1. a) $\psi(p)=(2 \pi \hbar)^{-1 / 2} \int_{-\infty} e^{-i p x / \hbar} \psi(x) d x$,

$$
\begin{aligned}
& \int_{-\infty}^{\infty}|\psi(p)|^{2} d p=(2 \pi \hbar)^{-1} \int d p \int d x \int d x^{\prime} e^{i p\left(x^{\prime}-x\right) / \hbar} \psi(x) \psi^{*}\left(x^{\prime}\right) \\
& =\int d x \int d x^{\prime} \delta\left(x-x^{\prime}\right) \psi(x) \psi^{*}\left(x^{\prime}\right)=\int d x|\psi(x)|^{2}=1
\end{aligned}
$$

b)

$$
\begin{aligned}
\mathcal{T} \psi(p)=(2 \pi \hbar)^{-1 / 2} \int_{-\infty} e^{-i p x / \hbar} \mathcal{T} \psi(x) d x=(2 \pi \hbar)^{-1 / 2} \int_{-\infty} e^{-i p x / \hbar} \psi^{*}(x) d x \\
=(2 \pi \hbar)^{-1 / 2}\left(\int_{-\infty} e^{i p x / \hbar} \psi(x) d x\right)^{*}=\psi^{*}(-p)
\end{aligned}
$$

c) Kramers theorem requires that the time-reversal symmetry operator squares to -1 , here $\mathcal{T}^{2}=+1$ so it does not hold.
2. (a) $T_{a} \psi(x)=\psi(x)+\sum_{n=1}^{\infty}\left(a^{n} / n!\right) d^{n} \psi(x) / d x^{n}=\psi(x+a)$ (Taylor series).
(b) $H \psi(x)=\alpha \psi(x+a)+\alpha \psi(x-a)$, so hopping to the right and to the left with probability amplitude α. If α is complex we need $H=\alpha T_{a}+\alpha^{*} T_{a}^{\dagger}$ to ensure that H is Hermitian.
(c) $H=2 \alpha \cos (a p / \hbar)$, so $E(p)=2 \alpha \cos (a p / \hbar)$; the velocity has expectation value $\nu=d E / d p=-2(\alpha a / \hbar) \sin (a p / \hbar)$.
3. (a) since $a a^{\dagger}-a^{\dagger} a=1$, we have $\left[a^{\dagger} a, H\right]=-\gamma|e\rangle\langle g| a+|g\rangle\langle e| a^{\dagger}$; moreover, since $\langle e \mid g\rangle=0$, we have $[|e\rangle\langle e|, H]=\gamma\left(|e\rangle\langle g| a-|g\rangle\langle e| a^{\dagger}\right),[|g\rangle\langle g|, H]=$ $\gamma\left(-|e\rangle\langle g| a+|g\rangle\langle e| a^{\dagger}\right)$; combining this, gives
$\left[\left(a^{\dagger} a+\frac{1}{2}|e\rangle\langle e|-\frac{1}{2}|g\rangle\langle g|\right), H\right]=0$.
The conserved quantity is the number of photons ($a^{\dagger} a$) plus the occupation number of the excited state of the atom, because $\frac{1}{2}|e\rangle\langle e|-\frac{1}{2}|g\rangle\langle g|$ increases by 1 when the atom makes the transition from ground state to excited state.
(b) $\left|\psi_{1}\right\rangle=\left|N_{0}\right\rangle|g\rangle,\left|\psi_{2}\right\rangle=\left|N_{0}-1\right\rangle|0\rangle|e\rangle$;
$\left\langle\psi_{1}\right| H\left|\psi_{1}\right\rangle=-\varepsilon / 2+\left(N_{0}+1 / 2\right) \hbar \omega,\left\langle\psi_{2}\right| H\left|\psi_{2}\right\rangle=+\varepsilon / 2+\left(N_{0}-1 / 2\right) \hbar \omega$, $\left\langle\psi_{1}\right| H\left|\psi_{2}\right\rangle=\gamma\left\langle N_{0}\right| a^{\dagger}\left|N_{0}-1\right\rangle=\gamma \sqrt{N_{0}},\left\langle\psi_{2}\right| H\left|\psi_{1}\right\rangle=\gamma\left\langle N_{0}-1\right| a\left|N_{0}\right\rangle=\gamma \sqrt{N_{0}}$. (c) At a given N_{0} we may restrict H to the basis $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle$, and the eigenstates are eigenvectors of M. The corresponding eigenvalues are $E_{ \pm}=$ constant $\pm \sqrt{\gamma^{2} N_{0}+\delta^{2} / 4}$, so $\delta E=\sqrt{4 \gamma^{2} N_{0}+\delta^{2}}$. For $\gamma \rightarrow 0$ we have $\delta E=$ $\delta=\varepsilon-\hbar \omega$, which is the energy difference between the states $\left|e, N_{0}-1\right\rangle$ and $\left|g, N_{0}\right\rangle$.
4. a) In the first equation we have summed the contributions $\frac{1}{2} \hbar c|\boldsymbol{k}|=\frac{1}{2} \hbar c \sqrt{k_{x}^{2}+k_{y}^{2}+k_{z}^{2}}$ to the vacuum energy from the field amplitude $\phi(x, y, z) \propto \sin (n \pi x / L) e^{i k_{y} y+i k_{z} z}$. The field is a plane wave parallel to the plates with wave vector components k_{y}, k_{z}, and a sine perpendicular to the
plates with wave vector component $k_{x}=n \pi / L, n=1,2,3, \ldots$, such that the amplitude vanishes on the metal plates (taken at $x=0$ and $x=L$).
In the second equation we have carried out the integral over k_{y}, k_{z} in polar coordinates, $d k_{y} d k_{z}=2 \pi r d r=\pi d r^{2}$, and we have changed variables from $\pi^{2} n^{2} / L^{2}+r^{2}$ to u^{2}, with u ranging from $\pi|n| / L$ to ∞.
b) In the first step we have replaced $u^{2} e^{-\epsilon u}=\left(d^{2} / d \epsilon^{2}\right) e^{-\epsilon u}$ and carried out the integral $\int e^{-\epsilon u} d u=-\epsilon^{-1} e^{-\epsilon u}$; in the second step we summed the geometric series $\sum_{n=1}^{\infty} e^{-\epsilon \pi n / L}=e^{-\epsilon \pi n / L}\left(1-e^{-\epsilon \pi / L}\right)^{-1}=\left(e^{\epsilon \pi / L}-1\right)^{-1}$.
c) $E_{\text {total }}=E\left(L_{2}-L_{1}\right)+E\left(L_{3}-L_{2}\right)=-\left(\hbar c \pi^{2} / 1440\right)\left[\left(L_{2}-L_{1}\right)^{-3}+\left(L_{3}-\right.\right.$ $\left.L_{2}\right)^{-3}$] plus terms of order ϵ^{2} plus terms independent of L_{2}. Hence $F=$ $-d E_{\text {total }} / d L_{2}=-\left(\hbar c \pi^{2} / 480\right)\left(L_{2}-L_{1}\right)^{-4}$ in the limit $\epsilon \rightarrow 0, L_{3} \rightarrow \infty$. (If we would include the polarization of the electromagnetic field we would get an answer that is twice as big.)

