ANSWERS TO T,HE EXAM QUANTUM THEORY, 13 JANUARY 2020 each item gives 2 points for a fully correct answer, grade = total $\times 9/24 + 1$

1. a)
$$\psi(p) = (2\pi\hbar)^{-1/2} \int_{-\infty} e^{-ipx/\hbar} \psi(x) dx,$$

$$\int_{-\infty}^{\infty} |\psi(p)|^2 dp = (2\pi\hbar)^{-1} \int dp \int dx \int dx' e^{ip(x'-x)/\hbar} \psi(x) \psi^*(x')$$

$$= \int dx \int dx' \delta(x - x') \psi(x) \psi^*(x') = \int dx |\psi(x)|^2 = 1.$$
b)

$$\begin{split} \mathcal{T}\psi(p) &= (2\pi\hbar)^{-1/2} \int_{-\infty} e^{-ipx/\hbar} \mathcal{T}\psi(x) dx = (2\pi\hbar)^{-1/2} \int_{-\infty} e^{-ipx/\hbar} \psi^*(x) dx \\ &= (2\pi\hbar)^{-1/2} \left(\int_{-\infty} e^{ipx/\hbar} \psi(x) dx \right)^* = \psi^*(-p). \end{split}$$

c) Kramers theorem requires that the time-reversal symmetry operator squares to -1, here $T^2 = +1$ so it does not hold.

2. (a) $T_a\psi(x) = \psi(x) + \sum_{n=1}^{\infty} (a^n/n!)d^n\psi(x)/dx^n = \psi(x+a)$ (Taylor series). (b) $H\psi(x) = \alpha\psi(x+a) + \alpha\psi(x-a)$, so hopping to the right and to the left with probability amplitude α . If α is complex we need $H = \alpha T_a + \alpha^* T_a^{\dagger}$ to ensure that H is Hermitian.

(*c*) $H = 2\alpha \cos(ap/\hbar)$, so $E(p) = 2\alpha \cos(ap/\hbar)$; the velocity has expectation value $v = dE/dp = -2(\alpha a/\hbar) \sin(ap/\hbar)$.

3. (*a*) since $aa^{\dagger} - a^{\dagger}a = 1$, we have $[a^{\dagger}a, H] = -\gamma |e\rangle \langle g|a + |g\rangle \langle e|a^{\dagger}$; moreover, since $\langle e|g\rangle = 0$, we have $[|e\rangle \langle e|, H] = \gamma (|e\rangle \langle g|a - |g\rangle \langle e|a^{\dagger}), [|g\rangle \langle g|, H] = \gamma (-|e\rangle \langle g|a + |g\rangle \langle e|a^{\dagger})$; combining this, gives $[(a^{\dagger}a + \frac{1}{2}|e\rangle \langle e| - \frac{1}{2}|g\rangle \langle g|), H] = 0.$

The conserved quantity is the number of photons $(a^{\dagger}a)$ plus the occupation number of the excited state of the atom, because $\frac{1}{2}|e\rangle\langle e|-\frac{1}{2}|g\rangle\langle g|$ increases by 1 when the atom makes the transition from ground state to excited state. (*b*) $|\psi_1\rangle = |N_0\rangle|g\rangle$, $|\psi_2\rangle = |N_0 - 1\rangle|0\rangle|e\rangle$;

 $\langle \psi_1 | H | \psi_1 \rangle = -\varepsilon/2 + (N_0 + 1/2)\hbar\omega, \langle \psi_2 | H | \psi_2 \rangle = +\varepsilon/2 + (N_0 - 1/2)\hbar\omega,$ $\langle \psi_1 | H | \psi_2 \rangle = \gamma \langle N_0 | a^{\dagger} | N_0 - 1 \rangle = \gamma \sqrt{N_0}, \langle \psi_2 | H | \psi_1 \rangle = \gamma \langle N_0 - 1 | a | N_0 \rangle = \gamma \sqrt{N_0}.$ (*c*) At a given N_0 we may restrict *H* to the basis $|\psi_1 \rangle, |\psi_2 \rangle$, and the eigenstates are eigenvectors of *M*. The corresponding eigenvalues are $E_{\pm} = \text{constant} \pm \sqrt{\gamma^2 N_0 + \delta^2/4}$, so $\delta E = \sqrt{4\gamma^2 N_0 + \delta^2}$. For $\gamma \to 0$ we have $\delta E = \delta = \varepsilon - \hbar \omega$, which is the energy difference between the states $|e, N_0 - 1\rangle$ and $|g, N_0\rangle$.

4. *a*) In the first equation we have summed the contributions

 $\frac{1}{2}\hbar c |\mathbf{k}| = \frac{1}{2}\hbar c \sqrt{k_x^2 + k_y^2 + k_z^2}$ to the vacuum energy from the field amplitude $\phi(x, y, z) \propto \sin(n\pi x/L)e^{ik_yy+ik_zz}$. The field is a plane wave parallel to the plates with wave vector components k_y , k_z , and a sine perpendicular to the

plates with wave vector component $k_x = n\pi/L$, n = 1, 2, 3, ..., such that the amplitude vanishes on the metal plates (taken at x = 0 and x = L).

In the second equation we have carried out the integral over k_y , k_z in polar coordinates, $dk_y dk_z = 2\pi r dr = \pi dr^2$, and we have changed variables from $\pi^2 n^2/L^2 + r^2$ to u^2 , with u ranging from $\pi |n|/L$ to ∞ .

b) In the first step we have replaced $u^2 e^{-\epsilon u} = (d^2/d\epsilon^2)e^{-\epsilon u}$ and carried out the integral $\int e^{-\epsilon u} du = -\epsilon^{-1}e^{-\epsilon u}$; in the second step we summed the geometric series $\sum_{n=1}^{\infty} e^{-\epsilon \pi n/L} = e^{-\epsilon \pi n/L}(1 - e^{-\epsilon \pi/L})^{-1} = (e^{\epsilon \pi/L} - 1)^{-1}$.

c) $E_{\text{total}} = E(\overline{L_2} - L_1) + E(L_3 - L_2) = -(\hbar c \pi^2 / 1440)[(L_2 - L_1)^{-3} + (L_3 - L_2)^{-3}]$ plus terms of order ϵ^2 plus terms independent of L_2 . Hence $F = -dE_{\text{total}}/dL_2 = -(\hbar c \pi^2 / 480)(L_2 - L_1)^{-4}$ in the limit $\epsilon \to 0, L_3 \to \infty$. (If we would include the polarization of the electromagnetic field we would get an answer that is twice as big.)