EXAM QUANTUM THEORY, 29 JANUARY 2024, 9-12 HOURS.

1. In this question we address the edge state responsible for the quantum spin Hall effect. Consider the Dirac Hamiltonian

$$
\hat{H}=v \hat{p} \sigma_{x}
$$

which describes the free motion of a massless fermion along the x-axis. The momentum operator $\hat{p}=-i \hbar d / d x$, the Pauli matrix $\sigma_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, and ν is a parameter with the dimension of velocity.

- a) Explain why this Hamiltonian satisfies time-reversal symmetry.
- b) Calculate the energy-momentum relation $E(p)$ (the dispersion relation). Plot it and indicate on which part of the graph the particle moves towards positive x and on which part it moves towards negative x.
- c) Suppose we add to the Hamiltonian a potential $V(x)$ times the identity matrix. Explain why this potential cannot cause backscattering, meaning that it cannot cause the particle to reverse its direction of motion.
Hint: Recall Kramers theorem.

2. Assume that the Hamiltonian $H=H_{0}+V$ is the sum of two time-independent Hermitian operators H_{0} (called the "free" part) and V (called the "interaction" part). In the socalled "interaction picture" the time-dependent state $\Psi(t)$ and operator A are transformed as

$$
\Psi_{\mathrm{I}}(t)=e^{i H_{0} t / \hbar} \Psi(t), \quad A_{\mathrm{I}}(t)=e^{i H_{0} t / \hbar} A e^{-i H_{0} t / \hbar} .
$$

- a) Explain why the transformation to the interaction picture has no effect on the expectation value $\bar{A}(t)=\langle\Psi(t)| A|\Psi(t)\rangle$ of an operator A in the state $\Psi(t)$, so that we may equally well write $\bar{A}(t)=\left\langle\Psi_{\mathrm{I}}(t)\right| A_{\mathrm{I}}(t)\left|\Psi_{\mathrm{I}}(t)\right\rangle$.
-b) Derive the Heisenberg equation of motion in the interaction picture:

$$
i \hbar \frac{d}{d t} A_{\mathrm{I}}=\left[A_{\mathrm{I}}, H_{0}\right]
$$

- c) Show, starting from the Schrödinger equation for $\Psi(t)$, that the evolution equation for $\Psi_{\mathrm{I}}(t)$ can be written in the form

$$
i \hbar \frac{d}{d t} \Psi_{\mathrm{I}}(t)=V_{\mathrm{I}}(t) \Psi_{\mathrm{I}}(t)
$$

without any explicit dependence on H_{0}.
3. The dimensionless position and momentum operators can be written in terms of the bosonic creation and annihilation operators \hat{a}^{\dagger} and \hat{a} (with commutator $\left[\hat{a}, \hat{a}^{\dagger}\right]=1$), as follows:

$$
\hat{x}=\sqrt{\frac{1}{2}}\left(\hat{a}^{\dagger}+\hat{a}\right), \quad \hat{p}=\sqrt{\frac{1}{2}} i\left(\hat{a}^{\dagger}-\hat{a}\right) .
$$

The vacuum state $|0\rangle$ is defined by $\hat{a}|0\rangle=0$. Note that the expectation values of \hat{x} and \hat{p} vanish in the vacuum state.

- a) Derive the minimal uncertainty relation in the vacuum state,

$$
\langle 0| \hat{x}^{2}|0\rangle\langle 0| \hat{p}^{2}|0\rangle=\frac{1}{4} .
$$

The N-particle Fock state $|N\rangle$, normalized to $\langle N \mid N\rangle=1$, is defined by $\hat{a}^{\dagger} \hat{a}|N\rangle=N|N\rangle$, with $N=1,2,3, \ldots$.
-b) Derive, starting from this definition, the recursion relation

$$
\hat{a}^{\dagger}|N\rangle=(N+1)^{1 / 2}|N+1\rangle .
$$

- c) Explain why the recursion relation implies that the expectation values of \hat{x} and \hat{p} are zero in a Fock state. Then show that a Fock state is not a state of minimal uncertainty, by deriving that

$$
\langle N| \hat{x}^{2}|N\rangle\langle N| \hat{p}^{2}|N\rangle=\frac{1}{4}(2 N+1)^{2} .
$$

4. The Bohr-Sommerfeld quantization condition reads

$$
\frac{1}{\hbar} \oint p \cdot d q+\gamma=2 \pi n, \quad n=0,1,2, \ldots
$$

We would like to apply this to the periodic cyclotron motion of an electron (charge e, mass m) in a plane perpendicular to a magnetic field B.
Alvaro thinks he knows the answer: The cyclotron orbit is a circle of radius $l_{\text {cycl }}=m v / e B$, the kinetic energy is $E=\frac{1}{2} m v^{2}$, so
$\oint p \cdot d q=m v \times 2 \pi l_{\mathrm{cycl}}=4 \pi m E / e B$, which gives the quantization
$E_{n}=\frac{1}{2} \hbar \omega_{c}(n-\gamma / 2 \pi)$, with $\gamma=-\pi$ from two turning points.
This is the wrong answer.

- a) Which error has Alvaro made?
-b) Give the correct calculation.
- c) How would the quantization differ if the electrons are massless, as they are in graphene?

