
Exam Quantum Theory, retake, 19 January 2015, 10–13 hours.

1. The density matrix � has the general expression

� �
X
n
pnj	nih	nj:

The coefficients pn are real and positive. Each state j	ni is normalized to
unity, but pairs of states j	ni and j	mi need not be orthogonal.

� a) Derive that h j�̂j i � 0 for any arbitrary state j i.
� b) Show, using the Schrödinger equation with Hamiltonian H for 	n�t�, that

the density matrix evolves in time according to

i�
d
dt
��t� � H��t�� ��t�H:

� c) The density matrix of a pure state satisfies �2 � �. Show that a state is
pure at time t > 0 if and only if it is pure at time t � 0.

2. A Hamiltonian H��� depends on a parameter �, so its eigenvalues En��� and
eigenfunctions jn;�i are also �-dependent.

� a) Prove the Hellmann-Feynman theorem relating the expectation value of
the derivative of the Hamiltonian to the derivative of the energy,

hn;�j@H=@�jn;�i � d
d�
En���:

An electron moves in a wire of constant cross-section parallel to the z-axis,
under the influence of a uniform magnetic field B in the x-direction. The
Hamiltonian is given by

H � p2
x=2m� p2

y=2m� �pz � eBy�2=2m� V�x;y�;

with a potential V�x;y� that depends only on the coordinates perpendicular
to the wire.

� b) Explain why the momentum pz along the wire is a conserved quantity.
How can you reconcile this with the fact that the electron is deflected by the
magnetic field, so it does not move with a constant speed in the z-direction.

� c) If you are given the dependence E�pz� of the energy on pz in an eigenstate
of H, how can you determine the expectation value of the velocity along the
wire?
Hint: the velocity operator in the z-direction is vz � �pz � eBy�=m.
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3. The classical two-dimensional motion of a particle of charge q, mass m in
the x-y plane, under the influence of a perpendicular magnetic field B, is
a circle of radius Rc � mv=jqBj, where v is the magnitude of the velocity
of the particle along the circle. The semiclassical quantization of this cir-
cular motion says that the magnetic flux through the circle is quantized as
�n� 1

2�h=e, with n � 0;1;2; : : :.
� a) Derive the corresponding expression for the quantized energy En of the

particle. Plot the ground state energy E0 as a function of the magnetic field
B (show both positive and negative values of B).

� b) In graphene the particles are massless Dirac fermions. Show in the same
plot how this modifies the dependence of En on B and point out the two
qualitative differences with respect to particles with m � 0.

Consider now the three-dimensional motion of a particle
of charge q, mass m � 0, in a uniform magnetic field
B pointing in the z-direction. The classical motion is a
spiral around the z-axis. (See figure.) The energy spec-
trum En�k� depends on a real variable k and on a discrete
quantum number n � 0;1;2; : : :.

� c) Sketch the first few functions E0�k�, E1�k�, and E2�k� in
one single plot. How large is the spacing En�1�0�� En�0�
between subsequent levels?

4. The Hamiltonian H�t� of an electron in a time-dependent magnetic field
~B�t� in the x-y plane is given in terms of Pauli matrices by

H�t� � � �e
2m

�
Bx�t��x � By�t��y

�
; with �x �

�
0 1
1 0

�
; �y �

�
0 �i
i 0

�
:

The magnetic field rotates with period T at constant magnitude B0, accord-
ing to Bx�t� � B0 cos�2�t=T�, By�t� � B0 sin�2�t=T�.

� a) Show that the two eigenvalues of H�t� are �1
2�!0, with !0 � eB0=m.

We assume that the electron starts out at t � 0 in the state

 �0� � 1p
2

�
1
1

�
�  0

According to the adiabatic approximation, the state after one period T is
given by  �T� � eic0�ic1T �0�, where the coefficients c0 and c1 do not de-
pend on T .

� b) Give the expression for the coefficient c1. (No derivation required.)

� c) Calculate the coefficient c0, starting from the formula for the Berry phase.

Hint 1: note that ��t� �
q

1
2

�
1

e2�it=T

�
is an eigenstate of H�t�

with ��0� � ��T� �  0.

Hint 2: on a separate page you can find a summary of the lecture notes on
the Berry phase, to refresh your memory.
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Lecture notes on the Berry phase

adiabatic evolution with return to starting point (“cyclic”): final state can only
differ from initial state by a phase factor (for a nondegenerate state)

 final � eiB exp

 
� i
�

Z T
0
E�t�dt

!
 initial

dynamical phase factor, depending on the period T of the cycle
Berry phase B independent on T (“geometric” phase)

i�
d
dt
j �t�i � H���t�� �t�; eigenstate: H���t��j��t�i � E�t�j��t�i

B � i
I �
�
���� @@�

������ d�


