RMT of topological states of matter

topological insulators/superconductors
topologically nontrivial RMT ensembles
conductance of Andreev quantum dot
fermion parity switches

the three-fold way (Wigner-Dyson)

time-reversal symmetry (anti-unitary operator that commutes with the Hamiltonian) HT = TH $\mathcal{T}^2 = \pm 1$

unitaryorthogonal $\mathcal{T}^2 = +1$ symplectic $\mathcal{T}^2 = -1$

from three-fold way to ten-fold way (1)

inversion symmetry HT = THHC = -CHtime & charge

unitary orthogonal symplectic

unitary
orthogonal
symplectic
$$\mathcal{T}^2 = +1$$
 $\mathcal{T}^2 = -1$ $\mathcal{T}^2 = -1$ $\mathcal{T}^2 = -1$ $\mathcal{C}^2 = +1$ $\mathcal{T}^2 = -1$ $\mathcal{C}^2 = +1$ $\mathcal{T}^2 = -1$ $\mathcal{C}^2 = +1$ $\mathcal{T}^2 = -1$ $\mathcal{C}^2 = -1$ $\mathcal{T}^2 = -1$ $\mathcal{C}^2 = -1$ $\mathcal{T}^2 = +1$ $\mathcal{C}^2 = -1$

HCT = -CTH+ 3 chiral ensembles = 10 in total

from three-fold way to ten-fold way (2)

inversion symmetry time & charge

unitary $S \in U(N)$ complex orthogonal $S \in U(N)$ $S = S^t$ unitary symplectic $S \in U(2N)$ $S = -S^t$ SUORCOROLOCKI $S \in O(2N)$ real orthogonal $S \in O(4N)$ $S = -S^t$ $S \in Sp(4N)$ *quaternion symplectic* $S \in Sp(4N)$ $S = S^t$

... and beyond ...

inversion symmetry time & charge

topological unitary $S \in U(N)$ quantum orthogonal $S \in U(N)$ $S = S^t$ number Q symplectic $S \in U(2N)$ $S = -S^t$ Det $S = \pm 1$ $S \in O(2N)$ $PfS = \pm 1$ $S \in O(4N)$ $S = -S^t$ $S \in Sp(4N)$ $S \in Sp(4N)$ $S = S^t$

... and beyond ...

inversion symmetry time & charge

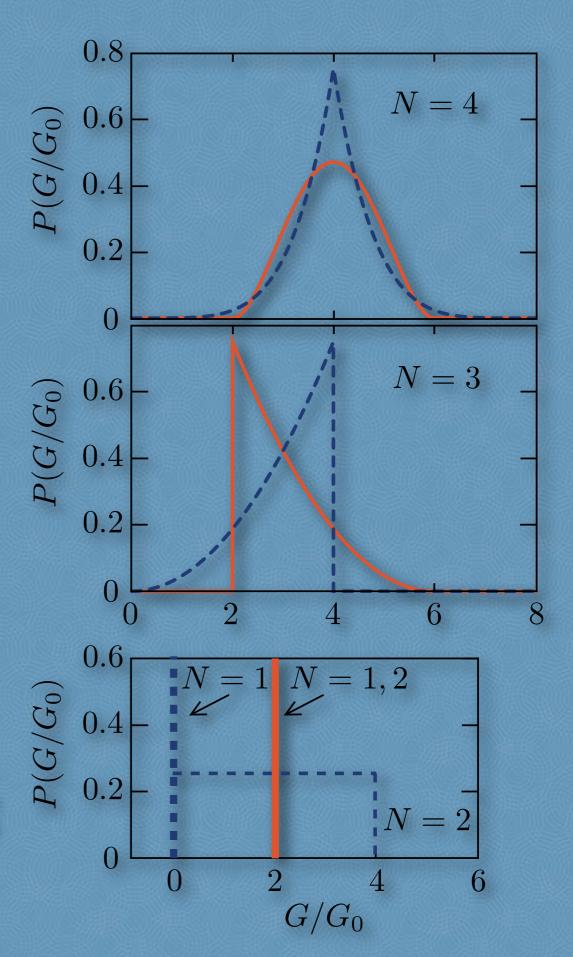
		NORTONIANU UN NEU-ISISI - AMERICANU UN NE	
CUE		$S \in U(N)$	topological
COE	$S = S^t$	$S \in U(N)$	quantum
CSE	$S = -S^t$	$S \in U(2N)$	number Q
CRE		$S \in O(2N)$	Det $S = \pm 1$
TCRE	$S = -S^t$	$S \in O(4N)$	$PfS = \pm 1$
CQE		$S \in Sp(4N)$	
TCQE	$S = S^t$	$S \in Sp(4N)$	

enter topological superconductors • CRE (aka class D): chiral p-wave superconductor (strontium ruthenate?) • TCRE (aka class DIII): topological insulator (HgTe quantum well) with s-wave proximity effect see reviews in Rev.Mod.Phys.by Hasan & Kane and by Qi & Zhang needed: RMT which knows about topological quantum numbers

conductance distribution in the CRE

Q=-1 Q=+1

what systematics do you notice?



cumulants of conductance $G/G_0 = \frac{1}{2} Tr (1 + JSJS^{\dagger})$ $G_0 = e^2/h$ $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

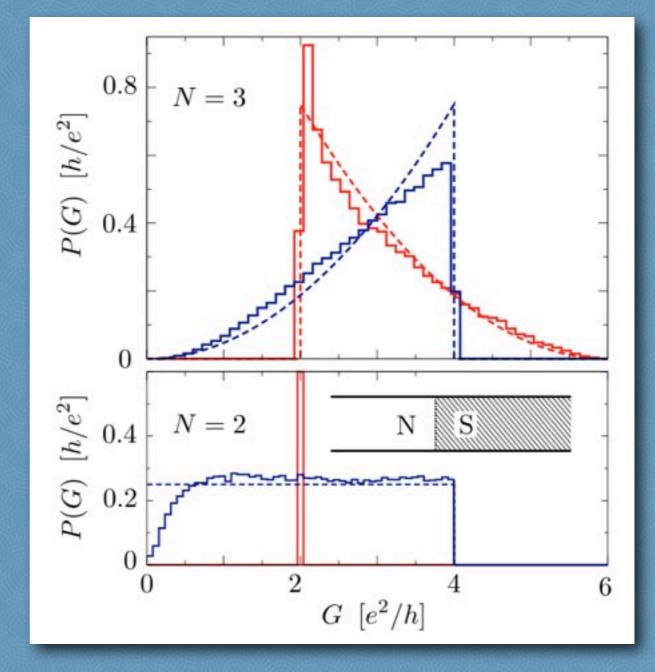
 $\langle (G/G_0)^p \rangle_Q = \int_{O(2N)} d\mu(S) \left[\frac{1}{2} \operatorname{Tr}(1 + JSJS^{\dagger}) \right]^p \frac{1}{2} (1 + Q \operatorname{Det} S)$

lemma: $\int_{O(2N)} d\mu(S) (\text{Tr} JSJS^{\dagger})^{p} \text{Det} S = 0 \text{ if } p < N$

hence the *p*-th moment or cumulant of the conductance is independent of the topological quantum number if *p*<*N*

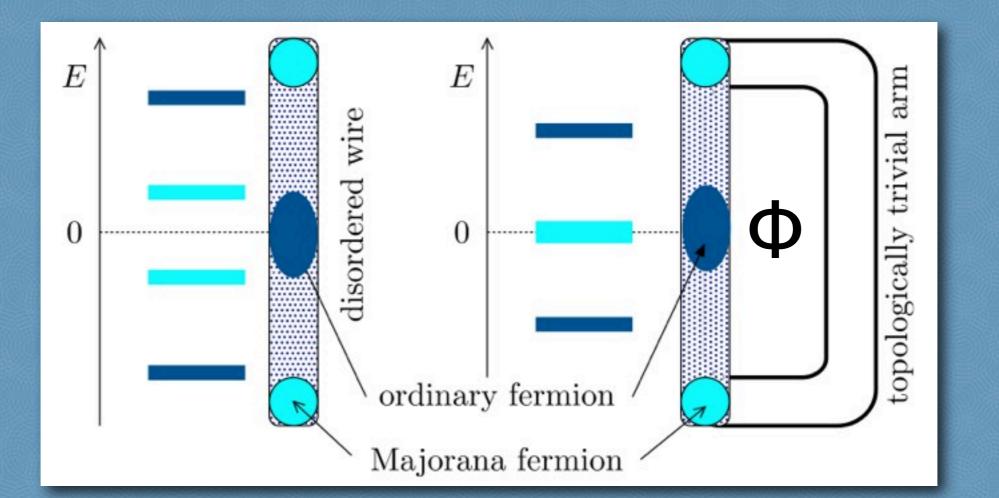
no Q-dependence of weak localization or UCF

comparison of RMT with a microscopic model calculation



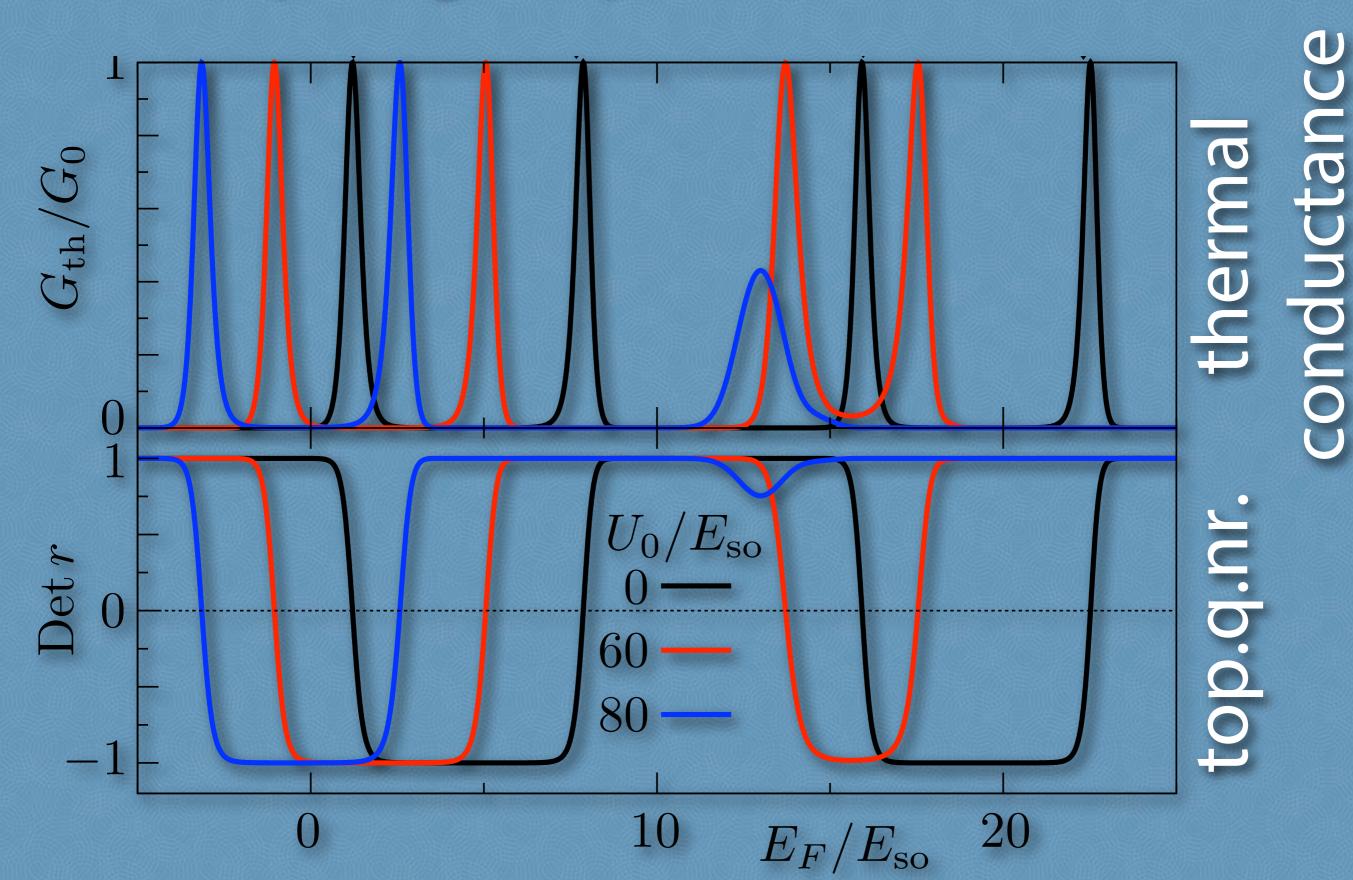
$$\begin{split} H_{R} &= \frac{\mathbf{p}^{2}}{2m_{eff}} + U(\mathbf{r}) + \frac{\alpha_{so}}{\hbar}(\sigma_{x}p_{y} - \sigma_{y}p_{x}) + \frac{1}{2}g_{eff}\mu_{B}B\sigma_{x} \\ \textbf{Rashba-Zeeman Hamiltonian +} \\ s-wave proximity effect \end{split}$$

what is counted by Q?

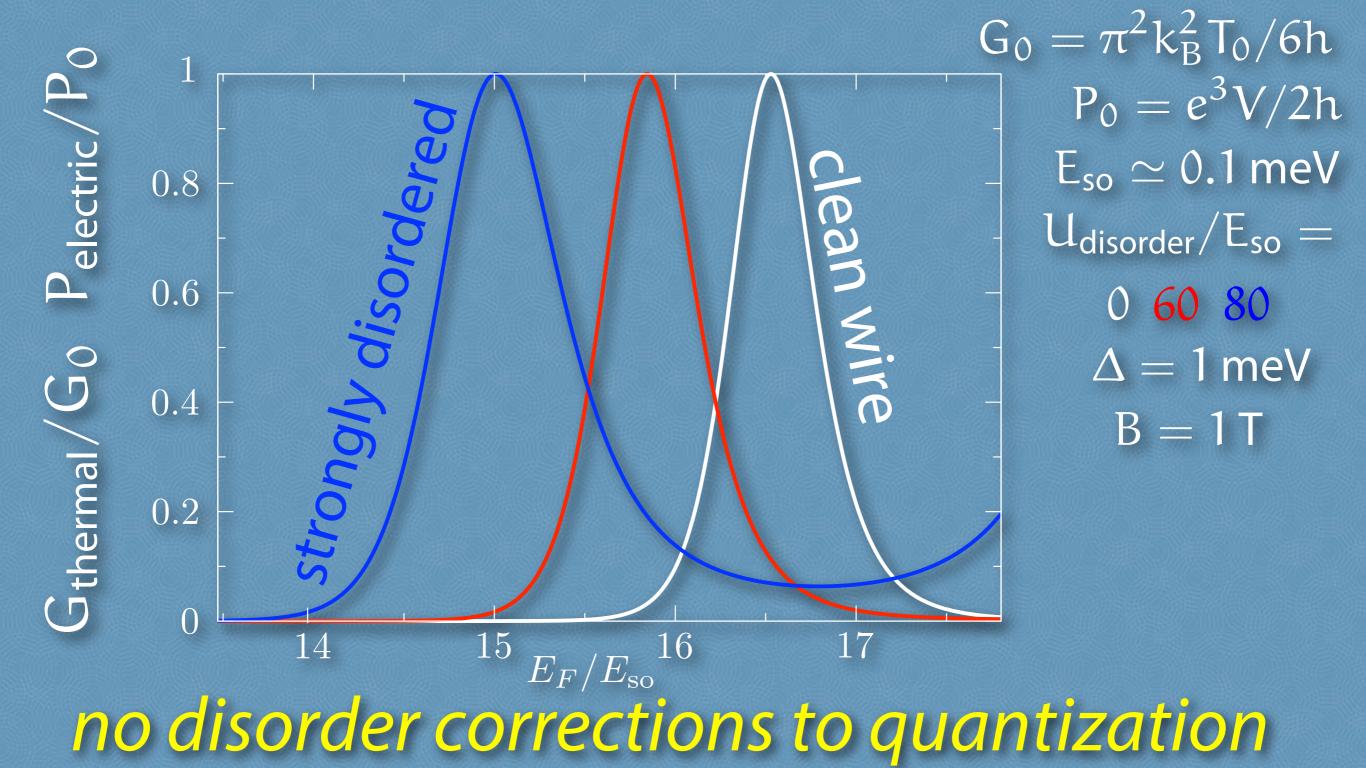


 $\gamma(E) = \gamma^{\dagger}(-E) \Rightarrow \gamma = \gamma^{\dagger}$ for E = 0 *m* pairs of Majorana fermions $Q = (-1)^{m}$

topological phase transitions

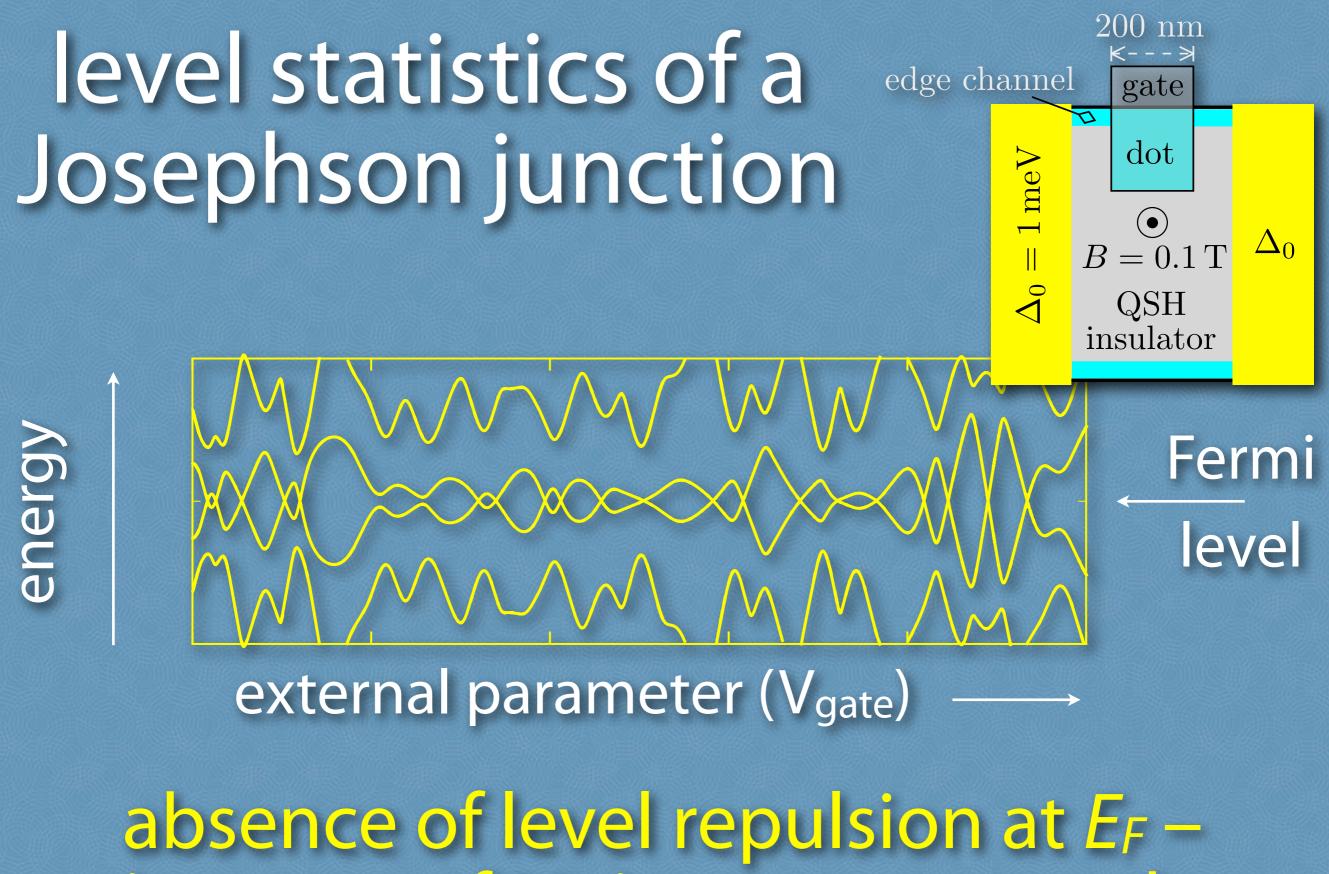


quantized conductance & shot noise at the topological phase transition

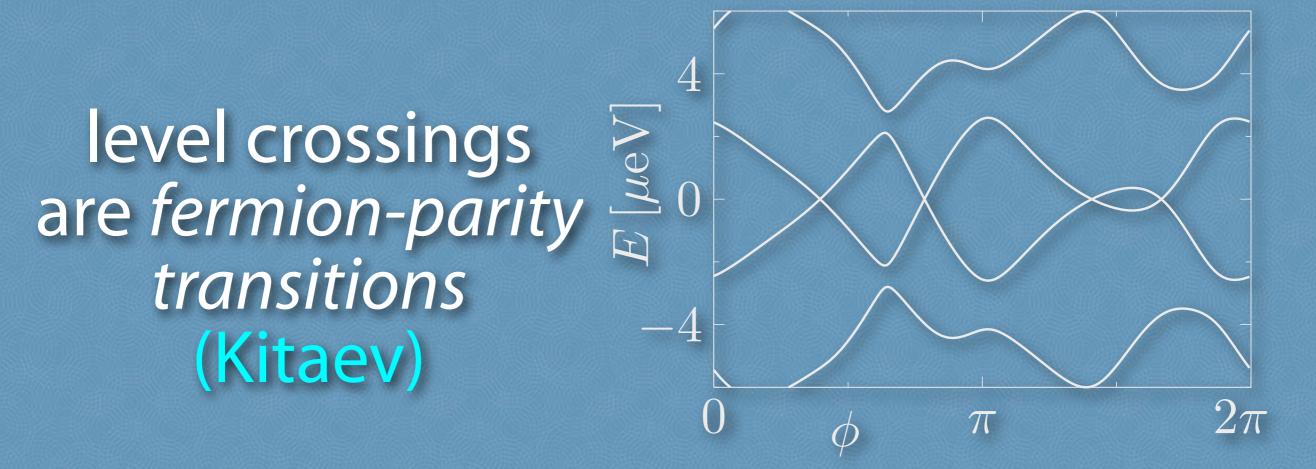


Wigner-Poisson statistics of fermion parity transitions

Majorana meets a mermaid



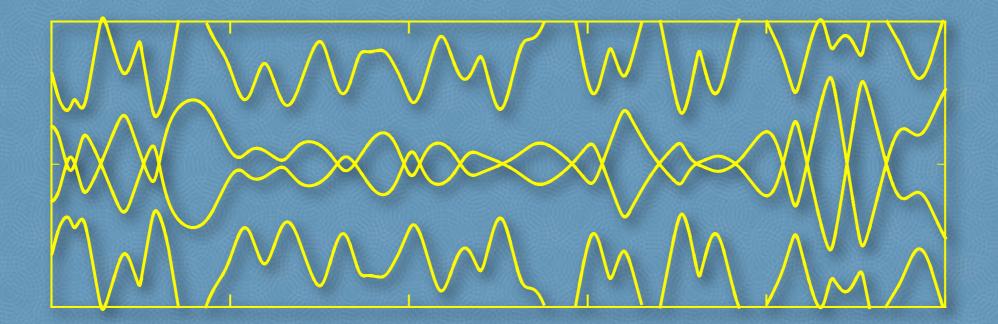
signature of Majorana zero-modes

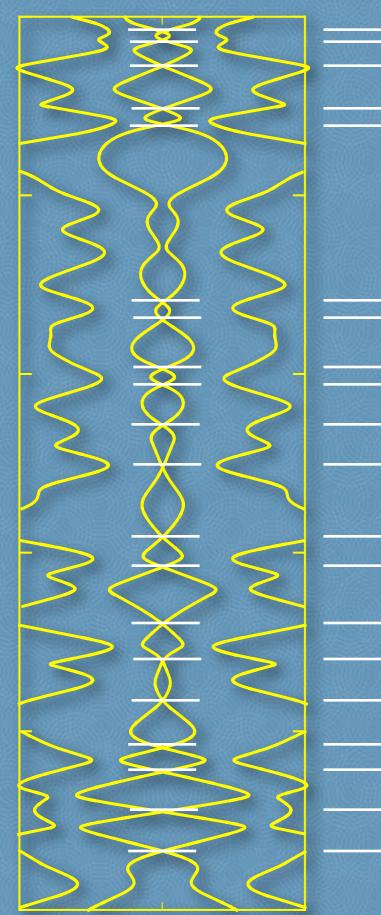


 ground state fermion parity is a Z₂ topological quantum number

• switches even | odd number of times for a topologically trivial | nontrivial superconductor $(\rightarrow 4\pi$ -periodic Josephson effect)

 level crossing is a topological transition (zero-dimensional class D)





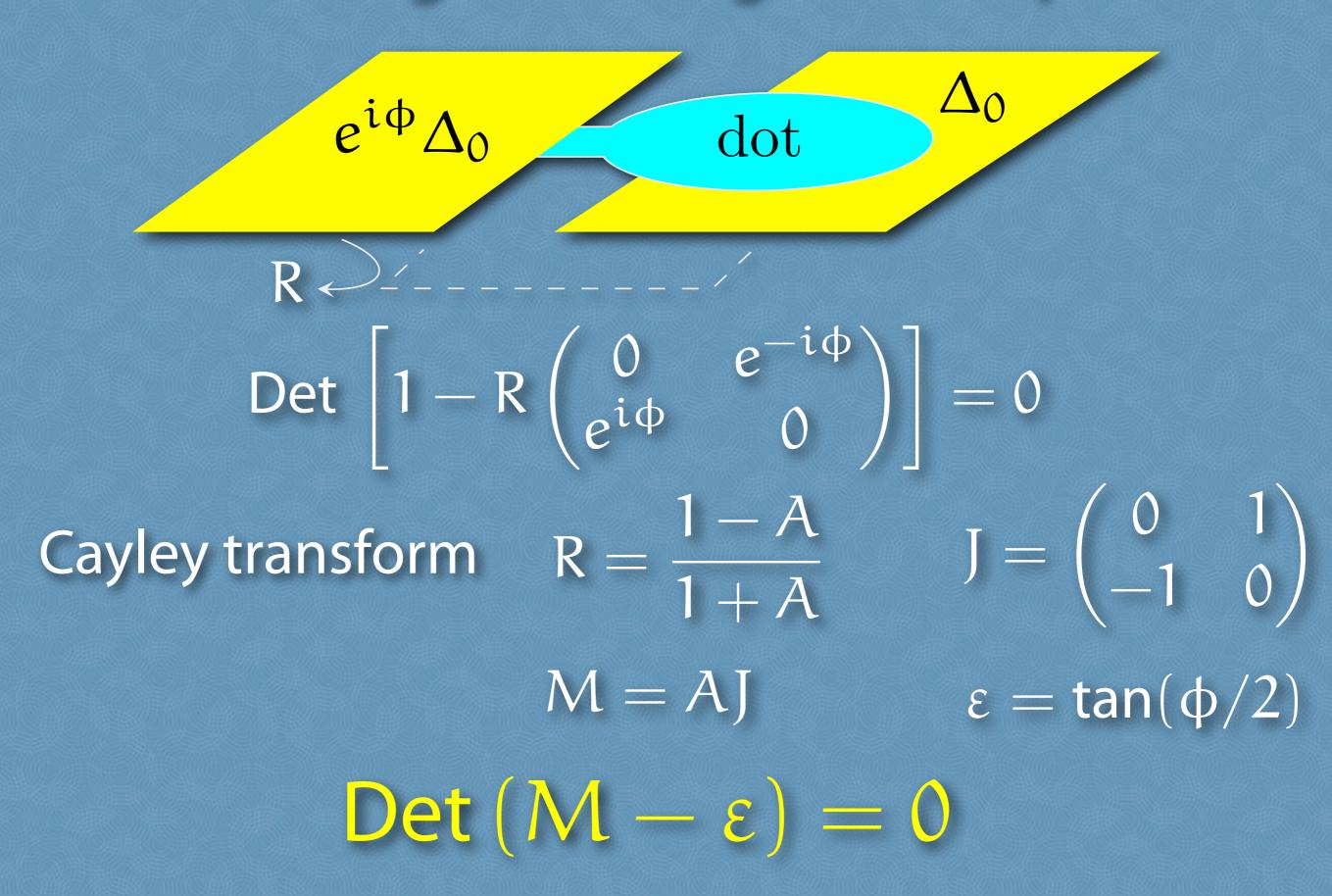
n+"Er	Poisson

repulsion of level *crossings*

problem: find a random matrix that has the level crossings as eigenvalues

GOE (Wigner)

level crossings as an eigenvalue problem



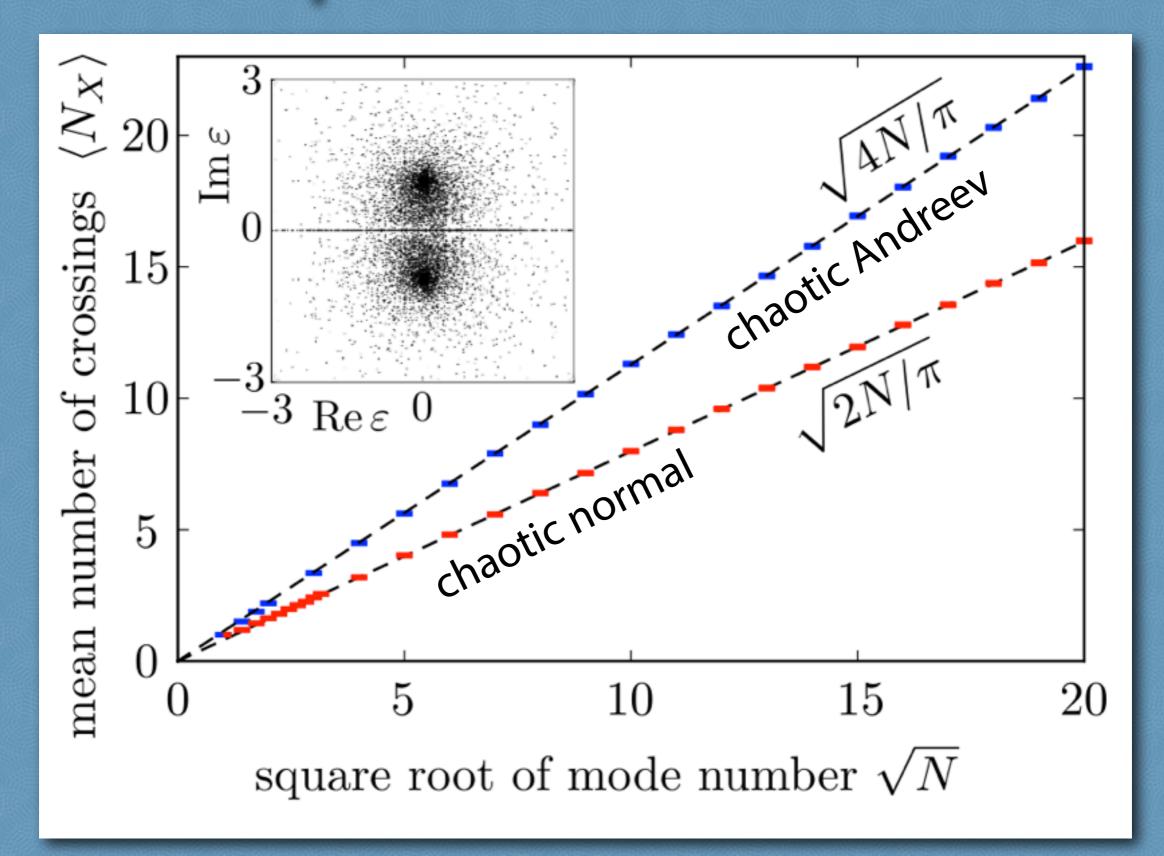
skew-Hamiltonian ensemble $M^* = M, M^T = -JMJ$ \rightarrow all eigenvalues twofold degenerate and symmetric around the real axis level crossing = real eigenvalue

HOW MANY EIGENVALUES OF A RANDOM MATRIX ARE REAL?

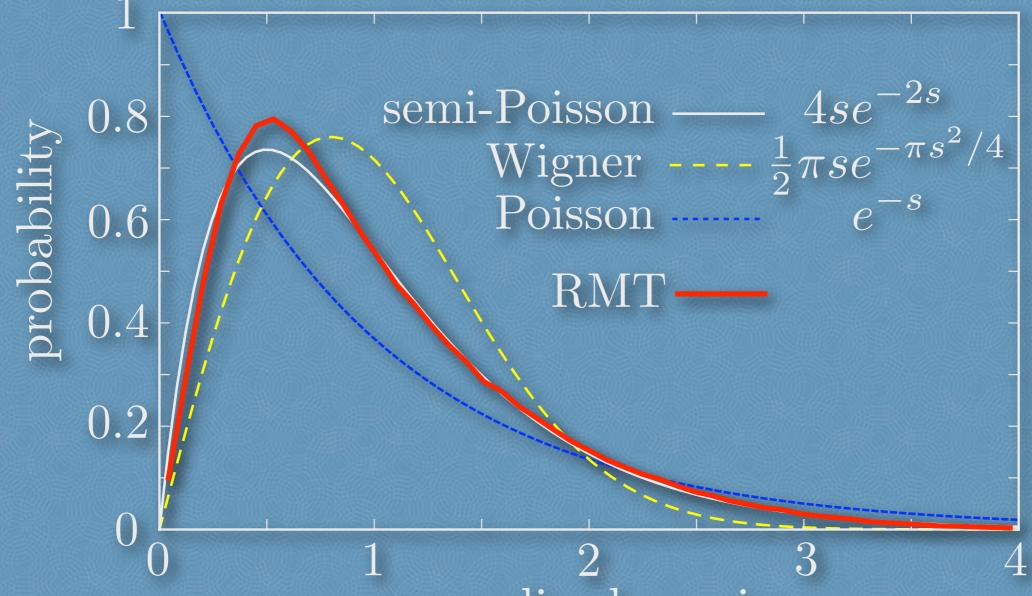
ALAN EDELMAN, ERIC KOSTLAN, AND MICHAEL SHUB

a classic problem in RMT Ginibre, Forrester, Kanzieper, Sommers, Akemann....

square-root law



hybrid Wigner-Poisson statistics



normalized spacing

same as level statistics at the metal-insulator transition (Shklovskii's *mermaid*)

$L = 2 \,\mu \mathrm{m}$ disordered InSb channel $B \odot$ $e^{i\phi}\Delta_0$ Δ_0 InSb 0.8b)a) $E \left[\mu e V \right]$ 0.60 $\delta\phi$ probability .0 7 2π π φ N = 20InSb 0.2 $N_X = 4$ RMT $\langle \delta \phi \rangle = \pi/2$ 0 2 3 1 0 $\delta \phi / \langle \delta \phi \rangle$

no adjustable parameters!

Conclusion

- topologically nontrivial RMT ensemble (CRE)
- Q-dependence not accessible by large-N perturbation theory
- Q counts Majorana fermions
- cumulant theorem for conductance
- topological phase transition with quantized conductance

experimental realization in 2012?!