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1 Introduction

1.1 Preface
Spin-orbit coupling is a relativistic effect: A charged particle moving in an
electric field experiences a magnetic field in a frame of reference in which it
is at rest. This magnetic field acts on the spin magnetic moment, resulting
in a coupling of the spin to the motion (the “orbit”). For massless particles
the coupling reaches the extreme limit that the spin direction is tied to
the direction of motion. One speaks of spin-momentum locking.

Since the discovery of graphene we have become familiar with the notion
that conduction electrons can have a vanishing effective mass and thereby
exhibit relativistic effects at velocities much smaller than the speed of
light. In graphene spin-orbit coupling is very weak but the electrons have
a sublattice degree of freedom (a “pseudo-spin”) that plays a similar role:
it is oriented parallel to the momentum. Relativistic effects such as Klein
tunneling emerge in graphene because of this pseudo-spin–momentum
locking.

The topic of our thesis is to study the effects of spin-momentum locking
in materials where it is the real spin, rather than a pseudo-spin, that
is locked to the motion. We focus on two classes of materials: firstly
on electrons confined to an oxide interface and secondly on the three-
dimensional counterpart of graphene, known as a Weyl semimetal.

The remainder of this chapter is as follows. In Sec. 1.2 we introduce the
topics of spin-orbit coupling and spin-momentum locking in condensed-
matter systems. In Sec. 1.3 we discuss the electronic properties of interfaces
in oxide heterostructures, with a focus on the high-mobility conducting
system at the LaAlO3 / SrTiO3 interface and the investigation of its spin-
orbit–driven physics through magnetotransport. In Sec. 1.4 the discussion
shifts to Weyl semimetals, that offer the unique combination of gapless bulk
spectrum, with relativistic energy–momentum relation, and topological
surface states. For more accurate and self-contained treatments, references
are provided throughout the text. We conclude with summaries of the
following chapters.
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1 Introduction

1.2 Spin-orbit coupling and spin-momentum
locking

The non-relativistic limit of the Dirac theory applied to atomic electrons
leads to the Pauli Hamiltonian [1]

HSO = − ~
4m2

0c
2σ · p×∇V0 , (1.1)

that encodes the interaction between the spin magnetic moment — repre-
sented by the vector of Pauli operators σ = (σx, σy, σz) — and the kinetic
momentum p of the electron. (V0 is the electric potential of the atomic
core, ~ the reduced Planck’s constant, m0 the bare electron mass and c
the speed of light.)

In a solid crystal, electrons are subject to the periodic potential V (r) of
the ions’ lattice. The eigenfunctions of the one-particle Hamiltonian

H(r) = ∇2

2m
+ V (r) (1.2)

are Bloch waves Ψnk(r) = unk(r)eik·r, where unk(r) is a periodic function
with the periodicity of the lattice, and the eigenvalues En(k) form bands
as a function of the wave vector k, labeled by the discrete index n.

The theory of electronic energy bands powerful tool that allows to
classify “ordinary” materials in two big families: insulators and metals.
The first ones have completely-filled (valence) bands that are separated by
an energy gap from empty (conduction) bands, the second ones instead
have partially-filled conduction bands. An insulator with a “small” gap
between valence and conduction band can be made conducting via extrinsic
doping, therefore it is called semiconductor. Semiconductors are the basic
constituents of the electronic devices that we use in our daily life.

Spin-orbit coupling has remarkable effects on the band structure of
semiconductors, such as splitting the spin-degeneracy of bands with finite
angular momentum and enhancing — even by order of magnitudes — the
Zeeman effect of an external magnetic field if the material lacks spatial-
inversion symmetry [2].

Recently it has been realized that spin-orbit coupling can also lead to
topological quantum states. For instance, due to large spin-orbit splitting in
certain heavy-atom materials, valence and conduction bands are “inverted”.
Although a finite gap remains for the bulk spectrum, conducting (gapless)
states appear at energies within the bulk gap, that are localized at the
boundaries of the system and robust against disorder [3–5]. A bulk insulator
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1.2 Spin-orbit coupling and spin-momentum locking

Figure 1.1: (a) Schematics of the helical spin structure of a Dirac cone at the surface of a
three-dimensional topological insulator and (b) the chiral spin structure of two-dimensional
parabolic bands with Rashba spin-orbit coupling. (c) ARPES measurements of the disper-
sion at the surface of the topological insulator Bi2 − xCaxSe3 and (d) the surface of the
normal metal Au(111) (plotted as a function of the momentum component kx at a fixed ky).
Reprinted by permission from Springer Customer Service Centre GmbH: Springer Nature,
Nature, A. Soumyanarayanan, N. Reyren, A. Fert and C. Panagopoulos, Emergent phenom-
ena induced by spin–orbit coupling at surfaces and interfaces, Nature 539, 509-517 (2016),
Copyright 2016. Adapted by permission from Ref. 6, Nature Publishing Group. (e) Sketch
of the conducting spin-polarized edge channels in a Quantum Spin Hall Insulator. From M.
König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi and S.
C. Zhang, Quantum Spin Hall Insulator State in HgTe Quantum Wells, Science 318, 766
(2007). Reprinted with permission from AAAS.

with conducting surfaces is topologically distinct from an ordinary insulator,
thereby it is called topological insulator.

The combination of spin-orbit coupling and low-dimensionality, as e.g. at
the surface of a topological insulator, gives rise to emergent physical effects
in thin films and heterostructures [6]. The Rashba effect [7] at surfaces and
interfaces describes the coupling between the inversion-symmetry–breaking
electric field E along the out-of-plane z-direction and the spin magnetic
moment of itinerant electrons. The Rashba Hamiltonian for s electrons
(without orbital angular momentum) has the form

HR = αRẑ · (p× σ), (1.3)

where αR is the coupling constant of the interaction, proportional to the
electric field and to the intrinsic spin-orbit coupling.

In semiconductor-heterostructures, the magnitude of the Rashba effect
can be electrically-modulated by means of external gates, that change

3



1 Introduction

the interface electric-potential and thereby the effective magnetic field [8].
This striking feature is at the basis of the spin field-effect transistor
theoretically proposed by Datta and Das [9], where the strength of the
spin-orbit coupling controls the rate of the spin-precession, and through
that, the electrical current carried by electrons injected by a ferromagnetic
contact into a gated semiconducting region and extracted at an opposite
ferromagnetic contact.

The (spin) Rashba effect produces linear-in-momentum energy splitting
of opposite-spin states and constrains the electron spin to lie in the direction
perpendicular to the momentum. This is an example of “spin-momentum
locking”, that can be generalized as a striking feature of surface (interface)
states, such as:

• surface bands in ordinary metals [10],

• Dirac-cone states on the surfaces of three-dimensional topological
insulators [11],

• edge channels in two-dimensional topological insulators (quantum
spin Hall effect [12, 13]),

• Fermi-arc states in topological Weyl semimetals [14].

The basic picture of the Rashba effect becomes more complex when
describing particles that have, in addition to the spin angular momentum,
a finite orbital angular momentum, e.g. d electrons in oxide interfaces. In
these systems, multiorbital effects produce a strong energy–dependence of
the spin splitting and, at fixed energy, the magnitude of the splitting as
a function of the momentum often deviates from linearity [15]. We can
generalize the concept of spin-momentum locking in order to account for
additional entanglement between spin and orbital polarizations.

1.3 Oxide interfaces
1.3.1 Transition-metal oxides
Transition metals are called the elements of the periodic table whose atoms
either have an incomplete d subshell or can give rise to cations with an
incomplete d subshell (IUPAC definition). They can form compounds with
very different oxidation states: their oxide compounds (TMOs) show very
interesting properties due to combination of the “hybrid” d electrons —
partially bound to their own nuclei but with a certain freedom to interact
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1.3 Oxide interfaces

with neighboring atoms — and narrow electronic bands (between 1 and
2 eV) due to the small overlap between metal d orbitals and oxygen p
orbitals. Hence, d electrons can show both itinerant and localized proper-
ties; the narrow band-width is expected to make electronic correlations
relevant [16].

Two large subfamilies of the TMOs family are the cuprates and the
perovskites. The former are famously known to show high-temperature
superconductivity [17], the latter are among the most promising materials
for highly efficient solar cells [18].

The perovskites have chemical formula AMO3 and a cubic crystal struc-
ture, with the transition-metal (M) ion sitting at the center of the cubic
cell, surrounded by an octahedron of oxygen (O) ions. and A ions at
the eight corners. The crystal field generated by the O ions splits the
five-fold degenerate d orbitals in two subsets, the lower-energy t2g triplet
(dxy, dxz, dyz orbitals) and the higher-energy e2g doublet (dx2−y2 , dz2).

Strontium titanate (SrTiO3) has a long history as the most dilute su-
perconductor — until the discovery of superconductivity in pure bismuth
single crystals at ambient pressure and carrier density ne ≈ 1015 cm−3 [19]

— with a transition temperature Tc ≈ 300mK [20]. Although a long his-
tory of studies, the nature of the electron-electron pairing mechanism in
strontium titanate is still questioned [21]. Above Tc, the material is a
band insulator with a gap of 3.2 eV and huge dielectric constant varying
between εSTO ≈ 300 at room temperature and εSTO ≈ 10000 at sub-Kelvin
temperatures [22].

Many TMOs have almost-matching lattice constants, whereby it is
possible to grow layered heterostructures with atomic-size precision by
placing one material on top of another layer by layer, using techniques
developed in the context of semiconductor-heterostructures. Compared
to the semiconducting counterparts, complex-oxide heterostructures are
characterized by a richer mixing of different degrees of freedom — further
enriched by the quantum confinement. Many oxide heterostructures are
based on SrTiO3, due to its important dielectric properties.

1.3.2 The LaAlO3/SrTiO3 interface
A paradigmatic example of this class of materials is the heterostructure
formed by growing a thin film of lanthanum aluminate (LaAlO3) on a
substrate of SrTiO3. Both materials are individually band-insulators.
However, a breakthrough experiment reported evidence of electrical con-
ductivity with high-mobility carriers at the interface of heterostructures
grown along the (001) crystalline direction [23]. Since then, conducting
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1 Introduction

Figure 1.2: LAO / STO (001)–heterostructures are made of electrically neutral planes on
the STO side and charged planes on the LAO side. (a)–(b) Charge density ρ, electric field E
and potential V along the growth direction at the unreconstructed interface with (a) TiO2-
LaO connection and (b) SrO-AlO2 connection. (c)–(d) Electronic reconstruction, with (c)
half an electron per unit cell transferred to the TiO2 interfacial plane and (d) half a hole
transferred to the interfacial SrO plane, creates electric dipoles at the interface that leads
to oscillating electric fields and bounded potentials. Reprinted by permission from Springer
Customer Service Centre GmbH: Springer Nature, Nature Materials, N. Nakagawa, H. Y.
Hwang and D. A. Muller, Why some interfaces cannot be sharp, Nat. Mater. 5, 204–9
(2006), Copyright 2015.

interfaces were found in many SrTiO3-based heterostructures [21]. Never-
theless most of the (theoretical and experimental) research in the field has
focused on the LaAlO3/SrTiO3 interface (henceforth, LAO/STO).

The (001) LAO / STO heterostructure is made of alternating AO and
MO2 planes — A=La(Sr) and M=Al(Ti). LAO planes are electrically po-
larized with alternating ±e charge (per two-dimensional unit cell), instead
STO planes are neutral. Two types of interface are formed depending
on the termination layer of the STO substrate: a n-type interface if the
termination layer is TiO2 (TiO2-LaO connectivity), a p-type interface in
the case SrO-AlO2 connectivity instead. The n-type interface becomes
conducting when the thickness of the LAO film exceeds the threshold
thickness of 3 unit cells, while the p-type interface does not show metallic
behavior at any thickness [23, 24].

The origin of the interface conductivity is still debated. The polar
catastrophe hypothesis [25] is consistent with many, but not all, the ex-
perimental observations. According to this hypothesis, a reconstruction
of the electronic landscape of the interface occurs at a polar/non-polar
junction in order to avoid the large cost in terms of electrostatic energy
due to an unbounded growth of the electric potential in the bulk of the
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1.3 Oxide interfaces

polar material (see Fig. 1.2a–b).
The polar catastrophe mechanism predicts an insulator-metal transition

(in n-type interfaces) as a function of the thickness of the LAO-film,
when the bottom of the STO conduction band falls below the top of the
LAO valence band, and charge-transfer is activated from the latter to the
former. This prediction is consistent with the experiments. However, the
electron density predicted by the polar catastrophe argument is much larger
than the density of mobile electrons that is measured in transport [26,
27]. The discrepancy may be explained with the remaining electrons
being bound at impurities or defects, thereby not contributing to the
interface conductivity [28]. Moreover, conducting interfaces also exist
in structures without polar discontinuity, as e.g. LAO / STO (110)–
heterostructures [29].

Alternative proposals rely on the role played by oxygen-vacancies intro-
duced in the system during the growth process [30–32].

1.3.3 Properties of the interface: superconductivity,
magnetism, spin-orbit coupling

The huge STO dielectric constant allows to use electric gates to tune
the charge-density of the interface between the fully-depleted regime and
the overdoped regime with relatively low electric fields. The electric-
field–dependence of physical properties such as spin-orbit coupling and
superconductivity was experimentally reported [33, 34], that is a striking
feature of the interface.

Regarding spin-orbit coupling, transport measurements clearly highlight
the importance of it, although we are still waiting for ARPES (Angle
Resolved Photo-Emission Spectroscopy) experiments that can resolve
spin-split electronic bands. Signatures of weak-antilocalization peaks and
their evolution as a function of the applied gate-voltage suggest that the
magnitude of the spin-orbit coupling (spin-splitting) sharply increases of
an order of magnitude at a doping level that seems to correlate with the
appearance of superconductivity [35].

The density(voltage)-temperature phase diagram reveals a supercon-
ducting dome peaked at temperature Tmaxc ∼ 300mK (very close to the
critical temperature of bulk STO) and at a density in proximity of a
Lifshitz transition [36], where the topology of the Fermi surface is altered
by the appearance of additional bands. Contrary to the dome-structure
of Tc, the magnitude of the superconducting gap measured (locally) via
tunneling spectroscopy is found to increase both in the underdoped and in
the overdoped regime [37], suggesting either the presence of a pseudogap
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1 Introduction

phase like high-Tc superconductors [38] or that the system is spatially
inhomogeneous, with coexisting superconducting and insulating (metallic)
patches of nanometric size. In this scenario, patches with different densities
would turn superconducting at slightly different temperatures, leading to
a characteristic tail in the resistance-vs-temperature curves [39–41], unlike
the usual sharp transition in homogeneous superconductors.

Signatures of inhomogeneous ground states of the interface appeared
in magnetometry experiments [30, 42, 43] — that measured a ferromag-
netic response superimposed to a diamagnetic (superconducting) signal.
The inhomogeneity may be intrinsic, as the result of an electronic phase
separation due to self-consistent adjustments of the confining potential
that can make a homogeneous phase thermodynamically unstable [44].
However, alternative theoretical proposals pointed out that an exotic homo-
geneous phase that allows coexistence of superconductivity and magnetism,
such as the FFLO (Fulde-Ferrel-Larkin-Ovchinnikov) phase [45], may be
established in the system.

Interface superconductivity is a property inherited by the bulk STO
parent compound. Instead, magnetism is an emergent property of the
LAO / STO interface, since both LAO and STO are non-magnetic ma-
terials. Magnetic properties of the interface have been directly probed
by means of many different techniques — Torque Magnetometry, SQUID
Magnetometry, X-Ray Magnetic Circular Dichroism, Polarized Neutron
Reflectometry, Magnetic Force Microscopy — and indirectly through mag-
netotransport measurements, with rather controversial outcomes. Even
there are experiments that only measured finite magnetization at insulating
interfaces and no signal in the conducting regime [46]. Many different
groups have provided lots of magnetotransport whose interpretation is still
subject of active research. A number of experimental signatures have been
interpreted as originating from a Kondo–type interaction [47] between
localized magnetic moments and delocalized electrons [48]:

• non-monotonic temperature–dependence of the sheet resistance [49];

• non-monotonic low-field Hall resistivity [36];

• giant negative magnetoresistance and crystalline anisotropy, with
all-in-plane magnetic field [50];

• anomalous Hall effect [50].

However, the interaction-based interpretation of these observations was
recently challenged by new experimental results obtained by Caviglia’s
group at Delft University [51] for the case of in-plane magnetic field.

8



1.3 Oxide interfaces

Figure 1.3: (a) Measured magnetoresistance of the LAO/STO interface, at temperature
T = 1.4 K for several values of the gate voltage VG (left panel) and at VG = 50 V for
various temperatures. (b) Magnetoresistance calculated within the semiclassical transport
theory, at fixed temperature T = 1.4K for various carrier-densities (left panel) and at
density n = 2.2× 1013 cm−2 for various temperatures. (c) Temperature–dependence of
the chemical potential µ and (d) density of states, calculated from the Hamiltonian 2.1
for an electron density n = 2.2× 1013 cm−2. Reprinted figures with permission from M.
Diez, A. M. R. V. L. Monteiro, G. Mattoni, E. Cobanera, T. Hyart, E. Mulazimoglu, N.
Bovenzi, C. W. J. Beenakker and A. D. Caviglia, Giant negative magnetoresistance driven
by spin–orbit coupling at the LaAlO3 / SrTiO3 interface, Phys. Rev. Lett. 115, 016803
(2015). Copyright (2015) by the American Physical Society.

Besides reporting a large negative magnetoresistance (up to 70% less than
the zero-field resistance, in agreement with previous experiments), the
experiments addressed the gate-voltage– and the temperature–dependence
of the magnetoresistance, systematically, reporting that:

• the negative magnetoresistance survives up to ∼ 20K;

• the “critical” field, namely the value of the magnetic field where the
the slope of the magnetoresistance vs. field curves becomes negative,
increases with the temperature;

• a striking similarity of the temperature–dependence (at fixed voltage)
and the voltage–dependence (at fixed T ) of the magnetoresistance.

9



1 Introduction

Figure 1.4: Confined orbitals in the quantum well at the (001) LAO / STO interface.
Reprinted with permission from G. Herranz, G. Singh, N. Bergeal, A. Jouan, J. Lesueur,
J. Gázquez, M. Varela, M. Scigaj, N. Dix, F. Sánchez and J. Fontcuberta, Engineering
two-dimensional superconductivity and Rashba spin–orbit coupling in LaAlO3 / SrTiO3
quantum wells by selective orbital occupancy, Nat. Commun. 6, 6028 (2015).

These observations required an alternative explanation, that is the subject
of the theoretical work in Ref. 51. A semiclassical transport model for non-
interacting electrons, that accounts for including multiorbital effects due to
spin-orbit coupling and scattering by extended impurities, can qualitatively
reproduce the features listed above. In particular, the striking similarity of
temperature– and density–dependence of the magnetoresistance naturally
arises from the renormalization of the chemical potential as a function of
the temperature (see Fig. 1.3c).

Henceforth we refer to the mobile interface electrons as a two-dimensional
electron gas (2DEG).

1.3.4 Band-structure model of the interface electron
gas

Experiments report a dependence of the frequency of the conductance os-
cillations (Shubnikov–de Haas effect) only on the perpendicular component
of the field [27, 52], as for a conventional two-dimensional electron gas.
This means that the envelope wave function in the out-of-plane z-direction
exists only in the lowest energy subband of the quantum well, although it
can still extend over several unit cells away from the interface [53].

For the theoretical calculations of Chapter 2 we used the tight-binding
model introduced in Ref. 48, that describes the conduction band of STO sur-
face states. Restricting to the low-energy t2g subspace, the Hamiltonian is
calculated in the basis |dxy, ↑〉 |dxy, ↓〉 |dxz, ↑〉 |dxz, ↓〉 |dyz, ↑〉 |dyz, ↓〉 . The
minimum of the band is at the Γ-point.

The orbital degeneracy of the bulk bands is partially removed due to
the quantum confinement — dxy orbitals have weak bonding along the
out-of-plane direction — that results with the pair of dxy bands, “light”
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1.4 Weyl Semimetals

Figure 1.5: Band structures from diagonalization of the Hamiltonian 2.1, for three cases:
only kinetic energy HL; with atomic spin-orbit coupling HSO (center); with both atomic
spin-orbit coupling and inversion-symmetry breaking HZ (right).

(small effective mass) and isotropic, having lower energy than dxz / dyz
bands, that are “light” in one in-plane direction and “heavy” in the other
one.

The intrinsic spin-orbit coupling, inherited from the atomic orbitals,
is an off-diagonal matrix in this basis, thereby it mixes spin and orbital
polarizations. The main effects on the band structure are to remove the
remaining orbital degeneracy between dxz and dyz states at the Γ point and
to produce hybridized dxy/dxz(dyz) states, opening gaps in correspondence
of band-crossing points.

Finally, hopping elements between orbitals with different parity under
(x, y, z)→ (x, y,−z) transformation are non-zero in the absence of inversion
symmetry [54]. These are next-nearest-neighbor spin-preserving processes
between the even dxy orbitals and the odd dxz/dyz orbitals.

In combination with the intrinsic spin-orbit coupling, this term produces
a strongly energy–dependent spin-splitting, that abruptly increases near
the hybridization gaps. More details about the Hamiltonian and the band
structure are provided in Sec. 2.6 of Chapter 2.

1.4 Weyl Semimetals

1.4.1 Weyl fermions in crystals
Accidental degeneracies in the band structure of three-dimensional solids
— where low-energy excitations have linear energy–momentum relation
— are not rare [55]. However these degeneracies are lifted by any weak
perturbation unless they are enforced by symmetry constraints or by the
so-called “topological invariants” of the band structure.
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Symmetry-protected Dirac points exists both in two-dimensional (e.g.
graphene) and in three-dimensional systems. Instead, the topologically-
protected Weyl points are a unique property of three-dimensional crystals.

Each Weyl point (node) is a monopole of Berry curvature (a sort of
momentum-space analog of the magnetic field) with a charge χ = ±1
depending on the flux enclosed by a sphere surrounding the point. The
sign determines the chirality (the “handedness”) of the Weyl-fermion’s
wave function in real space.

Chiral fermions must always occur in pairs of opposite chirality according
to the Nielsen-Ninomiya theorem [56] – in other words, the total Berry flux
across the Brillouin zone must vanish. The low-energy physics around the
Weyl point with chirality χ = ±1 is governed by the Weyl Hamiltonian [57],
that in momentum representation is

HW = χvF (pxσx + pyσy + pzσz), (1.4)

where σα (α=x,y,z) are Pauli matrices and pα the components of the crystal
momentum p = ~k. The low-energy excitations have isotropic conical
dispersion, with velocity vF and the spin parallel or antiparallel to the
momentum. Although Eq. (1.4) looks just like a trivial generalization of
the two-dimensional graphene Hamiltonian, the third dimension enables
topological protection to the band-touching points. Weyl cones cannot be
gapped by local perturbations, as the only effect of adding a mass term
mσα to HW is of moving the Weyl cones around the Brillouin zone. The
only way to make chiral fermions disappear is to pair them up, merging
Weyl cones with opposite chirality that lead to the creation of a gap in
the energy spectrum.

In order to acquire topological protection against local perturbations, a
Weyl semimetal must not be invariant under the product of time-reversal
and inversion symmetry. (If both symmetries are present, the Berry
curvature is identically zero at any k-point).

More “flavors” of Weyl fermions can exist in the band-structure of three-
dimensional crystals, where the effective low-energy theory is not con-
strained by Lorentz invariance, that instead forces the energy-momentum
relation of a fundamental particle to be independent of the direction where
the particle travels. Therefore, Weyl cones are often anisotropic and tilted

— the tilting is realized by adding the term ∝ pασ0 to the Weyl Hamiltonian.
In some materials the distortion can be so strong that it tips the cone over
the momentum axis pα, realizing a topologically distinct class of protected
band touchings, the type–II Weyl points. These protected crossing points
connect electron-like and hole-like states coexisting at the energy of the
Weyl point [58].
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Figure 1.6: Type–I (left) and type–II (right) Weyl cones as a function of the momentum
components kx, ky (at kz = 0). The type–II Weyl cone has finite density of states at
the energy of the Weyl node. Up to linear terms in the energy-momentum dispersion the
equi-energy contours near the Weyl-node energy are open. On a lattice, higher-order terms
close the contours. Reprinted by permission from Springer Customer Service Centre GmbH:
Springer Nature, Nature, A. A. Soluyanov, D. Gresch, Z. Wang, Q.S. Wu, M. Troyer et al.,
Type–II Weyl semimetals, Nature 527, 495-98 (2015), Copyright 2015.

Furthermore, combinations of point-group symmetries of the crystal
structure [59] can force more Weyl points with same chirality to merge,
producing Berry monopoles with topological charge larger than one. These
are called “multi–Weyl” points. Type–II and multi–Weyl points are studied
in Chapter 5.

1.4.2 Lattice model of time-reversal–symmetry
breaking Weyl semimetals

For lattice simulations, we use the tight-binding model of a time-reversal–
symmetry breaking Weyl semimetal on a cubic lattice (with lattice param-
eter a ≡ 1) introduced in Ref.132, defined by the Hamiltonian

HW(k) = τz(σxtx sin kx + σyty sin ky + σztz sin kz)
+mkτxσ0 + βτ0σz + λτzσ0 − µWτ0σ0, (1.5a)

mk = m0 + t′x(1− cos kx) + t′y(1− cos ky)
+ t′z(1− cos kz). (1.5b)

The σ and τ Pauli matrices refer to a spin and orbital degree of freedom,
σ0 (τ0) is the 2 × 2 identity matrix in spin (orbital) space. tα and t′α
are respectively kinetic hopping and spin-dependent hopping terms —
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originating from spin-orbit coupling. The mass term mk ensures that the
spectrum is gapped everywhere except at k = (0, 0,±K), with

K2 ≈ β2 −m2
0

t2z + t′zm0
(1.6)

where the origins of two Weyl cones with opposite chirality are located.
β (λ) is the parameter that breaks time-reversal (inversion) symmetry
providing a difference in momentum (energy) of the two Weyl points.

The Hamiltonian 1.5a is mathematically equivalent — up to a unitary
transformation and redefinition of the τ degree of freedom — to the model
of Ref. 63, where Weyl fermions are engineered in the phase diagram of a
multilayer heterostructure realized by alternating layers of a magnetically
doped topological insulator (such as Bi2Se3) and normal-insulator layers.
Although experimentally very challenging, the latter model is fascinating
also because by replacing the normal-insulator layers with thin films of s-
wave superconductor, it is predicted to realize a Weyl superconductor [60].
We make use of the heterostructure models in Chapter 3 in the context of
Andreev reflection in Weyl superconductor – Weyl semimetal junctions.

1.4.3 Surface states
A closed system whose bulk band structure exhibits Weyl fermions is
further characterized by a special type of surface states. To understand
how the surface states arise, let us consider two Weyl cones centered at
momenta χk0 = (χk0, 0, 0) and let us slice the 3D Brillouin zone in a series
of planes, parametrized by the momentum component kx. To each plane
corresponds a two-dimensional band structure that has a gap for all values
of kx except for kx = ±k0. A Chern number is associated to each gapped
band structure as:

Ckx = 1
2π

∫
Skx

dSkx ·Ωk (1.7)

with
Ωk = ∇k ×Ak Ak =

∑
n

i〈unk|∇k|unk〉 , (1.8)

where Ak is the Berry potential summed over all filled bands labeled by
the index n an unk are Bloch states.

By tuning the parameter kx continuously, the system undergoes a
topological phase transition with gap closing and reopening across a Weyl
point, that is accompanied by a change of the Chern number of the planes.
Planes with |kx| < k0 carry non-zero Chern numbers, hence they support
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Figure 1.7: (a) Pair of opposite-chirality Weyl cones in the three-dimensional Brillouin
zone. (b) Graphic argument for the development of the Fermi arcs from connecting edge
states of the Chern insulators defined by the band structure on two-dimensional slices of
the Brilluoin zone in between the Weyl nodes. (c) At kx = k1 (top) the effective two-
dimensional Hamiltonian describes a trivial insulator (Chern number ν = 0) with a gapped
bulk spectrum and no edge states. At kx = k0 (bottom) instead the band structure has
non-trivial Chern number ν = ±1, that corresponds to the presence of one edge state within
the bulk gap. Adapted from Ref. [14].

chiral states propagating along the edges. The surface bands appear on
the two-dimensional surface by joining together edge states supported by
the non-trivial planes in-between the Weyl points. The intersection of the
surface bands with the Fermi energy generates open curves that connect
the projections of the Weyl points onto the surface Brillouin zone, that
are called “Fermi arcs”.

In real space, the surface states are “chiral”, meaning that they circle
around the magnetization axis in a single direction. If inversion symmetry
is broken they acquire finite velocity along the magnetization axis; in
cylinder geometry with the Weyl points along the axis of the cylinder, the
surface states form a solenoid structure [61].

However, Fermi arcs on opposite material’s surfaces must be thought
as complementary parts of a single Fermi surface. Indeed, in thin-film
Weyl semimetals arcs on top and bottom surfaces merge to form a closed
equi-energy contour. Interestingly, when both time-reversal and inversion
symmetry are broken in a Weyl thin-film, the intersection of the constant
energy planes with the lowest energy subband produces a figure-8, that
is topologically distinct from simple deformations of the Fermi circle in
conventional 2DEGs. Magnetotransport signatures of this Fermi surface

15



1 Introduction

Figure 1.8: (a) ARPES-measured dispersion on the surface Brillouin zone and (b) in the
bulk of the recently discovered TaAs Weyl semimetal. (c) High-resolution image of two
Fermi arcs terminating at the projections of opposite-chirality Weyl nodes. From S.-Y. Xu,
I. Belopolski, N. Alidoust, M. Neupane, G. Bian, et al., Discovery of a Weyl fermion
semimetal and topological Fermi arcs, Science 349, 613 (2015). Reprinted with permission
from AAAS.

are investigated in Chapter 4.

1.4.4 Experimental relizations
The search for a Weyl-semimetal phase initially focused on inversion-
symmetric systems with broken time-reversal symmetry. Early proposals
suggested magnetic pyrochlore iridates [62], multilayer heterostructures of
alternating magnetically doped topological insulators and normal insula-
tors [63], magnetically doped topological insulators at the critical point
of transition to a normal insulator [64]. Moreover the recently discovered
Dirac semimetals [65–67] — where the band-touching point is at leas
four-fold degenerate due to crystalline symmetries — can be turned to
a Weyl semimetal by splitting a single Dirac point into two Weyl points
with a Zeeman field. All these proposals suffer a number of experimental
challenges that prevented the realization of any of them to date.

Meanwhile, time-reversal–invariant Weyl semimetals have been brought
to life: first in tantalum arsenide (TaAs), later in niobium arsenide (NbAs)
and tantalum phosphide (TaP) [68] — all these materials break inversion
symmetry and have 24 Weyl cones in the Brillouin zone — the bulk conical
dispersion and the surface Fermi arcs where resolved with good resolution
in ARPES experiments.

Transport signatures of a magnetic Weyl semimetal were identified in
different topological Heusler compounds [69, 70] and, very recently, evi-
dences for a magnetic Weyl semimetal have been reported in photoemission
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data from the correlated manganese-tin alloy (Mn3Sn) [71], an hexagonal
antiferromagnet with a stacked Kagome lattice.

1.4.5 Chiral anomaly and related magnetotransport
signatures

Weyl fermions in condensed-matter systems are predicted to show the
chiral anomaly [72, 73] — the non-conservation of the currents carried
by the individual chiral species in the presence of parallel electric and
magnetic field [74]. The anomaly manifests itself as the pumping of chiral
electrons between oppositely charged Weyl points, leading to “valley”
polarization. The anomaly is a general feature of chiral fermions in odd
spatial dimensions. Its simplest one-dimensional version only requires
an electric field, whose action on the electron dynamics is given by the
semiclassical equation of motion dk/dt = eE/~. If right-moving and left-
moving carriers are connected at high energies (as is the case of any realistic
band-structure), change of momentum implies transferring electrons from
the left-moving to the right-moving Weyl point. As a result the difference
between the densities of left and right movers nL and nR grows according
to

d(nR − nL)
dt

= 2 e
h
E . (1.9)

This is the chiral anomaly in one-dimensional systems. The right-hand-side
of Eq. (1.9) will have an additional term that oppose to the growth of
the left-hand-side if the density imbalance can be relaxed via inter-node
scattering. In the three-dimensional space, the quantizing effect of the
magnetic field is necessary to recover an effective one-dimensional transport
problem. Indeed an external magnetic field produces Landau levels that
disperse only in the direction of the field. The Landau level with quantum
number n = 0 in a Weyl semimetal is chiral, namely it has velocity parallel
or antiparallel to field-direction, depending on the chirality of the Weyl
node from where it is generated. If an electric field is applied parallel
to the magnetic field, electrons start propagating along one-dimensional
chiral channels, that have cross-sectional area (divided by the number of
the degenerate states) A = φ0/B, the ratio between the flux quantum and
the magnetic field. Therefore, formula 1.9 holds, upon substituting E with
E · B̂ and and dividing by the cross sectional area A to obtain the three-
dimensional density. Although no current in equilibrium is allowed, in a
non-equilibrium setup the chiral anomaly result in a contribution to the
total electrical current of a Weyl semimetal that leads to the longitudinal
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negative magnetoresistance [75–77] and the chiral magnetic effect with
and without Landau levels [78, 79].

1.5 This thesis

1.5.1 Chapter 2
The study of magnetotransport effects, in connection with spin-orbit
coupling, at the LAO /STO interface requires more theoretical efforts
that may help interpret the experiments. The work presented in this
chapter extends the results of Ref. [51]. Here we address — by applying
the semiclassical transport theory to spin-coupled electrons scattered by
extended impurities on the plane of the interface — the anisotropy of
the longitudinal magnetoresistance under in-plane magnetic fields, that
was reported by several experimental groups in recent years, but not
reproduced by any theoretical model so far.

We calculate the full resistivity tensor as a function of the orientation
of the in-plane field, for different values of the field-strength and several
electron densities. The results show that the high-field angular-modulation
of the magnetoresistance has a behavior similar to what observed in the
experiments: because of the peculiar spin-orbital-momentum locking of
the states at the Fermi level, the largest contributions to the resistance
come from inter-band scattering processes, that are extremely sensitive to
the applied magnetic field. Finally, we show that a sizable Hall resistivity
is possible even in the absence of an orbital magnetic field and/or magnetic
impurities. Unlike the longitudinal magnetoresistance, the Hall signal is
due to intra-band scattering processes. We also comment on the differences
with respect to the experiments.

1.5.2 Chapter 3
A Weyl semimetal with broken time-reversal symmetry (magnetic Weyl
semimetal) has a minimum of two species of Weyl fermions, distinguished
by their opposite chirality. Therefore, a hydrogen-atom model of the band
structure of a (unbounded) magnetic Weyl semimetal consists of a pair of
Weyl cones at opposite momenta ±K that are displaced in the direction
of the internal magnetization. In the presence of inversion symmetry, the
(pseudo)spin degree of freedom of a Weyl fermion with positive (negative)
chirality is tied parallel (antiparallel) to its kinetic momentum.

At a normal-metal/superconductor junction, an electron injected from
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Figure 1.9: (Top) Experimental measurements of the longitudinal (ρxx) and Hall (ρxy)
resistivity of a Hall-bar device patterned at the LAO/STO interface, as a function of the
angle φB between the current and an in-plane magnetic field. The chemical potential is pre-
sumably above the Lifshitz point. Reprinted with permission from A. Joshua, J. Ruhman, S.
Pecker, E. Altman and S. Ilani, Gate-tunable polarized phase of two-dimensional electrons
at the LaAlO3 / SrTiO3 interface, Proc. Natl Acad. Sci., 110, 9633 (2013). (Bottom)
Theoretical calculations of the in-plane magnetoresistance and Hall resistivity (renormal-
ized by the maximum at B = 10 T), from Ref. [80]. (These quantities have same angular
modulations as ρxx and ρxy respectively.)

the metal contact at energy lower than the superconducting gap can
be reflected by the interface as a hole, with an additional Cooper pair
transferred to the superconductor. This process, called Andreev reflection,
converts a dissipative current into a (dissipationless) supercurrent.

In the specific case of the interface between a Weyl semimetal in the
normal state (N) and a superconductor (S) that pairs electrons at ±K,
Andreev reflection must involve a switch of chirality, otherwise it is blocked
as long as inversion symmetry is preserved and the internal magnetization
of the Weyl semimetal lies in the plane parallel to the NS interface.

The blockade requires the combination of conical dispersion of the Weyl
semimetal and spin-momentum locking, thereby it is not a general property
of materials with relativistic dispersions. A Zeeman field at the interface
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or breaking inversion symmetry can activate Andreev reflection.

1.5.3 Chapter 4
The spectrum of a Weyl semimetal confined to a slab-geometry has a gap
for the bulk states, while the dispersion of the surface states is insensitive
to the spatial confinement as long as there is no overlap between states on
opposite surfaces. Therefore, at energies close to the Weyl points of the
unbounded system electrons in the slab have hybrid surface/bulk character
depending on the momentum.

The Fermi surface of a conventional two-dimensional electron gas is
equivalent to a circle, up to smooth deformations that preserve the orien-
tation of the equi-energy contour. Instead, we show in this chapter that
a thin-film magnetic Weyl semimetal with additionally broken inversion
symmetry can have a topologically distinct two-dimensional Fermi surface,
twisted into a figure-8 — opposite orientations are coupled at a crossing
which is protected up to an exponentially small gap due to overlap between
wave-functions localized at opposite surfaces.

The topology of the Fermi surface can be probed via quantum oscil-
lations of magnetization (De Haas–Van Alphen effect) or conductance
(Shubnikov–De Haas effect) in the presence of an external magnetic field.
The frequencies and phase shifts of the oscillations can be extracted from
the semiclassical Landau levels, that for this particular system we have
computed numerically.

The spectral response of the twisted Fermi surface is distinct from that of
a deformed Fermi circle, because the two lobes of a figure-8 cyclotron orbit
give opposite contributions to the Aharonov-Bohm phase acquired by the
electron wave-function when completing a full orbit. In a strong magnetic
field, two counter-propagating types of quantum Hall edge channels appear
at the boundaries, when the system is further confined to a strip. However,
when an electrical current is driven through the system between two
metal reservoirs, only one of the two co-propagating channels is populated,
providing unique magnetotransport signatures. For instance, the edge
along which the current propagates can be changed by reversing the
direction of the magnetic field.

1.5.4 Chapter 5
The work of this chapter was motivated by one of the main results of
Chapter 4, that is the value of the phase offset γ = π obtained as the
quantum correction to the semiclassical quantization condition applied to
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the figure-8 cyclotron orbit in a thin-film Weyl semimetal. This valued of
the phase offse differs from the value γ = 0 offset found for a different type
of figure-8 cyclotron orbit, as the energy of the Weyl point in a type–II
Weyl semimetal [81].

This apparent inconsistency and the increasing interest in identifying
topological semimetals in quantum-oscillation experiments, require a better
understanding of how the phase shift encodes information about the
topological features of the band structure.

Here we predict the characteristic parameter dependence of the phase
shift for Weyl fermions with tilted and overtilted dispersion (type–I and
type–II Weyl fermions) and an arbitrary topological charge, including
elliptical and 8-shaped Fermi surfaces. Remarkably, for type–II Weyl
fermions the phase shift only depends on the quantized topological charge,
being insensitive to the specifics of the band structure.
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2 Semiclassical theory of
anisotropic transport at
LaAlO3 / SrTiO3 interfaces

The development of quantum-matter heterostructures paves the way to
the realization of novel electronic states, due to the combination of the
capabilities and rich variety of heterostructure engineering, the collective
interactions of complex oxides, and the emergent properties of quantum
materials [82, 83].

A paradigmatic example is the heterostructure formed by the transition-
metal oxides LaAlO3 and SrTiO3. Since the experimental demonstration
of electrical conduction at the interface between these two materials [23],
large attention has been drawn to this system in particular due to its
gate-tunable superconductivity [33, 34, 84] at T . 300 mK. At slightly
higher temperatures — in the range 1 − 20 K — magnetotransport has
been an important tool for the investigation of electronic and magnetic
properties of the interface that are believed to be strongly determined by
mixing of charge, spin, orbital and lattice degrees of freedoms.

A number of signatures in the normal-state transport [49, 50, 85, 86],
such as giant negative magnetoresistance, crystalline anisotropy, anomalous
Hall effect and their striking change of behavior when the system is tuned
across a Lifshitz transition [36] have been considered as an evidence of
magnetism at the interface. In particular, Ruhman et al. [48] suggested
that the action of the field on the interaction between conduction electrons
and localized magnetic moments induces a phase transition from a Kondo-
screened (high and isotropic resistance) phase to a (low and anisotropic
resistance) polarized phase, where the unscreened moments act as magnetic
scatterers.

However, experimental investigations of the magnetic landscape at the
interface [30, 42, 43, 87–89] reported qualitatively different results. A
strong ferromagnetic phase with large total magnetization was recently
observed by magnetic force microscopy [46] at room-temperature in the
depleted (insulating) regime of top-gated interfaces. On the other hand,
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the total magnetization was found to disappear when the interface was
doped enough to be conducting. More questions about the origin and the
nature of magnetism at low temperature remain to be answered.

A particular type of spin-orbit coupling at the interface is produced by
the interplay of atomic spin-orbit interaction (intrinsic to d electrons) and
the next-nearest-neighbour hopping from dxy to dxz/dyz orbitals, a process
that is forbidden in the bulk due to inversion symmetry, but it is activated at
the interface. Spin-splitting without magnetic field has been experimentally
measured: the magnitude of the splitting is strongly dependent on the
position of the Fermi level (tuned via external gate-voltage) and seems to
increase steeply in the overdoped regime [35, 84, 90]. Motivated by the
experimental observations, models including tunable spin-orbit coupling
through an explicit density–dependence of the parameters have been
applied to study thermodynamic properties of the interface, pointing out
the possibility of realizing electronic phase separation in a self-consistent
manner [91, 92]. Furthermore, controllable spin-orbit interaction offers a
way to achieve room temperature spin-charge conversion and generation
of spin currents [93] for spintronics implementations.

However, spin-orbit coupling was often considered to be too small of an
effect to contribute to the transport properties of the interface on a much
bigger scale than quantum corrections. Contrary to this belief, Diez et al.
[51] demonstrated that the semiclassical conductivity of spin-orbit coupled
electrons scattered by extended impurities is surprisingly very sensitive
to an in-plane magnetic field, that may explain the large drop of the
in-plane magnetoresistance (up to 70% reduction at B = 12 T) measured
by the experiments. Furthermore, the semiclassical model provides a
simple explanation for the striking similarity between gate-voltage– and
temperature–dependence of the magnetoresistance.

Here we use the same semiclassical framework to investigate the de-
pendence of the full resistivity tensor as a function of the magnitude and
the in-plane orientation of the magnetic field, revealing the onset and
peculiar evolution of a strongly anisotropic response. The large anisotropy
survives within a range of chemical potentials such that multiple electronic
subbands, with different dispersions and orbital polarizations, are popu-
lated at the same time. In this regime, the anisotropic magnetoresistance
comes from a complex interplay of inter-band and intra-band scattering
processes.

The structure of the chapter is as follows. In Sec. 2.1 we report and dis-
cuss the results of two magnetotransport experiments at LaAlO3/SrTiO3
interfaces. In Sec. 2.2 we introduce the various ingredients of the theoreti-
cal model employed for transport calculations. In Sec. 2.3 we present the
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numerical results. In Sec. 2.4 we extensively discuss how our results arise
from the interplay of spin-orbit coupling and magnetic field that dramati-
cally affects the amplitudes of scattering between Bloch states. Sec. 2.5
contains a final summary and outlook. Details about the parameters of
the model and additional results are provided in the Appendices.

2.1 Anisotropic planar magnetotransport:
experimental signatures

To date there is a very broad collection of experimental studies [26, 36,
42, 49–52, 84–86, 90, 94] of the conducting (001) LAO/STO interface in
the presence of an external magnetic field B. Here we restrict to electrical
transport at low temperature (yet above the superconducting critical
temperature Tc ≈ 300 mK), and to magnetic field applied in the plane of
the interface.

First striking observation is the abrupt change of the qualitative behavior
of the measured resistance when the carrier density is tuned across the
Lifshitz point in the band structure of the interface [36]. by tuning the
density of carriers via an applied gate voltage. Joshua et al. [50] reported
the angular–dependence of the longitudinal (ρxx) and transverse (ρxy)
resistivity measured at a Hall-bar device, by tuning the carrier density
with a back-gate (back-gated), as a function of the planar angle between
the current running between source and drain contacts and applied field.
At low gate-voltage ρxx depend very weakly on the orientation φB of the
magnetic field relative to the direction of the current, and the maximum
and minimum resistivity are measured along the crystalline axes. At high
voltage the response of the system is extremely sensitive to the magnetic
field: a large drop in ρxx while increasing the field-strength occurs above
a characteristic field Bc of order of a few T. The latter is shown to have a
dependence on the gate-voltage VG, e.g. decreasing while increasing VG
and diverging while approaching the Lifshitz point from above. Moreover
the magnetoresistance is strongly anisotropic and its angular modulation
is considered as the signature of a change of some symmetry of the system.
Additional peaks and dips points appears at intermediate angles. The
percentage of anisotropy measured at B = 14 T is about 20% of the average
resistivity. Along with that, the authors report an abrupt increase of the
transverse resistivity ρxy by increasing the field. At a field larger than 10 T,
ρxy becomes comparable to ρxx and characterized by a striking step-like
angular modulation.

25



2 Semiclassical theory of anisotropic transport at LaAlO3 / SrTiO3

The magnitude of ρxy and its symmetry (ρxy ' ρyx) rule out any relevant
contributions of the orbital field due either to minimal misalignment
between the direction of B and the plane of the interface, or to the
finite extension of the gas in the out-of-plane direction. The crystalline
symmetry of the anisotropic response is revealed by the evolution of
the direction of the principal axes of the resistivity tensor. While at
low voltage (density) the principal axes follow the direction of B, at
high voltage and high magnetic field the principal axes are pinned to
diagonal directions (45◦, 135◦, 225◦, 315◦): the directions where maximum
and minimum resistivity are measured do not depend on the orientation
of the magnetic field.

Similar behavior on different samples was previously reported by Ben
Shalom et al. [85] who also investigated the temperature–dependence of the
effect. Sharp minima (maxima) of the longitudinal resistivity are measured
when the magnetic field is perpendicular (parallel) to the current. The
magnitude of the high-field anisotropy is consistent with the finding of
Joshua et al. [50] and is suppressed on the same temperature-scale which
governs the magnetoresistance [51].

2.2 Electronic structure and the Boltzmann
equation with correlated disorder

The low-energy electronic structure is obtained from the single-particle
Hamiltonian introduced by Ruhman et al. [48]. In terms of creation
(annihilation) operators c†k,l,σ (ck,l,σ) of an electron with momentum k in
the l = (dxy, dxz, dyz) orbital, the tight-binding Hamiltonian is

H =
∑

k,l,l′,σ,σ′

c†k,l,σ Hlσ,l′σ′(k) ck,l′,σ′

H = HL +HSO +HZ +HB , (2.1)

including the kinetic term HL, the atomic spin-orbit coupling HSO, the
inversion-symmetry-breaking inter-orbital coupling HZ and the Zeeman
coupling of the magnetic field with spin and angular orbital momentum
(see Sec. 2.6 for the details).

The energy spectrum near the Lifshitz point is plotted in Fig. 2.1. At low
density only dxy bands are populated and the effective spin-orbit interaction
of ordinary Rashba-type, with coupling constant αR ∼ ∆Z∆SO/∆E [95]
(∆Z and ∆SO are the inversion-symmetry breaking and atomic spin-orbit
parameter respectively, see Sec. 2.6.) A change in the topology of the
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Figure 2.1: (Top) Dispersion at ky = 0 near the Lifshitz point, obtained by numerical
diagonalization of the Hamiltonian 2.1. Different orbital polarizations are distinguished by
different colors. (Bottom) Equi-energy contours at ε− µ = 0, showing the average spin and
orbital angular momentum. Blue (yellow) arrows refer to the outermost (innermost) band
of each pair. The complete set of parameters used for generating the plots are listed in the
first row of Table 2.1 (Sec. 2.7).

Fermi surface occurs at a threshold density, due to the onset of occupation
of a new pair of bands.

The interplay of HSO and HZ produces strong orbital hybridization and
spin-splitting for electronic states at points in the Brillouin zone where
light and heavy bands would cross each other at HSO = HZ = 0. In the
absence of magnetic field, analytical expressions for the effective Rashba-
like coupling of the surface states of SrTiO3 and KTaO3 were derived by
Kim et al. [96]. A similar derivation (valid near the Γ-point) was worked
out by Zhou et al. [97]. Here we resort to numerical diagonalization of the
Hamiltonian including the Zeeman coupling HB = µB(L+gS) ·B/~ of the
magnetic field B with the orbital (L) and spin (S) angular momentum.
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2 Semiclassical theory of anisotropic transport at LaAlO3 / SrTiO3

As shown in Fig. 2.1, at T = 0 the Fermi level is characterized by two
small surfaces, elongated along the symmetry axes of the crystal, and
two larger and less anisotropic ones. Importantly, the group velocity
vk,ν = ~−1∂εk,ν/∂k is no longer parallel to the momentum for large
sections of the Fermi surfaces.

We calculate the expectation-value of the spin and orbital angular
momentum operators on the eigenstates. At B = 0, the z-component of
both is quenched to zero because of time-reversal and π-rotation symmetry
around the z-axis and will stay zero as long as the magnetic field has no
component in the out-of-plane direction. Following the evolution of the
expectation-value of the spin on the large Fermi surfaces in the top-right
quadrant of the Brillouin zone (ϑ < 90◦), it is found to be parallel to
the y-axis at small ϑ (small ky), it suddenly undergoes a 90◦-rotation in
the vicinity of ϑ = 45◦ and finally aligns to the x-axis at ϑ > 45◦. The
magnitude of the average orbital angular momentum is peaked near the
hybridization gaps while it is very small on the remaining sectors of the
Fermi surfaces. Electronic spectrum and the spin-orbital structure at the
Fermi level are consistent with the data reported by King et al. [98] for
the surface states of SrTiO3.

The eigenstates |ψk,ν〉 = |uk,ν〉eik·r and the eigenvalues εk,ν of the
Hamiltonian 2.1 enter the Boltzmann transport equation

− e(vk,ν ·E) ∂f0

∂εk,ν
=
∑
k′,ν′

(gk,ν − gk′,ν′)qkν,k′ν′δ(εk,ν − εk′,ν′) , (2.2)

that returns returning the out-of-equilibrium shift gk,ν in the electron
distribution function due to an accelerating electric field E and scattering
by impurity centres. f0(ε) is the equilibrium Fermi-Dirac distribution
function and vk,ν = ~−1∂εk,ν/∂k. Spatial correlations between different
impurities can be introduced via a Gaussian potential

U(r) =
∑
i

Uie
−|r−ri|2/ξ2

. (2.3)

where the amplitudes Ui of the individual scatterers are randomly dis-
tributed with uniform probability in the symmetric range [−δ/2, δ/2] and
ξ is the characteristic decay-length of the two-point correlator (that is
Gaussian as well).

At leading order in the Born approximation and averaging over the
ensemble of impurity configurations, the amplitude of elastic scattering
from the initial state |ukν〉 to the final state |uk′ν′〉 is

qkν,k′ν′ = 2
3π

3~−1δ2ξ4nimp e
−ξ2|k−k′|2/2|〈ukν |uk′ν′〉|2 , (2.4)
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nimp being the density of impurities.
An alternative model was considered by Fu et al. [99] who calculated

the density–dependence of the resistivity in multi-subband accumulation
layers (heterojunctions of polar and non polar perovskites such as LAO
and STO) where electrons are scattered by the potential generated by
surface roughness. In their model, spatial disorder-correlations decay
exponentially. In momentum-space, the elastic scattering amplitude

qkν,k′ν′ = 2π2δ2ξ2

~
nimp(1 + ξ2|k − k′|2)

−3/2
|〈ukν |uk′ν′〉|2 (2.5)

decays algebraically as a function of the momentum transferred to the
impurity (qkν,k′ν′ ∝ |k − k′|−3 at large |k−k′|). The scattering with large
momentum-transfer (and hence backscattering) is stronger for this model
than for the Gaussian model of Eq. (2.4).

Here we only consider scalar impurities, described by single-impurity-
potential operators that are diagonal in the basis of the unperturbed
Hamiltonian. The scattering processes can occur from a band to itself
(“intra-band”), or to a different one( “inter-band”).

We present results of magnetotransport calculations for two models of
disorder — Gaussian-correlated impurites and surface-roughness — that
show a similar behavior of the fixed-density magnetoresistance, albeit the
density–dependence of bare resistance may be substantially different in
the two cases [99].

2.3 Numerical results
At linear order in the electric field E, the out-of-equilibrium distribution
gk,ν is in terms of the band– and momentum–dependent vector mean-free-
path Λk,ν [100] is

gk,ν = −e(∂f0/∂εk,ν)E ·Λk,ν . (2.6)

Eigenvalues εk,ν and eigenvectors uk,ν of the Hamiltonian 2.1 are calculated
numerically. for each value of the in-plane magnetic field (B cosφB , B sinφB),
where φB is the angle measured counterclockwise from the x-axis. The
electron density is kept constant at any B. as a consequence, therefore
the chemical potential µ(B,φB) ≡ µ(B) is determined self-consistently
according to

ne =
∫ ∞
ε0

dε f0
(
ε, µ(B), T

)
N(ε) , (2.7)
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2 Semiclassical theory of anisotropic transport at LaAlO3 / SrTiO3

where N(ε) is the density of states at energy ε and ε0 the energy of the
bottom of the lowest conduction band.

The conductivity tensor σ follows from the distribution function as

(σ)ij = e
∑
k,ν

(vk,ν)i
∂gk,ν
∂Ej

. (2.8)

By matrix-inversion of σ we finally extract the longitudinal resistivity and
the transverse resistivity, as

ρxx = σyy
σxxσyy − σ2

xy

, ρxy = − σxy
σxxσyy − σ2

xy

. (2.9)

In this section we show the results of calculations performed at a tempera-
ture T = 1 K and a carrier-density n = 2.2× 1013 cm−2, corresponding to
a chemical potential crossing the second pair of bands. Two bands remain
a few meV (≈ ∆SO/2) higher than µ and do not play any role here since
we only consider elastic scattering. (The spin-orbit gap between dxz and
dyz states is much larger than the thermal broadening of the Fermi-Dirac
distribution.)

In Fig. 2.2 the magnetoresistance ρxx(B)/ρxx(0)− 1 and the transverse
resistivity ρxy are plotted as a function of the angle φB, for values of
B between 2 and 20T. The transverse resistivity has been rescaled by
its maximum value at 10 T — obtained around φB = 45◦ — in order
to get a quantity that (as the magnetoresistance) is independent of the
parameters nimp and δ. In the range 4− 10 T (at lower fields the effects
are moderate) the angular modulation of the magnetoresistance has cusp-
like dips at φB = 90◦, 270◦ (magnetic field perpendicular to the current)
and rounded maxima at φB = 0◦, 180◦ (magnetic field aligned to the
current). The magnitude of the negative magnetoresistance and the
anisotropy progressively increase with the field-strength. The transverse
resistivity has a sinusoidal modulation with maxima and minima shifted
by 45◦ with respect to the magnetoresistance extrema. However ρxy
is two orders of magnitude smaller than ρxx. Above 10 T, the angular
magnetoresistance develops additional maxima and minima near diagonal
orientations (φB = 45◦, 135◦, 225◦, 315◦) that unlike the main extremal
points – fixed at multiples of 90◦ – do not only move up and down
but also shift in angular position as the field is progressively increased.
In the same field-range where these additional features characterize the
magnetoresistance, ρxy increases by (more than) one order of magnitude.
Another striking feature is the change in the angular modulation of the
transverse resistivity that substantially deviates from the sinusoidal low-
field behaviour. Other parameters are considered in Sec. 2.7.
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Figure 2.2: (Top) Magnetoresistance ρxx(B)/ρxx(0) − 1 and (bottom) transverse resistiv-
ity ρxy (rescaled by the maximum ρxy at B = 10 T), as a function of the angle between
the direction of the magnetic field and the x-axis, at different values of the field-strength.
The left panel is for calculations with scattering by Gaussian-correlated impurities, with
amplitudes from Eq. (2.4). The right panel is for calculations with scattering by surface-
roughness disorder, with amplitudes from Eq. (2.5). The temperature is T = 1 K and the
density n = 2.2× 1013 cm−2. Other parameters from the first row of Table 2.1 (Sec. 2.7).

The B–dependence of the magnetoresistance at different angles φB is
shown in Fig. 2.3. Amplitude, shape and the field-scale of the magnetore-
sistance, all change with φB. Moving from a configuration with magnetic
field parallel to the direction of the current (φB = 0◦) towards the opposite
configuration (φB = 90◦), the magnitude of the magnetoresistance grows
by a factor ∼ 3 at 20 T. Moreover, the field-scale where the slope of the
magnetoresistance becomes negative – and large in magnitude – decreases
by moving the field away from the direction of the current. The results
are consistent with previous calculations [51] of the magnetoresistance at
φB = 90◦, albeit here calculated in a different spin-orbit–coupling regime
(see Sec. 2.7). The angular-maximum of the transverse resistivity ρxy
exhibits a strong enhancement around starting at ∼ 10 T for the Gaussian
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2 Semiclassical theory of anisotropic transport at LaAlO3 / SrTiO3

Figure 2.3: Magnetoresistance as a function of the field-strength, for different values of the
angle φB (dashed lines) and after averaging over all angles (solid red line); The solid gray
line represents the field–dependence of the (angular) maximum of ρxy divided by its value
at B = 10 , that is taken as a reference value. (Left) Scattering amplitudes from Eq. (2.4).
(Right) Scattering amplitudes from Eq. (2.5).

model (slightly higher field for the exponential model).
The slope of ρxy(B) softens at the very high fields, where the magnetore-

sistance at φB = 45◦ shows the onset of saturation in the case of Gaussian
disorder-potential. For the other model, instead, the curvature of the
magnetoresistance at φB = 45◦ is still negative at B = 20 T (no saturation
in this field-range) that also produces a non-saturating ρxy.

2.4 Discussion
At T = 0 only electrons at the Fermi level contribute to the conductivity of
a metal. In favour of a clearer discussion, hereafter we neglect the effects
of a finite low temperature — these are crucial quantitatively, but do not
alter the underlying mechanism.

At densities much lower than the threshold density of the Lifshitz
transition (ne � nL), the chemical potential µ(B) — determined at any B
self-consistently according to Eq. (2.7) — lies deep into the dxy bands, that
have a tiny k-linear Rashba splitting [95]. In this regime, the anisotropy is
extremely weak (less than 1%) (see Fig. 2.7 in Sec.2.7). A previous work
shows that even the inclusion of spin-selective scatterering does not give
any sizable anisotropy [101].

At densities slightly larger than nL, instead, the chemical potential
crosses the hybridization gaps where the spin-splitting is about ten times
larger than at low density. We have not considered densities right at the
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Lifshitz transition to avoid artifacts in the numerics due to the sudden
appearance of band-edges where almost-zero Fermi momentum.

For the scattering models of Eq.(2.4) and Eq.(2.5), in the outermost
bands — characterized by large Fermi surfaces and high band velocities

— the backscattering is suppressed for correlation lengths much larger
than the inverse of the average Fermi momentum. Hence, relaxation via
intra-band scattering takes place on a slow time-scale (that includes many
low-angle scattering events), while the most effective mechanism of velocity
relaxation is provided by forward-scattering processes to the inner bands.
Indeed, the inner bands have low mobilities, due to the small velocities
and large intra-band scattering rates.

At B = 0 the spin-ordering near the hybridization gaps in the top-right
quadrant of the Brillouin zone is | ↓〉| ↑〉| ↑〉| ↓〉 (see Fig. 2.1b). At some
non-universal value of B (dependent on the specifics of the band structure),
the ordering is reversed for the inner bands (not shown in the figure). This
results in reduction of the scattering rates between pairs of states (k, ν) and
(k′, ν′) that have minimal inter-band distances |k − k′| and parallel spins
at B = 0. The field-suppression of inter-band scattering leads to enhanced
(reduced) longitudinal conductivity (resistivity) with increasing magnetic
field. The enhancement is particularly large at orientations φB = 90◦, 270◦,
where the magnetic field is aligned to the spin-orbit field acting on states
with the highest velocity vxk,ν in the direction of the electric field.

The qualitative behavior changes for B > 10 T, because the intra-
band scattering starts giving a non-negligible contribution. In Fig. 2.4 the
calculated vectors mean-free-path Λk,ν are plotted on top of the equi-energy
contours at the Fermi level, for different magnetic-field configurations.
At φB = 45◦ (c–d), the magnetic field is far from the crystalline axis.
The outermost contours (almost) cross each other at a polar coordinate
ϑ = ϑ ≈ 10◦, but not at the complementary angle (90◦ − ϑ) (top-right
quadrant). As a consequence, the rates of scattering between dxy–polarized
(red) states — of polar coordinate ϑ < ϑ < 90◦ − ϑ — and hybrid dxy/dxz
(purple) states at ϑ ≈ ϑ are enhanced by the field, as opposed to the
complementary-scattering rates.

To better illustrate the consequences of this, we formally express the
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2 Semiclassical theory of anisotropic transport at LaAlO3 / SrTiO3

solution of the Boltzmann equation (2.2) in the recursive form

Λk,ν = vk,ντk,ν +
∑
k′ 6=k

qkν,k′ν′
{
vk′,ν′τk′,ν′

+
∑

k′′ 6=k,k′
qk′ν′,k′′ν′′

{
vk′′,ν′′τk′′,ν′′

+
∑

k′′′ 6=k,k′,k′′
qk′′ν′′,k′′′ν′′′ vk′′′,ν′′′ + · · ·

}}
, (2.10)

where τk,ν is the bare band– and momentum–dependent relaxation-time

τk,ν =
∑
k′,ν′

qkν,k′ν′ . (2.11)

The low-angle scattering is strongly anisotropic, thereby the scattering-in
corrections to the vector mean-free-path ΛRTA

k,ν = τk,νvk,ν — calculated in
relaxation-time approximation [102, 103] — substantially affect magnitude
and direction of the vector mean-free-path, that gets tilted (away from
the direction of the velocity vk,ν) towards the direction of enhanced
scattering (ϑ). The anisotropy of the scattering effectively acts as a
Lorentz force, driving a shift of the electron distribution around the equi-
energy contours [104, 105]. However, unlike the actual Lorentz force,
magnitude and direction of this “effective Lorentz force” at a point (k, ν)
change non monotonically as a function of the magnetic-field parameters
B and φB, and so do the intra-band scattering rates. The direction of
the tilting of the vector mean-free-path Λk,ν may then undergo multiple
reversals when the magnetic field changes in magnitude and/or direction,
thereby the out-of-equilibrium distribution

gk,ν ∝ Λk,ν ·E (2.12)

can increase or decrease, depending on whether the direction of the tilt-
ing “tends” to the direction of the electric field or not. The appearance
of secondary maxima and minima (whose positions also change with B)
of the magnetoresistance vs. field curves, when the field is along inter-
mediate directions away from the crystalline axes, is explained by the
field–dependence of the effective Lorentz force.

Unlike the longitudinal magnetoresistance, the transverse resistivity
ρxy is entirely dominated by the intra-band scattering, that is the reason
why it is substantially zero for B < 10 T. We need to look at the total
contribution to the conductivity carried by states with opposite velocities
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Figure 2.4: Fermi surfaces at n = 2.2 × 1013 cm−2 for different configurations of the in-
plane magnetic field: (a) B = 0 T, (b) B = 20 T φB = 90◦, (c) B = 10 T φB = 45◦, (d)
B = 20 T φB = 45◦. Magnitude and direction of the vector mean-free-path Λk as a function
of the momentum k on the outermost bands (which support all of the total conductivity at
any fields) are represented by arrows - colors distinguish the two bands of each pair. The
longitudinal conductivity σxx is proportional to the average x-component of the vector mean-
free-path. (At φB = 0, 90◦ ρxx = σ−1

xx .) The modulation of the vector mean-free-path in
(c) is mirror-symmetric with respect to the crystalline axes; therefore σxy(ρxy) ≈ 0 because
states with opposite velocities compensate each other with equal weights Λx. Instead in (d)
the texture of the vector mean-free-path is manifestly asymmetric, producing sizable σxy.
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in the direction perpendicular to the electric field and understand why
an imbalance between their occupations is generated by the magnetic
field. For the states in the bottom-right quadrant (270◦ < ϑ < 360◦),
the scattering-in rates are large and isotropic, thereby they only affect
the magnitude — but not the direction — of the vector mean-free-path.
Hence Λk,ν ∝ vk,ν still holds, although the proportionality coefficient
deviates from the bare relaxation-time τk,ν . Similarly, states in the top-left
quadrant of the Brillouin zone have Λk,ν ∝ vk,ν . However the latter
receive smaller scattering-in corrections because the magnetic field does
not reduce – but rather enhances – the spin-orbital splitting at any point in
the quadrant. This imbalance is large enough to produce an unexpectedly-
large ρxy (ρxy/ρxx ≈ 0.1 at B = 20 T) even in the absence of orbital effects
of the magnetic field.

Finally, the angular modulation of ρxy sharply ramp up when the angle
φB takes a value such that at isolated points in the Brillouin zone the
spin-orbital splitting is totally suppressed by the Zeeman field. Once this
occurs, the low-angle scattering abruptly develops a preferential direction,
and then remains stable until the field is rotated far enough to let the
spin-orbital splitting open again. This results in a flattening of the peaks
of ρxy more or less pronounced in all the plots shown in this chapter.

2.5 Conclusions
In this work, we have investigated magnetotransport at the LaAlO3 / SrTiO3
interface with a simple theoretical model based on semiclassical Boltzmann
transport. In particular, we have studied the dependence of the resistivity
tensor on the magnitude and orientation of an in-plane magnetic field,
leaving out the investigation of the effects of an orbital field.

Many-body effects, e.g. electron-electron [106, 107] and magnetic in-
teractions [48, 50]), are neglected. Spin-orbit coupling effects on the
low-energy states of the conduction band are included by means of an
effective tight-binding model including three atomic orbitals. The Boltz-
mann equation (2.2) for electrons scattered by correlated impurities –
with correlations decaying on a characteristic length scale ξ – is solved
numerically as a function of the external field. Our main finding is a
crossover from the low-field regime of weak anisotropy to the high-field
regime of strong anisotropy which results from important changes in the
electronic structure at the Fermi level when the carrier-density is tuned
above the Lifshitz point [48]. However, we remark that is not simply the
onset of the occupation of anisotropic bands to determine a change of
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the magnetotransport properties, but rather the selective modulation of
the impurity-scattering connecting pairs of states at the Fermi level. In
presence of magnetic field, the spin-orbital structure of the Bloch states is
locally modified depending on the relative orientation of spin-orbit and
magnetic fields. In particular, the effect is enhanced in the vicinity of
(avoided) band crossings when the component of the magnetic field on
the local (band– and momentum–dependent) axis of the spin-orbit field is
comparable to the magnitude of the latter. Scattering amplitudes to and
from these states are then extremely sensitive to the magnitude and direc-
tion of the magnetic field. Our results are in good qualitative agreement
with experiments [50], although some features of the experimental data
remain not fully captured by our simple model.

2.6 Appendix A. Single-particle Hamiltonian
To model the conduction bands at the interface we use a single-electron
Hamiltonian [48] where the electronic states are derived from the t2g
(dxy, dxz and dyz) orbitals of Ti-atoms. Accounting for a total number
of six degrees of freedom (three orbitals times two spin components),
the translational invariant Hamiltonian in momentum space has a 6× 6
matrix-representation that is the sum of the four terms in Eq. (2.1). The
kinetic Hamiltonian

HL =

εxy(k)−∆E 0 0
0 εxz(k) δ(k)
0 δ(k) εyz(k)

⊗ σ̂0, (2.13)

εxy(k) = 2tl(2− cos kx − cos ky),
εxz(k) = 2tl(1− cos kx) + 2th(1− cos ky), (2.14)
εyz(k) = 2th(1− cos kx) + 2tl(1− cos ky),
δ(k) = 2td sin kx sin ky.

describes electrons hopping between Ti-orbitals on adjacent sites in the
interfacial (xy) plane. dxy orbitals have all the lobes lying on the xy-plane,
x- and y- hopping amplitudes are equivalently described by a single light
matrix elements tl. Instead dxz and dyz orbitals have both lobes in-plane
and in the direction normal to the interface, giving rise to one light and
one heavy (th < tl) matrix element, respectively. ∆E is the gain in the
on-site energy of dxy states confined at the interface compared to the on-
site energy of dxz/dyz states. Inter-orbital matrix elements ∝ sin kx sin ky
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account for dxz/dyz hybridization with a strength td ≈ th (however, this
term does not affect at all the results of our calculations).

At the interface the confining electric field along the z-direction breaks
the inversion-symmetry and activates transitions from dxy orbitals – which
are even under mirror symmetry – to dxz and dyz orbitals – odd under
mirror symmetry – on adjacent metal sites. The inversion-breaking term
has the form

HZ = ∆Z

 0 i sin ky i sin kx
−i sin ky 0 0
−i sin kx 0 0

⊗ σ̂0. (2.15)

Atomic spin-orbit coupling is the same as for the bulk STO system, that
is

HSO = ∆SO

2
∑

i=x,y,z
σi ⊗ Li = ∆SO

2

 0 iσ̂x −iσ̂y
−iσ̂x 0 iσ̂z
iσ̂y −iσ̂z 0

 , (2.16)

with

Lx = ~
( 0 i 0
−i 0 0
0 0 0

)
, Ly = ~

( 0 0 −i
0 0 0
i 0 0

)
, Lz = ~

( 0 0 0
0 0 i
0 −i 0

)
(2.17)

the representations of the components of the orbital angular momentum.
Lastly, the Zeeman Hamiltonian HB = µB(L+ gS) ·B/~ is

HB = µB

(
g(Bxσ̂x+Byσ̂y)/2 iBxσ̂0 −iByσ̂0

−iBxσ̂0 g(Bxσ̂x+Byσ̂y)/2 0
iByσ̂0 0 g(Bxσ̂x+Byσ̂y)/2

)
, (2.18)

with Bx = |B| cosφB, By = |B| sinφB and S = ~σ̂/2.

2.7 Appendix B. Dependence of the
anisotropy on the parameters of the
model

The parameters which define the model of the interface are taken within
the ranges that are set by theoretical and experimental results in literature,
e.g. first-principles calculations, ARPES measurements on the cleaved
surface of strontium titanate [98, 108, 109] and, more recently, soft-X-ray
ARPES on the LAO/STO interface [110]. Further estimates from transport
measurements [35, 84, 94, 111] give more informations at least about the
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order of magnitude of the energy scales in the system. In Table 2.1 we
list and discuss the choice of the parameters used for our calculations
and in addition we show results for different values of parameters. The
comparison with the results in the main text highlight the robustness of the
most remarkable features of the data that we have previously highlighted.
(The calculations here are for Gaussian-correlated impurities.)

Fig. tl th ∆E ∆SO ∆Z g ξ

2.2, 2.3, 2.7 400 12.5 65 7 2.5 5 5

2.5 400 12.5 65 9 4 −3.4 5

2.6 400 12.5 65 7 2.5 5 4, 8

Table 2.1: Sets of parameters used for the magnetotransport calculations in the chapter,
with reference to the figures.

Hopping elements tl, th, confinement energy ∆E, atomic-spin orbit
strength ∆SO and inversion-asymmetry parameter ∆Z are measured in
meV; the g-factor is dimensionless and the disorder correlation-length ξ is
measured in units of the lattice constant a. The values of the light and
heavy mass corresponding to the hopping parameters tl and th are 0.6me

and 19me respectively (me is the bare electron mass).
The value of ∆SO from ab-initio calculations [112] or transport experi-

ments [35, 84] is estimated in a wide range 10 ÷ 25meV. (In a seminal
work on Raman scattering for the bulk STO system Uwe et al. [113] ex-
tracted the value 18 meV). Here we consider the values ∆SO = 7 meV
and ∆SO = 9 meV (so just below the lower limit of the estimated range)
and produce qualitatively similar results for the anisotropy, while at the
same time changing also g and ∆Z. In principle one could take larger
values of ∆SO and slightly different hopping elements and still remain in
a regime where our results still hold. Moreover, we point out that the
strong anisotropy of the spin-orbit field around the Fermi surfaces [98] –
with a large enhancement of the effective orbital angular momentum near
hybridization gaps – so far has not been considered in fitting transport
measurements, that might return overestimated values of ∆SO.

Outcomes of Boltzmann calculations [51] were found in good agreement
with the experimentally measured magnetoresistance at φB = 90◦ (no
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Figure 2.5: Magnetoresistance and transverse resistivity for a negative g-factor (parameters
from the second row of Table 2.1).

transverse current, hence σxy = 0) in the regime of strong inversion-
symmetry-breaking ∆Z > ∆SO. Here we obtain similar magnetoresistance
– and comparable field–dependence – in the different (and maybe more
realistic) regime ∆Z < ∆SO. We can understand this similarity observed
in two completely different regimes by realizing that the reversal of the
spin-ordering on neighbouring Fermi surfaces induced by the magnetic
field, which reduces the overall forward scattering and hence lowers the
resistance, occurs in both cases regardless of the relative orientation of
orbital and spin angular momenta (which is different in the two regimes).
For ∆Z we consider values up to 5 meV, that is the upper bound estimated
by Ruhman et al. [48].

It is known that the g-factor for electrons confined in quantum wells,
like InSb and GaAs [114] can substantially differ from the conventional
value g = 2. In Sec. 2.3 we show results for g = 5, one of the two
possible outcomes (the other one is g = −3.4) of a fit to Shubnikov-de
Haas oscillations at low temperature [94]. (Note that changing the g-
factor is not simply equivalent to rescale the magnetic field: magnetic field
also couples to the orbital angular momentum and the relative strength
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Figure 2.6: Magnetoresistance and transverse resistivity for different values of the
correlation-length ξ (parameters from the third row of Table 2.1).

〈µ·B〉/〈L·B〉 is dependent on g.) Yet the phenomenology of the anisotropy
which we extensively discussed in Sec. 2.4 is recovered at negative g = −3.4
(Fig. 2.5).

Variations in the correlation-length ξ are also considered. While there is
no simple way to extract informations from experiments, it is reasonable
to limit ξ within a range of one order of magnitude. Indeed, a too
large ξ (> 10 a0 with a0 = 0.4nm the lattice constant) would require
to treat the impurities as a disordered medium rather than independent
scatterers. Calculations in the main text refer to ξ = 5 a0. In Fig. 2.6,
results for ξ = 4, 6, 8 are shown. Qualitatively the results are very
similar if ξ|∆kbs| > 1 where |∆kbs| ∼ 2koutF is the momentum-transfer for
backscattering in the large outer band (approximately equal to twice the
average Fermi momentum) and at the same time not larger than 10−15 a0
– with a0 = 0.4nm the lattice constant – whereby also the zero-field inter-
band scattering is highly reduced. This upper limit is also consistent with
the assumption of scattering by individual impurities (rather than by a
disordered medium that is a more suitable description for very large ξ).

Finally, we shortly comment on the density– vs. field–dependence of
the resistivities. Universal scaling of the magnetoresistance curves as
a function of carrier-density, after the magnetic field is rescaled by a
density–dependent characteristic value, appears to be a general feature of
the experimental data [50, 51]. This is not recovered by the Boltzmann
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2 Semiclassical theory of anisotropic transport at LaAlO3 / SrTiO3

below Lifshitz point above Lifshitz point

Figure 2.7: Magnetoresistance and transverse resistivity for two different densities (both
lower than the density considered in the main text). There is a clear difference in pattern
and the magnitude of the anisotropy between the two cases.

model (even within this different spin-orbit regime) pointing to a physical
mechanism that might be unrelated to spin-orbit coupling.

In Fig. 2.7 we show results of calculations at two different densities,
n = 1.5 · 1013cm−2 (below the Lifshitz point) and n = 2.1 · 1013cm−2

(above the Lifshitz point). The total absence of magnetoresistance at the
lowest density (left panel) simply comes from the absence of inter-band
scattering (since only the lowest dxy states are filled). At higher density
(right panel) the large-field magnetoresistance is characterized by multiple
maxima and minima as in Fig. 2.2, but there is larger discrepancy between
the magnetoresistance calculated at φB = 0 and the one at φB = 90. This
gap is progressively reduced as the chemical potential tends to the middle
of the spin-orbit gap at the Γ-point.
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3 Chirality blockade of
Andreev reflection in a
magnetic Weyl semimetal

3.1 Introduction
Spin-momentum locking is a key feature of topological states of matter:
In both topological insulators and topological semimetals the massless
quasiparticles are governed by a Hamiltonian H± = ±vFp · σ that ties
the direction of motion to the spin polarization.[3, 14, 115, 116] In a
topological insulator the ± sign distinguishes spatially separated states,
e.g., the opposite edges of a quantum spin-Hall insulator along which
a spin-up electron moves in opposite directions.[117] In a topological
semimetal the ± sign distinguishes Weyl cones in the band structure. A
magnetic Weyl semimetal has the minimum number of two Weyl cones
centered at opposite points ±K in the Brillouin zone, containing left-
handed and right-handed Weyl fermions displaced in the direction of the
magnetization.[63]

It is the purpose of the work presented in this chapter to point out
that the switch in chirality between the Weyl cones forms an obstacle
to Andreev reflection from a superconductor with conventional, spin-
singlet s-wave pairing, when the magnetization lies in the plane of the
normal-superconductor (NS) interface. The obstruction is illustrated in
Fig. 3.1. Andreev reflection is the backscattering of an electron as a hole,
accompanied by the transfer of a Cooper pair to the superconductor. For
a given spin band and a given Weyl cone, electrons and holes move in
the same direction, 1 so backscattering must involve either a switch in
spin band (σ 7→ −σ) or a switch in Weyl cone (K 7→ −K), but not both.
This is at odds with the requirement that zero spin and zero momentum
is transferred to the Cooper pair.

1A quick way to see that electrons and holes in a given spin band and Weyl cone
move in the same direction, is to note that their dispersion relations are related by
Eelectron(k) = −Ehole(−k), so a linear dispersion E = vFk remains the same.
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3 Chirality blockade of Andreev reflection in a magnetic Weyl semimetal

Figure 3.1: Andreev reflection (AR) from a superconductor in a quantum spin-Hall insulator
(top panel) and in a Weyl semimetal (bottom panel.) The red and blue wedges designate
electron and hole quasiparticles (Weyl fermions) moving towards or away from the interface
(solid versus dashed arrows indicate v in the ±x direction). The orientation of the wedge
distinguishes the polarization σ = ±1 of the spin band and the color indicates the chirality
C = sign (vσ). Andreev reflection switches σ and v, which is blocked if it must also switch
C.

This “chirality blockade” of Andreev reflection is specific for the conical
dispersion in a Weyl semimetal, and it does not appear in other contexts
where spin-momentum locking plays a role. In a quantum spin-Hall
insulator, there is no need to switch the chirality because the hole can
be reflected along the same edge as the incident electron.[118] There is a
formal similarity with graphene,[119] where Andreev reflection switches
between valleys at ±K, but there σ is an orbital pseudospin and the real
spin is not tied to the direction of motion.

We will show that the chirality blockade can be lifted by breaking the
requirement of zero-spin transfer with a Zeeman field. We also discuss the
subtle role played by inversion symmetry, by contrasting a scalar with a
pseudoscalar pair potential.[120] The absence of the chirality blockade for
pseudoscalar pairing explains why it did not appear in the many previous
studies of Andreev reflection in a Weyl semimetal.[121–129]

The outline of this chapter is as follows. In the next section, we introduce
the model of an NS junction between a Weyl semimetal and a conventional
superconductor. The 8× 8 Bogoliubov-De Gennes Hamiltonian is block-
diagonalized in Sec. 3.3, after which the chirality blockade of Andreev
reflection is obtained in Sec. 3.4. In the next section 3.5, we show how
to remove the blockade by a spin-active interface or by an inversion-

44



3.2 Model of a Weyl semimetal – conventional superconductor junction

symmetry breaking interface. As an experimental signature, we calculate
the conductance of the NS junction in Sec. 3.6. To eliminate the effects of
a lattice mismatch, we consider in Sec. 3.7 the NS junction between a Weyl
semimetal and a Weyl superconductor — which shows the same chirality
blockade for a scalar spin-singlet pair potential. More general pairing
symmetries (spin-triplet and pseudoscalar spin-singlet) are considered in
an Appendix. The Josephson effect in an SNS junction is studied in Sec.
3.8. We conclude in Sec. 3.9.

3.2 Model of a Weyl semimetal –
conventional superconductor junction

We study the junction between a Weyl semimetal in the normal state
(N) and a conventional (spin-singlet, s-wave) superconductor (S), by first
considering separately the Hamiltonians in the two regions and then
modeling the interface.

Throughout the chapter, we take the configuration of Fig. 3.1 (bottom
panel), with the magnetization along z in the plane of the NS interface
at x = 0. An out-of-plane rotation of the magnetization by an angle α
does not change the results for isotropic Weyl cones, provided that the
Fermi surfaces of opposite chirality are not coupled upon reflection at the
interface. The geometric condition for this is cosα ≥ kF/K, with kF the
Fermi wave vector and (0, 0,±K) the location of the two Weyl points. We
assume kF/K � 1 in order to have well-resolved Weyl cones, and then
there is a broad range of magnetization angles α over which our analysis
applies.

3.2.1 Weyl semimetal region

The Weyl semimetal in the region x > 0 has the generic Hamiltonian[130–
132]

HW(k) = τz(σxtx sin kx + σyty sin ky + σztz sin kz)
+mkτxσ0 + βτ0σz − µWτ0σ0, (3.1a)

mk = m0 + t′x(1− cos kx) + t′y(1− cos ky) + t′z(1− cos kz). (3.1b)

The units are normalized by ~ ≡ 1 and lattice constant a0 ≡ 1. The Pauli
matrices τα and σα refer to orbital and spin degrees of freedom (with τ0,
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3 Chirality blockade of Andreev reflection in a magnetic Weyl semimetal

σ0 the 2× 2 unit matrix). The Weyl points are at k = (0, 0,±K), with

K2 ≈ β2 −m2
0

t2z + t′zm0
(3.2)

displaced by the magnetization β in the z-direction. The mass term mk
ensures that there are no other states near the Fermi energy, so that we
have the minimal number of two Weyl cones of opposite chirality.

While time-reversal symmetry is broken by the magnetization β, the
inversion symmetry of the material is preserved:

τxHW(−k)τx = HW(k). (3.3)

The presence of inversion symmetry plays a crucial role when supercon-
ductivity enters, because the pair potential couples electrons and holes at
opposite momentum.

To describe the superconducting proximity effect we add the electron-
hole degree of freedom ν, with electron and hole Hamiltonians related by
the operation of time-reversal:

H
(e)
W (k) = HW(k), H

(h)
W (k) = σyH

∗
W(−k)σy. (3.4)

The two Hamiltonians are incorporated in the Bogoliubov-De Gennes
(BdG) Hamiltonian

HW =

(
H

(e)
W 0
0 −H(h)

W

)
= νzτz(σxtx sin kx + σyty sin ky + σztz sin kz)

+mkνzτxσ0 + βν0τ0σz − µWνzτ0σ0. (3.5)

Electron-hole symmetry is expressed by

νyσyH∗W(−k)νyσy = −HW(k). (3.6)

Note that the electron-hole symmetry operation squares to +1, as it should
in symmetry class D (fermions without spin-rotation or time-reversal
symmetry).

3.2.2 Superconducting region
The region x < 0 contains a conventional spin-singlet s-wave superconduc-
tor (real pair potential ∆0), with BdG Hamiltonian

HS =
(
p2/2m− µS ∆0

∆0 −p2/2m+ µS

)
. (3.7)
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3.2 Model of a Weyl semimetal – conventional superconductor junction

For a chemical potential µS � µW, the momentum components py, pz
parallel to the NS interface at x = 0 can be neglected relative to the
perpendicular component px. We expand px = ±pF +kx around the Fermi
momentum pF = mvF (with µS = p2

F/2m), by carrying out the unitary
transformation

HS 7→ e−iτzpFxHSe
iτzpFx

= vFkxνzτzσ0 + ∆0νxτ0σ0 +O(k2
x). (3.8)

Left-movers and right-movers in the x-direction are distinguished by the τ
degree of freedom, and we have inserted a σ0 Pauli matrix to account for
the spin degeneracy in S.

Electron-hole symmetry in S is expressed by

νyτxσyH∗S(−kx)νyτxσy = −HS(kx). (3.9)

There is an additional τx Pauli matrix, in comparison with the correspond-
ing symmetry relation (3.6) in N, to account for the switch from +pF to
−pF. (The electron-hole symmetry operation still squares to +1.)

3.2.3 Interface transfer matrix
The wave functions ψW and ψS on the two sides of the NS interface at
x = 0 are related by a transfer matrix,

ψS = (tx/vF)1/2MψW, M =
(
Me 0
0 Mh

)
, (3.10)

which ensures that particle current is conserved across the interface. We
assume that the interface does not couple electrons and holes, 2 hence the
block-diagonal structure, and we also assume that M is independent of
energy. The symmetry relations (3.6) and (3.9) imply that the electron
and hole transfer matrices are related by

Mh = τxσyM
∗
e τ0σy. (3.11)

Particle current conservation is expressed by

〈ψS|vFνzτzσ0|ψS〉 = 〈ψW|txνzτzσx|ψW〉, (3.12)
2It is justified to ignore electron-hole coupling in the interface matrix (3.10), because

this describes the transmission through a length of order 1/kF in S, which is smaller
than the electron-hole coupling length vF/∆0 by a factor EF/∆0 � 1.
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3 Chirality blockade of Andreev reflection in a magnetic Weyl semimetal

where we have also linearized HW in kx. The resulting restriction on the
electron transfer matrix is

M†e τzσ0Me = τzσx. (3.13)

Eq. (3.11) then implies that the hole transfer matrix Mh satisfies the same
restriction.

It is helpful to factor out the unitary matrix Ξ0,

Me ≡ ΞΞ0, Ξ0 = exp
[
i
π

4
τx(σ0 − σx)

]
, (3.14)

with Ξ0τzΞ†0τz = Ξ2
0 = σx, because now instead of Eq. (3.13) we have a

quasi-unitarity restriction

Ξ−1 = τzΞ†τz (3.15)

that is satisfied by the unit matrix.
The corresponding factorization of the hole transfer matrix is

Mh = τxσy(ΞΞ0)∗τ0σy, (3.16)

as required by the electron-hole symmetry (3.11). For later use we give
the inverse

M−1
h = (σyΞ0σy)(τzσyΞTτzσy)τx, (3.17)

in view of the quasi-unitarity (3.15). (The superscript T denotes the
transpose of a matrix.)

As an aside, we note that if the interface preserves time-reversal sym-
metry, we have the additional restriction

Ξ = τxσyΞ∗τxσy. (3.18)

Inversion symmetry is expressed by

Ξ = τxΞ−1τx. (3.19)

3.3 Block-diagonalization of the Weyl
Hamiltonian

For the mode-matching calculations at the NS interface it is convenient to
block-diagonalize HW in the τ degree of freedom, by means of the unitary
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3.4 Andreev reflection

transformation[61]

H̃W = UHWU†, U =
(
iτyσzΩθ 0

0 Ωθ

)
,

Ωθ = exp(− 1
2 iθτyσz),

(3.20)

with a k-dependent angle θ ∈ (0, π) defined by

cos θ = − tz sin kz
Mk

, sin θ = mk
Mk

,

Mk =
√
m2
k + t2z sin2 kz.

(3.21)

Note that U satisfies

U(k) = νyσyU∗(−k)νyσy, (3.22)

because k 7→ −k maps θ 7→ π − θ, so the electron-hole symmetry relation
(3.6) for HW is preserved upon the unitary transformation.

The transformed Hamiltonian,

H̃W(k) = νzτz(σxtx sin kx + σyty sin ky) +Mkν0τzσz

+ βν0τ0σz − µWνzτ0σ0, (3.23)

is block-diagonal in τ . The Weyl cones are in the τ = −1 block, which has
low-energy states near k = (0, 0,±β/tz) when Mk ≈ β. The τ = +1 block
is pushed to higher energies of order 2β.

The unitary transformation changes the wave function in N as ψ̃W =
UψW, and hence the matching equation (3.10) becomes

ψS = (tx/vF)1/2MU†ψ̃W. (3.24)

3.4 Andreev reflection
At excitation energies E below the superconducting gap ∆0, an electron
incident on the superconductor from the Weyl semimetal is reflected, either
as an electron (normal reflection, with amplitude ree) or as a hole (Andreev
reflection, with amplitude rhe). We calculate these reflection amplitudes,
initially restricting ourselves to normal incidence on the NS interface, in
order to simplify the formulas. The angular dependence is included in Sec.
3.6, when we calculate the conductance.

We include the energy dependence of the reflection amplitudes, but since
we assume only the low-energy states in the τ = −1 block are propagating
our analysis is restricted to |E| . β. Typically β ' 100 meV is much larger
than ∆0 ' 0.1 meV, so this covers the relevant energy range.
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3 Chirality blockade of Andreev reflection in a magnetic Weyl semimetal

3.4.1 Effective boundary condition at the NS
interface

As in the analogous problem for graphene,[133] the effect of the supercon-
ducting region x < 0 on the Weyl semimetal region x > 0 can be described
by an effective boundary condition on the wave functions in the limit
x→ 0 from above, indicated as x = 0+.

According to the Hamiltonian (3.8), the propagation of the wave function
into the superconductor at energy E is governed by the differential equation

vF
∂

∂x
ψ(x) =

(
iEνz + ∆0νy

)
τzσ0ψ(x) ≡ XSψ(x). (3.25)

The eigenvalues of XS are ±
√

∆2
0 − E2. To ensure a decaying wave

function in the S region x < 0 for |E| < ∆0, the state ψS at x = 0− should
be a linear superposition of the four eigenvectors with positive eigenvalue.
This is expressed by the boundary condition

νxψS = exp(iανzτzσ0)ψS,

α = arccos(E/∆0) ∈ (0, π/2).
(3.26)

If we decompose ψS = (ψe, ψh) into electron and hole components, the
boundary condition can be written as

ψh(0−) = exp(iατz)ψe(0−). (3.27)

This is a special case of the more general relation between electron and
hole wave functions at an NS interface derived in App. 3.10.

The combination of Eqs. (3.24) and (3.27) gives on the Weyl semimetal
side of the NS interface the relation

ψ̃h(0+) = T ψ̃e(0+),

T = −iΩθM−1
h exp(iατz)MeΩ†θτyσz,

(3.28)

which can be worked out as

T = − iΩθ(σyΞ0σy)(τzσyΞTτzσy)τx exp(iατz)Ξ(Ξ0Ω†θτyσz)

= U†θ τxσxΞTτyσy exp(iατz)ΞUθ, (3.29a)

Uθ ≡ Ξ0Ω†θτyσz, (3.29b)

upon substitution of Eq. (3.17) and using τyσz(σyΞ0σy)τyσz = Ξ†0.
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3.4 Andreev reflection

3.4.2 Reflection amplitudes
We consider an incident mode ψincident = (ψe,inc, ψh,inc) without a hole
component, ψh,inc = 0, and initially take the simplest case of normal
incidence, when ky = 0 and kz = ±K is at one of the two Weyl points.
(The dependence on the angle of incidence is included later on.) We work
in the transformed basis from Section 3.3, when both Weyl points are in
the τz = −1 band.

The incident electron wave function ψ̃e,inc = (0, 0, 1, 1) has σx = +1
in the τz = −1 band, so that its velocity txνzτzσx is in the negative x-
direction. The reflected wave function ψ̃reflected = (ψ̃e,refl, ψ̃h,refl) contains
an electron component ψ̃e,refl = ree(0, 0, 1,−1) with σx = −1, and a hole
component ψ̃h,refl = rhe(0, 0, 1, 1) with σx = +1, both waves propagating
in the positive x-direction. The reflected waves are related to the incident
wave by the normal reflection amplitude ree and the Andreev reflection
amplitude rhe.

At the interface the propagating modes in the τz = −1 band may excite
evanescent modes in the τz = +1 band. Their wave function ψ̃evan in N is
an eigenstate of νzσy with eigenvalue +1, so that the Hamiltonian (3.23)
produces a decay for x → ∞. The electron and hole components of the
evanescent mode are ψ̃e,evan = a(1, i, 0, 0) and ψ̃h,surf = b(1,−i, 0, 0), with
unknown amplitudes a, b.

The boundary condition (3.28) then equates the vectors
b
−ib
rhe
rhe

 = T


a
ia

1 + ree
1− ree

 . (3.30)

There is no dependence on the chemical potential µW in the Weyl semimetal
for normal incidence.

For an inactive interface, with Ξ = 1, we have

T = τyσz cosα− iτxσy sinα, (3.31)

and we find
ree = −ie−2iα, rhe = 0, (3.32)

i.e. fully suppressed Andreev reflection at all energies (and also at all angles
of incidence, see Sec. 3.6). For E < ∆0 the incident electron is reflected as
an electron with unit probability, without any transfer of a Cooper pair
into the superconductor. For E > ∆0 the angle α = −i arcosh (E/∆0) is
imaginary and the incident electron is partly transmitted through the NS
interface — but still without any Cooper pair transfer.

51



3 Chirality blockade of Andreev reflection in a magnetic Weyl semimetal

3.5 Activation of Andreev reflection
Andreev reflection can be restored by a suitably chosen interface potential.
We examine two types of interfaces, one that breaks time-reversal symmetry
by a Zeeman coupling to the spin, and another that breaks inversion
symmetry by a tunnel coupling to the orbital degree of freedom.

3.5.1 Spin-active interface
We consider an interface with a Zeeman Hamiltonian Hinterf = gµBB · σ
on the S side, which gives a transfer matrix

Ξ = exp
[
i(`/vF)τzHinterf

]
= exp

[
iγτz(n · σ)

]
, (3.33)

with γ = gµBB`/vF, n a unit vector in the B-direction, and ` is the
thickness of the interface layer. The superconducting coherence length
ξ = ~vF/∆0 is an upper bound on `, and hence γ . EZeeman/∆0, with
EZeeman = gµBB the Zeeman spin splitting.

Depending on the direction of the field, we find the Andreev reflection
amplitudes

Hinterf = Bxσx ⇒ rhe = − 2 cosα sin 2γ sin θ
sin2 2γ sin2 θ + e2iα , (3.34a)

Hinterf = Byσy ⇒ rhe = 2i sinα sin 2γ cos θ
sin2 2γ cos2 θ − e2iα , (3.34b)

Hinterf = Bzσz ⇒ rhe = − 2i cosα sin 2γ
sin2 2γ + e2iα . (3.34c)

At the Fermi level (E = 0 ⇒ α = π/2), we have rhe = 0 for B in the
x-direction or in the z-direction, while a field in y-direction activates the
Andreev reflection.

For m0 � β � tz we may approximate K ≈ β/tz � 1, sin θ ≈ β/2tz �
1 and cos θ ≈ ∓1. The Andreev reflection probability Rhe = |rhe|2 at the
Fermi level for B in the y-direction is then given by

Rhe = 4 sin2 2γ
(1 + sin2 2γ)2 . (3.35)

It oscillates with γ, reaching a maximum of unity when γ = 1
4π modulo

π/2.
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3.5.2 Inversion-symmetry breaking interface
We next consider interfaces that break inversion symmetry rather than
time-reversal symmetry. A potential barrier on the S side of the interface
couples ±kF, and thereby switches the τz index. This is modeled by a
tunnel Hamiltonian of the form Hinterf = Vbarrierτα with α ∈ {x, y}, which
preserves time-reversal symmetry (Hinterf = τxσyH

∗
interfτxσy).

The choice Hinterf = Vbarrierτx gives the transfer matrix

Ξ = e−γ
′τy , γ′ = Vbarrier`/vF . Vbarrier/∆0. (3.36)

This preserves inversion symmetry [see Eq. (3.19)], and does not activate
Andreev reflection: rhe = 0 for all E.

If instead we take the Hamiltonian Hinterf = Vbarrierτy, we have Ξ = eγ
′τx .

Inversion symmetry is broken, and we find activated Andreev reflection:

rhe = 2i sinα sinh 2γ′ cos θ
sin2 α sinh2 2γ′ sin2 θ + (sinα cosh 2γ′ − i cosα)2 . (3.37)

At the Fermi level, and for m0 � β � tz, the Andreev reflection probability
is

Rhe = 4 sinh2 2γ′

cosh4 2γ′
. (3.38)

It reaches a maximum of unity for γ′ = 1
2 ln(1 +

√
2) = 0.441, decaying to

zero for both smaller and larger γ′.

3.6 Conductance of the NS junction
The reflection probabilities Ree = |ree|2 and Rhe = |rhe|2 determine the
differential conductance dI/dV = G(eV ) of the NS junction, per unit
surface area, according to[134]

G(E) = e2

h

∫
dky
2π

∫
dkz
2π

(1−Ree +Rhe). (3.39)

The reflection amplitudes ree and rhe, as a function of energy E and
transverse momentum components ky, kz, follow from the solution of Eq.
(3.30), suitably generalized to include an arbitrary angle of incidence.

We consider an incident electron near the Weyl point at k = (0, 0,K),
with K ≈ β/tz � 1. [The other Weyl cone at −K gives the same
contribution to the conductance and we may set θ = 0 in the transfer
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3 Chirality blockade of Andreev reflection in a magnetic Weyl semimetal

matrix (3.29).] We take µW, E > 0 so the electron is above the Fermi
level at energy µW + E in the upper half of the Weyl cone. The Andreev
reflected hole is below the Fermi level at energy µW −E, which drops into
the lower half of the Weyl cone when E > µW. For brevity we denote
qx = txkx, qy = tyky, qz = tzkz − β.

We normalize the conductance by the total number N(E) of propagating
electron modes in the Weyl cones at energy E above µW, given by

N(E) = 2
∫

dqy
2πty

∫
dqz
2πtz

Θ
[
(E + µW)2 − q2

y − q2
z

]
= (E + µW)2

2πtytz
. (3.40)

(The prefactor 2 sums the contributions from the two Weyl cones.)
The low-energy Hamiltonian HK follows upon projection of the Hamil-

tonian (3.23) on the τ = −1 band and expansion around the Weyl point,

HK = −νz(σxqx + σyqy)− ν0σzqz − µWνzσ0. (3.41)

The x-component of the momentum is −qx and +qx for the incident and
reflected electron, and q′x for the hole, with

qx =
√

(E + µW)2 − q2
y − q2

z ,

q′x = sign (E − µW)
√

(E − µW)2 − q2
y − q2

z .
(3.42)

Only real qx contribute to the wave vector integration in Eq. (3.39), and
when q′x becomes imaginary one should set Rhe ≡ 0.

Substitution of the corresponding spinors into Eq. (3.30) (normalized to
unit flux) gives the mode matching condition

√
qx(E + µW − qz)
q′x(E − µW − qz)


b
−ib

(q′x + iqy)rhe
(E − µW − qz)rhe

 =

= T


a
ia

qx − iqy + (qx + iqy)ree
(E + µW − qz)(1− ree)

 . (3.43)

For the inactive interface, when Ξ = 1, the Andreev reflection amplitude
vanishes at all energies for all angles of incidence. Andreev reflection
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3.7 Weyl semimetal – Weyl superconductor junction

Figure 3.2: Zero-bias conductance of the NS junction, calculated from Eq. (3.44), for the
spin-active interface (dashed curve) and for the inversion-symmetry breaking interface (solid
curve). The conductance is normalized by the number of modes N from Eq. (3.40). For the
inactive interface the conductance vanishes.

is activated by the spin-active interface or by the inversion-symmetry-
breaking interface, as discussed in Sec. 3.5. At the Fermi level (E = 0,
q′x = −qx) we recover the results (3.35) and (3.38) multiplied by the factor
q2
x/(q2

x + q2
z) that accounts for the deviation from normal incidence. The

resulting zero-bias conductance is given by

lim
V→0

dI

dV
= 16

3 N(0)e
2

h
×

{
sin2 2γ/(1 + sin2 2γ)2,

sinh2 2γ′/ cosh4 2γ′,
(3.44)

as plotted in Fig. 3.2, with γ = EZeeman`/vF . EZeeman/∆0 in the spin-
active interface Hamiltonian Hinterf = EZeemanσy, and γ′ = Vbarrier`/vF .
Vbarrier/∆0 in the inversion-symmetry breaking case Hinterf = Vbarrierτy.

The voltage-dependent differential conductance is plotted in Fig. 4.10.
The conductance vanishes at eV = µW < ∆0, when the hole touches the
Weyl point. (The same feature appears at the Dirac point in graphene
[135].)

3.7 Weyl semimetal – Weyl superconductor
junction

So far we have considered the junction between a Weyl semimetal and a su-
perconductor formed from a conventional metal. A doped Weyl semimetal
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3 Chirality blockade of Andreev reflection in a magnetic Weyl semimetal

Figure 3.3: Differential conductance of the NS junction, calculated from Eqs. (3.39) and
(3.43), for the spin-active interface of Sec. 3.5.1 (dashed curves, for Hinterf = EZeemanσy
with γ = π/4), and for the inversion-symmetry breaking interface of Sec. 3.5.2 (solid curves,
for Hinterf = Vbarrierτy with γ′ = 1

2 ln(1 +
√

2)). For eV � ∆0, all curves tend to the
normal-state interface conductance of 0.8Ne2/h.

can itself become superconducting, forming a Weyl superconductor.[14,
116] In this section we study how the chirality blockade manifests itself in
an NS junction between the normal and superconducting state of Weyl
fermions. To make contact with a specific microscopic model, we con-
sider the heterostructure approach of Burkov and Balents [63], which can
describe both a Weyl semimetal and a Weyl superconductor [60, 136].

3.7.1 Heterostructure model
For the Weyl semimetal, we start from a multilayer heterostructure, com-
posed of layers of a magnetically doped topological insulator (such as
Bi2Se3), separated by a normal-insulator spacer layer with periodicity d.
Its Hamiltonian is[63, 137, 138]

H(k) = vFτz(−σykx + σxky) + βτ0σz

+ (mkτx − τytz sin kzd)σ0, (3.45)
mk = t′z + tz cos kzd.

The Pauli matrices σi act on the spin degree of freedom of the surface
electrons in the topological insulator layers. The τz = ±1 index distin-
guishes the orbitals on the top and bottom surfaces, coupled by the t′z
hopping within the same layer and by the tz hopping from one layer to
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3.7 Weyl semimetal – Weyl superconductor junction

Figure 3.4: Cross-section through a layered Weyl semimetal-superconductor junction, based
on the heterostructure model[60, 63] of alternating topological insulator (TI) layers and
normal (N) or superconducting (S) spacer layers. In this model the orbital τ degree of
freedom refers to the conducting top and bottom surfaces of the TI layers.

the next. Magnetic impurities in the topological insulator layers produce
a perpendicular magnetization, leading to an exchange splitting β. The
two Weyl points are at k = (0, 0, π/d±K), with

K2 ≈ β2 − (tz − t′z)2

d2tzt′z
. (3.46)

They are closely spaced near the edge of the Brillouin zone for |tz − t′z| �
β � tzd.

To make contact with the generic Weyl Hamiltonian (3.1), we note the
unitary transformation

U0H(k)U†0 = vFτz(σxkx + σyky)− τzσztz sin kzd
+mkτxσ0 + βτ0σz, (3.47)

U0 = exp[− 1
4 iπ(τ0 + τx)σz].

We will make use of this transformation later on.
Following Meng and Balents [60], the spacer layer may have a spin-

singlet s-wave pair potential ∆, with a uniform phase throughout the
heterostructure (which we set to zero, allowing us to take ∆ real). The
pair potential induces superconductivity in the top and bottom surfaces
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3 Chirality blockade of Andreev reflection in a magnetic Weyl semimetal

of the topological insulator layers, as described by the BdG Hamiltonian

H(k) = vFνzτz(−σykx + σxky) + βν0τ0σz

+ νz(mkτx − τytz sin kzd)σ0 − µνzτ0σ0 + ∆,

∆ = ∆(x)νxτ0σ0. (3.48)

It acts on eight-component Nambu spinors Ψ with elements

Ψ = (ψ+↑, ψ+↓, ψ−↑, ψ−↓, ψ
∗
+↓,−ψ∗+↑, ψ∗−↓,−ψ∗−↑), (3.49)

where ± refers to the top and bottom surface and l refers to the spin
band.

The pair potential ∆ in Eq. (3.48) is diagonal in the τ and σ degrees of
freedom. The corresponding BCS pairing interaction,

HBCS = ∆
∑
k

[
c†+↑(k)c†+↓(−k) + c†−↑(k)c†−↓(−k)

]
+ H.c., (3.50)

represents zero-momentum pairing of spin-up and spin-down electrons
within the same conducting surface of each topological insulator layer
(inversion-symmetric, spin-singlet, intra-orbital pairing).

The BCS pairing interaction (3.50) corresponds to a scalar pair potential
in the spin and orbital degrees of freedom. We restrict ourselves to that
pairing symmetry in this section. Other BCS pair potentials (spin-triplet
and pseudoscalar spin-singlet) are considered in Appendix 3.11.

To describe a NS interface at x = 0, we set ∆(x) = 0 for x > 0 and
∆(x) = ∆0 for x < 0 (see Fig. 3.4). We also adjust the chemical potential
µ(x), from a small value µW for x > 0 to a large value µS for x < 0. For
the other parameters we take x-independent values.

3.7.2 Mode matching at the NS interface
We can now follow the mode-matching analysis of the preceding sections,
with one simplification and one complication. The simplification is that,
because we have the same Weyl Hamiltonian on the two sides of the NS
interface, we no longer need an interface matrix to conserve current across
the interface. The complication is that the block-diagonalization in the τ
degree of freedom on the N side of the interface introduces off-diagonal
blocks in the pair potential on the S side.

The unitary transformation that achieves this partial block-diagonalization
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3.7 Weyl semimetal – Weyl superconductor junction

is

H̃ = VHV†, V =
(
τyσzΩθU0 0

0 ΩθU0

)
, (3.51)

Ωθ = exp(− 1
2 iθτyσz),

with U0 from Eq. (3.47). The kz-dependent angle θ is defined by

cos θ = (tz sin kzd)/Mk, sin θ = mk/Mk,

Mk =
√
m2
k + t2z sin2 kzd.

(3.52)

For closely-spaced Weyl points (when |tz − t′z| � β � tzd) we may
approximate sin θ ≈ 0, | cos θ| ≈ 1.

The transformed Hamiltonian is

H̃(k) = vFνzτz(σxkx + σyky) +Mkν0τzσz + βν0τ0σz

− µνzτ0σ0 + ∆̃,

∆̃ ≡ V∆V† = ∆(x)νxτyσz. (3.53)

This has the same block-diagonal form (3.23) on the N side x > 0 of the
interface (where ∆ = 0), but on the S side x < 0 the transformed pair
potential ∆̃ is off-diagonal in the τ degree of freedom. 3

We again assume µS � µW so that in S we may neglect the transverse
wave vector component ky and take kz at the Weyl point, where Mk = β.
The wave equation in S corresponding to the Hamiltonian (3.53) then
reads

vF
∂

∂x
ψ(x) = XSψ(x), x < 0, (3.54)

XS = i(Eνz + µSν0)τzσx − βνz(τ0 + τz)σy −∆0νyτxσy.

As derived in Appendix 3.10, the decaying eigenvectors for E < ∆0 and
x→ −∞ satisfy

νxτyσzψ = exp(iανzτzσx)ψ, (3.55)
with α = arccos(E/∆0) ∈ (0, π/2). The corresponding boundary condition
on ψ = (ψe, ψh) is

ψh(0) = T ψe(0), T = eiατzσxτyσz. (3.56)
3We should note that our Eq. (3.53), with a pair potential that is off-diagonal in τ ,

disagrees with Eqs. 5–8 of Ref. 60, which have a fully block-diagonal Hamiltonian in
the layer degree of freedom. We do agree on the Hamiltonian before the unitary trans-
formation [our Eq. (3.48) and Eqs. 1–3 in Ref. 60] and we have traced the discrepancy
to an algebraic error.
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3 Chirality blockade of Andreev reflection in a magnetic Weyl semimetal

Because ψ(x) is now continuous across the interface, we do not need to
distinguish 0+ and 0− as we needed to do in Sec. 3.4.1.

Substitution of T into the mode matching equation (3.43) gives rhe ≡ 0;
fully suppressed Andreev reflection at all energies and all angles of incidence.
This is the chirality blockade.

3.8 Fermi-arc mediated Josephson effect
While the conductance of a single NS interface is fully suppressed by the
chirality blockade, the supercurrent through an SNS junction is nonzero
because of overlapping surface states (Fermi arcs) on the two NS interfaces.
We have calculated this Fermi-arc mediated Josephson effect (see Appendix
3.12), and we summarize the results.

The Fermi arcs connect the Weyl cones of opposite chirality [62]. As
they pass through the center of the Brillouin zone, the chirality blockade
is no longer operative and the Fermi arcs acquire a mixed electron-hole
character. At kz = 0, the surface states are charge neutral Majorana
fermions [61].

The Fermi arcs are bound to the NS interface over a distance of order
vF/β, so a coupling of the two NS interfaces is possible if their separation
L . vF/β. For larger L, the critical current is suppressed ∝ exp(−L/ξarc),
with ξarc ' vF/β the penetration depth of the surface Fermi arc into the
bulk (see Fig. 3.5).

3.9 Discussion
In conclusion, we have shown that Andreev reflection at the interface
between a Weyl semimetal and a spin-singlet s-wave superconductor is
suppressed by a mismatch of the chirality of the incident electron and the
reflected hole. Zero-momentum (s-wave) pairing requires that the electron
and hole have opposite chirality, while singlet pairing requires that they
occupy opposite spin bands, and these two requirements are incompatible,
as illustrated in Fig. 3.1.

We have identified two mechanisms that can remove the chirality block-
ade and activate Andreev reflection. The first mechanism, a spin-active
interface, has the same effect as spin-triplet pairing: it enables Andreev
reflection by allowing an electron and a hole to be in the same spin band.
The second mechanism, inversion-symmetry breaking either at the interface
or in the pair potential, is more subtle, as we now discuss.
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3.9 Discussion

Figure 3.5: Critical current density jc of the SNS junction as a function of the separation
L of the NS interfaces for different values of β, calculated from the Hamiltonian (3.48) for
µ = 0, vF = tz = t′z = d = 1. The dashed lines indicate the exponential decay ∝ e−cβL/vF

with c = 1.7.

Consider the single-cone Weyl Hamiltonian centered at k = (0, 0,+K),

H+ = vxkxσx + vykyσy + vz(kz −K)σz. (3.57)

By definition, its chirality is C = sign (vxvyvz). For the second Weyl cone
centered at k = (0, 0,−K) of opposite chirality, we can take either

H− = −vxkxσx − vykyσy − vz(kz +K)σz (3.58)

or
H ′− = vxkxσx + vykyσy − vz(kz +K)σz, (3.59)

or some permutation of x, y, z, but either all three signs or one single sign
of the velocity components must flip. The first choice satisfies inversion
symmetry, H−(−k) = H+(k), while the second choice does not. In Fig.
3.6 we show the spin-momentum locking in the pair of Weyl cones HW =
(H+, H−) and H ′W = (H+, H

′
−) with and without inversion symmetry.

We see that the chirality blockade can be removed by breaking inversion
symmetry.

This explains why Uchida, Habe, and Asano [121] (who, with Cho,
Bardarson, Lu, and Moore [139], fully appreciated the importance of spin-
momentum locking for superconductivity in a Weyl semimetal) did not
find any suppression of Andreev reflection at normal incidence on the NS
interface. Their two-band model4 of a Weyl semimetal [130, 140] has the

4The Hamiltonian H′W = (H+, H′−) is called a two-band model because near the
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3 Chirality blockade of Andreev reflection in a magnetic Weyl semimetal

Figure 3.6: Illustration of the spin-momentum locking for states at the Fermi energy in
a pair of Weyl cones at k = (0, 0,±K). The arrows indicate the direction of the spin
polarization for a momentum eigenstate at ky = 0, as a function of kx and kz . The left
column is for the Hamiltonian HW = (H+, H−) with inversion symmetry, the right column
is for H′W = (H+, H

′
−) without inversion symmetry. Andreev reflection (AR) along the x-

direction on a superconductor with zero-momentum spin-singlet pairing is blocked for HW
(the red and blue arrows point in the same direction, so the spin is not inverted, as it should
be for spin-singlet pairing), while it is allowed for H′W (red and blue arrows point in opposite
directions).

same spin texture as H ′W — hence it breaks inversion symmetry and does
not show the chirality blockade. The relevance of inversion symmetry
also explains why no chirality blockade appeared in Refs. 122–124, where
a pseudoscalar pair potential was used that breaks this symmetry (see
Appendix 3.11.2).

The chirality blockade suppresses the superconducting proximity effect,
but since it can be lifted in a controlled way by a Zeeman field (see Fig.
3.2), it offers opportunities for spintronics applications. In the geometry of
Fig. 3.1, a magnetic field in the y-direction, in the plane of the NS interface
and perpendicular to the magnetization, activates Andreev reflection when
the Zeeman energy EZeeman becomes comparable to the superconducting
gap ∆0. (To prevent pair-breaking effects from this Zeeman field one can

Weyl points Eqs. (3.57) and (3.59) can be combined into a single 2× 2 matrix of the
form vxkxσx + vykyσy + (vz/2K)(k2

z −K2)σz . No additional orbital degree of freedom
is needed, as in the four-band model (3.1). The inversion-symmetry breaking remains
hidden unless there are spin-dependent processes that couple the Weyl cones, as in
Andreev reflection.
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3.10 Derivation of the boundary condition at Weyl SM – Weyl SC interface

use a thin-film superconductor with strong spin-orbit coupling [141].) For
a typical Zeeman energy of 1 meV/Tesla and a typical gap of 0.1 meV,
a 100 mT magnetic field can then activate the transfer of Cooper pairs
through the NS interface. This provides a phase-insensitive alternative to
the phase-sensitive control of Cooper pair transfer in a Josephson junction.

3.10 Appendix A. Derivation of the
boundary condition at a Weyl
semimetal – Weyl superconductor
interface

Equation (3.26) gives the effective boundary condition at the NS interface
between a Weyl semimetal and a conventional superconductor. Here we
generalize this to the interface between a Weyl semimetal and a Weyl
superconductor. We allow for a more general pairing symmetry than
considered in the main text, and in Appendix 3.11 we apply the boundary
condition to spin-triplet pairings and to a pseudoscalar spin-singlet pairing.

As discussed in the related context of graphene [133], the local coupling
of electrons and holes at the NS interface that is expressed by the effective
boundary condition holds under three conditions: (i) The chemical po-
tential µS in the superconducting region is the largest energy scale in the
problem, much larger than the superconducting gap ∆0 and much larger
than the chemical potential µN in the normal region; (ii) the interface is
smooth and impurity-free on the scale of the superconducting coherence
length ~vF/∆0; and (iii) there is no lattice mismatch at the NS interface.

We start from Eq. (3.54), which governs the decay of the wave function
in the superconducting region,

vF
∂

∂x
ψ(x) = XSψ(x), x < 0, (3.60)

XS = (iµSτzσx + YS), YS = iνzτzσx(E − ∆̃).

We have omitted the β term, which anticommutes with the µS term and
can be neglected in the large-µS limit. We seek a boundary condition on
ψ at x = 0 that ensures decay for x→ −∞.

In the most general case, ∆̃ is an Hermitian 8× 8 matrix that satisfies
the electron-hole symmetry relation

νyσy∆̃∗νyσy = −∆̃. (3.61)
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3 Chirality blockade of Andreev reflection in a magnetic Weyl semimetal

We make the following four additional assumptions:

1. ∆̃ anticommutes with νz (so it is fully off-diagonal in the electron-
hole degree of freedom);

2. ∆̃ commutes with τzσx (anticommuting terms do not contribute to
the spectrum of XS in the large-µS limit, so they may be ignored);

3. ∆̃ is independent of the momentum perpendicular to the NS interface
(it may depend on the parallel momentum);

4. ∆̃ squares to a scalar ∆2
0 (this assumption is not essential, but allows

for a simple closed-form answer).

Under these conditions XS and YS commute, so they can be diagonalized
simultaneously. Moroever, Y 2

S = ∆2
0 −E2, hence a decaying wave function

for E < ∆0 is an eigenfunction of YS with eigenvalue +
√

∆2
0 − E2,

YSψ =
√

∆2
0 − E2 ψ. (3.62)

We rearrange this to obtain a relation between the electron and hole
components of ψ = (ψe, ψh):

− iνzτzσx∆̃ψ =
(
−iEνzτzσx +

√
∆2

0 − E2
)
ψ

⇒ ∆̃ψ =
(
E + i

√
∆2

0 − E2 νzτzσx

)
ψ

⇒ ∆̃ψ = ∆0 exp(iανzτzσx)ψ, (3.63)

with α = arccos (E/∆0) ∈ (0, π/2). For a superconducting phase ϕ we can
decompose

∆̃ = ∆0(νx cosϕ− νy sinϕ)χ, (3.64)

with χ a 4× 4 Hermitian matrix that squares to unity and commutes with
τzσx. We thus arrive at the desired boundary condition,

eiϕχψh(0) = eiατzσxψe(0). (3.65)

In a more general geometry, with a unit vector n in the x–y plane perpen-
dicular to the NS interface and pointing from N to S, we can write the
boundary condition as

ψh(0) = T ψe(0), T = e−iϕ exp
[
−iατz(n · σ)

]
χ. (3.66)

64
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This was derived for subgap energies E < ∆0. The boundary condition
still holds by analytic continuation for E > ∆0, when α = −i arcosh (E/∆0)
is imaginary, provided that there is no particle current incident on the NS
interface from the superconducting side.

3.11 Appendix B. Generalizations to other
pairing symmetries

The pair potential ∆ = ∆0νxτ0σ0 in the Meng-Balents Hamiltonian
(3.48) represents inversion-symmetric, spin-singlet, intra-orbital pairing,
appropriate for the heterostructure model of Fig. 3.4. Other types of pairing
may be relevant for Weyl semimetals with intrinsic superconductivity.[136,
138] We calculate the corresponding Andreev reflection probabilities.

3.11.1 Spin-triplet pair potential
For the three s = x, y, z spin-triplet pairings, the relationship between
the pair potential ∆s in the Hamiltonian (3.48) and the transformed pair
potential ∆̃s in the Hamiltonian (3.53) is

∆s = ∆0νxτyσs ⇒ ∆̃s = −∆0νyχs, (3.67a)
χx = −τ0σx cos θ − τyσy sin θ, (3.67b)
χy = −τ0σy cos θ + τyσx sin θ, (3.67c)
χz = τxσz cos θ − τzσ0 sin θ. (3.67d)

Each χs squares to unity but only χx and χz commute with τzσx. The
s = y pairing anticommutes and does not open a gap in the large-µS limit.
For the s = x and s = z pairings we can read off the electron-hole coupling
matrix Ts from Eq. (3.66),

Ts = −ieiατzσxχs, (3.68)

and then derive the Andreev reflection amplitude by solving Eq. (3.43).
The result for normal incidence is

rhe = 2 sinα cos θ
cos2 θ − e2iα , for s = x, (3.69a)

rhe = − 2i cosα sin θ
sin2 θ + e2iα , for s = z. (3.69b)
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3 Chirality blockade of Andreev reflection in a magnetic Weyl semimetal

More generally, for any angle of incidence, we have at the Fermi level
(when E = 0⇒ α = π/2) the Andreev reflection probabilities

Rhe = v2
Fk

2
x

µ2 − v2
Fk

2
y

4 cos2 θ

(1 + cos2 θ)2 , for s = x,

Rhe = 0, for s = z.

(3.70)

3.11.2 Pseudoscalar spin-singlet pair potential
The pairing interaction

H ′BCS = ∆
∑
k

[
c†+↑(k)c†+↓(−k)− c†−↑(k)c†−↓(−k)

]
+ H.c. (3.71)

differs from HBCS in Eq. (3.50) by a π phase shift of the pair potential
on the top and bottom surfaces. The corresponding pair potential in the
BdG Hamiltonian (3.48) is

∆′ = ∆0νxτzσ0. (3.72)

It anticommutes with τx and thus changes sign upon inversion, representing
a pseudoscalar pairing in the classification of Ref. 120.

Bednik, Zyuzin, and Burkov[136] obtain the pseudoscalar pairing (3.71)
in a model where the pairing interaction is intrinsic to the Weyl semimetal,
rather than proximity-induced as in the multilayer structure of Fig. 3.4.
(The τ degree of freedom then refers to a molecular orbital instead of to a
heterostructure layer.)

The change from scalar to pseudoscalar pairing has drastic consequences
for Andreev reflection: The transformed pair potential in Eq. (3.53),

∆̃′ ≡ V∆′V† = −∆0νxτ0σ0, (3.73)

is diagonal rather than off-diagonal in the τ degree of freedom. We can
therefore project the transformed Hamiltonian,

H̃′(k) = vFνzτz(σxkx + σyky) +Mkν0τzσz + βν0τ0σz

− µνzτ0σ0 −∆0νxτ0σ0, (3.74)

onto the τ = −1 subband without losing the pair potential. There is now
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3.11 Appendix B. Generalizations to other pairing symmetries

no chirality blockade. The Andreev reflection amplitude is

rhe = − E/∆0 + i
√

1− E2/∆2
0, (3.75a)

at normal incidence for any energy,

rhe = ikx√
k2
x + k2

y

, (3.75b)

at the Fermi level for any angle of incidence.

The projected Hamiltonian,

H̃′τ=−1 = − vFνz(σxkx + σyky) + (β −Mk)ν0σz

− µνzσ0 −∆0νxσ0, (3.76)

is essentially the one studied in Refs. 122–124. This explains why no
chirality blockade was obtained in those studies of Andreev reflection in a
Weyl semimetal.

3.11.3 Comparison with tight-binding model
simulations

To test these analytical formulas, we have discretized the eight-orbital
Hamiltonian (3.48) on a cubic lattice, and we solved the scattering problem
at the NS interface numerically, using the Kwant toolbox.[142]

Equation (3.48) is linear in kx and ky, and a straightforward discretiza-
tion, by replacing kx 7→ sin kx, ky 7→ sin ky, would suffer from fermion
doubling. To avoid this, we follow Ref. 132 and add quadratic terms in kx
and ky to the mass term mk, resulting in the tight-binding Hamiltonian

H(k) = νzτz(−σy sin kx + σx sin ky) + βν0τ0σz

+ νz(mkτx − τy sin kz)σ0 − µνzτ0σ0 + ∆, (3.77a)
mk = 3 + cos kz − cos kx − cos ky. (3.77b)

For simplicity we have set the Fermi velocity vF and the hopping energies
tz, t

′
z equal to unity, and we have taken the same lattice constant d = a ≡ 1

parallel and perpendicular to the layers.
The Weyl points are at k = (0, 0, π ±K), where

(1− cosK)2 + sin2K = β2 ⇒ K = arctan

(
β
√

4− β2

2− β2

)
. (3.78)
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3 Chirality blockade of Andreev reflection in a magnetic Weyl semimetal

Figure 3.7: Andreev reflection probability at the Fermi level of a Weyl semimetal – Weyl
superconductor interface, for four different pairing symmetries in the superconductor (scalar
and pseudoscalar spin-singlet, and s = x or s = z spin-triplet). The left panel shows the
analytical results (3.80) for ky = 0, β = 0.5, µW = 0.1. The right panel shows the results
from a numerical simulation of the tight-binding model (3.77), with additional parameters
µS = 0.4, ∆0 = 0.55. There are two Weyl points at kz = π±K, only one of which is shown
(the other gives the same results).

Near the Weyl point, the normal-state dispersion is

(E + µW)2 = k2
x + k2

y + q2
z ,

qz = (π −K − kz) cos θ, cos2 θ = 1− β2/4.
(3.79)

The analytical results for the Andreev reflection probability at the Fermi
level (E = 0), as a function of the transverse momenta ky and qz, are:

Rhe = 4− β2

(2− β2/4)2
µ2

W − k2
y − q2

z

µ2
W − k2

y

, s = x triplet pairing, ∆ = ∆0νxτyσx,

(3.80a)
Rhe = 0, s = z triplet pairing, ∆ = ∆0νxτyσz,

(3.80b)

Rhe =
µ2

W − k2
y − q2

z

µ2
W − q2

z

, pseudoscalar singlet pairing, ∆ = ∆0νxτzσ0,

(3.80c)
Rhe = 0, scalar singlet pairing, ∆ = ∆0νxτ0σ0.

(3.80d)
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Figure 3.8: Threshold dependence of the chirality blockade on the direction of the magne-
tization. The horizontal axis shows the out-of-plane rotation angle α of the magnetization,
the vertical axis shows the Andreev reflection probability at the Fermi level for normal inci-
dence. The data points are calculated numerically from the tight-binding model (3.77) with
a scalar pair potential (parameters µW = 0.18, µS = 0.2, ∆0 = 0.9, β = 0.85). The dashed
vertical line is the threshold angle αc = arccos (µW/β) = 78◦ expected for an isotropic Weyl
cone.

In Fig. 3.7 we compare the analytics with the numerical simulation, and
find good agreement without any fit parameter.

All of this is for a magnetization in the plane of the NS interface. If the
magnetization is rotated out of the plane by an angle α, the Andreev reflec-
tion probability for scalar pairing shows the threshold behavior discussed in
Sec. 3.2, see Fig. 3.8. The threshold angle given by cosαc = kF/K ≈ µW/β
for an isotropic Weyl cone is in reasonable approximation with the numeri-
cal result, with some deviations because the Weyl cone of the Hamiltonian
(3.77) has a significant anisotropy.

3.12 Appendix C. Calculation of the
Fermi-arc mediated Josephson effect

We calculate the supercurrent flowing through an SNS junction in response
to a phase difference φ between the superconducting pair potentials. As
explained in Sec. 3.8, because of the chirality blockade of Andreev reflection
this supercurrent is due entirely to overlapping Fermi arcs on the two
NS surfaces. It is exponentially small when the distance L of the NS
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3 Chirality blockade of Andreev reflection in a magnetic Weyl semimetal

interfaces is large compared to the decay length vF/β of the surface states
into the bulk. This is the key difference between the present calculation
for the Weyl semimetal Josephson junction and a similar calculation for a
graphene Josephson junction in Ref. 133.

3.12.1 Andreev bound states
We start from the Hamiltonian (3.48),

H = vFνzτz(−σykx + σxky) + βν0τ0σz

+ νz(mkτx − τytz sin kzd)σ0 − µνzτ0σ0

+ ∆0(νx cosϕ− νy sinϕ)τ0σ0, (3.81)

generalized to account for a complex pair potential ∆0e
iϕ. In the N region

|x| < L/2 we set ∆0 = 0, while in the S regions |x| > L/2 we have a
nonzero gap ∆0 and a phase ϕ equal to φ/2 for x > L/2 and equal to
−φ/2 for x < −L/2.

We carry out a (partial) block-diagonalization by means of the unitary
transformations H 7→ WVHV†W†, with V defined in Eq. (3.51) and W
defined by

W =
(
iτyσz 0

0 τ0σ0

)
. (3.82)

The resulting Hamiltonian

H = vFνzτz
(
kxσx + kyσy −Mkσz

)
+ βν0τ0σz

− µνzτ0σ0 + ∆0(νx cosϕ− νy sinϕ)τ0σ0 (3.83)

is diagonal in τ . We may therefore replace τz by the variable τ = ±1 and
τ0 by 1.

At the NS interfaces x = ±L/2 we have the boundary condition (3.66),

ψh(±L/2) = T ±1 ψe(±L/2),
T = e−iφ/2e−iατσx , α = arccos(E/∆0).

(3.84)

Integration of Hψ = Eψ, with ψ = (ψ+, ψ−) the two ν-components of the
wave function, gives the x-dependence in the N region,

ψ±(x) = exΞ±ψ±(0), −L/2 < x < L/2, (3.85a)

Ξ± = iτσx
µ± E
vF

− σy
Mk ± τβ

vF
+ σzky. (3.85b)
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3.12 Appendix C. Calculation of the Fermi-arc mediated Josephson effect

A bound state in the SNS junction, a socalled Andreev level, appears at
energies when[133]

det
(
1− e−LΞ+ T eLΞ− T

)
= 0. (3.86)

We assume that the separation L of the NS interfaces is small compared to
the superconducting coherence length ξ = vF/∆0. In this short-junction
regime the energy dependence of Ξ± can be neglected and only the energy
dependence of T needs to be retained [143].

Introducing the vector notation σ =
(
σx, σy, σz

)
and defining

d± =
(
dx, d±,y, dz

)
= L

vF

(
iτµ,−Mk ± τβ, vF sin ky

)
, (3.87)

the bound-state condition can be written as

det
(
e−iφ/2ed−·σ − eiφ/2 eiασx ed+·σ eiασx

)
= 0. (3.88)

To simplify the equations we define

sinhcx = sinhx
x

. (3.89)

The identity

ed·σ =σ0 cosh d+ (d · σ) sinhc d, d =
√

d · d, (3.90)

allows us to evaluate the determinant Eq. (3.88) as

γ2
0 = γ2

1 + γ2
2 + γ2

3 , (3.91)

where

γ0 = e−iφ/2 cosh d− − eiφ/2
(
cos 2α cosh d+

+ i sin 2αdx sinhc d+
)
, (3.92a)

γ1 = e−iφ/2dx sinhc d− − eiφ/2
(
i sin 2α cosh d+

+ cos 2αdx sinhc d+
)
, (3.92b)

γ2 = e−iφ/2d−,y sinhc d− − eiφ/2d+,y sinhc d+, (3.92c)
γ3 = e−iφ/2dz sinhc d− − eiφ/2dz sinhc d+. (3.92d)
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3 Chirality blockade of Andreev reflection in a magnetic Weyl semimetal

The phase dependence of the bound-state energy can be solved exactly
from Eq. (3.91) when the Fermi level is near the Weyl points, |µ| � vF/L:

E(φ) = ∆0

√
1
2 + p(φ) (3.93a)

p(φ) = 1 + (d− · d+) sinhc d− sinhc d+

2 cosh d− cosh d+

− sin2(φ/2)
cosh d− cosh d+

, (3.93b)

where the d± are taken at µ = 0. The energy levels are doubly degenerate
in τ = ±1. This degeneracy is lifted by a finite chemical potential: The
first-order correction δE± to the bound state energy reads

δE± = ±L|µ|∆0

2vF

∣∣∣ tanh d+

d+
− tanh d−

d−

∣∣∣√ 1
2 − p(φ). (3.94)

3.12.2 Josephson current
In the short-junction limit only the Andreev levels contribute to the
supercurrent density [143], according to

j(φ) = − e
~
∑
τ=±1

∫ π

−π

dky
2π

∫ π

−π

dkz
2π

dE(φ)
dφ

. (3.95)

We take µ� vF/L and substitute Eq. (3.93), to arrive at

j(φ) = e∆0

8π2~

∫ π

−π
dky

∫ π

−π
dkz

sinφ

cosh d− cosh d+

√
1
2 + p(φ)

. (3.96)

(The integrand is symmetric in τ = ±, so the sum over τ has been omitted
in favor of an overall factor of 2.)

We take parameters vF = tz = t′z = d = 1, when

Mk =
√

(1 + cos kz)2 + sin2 kz = 2 cos(kz/2). (3.97)

The current-phase relationship is close to sinusoidal, see Fig. 3.9. The
critical current can then be accurately approximated by jc ≈ j(π/2). This
is plotted as a function of L in Fig. 3.5. It decays ∝ exp(−L/ξarc), with
ξarc ' vF/β the penetration depth of the surface Fermi arc into the bulk.
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3.12 Appendix C. Calculation of the Fermi-arc mediated Josephson effect

�
Figure 3.9: Current-phase relationship of the Josephson current density for various values
of β and L. The extrema are close to π/2 and 3π/2, indicated by the dashed lines. This is
calculated from Eq. (3.96) for vF = tz = t′z = d = 1.

73





4 Twisted Fermi surface of a
thin-film Weyl semimetal

4.1 Introduction
The Fermi surface of degenerate electrons separates filled states inside
from empty states outside, thereby governing the electronic transport
properties near equilibrium. In a two-dimensional electron gas (2DEG)
the Fermi surface is a closed equi-energy contour in the momentum plane.
It is a circle for free electrons, with deformations from the lattice potential
such as the trigonal warping of graphene or the hexagonal warping on the
surface of a topological insulator [144]. These are all smooth deformations
which do not change the orientation of the Fermi surface: The turning
number is 1, meaning that the tangent vector makes one full rotation as
we pass along the equi-energy contour.

The turning number
ν = 1

2π

∮
Γ
C dl, (4.1)

defined as the contour integral of the curvature C in units of 2π, identifies
topologically distinct deformations of the circle in the plane, socalled
“regular homotopy classes” [145]. A theorem going back to Gauss [146]
says that a contour Γ with turning number ν has s ≥

∣∣|ν| − 1
∣∣ self-

intersections and that the sum |ν| + s must be an odd integer. Fig. 4.1
shows examples of contours with {ν, s} = {0, 1}, {1, 0}, and {2, 1}.

The turning number is preserved by any smooth deformation of the
contour. This includes socalled “uncrossing” deformations [145]: As
illustrated in Fig. 4.1, uncrossing breaks up a self-intersecting contour
Γ into a collection of nearly touching oriented contours Γi, with turning
numbers νi. The total turning number ν =

∑
i νi is invariant against

uncrossing deformations, which is another result due to Gauss [146].
All familiar 2D electron gases belong to the |ν| = 1 universality class.

Here we show that a thin-film Weyl semimetal with an in-plane magneti-
zation M and broken spatial inversion symmetry can have ν = 0: if the
Fermi level lies in between the two Weyl points the circular Fermi surface
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4 Twisted Fermi surface of a thin-film Weyl semimetal
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Figure 4.1: Three oriented contours (black curves) with turning number ν = 0, 1, 2. The red
segments show the uncrossing deformation that removes a self-intersection without changing
the total turning number ν =

∑
i νi.

is twisted into a figure-8 with zero total curvature. To avoid misunder-
standing, we emphasise that the figure-8 Fermi surface appears for Weyl
fermions with the usual conical dispersion relation. We are not considering
materials with a figure-8 dispersion relation, as studied in Refs. [147, 148].

The self-intersection introduced when the Fermi level passes through a
Weyl point, to ensure that |ν|+ s remains odd, is a crossing of Fermi arcs
on the top and bottom surfaces of the thin film (width W ). These have
a penetration depth ξ0 into the thin film that can be much less than the
Fermi wavelength of the bulk states, so that we can be in the 2D regime
of a single occupied subband 1 without appreciable overlap of the surface
states [149–151]. The effect of a nonzero surface state overlap is to open
up an exponentially small gap δk ∝ e−W/ξ0 in the figure-8, as in Fig. 4.1a.

In a perpendicular magnetic field B the signed area enclosed by the
Fermi surface is quantized in units of 2π/l2m, with lm =

√
~/eB the

magnetic length. A figure-8 Fermi surface of linear dimension kF has a
signed area much smaller than k2

F, because the upper and lower loops have
opposite orientation. We find that this twisted Fermi surface produces
edge states of width kFl

2
m — much wider than the usual narrow quantum

Hall edge states of width lm. The wide and the narrow edge states are
counterpropagating: if the wide channel moves parallel to M , the narrow
channel moves antiparallel. An applied voltage selectively populates one
of the two types of edge states, resulting in a conductance of e2/h instead
of 2e2/h — even though there are two conducting edges.

The outline of the chapter is as follows. In the next section we formulate

1We count occupied 2D subbands by counting the number of equi-energy contours
at the Fermi energy in the (ky , kz) plane, allowing for (nearly avoided) self-intersections.
All four equi-energy contours in Fig. 4.4 correspond to a single occupied subband.
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4.2 Weyl semimetal confined to a slab

the problem, on the basis of a two-band model Hamiltonian [130, 140], and
calculate the band structure in a slab geometry. The way in which the Fermi
arcs reconnect with the bulk Weyl cones is described exactly by a simple
transcendental equation (Weiss equation). The Fermi surface in the thin-
film regime is calculated in Sec. 4.3, to show the topological transition from
turning number 1 to turning number 0 when the Fermi level passes through
a Weyl point. In Sec. 4.4 we calculate the edge states in a perpendicular
magnetic field, by semiclassical analytics and comparison with a numerical
solution. The implications of the two types of counterpropagating edge
channels for electrical conduction are investigated in Sec. 4.5. We conclude
with an overview of possible experimental signatures of the twisted Fermi
surface.

4.2 Weyl semimetal confined to a slab
4.2.1 Two-band model
We consider the two-band model Hamiltonian of a Weyl semimetal [130,
140],

H(k) = txσx sin kx + tyσy sin ky +mkσz + λσ0 sin kz,
mk = tz(cosβ − cos kz) + t′(2− cos kx − cos ky). (4.2)

The Pauli matrices are σα, α ∈ {x, y, z}, with σ0 the 2 × 2 unit matrix,
acting on a hybrid of spin and orbital degrees of freedom. The momentum
k varies over the Brillouin zone |kα| < π of a simple cubic lattice (lattice
constant a0 ≡ 1, and we also set ~ ≡ 1). The two Weyl points are at the
momenta k = (0, 0,±K), K ≈ β, and at energies E = ±E0, E0 ≈ λ sinβ,
displaced along the kz-axis by the magnetization M = βẑ and displaced
along the energy axis by the strain λ. Time-reversal symmetry and spatial
inversion symmetry are broken by β and λ, respectively.

We take a slab geometry, unbounded in the y–z plane and confined in
the x-direction between x = 0 and x = W . The magnetization along z is
therefore in the plane of the slab. We impose the infinite-mass boundary
condition [152] on the wave function ψ,

σyψ =

{
−ψ at x = 0,
+ψ at x = W.

(4.3)

This boundary condition corresponds to a mass term m0(x)σz in H that
vanishes inside the slab and tends to +∞ outside.
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4 Twisted Fermi surface of a thin-film Weyl semimetal

4.2.2 Dispersion relation
The Schrödinger equation Hψ = Eψ can be solved analytically in the
low-energy regime by linearizing in kx and applying the effective mass
approximation [153] kx 7→ −i∂/∂x. Integration of the resulting first-order
differential equation in x gives

ψ(x) = eixΞψ(0), Ξ = 1
tx
σx[E −H(0, ky, kz)]. (4.4)

To ensure that an eigenstate of H satisfies the boundary condition (4.3),
we require that

〈−|eiWΞ|−〉 = 0, |±〉 =
(

1
±i

)
, σy|±〉 = ±|±〉. (4.5)

This reduces to the following dispersion relation for E(ky, kz):

(E − λ sin kz)2 − t2y sin2 ky −m2
k = q2, (4.6)

with transverse wave number q given by

mk
q

tan(Wq/tx) + 1 = 0. (4.7)

In the mass term mk we should set kx = 0, as required by the linearization
in kx.

For imaginary q = iκtx/W the transcendental equation (4.7) takes the
form

γ

κ
tanhκ = 1, γ = −Wmk

tx
, (4.8)

which is known as the Weiss equation in the theory of ferromagnetism
[154]. A unique solution with κ ≥ 0 exists for γ ≥ 1, given by a generalized
Lambert function 2 [155]:

κ = 1
2W(2γ;−2γ;−1). (4.9)

A representative band structure is shown in Fig. 4.2.

2The generalized Lambert function W(t; s; a) is defined as the solution of the
equation eW (W − t) = a(W − s).
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4.2 Weyl semimetal confined to a slab

Figure 4.2: Dispersion relation E(ky, kz) for ky = 0.01 as a function of kz , of a thick Weyl
semimetal slab (width W = 40), calculated from Eqs. (4.6) and (4.7) for β = 1.5, λ = 0.1,
tx = ty = tz = t′ = 1. The diagram at the top shows the geometry with the trajectory
of an electron in a Fermi arc state spiralling along the surface with velocity vz = λ cos kz
in the direction of the magnetization M . The two branches of the Fermi arc visible in the
dispersion relation correspond to states on the top and bottom surface of the slab (assumed
to be of infinite extent in this calculation). For this thick slab the range of Fermi energies
in which only a single 2D subband is occupied is very narrow (between the red dotted lines).
For thinner slabs a larger energy range is available.

4.2.3 Weyl cones and Fermi arcs
In the large-W limit of a thick slab, Eq. (4.7) can be solved separately
for the bulk Weyl cones and the surface Fermi arcs. We thus recover the
familiar dispersion relations in the bulk and surface Brillouin zones of a
Weyl semimetal [14, 116, 156, 157].

The bulk states have wave number q � |mk|, quantized by q = (n +
1
2 )πtx/W , n = 0, 1, 2, . . ., with dispersion

E
(n)
bulk = ±

√
(n+ 1

2 )2(πtx/W )2 + t2y sin2 ky +m2
k + λ sin kz. (4.10)

The ± distinguishes the upper and lower halves of the Weyl cones.
The surface Fermi arcs have a purely imaginary q = imk ⇒ κ = −γ,

which solves Eq. (4.8) in the large-W limit if mk < 0. The corresponding
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4 Twisted Fermi surface of a thin-film Weyl semimetal

Figure 4.3: Penetration length ξ of the surface Fermi arc into the bulk Weyl semimetal,
calculated via ξ = 1/Im q from the solution of the Weiss equation (4.8), for the same param-
eters as Fig. 4.2. The penetration length diverges at kz = ±1.475, according to Eq. (4.13).
At this critical momentum the Fermi arc merges with the bulk Weyl cones. The minimal
penetration length ξ0 is given by Eq. (4.12).

surface dispersion (4.6) is

Esurface = λ sin kz ± ty sin ky, |kz| < β. (4.11)

The ± sign distinguishes the Fermi arcs on opposite surfaces (− at x = 0
and + at x = W ). The trajectory of an electron in a Fermi arc state
moves chirally along the surface (see top inset in Fig. 4.2), spiralling in
the direction of the magnetization M = βẑ with velocity vz = λ cos kz.
The surface Fermi arc reconnects with the bulk Weyl cone near kz = ±β.
This “Fermi level plumbing” [158] is described quantitatively by the Weiss
equation (4.7), as q switches from imaginary to real at a critical kcrit

z for
which γ = 1. The penetration length ξ = 1/Im q of the surface state into
the bulk is plotted in Fig. 4.3, as a function of kz for ky = 0. Its minimal
value near the center of the Brillouin zone is

ξ0 = tx
(1− cosβ)tz

. (4.12)

The critical wave vector k = (0, 0, kcrit
z ) at which the Fermi arc terminates

because its penetration length diverges is slightly smaller than the position
β of the Weyl point,

kcrit
z = β − tx

tzW
+O(W−2). (4.13)
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4.3 Thin-film Fermi surface

Figure 4.4: Fermi surfaces of the thin-film Weyl semimetal with a single occupied subband
(W = 15), calculated from Eqs. (4.6) and (4.7) for β = 1.5, tx = ty = tz = t′ = 1 at different
values of λ and EF. The turning number ν = 0 in the top row, while ν = 1 in the bottom
row. The figure-8 in the top row has a narrowly avoided crossing with a gap δkz = 3 · 10−5

(not visible on the scale of the figure). The color of the contour indicates whether the state
is localized on the top surface (red), on the bottom surface (blue), or extended through the
bulk (black).

4.3 Thin-film Fermi surface
For Fermi energies

|EF| <
πtx
2W
− λ sinβ, (4.14)

a single two-dimensional (2D) subband is occupied at the Fermi level,
formed out of hybridized bulk and surface states. This two-dimensional
electron gas (2DEG) regime exists for thin films of width

W . Wc = πtx
2λ sinβ

. (4.15)

The Fermi surface of the 2DEG, defined by the equi-energy contour
E(ky, kz) = EF, is plotted in Fig. 4.4 for several parameter values.

As discussed in the introduction, the turning number ν (also known
as rotation numbers, not to be confused with winding numbers) is a
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4 Twisted Fermi surface of a thin-film Weyl semimetal

topological invariant of the equi-energy contour [145]. We see from Fig. 4.4
that the Fermi surface is twisted into a figure-8 with ν = 0 when the Fermi
level lies between the Weyl points, |EF| < λ sinβ, while for larger Fermi
energies the Fermi surface has ν = 1. Because the turning number and
the number of self-intersections must have opposite parity, the topological
transition when EF passes through a Weyl point must introduce a crossing
in the Fermi surface 3.

The crossing of the equi-energy contour for small EF is possible since the
intersecting states are spatially separated on the top and bottom surfaces
of the slab. For a finite ratio W/ξ0 of slab width and penetration length
(4.12) the crossing is narrowly avoided because of the exponentially small
overlap of the states at opposite surfaces. From the Weiss equation (4.8)
we calculate that the δkz gap in the figure-8 is given by

δkz = 4tx
λξ0

e−W/ξ0 . (4.16)

When W 'Wc the gap in the figure-8 is exponentially small if Wc � ξ0,
so for

(1− cosβ)tz � λ sinβ. (4.17)

To make contact with some of the older literature [159–161], we note
that the figure-8 Fermi surface of a Weyl semimetal is essentially different
from the figure-8 equi-energy contour of a conventional metal with a saddle
point in the Fermi surface. In that case the figure-8 requires fine tuning of
the energy to the saddle point, while here the figure-8 persists over a range
of energies between two Weyl points. Moreover, the orientation of the two
lobes of the figure-8 is the same in the case of a saddle point, while here it
is opposite.

4.4 Quantum Hall edge channels
4.4.1 Semiclassical analysis
A magnetic field B in the x-direction, perpendicular to the thin film,
introduces Landau levels in the energy spectrum: For a gauge A =
(0, 0, By) the momentum kz is still a good quantum number, we seek the
dispersion En(kz) of the n-th Landau level.

3The turning number ν = 1 universality class may also have self-intersections in
the Fermi surface, but there must be a even number of them. An example with ν = 1
and two crossings is Figure 4 of: Zhuo Bin Siu, Mansoor B. A. Jalil, and Seng Ghee
Tan, Dirac semimetal thin films in in-plane magnetic fields, Sci. Rep. 6, 34882 (2016).
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4.4 Quantum Hall edge channels

Semiclassically, the n-the Landau level is determined by the quantization
of the signed area S(E) =

∮
kydkz enclosed by the oriented equi-energy

contour [162],
l2mS(En) = 2π(n+ γ), n ∈ Z, (4.18)

with lm = (~/eB)1/2 the magnetic length and γ ∈ [0, 1) a B-independent
offset. Depending on the clockwise or anti-clockwise orientation of the
contour, the enclosed area is negative or positive. Note that the signed
area enclosed by the figure-8 Fermi surface of Fig. 4.4a equals zero. The
phase shift γ = 0 in a bulk Weyl semimetal, when the equi-energy contour
encloses a gapless Weyl point [163–166]. For the thin film the numerical
data indicates γ = 1/2.

If the thin film is confined to the strip 0 < y < Wy, with Wy � lm, the
spectrum within the strip remains dispersionless, but at the boundaries
y = 0 and y = Wy propagating states appear. In the quantum Hall effect
these are chiral edge channels, moving in opposite directions on opposite
edges [167, 168]. The electrical conductance of the strip, for a current
flowing in the z-direction, equals the number of edge channels N moving
in the same direction times the conductance quantum e2/h.

The classical skipping orbits that form the edge channels in a magnetic
field can be directly extracted from the zero-field Fermi surface: The
cyclotron motion in momentum space follows the equi-energy contour
E(ky, kz) = EF with period 2πmc/eB, where

mc = 1
2π

d

dE
|S(E)| (4.19)

is the cyclotron effective mass. (The figure-8 has mc ≈ β/ty.) Because
k̇ = eṙ × B, the cyclotron motion in real space is obtained from the
momentum space orbit by rotation over π/2 and rescaling by a factor l2m.
Specular reflection at the edge (with conservation of kz) then gives for the
figure-8 Fermi surface the skipping orbits of Fig. 4.5. Note that these orbits
are 2D projections of 3D trajectories in the thin film: The intersections
that are visible in the projected orbit correspond to overpassing trajectories
on the top and bottom surfaces. (See Fig. 10b of Ref. [169] for a wave
packet simulation of such a trajectory.)

The real-space counterpart of the quantization rule (4.18) is that the
Aharonov-Bohm phase e

∮
A · dl picked up in one period of the cyclotron

motion equals 2π(n+ γ). For the skipping orbits this Bohr-Sommerfeld
quantization rule still applies if the contour is closed by a segment along
the edge, with an additional contribution to γ from reflection at the edge
[170, 171].
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4 Twisted Fermi surface of a thin-film Weyl semimetal

Figure 4.5: Classical cyclotron orbits corresponding to the figure-8 Fermi surface of Fig.
4.4a. Each edge supports counterpropagating skipping orbits. The corresponding quantum
Hall edge channel is narrow if it propagates opposite to the magnetization, while it is wide if
it propagates in the direction of the magnetization. The area enclosed by the cyclotron orbits
is shaded, the direction of the shading distinguishes positive and negative contributions to
the Aharonov-Bohm phase e

∮
A · dl.

For small n the skipping orbit should enclose a flux of the order of
the flux quantum h/e, which divides the edge channels into two types,
designated narrow and wide: The narrow edge channel propagates along
the edge in the direction opposite to the magnetization 4. It is tightly
bound to the edge over a distance of order lm, so that the enclosed area of
order l2m encloses a flux of order h/e. The wide edge channel propagates
in the direction of the magnetization and extends further from the edge
over a distance of order βl2m. It still encloses a small flux of order h/e
because contributions to

∮
A · dl from the two sides of the crossing point

have opposite sign.
The gap δkz at the crossing point has no effect on the quantization if

lmδkz � 1, which is satisfied for lm . W when

(W/ξ0)e−W/ξ0 � λ/tx. (4.20)

Because the exponent wins it is sufficient that W � ξ0 to ensure that the
figure-8 is effectively unbroken: The field-induced tunneling through the
gap then occurs with near-unit probability, so to a good approximation
the wave packet propagates in an unbroken figure-8.

The presence of counterpropagating edge channels at each edge requires
a Fermi energy in between the Weyl points, |EF| < λ sinβ, for a twisted

4Throughout the chapter we take β and λ positive. The direction of motion of the
edge channels indicated in Fig. 4.5 should be inverted if either β or λ change sign.
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4.5 Magnetoconductance

Figure 4.6: Same as Fig. 4.5, but now for the Fermi surface of Fig. 4.4c, without a self-
intersection. The equi-energy contour has a single orientation, indicated by the single di-
rection of the shading. The edge states are chiral, propagating in opposite directions on
opposite edges.

Fermi surface. When the Fermi surface is a simple contour without
self-intersections the edge channels are chiral, propagating in opposite
directions on opposite edges as in Fig. 4.6.

4.4.2 Numerical simulation
To go beyond the semiclassical analysis we have diagonalized the model
Hamiltonian (4.2) numerically, using the Kwant tight-binding code [142].
Fig. 4.7a shows the dispersion relation with four edge states at EF = 0,
two counterpropagating at each edge. The corresponding density profile
for each edge state is shown in Fig. 4.7b. The two types of edge channels,
one wide and the other narrow, are clearly visible.

In Fig. 4.8 we show the Landau levels in an infinite system as a function
of the flux Φ through a unit cell. The Landau fan is fitted to

~
eΦ

SE = 2π(n+ γ), (4.21)

corresponding to the semiclassical formula (4.18). The resulting offset γ is
consistent with γ = 1/2. We checked that the fitted value of SE is close
(within 2%) of the signed area enclosed by the figure-8 equienergy contour.
We also checked that the same γ = 1/2 is obtained when the equienergy
contour is a slightly deformed circle, rather than a figure-8.

4.5 Magnetoconductance
To determine the magnetotransport through the Weyl semimetal strip we
connect it at both ends z = 0 and z = L to a metal reservoir. Following a
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4 Twisted Fermi surface of a thin-film Weyl semimetal

Figure 4.7: Left: Dispersion of a thin-film Weyl semimetal strip (W = 10, Wy = 80) in
a perpendicular magnetic field (lm = 4.5), calculated numerically from the tight-binding
Hamiltonian (4.2). The material parameters are β = 1.05, λ = 0.2, tx = ty = tz = t′ = 1.
At EF = 0 this system has the figure-8 Fermi surface of Fig. 4.4a. The letters indicate
the counterpropagating edge channels, L± at one edge and R± at the opposite edge. Right:
Probability density |ψ(x, y)|2 for the four edge states at E = 0.The density is translationally
invariant in the z-direction, the color plots show a cross section in the x–y plane (separated
in two panels for clarity). Each edge has a counterpropagating pair of edge states, one with
vz < 0 tightly bound to the edge (width ≈ lm = 4.5), the other with vz > 0 penetrating
more deeply into the bulk (width ≈ βl2m = 21).

similar approach used for graphene [172], it is convenient to take the same
model Hamiltonian (4.2) throughout the system, with the addition of a
z-dependent chemical potential term −µ(z)σ0. (Physically, this potential
could be controlled by a gate voltage.) We set µ(z) = 0 in the semimetal
region 0 < z < L and take µ(z)� E0 in the metal reservoirs (x < 0 and
x > L). This corresponds to n-type doping of the reservoir. (For p-type
doping we would take µ(z)� −E0.)

We distinguish n-type and p-type edge channels in the Weyl semimetal
depending on whether they reconnect at large |E| with the upper Weyl
cones (n-type) or with the lower Weyl cones (p-type). Referring to the
dispersion of Fig. 4.7a, the channels L± at the y = 0 edge are n-type,
while the channels R± at the y = Wy edge are p-type. The distinction is
important, because only the n-type edge channels can be transmitted into
the n-type reservoirs. As indicated in Fig. 4.9, the p-type channels are
confined to the semimetal region, without entering into the reservoirs.

Upon application of a bias voltage V between the two n-type reservoirs
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Figure 4.8: Left panel: Sequence of Landau level energies En(B) as a function of magnetic
field; levels at two values of the energy are marked by colored dots. Right panel: Landau
level index n for these two energies as a function of inverse magnetic field. This “Landau
fan” is fitted to Eq. (4.21) to obtain the offset γ. The data is calculated numerically from
the Weyl semimetal tight-binding model in an unbounded thin film (thickness W = 30), for
parameters β = 1.05, λ = 0.1, tx = ty = tz = t′ = 1.

a current I will flow along the n-type edge, with a conductance

G = I/V = e2

h
Ty=0 (4.22)

determined by the backscattering probability Ty=0 along the edge at y = 0,
so G = e2/h without impurity scattering — see Fig. 4.10.

This is not the usual edge conduction of the quantum Hall effect: As
shown in Fig. 4.11, the current flows along the same edge when we change
the sign of the voltage bias (switching source and drain), while in the
quantum Hall effect the current switches between the edges when V changes
sign. The only way to switch the edge here is to change the sign of the
magnetic field, so that the n-type edge is at y = Wy rather than at y = 0.

4.6 Discussion
We have discussed the unusual magnetic response of a two-dimensional
electron gas with a twisted Fermi surface. The topological transition from
turning number ν = 1 (the usual deformed Fermi circle) to turning number
ν = 0 (the figure-8 Fermi surface) happens when the Fermi level passes
through the Weyl point of a thin-film Weyl semimetal with an in-plane
magnetization and broken spatial inversion symmetry. We discuss several
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4 Twisted Fermi surface of a thin-film Weyl semimetal

Figure 4.9: Undoped Weyl semimetal (chemical potential µ ≈ 0) connected to heavily
doped metal reservoirs (µ � E0 for n-type doping). Edge channels in a perpendicular
magnetic field are shown in red, with arrows indicating the direction of propagation. The
L± edge channels are n-type and can enter into the reservoirs, while the R± edge channels
are p-type and remain confined to the semimetal region (dotted lines). The current I flows
along the n-type edge in the semimetal, irrespective of the sign of the applied voltage V .

transport properties that could serve as signatures for the topological
transition from ν = 1 to ν = 0.

In a magnetic field the figure-8 Fermi surface supports counterpropa-
gating edge channels, see Fig. 4.9. At EF = 0, with an equal number of
left-movers and right-movers at each edge, the Hall resistance will vanish.
This is the first magnetotransport signature. If we vary the Fermi level
and enter the regime of chiral edge channels, we should see the appearance
of a voltage difference between the edges in response to a current flowing
along the edges.

The second signature is the edge-selectivity: although both edges support
counterpropagating states, the current flows entirely along one of the two
edges, determined by the direction of M ×B. This edge-selective current
flow might be detected directly, or indirectly by introducing disorder on
one edge only and measuring a difference between the conductance G
for positive and negative B. Note that G(B) 6= G(−B) does not violate
Onsager reciprocity, since for that we would need to change the sign of
both magnetic field B and magnetization M .

A third signature is in the cyclotron resonance condition for the optical
conductivity σ. As explained by Koshino [173] in the context of a type-II
Weyl semimetal (which has a figure-8 cyclotron orbit at a specific energy
where electron and hole pockets touch [81]), the resonance frequency is
twice as small for an electric field oriented along the long axis of the
figure-8, than it is for an electric field oriented along the short axis. In the
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4.7 Appendix. Effective 2D Hamiltonian

Figure 4.10: Conductance in the geometry of Fig. 4.11 as a function of magnetic field. (The
magnetic length lm = 4 of Fig. 4.11 corresponds to a flux per unit cell of 0.01h/e.) The
regime of a single pair of counterpropagating edge channels is reached to the right of the
vertical dotted line. The conductance in this regime is e2/h rather than 2e2/h, because only
one edge is coupled to the electron reservoirs.

geometry of Fig. 4.5, the resonance frequency equals eB/mc for σyy and
2eB/mc for σzz.

In our analysis we have not included disorder effects. The counterpropa-
gating edge channels can be coupled by disorder, and this would reduce
the conductance below the quantized value of G = e2/h seen in Fig. 4.10.
There is no symmetry to protect this quantization, like there is for the
helical edge channels in the quantum spin Hall effect, but there is a spatial
separation of wide and narrow edge channels (see Fig. 4.7b), which may
provide some robustness against backscattering by disorder.

We have focused here on Fermi surfaces with turning number ν = 0 and
ν = 1. It would be of interest to compare with other values of ν. A model
Hamiltonian for ν = 2, that could be a starting point for such a study, is
given in the Appendix.

4.7 Appendix. Effective 2D Hamiltonian
We derive an effective Hamiltonian for the thin-film Weyl semimetal.
Starting from the full Hamiltonian (4.2), we discretize the x-direction by
the substitution

cos kx 7→ 1
2
(
δi,j−1 + δi,j+1

)
,

sin kx 7→ − 1
2 i
(
δi,j−1 − δi,j+1

)
.

(4.23)
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4 Twisted Fermi surface of a thin-film Weyl semimetal

Figure 4.11: Color-scale plot in the y–z plane of the occupation numbers of current-carrying
states at the Fermi level, in response to a voltage bias between source and drain. The data
is calculated numerically from the tight-binding Hamiltonian (4.2) in the geometry of Fig.
4.9 (parameters β = 1.05, λ = 0.25, tx = ty = tz = t′ = 1, W = 10, lm = 4). The chemical
potential is µ = 0 in the Weyl semimetal region (between green lines, from z = 0 to z = 60),
while µ = 0.75 in the metal reservoirs (z < 0 and z > 60). The current keeps flowing along
the same edge when source and drain are switched, carried either by a narrow edge channel
(left panel) or by a wide edge channel (right panel). The opposite edge is fully decoupled
from the reservoirs.

The Kronecker δij is set to zero if either layer index i or j is outside of
the set {1, 2, . . . ,W}, corresponding to hard-wall boundary conditions at
the top and bottom layer. Substitution in Eq. (4.2) leads to

Hij = δij
[
σy sin ky +Mkσz

]
− 1

2δi,j−1
(
σz + iσx

)
− 1

2δi,j+1
(
σz − iσx

)
+ δijλσ0 sin kz, (4.24)

Mk = 2 + cosβ − cos kz − cos ky. (4.25)

For simplicity we have set tx = ty = t′ ≡ 1. Since the λ term is a scalar,
we can set it to zero for now and then add it at the end of the calculation.

After the unitary transformation H 7→ U†HU with U = eiπσz/4eiπσy/4

we have

Hij = δij
[
σz sin ky +Mkσx

]
− 1

2δi,j−1
(
σx + iσy

)
− 1

2δi,j+1
(
σx − iσy

)
. (4.26)

The square H2 is block-diagonal in the σ index,

(H2)ij = δijσ0 sin2 ky +
(
Zij 0
0 Z ′ij

)
, (4.27a)

Zij = (M2
k + 1− δiW )δij −Mk(δi,j−1 + δi,j+1), (4.27b)

Z ′ij = (M2
k + 1− δi1)δij −Mk(δi,j−1 + δi,j+1). (4.27c)
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Figure 4.12: Dispersion relation at ky = 0.01 given by the effective Hamiltonian (4.31)
(red curve), compared to numerical results from the full Hamiltonian (4.2) (blue dots). The
parameters are the same as in Fig. 4.2.

The two W ×W matrices Z and Z ′ have the same eigenvalues ζ, given
by

Det (Z − ζ) = (DetZ)
[
1− ζ TrZ−1 +O(ζ2)

]
= 0. (4.28)

The low-energy spectrum is therefore given

E2 = sin2 ky + ζ0, ζ0 = 1
TrZ−1 � 1, (4.29)

which evaluates to

ζ0 = M2W
k

1 + 2M2
k + 3M4

k + 4M6
k + · · ·+WM2W−2

k

=
M2W
k

(
1−M2

k

)2
1−M2W

k

[
1 +

(
1−M2

k

)
W
] . (4.30)

For Mk � 1 we have simply ζ0 ≈M2W
k .

The corresponding effective low-energy Hamiltonian takes the form

Heff = σx
√
ζ0 + σy sin ky + λσ0 sin kz, (4.31)

where we have reinsterted the λ term. A comparison of the energy spectrum
of the effective Hamiltonian with the result from an exact numerical
diagonalization of the full Hamiltonian is shown in Fig. 4.12.
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4 Twisted Fermi surface of a thin-film Weyl semimetal

Figure 4.13: Fermi surface at E = 0 with turning number ν = 2 given by the Hamiltonian
(4.32), for the parameters W = 40, β = 1.5, λ = 1, µ = 0.6.

In closing, we note that a simple modification of this effective 2D
Hamiltonian can be used to describe Fermi surfaces with turning number
greater than unity. As an example, the Hamiltonian

H̃eff = Heff + µ (2− cos kz − cos ky)σ0 (4.32)

has the ν = 2 Fermi surface shown in Fig. 4.13.
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5 Phase shift of cyclotron
orbits at type–I and type–II
multi–Weyl nodes

5.1 Introduction
Electrons moving along cyclotron orbits in a homogeneous magnetic field
are subject to the quantization condition [161]

l2S = 2π(m+ γ), m ∈ Z, (5.1)

where S is the zero-field area enclosed by the cyclotron orbit in momentum
space, l =

√
~/eB is the magnetic length, and the offset γ includes

quantum corrections, which can be expanded in powers of the magnetic
field B [174]. In the semiclassical regime when the magnetic length is much
larger than the Fermi wavelength, field-dependent corrections to γ are
suppressed and the remaining number of zeroth order in B encodes valuable
information about the electronic properties of the system. In particular,
the offset includes contributions coming from topological features in the
band structure [163–165], which makes it the subject of high current
interest. Experimentally it can be deduced from quantum oscillations in
the de Haas-van Alphen or the Shubnikov-de Haas effects, widely used
nowadays to identify Weyl, Dirac, and nodal-line semimetals [175–179].

Interestingly, in some well-studied systems the offset measures the
topological features independent of the specifics of the band structure. So,
e.g., in graphene and graphene bilayer exposed to an out-of-plane magnetic
field the offset turns out to be given by a winding number—the number
of full turns made by the direction of the electron’s pseudospin degree
of freedom during a single turn around the cyclotron orbit [164]. This
integer winding number is a robust feature, determined by the type of the
band touching, and is sometimes called the topological charge of the Weyl
or Dirac fermion [180]. In contrast to the common belief, however, the
topological charge contributes to the offset in such a robust manner only
in exceptional cases, namely when particular symmetry constraints are
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type I

n

kz
ky

✏

type II

n

Figure 5.1: Schematic illustration of a breakthrough cyclotron orbit (figure-8 curve) at a
type-II Weyl node with topological charge n. The red part indicates quantum tunneling in
the magnetic-breakthrough region. The inset shows a cyclotron orbit at a type-I Weyl node.

satisfied [165]. In general, the offset is sensitive also to other parameters
of the band touching and it is the aim of this work to characterize this
sensitivity.

One important parameter is a linear tilt of the dispersion at the Weyl
node, which is generically present in material realizations and, most im-
portantly, leads to the occurrence of two types of Weyl nodes, as sketched
in Fig. 5.1. Upon the type-I to type-II transition, the tilt exceeds a critical
value, above which an equi-energy surface near the node cuts both bands
[58]. The closed cyclotron orbit at a type-I Weyl node is thereby replaced by
two open branches, which can be closed at large momenta by higher-order
corrections to the Weyl Hamiltonian, resulting in two cyclotron orbits, one
electron-like and one hole-like. Band details determine a critical magnetic
field, above which the two separate cyclotron orbits effectively merge into
a single orbit via magnetic breakthrough [181, 182]. This critical field is
zero if the energy and the parallel momentum are exactly at the node
where the two contours touch [81, 166], and is larger than zero if the gap
between the contours is finite. The magnetic breakdown contributes an
additional phase to the offset γ, so one would expect that the offset is even
more sensitive to details of the orbit than in the case without magnetic
breakdown.

In this work we analyze the offset for orbits at both types of Weyl nodes
and find characteristic dependence of γ on the Weyl-node parameters. Most
surprisingly, the offset of the breakthrough orbit at a type-II Weyl point
turns out to depend only on the topological charge. This striking result is
based on two facts, the universality of the phase jump of π acquired in
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the magnetic-breakthrough region and a robust phase shift of nπ induced
by the topological charge. The insensitivity of the latter on details of the
orbit comes from a cancellation of a non-universal part of the phase in
the two loops of the breakthrough orbit, which are traversed in opposite
directions.

5.2 Model
We consider a set of Hamiltonians that govern the physics close to topo-
logically distinct band touchings,

H0 = k−σ+ + k+σ− + u kzσ0, (5.2a)
Hn = kn−σ+ + kn+σ− + u kzσ0 + kzσz, n ∈ {1, 2, . . . }, (5.2b)

where k± = kx ± iky, (kx, ky, kz) = k are momenta (scaled by velocities),
σ± = σx ± iσy, σx,y,z are Pauli matrices, and σ0 the identity matrix. The
band touching at k = 0 described by Hn corresponds to a topologically
protected multi-Weyl node of order n [59], while H0 describes a trivial,
non-protected band touching (a gap is produced by a perturbation ∝ σz).
The parameter u > 0 controls the tilt of the Weyl cone; for u < 1 and
u > 1 the Weyl cone is of type I and II, respectively.

The magnetic field pointing in x direction moves the particles along
equi-energy contours kz(ky) at fixed energy ε and parallel momentum
component kx. The contours are determined by the Schrödinger equation

Hn|un±〉 = ε|un±〉, (5.3)

where ± denote the two bands.
In the quantization condition (5.1) one can distinguish three phase shifts

that contribute to the offset

γ = 1
2π

(φ0 + φb + φt). (5.4)

Here φ0 and φb are phase shifts that occur at singular points on the orbit.
Specifically, turning points give rise to the Maslov phase φ0 [183], in which
each turning point contributes a phase jump of ±π/2, the sign determined
by the sign of the curvature at the turning point. In particular one finds
that φ0 = π and φ0 = 0 for orbits that can be deformed into a circle and
into an 8-shape, respectively. With φb we denote the phase shifts that
occur due to magnetic breakdown. Finally, φt is the topological phase shift,
which includes the Berry phase accumulated during a full turn around the
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orbit and the effect of the orbital magnetic moment [163–165, 184]. The
explicit calculation of φb and φt is the main result of this work, which will
be presented in the following.

5.3 Topological phase shift
The topological phase shift of a closed contour at energy ε and the fixed
momentum component kx is given by [164, 185]

φt =
∮
dk′y

[
A−

dkz(k′y)
dε

M

]
. (5.5)

Here the first term is determined by the Berry connection projected onto
the contour,

A =i〈u|∇k|u〉 ·
dk
dky

= i〈u| d
dky
|u〉, (5.6)

which contributes to φt the usual Berry phase of the closed orbit. The
second term is the correction to the zero-field area S coming from the
orbital magnetic moment projected onto the direction of the magnetic field
[184],

M = i

2

[(
∂ky 〈u|

)(
ε−H

)(
∂kz |u〉

)
−
(
∂kz 〈u|

)(
ε−H

)(
∂ky |u〉

)]
. (5.7)

The eigenfunctions of the Hamiltonian Hi can be written as

|u0±〉 = 1√
2

(
∓e−iα

1

)
,

|un+〉 =
(
− sin β

2 e
−inα

cos β2

)
, |un−〉 =

(
cos β2 e

−inα

sin β
2

)
, (5.8)

where the angles α and β are defined as

cosβ = kz
k
, sinβ =

(
k2
x + k2

y

)n
2

k
,

α = Arg(kx + iky), k =
√(

k2
x + k2

y

)n + k2
z . (5.9)
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For the topologically trivial case we obtain from (5.6)–(5.9)

A0± = kx
2(k2

x + k2
y)
, M0± = 0, (5.10)

and the topological phase shift vanishes as it should,

φ±t =
∮
dk′y A0± =

∮
dk′y

kx
2[k2

x + (k′y)2]
= 0 (n = 0), (5.11)

independent of the integration contour. For the non-trivial case, we obtain

An± =
nkx

(
k2
x + k2

y

)n−1

2k(k ± kz)
, Mn± = −

nkx
(
k2
x + k2

y

)n−1

2k2 . (5.12)

To calculate the topological phase shift, we consider the explicit expression
for the equi-energy contours, which is derived from (5.3) in the form

k±z (ky) =
ε u±

√
(u2 − 1)

(
k2
x + k2

y

)n + ε2

u2 − 1
. (5.13)

For u > 1, the contours given by k±z (ky) are disjoint and we need to
introduce an additional orbit segment that connects the two open ends
of k±z (ky) at kz → ±∞. These connecting segment can be realized by
an additional mass term ηk3

zσz in the Hamiltonian, with an infinitesimal
η > 0. The reconnection then occurs at large momenta kz, with |kz| >
(u−1)/η →∞. In the expressions (5.12) for A and M the additional mass
term replaces kz → kz + ηk3

z . On the connecting segment, A and M go to
zero like η2, while the integration along the connecting segment gives a
factor of order 1/η. Hence the contribution of the connecting segment to
φt vanishes and the integration reduces to the integration along the main
contour k±z (ky).

Inserting (5.12) and (5.13) into (5.5) we obtain

φ±t = ∓
∫
dk′y

(u+ 1)nkx
(
k2
x + (k′y)2)n−1

2
[
k± ± k±z

][
k±z ∓ uk±

] . (5.14)

For a type-II cone (u > 1) we use the substitution κ = k′y/kx and obtain

φ±t =
∫ ∞
−∞

dκ
n(κ2 + 1)n−1

2
√

(κ2 + 1)n + cot2 θ

×
(√

(κ2 + 1)n + cot2 θ ± cot θ
)−1

, (5.15)
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where the parameter θ encoding contour details is defined as

θ =


atan

(
knx
√
u2−1
ε

)
u > 1

atanh
(
knx
√

1−u2

ε

)
u < 1.

(5.16)

The integral in (5.15) needs to be calculated numerically (see below); for
the special case n = 1, we find the closed-form solution

φ±t = π

2
(1∓ signθ)± θ (n = 1). (5.17)

While φ±t are the topological phase shifts of the two (electron/hole)
orbits k±z (ky), the sum φ+

t + φ−t ≡ φbr
t is the topological phase shift of

the breakthrough orbit, i.e., the figure-of-8 orbit that encloses both the
electron and the hole pocket. Using the substitution z = (κ2 + 1)n the
integral for φbr

t simplifies to

φbr
t =

∫ ∞
1

dz
1√

z
2n+1
n − z2

= nπ, (5.18)

where the θ dependent part cancels out. As a result the topological phase
shift of the figure-of-8 orbit only depends on the quantized topological
charge n, in contrast to the θ-dependent phase shifts of the separate orbits.

For type-I Weyl fermions (u < 1) k±z are two parts of a single closed
contour, which topological phase is denoted φt. A closed-form solution for
the integral (5.14) is found for n = 1,

φt = π signθ (n = 1), (5.19)

in agreement with Refs. [164, 186–188]. For n ≥ 2, we find in the limits
θ → 0± and θ → ±∞,

φt = θ→0±−−−−→ nπ signθ, φt = θ→±∞−−−−−→
√
nπ signθ. (5.20)

The full θ dependence will be discussed below.

5.4 Breakthrough phase shift
To calculate the additional phase shift of the figure-of-8 orbit due to
magnetic breakdown, we follow a standard route [182] and calculate the
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scattering matrix that relates the exact wavefunction of the magnetic-
breakdown region with the in- and out-going semiclassical wavefunctions.

We start with the non-topological Hamiltonian H0. Introducing the
magnetic field via Peierls substitution kz 7→ kz + il−2∂ky , followed by a
unitary transformation,

H̃0 = e−il
2(kz−ε/u)kyH0e

il2(kz−ε/u)ky , (5.21)

we arrive at
H̃0 = kxσx + kyσy + i u l−2∂kyσ0 + ε. (5.22)

Rescaling the variables as k = lky/
√
u, δ0 = lkx/

√
u, the Schrödinger

equation H̃0ψ = εψ reads[
σxδ0 + σyk + i∂k

]
ψ = 0. (5.23)

The exact solution of (5.23) is known from the Landau-Zener problem [189].
To obtain the phase shift in comparison to the semiclassical solution of
(5.23), the exact wavefunctions are matched with the incoming semiclassical
wavefunctions at k � −δ0, denoted ψ±i , and outgoing ψ±f at k � δ0. From
this standard procedure (recapitulated in Sec. 5.7) we obtain the scattering
matrix S that relates the final state in the basis (ψ+

f , ψ
−
f ) to the incoming

state in the basis (ψ+
i , ψ

−
i ),

S =
(√

1−W eiα −i
√
W

−i
√
W

√
1−W e−iα

)
, (5.24)

where
W = e−πδ

2
0 , α = π

4 + δ2
0
2 −

δ2
0
2 ln δ2

0
2 + arg Γ

(
i
δ2

0
2

)
. (5.25)

The breakthrough orbit dominates if δ0 � 1, W ≈ 1, in which case each
band transition in the breakthrough region contributes a phase jump of
π/2 giving in total the phase shift φb = π for the breakthrough orbit.

For the topological case, we linearize the Hamiltonian Hn in ky, leading
to

H ′n = knxσx + nkn−1
x kyσy + kzσz + ukz. (5.26)

After Peierls substitution we apply the unitary transformation given by

H̃n = e−il
2[kz−ε/(u2−1)]kyH ′ne

il2[kz−ε/(u2−1)]ky . (5.27)

Rescaling and transforming the variables as

k = lky(u2 − 1)−1/4
√
nkn−1

x , (5.28a)

δn = l sign(ε)
√
ε2 + (u2 − 1)k2n

x

(u2 − 1)3/4k
(n−1)/2
x

, (5.28b)

99



5 Phase shift of cyclotron orbits at type–I and type–II multi–Weyl nodes

n = 1

3⇡/2

⇡/2⇡/4� π
�

π
�

π

� π

� π

n = 2

n = 3

✓
0

n = 1

n = 2

n = 3

n = 4

✓
��� ��� ��� ��� ���

π

� π

� π

� π

+_

+

breakthrough
breakthrough

-

3
2

3
4

n = 1

1
2

5
4

n = 1

3
2

3⇡/2

5
2

�p
2 + 1

��
2

�p
3 + 1

��
2

�p
4 + 1

��
2

� �
n = 1

3⇡/2

⇡/2⇡/4� π
�

π
�

π

� π

� π

n = 2

n = 3

✓
0

n = 1

n = 2

n = 3

n = 4

✓
��� ��� ��� ��� ���

π

� π

� π

� π

+_

+

breakthrough
breakthrough

-

3
2

3
4

n = 1

1
2

5
4

n = 1

3
2

3⇡/2

5
2

�p
2 + 1

��
2

�p
3 + 1

��
2

�p
4 + 1

��
2

� �

Figure 5.2: a) Parameter dependence of the offset γ of orbits at a type-I Weyl node. b)
Parameter dependence of the offset γ of orbits at a type-II Weyl node. The offsets of separate
orbits k+

z and k−z (without magnetic breakthrough) depend on the band parameter θ, while
the offset of the figure-8 breakthrough orbit only depends on the topological charge n.

we obtain the Schrödinger equation[
δn
√
u2 − 1 sin θσx + k

√
u2 − 1σy

+ i∂k(u+ σz) + δn cos θ(1 + uσz)
]
ψ = 0. (5.29)

Multiplying (5.29) from the left with M = diag[(u+ 1)−1, (u− 1)−1] and
applying a transformation given by

T = −i
( 1−u√

u2−1
u−1√
u2−1

1 1

)
σze
−iσyθ/2, (5.30)

we again arrive at the differential equation of the Landau-Zener form
(5.23),

Ĥψ̂(k) =
(
δn σx + k σy + i∂k

)
ψ̂(k) = 0, (5.31)

where ψ̂(k) = T−1ψ(k) and Ĥ = T−1M H̃T . The solution of (5.29) is
thus given by the solution of the Landau-Zener problem multiplied from
the left with the matrix T . Note that the θ phase brought into the full
solution by the matrix T is the topological phase of the full solution
induced by the non-trivial topology of the Hamiltonian.

The S matrix is obtained by matching ψ(k) with the semiclassical
solution of (5.29). Since H ′n is topologically equivalent to H1 (note that the
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dynamical variables are ky and kz, while kx is fixed), the topological phase
shift of the semiclassical solution is given by (5.17), which cancels the θ
phase of the full solution and the result is the same θ-independent scattering
matrix (5.24), with δ0 replaced by δn. In particular, the breakthrough
phase shift φb = π also holds in the topological case.

5.5 Discussion
Having thus calculated the phase shifts, we now show the full θ-dependence
of the offset γ, defined in Eq. (5.4), in Figs. 5.2a and 5.2b. In practice, the
offset can only be measured modulo one, corresponding to one Landau-level
spacing. Nevertheless in Figs. 5.2a and 5.2b we plot the full γ for clarity
of the graphic. For the figure-of-8 orbit, the magnetic breakthrough con-
tributes an offset 1/2 and the topological charge adds an extra contribution
n/2. The θ independence is based on the cancellation of the θ-dependent
parts from the hole and the electron pockets. The universality of the break-
through phase shift is, instead, less surprising, since the same universal
value was found previously for non-topological band touchings [182]. In
contrast, without breakthrough (dashed/dotted curves in Fig. 5.2b) or in
case of a type-I Weyl node (Fig. 5.2a), the offset has a non-trivial depen-
dence on the orbit details that are encoded in θ. The only exception is the
case n = 1 of the type-I Weyl node, which shows no θ dependence owing
to the higher symmetry of the dispersion [165]. This is also the only case
with a known full quantum-mechanical solution [164, 186–188, 190, 191];
it agrees with our semiclassical result. In quantum oscillation experiments,
the measured phase shift would likely be averaged over a range of values of
the energy and of the parallel momentum kx, corresponding to a weighted
(depending on details of the experimental realization) average over the
parameter θ. In general, this averaging does not destroy the θ dependence,
still allowing to discriminate the two cases of quantized and continuously
varying γ.

With regard to the figure-8 breakthrough orbits, our calculations explain
recent numerical findings for the offset of a thin-film Weyl semimetal [192]
and a type-II Weyl semimetal [81], showing, respectively, γ = 1/2 and
γ = 0. In the case of the thin film, the Hamiltonian at the figure-8 crossing,
given in the appendix of Ref. [192], is equivalent to the non-topological
Hamiltonian H0, thus the only phase contributing is the breakthrough
phase φb = π, which explains the offset γ = φb/2π = 1/2. In case of the
type-II Weyl semimetal, the Hamiltonian is equivalent to H1, where the
additional topological phase φt = π cancels the breakthrough phase, which
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5 Phase shift of cyclotron orbits at type–I and type–II multi–Weyl nodes

explains the vanishing offset. This contradicts a previous interpretation
that relates the vanishing offset of the latter to a vanishing Berry phase and
neglects the contribution of the breakthrough phase [166]. In Appendix 5.8
we present extensions of the numerical calculations to the cases n = 2
and n = 3, tilted type-I Weyl cones, and several values of θ. Also these
calculations are in agreement with the analytical results of this work.

5.6 Appendix A. Topological phases
Type-II (u > 1)

While the sum of the phases φ±t has been calculated in the main text, to
obtain each of the phases separately we now focus on the difference. From
(5.15) we find

φ−t − φ+
t =

∫ ∞
−∞

dκ
n cot θ

(κ2 + 1)
√

(κ2 + 1)n + cot2 θ
. (5.32)

Using the series expansion

1√
1 + q

=
∞∑
m=0

(
m− 1

2
m

)
(−q)m (5.33)

and the integral ∫ ∞
−∞

dκ
1

(κ2 + 1)α
=
√
π Γ
(
α− 1

2
)

Γ(α)
, (5.34)

Eq. (5.32) can be written as

φ−t − φ+
t = n cot θ

∞∑
m=0

(−1)m
(
m− 1

2
m

)

×
√
π Γ
(
nm+ n+1

2
)

Γ
(
nm+ n+2

2
) (cot θ)2m. (5.35)

For n = 1 the series is the expansion of 2 arctan(cot θ)/ cot θ, which gives

φ−t − φ+
t = sign(θ)π − 2θ. (5.36)

Together with (5.18), φ−t + φ+
t = nπ, this leads to

φ±t = π

2
(1∓ signθ)± θ. (5.37)
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Type-I (u < 1)

For u < 1, k±z are two parts of a single closed contour. The phase φt of
the contour is thus given by the difference φt = φ+

t − φ−t , where, using
(5.14), (5.16), and the substitution κ = k′y/kx, φ±t are given by

φ±t = −
∫ κ0

−κ0

dκ
n(κ2 + 1)n−1

2
√

coth2θ − (κ2 + 1)n

(√
coth2θ − (κ2 + 1)n ± cothθ

)−1
,

(5.38)

where κ0 =
√

(cothθ)2/n − 1. The difference reduces to

φt =
∫ κ0

−κ0

dκ
n cothθ

(κ2 + 1)
√

coth2θ − (κ2 + 1)n
(5.39)

and, after the substitution z = (κ2 + 1)n, can be rewritten as

φt =
∫ coth2θ

1
dz

coth θ
z
√

coth2 θ − z
√
z1/n − 1

. (5.40)

A closed-form solution is found for n = 1,

φt = π signθ. (5.41)

For a general n we find in the limits θ → 0±

φt
θ→0±−−−−→ nπ signθ (5.42)

and θ → ±∞
φt

θ→±∞−−−−−→
√
nπ signθ. (5.43)

5.7 Appendix B. Scattering matrix for
magnetic breakdown

Non-topological Hamiltonian

To obtain the full solution in the magnetic-breakthrough region, we solve
the differential equation [

σxδ + σyk + i∂k
]
ψ = 0. (5.44)
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Multiplying from the left with U = exp(−iσxπ/4) and inserting the ansatz
ψ = U†(η, ξ)T we obtain(

k2 + ∂2
k − i+ δ2)η = 0, (5.45)

ξ = −δ−1(k + i∂k
)
η. (5.46)

Equation (5.45) can be transformed to Weber’s equation for the parabolic
cylinder function,

η′′ −
( 1

4z
2 + a

)
η = 0, (5.47)

where
z =
√

2eiπ/4 k, a = 1
2 + iγ, γ = 1

2δ
2. (5.48)

The two solutions read

ηa = e−z
2/4

1F1
( 1

2a+ 1
4 ; 1

2 ; 1
2z

2), (5.49a)

ηb = z e−z
2/4

1F1
( 1

2a+ 3
4 ; 3

2 ; 1
2z

2), (5.49b)

where 1F1() is the confluent hypergeometric function. Its general asymp-
totic form for a large last argument reads

1F1(α, β, ik2) k→∞−−−−→ Γ(β)
(

1
Γ(α)e

ik2
(ik2)α−β + 1

Γ(β−α) (−ik2)−α
)
. (5.50)

From this we obtain the asymptotic form of the two solutions (5.49),

ηa =
Γ
( 1

2
)

Γ
(
γ i2 + 1

2
)eik2/2+iγ ln |k|−πγ/4, (5.51a)

ηb = sign(k)
√

2Γ
( 3

2
)

Γ
(
γ i2 + 1

)eik2/2+iγ ln |k|−πγ/4. (5.51b)

Inserting into (5.46), we obtain the two corresponding expressions for ξ,

ξa = − sign(k)
√

2π/γ
Γ
(
− γ i2

)e−ik2/2−iγ ln |k|+i π/4−πγ/4, (5.52a)

ξb = −
√
π/γ

Γ
( 1

2 − γ
i
2
)e−ik2/2−iγ ln |k|+i 3π/4−πγ/4. (5.52b)

Altogether, an arbitrary solution of (5.44) at |k| � δ is thus the linear
combination

ψ(k) = eiσxπ/4Ψ(k)a, Ψ(k) =
(
ηa ηb
ξa ξb

)
, a =

(
a1
a2

)
, (5.53)
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kz

 �
i

 �
f

 +
f

 +
i

k

k�z (k) k+z (k)
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⇡ ⇡/20 ⇡/2

⇡ ⇡

2
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2
� ⇡

2u

K
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K
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⇡ � ✓✓

Figure 5.3: Classical trajectories along the equi-energy contours k±z (k) approaching and
leaving the magnetic-breakdown region. The in- and outgoing scattering states, ψ±i and ψ±f ,
respectively, are also indicated.

where a1, a2 are arbitrary coefficients.
The approximate semiclassical solution of (5.44) reads [182, 193]

ψs(k) = χ(k) e−i
∫ k

0 dk′kz(k′)+φt(k), (5.54)

where χ(k) and kz(k) are determined by[
σxδ + σyk + k±z (k)]χ±(k) = 0, (5.55)

k±z (k) = ±
√
k2 + δ2 (5.56)

and φt(k) is the topological phase shift accumulated on the orbit section
between ky = 0 and ky = k,

φt(k) = i

∫ k

0
dk′y χ

†
±(k)∂kχ±(k) =

∫ k

0
dk′

δ

2(δ2 + (k′)2)
= arctan(k/δ)/2. (5.57)

The first term in the exponent of the semiclassical wavefunction can be
written as∫ k

0
dk′k±z (k′) = ± sign(k)f(k) +O

(
δ2
0/k

2), (5.58a)

f(k) = 1
2
[
k2 + δ2

0
(

ln |2k/δ0|+ 1/2
)]
. (5.58b)

The basis for the scattering matrix is formed by the semiclassical wave-
functions at k � −δ as incoming states ψi and at k � δ as outgoing states
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ψf , as indicated in Fig. 5.3. To leading order in δ/k we obtain

ψ±i = e±if(k) 1√
2

(
∓eiπ/4
e−iπ/4

)
, (5.59)

ψ±f = e∓if(k) 1√
2

(
∓e−iπ/4
eiπ/4

)
(5.60)

and combine the scattering states into matrices,

Ψi(k) = (ψ+
i , ψ

−
i ), Ψf (k) = (ψ+

f , ψ
−
f ). (5.61)

We choose the coefficients of the full solution, a, such that at ky � −δ
the full solution coincides with the incoming state, Ψici, where according
to (5.61), ci = (1, 0) corresponds to incoming state ψ+

i and ci = (0, 1)
corresponds to incoming state ψ−i . At k � δ the phase and amplitude
of the final states, combined in cf , is then determined by matching ψ(k)
with Ψfcf . Altogether, the matching conditions read

Ψi(k � −δ)ci = Ψ(k � −δ)a, (5.62)
Ψ(k � δ)a = Ψf (k � δ)cf . (5.63)

Eliminating a we obtain the expression for the scattering matrix S

cf = Ψf (k)−1Ψ(k)Ψ−1(−k)Ψi(−k)︸ ︷︷ ︸
≡S

ci, k/δ → +∞. (5.64)

Inserting the expressions Ψf (k), Ψi(k), and Ψ(k) given above, we obtain
the scattering matrix (5.24) given in the main text.

Topological Hamiltonian

We consider the Schrödinger equation[
δn
√
u2 − 1 sin θσx + k

√
u2 − 1σy

+ i∂k(u+ σz) + δn cos θ(1 + uσz)
]
ψ = 0. (5.65)

The semiclassical solution reads

ψs(k) = χ(k) e−i
∫ k

0 dk′kz(k′)+φt(k), (5.66)
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where χ(k) and kz(k) are given by[
δn
√
u2 − 1 sin θσx + k

√
u2 − 1σy + k±z (k)(u+ σz)

+ δn cos θ(1 + uσz)
]
χ±(k) = 0,

(5.67)

k±z (k) = ±
√
k2 + δ2

n. (5.68)

The phase
∫ k

0 dk
′k±z (k′) is in analogy to the non-topological case given by

(5.58) (with δ0 replaced by δn). The topological phase shift is most easily
obtained by considering the original Schrödinger equation

H ′nψ = εψ, (5.69)
H ′n = knxσx + nkn−1

x kyσy + kzσz + ukz, (5.70)

which is related to (5.65) by a kz shift introduced in (5.27) in the main
text, which leaves the phase shift accumulated between k = 0 and k = ±∞
invariant. The Hamiltonian is of the form of H1. The topological phase
shift thus calculates in analogy to the phase φ1±

t of the main text. Since
by symmetry the phase shift from k = 0 to k = ±∞ is half the phase shift
from k = −∞ to k =∞, we can use Eq. (5.17) to obtain

φn±t (k =∞) = π

4
(1∓ signθ)± θ

2
, (5.71)

which is sufficient for the in- and outgoing states at k = ±∞. Together
with the spinors from (5.67) the scattering states read

ψ±i = e±if(k)−iπ4 (1∓signθ)∓iθ/2

∓i√u−1
2u√

u+1
2u

 , (5.72a)

ψ±f = e∓if(k)+iπ4 (1∓signθ)±iθ/2

±i√u−1
2u√

u+1
2u

 . (5.72b)

To find the full solution ψ(k) we multiply (5.65) from the left with
M = diag[(u+ 1)−1, (u− 1)−1] and apply a transformation given by

T = −i
( 1−u√

u2−1
u−1√
u2−1

1 1

)
σze
−iσyθ/2, (5.73)
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Figure 5.4: (a) Landau fan diagrams for type II Weyl nodes with topological charge n = 1
(left) and n = 2 (rigth) at kx = 0.005 and kx = 0.03, respectively. Other parameters are
u = 1.6, η = 0.1, and Ncut = 2400. (b) Landau-level (LL) index m as a function of the
inverse field for n = 1, 2 at fixed energies indicated by the black dashed lines in (a). The dots
correspond to the numerical data, the dashed lines to the linear fits according to Eq. (5.77).

which leads to the differential equation of the Landau-Zener form (5.44),

Ĥψ̂(k) =
(
i∂kσ0 + δn σx + k σy

)
ψ̂(k) = 0, (5.74)

where ψ̂(k) = T−1ψ(k) and Ĥ = T−1M H̃T . As in the non-topological
case, we obtain the S matrix by matching the full solution with the
scattering states, T−1ψ±i/f , which leads to the scattering matrix (5.24)
with δ0 replaced by δn.
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5.8 Appendix C. Numerical results
To give support to the analytical calculations, we numerically compute
the offset γ for type I and type II single, double, and triple Weyl nodes
via numerical diagonalization of the Hamiltonian H ′n = Hn(k′) + ηk′z

3
σz,

with Hn given by Eq. (5.2b) of the main text, and the regularizing term
ηk′z

3
σz to ensure closed Fermi pockets in the case u > 1, as discussed in

the main text. The magnetic field in the x direction enters according to
the Peierls substitution k′ = k +A, with

k′x = kx, [k′y, k′z] = −iB . (5.75)

We make use of the ladder operators a and a† of the quantum oscillator
to construct momentum operators with the required properties. Straight-
forwardly,

k′y = (a+ a†)
√
B

2
, k′z = i(a− a†)

√
B

2
(5.76)

with [a, a†] = 1, fulfil the commutator in Eq. (5.75).
The ladder operators are calculated in the basis of the Landau-level

eigenstates (eigenstates of a†a), yielding the matrix elements (a)ij =
δi,j+1

√
j and (a†)ij = δi,j−1

√
i, respectively. The lowest l Landau levels

are obtained by sparse diagonalization of the Hamiltonian constructed
from ladder operators truncated to i, j ∈ [1, Ncut] with Ncut � l, ensuring
convergence of the eigenvalues with the value of Ncut.

The fan diagrams, shown in Fig. 5.4, are obtained by repeating this
procedure at different values of the magnetic-field strength. For type-II
Weyl orbits the limit of unit breakthrough probability is never achieved
in practice, resulting in non-monotonic contribution to Landau-level ener-
gies [182, 193], producing oscillations on top of the fans in Fig. 5.4. These,
however, are not the subject of our present analytical study. Therefore, in
order to better extract the phase shift, we suppress these oscillations for
n = 2 and n = 3 by averaging the energies over a range of magnetic fields
containing several oscillation peaks (dips).

At a fixed energy ε, we extract the intercept fields {Bm}, where Bm is
the value of the field at which the energy of the mth Landau level equals
ε. The inverse of the intercept fields are then fitted to the quantization
condition, Eq. (5.1) of the main text,

1
Bm

= 2π
S(ε)

(m+ γ) , (5.77)
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Figure 5.5: Parameter dependence of the offset γ (modulo one) for cyclotron orbits at
type-I (left) and type-II (right) Weyl nodes obtained numerically (dots), compared to the
analytical results (solid lines) of the main text [cf. Figs. 5.2a and 5.2b]. Parameters for
numerical results are u = 1.6 (u = 7), η = 0.1 (η = 1), and Ncut = 2400 (Ncut = 800)
for n = 1, 2 (n = 3). The relatively large value of u and η for n = 3 were necessary to
access large values of θ [cf. Eq. (5.16)], at the same time closing the contour at not too large
momenta.

where the zero-field area S(ε) enclosed by the equi-energy contour is
calculated numerically from the dispersion at B = 0. The offset γ modulo
one is thus obtained as the only fitting parameter.

The results, shown in Fig. 5.5, are in good agreement with the analytical
results presented in the previous sections, for all the cases that we were able
to address numerically. The phase offset γ = 1/2 corresponding to the non-
protected band-touching Hamiltonian (5.2a) was obtained numerically in
the context of figure-8 cyclotron orbits in a thin-film Weyl semimetal [192],
also in agreement with the analytical results of this chapter.
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Summary
Electrons in a crystal lattice have properties that may differ from those of a
free electron in vacuum. The effective mass can be different from the bare
electron mass, and it may even vanish, so that the electron behaves in some
respects as a relativistic massless particle such as a photon. The magnetic
moment of the intrinsic angular momentum, the electron spin, may be
also different from that of an elementary particle. Moreover, electrons can
acquire spin-like degrees of freedom, referred to as “lattice pseudospin” or
“valley isospin”.

These various degrees of freedom are of interest as ways to store and
transport information — one speaks of “spintronics” and “valleytronics”
as alternatives to “electronics” — and they have recently gained additional
relevance in the context of topological quantum phases. For those purposes
it is of interest to study the interplay between the orbital motion of electrons
and their spin (spin-like) degrees of freedom, the so-called “spin-orbit
coupling”.

This thesis contains results about the effects of strong spin-orbit coupling,
and in particular of the “spin-momentum locking”, on two classes of
materials: oxide-interfaces and Weyl semimetals.

The high-mobility two-dimensional electron system at the (strontium-
titanate / lanthanum-aluminate) LaAlO3 / SrTiO3 interface is endowed
with many properties that have no analogues in conventional semiconductor-
heterostructures. The interface can indeed carry electrical current despite
LaAlO3 and SrTiO3 being both insulators, and it becomes superconducting
at sub-Kelvin temperatures.

There is an ongoing search for the connection between superconductivity,
on the one hand, and spin-orbit coupling and inversion-symmetry breaking,
on the other hand. This requires a good characterization of the spin-orbit
coupling. Previous studies in the literature dismissed this effect as being
too weak to produce observable signatures in the transport properties of
the interface, which were instead related to many-body interactions. In
a collaboration with experimentalists in Delft, we found evidence that
the experimentally measured giant negative magnetoresistance may be a
single-particle effect, driven by spin-orbit coupling.

In chapter two of this thesis, we show that also the anisotropy of the
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magnetoresistance can be likewise explained. Remarkably, we found that
the amplitude and the shape of the magnetoresistance oscillations directly
map to the spin and orbital textures of the Bloch states at the Fermi level.

From chapter three onwards, the focus shifts to Weyl semimetals. These
are three-dimensional materials with the unique combination of gapless lin-
ear dispersion in the bulk (“three-dimensional graphene”) and topological
surface states (Fermi arcs). In the absence of time-reversal and/or spatial-
inversion symmetry, the band-degeneracy points, so-called “Weyl nodes”,
are robust against local perturbations and carry a definite “chirality”.

In this thesis, we have studied “magnetic” Weyl semimetals — time-
reversal symmetry is intrinsically broken — with a single pair of Weyl
cones in the Brillouin zone. Chiral Weyl fermions have the spin tied to
the direction parallel or antiparallel to the momentum. Type–I Weyl
semimetals, with a point-like Fermi surface at the energy of the Weyl
nodes, are the subject of chapters three and four. In chapter five we extend
our study to type-II Weyl points, created when the Weyl cone is tipped
over the momentum axis, and to multi-Weyl points that have topological
charge larger than one.

In chapter three, we show that at the interface between a magnetic Weyl
semimetal and an s-wave spin-singlet superconductor, Andreev reflection is
blocked. The reason is that the combined requirements of zero momentum
and zero spin transfer to the Cooper pairs are at odds with the spin-
momentum locking of the Weyl fermions.

In chapter four, we investigate the magnetotransport signatures of the
figure–8 Fermi surface formed out of hybridized surface and bulk states
in a thin film of a magnetic Weyl semimetal with additionally broken
inversion-symmetry. In a strong perpendicular magnetic field, two types of
counterpropagating edge channels coexist at each spatial boundary of the
system, distinguished in “narrow” and “wide” channels depending on how
much they extend into the bulk. Through a voltage bias one can selectively
populate either the wide or the narrow channel, while the current flow
shifts from one edge to the opposite upon reversing the direction of the
field. These signatures are unique to the figure–8 Fermi surface and can
be observed in magnetoconductance experiments.

In chapter five, we calculate the quantum corrections to the Bohr-
Sommerfeld quantization condition of cyclotron orbits encircling different
types of Weyl points. These corrections shift the phase of magnetic
oscillations of quantities such as the magnetization and the conductance.
The total phase is the sum of several contributions: the Maslov phase
due to the caustics on the cyclotron orbit, the Berry phase that carries
information about the topology of the band-structure, and the phase
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associated with tunneling between different orbits that merge into one
via magnetic breakthrough. We find that for figure–8 cyclotron orbits at
multi-Weyl points the phase shift is nicely quantized due to cancellation
of non-universal contributions between the electron and hole part of the
orbit.
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Samenvatting
Elektronen in een kristal hebben eigenschappen die kunnen verschillen
van de eigenschappen van vrije elektronen in vacuüm. De effectieve massa
kan verschillen van de vrije elektronenmassa, en deze kan zelfs nul worden,
zodat het elektron in sommige opzichten beweegt zoals een relativistisch
massaloos deeltjes als een foton zou bewegen. Het magnetische moment
van het intrinsieke draaimpuls, de elektronenspin, kan ook verschillen van
dat van een elementair deeltje. Bovendien kunnen elektronen spin-achtige
vrijheidsgraden ontwikkelen, genaamd “pseudospin” of “isopspin”.

Al deze vrijheidsgraden zijn interessant omdat men er informatie in
kan opslaan en mee kan vervoeren — men spreekt van “spintronics” en
“valleytronics” als alternativen voor “electronics” — en recent zijn ze van
belang geworden in de contekst van topologische quantumtoestanden. Om
deze redenen is het van belang om het samenspel te onderzoeken tussen
de ruimtelijke beweging van de elektronen en hun spin (of spinachtige)
vrijheidsgraden. Dit heet “spin-baankoppeling”.

Dit proefschrift bevat het resultaat van onderzoek naar de effecten
van sterke spin-baankoppeling, in het bijzonder de gevolgen van “spin-
momentum locking”, in twee klassen van materialen: oxide-grenslagen en
Weyl halfmetalen.

Wat betreft de oxide-grenslagen is onze aandacht uitgegaan naar het
LaAlO3 / SrTiO3 (strontium-titanaat / lanthaan-aluminaat) grensvlak,
dat een twee-dimensionaal elektronengas bevat met hoge mobiliteit. Het
is een uniek systeem, met eigenschappen die niet in andere halfgeleider
heterostrukturen voorkomen. Hoewel LaAlO3 and SrTiO3 isolatoren zijn,
kan het grensvlak toch geleidend worden, en zelfs supergeleidend bij
temperaturen onder 1 Kelvin.

Men is actief op zoek naar het verband tussen supergeleiding enerzijds,
en spin-baankoppeling vanwege gebroken inversiesymmetrie anderzijds.
Hiervoor is een goed begrip van de spin-baankoppeling nodig. Eerdere
studies in de literatuur hebben dit effect afgedaan als te zwak om van
invloed te kunnen zijn op de geleiding in het grensvlak. Men legde in plaats
daarvan de nadruk op de effecten van interacties tussen de elektronen.
In samenwerking met experimentatoren in Delft hebben we aanwijzigen
gevonden dat de gemeten grote magnetoweerstand gedreven wordt door
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de spin-baankoppeling, zelfs in afwezigheid van interacties.
In hoofdstuk twee van dit proefschrift laten we zien dat de anisotropie

van de magnetoweerstand ook op deze manier kan worden verklaard. We
hebben gevonden dat de amplitude en de vorm van de magnetoweerstand-
oscillaties direct gerelateerd zijn aan de spin-baankoppeling in Blochtoes-
tanden aan het Fermi-niveau.

Vanaf hoofdstuk drie richten we ons op Weyl halfmetalen. Dit zijn drie-
dimensionale materialen met de bijzondere combinatie van een lineaire
dispersie binnenin het materiaal (“drie-dimensionaal grafeen”) en topolo-
gische toestanden aan het oppervlak (“Fermi arcs”). In de afwezigheid van
tijdomkeersymmetrie en/of inversiesymmetrie heeft de bandstruktuur een
conische vorm met snijpunten, zogenaamde “Weyl nodes”, die ongevoelig
zijn voor lokale verstoringen en een bepaalde “chiraliteit” bezitten.

In dit proefschrift hebben we “magnetische” Weyl halfmetalen onder-
zocht (dus met gebroken tijdomkeersymmetrie), die een enkel paar Weyl
conussen hebben in de Brillouinzone. Chirale Weylfermionen hebben een
spin die is uitgelijnd met de impuls, parallel of antiparallel. Weyl halfmet-
alen van type I, met een puntvormig Fermi-oppervlak, zijn het onderwerp
van hoofdstuk drie en vier. In hoofdstuk vijf breiden we de studie uit naar
type II, waarin de Weyl conus is gekanteld, en naar Weylfermionen met
een topologische lading groter dan één (hogere orde Weylpunten).

In hoofdstuk drie laten we zien dat er geen Andreev-reflectie optreedt aan
het grensvlak tussen een magnetisch Weyl halfmetaal en een conventionele
supergeleider (s-wave spin-singlet). De reden hiervoor is dat de vereisten
van afwezigheid van transport van impuls of spin aan de Cooperparen niet
te rijmen zijn met de “spin-momentum locking” van de Weylfermionen.

In hoofdstuk vier onderzoeken we het magnetotransport in een Fermi-
oppervlak dat een 8-vorm heeft. Dit treedt op in een dunne film van
een magnetisch Weyl halfmetaal waarin eveneens de inversiesymmetrie is
gebroken. De kruising in de “8” is het gevolg van menging van toestanden
aan het oppervlak van de dunne film en binnenin. In een sterk loodrecht
magnetisch veld ontstaan twee type van randkanelen, die in tegengestelde
richting bewegen: het ene type is nauw, het andere breed, afhankelijk van
hoe diep het randkanaal zich in het binnenste van het materiaal uitstrekt.
Door middel van een aangelegde spanning kan men selectief het nauwe
of het brede randkanaal bevolken, en de elektrische stroom kan zo van
de ene naar de andere rand verschoven worden door de richting van het
magneetveld te inverteren. Deze effecten zijn karakteristiek voor de 8-vorm
van het Fermi-oppervlak en zouden gemeten kunnen worden.

In hoofdstuk vijf bereken we de quantumcorrecties op de Bohr-Sommerfeld
quantisatieregel voor cyclotronbeweging in verschillende soorten Weylpun-
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ten. Deze correcties verschuiven de fase van de magneto-oscillaties van
grootheden zoals de magnetisatie of de geleiding. De faseverschuiving heeft
verschillende bijdragen: er is de Maslov-fase ten gevolge van de brandpun-
ten in de cyclotronbaan, er is de Berry-fase die informatie bevat over de
topologie van de bandstruktuur, en er is de fase ten gevolge van tunnelen
tussen banen dicht bij het Weylpunt (“magnetic breakthrough”). We
vinden dat voor de 8-vormige cyclotronbanen de faseverschuiving bij een
hogere orde Weylpunt goed gequantiseerd is, ten gevolge van het wegvallen
van bijdragen van elektronen en van gaten.
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1. The large anisotropic magnetoresistance measured in LAO / STO interfaces
can be explained in terms of a single-particle scattering mechanism, without
relying on the Kondo effect.

Chapter 2

2. Andreev reflection at the interface between a time-reversal–symmetry
breaking Weyl semimetal and an s-wave superconductor requires a pseu-
doscalar pair potential, that changes sign under inversion symmetry.

Chapter 3

3. In a two-dimensional electron gas, a deformation of the Fermi circle that
changes the turning number can be observed in the magnetoconductance.

Chapter 4

4. Magnetic breakthrough between the electron and hole cyclotron orbits in
a type–II Weyl semimetal is associated with a π/2 phase shift.

Chapter 5

5. Non-Abelian exchange statistics does not apply to Majorana fermions.

6. The collision integral in the Boltzmann transport equation is linear in
the distribution function regardless of any assumption of detailed balance,
contrary to textbook statements.

N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders (1976).

7. The correspondence between Klein tunneling and Andreev reflection dis-
cussed by Beenakker et al. [Phys. Rev. B 77, 075409 (2008)] can be
extended to explain the universal phase shift of π/2 acquired by the elec-
tron wave function upon a magnetic breakthrough transition of the type
studied in Chapter 5.

8. The electrical current through a slab of Weyl semimetal can mainly flow
along the boundaries, even if there are many more bulk states than surface
states at the Fermi level.



9. The quasi-Majorana states studied by Vuik et al. [arXiv:1806.02801] in
topologically trivial semiconductor nanowires may serve more efficiently as
building blocks of quantum gates than topologically non-trivial Majorana
zero-modes.
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