2 Symmetries

2.1 Parity

The parity operator \mathcal{P} is a unitary operator that changes the sign of the position and momentum operators:

$$\mathcal{P}\hat{q}\mathcal{P}^{-1} = -\hat{q} \quad \text{and} \quad \mathcal{P}\hat{p}\mathcal{P}^{-1} = -\hat{p}.$$

\textit{a)} Starting from the commutator $[\hat{q}, \hat{p}] = i\hbar$, show that \mathcal{P} cannot be anti-unitary.

\textit{b)} Explain why we may assume, without loss of generality, that $\mathcal{P}^2 = 1$. What does this imply for the eigenvalues of \mathcal{P}? (The two possibilities are referred to as eigenstates of \textit{odd} or \textit{even} parity.)

\textit{c)} The electrical dipole moment of a set of N particles, with charge e_n at positions q_n, is given by $\hat{d} = \sum_{n=1}^{N} e_n \hat{q}_n$. If the system has inversion symmetry, the Hamiltonian \hat{H} will commute with \mathcal{P}. Now show that the expectation value of the dipole moment must vanish in a nondegenerate eigenstate $|\Psi\rangle$ of \hat{H}.

\textit{Hint:} Derive first that $\mathcal{P}|\Psi\rangle = \pm|\Psi\rangle$.

2.2 Time-reversal symmetry

The time-reversal operator \mathcal{T} changes the sign of the momentum operator but leaves the position operator unaffected:

$$\mathcal{T}\hat{q}\mathcal{T}^{-1} = \hat{q} \quad \text{and} \quad \mathcal{T}\hat{p}\mathcal{T}^{-1} = -\hat{p}.$$

\textit{a)} Starting from the commutator $[\hat{q}, \hat{p}] = i\hbar$, show that \mathcal{P} cannot be unitary.

\textit{b)} We can identify \mathcal{T} with the operator K of complex conjugation in position representation, $K\psi(x) = \psi^*(x)$. More generally, we can include a unitary operator \hat{U} that commutes with \hat{q} and \hat{p}, to arrive at the anti-unitary time-reversal operator

$$\mathcal{T} = \hat{U}K.$$

Explain why \mathcal{T}^2 must equal either $+1$ or -1.

\textit{c)} Time reversal for a spin-1/2 particle (electron) should also invert the spin: $\mathcal{T}\sigma_n\mathcal{T}^{-1} = -\sigma_n$ for each Pauli matrix $\sigma_1, \sigma_2, \sigma_3$. Show that this works if we take $U = \sigma_2$. What is \mathcal{T}^2 in this case?
d) Show that T commutes with the Hamiltonian

$$\hat{H} = \frac{\hat{p}^2}{2m} - \sigma_0 + V(\hat{q})\sigma_0 + \hat{p}(a_1\sigma_1 + a_2\sigma_2 + a_3\sigma_3).$$

(The vector $\vec{a} = (a_1, a_2, a_3)$ describes spin-orbit coupling.)

e) A consequence of time-reversal symmetry is that the energy eigenvalues are all twofold degenerate (Kramers degeneracy). Prove this in two steps: First show that if $|\psi\rangle$ is an eigenstate of \hat{H} at eigenvalue E, then also $T|\psi\rangle$ is an eigenstate with the same eigenvalue. Then show that these two eigenstates are linearly independent, meaning that $|\psi\rangle = \lambda T|\psi\rangle$ leads to a contradiction.

2.3 Galilean invariance

In classical mechanics, the transformation to a new coordinate system that moves with velocity v is called a Galilean transformation. Position and momentum are transformed as $x \rightarrow x - vt, p \rightarrow p - mv$.

a) In quantum mechanics, operators are transformed by a unitary transformation $\hat{O} \rightarrow \hat{U}\hat{O}\hat{U}^{-1}$. Show that the unitary operator \hat{U} that performs the Galilean transformation on the position and momentum operators \hat{x} and \hat{p} is

$$\hat{U} = e^{i\hat{G}}, \quad \hat{G} = \frac{1}{\hbar}v(m\hat{x} - \hat{p}t).$$

b) Evaluate the Heisenberg equation of motion of \hat{G} for the Hamiltonian $\hat{H} = \hat{p}^2/2m$ of a free particle, to show that $d\hat{G}/dt = 0$.

2