 GeV. We will
consider the distributions of cosi? = cos /.(q2,p+), the angle between e + and /z+ , and
E~, = YLi &?• t n e t o t a ' energy carried away by photons. There are several calculations
that can be compared to our results. In the first place, there is the analytical result
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incorporated in /.SHAPE, which computes the total cross section to high precision and
serves as a benchmark for Monte Carlo event generators. For the cosi? distribution there
is the semianalytical program MUCUT presented in [3], which also gives the forward-
backward asymmetry. In this program the weak corrections are approximated by using
the so called G'M representation, which should be well enough for our purposes. Finally, we
have compared to the Monte Carlo DYMU2 of [11], which is ideally suited to our purposes
since it also generates up to 2 photons from the initial, and up to 1 from the final state.
Throughout we impose the cut s' > 0.2s. This is meant to be more or less realistic:
indeed, in [2] it was shown that such a strict cut would be necessary to suppress the
background from two photon processes such as e+e~ —> e+e~ft+fi~. Requiring s' > 0.2s
allows us to treat the muons as massless for all events, thus avoiding the region at s' ~ 0
where all calculations are known to differ. In spite of this cut on s' we will refer to the
case where we impose no other cuts as the case with 'no cuts'. We can also imagine an
additional set of 'canonical cuts', which are slightly more realistic. These we choose to

be
15° < i?li2 < 165° ,

lS0°-Z(fl , ,?2) < 10° , (6.4.1)
s' > 0.2.s .

The results for the total cross section from the runs with and without canonical cuts are
given in table 6.1, for a number of different values for the CM energy y/s. In table 6.2
the analogous results for the forward-backward asymmetry are given. The agreement
of FPAIR and DYMU2 with the analytical results from ZSHAPE (with its exponentiation
option turned off!) is seen to be quite good: the line shape is well reproduced. It is
however strange to note that the result of MUCUT agrees with the case where cuts are
applied, where it should agree with the case without cuts. This could suggest that a cut
or approximation is made implicitly in MUCUT. For the residual effects of exponentiation
in the line shape we refer to [6]. The influence of the cuts is similar in both FPAIR and
DYMU2.

Next, we plot the cost/ and /',\ distributions when no canonical cuts are applied.
For the A\-plot the cut on .s' was lowered to 1 GeV2, in order to have a large hard
photon tail. The results are shown in figure 6.3. As far as can be seen from these
histograms, there is agreement between the two results. Only in the E^ distribution the
two Monte Carlo programs differ slightly in the hard photon area. This need not to be
a surprise since it was the motivation for calculating two hard photon bremsstrahlung
explicitly. Note that here we have taken y/s = 120 GeV, that is, well above the Z peak.
In that case, hard bremsstrahlung is one of the dominant effects, so that a comparison
between FPAIR and DYMU2 really informs us about the behavior of the programs when
generating bremsstrahlung, not just about the behavior of back-to-back events which
dominate around the peak. The results after canonical cuts are shown in figure 6.4.
Again the results of the two programs compare well, but for the hard photon part in the
E-, distribution.
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6.5 Conclusions

In this chapter we have described how the matrix elements for double bremsstrahlung from
the initial state can be computed. The use of spinor techniques ensures quick and compact
evaluation, even in the case where photons are emitted close to the beams. The extension
to bremsstrahlung from the produced fermions is of course straightforward. Special care
is necessary in the transition region between collinear and noncollinear radiation to ensure
smooth behavior of the numerical result: due to the fact that a strong ordering of the
type ml <C (p-ki) <C (p-k2) <C s is kinematically possible: if this were not the case then
probably the complete set of diagrams, including a nonzero electron mass throughout,
would be necessary. We have outlined an algorithm for generating double bremsstrahlung
events according to the exact distribution. Here a careful study of the structure of
phase space for two soft photons is necessary: by employing the symmetry in the photon
momenta an efficient algorithm can be constructed. We have presented some results
from the corresponding program FPAIR, and compared these to other results known in
the literature. The program is seen to do as well as can be expected. To finish, we
want to stress again that of course a two loop treatment is not the final answer, even
if the results for the total cross section coincide with those of analytical exponentiated
programs like ZSHAPK. For one, there is still the so-called £0-problem, that is one cannot
put A\, lower than a given value without having events with negative weights. Only a fully
exponentiated Monte Carlo can circumvent this problem. Secondly, final state radiation
is only included up to one loop, and interference between initial and final state radiation
is not treated at all. Fortunately, these effects are small at the Z resonance but a good
all-round Monte Carlo will at some time have to be constructed that does include them
and will allow detailed studies of off-resonance phenomena. Such a Monte Carlo will
unavoidably have to include two loop effects as described in this chapter. The present
study can be seen as a step towards this goal.

Appendix 6.A: Spinor techniques

In this appendix we shall present the relevant formulae necessary for the evaluation of the
bremsstrahlung matrix elements using spinor techniques. More details can for instance be
found in [10]. We start with two four-vectors fc£ and k* which satisfy

and two spinors ii-(ko) and u+(k0) defined by

u.(ko)u.(ko) = ^ ( ! - 7 5 ) K o

u+(k0) = Jdu-(*o) • (6.A.2)
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We new define a spinor for any (massive or massless) fermion momentum pf as follows:

l (>, + m,-)./-A(fco) , (6.A.3)

where (pi-pi) = m^: for particles, m, is positive, while for antiparticles mt is negative.
The limit m, —> 0 is smooth and leads to fermion states with definite helicity:

timoux(p,)ux(p,) = ^(l + X^W, , (6.A.4)

while for 77/, ^ 0 (when the helicity is not a Lorentz invariant concept) we have the usual
form

«A(p,-)«A(Pi) = ^(j»i + » » . ) ( l + 7 V : ) < (6-A.5)

where the fermion spin polarization $f is given by

The spinor products can now be computed using the well known trace techniques: for

instance, we have

. • ._<* .»> = T 'H 1 - -> '> l j °< l ' .+" •><*+ - .W.1 . (6.A.7)
l j { k ) { k )

Explicit expressions for the spinor products are obtained by taking explicit forms for k^
and k\\ using

{k*,k\,k\%k\) = ( 0 .0 ,1 ,0 ) , (6.A.8)

we obtain the following formulae:

.s_,_(p,,p2) = s+,+ (p,,p2) . (6.A.9)
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Note that s+ i_ and ,s_ + are antisymmetric, and s++ and s_,_ are symmetric in pf and
p2 . Moreover, in the ultra-relativistic limit m\,ni2 —* 0 s+i+ and s__. vanish, whereas in
the nonrelativistic limit pi,p2 —> 0 the s+ i_ and s_ i + go to zero. There is an interesting
relation between the spinor products and the more familiar vector products. In the general
massive case we are considering here it reads

7 ] £ lsAl.A2(Pl.P2)|2 = (PrP2) + "«l»Tl2 , (6.A.10)
4 A,,.\2=±

which in fact turns out to be about the most (numerically) stable way of computing the
vector product (pi -p2), especially when the masses are zero or small. A few other useful
relations exist, which we give here without derivation: again we refer to [10] for details.
First, for any string S of Dirac matrices, we have the reversion identity:

where SR is the string 5 written in reversed order. Then, there is the Chisholm identity:

[u+{ql)1»u+(q?)}-fll=2{u+{q2)u+(qi) + li-{ql)u-(q2)} , (6.A.12)

which holds for massless q* and q2. The so-called two dimensional Schouten identity
leads to the formula

(P2,P4) = 0 , (6.A.13)

where the momenta P^^ZA m a v n a v e a n v m a s s - We want to stress that the result (6.A.13)
is new in the sense that it is also seen to hold for massive momenta: to our knowledge this
has not been established before. Note that in the Weyl spinor formulation constructed
by Berends and Giele [14], which is completely equivalent to our spinor techniques for
massless fermions, this relation follows immediately from the fact that their spinors have
two components', in our case, it is derived most trivially by writing out the explicit
definition of s+,_ as given in eq.(6.A.9). It follows that eq.(6.A.13) also holds if we
restrict the products s+ i_ to their real or imaginary parts only. Finally, another amusing
identity is

S+,_(pi,p2) = (s+>+(p3,p1)s+i_(p3,p2)-5 + ,+ (p3,p2)5+,-(p3,Pi)) , (6.A.14)
m3

which for instance turns out to be handy in the case of collinear double bremsstrahlung:
again, here p" and p2 may have any mass, and m 3 is of course the mass associated with
p3. This finishes our review of spinor formulae: with the above tools, the matrix elements
presented in section 6.2 can be derived immediately.
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Appendix 6.B: Collinear factors

Here we give the collinear factors A discussed in section 6.2. It is immediately clear that
upon flipping all helicities in any A we obtain the same result with only the replacement
5+i_ *-> s-i+, so we only list half of them. For single collinear radiation we have

y])

i4t")(p_,-,Ar,,+) = 0 .

Ay](p-,-,ki.-) = -Dim^ . (6.B.1)

with

lh = - , • (6.B.2)

Similarly,

/t (
+

+)(p+,-,A-1,-) = 0 , (6.B.3)

with

lh = - r - L . (6.B.4)
v2yi\Ji -yiip+'h)

Note that since p" = p°_ = /v;, the value of yi is the same whether defined using p_ or
;>+: for final state radiation this is of course no longer true. For double collinear radiation
we have to take into account two diagrams, leading to

Fl~\p-,+, A-,, +, A-2,

f'i~)(p.t+,ki,-,k2,+) = -/>)«_,+(p_, A-,) (5+,_(p_,A-i)i/iyj(l - yjf)

-,k3){\ - y\)(\~y]-yl)),
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,'(l -y\ - y2
2)) ,

^"'(p-.+.t,,-,^,-) = 0 , (6.B.5)

with

D3 = -. . (6.B.6)
^ - y'i - yUp--ki)[(p--kl) + (P.-k2) - (k-i-h)]

Finally, for double collinear radiation from the positron we have

y2)(l - y? -

- y\)

=-D4 (mjy*y2 + s-,+ (p+,ki)s+,-(p+,k2){l - y] - y]))

= 0 ,

) (6.B.7)

with

D4 = . (6.B.8)
2 / l ? ? ( * ) ( ( * ) ( ^ ) ( * * ) )

Appendix 6.C: The approximate total cross sections

For completeness we list our results for the approximate total cross sections corresponding
with the one hard photon contribution and the two hard photons contribution respectively.
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These expressions can be obtained by integrating eq. (6.3.16) and (6.3.11) over s'. It
must be stressed that these are not 'approximate cross sections' in the sense that their
result should coincide with the exact one to some acceptable degree of accuracy, but
rather that they just serve to normalize the event weights: indeed, a\^v and a^p coincide
with their exact counterparts only up to a factor < w > (the mean weight) which can
differ appreciably from 1.

<'P = log ^ [ s (Byh + 2B2I2) + (B3 + B4(s + Ml))

(6.C.2)

i •£

If one has included a factor like the one in eq. (6.3.17) in the approximation (6.3.15) for
the one hard photon distribution, one should multiply a\^p by the same factor.

We have defined the following integrals

^ maxr ? '^ max

h = log—,
mm

IS - S

I2 = log-

s'mtn-Mz\- arctan—r---^

1, (^q, - A/|)2

1 2 /e'

= - log2 ^ 'm a r - - log2 s'max ,

* mari i / n . r i " max T • I max i r •

h = log (5 - 2Ar0VAJ log -j— - Lu ( n _ 0 ^ ^ j + Lia

I7 = log .s log
•5 - S'r,

f> — S

= - X log (•« - S mar) ~ Llj
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h = + log (s'mai - A/1 + iMzTz) log s'max - i log2 s'mat - Li2 ( M |
 /

 lMzV/

£ \ & max

- log (s'min - Ml + iMzTz) log s'mtn + i log2 s'min + Li2

- log (s - 2ko^s - Ml + iMzTz) log (s'min - Ml + iMzTz)

+ Li2 ..'-Ml

and the following constants

4QeQj
tfi — ,

s
n _ n , 4GeQ/* + 8QeQjvevj{s- Mz)

(S - MiY + MZTZ

V» + a))Ml{s - A/2 -

B4 = B2 — Bx .

The value for the lower bound on the invariant mass squared of the final state fermion
pair as dictated by the phase space is 4m 2 . But in the given procedure this value can
be set arbitrarily, with 4mJ as the minimum possible value. The upper boundary s'max is
determined by how 'soft' hard photons can become and by the number of hard photons.
To be precise, for one hard photon one has

whereas for two hard photons

mar = S[l--f) , (6.C.3)
P+.

*'„« = s(l-^]2 . (6.C.4)
V P+J
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Chapter 7

Event generator techniques

7.1 Introduction

In this chapter a number of Monte Carlo techniques is discussed. The methods all are
designed to generate explicitly the momenta of a fermion pair and of a number of photons.
One important restriction is imposed: only initial state radiation is considered for s-channel
processes of the type

e+e~—*ff, f?e-,ve> (7.1.1)

The reasons to review the techniques that are used in the literature to write Monte
Carlo programs for these processes are the following. First of all the techniques are quite
different; having seen one of them is not having seen them all. Moreover the presentations
of the techniques are done in very different manners and notations. This has resulted in .
situation where most people have a good understanding of at most one of the methods.
The immediate implication is that there has been a lot of confusion over the question
where the results of the various techniques should compare well and where they are
expected to deviate from each other. Another consequence is that there is no place in
the literature, so far, where the advantages and drawbacks of ea<-' method have been
discussed in an unbiased way. The aim of this chapter is twofo1' We want to give explicit
descriptions of a number of methods, including detailed algor., is for the generation of
events. Secondly, having described the methods in all their technical detail, we are in a
position to list the positive and the negative features of each of them.

Implicit in the discussion of this chapter is the hope that in acquiring a better under-
standing of the Monte Carlo methods used for the s-channel processes (7.1.1), one might
develop better ideas for techniques that could be applied to other processes, most impor-
tantly to Bhabha scattering. At this moment the level of accuracy of the Monte Carlo
programs that exist for Bhabha scattering is not thought to be sufficient [1]. Improving
on these programs has however turned out to be very difficult. Reviewing the techniques
that are applied to the s-channel may serve as a first step towards the construction of
better techniques for Bhabha scattering.
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In subsequent sections three methods are discussed. First the case where the QED
corrections are taken into account up to a fixed order in a is treated (section 7.2). Next,
a technique to sum up all the so-called infra-red divergent QED corrections is described
in detail (section 7.3). This technique is due to Jadach and Ward [2] and is based on
the work of Yennie, Frautschi and Suura [3]. The third and last method discussed here
is based on the structure function approach. The treatment given in section 7.4 is rather
closely related to the one by Bonvicini and Trentadue [4]. Finally in section 7.5 the
advantages and drawbacks of all these techniques are discussed.

7.2 Fixed order Monte Carlos and the &

The type of Monte Carlo programs, that was first introduced for the purpose of calculating
cross sections for (7.1.1), and that has been used most extensively, is the type where the
QED corrections are calculated up to a fixed order in a. The calculation in chapter 6 is
only one of the many examples of this type. Because chapter 6 gives explicit expressions
and algorithms, we will restrict ourselves here to merely discussing a very general feature
of this type of Monte Carlo. This feature is usually referred to as "the &o-problem" and
has been mentioned already in chapter 5. The k0-problem has recently been discussed in
detail in [5].

Let us consider, without loss of generality, a Monte Carlo program that includes the
initial state QED corrections, up to and including first order in a, for the process (7.1.1).
As is discussed in chapter 5, the total cross section gets contributions from three different
parts: a part corresponding to virtual photons, a part corresponding to real photons, with
energy k0 < kt (soft photons) and a part corresponding to real photons, with energy
k0 > hi (hard photons). The first two contributions both can be written in a factorized
form and hence they can be combined easily into one virtual/soft part, written as a factor
times the lowest order cross section ao(s):

<TI\S-(.«,*I) = [ l+*vs (* i )]*<>(*)• (7-2.1)

Here the term 1 corresponds to the lowest order contribution and 6VS to the virtual/soft
corrections to that. In first order the form of 6\>s is

^ 2] , (7.2.2)

where E is the beam energy, /, = log(.s/m^) and s = \E2. Note that lowering k\
can result in 1 + <Vs(£i) < 0 This observation will prove to be the key issue for the
implementation of these corrections in a Monte Carlo program.

The third and last contribution, corresponding to hard photons, in general does not
factorize. We will denote this contribution by an(s,kx), which consists of a difficult
integral over a three particle phase space. This term also depends on k\, because the
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photon phase space is integrated only over the part where k0 > kx, k0 being the photon
energy, ki a fixed small energy. Upon lowering &,, an{s,ki) will increase, since the
photon phase space is enlarged. Further, one should realize that an necessarily has to be
positive, for it corresponds to (in principle) detectable e+e~ —+ ffj events.

There is a clear connection with the discussion in chapter 5. The term ays(s, * i )
corresponds to the first line of eq.(5.1.1), whereas the contribution (TH{S, k\) corresponds
to the third line. We have assumedthat frj is small enough, so that the contribution from
the second line in eq.(5.1.1) vanishes. In that case the ky dependence of ays is cancelled
by the kx dependence of an, reflecting the fact that k\ is an arbitrary parameter, as long
as it I", small enough. As stated in chapter 5, all these contributions can be calculated
exactly, albeit sometimes at the expense of considerable amounts of CPU time. However,
making a Monte Carlo on the basis of the two contributions ays and an may pose an
extra problem.

Suppose one wants to generate events according to the combined distribution for
virtual/soft/no photons on the one hand and hard photons on the other hand. The first
thing one has to do is to decide whether the next event will have a hard photon or not.
This is done in a probabilistic way, with the chance

fcl) + <Tys(s, A',)

that the next event will have a hard photon. The fact that the ratio P is interpreted as a
probability and hence has to lie within [0,1], yields an extra restriction: ays(s,&i) > 0,
or, equivalently, 1 +6vs(ki) > 0. This means, using eq.(7.2.2), that ki is bounded from
below. In the particular case of initial state radiation only, this restriction is not very severe,
namely k{ >, 10~4E. If one includes final state radiation and the interference between
initial state and final state radiation, the restriction becomes more severe, fcj >, 10~2£\
The fro-problem now is the fact that for these latter frrvalues, the second line of eq.(5.1.1)
may give a non-negligible contribution. But since this term itself is the difference of two
cross sections, it will in general have parts in phase space where it is negative, and hence
it cannot be treated in a probabilistic way either. In other words, the fro-problem is caused
by the fact that one does not know of a way to split the total cross section into parts
that all are non-negative everywhere in phase space.

There is one obvious and simple solution to this problem: avoid having to decide in a
probabilistic way whether the next event will have a hard photon or not. The price one
has to pay when doing so, is that one ends up with two sets of events, one corresponding
to the cross section ays and one corresponding to the cross section 07/, instead of having
one set of events, corresponding to the total cross section. This means that the events will
always have a weight ^ 1. In fact, the sign of the weight of events corresponding to ays
can become negative and hence opposite to the sign of the weight of events corresponding
to an. It is the difference in sign that is the inhibition for applying a weight rejection
procedure in order to give all events unity weight. However it should be stressed that
there is nothing wrong in working with two sets of events, having different weights, even
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when those weights have opposite sign.
In practice, though, working with several sets of events is not preferable, nor is it an

aesthetically satisfying solution to work with. Therefore people have tried to find other
solutions, all of which use the notion of exponentiation of a part of the QED corrections.
Section 7.3 and 7.4 describe two such efforts.

7.3 YFS exponentiation

7.3.1 Introduction

In this section it is discussed how one can exponentiate soft photon corrections from the
initial state in a Monte Carlo program. It should be stressed that there may be many ways
to do this, but that the method described here, which is due to Jadach and Ward [2], is
particularly f it for Z physics at LEP1. The method incorporates the QED corrections in
two different phases. Firstly the infra-red (IR) divergent corrections are taken into account
to all orders in a by exponentiation along the lines of the work of Yennie, Frautschi and
Suura [3]. The hard multi-photon distribution one then has to generate is a difficult one
and will be treated in subsection 7.3.3. Secondly the higher order IR finite corrections
are included by introducing Monte Carlo weights. This is done order by order, up to
O(a2) corrections. The definition of these weights involves some technicalities, which are
discussed in subsection 7.3.4. First however it is explained in more detail what the aim
of the method is, i.e. what distribution one wants to have in the end.

7.3.2 The distribution that has to be generated

In this subsection we will present the multi-photon distribution that has to be generated.
Using a number of approximations the phase space integral over this distribution will be
calculated. This integral is needed in the following subsections and also gives some insight
in the correspondence with semi-analytical methods like those discussed in chapter 2.

Consider the process

+ t~(p.) - f(q+) + /(<?_) + 7 ( * i ) + ••• + 7 ( * n ) , (7 .3 .1 )

summed over the photon multiplicity n. The differential cross section for this process is
given by

1 1 1
da = ^77rr2FYFs{e)Y:-d*q^{ql-m))d\^{ql-m)) (7.3.2)

122



The factor in front is the so-called Yennie-Frautschi-Suura (YFS) factor

FYFS(e) = expj/?log5 + ̂  k log -^ - 1 +2«2) j } , (7.3.3)

with /? = (2a / x)(\og(s /m2.) — 1). In writing down this expression for FYFS it is already
assumed that all photons are connected with the initial state fermion current only. That
is, we restrict ourselves to initial state corrections. It will become clear that the YFS
factor cancels the e-dependence of the integral over the rest of the distribution (7.3.2).

The function S(k) is the soft photon bremsstrahlung distribution, which for initial
state bremsstrahlung reads

•k) (p+.ky (P..ky

The functions 6, incorporate the lowest order e+c~ —> / / scattering (60), the IR finite
virtual and soft photon corrections to that (60) and the IR finite hard photon corrections
(61, 62). The definitions of the b, are given in subsection 7.3.4. In the way eq.(7.3.2) is
written down the IR finite corrections are taken into account up to and including O(a2).
The IR divergent corrections are resummed to all orders, which is apparent for the virtual
and soft photon parts because they appear in the exponent in the YFS factor and for
the hard photon part because eq.(7.3.2) contains an explicit summation over the photon
multiplicity n from 0 to 00.

Most of the terms in eq.(7.3.2) are written in a Lorentz invariant way. An exception
is i)(k° — sE), where the p++p_ CM frame is chosen. The variable E stands for the
beam energy in this frame. In the following we will work in this frame, unless a variable
is denoted with a •, in which case it is evaluated in th*» 7. +<?_ CM frame.

In the remainder of this subsection the integral over da is calculated in the case where
all higher order IR finite corrections are neglected. That is we take

bo(p+,p_,q+,q_) = \M0\
2 ,

b2{p+,p-,q+,q-,ki,km) = 0 .

The idea behind this simplification is that the IR finite corrections can be included in
the final result by defining appropriate Monte Carlo weights. This will be the topic of
subsection 7.3.4. In eq.(7.3.5) |yW0|

2 is the Born matrix element squared for the process
c+c~ —> ff. The result for the distribution da after the simplifications (7.3.5) will be
called the 0-th order exponentiated distribution.

It is convenient to introduce the momentum Q" = q++qt. In terms of the momentum
Q" the integral over da can be written as
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° - eE)\ .L

fly stands for the solid angle of say q+ in the q++q~ CM frame. For the reduced energy
Q2 the notation s' is often used. The Born matrix element squared |TWO|2 depends only
on the variables Q*, and s'. Therefore the integration over Q^ can be performed, keeping
.s' fixed for the moment:

(7.3.7)

xS\s'-

Since |yV(0|
2 is the only term depending on Q*j one can also carry out the integration

over Q*j. The result depends on the specific Born differential cross section under consid-
eration. We will denote in general

h (2 ( 7 - 3 - 8 )

For the integral of the O-th order exponentiated distribution one then gets

j da = ds'ao(s')

1 = 1

S(k.) iHk? - £E)] (7.3.9)

At this point we want to integrate over the photon momenta. The restriction on these
momenta due to the ('J-function involving .s' is however a considerable problem. Therefore
a crude approximation will be made. Again the underlying idea is that for the final result
the exact answer can be obtained by introducing appropriate Monte Carlo weights. This
will be the topic of the next subsection. The integral we will calculate here is

jda = FYi,-s{e) jds' aa(s')h{s-s') (7.3.10)

f 7n f 7d k? w
L cE

The approximations that have been made are that all photon energies can be integrated
over independently up to the energy kmazE and that the energy loss s —> s' is due to
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photon 1 only. Because of the latter the energy of photon 1 is fixed by the ^-function
for s'. Hence we have to assume that (1 - s'/s) £ [s,kmax]. For the case n = 0 this is of
course somewhat different, so that will have to treat n — 0 separately for a short while.
Note furthermore that because one photon is given a special role, one has to compensate
for the decrease of the number of permutations by multiplying by a factor n (for n > 0).

The approximations now lead to an integral that is easy to calculate and that will be
the basis for an event generating algorithm (next subsection). The integral of the soft
photon distribution S(k) over the solid angle is

/
in-

Using this and integrating over the photon energies one gets

jda = FyFs(£) jds' au(*') \fi(s - s') + /S1J\ £ tn-lV. ^^

(7.3.12)
The n = 0 term and the sum over the other terms can be merged into one term, yielding

j da = FYFs(€)jds' <T 0 ( / ) -^< .xpf .* ]og%^ . (7.3.13)

From this expression it is clear that the t-dependence is cancelled after integration over the
photon momenta. What remains is a complicated .s'-integral, which we will not calculate
here.

The correspondence with semi-analytical approaches can be made more explicit by
choosing a specific value for kmai. A possible choice is kmaT = (1 — s'/s). It is easy to
check that for given ,s' the value (1 — s'/s)E is the maximum energy any photon can
have. Therefore all of phase space is covered when using this choice. On the other hand
the approximation that all photon energies can be integrated over independently is not a
particularly good one for such values of kmaj., but the Monte Carlo weights will correct
this.

For this particular kmilI value the integral over the 0-th order exponentiated distribu-
tion becomes

da = FYl,,{e)e^ j ~ fl (l - ^) ao(s') . (7.3.14)j
This can be compared to eq.(2.3.6) using the flux function (2.3.12). The differences that
occur are higher order IR finite QED corrections.

In this subsection we have calculated the integral over the distribution (7.3.2). Two
approximations have been made: eq.(7.3.5) and the approximation leading to eq.(7.3.10).
In subsection 7.3.3 a method is discussed to generate the approximated distribution and
at the same time define Monte Carlo weights to correct for the latter approximation.
In subsection 7.3.4 Monte Carlo weights to correct for the former approximation are
introduced.
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7.3.3 Generating the 0-th order exponentiated distribution

An elegant method is discussed to generate the distribution (7.3.6). The method was
introduced and implemented in a Monte Carlo program in [2]. Define the following
notations:

P = ? + + / > _ , A ' = £ * , - , A' = £jfc,- , v = l-s'/s. (7.3.15)
n=I n=l

A basic quantity for the method we want to describe is

n

i = l

x J ] d4kj 6{4)(kj - Xkj) (7.3.16)

-f(P,K,v)) iv ,

where

^ \ (7.3.17)
v'h)

and

The maximum value for u\ for constant v, can be determined to be

(7.3.19)

Before evaluating /„(>') , let us discuss eq.(7.3.16). The method first generates a value
for s' and pretends there is only one photon responsible for the energy loss (1 — s'js)K
(the (S-function on the first line). If (1 - s'Is) < e no photons are generated, but here
only the case (I — .*'/*) > s is considered. As a second step it generates a number n to
determine how many photons are to be generated on top of the first one. These extra
photons are generated according to S{k), as is the angular distribution of the first one
(the rest of the first line). The third step is to scale all photons, so that afterwards the
energy loss, now due to all photons, is (1 - s'/s)K once again. The scaling is described
by the second line, the scale factor is determined in the third line of cq.(7.3.16). The
whole procedure is made exact by defining the weight w. Having generated all photons,
the problem is brought down to the level of generating a fermion pair at energy .s'. Since
this can be done without much problems this is not discussed here.

The quantity /,,(.s') can be evaluated in a few steps. Firstly note that the combination

d*k,6+(k?)S(k,) (7.3.20)
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is invariant under k, —> ak,. Using this the integration over k, can be carried out. Next
one can solve two of the ̂ -functions for v and A using

6 (A - J(P, A » ) 6 (jk° - VE) = (7.3.21)

P-K)- K2

E (P-K * ' A vEl " V P2

Using the definition of to and the specific form of v following from the ̂ -function, one
gets

(7.3.22)
Notice that there are two ̂ -functions for the lower bound on k°. Due to the specifics of
the procedure one has A < 1, i.e. the photons are always scaled down in energy. This is
ensured by first pretending that one photon is responsible for the energy loss vE and then
generating the rest of the photons. Because the rest of the photons will be responsible
for some extra loss of energy, all photons will have to be scaled down, in order to stay at
the pre-determined energy loss vE. Therefore the factor 0{k®j\ — eE) can be left out,
as the other bound on k" is always more strict.

With the second ^-function left out /„(.*') has exactly the desired form. It is precisely
a part of the distribution (7.3.9). In the previous subsection this distribution could not
be integrated over and therefore approximations were introduced. In fact the integration
was done over the distribution where /n(.s') was replaced by the first line of eq.(7.3.16)
only. Now we are able to give an algorithm to generate this distribution and correct for
the approximation. First the algorithm is given, then a number of points is discussed.

1. Generate >' in the interval [*'„,„. *] according to

2. If (1 -.s'/.s) <e then
Generate a fermion pair in the p++p- CM frame with a total energy squared s.

Else

2.1. Set the energy of photon 1 equal to A*° = ( I — s'/s)E.

2.2. Generate the photon multiplicity n between 1 and oo according to the distri-
bution

, > ( " - ' ) 1 _ c ' / s

/^"-') = '""(^Tjr " = 0]°S—~-

This is a Poisson distribution for ( / i - l ) with average n.

(7-3.24)

127



2.3. Generate the energies of photons 2, . . . , n in [eE, (1 - s'/s)E] according
to 1/fc?.

2.4. Generate the solid angle of all photons according to S(k), i.e.

2.4.1. Generate c, = cosi?fc, as l/(p + c,) + l/(p - c,) in the interval [—1,1].
Here i?fci is the polar angle of photon i with respect to the beam axis and

m2

2.4.2. Apply weight rejection with the weight 1 -
2(p+-p_) \p-Ci

2.4.3. Generate the azimuthal angle ipkt of photon i uniform in [0,2TT].

2.5. Calculate A = /(/*,£?=! h,v) using eq.(7.3.17).

2.6. Scale ail photons: /tf «- A/If.

2.7. Generate a fermion pair in its rest frame with a total energy squared s'.
n

2.8. Boost the fermion pair to the p++p_ CM frame using the vector P* —
1=1

3. Apply weight rejection with the weight

A number of remarks should be made concerning this algorithm.

• The distribution (7.3.23) basically is the same as eq.(7.3.14), but there is one
difference. The distribution (7.3.23) is multiplied by wmax, which is necessary
because of the weight rejection 3.

• For the ^'-distribution e-regularization is not needed any more, due to the exponen-
tiation. The variable e now only plays the role of the parameter that determines
the average hard photon multiplicity, as is described by eq.(7.3.24). Therefore the
value of e can formally be taken in the limit e —* 0, thereby letting the average
photon multiplicity go to infinity. However for practical purposes a finite photon
multiplicity is needed and hence a finite value for e is still required.

• The s' distribution (7.3.23) is a complicated one to generate. Probably the best
way to do it is to use a general purpose routine.

• The weight rejection procedure 3 has a very low efficiency if l—v = s'/s <C 1, as
can be seen from the form of wmax, eq.(7.3.19). Hence, if the lower bound on s' is
very small, the efficiency of the whole procedure described here is rather low.

• The weight occurring in step 2.4.2 vanishes for c, = ± 1 . Therefore the probability
to generate a photon close to the beam is zero. However, including the full hard
bremsstrahlung matrix element squared there is a non-zero probability for a photon
along the beam axis. This implies that for an event with a photon close to the
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beam the final weight wm (see eq.(7.3.32)) will become arbitrarily high. To avoid
such arbitrarily heigh weights, it is best to leave out the weight rejection procedure
2.4.2. This has an effect on most of the rest of the algorithm, in particular on the
value to be used for ft, due to the effect on eq.(7.3.11) when omitting the mass
terms in S(k). For the precise effects of this we refer to [2]. It should be noted that
in this case the cancellation of the ^-dependence is achieved only after inclusion of
the weight wm-

7.3.4 The IR finite QED corrections

Let Mt denote the Born amplitude for the process e+e~ —• / / + if, i.e. fermion pair
production plus i photons. The expressions for these amplitudes are well known and will
therefore not be given here. The 6, appearing in eq.(7.3.2) are defined in terms of these
amplitudes as

<0 |2(p+,p_,9+,<?_), (7.3.25)

b\ll(p+,p..q+.q.,L,, = (l+6[l))\Mi\2(p+,P-,q+,q-,kl) (7-3.26)

- S(p+, p-, k( )b{
0

1]( 7lp+, Up-, Hq+, Kq.) ,

/>ir)'(/>+.p_,9+,7-,*/,*m) = \M2\
2(p+,p-,q+,q-,khkm) (7.3.27)

- S(p+ ,p-,kt)b[0)( KP+, Up., Kq+ ,7lq-,1Zkm)

-5(p+,p_, km) b[0)(llp+, Tip-,7Zq+,Uq-.,Tiki)

-S{p+,p-,ki)S(p+,p-,km) 40 )

The indices ( l ) determine to which order the IR finite virtual and soft photon corrections
are incorporated, so that b^ is obtained from b^ by omitting SQ, and likewise for b^
and b["\ The function S is the soft photon bremsstrahlung distribution (7.3.4), where
now all relevant momenta are explicitly listed as arguments. The <5(l' are given by

4 " = ^(Le-l) , (7.3.28)

1
where Le = log(.s/m^). Note that 8Q is taken in the leading logarithm approxima-
tion. The 6j is more complicated, but can be approximated by <5, = 8Q . A better
approximation is given in [2].

The main point that has to be discussed is the so-called 1Z procedure. Let us take
as an example the last term in the expression for b\ . We have a set of momenta
p+,p_,<y+, g_, kt, obeying energy-momentum conservation: (p++p_— q+—q_—ki)" = 0M.
The last term in (7.3.26) is the soft photon factor 5 times the fr-function with one photon
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less. This means that if simply the momenta p+,p^,q+,q~ are taken as arguments for b0

in this case, the set of momenta going into b0 would not satisfy energy-momentum
conservation. This gives rise to the following remarks.

• The violation of energy-momentum conservation is large if the photon kt is energetic.
There will always be such cases in a Monte Carlo calculation.

• The difficulties arise because of the event by event treatment. The problem can be
seen as the lack of an algorithm that describes the influence of neglecting a photon
momentum on the rest of the event.

• The violation of energy-momentum conservation need not be a problem; see the
discussion of the robustness of matrix element calculations in [6].

• In [2] a procedure is proposed to transform the momenta such that they obey energy-
momentum conservation. This transformation is called the reduction {It) proce-
dure.

• There does not seem to be any theoretical necessity to introduce such a procedure;
its main value should lie in the fact that problems with matrix element calculations
are avoided when using it.

• Since the procedure is not necessitated by theory, there is some freedom in defining
it. If different definitions would lead to different answers, the whole method of
generating events and defining the weights this way would not be trustworthy.

The 71 procedure differs for each difFerent set of momenta that it has to be applied to. In
particular the procedure for the set of momenta p+,p_,q+, g_, ki differs from the one for
the set p+.p-,q+,q-.,ki,km. In general the following conditions are imposed on the V,
procedure (the index i runs over those photons that are included in the set of momenta
that the procedure has to be applied to):

CRP+ + Up- - Kq+ - ft<7_ - E, Tiki)* = 0" (7.3.29)

(7lq++7lq-f =

The first condition is of course the prime objective of introducing the procedure. The
second condition ensures the cancellation of IR divergences. The third condition is im-
posed because the matrix elements depend strongly on s', due to the presence of the
Z resonance. Demanding that s' does not change under 1Z improves the soft photon
approximation.

Furthermore it is reasonable to require that the sum of the reduced final state momenta
are at rest in the LAB frame and that the reduced beam momenta are still along the 2-axis

4- Tlq. + £,-ft£ = 0 , ^7.3.30)

Tlp+<T = TZp+iy = Hp-tX = ftp_,y = 0 .
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From this it follows that

Although the momenta 7lp+, Hp~, 7lk, and TZ(q++q-) are fixed now, there is still
freedom to choose the directions of 7lq+ and TZq_. A natural choice is to maintain the
angular distribution the fermion pair has in its CM frame. The momenta lZq± can then be
obtained by boosting q± (the result of step 2.7 of the algorithm in the previous subsection)
with the boost vector 7lp+ + lZp_ — £ , &,-. Note that i still only runs over those photons
that are included in the set of momenta that the procedure has to be applied to.

In words the 1Z procedure can be described as follows. The photons are not changed.
The energy of the incoming momenta (the beam energy) is reduced to match the total
energy of the final state where a number of photons have been neglected. The momenta
of the fermion pair are determined analogously to step 2.8 of the previous subsection,
where in the expression for the boost vector only the remaining photons are taken into
account.

Having defined the 6, and the reduction procedure, the Monte Carlo weight to include
up to second order IR finite photonic corrections can be written as

(7.3.32)

S(p+,p-,ki)

, Up., TZg+, Kg., nkt, Hkm)

The term D in the denominator corresponds to the distribution that was generated.
If e.g. the fermion pair was generated in its CM frame according to the exact Born
e+c~ —> ff amplitude squared \M0\

2, then B = b{o\Hp+,7lp-,Tlq+,1lq-). If however
one generates an approximation of \Mo\2 one has to redefine <ro(s'), see eq.(7.3.8), and
also 13.

7.4 The structure function based approach

In this section a method is presented to generate events for the process e+e~ —* ff +
nf, based on the structure function approach. In [4] such a method is presented and
implemented in a Monte Carlo program. The algorithm outlined in this section does not
follow [4] in all details, but the general structure is the same. The notation is not taken
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over from [4], but rather sticks as closely as possible to the notations used elsewhere in
this thesis.

The starting point is the mass factorization formula for the total cross section, the
equivalent of eq.(3.2.13):

a(s) = fdxljdx2Y{xl)Y[x2)a{xAx2s). (7.4.1)

Only the leading log diagonal splitting functions are considered here, which corresponds to
only taking photon radiation in the collinear limit into account. The splitting function F(x)
can then be written as

Y(X) = 6( I - r ) + ( ^ J /'„(*) + ^ ( ^ J (Pce&P.e)(x) + ... , (7.4.2)

where
I = l o g ^ . (7.4.3)

Because it is applied to s-channel processes, for which explicit calculations have been
performed up to and including O{a2), we will choose Q2 = s. The Altarelli-Parisi splitting
function Prr is given by (see also chapter 3)

Prc(x) — 6(1 — x) \—r-2 loge + i?(l — x — e) (7.4.4)
L2 J 1 — x

and determines the fraction 1 — x of the energy that is carried away by a photon. In [4]
this is generalized to describe also the transverse energy distribution of the photon, and
hence of the fermion. Here we will formulate the generalization in terms of the emission
angles ft = {i),^p) of the photon, rather than in terms of pj. The generalization reads

LPet(x) = J<mV(x,n), (7.4.5)

where

V(xM) = Pee(T)- , 1 . (7.4.6)
2 * 1 - y/l - 4m2JQ2 cos d

This generalization is only valid if m2
e <C Q2. It is clear that in writing V(x,£l) the

dependence on m2
e and Q2 is suppressed. However from eqs.(7.4.1) and (7.4.2) one sees

that for the distribution of cos ?? one has to take the value of Q2 that one wants to have in
the expression for the total cross section. Since the explicit calculation of [7] shows that
for the total cross section the choice Q2 = s is appropriate up to and including O{a2),
we have to fix Q2 in our algorithm, even if eq.(7.4.6) is used iteratively. Further, the fact
that ml in eq.(7.4.6) is taken to be the physical mass squared of the radiating fermion,
and not p2 of that fermion, being either on-shell or off-shell, is imperative, for otherwise
the resulting logarithms would not even contain the correct mass.
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With the ingredients described so far one can construct an algorithm to generate
events. Firstly note that eq.(7.4.2) implies that the number of hard photons radiated off
one particular fermion is distributed as a Poisson distribution with the average

(7.4.7)

A photon is called hard in this context if it carries more than a fraction e of the energy of
the radiating fermion. One can use this to start the algorithm by generating n+ and n_,
being the number of photons radiated off the incoming e+ and e~ respectively. For each
photon one then generates the fraction x and the angles x) and ip according to V(x,Q)
in eq.(7.4.6). For n± photons one takes the angles with respect to e±. One has to bear
in mind, though, that after emission of each photon, the fermion momentum changes.
After emission of all photons the incoming e* hjve momenta p±. The final step is then to
generate a pair of fermion momenta in their CM frame, having an invariant mass squared
of (p+ +p_ )2, and to boost them to the LAB frame. The distribution of fermion momenta
is given by the Born matrix element squared.

More specifically the algorithm is as follows:

1. Generate n+ and it- according to a Poisson distribution

-fin al
Pn(n) = e-n— . n = -

2. Define/4 = / /± .

3. Do for / from 1 to n +

3.1. Define î  + > ^ + as the polar and azimuthal angle of ;7+ with respect to p+.

3.2. Generate .r,, i^,, ^>t according to V(.r^ f i , ) .

3.3. The momenta of photon i and of the fermion after the emission of that photon
are given by

k[k = (1 — j*,-)/)" (1 , s in I?,-cos(,?,-,sini?,-sinv?i,cost?,-)

/'+ +— />+ ( A . —(1 ~ J . ) sin i)( cosi^,-, —(1 — j j sin i9, sin ̂ >,-,

3.4. Rotate k and ;7+ by —^+ around p+ and then by — x)+ around the <̂>+ = |-axis.

4. Repeat the previous step with all indices " + " replaced by " - " .

5. Set s' = (p+ + p_)2 and generate a fermion pair in their CM frame according to
da/dQf{s',Qf). Then boost the fermion momenta to the LAB frame.
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There is a number of points concerning this algorithm that are worth mentioning here:

• Since ; i + and n_ both are Poisson distributed variables, with averages n+ and n_
respectively, the total photon multiplicity n = n + + n_ is also Poisson distributed,
with average n+ + n_. One can compare this with eq.(7.3.24). Note however that
there n — 1 is Poisson distributed. The differences at this level are not meaningful;
only after inclusion of all Monte Carlo weights the two methods can be compared.

• The variable e can be set arbitrarily low, as long as it is non-zero. As in the method
of section 7.3, the variable e determines the average multiplicity of hard photons'.
An important difference, though, is hidden in the definition of 'hard photon1, see
below eq.(7.4.7).

• The total cross section is calculated by averaging the values of w = da/dQj. To
get events with unity weight one has to apply the weight rejection procedure with
this weight. Since der/dilj varies steeply with s', this can become very inefficient.

• This method only yields the leading log (LL) QED corrections. Including the non-
log terms, or even only a part of them, is quite tricky. E.g. replacing L —> L — 1
in eqs.(7.4.2) and (7.4.5), without altering the angular distribution (V.4.6) is not
correct. However, in principle the first order initial statr QED corrections can be
written in a factorized form, evaluating a correction factor and, separately, the
lowest order cross section for reduced beam momenta. In higher order this can still
be done for the LL and the next-to-leading terms, but not for the non-log terms [8]

• This technique exponentiates the QED corrections per incoming fermion. For the
LL terms this seems to amount to the same as exponentiating per fermion current.
For the non-LL terms it is not so obvious that this is still true.

7.5 Advantages and drawbacks

For the straightforward method of fixed order Monte Carlo, the situation is transparent.
The big advantage is that it is clear what one has to do in order to improve on a given
calculation, although it may be tedious to do it. The one important drawback is the
A'o-problem. For the other methods one can make more comments. The advantages of
the YFS method are, in a nutshell:

A l . The A'o-problem is avoided.

A2. The exponentiation of soft photon corrections is theoretically well founded.

A3. There is an elegant solution to make the generation of s' efficient, even in the
presence of a resonance.
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A4. Inclusion of yet higher order IR finite corrections can be done according to a well
defined procedure.

The drawbacks are:

D l . It is not obvious that negative weights cannot occur here. A proof that the weight
is positive definite would be very welcome indeed.

D2. The dependence on the TC-procedure has not been studied. It would be of great
interest to know that the results are independent of the 7£-procedure.

D3. At the moment this method for the initial state corrections can only be combined
with a fixed order calculation for the final state corrections. Inclusion of the inter-
ference between initial state and final state corrections is not possible at present.
Exponentiation of the final state corrections is prohibited at the moment due to the
absence of an event generating algorithm. Once such an algorithm is constructed,
it will probably b<; possible to include the interference between initial state and final
state corrections.

D4. The efficiency of the method drops dramatically if s'min <C s.

For the structure function based method the advantages are:

A l . The £0-problem is avoided.

A2. The method is conceptually simple and easy to implement.

A3. It is easy to adapt the method for final state corrections.

The drawbacks are:

D l . The efficiency of the generation of s' is very low, especially in the presence of a
resonance.

D2. Although possible, it is very difficult to include initial state non-log terms in first
order, leave alone the higher order non-LL terms.

D3. It is not clear how to include interference effects between initial state and final
state corrections.

D4. Due to the entanglement of initial and final state corrections for Bhabha scattering,
it may prove impossible to include non-LL terms there.
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Samenvatting

De studie van processen die plaatsvinden bij botsingen van een electron met zijn anti-
deeltje, het positron, is reeds lange tijd een van de belangrijkste onderzoeksgebieden
van de hoge-energiefysica, ook wel elementaire-deeltjesfysica genoemd. Tot 1989 zijn
experimenten aan e+e~-botsingen gedaan bij energieën van ongeveer 40 GeV (Petra,
Duitsland) tot ongeveer 60 GeV (Tristan, Japan). Deze experimenten werden lange tijd
beschreven door quantumelectrodynamica (QED), de theorie van electromagnetische in-
teracties tussen elementaire deeltjes. Gezien de nauwkeurigheid van de experimenten
moest niet alleen de laagste-ordeterm in storingstheorie worden meegenomen, maar ook
de eerste-ordecorrectie hierop. De storingsparameter is hierbij overigens de koppelingscon-
stante van QED, de fijnstructuurconstante а.

Bij energieën van rond 60 GeV begon men echter de invloed te merken van de zwakke
interactie, aangezien men niet ver meer verwijderd was van de typische energieschaal voor
zwakke interacties. Deze typische schaal wordt gegeven door de massa van de deeltjes
die de zwakke kracht overbrengen, de zogenaamde W- en Z-bosonen. De massa van
deze deeltjes is ruwweg 80 GeV/c2 voor de W bosonen en 90 GeV/c2 voor het Z boson.
Daarom moest men bij de theoretische beschrijving van de processen bij 60 GeV de
laagste-ordetermen ten gevolge van de zwakke interactie in rekening brengen.

In 1989 kon men SLC (Stanford Linear Collider te Stanford, Verenigde Staten) en
LEP (Large Electron Positron collider te Genève, Zwitserland) in gebruik nemen. Beide
machines kunnen e+e~-botsingen produceren bij energieën rond 90 GeV. Alhoewel dit ten
opzichte van 60 GeV op het eerste gezicht geen grote stap voorwaarts lijkt, betekende dit
toch dat er een fundamenteel nieuwe situatie ontstond. Voor het eerst in de e+e~-fysica
was er nu een situatie waarbij voor sommige processen niet de quantumelectrodynamica,
maar de zwakke kracht dominant was. Het dominante proces is, om precies te zijn,
dat proces waarbij het electron en het positron annihileren en een Z-boson vormen. Di*
annihilatie-proces is resonant bij een energie die overeenkomt met de massa van de Z,
rond de 90 GeV. Het Z-boson is echter een instabiel deeltje en vervalt dus vrijwel meteen.
Niettemin kan men, door de vervalprodukten waar te nemen, de eigenschappen van het
Z-deeltje nauwkeurig bestuderen. Met name met LEP heeft men dan ook al precieze
bepalingen gedaan van de massa en de vervalbreedte van de Z. Deze tak van onderzoek
heeft, om duidelijke redenen, de naam Z-fysica gekregen.

Ook voor de theoretische beschrijving van deze experimenten was een nieuwe situatie
ontstaan. Om met de theoretische voorspellingen de nauwkeurigheid van de experimenten

137



op zijn minst te evenaren, moesten er drie berekeningen gedaan worden.
Ten eerste moesten de eerste-ordecorrecties ten gevolge van de zwakke interactie

berekend worden. Immers, aangezien in laagste orde de zwakke interactie dominant is,
kan men niet volstaan met slechts die laagste orde. De 'zwakke correcties' van de eerste
orde zijn in de afgelopen jaren door verschillende groepen uitgerekend. Omdat deze
bijdragen niet groot bleken te zijn, kon geconcludeerd worden dat zwakke correcties van
hogere orde niet uitgerekend hoefden te worden.

Ten tweede moesten de QED-correcties berekend worden. De eerste-ordecorrecties
zijn geheel analoog aan de QED-correcties voor processen die in laagste orde door QED
beschreven worden. Deze QED-correcties van de eerste orde waren al berekend en konden
met enkele wijzigingen worden toegepast op Z-produktie en -verval. Het bleek echter dat
deze correcties voor deze toepassing erg groot zijn: ongeveer —35%. Dit in tegenstelling
tot vorige toepassingen, waarbij deze correcties doorgaans minder dan 10% bedroegen.
Dit betekende dan ook dat de QED-correcties van hogere orde uitgerekend moesten wor-
den.

Ten derde was de precisie die men bij de experimenten bij LEP dacht te zullen
bereiken, en die men in sommige gevallen zelfs al bereikt heeft, hoger dan men tot dan
toe gepresteerd had. In het bijzonder is de bepaling van de totale werkzame doorsnede
nu al zeer nauwkeurig. Oorzaak hiervan is voornamelijk de hoge statistiek. Er is echter
een heikel punt in deze experimentele bepaling: men moet de zogeheten luminositeit van
de versneller weten, dat wil zeggen, men moet weten hoeveel e+- en e~-deeltjes men op
elkaar heeft afgevuurd. Deze luminositeit is niet op voorhand bekend en wordt daarom
experimenteel bepaald door theorie en experiment te vergelijken voor één specifiek proces.
Men neemt hiervoor altijd c+e~ —> e+e~, ook wel Bhabha-verstrooiing genoemd, en wel
bij kleine verstrooiingshoeken. De twee belangrijkste redenen om Bhabha-verstrooiing te
nemen zijn, ten eerste, dat dit proces bij kleine hoeken sterk gedomineerd wordt door
de quantumelectrodynamica, en, ten tweede, dat de werkzame doorsnede ervan groot is,
resulterend in hoge statistiek. Het feit dat de experimenten bij LEP de totale werkzame
doorsnede meten met een onnauwkeurigheid die kleiner is dan 1%, houdt in dat voor
de theoretische beschrijving, die even nauwkeurig moet zijn, de QED-correcties van de
tweede orde nodig zijn. Ook voor Bhabha-verstrooiing was dus een verbetering van de
bestaande theoretische beschrijving nodig.

Kortom, de QED-correcties van hogere orde moesten uitgerekend worden, zowel voor
Z-produktie als voor Bhabha-verstrooiing.

In de afgelopen jaren hebben veel groepen gewerkt aan de berekening van hogere-orde-
QED-correcties voor Z-produktie en Bhabha-verstrooiing. In dit proefschrift wordt verslag
gedaan van een van de bijdragen op dit gebied. De inhoud valt ruwweg te verdelen in twee
delen die van elkaar verschillen in de manier waarop de QED-correcties worden uitgerekend.
In het ene deel, hoofdstuk 2 tot en met 5, wordt de zogeheten semi-analytische methode
gebruikt. Hier worden zo veel mogelijk integrates analytisch uitgewerkt en wordt alleen
voor de laatste integratiestap of -stappen de numerieke uitweg gezocht. In het andere
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deel, hoofdstuk 6 en 7, worden Monte Carlo-technieken toegepast. Dat wil zeggen, hier
worden alle integraties van begin tot eind numeriek gedaan.

De inhoud van de hoofdstukken is als volgt. Na de inleiding (hoofdstuk 1) worden in
hoofdstuk 2 op semi-analytische wijze de processen e+e~ —* ff behandeld, onder uit-
sluiting van f — e~,ut. Dit zijn de 'typische LEP-processen', gedomineerd door de zwakke
interactie. In hoofdstuk 3 wordt het geval f = e~, Bhabha-verstrooiing, behandeld, even-
eens semi-analytisch. Dit gebeurt door te eisen dat zowel e+ als e~ over grote hoeken
verstrooien, waardoor ook dit proces nog gedomineerd wordt door de zwakke interactie.
De mogelijkheden om dergelijke sneden op de verstrooiingshoeken op te leggen worden
in hoofdstuk 4 uitgebreid, waarmee dan het verschil tussen voorwaartse en achterwaartse
verstrooiing semi-analytisch kan worden uitgerekend. In hoofdstuk 5 worden deze tech-
nieken wederom toegepast, nu op Bhabha-verstrooiing bij lage hoeken. Hier wordt ook
een afweging gemaakt van het belang van een groot aantal correcties van verschillende
herkomst.

Hoofdstuk 6 behandelt opnieuw de gevallen ƒ ф e~,ve, maar nu met behulp van
Monte Carlo-technieken. De resultaten hiervan voor de totale werkzame doorsnede kunnen
vergeleken worden met die van hoofdstuk 2. Ten slotte wordt in hoofdstuk 7 een overzicht
gegeven van de belangrijkste implementaties van Monte Carlo-technieken, zoals deze zijn
toegepast voor ƒ ф e~,ve. De voor- en nadelen van ieder van deze methodes worden
behandeld.
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STELLINGEN

1. De kwestie van vrijwillige euthanasie toont aan dat de parlementaire democratie in
Nederland niet optimaal functioneert.

Opinieonderzoek Lagendijk in opdracht van de NVVE, 1980
Enquête Lagendijk in opdracht van de AVRO, 1984

Enquête Intomart in opdracht van de KRO, 1985
Enquête NIPO in opdracht van de AVRO, 1986

Opinieonderzoek Intomart in opdracht van de NVVE, 1988

2. De door Bengtsson et al. afgeleide interactie tussen drie massaloze bosonen met
willekeurige maar gelijke spin, kan niet alleen uitgebreid worden naar interacties
tussen drie massaloze bosonen met alle drie verschillende spin, maar ook naar in-
teracties tussen twee massaloze fermionen en een massaloos boson met alle drie
verschillende spin. De vorm van de interactie-term in de lagrangiaan is in de
lichtkegel-ijk

С =
n = 0

x(d+Y
d(ii+Sl-s3+\/2) -<¿>3 + C.C.

Hierin zijn ipi de velden corresponderend met de deeltjes met spin s¿. De boven-

staande vorm geldt wanneer s2 en s3 halftallig zijn en st heeltallig, waarbij s i < 52,3.

De vorm voor het geval waar het boson niet de laagste spin heeft kan hieruit verkre

gen worden door middel van de substitutie st2 —• sJ2 — \- Het boson heeft

dan het label 2, terwijl nog steeds moet gelden st < s2,3- De massadimensie

van de koppelingsconstante die met deze interacties geassocieerd kan worden is

-(s2 -f S3 - sx - 1).

A.K.H. Bengtsson, I. Bengtsson en L. Brink, Nucl.Phys. B227 (1983) 31
A.K.H. Bengtsson, I. Bengtsson en N. Linden, Class.Qu.Grav. 4 (1987) 1333

De manier waarop door Jegerlehner de hadronische vacuümpolarisatie is geprogram-
meerd als dispersie-integraal over de hadronische werkzame doorsnede in e+c~-
botsingen is onzinnig, aangezien voorbij wordt gegaan aan de statistische fluctuatie
van de metingen.

H. Burkhardt et al., Z.f.Phys. Ç43 (1989) 497



4. Stel, men doorloopt op willekeurige wijze een rij van N verschillende getallen, totdat
men een getal tegenkomt dat al eerder was voorgekomen. Het p-de moment van
de kansverdeling om / stappen te hebben gemaakt is, voor grote N

(IP) = NiPpni V? ' POne"e"'
| 1 , p even.

Voor p = 1,2 levert dit het bekende resultaat op dat de gemiddelde lengte van zo'n
wandeling v / f Ñ is, met een standaarddeviatie van J(2 — ^)N.

5. Door Bengtsson et al. wordt in Class.Qu.Grav. 4 (1987) 1333 een foutieve definitie
van het begrip veldherdefinitie gehanteerd. Dit leidt ertoe dat bepaalde met-triviale
interacties door hen niet beschreven kunnen worden.

6. In het computerprogramma VEGAS worden verschillende Monte Carlo-schatters voor
dezelfde grootheid gecombineerd tot een 'cumulatieve' schatter voor die grootheid.
De schatter voor de standaarddeviatie behorende bij deze cumulatieve schatter,
wordt door VEGAS niet correct berekend.

G.P. Lepage, J.Comp.Phys. 27 (1978) 192

7. Wanneer men de belangrijkste logaritmische bijdragen van fermionpaar-remstraling
van de begintoestand meeneemt in de berekening van de resonantiecurve van het
Z-boson, dan geeft dit een extra bijdrage aan de zogeheten schijnbare breedte van
het Z-boson van

!)[?МНГ
Hierin zijn Mz en Tz de massa en de breedte van het Z-boson en is me de massa
van het electron. De numerieke bijdrage van AFz is ongeveer 2 à 3 MeV.

V. Gribov en L Lipatov, Sov.J.Nucl.Pbys. 15 (1972) 438 en 675
Dit proefschrift, hoofdstuk 2

Beschouw de QED-correcties op de werkzame doorsnede van een proces waarin de
massa's van de inkomende en uitgaande deeltjes klein zijn en dat kan plaatsvinden
via uitwisseling van een (vrijwel) massaloos deeltje in het zogeheten t-kanaal. De
'1-deeltjes inclusieve berekening' hiervan zal in het algemeen deze correcties zwaar
overschatten (naar de positieve kant).

Dit proefschrift, hoofdstuk 3



9. Beschouw de totale werkzame doorsnede voor e+e -+ e+e ƒƒ. Wanneer zowel
het e+ als het e~ onder kleine hoeken verstrooien, vormt dit proces een achtergrond
voor het proces waarbij alleen een //-paar gecreëerd wordt. Als we nu bovendien
eisen dat zowel ƒ als ƒ verstrooien over hoeken tussen i?mi„ en тг—i>mtn, is de totale
werkzame doorsnede voor e+e~ —> e+e~ff in grove benadering gegeven door

Hierin isc m = cosï?min, 7/ = ( l - c m ) / ( l + c m ) , s'min de ondergrens op de invariante
massa van het //-paar, me de massa van het electron en s het kwadraat van de
totale energie in het massamiddelpuntssysteem. Voor het bovenstaande resultaat
is aangenomen dat s'min/s < 7/ en dat s'min «C s. Verder is de massa van f en f
verwaarloosd. De generalisatie naar een asymmetrisch hoekbt.tik is eenvoudig.

10. Wanneer bij de QED-correcties van de eerste orde voor een grootheid de zacht-
fotoncorrecties niet dominant zijn, is er geen reden om aan te nemen dat het
exponentiëren van de zacht-fotoncorrecties tot een beter resultaat leidt dan het
eerste-orderesultaat.

11. Door Ruijgrok en Cohen zijn de gesloten banen op een rooster met spiegels niet
correct geteld.

Th.W. Ruijgrok en E.G.D. Cohen, Phys. Lett. A133 (1988) 415

12. De methode van hoofdstuk 3 en 4 van dit proefschrift kan gegeneraliseerd worden,
zodat ook produktie van massieve deeltjes beschreven kan worden. De vergelijkingen
(3.2.18) en (3.3.9) blijven ongewijzigd geldig, wanneer men ti = (p\ — рз)2 — mj
en analoog voor t2, ut en u2 definieert. Hierin is m¡ de massa van de deeltjes in
de eindtoestand. Wanneer men de notaties

introduceert, worden de grenzen op de integratie-variabele t\, ten gevolge van de
hoeksneden, verkregen door de integrand te vermenigvuldigen met de factor



- T(cm+)) û (-h + Т(см+))

- X2) 'о (x2 - X0(Xi, CM+)) t? (-X2 +

x д (f, - T(-cM+)) â (-U + Т(см+))

х Û (í, - T(cM+j) i? (-Í, + r(-cw+))

- < СЛ/+ - > C m + > .

en analoog voor см-, cTO_, met arj <-»• x2. De grenzen op ¿i ten gevolge van de
energie-snoden blijven ongewijzigd. Voor m¡ —* 0 blijft alleen de eerste regel over
en reduceert deze regel tot het resultaat (4.9). Door op geschikte wijze de hoeksne-
den te combineren kan uit het bovenstaande, voor een willekeurige massa m¡, de
differentiële werkzame doorsnede da f de afgeleid worden. Het resultaat voor derfde
is in overeenstemming met dat van W. Beenakker et al. in Proc. Workshop on
electroweak radiative corrections, Ringberg (1989), ed. J.H. Kühn.

S.C. van der Marck, april 1991


