
Exam Quantum Theory, 29 January 2024, 9–12 hours.

1. In this question we address the edge state responsible for the quantum spin
Hall effect. Consider the Dirac Hamiltonian

Ĥ = vp̂σx,

which describes the free motion of a massless fermion along the x-axis. The
momentum operator p̂ = −iℏd/dx, the Pauli matrix σx =

�
0 1
1 0

�
, and v is a

parameter with the dimension of velocity.

• a) Explain why this Hamiltonian satisfies time-reversal symmetry.

• b) Calculate the energy-momentum relation E(p) (the dispersion relation).
Plot it and indicate on which part of the graph the particle moves towards
positive x and on which part it moves towards negative x.

• c) Suppose we add to the Hamiltonian a potential V(x) times the identity
matrix. Explain why this potential cannot cause backscattering, meaning
that it cannot cause the particle to reverse its direction of motion.
Hint: Recall Kramers theorem.

2. Assume that the Hamiltonian H = H0+V is the sum of two time-independent
Hermitian operators H0 (called the “free” part) and V (called the “interac-
tion” part). In the socalled “interaction picture” the time-dependent state
Ψ(t) and operator A are transformed as

ΨI(t) = eiH0t/ℏΨ(t), AI(t) = eiH0t/ℏAe−iH0t/ℏ.

• a) Explain why the transformation to the interaction picture has no effect
on the expectation value Ā(t) = ⟨Ψ(t)|A|Ψ(t)⟩ of an operator A in the state
Ψ(t), so that we may equally well write Ā(t) = ⟨ΨI(t)|AI(t)|ΨI(t)⟩.

• b) Derive the Heisenberg equation of motion in the interaction picture:

iℏ
d
dt

AI = [AI, H0].

• c) Show, starting from the Schrödinger equation for Ψ(t), that the evolution
equation for ΨI(t) can be written in the form

iℏ
d
dt

ΨI(t) = VI(t)ΨI(t),

without any explicit dependence on H0.
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3. The dimensionless position and momentum operators can be written in
terms of the bosonic creation and annihilation operators â† and â (with
commutator [â, â†] = 1), as follows:

x̂ =
q

1
2(â† + â), p̂ =

q
1
2i(â† − â).

The vacuum state |0⟩ is defined by â|0⟩ = 0. Note that the expectation
values of x̂ and p̂ vanish in the vacuum state.

• a) Derive the minimal uncertainty relation in the vacuum state,

⟨0|x̂2|0⟩⟨0|p̂2|0⟩ = 1
4 .

The N-particle Fock state |N⟩, normalized to ⟨N|N⟩ = 1, is defined by
â†â|N⟩ = N|N⟩, with N = 1, 2, 3, . . ..

• b) Derive, starting from this definition, the recursion relation

â†|N⟩ = (N + 1)1/2|N + 1⟩.

• c) Explain why the recursion relation implies that the expectation values of
x̂ and p̂ are zero in a Fock state. Then show that a Fock state is not a state
of minimal uncertainty, by deriving that

⟨N|x̂2|N⟩⟨N|p̂2|N⟩ = 1
4(2N + 1)2.

4. The Bohr-Sommerfeld quantization condition reads

1
ℏ

I
p · dq + γ = 2πn, n = 0, 1, 2, . . . .

We would like to apply this to the periodic cyclotron motion of an electron
(charge e, mass m) in a plane perpendicular to a magnetic field B.
Alvaro thinks he knows the answer: The cyclotron orbit is a circle of radius
lcycl = mv/eB, the kinetic energy is E = 1

2mv2, soH
p · dq = mv × 2πlcycl = 4πmE/eB, which gives the quantization

En = 1
2ℏωc(n − γ/2π), with γ = −π from two turning points.

This is the wrong answer.

• a) Which error has Alvaro made?

• b) Give the correct calculation.

• c) How would the quantization differ if the electrons are massless, as they
are in graphene?


