EXAM QUANTUM THEORY, 9 JANUARY 2017, 10-13 HOURS.

1. The harmonic oscillator (frequency ω) has Hamiltonian

$$\hat{H}=\frac{1}{2}\hbar\omega(\hat{x}^2+\hat{p}^2),$$

in terms of the (dimensionless) position and momentum operators \hat{x} and \hat{p} , with commutator $[\hat{x}, \hat{p}] = i$. In the Heisenberg representation each operator \hat{O} becomes time dependent according to

$$\hat{O}(t) = e^{i\hat{H}t/\hbar}\hat{O}e^{-i\hat{H}t/\hbar}$$
, with $\hat{O} \equiv \hat{O}(0)$.

• *a*) Consider an eigenstate $|n\rangle$ of \hat{H} with energy E_n and another eigenstate $|n'\rangle$ with energy $E_{n'}$. Show that

$$\langle n'|\hat{x}(t)|n\rangle = \exp\left(\frac{it(E_{n'}-E_n)}{\hbar}\right)\langle n'|\hat{x}|n\rangle.$$
(1)

• *b*) Derive the Heisenberg equations of motion

$$\frac{d}{dt}\hat{x}(t) = \omega\hat{p}(t), \quad \frac{d}{dt}\hat{p}(t) = -\omega\hat{x}(t),$$

and derive the solution $\hat{x}(t) = \hat{x} \cos \omega t + \hat{p} \sin \omega t$.

• *c)* From this solution it follows that

$$\langle n'|\hat{x}(t)|n\rangle = \frac{1}{2}e^{i\omega t}Q_{-} + \frac{1}{2}e^{-i\omega t}Q_{+}, \text{ with } Q_{\pm} = \langle n'|\hat{x} \pm i\hat{p}|n\rangle.$$
(2)

Equate the two representations (1) and (2) of the matrix element to deduce that *if* $E_{n'} > E_n$, then *either* $\langle n' | \hat{x} | n \rangle = 0$ or $E_{n'} = E_n + \hbar \omega$.

2. The dimensionless position and momentum operators can be written in terms of the bosonic creation and annihilation operators \hat{a}^{\dagger} and \hat{a} (with commutator $[\hat{a}, \hat{a}^{\dagger}] = 1$), as follows:

$$\hat{x} = \sqrt{\frac{1}{2}}(\hat{a}^{\dagger} + \hat{a}), \ \hat{p} = \sqrt{\frac{1}{2}}i(\hat{a}^{\dagger} - \hat{a}).$$

The vacuum state $|0\rangle$ is defined by $\hat{a}|0\rangle = 0$. Note that the expectation values of \hat{x} and \hat{p} vanish in the vacuum state.

• *a*) Derive the minimal uncertainty relation in the vacuum state,

$$\langle 0|\hat{x}^2|0\rangle\langle 0|\hat{p}^2|0\rangle = \frac{1}{4}.$$

The *N*-particle Fock state $|N\rangle$, normalized to $\langle N|N\rangle = 1$, is defined by $\hat{a}^{\dagger}\hat{a}|N\rangle = N|N\rangle$, with N = 1, 2, 3, ...

• *b*) Derive, starting from this definition, the recursion relation

$$\hat{a}^{\dagger}|N\rangle = (N+1)^{1/2}|N+1\rangle.$$

c) Explain why the recursion relation implies that the expectation values of *x̂* and *p̂* are zero in a Fock state. Then show that a Fock state is not a state of minimal uncertainty, by deriving that

$$\langle N|\hat{x}^2|N\rangle\langle N|\hat{p}^2|N\rangle = \frac{1}{4}(2N+1)^2.$$

continued on second page

- 3. We consider the ring-shaped conductor shown in the figure. Electrons can enter into the ring, with wave amplitude $\Psi_{\text{in}},$ at beam splitter 1 and they can exit the ring, with amplitude Ψ_{out} , at beam splitter 2. The beam splitters (2)have equal probability 1/2 for transmission and reflection. The electrons go around the ring in a clockwise $\begin{bmatrix} k \\ k \end{bmatrix}$ direction, at wave number *k* and energy *E*. Each arm of the square-shaped ring has length L, so the ring has circumference 4L and area L^2 . A magnetic field B points perpendicular to the ring. We study the transmission Ψ_{in} probability $T = |\Psi_{out}|^2 / |\Psi_{in}|^2$. • *a*) Consider first the case of zero magnetic field. Assume that an electron go-
- ing around the ring once accumulates a phase shift ϕ . Explain how to arrive at this semiclassical formula for the transmission probability:

 $\Psi_{\rm out}$

 $(\bullet)B$

beam splitter

mirror

beam splitter

$$T=\frac{1}{5-4\cos\phi}.$$

- b) For $\phi = 0$ the transmission probability through the two beam splitters equals 1, even though each beam splitter separately only transmits with probability 1/2. How can one understand this? Explain also why for $\phi = \pi$ the transmission probability is much smaller than $1/2 \times 1/2 = 1/4$.
- c) Sketch how the transmission probability depends on the magnetic field. *Try to be specific:* For example, if the dependence is a monotonic decay, indicate the values of the low-field and high-field asymptotes. Or if the dependence is oscillatory, give the amplitude and period of the oscillation.
- 4. A particle of mass *m* moves freely along the *x*-axis, with Hamiltonian $H(x, p) = \frac{1}{2}p^2/m$ and Lagrangian $L(x, \dot{x}) = \frac{1}{2}m\dot{x}^2$.
- *a*) Calculate the classical action $S_{\text{class}} = \int_{t_1}^{t_2} L dt$ for the classical path from point x_1 at time t_1 to point x_2 at time t_2 .
- *b*) Calculate the quantum mechanical propagator¹

 $G(x_2, t_2; x_1, t_1) = \langle x_2 | e^{-(i/\hbar)(t_2 - t_1)\hat{H}} | x_1 \rangle.$

• *c*) Discuss the relation between *G* and S_{class} in the context of Feynman's path integral formula.

¹You may use the integral $\int_{-\infty}^{\infty} e^{ias-ibs^2} ds = \sqrt{\frac{\pi}{ib}} \exp\left(\frac{ia^2}{4b}\right)$.