ExAm Quantum Theory, 12 MARCH 2020, 10-13 hours.

1. The operators of position \hat{x} and of momentum \hat{p} act as follows on a wave function $\psi(x)$ in the position representation:

$$
\hat{x} \psi(x)=x \psi(x), \hat{p} \psi(x)=-i \hbar \frac{d}{d x} \psi(x) .
$$

- a) How do \hat{x} and \hat{p} act on a wave function $\Phi(p)$ in the momentum representation?
-b) Show that the commutator $[\hat{x}, \hat{p}]$ is the same in position and momentum representation.
- c) Are these two operators

$$
\hat{O}_{1}=\hat{x} \hat{p}, \quad \hat{O}_{2}=\hat{x}^{2} \hat{p}-i \hbar \hat{x}
$$

Hermitian or not? Motivate your answer.
2. Consider a Hamiltonian \hat{H} with eigenvalues $E_{0} \leq E_{1} \leq E_{2} \cdots$. The variational principle which we discussed in class says that the ground state energy E_{0} has the upper bound
$U=\langle\phi| \hat{H}|\phi\rangle$, where $|\phi\rangle$ is an arbitrary "trial" wave function, normalized by $\langle\phi \mid \phi\rangle=1$.

- a) Expand the trial wave function $|\phi\rangle=\sum_{n=0}^{\infty} c_{n}\left|\psi_{n}\right\rangle$ in terms of the eigenfunctions $\left|\psi_{n}\right\rangle$ at energy E_{n} of \hat{H} and derive that $U=\sum_{n=0}^{\infty}\left|c_{n}\right|^{2} E_{n}$. Why does this imply that $E_{0} \leq U$?
We will now derive a different principle, which says that \hat{H} has at least one eigenvalue E_{p} in the interval

$$
\begin{equation*}
U-\sqrt{V-U^{2}} \leq E_{p} \leq U+\sqrt{V-U^{2}} \tag{1}
\end{equation*}
$$

where $V=\langle\phi| H^{2}|\phi\rangle=\sum_{n=0}^{\infty}\left|c_{n}\right|^{2} E_{n}^{2}$.

- b) Prove that

$$
V-U^{2}=\sum_{n=0}^{\infty}\left|c_{n}\right|^{2}\left(E_{n}-U\right)^{2}
$$

- c) Denote by E_{p} the eigenvalue of \hat{H} that is closest to U. Derive that

$$
V-U^{2} \geq\left(E_{p}-U\right)^{2}
$$

and show that this implies the two inequalities in equation (1). Why is it wrong to conclude that the ground state energy has the lower bound $U-\sqrt{V-U^{2}}$?
3. The bosonic annihilation operator \hat{a} and creation operator \hat{a}^{\dagger} can be used to describe the state of photons at a given frequency. A laser emits photons in a socalled coherent state, given by

$$
|\beta\rangle=e^{-|\beta|^{2} / 2} e^{\beta \hat{a}^{\dagger}}|0\rangle .
$$

Here β is a complex number and $|0\rangle$ is the vacuum state.

- a) Show that the coherent state is an eigenstate of the annihilation operator: $\hat{a}|\beta\rangle=\beta|\beta\rangle$.
- b) Show that two coherent states $|\alpha\rangle$ and $|\beta\rangle$ are not orthogonal, by deriving that

$$
|\langle\alpha \mid \beta\rangle|^{2}=\exp \left(-|\alpha-\beta|^{2}\right)
$$

- c) Calculate the first two moments of the photon number: $\bar{n}=\langle\beta| \hat{a}^{\dagger} \hat{a}|\beta\rangle$ and $\overline{n^{2}}=\langle\beta|\left(\hat{a}^{\dagger} \hat{a}\right)^{2}|\beta\rangle$, and the variance var $n=\overline{n^{2}}-(\bar{n})^{2}$. Discuss how your result agrees with the expected Poisson statistics of photons in a coherent state.

4. We consider the Hamiltonian $\hat{H}=\hat{p}^{2} / 2 m+V(\hat{x})$ of a particle of mass m moving along the x-axis in a confining potential $V(x)$. The eigenvalues of \hat{H} form the discrete spectrum $E_{0}, E_{1}, E_{2}, \ldots$. We define the density of states $\rho(E)=\sum_{n=0}^{\infty} \delta\left(E-E_{n}\right)$ and its Fourier transform

$$
F(t)=\int_{-\infty}^{\infty} \rho(E) e^{-i E t / \hbar} d E=\sum_{n=0}^{\infty} e^{-i E_{n} t / \hbar}
$$

The dynamics from position x_{0} to x_{1} in a time t is described by the propagator

$$
G\left(x_{1}, x_{0} ; t\right)=\left\langle x_{1}\right| e^{-i \hat{H} t / \hbar}\left|x_{0}\right\rangle
$$

- a) Derive the following relation between $F(t)$ and the integral of the propagator for equal initial and final position:

$$
\int_{-\infty}^{\infty} G(x, x ; t) d x=F(t) .
$$

Feynman showed that the propagator $G\left(x_{1}, x_{0} ; t\right)$ can be written as an integral over all paths $x\left(t^{\prime}\right)$ with $x(0)=x_{0}$ and $x(t)=x_{1}$,

$$
G\left(x_{1}, x_{0} ; t\right)=\sqrt{\frac{m}{2 \pi i \hbar t}} \int_{x(0)=x_{0}}^{x(t)=x_{1}} \mathcal{D}\left[x\left(t^{\prime}\right)\right] e^{i S\left[x\left(t^{\prime}\right)\right] / \hbar}
$$

-b) What is the definition of $S\left[x\left(t^{\prime}\right)\right]$, how does the potential $V(x)$ enter in this definition?

- c) Suppose that $V(x)$ is a square well potential, so $V(x)=0$ for $0<x<W$, while $V(x) \rightarrow \infty$ for $x<0$ and $x>W$. Draw in an $x-t$ diagram a path $x(t)$ that contributes predominantly to the density of states $\rho(E)$ in the limit $\hbar \rightarrow 0$.

