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The cover shows a snapshot from a simulation of anomalous dif-
fusion on a Sierpiński lattice (Chapter 2). The blue and red dots
correspond, respectively, to occupied and empty sites. Particles
enter the system via the bottom left corner and leave it via the
bottom right corner. One can see how obstacles (black triangles)
hinder the transport on all length scales.
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1 Introduction

1.1 Normal and anomalous diffusion

Diffusion is the spreading of randomly moving particles from
regions with higher concentration to regions with lower concentra-
tion. The first class of diffusive processes to have been recognized
historically is now known under the name normal diffusion. Its
signature is the linear growth with time of the mean squared dis-
placement of a particle from its starting point,〈

x2〉 = Dt. (1.1)

On long time scales all normal diffusive processes show the same
behavior and microscopic details of particle dynamics play no role
other than determining the value of the diffusion coefficient D.

The importance and generality of the concept of normal diffu-
sion was recognized in the nineteenth century. One of the first
milestones was the discovery of Brownian motion, the diffusion of
particles suspended in a fluid, by Scottish botanist Robert Brown in
1827 [27]. It was subsequently realized that phenomena seemingly
as different as the spreading of infected mosquitos [107] and the
conduction of heat in solids can be described in terms of normal
diffusion.

The driving force for diffusion need not be differences in concen-
tration, but can also be a difference in potential energy. Electrical
conduction in metals is usually also a normal diffusive process,
driven by differences in electrical potential (since differences in
electron concentration would violate charge neutrality) [39].

Though it is a remarkably general concept, normal diffusion fails
to describe all diffusive phenomena. Since the 1970s, increasingly
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processes were found in nature [125] where the mean squared
displacement of a particle scales as a power of time different from
unity, 〈

x2〉 = Dtγ, γ 6= 1. (1.2)

Examples include the foraging patterns of some animals [16], hu-
man travel behavior [26], and the spreading of light in a cloudy
atmosphere [40]. This kind of diffusion has been termed anomalous,
and can occur in two varieties: subdiffusion, where the particles
spread with time arbitrarily slower than normal diffusion (γ < 1),
and superdiffusion, where they spread arbitrarily faster (γ > 1, with
an upper limit γ = 2 for ballistic motion without any scattering).

Random walks are stochastic processes in which particles move
in a sequence of randomly directed steps. The lengths s of the
steps and the duration τ of a step are drawn from a probability
distribution P(s, τ). (For simplicity, we assume an isotropic random
walk, so P is independent of the direction of the step.) For a
random walk to be normal, the variance Var s = 〈s2〉 − 〈s〉2 of
the step size has to be finite as well as the average duration 〈τ〉.
Then, according to the central limit theorem, the mean square
displacement after time t will approach a normal distribution
with variance (t/〈τ〉)Var s. This is the reason for the previously
mentioned similarity of all diffusive processes.

If the requirements for a normal random walk are violated,
the random walk will be anomalous and the scaling of the mean
squared displacement will in general have a power law (1.2) with
γ 6= 1. This can occur in several ways (See Ref. [145] for a detailed
presentation).

Superdiffusion happens if the step size distribution P(s) has a
heavy tail ∝ 1/s1+α for large s, with 0 < α < 2. If the duration
τ = vs is simply proportional to the step size (with constant
velocity v) this leads to superdiffusive behavior with

γ = max(3− α, 2). (1.3)

Such an anomalous random walk is called a Lévy walk, after
the French mathematician Paul Pierre Lévy. Alternatively, one
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Figure 1.1: Two random walks of 104 steps each, characterized by
a power-law-tailed step size distribution P(s) = α/sα+1

for s > 1, P(s) = 0 otherwise. The left walk is normal
with α = 3 (Brownian walk), while the right one has α =

3/2 which makes it superdiffusive (Lévy walk). One
clearly sees how individual steps play no dominant role
in normal diffusion, while superdiffusion is dominated
by individual long steps on all length scales.

might give each step the same duration τ0, independent of the step
length. This socalled a Lévy flight has a divergent mean square
displacement at any time t > τ0, and is therefore not physically
realistic.

Fig. 1.1 shows two realizations of power-law-tailed random walks
of which one is normal and one superdiffusive.

Another way to break normal diffusion is to have a step size
distribution with a finite variance, but to associate with the steps
durations drawn from a distribution with infinite mean. (See [11]
for an introduction.) This leads to subdiffusive behavior charac-
terized by γ < 1. Effectively, this happens if the random walk
is performed on a fractal: a scale-invariant object of non-integer
fractal dimension d f embedded in Euclidean space of dimension
d > d f . The pieces of Euclidean space which are not part of the
fractal present obstacles to the walker that are present at all length
scales and slow down the diffusion. The value of γ < 1 is specific
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Figure 1.2: Bright-field transmission electron microscope image of
a freely suspended graphene sheet. A homogeneous
and featureless region of a monolayer graphene is indi-
cated by the arrow; image from Ref. [93].

for each fractal and independent of the fractal dimension.

1.2 Dirac fermions and graphene

In 2004, Andre Geim and Konstantin Novoselov succeeded in
isolating for the first time one atom thick flakes of graphite. Their
achievement was awarded earlier this year with the Nobel prize in
Physics.

This new material, named graphene, is made up of a single
layer of carbon atoms arranged in a honeycomb lattice and was
previously thought to be unstable and therefore only to exist as
part of three-dimensional structures. With the wisdom of hindsight
the existence of one atom thick crystals can be reconciled with
theory [93]: slight corrugations of the monoatomic carbon film
reinforce it against destructive thermal vibrations. Fig. 1.2 shows a
photograph of a freely suspended piece of graphene.

The basic electronic properties of graphene which, mostly out
of theoretical curiosity, had been studied since the 1940s [143, 91]
could be verified by the experiments of Geim, Novoselov and others.
The most striking feature is the double-cone shaped dispersion
relation of electrons in graphene shown in the right panel of Fig.
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Figure 1.3: Left panel: Honeycomb lattice of carbon atoms in
graphene. The unit cell contains two atoms, labeled A
and B (open and closed circles). Right panel: Brillouin
zone of graphene with a linear double cone spectrum
at its corners; independent cones are indicated by open
and closed circles. Illustration by C. Jozsa and B. J. van
Wees.

1.3. As the velocity of the charge carriers is given by the derivative
of the dispersion relation, we see that the speed of electrons in
graphene is a constant independent of energy (for energies small
enough such that the linear relation holds).

This is a most unusual property for particles in condensed matter
physics. (Usually, the velocity increases with the square root of the
energy.) It reminds of the energy-independent speed of photons,
and indeed the low-energy long-wave length physics of electrons
in graphene obeys the Dirac equation of relativistic quantum me-
chanics, or, more specifically, its two-dimensional massless version
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−ih̄v
(

0 ∂x − i∂y

∂x + i∂y 0

)(
ΨA
ΨB

)
= E

(
ΨA
ΨB

)
. (1.4)

The A and B components of the wave function correspond to
excitations on the two sublattices of the honecomb lattice (see left
panel of Fig. 1.3) and form a spin-like degree of freedom called
pseudospin. The velocity v is the effective speed of light which in
graphene is about 106 m/s or 1/300 of the true speed of light.

Definition of the vector of Pauli matrices σ = (σx, σy, σz) allows
to express Eq. (1.4) in the compact form

vp · σ ψ = Eψ, (1.5)

with the momentum operator p = −ih̄(∂x, ∂y) and the spinor ψ =

(ΨA, ΨB). Electrons governed by Dirac equation are called Dirac
fermions.

The Dirac equation has only a single Dirac cone, while the disper-
sion relation of graphene shown in the right panel of Fig. 1.3 has
two independent cones called valleys. (Adjacent cones are indepen-
dent, while next-nearest-neighbors are equivalent upon translation
by a reciprocal lattice vector.) The existence of two independent
cones is accounted for by the valley degree of freedom and the
full1 low energy physics has to be described by a four component
spinor Ψ = (ΨA, ΨB,−Ψ′B, Ψ′A) satisfying the four-dimensional
Dirac equation (

vp · σ 0
0 vp · σ

)
Ψ = EΨ. (1.6)

In the low-energy limit described by the Dirac equation the two
valleys are decoupled, but in real graphene inter-valley scattering
can occur by potential features which are sharp on the atomic scale.

The Dirac equation gives rise to unusual transport properties.
Because the speed of Dirac particles is independent of their energy,

1The true spin degree of freedom of electrons is still missing, but it only weakly
coupled to the dynamics and can be ignored.
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Figure 1.4: Computer simulation showing the dependence of the
average conductance 〈G〉 of a graphene sheet (length
L, width W) on the dimensionless disorder strength
K0. The data points are for different sample sizes and
number of impurities Nimp per total number of lattice
points Ntot. The conductance increases initially with
increasing disorder strength, while in a conventional
metal Anderson localization would suppress the con-
ductance (solid and dashed curves). For strong disorder
strengths intervalley scattering sets in, resulting in a
suppression of the conductance. Figure from Ref. [116].

they cannot be stopped by a potential barrier [34, 64]. This has
surprising consequences: adding disorder which is smooth on the
scale of atoms to a graphene sample can enhance the conductivity
[116] (Fig. 1.4). This behavior is in contrast to that of conventional
metals, where disorder reduces the conductivity.

The deviations from normal diffusion in these systems have a
quantum mechanical origin in the interference of electron waves.
In conventional metals the interference is destructive on average,
leading to a complete suppression of diffusion on long length
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scales. This is the celebrated localization effect discovered by
Philip Anderson in 1957 [9]. For Dirac fermions the interference
is constructive on average, which is at the origin of the enhanced
conductivity seen in Fig. 1.4.

1.3 Shot noise of subdiffusion

Conductance, the ratio between applied voltage and the resulting
time-averaged current, is the basic quantity measured in electronic
transport experiments. How does the conductance of a diffusive
d-dimensional system scale with its linear size L? For normal
diffusion, the answer is given by Ohm’s law,

G = σLd−2. (1.7)

The proportionality constant σ is the conductivity.
Transport by anomalous diffusion is fundamentally different: the

conductance depends on L with a different power than in Eq. 1.7.
As a consequence, the conductivity becomes scale dependent.

In the case of subdiffusion on fractals the conductance scales as
(reviewed in Refs. [135, 111])

G ∝ Ld f−2/γ, (1.8)

with γ the exponent that governs the mean-square displacement in
Eq. (1.2). Note that diffusion on a fractal is not just normal diffusion
in a medium with non-integer dimension d f . In that case, one
would expect G to scale as Ld f−2. Because γ is smaller than 1 for
subdiffusion, conduction is suppressed stronger than would be
expected solely on the basis of the fractal dimension.

Given the special scaling of conductance with length for subdif-
fusion, one might ask how other transport properties scale. While
the time-averaged current determines the conductance, the time-
dependent fluctuations determine the shot noise power S. In terms
of the charge Q transmitted in a time τ, one has

S = lim
τ→∞

2
〈
δQ2〉 /τ. (1.9)
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The shot noise power is proportional to the applied voltage and
hence to the mean current

I = lim
τ→∞
〈Q〉 /τ. (1.10)

The ratio F = S/2eI is called the Fano factor. The Fano factor
is unity in the case where completely uncorrelated particles are
transmitted. Then, Q is Poisson-distributed which leads to F = 1.
A value F > 1 indicates bunching of charge carriers (particles
tend to arrive in groups more often than in the uncorrelated case),
whereas F < 1 is a signature of anti-bunching (particles arrive
less often in groups). Anti-bunching of electrons is a consequence
of the Pauli exclusion principle, which prevents two electrons to
occupy the same quantum mechanical state. For normal diffusion
the Pauli principle produces a Fano factor F = 1/3 [18, 96].

What is the Fano factor for subdiffusion on fractals? Shot noise
on fractals has been studied previously under circumstances that
the Pauli principle is not operative, because the average occupation
of a quantum state is much smaller than unity. (This is called a
nondegenerate electron gas.) One example is the regime of high-
voltage transport modeled by hopping conduction. Then I and S
scale differently with L, so that the Fano factor is scale dependent.
(See Fig. 1.5.) The Pauli principle is expected to govern the shot
noise for diffusive conduction in the regime of low voltages and
low temperatures, when the average occupation of a quantum state
is of order unity (a degenerate electron gas).

This regime has become experimentally relevant in view of the
discovery of electron and hole puddles in undoped graphene [89].
The puddles, shown in Fig. 1.6, form intertwined maze-shaped
clusters doped positively (p) or negatively (n). The n-type region
contains a degenerate electron gas and the p-type region contains a
degenerate hole gas. The current flows with less resistance within
an n-type or p-type region than across a p-n interface. Cheianov
et al. modeled [89] this system by a random resistor network as
illustrated in Fig. 1.7. The interconnected resistors in this model
form percolation clusters which are fractals with d f = 91/48.
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Figure 1.5: Fano factor as function of sample size from a Monte
Carlo simulation of two-dimensional hopping through
a disordered conductor. The Fano factor is scale depen-
dent because the average current and the noise power
scale with a different power of the sample size. Figure
from Ref. [68].

Several experiments have studied the Fano factor of graphene
recently. Measurements from two of these experiments, performed
by Danneau et al. in Helsinki [37] and by DiCarlo et al. in Harvard
[41] are shown in Figs. 1.8 and 1.9, respectively. In the Helsinki
experiment the Fano factor depends strongly on doping, with
a peak value of 1/3, while the Harvard measurements show a
doping-independent Fano factor of 1/3. The theory for shot noise
on a fractal developed in this thesis offers a way to reconcile these
two conflicting experiments.

1.4 Discretization of the Dirac equation

The standard model for graphene is the tight-binding approxi-
mation, in which the hopping of electrons between overlapping
orbitals of the atoms constituting the carbon sheet is directly con-
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Figure 1.6: Experimentally determined color map of the spatial
carrier density variations in a graphene flake. Blue
regions correspond to hole doping (p-type) and red
regions to electron doping (n-type). The black contour
marks the p-n interface. Figure from Ref. [89].

sidered. This model is widely used to study the properties of
graphene numerically. It can recover all electronic properties of
the material, but is viable for small flakes only, as the computation
times grow quickly with the number of atoms. To allow computer
modeling of larger flakes of graphene and to probe the physics
of a single Dirac cone, it would be useful to simulate the Dirac
equation (1.4) directly, and not only as the low-energy limit of
the tight-binding model. For this, the Dirac equation needs to be
discretized, i.e. put on a lattice. This can be done in real space or in
momentum space. The momentum space approach was developed
in Refs. [13] and [99], while the real-space approach is developed
in this thesis.

The discretization of the Dirac equation is notoriously difficult,
because of the socalled fermion doubling problem [98]. The most
straightforward way to discretize the Dirac equation in real space is
to define the wave function ψ(x, y) on a rectangular grid with lattice
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Figure 1.7: Random resistor network representation of a graphene
sheet with average zero doping. The conductance is g
within an n-type or p-type region (red or blue lines),
and has a smaller value across a p-n interface. (The
symbol γ used in this figure is unrelated to the random-
walk exponent.) Figure from Ref. [35].

constant a and to replace the derivatives with finite differences,

∂xψ→ ψ(x + a, y)− ψ(x− a, y)
2a

, (1.11)

∂yψ→ ψ(x, y + a)− ψ(x, y− a)
2a

. (1.12)

This discretization fails to describe the physics of a single Dirac
cone.

To see this, let us look at the dispersion relation of the discretized
equation. For simplicity, we consider only plane waves moving in
the x direction, so that ky = 0. Such plane waves have the general
form

ψ = ψ0 e±ikxx. (1.13)

Inserting this into the Dirac equation (1.4) with the substitutions
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Figure 1.8: Results from a transport experiment performed by R.
Danneau et al. on a graphene sheet. The measurements
are consistent with theoretical predictions for ballistic
transport at the Dirac point [141]. Left panel: Resis-
tance and conductivity as a function of gate voltage and
charge carrier density. The conductivity at the Dirac
point reaches the expected value 4e2/πh. Right panel:
Fano factor as function of charge carrier density. At the
Dirac point, the value 1/3 is reached with F falling off
for both positive and negative doping. Figures from Ref.
[37].

(1.11) and (1.12) gives the dispersion relation

E = ± h̄v
a

sin ka, (1.14)

plotted as the solid curve of Fig. 1.10.
We see that unphysical low-energy states, forming a second

Dirac cone, have appeared around kxa = ±π, ky = 0. There are
two additional cones, one around kxa = 0, kya = ±π, and one
around kxa = ±π, kya = ±π, giving four in total in the first
Brillouin zone. These additional states are due to the fact that the
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Figure 1.9: Results from a transport experiment performed by Di-
Carlo et al. on a graphene sheet. Left panel: Resistance
and conductivity as function of gate voltage. Right
panel, lower part: Fano factor as function of gate volt-
age. The Fano factor has the value 1/3 independent of
doping. Figure from Ref. [41].

Dirac equation (1.4) is a first order differential equation. To be able
to evaluate the first derivatives at the same discretization points
as the wave function, we had to take differences over two lattice
sites in the difference operators (1.11) and (1.12). As a consequence,
waves with a spatial period 2π/|kx| below 4a are undersampled.
This problem is specific for massless Dirac fermions. It does not
arise for the Schrödinger equation, which massive fermions obey,
as it is second order in space.

The fermion doubling problem also plagues the discretization
of the Dirac equation in relativistic quantum mechanics. There
exist ways to circumvent it by shifting the energy of the doubled
states away from 0. One such method, the method of Wilson
fermions [147], gives a mass to the Dirac fermions and thereby
breaks a fundamental symmetry (socalled symplectic symmetry)
needed to explain transport properties in graphene. An alternative
method, known as the method of Kogut-Susskind fermions or as
the staggered fermion method [71, 134, 22], preserves the symplec-
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Figure 1.10: Solid curve: dispersion relation of the naively dis-
cretized Dirac equation showing fermion doubling: a
second Dirac cone appears at kx = ±π. Dashed curve:
dispersion relation of the Dirac equation discretized
according to the method of staggered fermions. The
energy of the unphysical states at kx = ±π has been
shifted away to ±∞.

tic symmetry and is therefore the method which we will apply to
graphene.

The dashed curve of Fig. 1.10 shows the dispersion relation of
the Dirac equation discretized according to the staggered fermion
method. The spurious Dirac cone has disappeared.

1.5 Topological insulators

In 1980 Klaus von Klitzing discovered that the conductance of
thin semiconductor layers at low temperatures and large perpen-
dicular magnetic fields is quantized in integer multiples of the
conductance quantum e2/h [69]. The mechanism for this quantum
Hall effect is illustrated in the left panel of Fig. 1.11 and can be
described as follows: Under the influence of the magnetic field the
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quantum Hall effect quantum spin Hall effect

Figure 1.11: Left panel: the quantum Hall effect has a single con-
ducting channel along the edge. Because movement
in the channel is only possible in a single direction,
electrons cannot be scattered back by impurities (an im-
purity is symbolized by the red dot). Right panel: the
quantum spin Hall effect has two spin-polarized chan-
nels per edge of opposite spin (the spin orientation is
indicated by the short black arrows), propagating in
opposite directions. Backscattering is now forbidden
by Kramers theorem.

electrons move in quantized circular orbits (Landau levels), making
the bulk of the sample insulating. Electrons at the edges of the
samples cannot perform full circles and are forced to “skip along
the edge”. This leads to the appearance of conducting edge states
which propagate in a single direction only. Backscattering requires
scattering to the opposite edge, which is strongly suppressed if the
sample is sufficiently wide. Due to the absence of backscattering,
the transmission probability is unity for each edge channel at the
Fermi level. Each fully transmitted edge channel contributes e2/h
to the conductance, leading to the observed quantization.

An analogous quantization of the conductance in zero magnetic
field occurs in a new class of materials known as topological in-
sulators [50, 108]. This socalled quantum spin Hall effect requires
spin-orbit coupling to produce an unusual band structure (shown
schematically in Fig. 1.12) that leads to the appearance of an in-
sulating bulk and conducting edge channels. There are now two
counterpropagating edge channels at each edge, so backscattering
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would not require scattering to the opposite edge. The reason that
backscattering is still forbidden is a rather subtle consequence of
time reversal symmetry.

Since a magnetic field is absent, the system is time reversal
invariant – its Hamiltonian H is unchanged by the anti-unitary
time-reversal operator Θ:

ΘHΘ−1 = H. (1.15)

Because the electrons have spin 1/2, the operator Θ2 is equal to
−1. In this case, Kramers theorem states that all electron states are
at least twofold degenerate: Let us consider a state ψ at energy E,

Hψ = Eψ. (1.16)

Because of Eq. (1.15), the state Θψ has the same energy E as ψ. The
state Θψ cannot be equivalent to ψ, as assuming that Θψ differs
from ψ just by a phase factor eiδ leads to

Θ2ψ = Θeiδψ = e−iδΘψ = e−iδeiδψ = ψ, (1.17)

which contradicts the previously stated Θ2 = −1. (The second
equality in Eq. (1.17) is due to Θ being antiunitary.)

Kramers theorem tells us that there should be at least two states
at each energy. This forbids scattering between the counterpropa-
gating edge channels, because that would remove the crossing at
zero momentum in Fig. 1.12 and thus remove the degeneracy.

The spectrum near the crossing looks similar to that near the
Dirac point in graphene (cf. Fig. 1.10), and indeed, the electrons
moving in the edge channels are governed by a one-dimensional
version of the Dirac equation (1.4). Topological insulators are
therefore an alternative source of Dirac fermions and many of the
techniques developed in the study of graphene can be applied to
this new class of materials.
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Figure 1.12: Schematic comparison of the band structure of a topo-
logical insulator (left panel) and an ordinary insulator
(right panel). Both have an insulating bulk, but the
topological insulator has conducting edge states inside
the band gap. The crossing of the edge states cannot be
avoided because that would violate Kramers theorem
(requiring twofold degenerate energy levels).

1.6 Outline of this thesis

The research presented in the following chapters concerns the
anomalous diffusion of particles in general and Dirac fermions in
particular. One area of focus are the implications of anomalous
diffusion for electronic shot noise. Novel methods for simulation
of Dirac fermions (which might exhibit anomalous diffusion) were
developed. Finally, some aspects of transport of Dirac fermions in
topological insulators were studied numerically and analytically.

Chapter 2: Electronic shot noise in fractal conductors

Motivated by the experiments mentioned in Sec. 1.3, in Chapter 2

we study the shot noise of subdiffusion on fractals. The two kinds
of fractals we consider are the Sierpiński gasket (a regular fractal)
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and random planar resistor networks which arise from a model of
graphene. We determine the scaling with size L of the shot noise
power S due to elastic scattering in a fractal conductor. We find
a power-law scaling S ∝ Ld f−2/γ, with an exponent depending on
the fractal dimension d f and the anomalous diffusion exponent2

γ. This is the same scaling as the time-averaged current I, which
implies that the Fano factor F = S/2eI is scale independent. We
obtain a value F = 1/3 for anomalous diffusion that is the same
as for normal diffusion, even if there is no smallest length scale
below which the normal diffusion equation holds. The fact that F
remains fixed at 1/3 as one crosses the percolation threshold in a
random-resistor network may explain measurements of a doping-
independent Fano factor in a graphene flake [41].

Chapter 3: Nonalgebraic length dependence of transmission
through a chain of barriers with a Lévy spacing distribution

In Chapter 3 we analyze transport through a linear chain of barriers
with independent spacings s drawn from a heavy-tailed Lévy distri-
bution. We are motivated by the recent realization of a “Lévy glass”
[15] (a three-dimensional optical material with a Lévy distribution
of scattering lengths) of which our system is a one-dimensional
analogue. The step length distribution of particles in our system
also has a heavy tail, P(s) ∝ s−1−α for s → ∞, but strong corre-
lations exist between subsequent steps because the same space
between two barriers will often be traversed back after a particle
gets scattered by a barrier. We show that a random walk along
such a sparse chain is not a Lévy walk because of these correlations.
Thus, by working in the lowest possible dimension, we can provide
a worst-case estimate for the effect of the correlations in higher
dimensions.

We calculate all moments of conductance (or transmission), in
the regime of incoherent sequential tunneling through the barriers.

2In Chapter 2 the symbol α is used for a differently defined anomalous diffusion
exponent: α = 1/γ− 2.
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The average transmission from one barrier to a point at a distance
L scales as L−α ln L for 0 < α < 1. The corresponding electronic
shot noise has a Fano factor that approaches 1/3 very slowly, with
1/ ln L corrections.

Chapter 4: Finite difference method for transport properties
of massless Dirac fermions

As shown in Sec. 1.4, a straightforward discretization of the mass-
less Dirac equation fails because of the fermion doubling problem.
In Chapter 4 we adapt a finite difference method of solution, de-
veloped in the context of lattice gauge theory, to the calculation
of electrical conduction in a graphene sheet or on the surface of a
topological insulator. The discretized Dirac equation retains a sin-
gle Dirac point (no fermion doubling), avoids intervalley scattering
as well as trigonal warping (a triangular distortion of the conical
band structure that breaks the momentum inversion symmetry),
and thus preserves the single-valley time reversal symmetry (=
symplectic symmetry) at all length scales and energies. This comes
at the expense of a nonlocal finite difference approximation of the
differential operator. We demonstrate the symplectic symmetry
by calculating the scaling of the conductivity with sample size,
obtaining the logarithmic increase due to antilocalization. We also
calculate the sample-to-sample conductance fluctuations as well as
the shot noise power, and compare with analytical predictions.

Our numerical results are in good agreement with a recent theory
of transport in smoothly disordered graphene by Schuessler et al.
[122]. Fig. 1.13 compares their analytical results (solid curve) with
our numerical data (rectangles). The same numerical results were
used to prepare Fig. 4.12.
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Figure 1.13: Fano factor as a function of conductivity for smoothly
disordered graphene. The solid curves show ballistic
and diffusive results of Ref. [122]. The dashed line
corresponds to the asymptotic value F = 1/3. The
solid rectangles are our numerical results, obtained
with the method of Chapter 4. The size of rectangles
corresponds to the statistical error estimate. Figure
from Ref. [122].

Chapter 5: Switching of electrical current by spin precession
in the first Landau level of an inverted-gap semiconductor

In Chapter 5 we show how the quantum Hall effect in a two-
dimensional topological insulator can be used to inject, precess,
and detect the electron spin along a one-dimensional pathway. The
restriction of the electron motion to a single spatial dimension en-
sures that all electrons experience the same amount of precession
in a parallel magnetic field, so that the full electrical current can
be switched on and off. As an example, we calculate the mag-
netoconductance of a p-n interface in a HgTe quantum well and
show how it can be used to measure the spin precession due to
bulk inversion asymmetry. A realization of this experiment would
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provide a unique demonstration of full-current switching by spin
precession.

Chapter 6: Theory of the topological Anderson insulator

In Chapter 6 we present an effective medium theory that explains
the disorder-induced transition into a phase of quantized conduc-
tance, discovered in computer simulations of HgTe quantum wells
[81]. Depending on the width of their innermost layer, such quan-
tum wells are two-dimensional topological insulators or ordinary
insulators. Our theory explains how the combination of a random
potential and quadratic corrections ∝ p2σz to the Dirac Hamiltonian
can drive an ordinary band insulator into a topological insulator
(having conducting edge states). We calculate the location of the
phase boundary at weak disorder and show that it corresponds
to the crossing of a band edge rather than a mobility edge. Our
mechanism for the formation of a topological Anderson insulator is
generic, and would apply as well to three-dimensional semiconduc-
tors with strong spin-orbit coupling. It has indeed been adapted to
that case recently [49].
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2 Electronic shot noise in fractal
conductors

2.1 Introduction

Diffusion in a medium with a fractal dimension is characterized
by an anomalous scaling with time t of the root-mean-squared
displacement ∆. The usual scaling for integer dimensionality d is
∆ ∝ t1/2, independent of d. If the dimensionality d f is noninteger,
however, an anomalous scaling

∆ ∝ t1/(2+α) (2.1)

with α > 0 may appear. This anomaly was discovered in the early
1980’s [144, 7, 21, 46, 109] and has since been studied extensively
(see Refs. [53, 57] for reviews). Intuitively, the slowing down of
the diffusion can be understood as arising from the presence of
obstacles at all length scales – characteristic of a selfsimilar fractal
geometry.

A celebrated application of the theory of fractal diffusion is to
the scaling of electrical conduction in random-resistor networks
(reviewed in Refs. [135, 111]). According to Ohm’s law, the con-
ductance G should scale with the linear size L of a d-dimensional
network as G ∝ Ld−2. In a fractal dimension the scaling is modified
to G ∝ Ld f−2−α, depending both on the fractal dimensionality d f
and on the anomalous diffusion exponent α. At the percolation
threshold, the known [53] values for d = 2 are d f = 91/48 and
α = 0.87, leading to a scaling G ∝ L−0.97. This almost inverse-linear
scaling of the conductance of a planar random-resistor network
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contrasts with the L-independent conductance G ∝ L0 predicted by
Ohm’s law in two dimensions.

All of this body of knowledge applies to classical resistors, with
applications to disordered semiconductors and granular metals
[128, 29]. The quantum Hall effect provides one quantum me-
chanical realization of a random-resistor network [140], in a rather
special way because time-reversal symmetry is broken by the mag-
netic field. Recently [35], Cheianov, Fal’ko, Altshuler, and Aleiner
announced an altogether different quantum realization in zero
magnetic field. Following experimental [89] and theoretical [56]
evidence for electron and hole puddles in undoped graphene1,
Cheianov et al. modeled this system by a degenerate electron gas2

in a random-resistor network. They analyzed both the high-tempe-
rature classical resistance, as well as the low-temperature quantum
corrections, using the anomalous scaling laws in a fractal geometry.

These recent experimental and theoretical developments open
up new possibilities to study quantum mechanical aspects of frac-
tal diffusion, both with respect to the Pauli exclusion principle
and with respect to quantum interference (which are operative in
distinct temperature regimes). To access the effect of the Pauli prin-
ciple one needs to go beyond the time-averaged current Ī (studied
by Cheianov et al. [35]), and consider the time-dependent fluctua-
tions δI(t) of the current in response to a time-independent applied
voltage V. These fluctuations exist because of the granularity of
the electron charge, hence their name “shot noise” (for reviews, see

1Graphene is a single layer of carbon atoms, forming a two-dimensional honey-
comb lattice. Electrical conduction is provided by overlapping π-orbitals, with
on average one electron per π-orbital in undoped graphene. Electron puddles
have a little more than one electron per π-orbital (n-type doping), while hole
puddles have a little less than one electron per π-orbital (p-type doping).

2An electron gas is called “degenerate” if the average occupation number of a
quantum state is either close to unity or close to zero. It is called “nondegen-
erate” if the average occupation number is much smaller than unity for all
states.
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Refs. [24, 19]). Shot noise is quantified by the noise power

P = 2
∫ ∞

−∞
dt 〈δI(0)δI(t)〉 (2.2)

and by the Fano factor F = P/2eĪ. The Pauli principle enforces
F < 1, meaning that the noise power is smaller than the Poisson
value 2eĪ – which is the expected value for independent particles
(Poisson statistics).

The investigation of shot noise in a fractal conductor is partic-
ularly interesting in view of two different experimental results
[41, 37] that have been reported. Both experiments measure the
shot noise power in a graphene flake and find F < 1. A calcula-
tion [141] of the effect of the Pauli principle on the shot noise of
undoped graphene predicted F = 1/3 in the absence of disorder,
with a rapid suppression upon either p-type or n-type doping.
This prediction is consistent with the experiment of Danneau et
al. [37], but the experiment of DiCarlo et al. [41] gives instead an
approximately doping-independent F near 1/3. Computer simula-
tions [118, 80] suggest that disorder in the samples of DiCarlo et al.
might cause the difference.

Motivated by this specific example, we study here the fundamen-
tal problem of shot noise due to anomalous diffusion in a fractal
conductor. While equilibrium thermal noise in a fractal has been
studied previously [110, 51, 43], it remains unknown how anoma-
lous diffusion might affect the nonequilibrium shot noise. Existing
studies [77, 31, 68] of shot noise in a percolating network were in
the regime where inelastic scattering dominates, leading to hopping
conduction, while for diffusive conduction we need predominantly
elastic scattering.

2.2 Results and discussion

We demonstrate that anomalous diffusion affects P and Ī in such a
way that the Fano factor (their ratio) becomes scale independent as
well as independent of d f and α. Anomalous diffusion, therefore,
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produces the same Fano factor F = 1/3 as is known [18, 96] for
normal diffusion. This is a remarkable property of diffusive con-
duction, given that hopping conduction in a percolating network
does not produce a scale-independent Fano factor [77, 31, 68]. Our
general findings are consistent with the doping independence of
the Fano factor in disordered graphene observed by DiCarlo et al.
[41].

To arrive at these conclusions we work in the experimentally
relevant regime where the temperature T is sufficiently high that
the phase coherence length is � L, and sufficiently low that the
inelastic length is� L. Quantum interference effects can then be
neglected, as well as inelastic scattering events. The Pauli principle
remains operative if the thermal energy kT remains well below the
Fermi energy, so that the electron gas remains degenerate.

We first briefly consider the case that the anomalous diffusion on
long length scales is preceded by normal diffusion on short length
scales. This would apply, for example, to a percolating cluster of
electron and hole puddles with a mean free path l which is short
compared to the typical size a of a puddle. We can then rely on the
fact that F = 1/3 for a conductor of any shape, provided that the
normal diffusion equation holds locally [97, 136], to conclude that
the transition to anomalous diffusion on long length scales must
preserve the one-third Fano factor.

This simple argument cannot be applied to the more typical class
of fractal conductors in which the normal diffusion equation does
not hold on short length scales. As representative for this class, we
consider fractal lattices of sites connected by tunnel barriers. The
local tunneling dynamics then crosses over into global anomalous
diffusion, without an intermediate regime of normal diffusion.

2.2.1 Sierpiński lattice

A classic example is the Sierpiński lattice [130] shown in Fig. 2.1
(inset). Each site is connected to four neighbors by bonds that
represent the tunnel barriers, with equal tunnel rate Γ through each
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barrier. The fractal dimension is d f = log2 3 and the anomalous
diffusion exponent is [53] α = log2(5/4). The Pauli exclusion
principle can be incorporated as in Ref. [84], by demanding that
each site is either empty or occupied by a single electron. Tunneling
is therefore only allowed between an occupied site and an adjacent
empty site. A current is passed through the lattice by connecting
the lower left corner to a source (injecting electrons so that the site
remains occupied) and the lower right corner to a drain (extracting
electrons so that the site remains empty). The resulting stochastic
sequence of current pulses is the “tunnel exclusion process” of Ref.
[112].

The statistics of the current pulses can be obtained exactly (albeit
not in closed form) by solving a master equation [12]. We have cal-
culated the first two cumulants by extending to a two-dimensional
lattice the one-dimensional calculation of Ref. [112]. To manage the
added complexity of an extra dimension we found it convenient
to use the Hamiltonian formulation of Ref. [119]. The hierarchy of
linear equations that we need to solve in order to obtain Ī and P is
derived in the appendix.

The results in Fig. 2.1 demonstrate, firstly, that the shot noise
power P scales as a function of the size L of the lattice with the
same exponent d f − 2− α = log2(3/5) as the conductance; and,
secondly, that the Fano factor F approaches 1/3 for large L. More
precisely, see Fig. 2.2, we find that F− 1/3 ∝ L−1.5 scales to zero as
a power law, with F− 1/3 < 10−4 for our largest L.

2.2.2 Percolating network

Turning now to the application to graphene mentioned in the
introduction, we have repeated the calculation of shot noise and
Fano factor for the random-resistor network of electron and hole
puddles introduced by Cheianov et al. [35]. The results, shown
in Fig. 2.3, demonstrate that the shot noise power P scales with
the same exponent L−0.97 as the conductance G (solid lines in
the lower panel), and that the Fano factor F approaches 1/3 for
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large networks (upper panel). This is a random, rather than a
deterministic fractal, so there remains some statistical scatter in the
data, but the deviation of F from 1/3 for the largest lattices is still
< 10−3 (see the circular data points in Fig. 2.2).

2.3 Conclusion

In conclusion, we have found that the universality of the one-third
Fano factor, previously established for normal diffusion [18, 96,
97, 136], extends to anomalous diffusion as well. This universality
might have been expected with respect to the fractal dimension
d f (since the Fano factor is dimension independent), but we had
not expected universality with respect to the anomalous diffusion
exponent α. The experimental implication of the universality is that
the Fano factor remains fixed at 1/3 as one crosses the percolation
threshold in a random-resistor network – thereby crossing over
from anomalous diffusion to normal diffusion. This is consistent
with the doping-independent Fano factor measured in a graphene
flake by DiCarlo et al. [41].

Appendix 2.A Calculation of the Fano factor for
the tunnel exclusion process on a
two-dimensional network

Here we present the method we used to calculate the Fano factor
for the tunnel exclusion process in the Sierpiński lattice and in the
random-resistor network. We follow the master equation approach
of Refs. [112, 12]. The two-dimensionality of our networks requires
a more elaborate bookkeeping, which we manage by means of the
Hamiltonian formalism of Ref. [119].
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2.A.1 Counting statistics

We consider a network of N sites, each of which is either empty or
singly occupied. Two sites are called adjacent if they are directly
connected by at least one bond. A subset S of the N sites is
connected to the source and a subset D is connected to the drain.
Each of the 2N possible states of the network is reached with a
certain probability at time t. We store these probabilities in the
2N-dimensional vector |P(t)〉. Its time evolution in the tunnel
exclusion process is given by the master equation

d
dt
|P(t)〉 = M |P(t)〉 , (2.3)

where the matrix M contains the tunnel rates. The normalization
condition can be written as 〈Σ|P〉 = 1, in terms of a vector 〈Σ| that
has all 2N components equal to 1. This vector is a left eigenstate of
M with zero eigenvalue

〈Σ|M = 0, (2.4)

because every column of M must sum to zero in order to conserve
probability. The right eigenstate with zero eigenvalue is the station-
ary distribution |P∞〉. All other eigenvalues of M have a real part
< 0.

We store in the vector |P(t, Q)〉 the conditional probabilities that
a state is reached at time t after precisely Q charges have entered
the network from the source. Because the source remains occupied,
a charge which has entered the network cannot return back to
the source but must eventually leave through the drain. One can
therefore use Q to represent the number of transfered charges. The
time evolution of |P(t, Q)〉 reads

d
dt
|P(t, Q)〉 = M0 |P(t, Q)〉+ M1 |P(t, Q− 1)〉 , (2.5)

where M = M0 + M1 has been decomposed into a matrix M0

containing all transitions by which Q does not change and a matrix
M1 containing all transitions that increase Q by 1.
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The probability 〈Σ|P(t, Q)〉 that Q charges have been transferred
through the network at time t represents the counting statistics. It
describes the entire statistics of current fluctuations. The cumulants

Cn =
∂nS(t, χ)

∂χn

∣∣∣∣
χ=0

(2.6)

are obtained from the cumulant generating function

S(t, χ) = ln

[
∑
Q
〈Σ|P(t, Q)〉 eχQ

]
. (2.7)

The average current and Fano factor are given by

Ī = lim
t→∞

C1/t, F = lim
t→∞

C2/C1. (2.8)

The cumulant generating function (2.7) can be expressed in
terms of a Laplace transformed probability vector |P(t, χ)〉 =

∑Q |P(t, Q〉 eχQ as

S(t, χ) = ln 〈Σ|P(t, χ)〉 . (2.9)

Transformation of Eq. (2.5) gives

d
dt
|P(t, χ)〉 = M(χ) |P(t, χ)〉 , (2.10)

where we have introduced the counting matrix

M(χ) = M0 + eχ M1. (2.11)

The cumulant generating function follows from

S(t, χ) = ln 〈Σ| etM(χ) |P(0, χ)〉 . (2.12)

The long-time limit of interest for the Fano factor can be im-
plemented as follows [12]. Let µ(χ) be the eigenvalue of M(χ)

with the largest real part, and let |P∞(χ)〉 be the corresponding
(normalized) right eigenstate,

M(χ) |P∞(χ)〉 = µ(χ) |P∞(χ)〉 , (2.13)

〈Σ|P∞(χ)〉 = 1. (2.14)
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Since the largest eigenvalue of M(0) is zero, we have

M(0) |P∞(0)〉 = 0⇔ µ(0) = 0. (2.15)

(Note that |P∞(0)〉 is the stationary distribution |P∞〉 introduced
earlier.) In the limit t→ ∞ only the largest eigenvalue contributes
to the cumulant generating function,

lim
t→∞

1
t

S(t, χ) = lim
t→∞

1
t

ln [etµ(χ) 〈Σ|P∞(χ)〉] = µ(χ). (2.16)

2.A.2 Construction of the counting matrix

The construction of the counting matrix M(χ) is simplified by
expressing it in terms of raising and lowering operators, so that it
resembles a Hamiltonian of quantum mechanical spins [119]. First,
consider a single site with the basis states |0〉 = (1

0) (vacant) and
|1〉 = (0

1) (occupied). We define, respectively, raising and lowering
operators

s+ =

(
0 0
1 0

)
, s− =

(
0 1
0 0

)
. (2.17)

We also define the electron number operator n = s+s− and the hole
number operator ν = 11− n (with 11 the 2× 2 unit matrix). Each
site i has such operators, denoted by s+i , s−i , ni, and νi. The matrix
M(χ) can be written in terms of these operators as

M(χ) = ∑
〈i,j〉

(
s+j s−i − νjni

)
+ ∑

i∈S
(eχs+i − νi) + ∑

i∈D
(s−i − ni), (2.18)

where all tunnel rates have been set equal to unity. The first
sum runs over all ordered pairs 〈i, j〉 of adjacent sites. These are
Hermitian contributions to the counting matrix. The second sum
runs over sites in S connected to the source, and the third sum runs
over sites in D connected to the drain. These are non-Hermitian
contributions.
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It is easy to convince oneself that M(0) is indeed M of Eq. (2.3),
since every possible tunneling event corresponds to two terms in Eq.
(2.18): one positive non-diagonal term responsible for probability
gain for the new state and one negative diagonal term responsible
for probability loss for the old state. In accordance with Eq. (2.11),
the full M(χ) differs from M by a factor eχ at the terms associated
with charges entering the network.

2.A.3 Extraction of the cumulants

In view of Eq. (2.16), the entire counting statistics in the long-time
limit is determined by the largest eigenvalue µ(χ) of the operator
(2.18). However, direct calculation of that eigenvalue is feasible
only for very small networks. Our approach, following Ref. [112],
is to derive the first two cumulants by solving a hierarchy of linear
equations.

We define

Ti = 〈Σ| ni |P∞(χ)〉 = 1− 〈Σ| νi |P∞(χ)〉 , (2.19)

Uij = Uji = 〈Σ| ninj |P∞(χ)〉 for i 6= j, (2.20)

Uii = 2Ti − 1. (2.21)

The value Ti|χ=0 is the average stationary occupancy of site i. Simi-
larly, Uij|χ=0 for i 6= j is the two-point correlator.

We will now express µ(χ) in terms of Ti. We start from the
definition (2.13). If we act with 〈Σ| on the left-hand-side of Eq.
(2.13) we obtain

〈Σ|M(0) + (eχ − 1) ∑
i∈S

s+i |P∞(χ)〉

= (eχ − 1) ∑
i∈S
〈Σ| s+i |P∞(χ)〉

= (eχ − 1) ∑
i∈S
〈Σ| νi |P∞(χ)〉

= (eχ − 1) ∑
i∈S

(1− Ti). (2.22)
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In the second equality we have used Eq. (2.4) [which holds since
M ≡ M(0)]. Acting with 〈Σ| on the the right-hand-side of Eq.
(2.13) we obtain just µ(χ), in view of Eq. (2.14). Hence we arrive at

µ(χ) = (eχ − 1) ∑
i∈S

(1− Ti). (2.23)

From Eq. (2.23) we obtain the average current and Fano factor in
terms of Ti and the first derivative T′i = dTi/dχ at χ = 0,

Ī = lim
t→∞

C1/t = µ′(0) = ∑
i∈S

(1− Ti|χ=0), (2.24)

F = lim
t→∞

C2

C1
=

µ′′(0)
µ′(0)

= 1− 2 ∑i∈S T′i |χ=0

∑i∈S (1− Ti|χ=0)
. (2.25)

Average current

To obtain Ti we set up a system of linear equations starting from

µ(χ)Ti = 〈Σ| ni M(χ) |P∞(χ)〉 . (2.26)

Commuting ni to the right, using the commutation relations [ni, s+i ] =
s+i and [ni, s−i ] = −s−i , we find

µ(χ)Ti = ∑
j(i)

Tj − kiTi + ki,S + (eχ − 1) ∑
l∈S

(Ti −Uli). (2.27)

The notation ∑j(i) means that the sum runs over all sites j adjacent
to i. The number ki is the total number of bonds connected to site
i; ki,S of these bonds connect site i to the source.

In order to compute Ti|χ=0 we set χ = 0 in Eq. (2.27), use Eq.
(2.15) to set the left-hand-side to zero, and solve the resulting
symmetric sparse linear system of equations,

−ki,S = ∑
j(i)

Tj − kiTi. (2.28)

This is the first level of the hierarchy. Substitution of the solution
into Eq. (2.24) gives the average current Ī.
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Fano factor

To calculate the Fano factor via Eq. (2.25) we also need T′i |χ=0. We
take Eq. (2.27), substitute Eq. (2.23) for µ(χ), differentiate and set
χ = 0 to arrive at

∑
l∈S

(Uli − TlTi)− ki,S = ∑
j(i)

T′j − kiT′i . (2.29)

To find Uij|χ=0 we note that

µ(χ)Uij = 〈Σ| ninj M(χ) |P∞(χ)〉 , i 6= j, (2.30)

and commute ni to the right. Setting χ = 0 provides the second
level of the hierarchy of linear equations,

0 = ∑
l(j),l 6=i

Uil + ∑
l(i),l 6=j

Ujl − (ki + k j − 2dij)Uij

+ k j,STi + ki,STj, i 6= j. (2.31)

The number dij is the number of bonds connecting sites i and j if
they are adjacent, while dij = 0 if they are not adjacent.
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Figure 2.1: Lower panel: Electrical conduction through a Sierpiński
lattice. This is a deterministic fractal, constructed by
recursively removing a central triangular region from
an equilateral triangle. The recursion level r quanti-
fies the size L = 2ra of the fractal in units of the el-
ementary bond length a (the inset shows the fourth
recursion). The conductance G = Ī/V (open dots, nor-
malized by the tunneling conductance G0 of a single
bond) and shot noise power P (filled dots, normalized
by P0 = 2eVG0) are calculated for a voltage difference V
between the lower-left and lower-right corners of the lat-
tice. Both quantities scale as Ld f−2−α = Llog2(3/5) (solid
lines on the double-logarithmic plot). The Fano factor
F = P/2eĪ = (P/P0)(G0/G) rapidly approaches 1/3,
as shown in the upper panel.
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Figure 2.2: The deviation of the Fano factor from 1/3 scales to zero
as a power law for the Sierpiński lattice (triangles) and
for the random-resistor network (circles).
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Figure 2.3: Same as Fig. 2.1, but now for the random-resistor net-
work of disordered graphene introduced by Cheianov
et al. [35]. The inset shows one realization of the net-
work for L/a = 10 (the data points are averaged over
' 103 such realizations). The alternating solid and
dashed lattice sites represent, respectively, the electron
(n) and hole (p) puddles. Horizontal bonds (not drawn)
are p-n junctions, with a negligibly small conductance
Gpn ≈ 0. Diagonal bonds (solid and dashed lines) each
have the same tunnel conductance G0. Current flows
from the left edge of the square network to the right
edge, while the upper and lower edges are connected by
periodic boundary conditions. This plot is for undoped
graphene, corresponding to an equal fraction of solid
(n-n) and dashed (p-p) bonds.
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3 Nonalgebraic length dependence
of transmission through a chain
of barriers with a Lévy spacing
distribution

3.1 Introduction

Barthelemy, Bertolotti, and Wiersma have reported on the fabri-
cation of an unusual random optical medium which they have
called a Lévy glass [15]. It consists of a random packing of glass
microspheres having a Lévy distribution of diameters. The space
between the spheres is filled with strongly scattering nanoparti-
cles. A photon trajectory therefore consists of ballistic segments
of length s through spherical regions, connected by isotropic scat-
tering events. A Lévy distribution is characterized by a slowly
decaying tail, p(s) ∝ 1/s1+α for s → ∞, with 0 < α < 2, such that
the second moment (and for α < 1 also the first moment) diverges.
The transmission of light through the Lévy glass was analyzed [15]
in terms of a Lévy walk [87, 129, 92] for photons.

Because the randomness in the Lévy glass is frozen in time
(“quenched” disorder), correlations exist between subsequent scat-
tering events. Backscattering after a large step is likely to result in
another large step. This is different from a Lévy walk, where sub-
sequent steps are independently drawn from the Lévy distribution
(“annealed” disorder). Numerical [76] and analytical [120] theo-
ries indicate that the difference between quenched and annealed
disorder can be captured (at least approximately) by a renormal-
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ization of the Lévy walk exponent – from the annealed value α to
the quenched value α′ = α + (2/d)max(0, α− d) in d dimensions.
Qualitatively speaking, the correlations in a Lévy glass slow down
the diffusion relative to what is expected for a Lévy walk, and the
effect is the stronger the lower the dimension.

To analyze the effect of such correlations in a quantitative manner,
we consider in this paper the one-dimensional analogue of a Lévy
glass, which is a linear chain of barriers with independently Lévy
distributed spacings s. Such a system might be produced artificially,
along the lines of Ref. [15], or it might arise naturally in a porous
medium [79] or in a nanowire [72]. Earlier studies of this system1

[52, 36, 14, 25] have compared the dynamical properties with those
of a Lévy walk. In particular, Barkai, Fleurov, and Klafter [14]
found a superdiffusive mean-square displacement as a function
of time [〈x2(t)〉 ∝ tγ with γ > 1] – reminiscent of a Lévy walk
(where γ = 3− α). No precise correspondence to a Lévy walk is
to be expected in one dimension, because subsequent step lengths
are highly correlated: Backscattering after a step of length s to the
right results in the same step length s to the left.

The simplicity of one-dimensional dynamics allows for an ex-
act solution of the static transmission statistics, without having
to assume a Lévy walk. We present such a calculation here, and
find significant differences with the L−α/2 scaling of the average
transmission expected [40, 78, 28] for a Lévy walk (annealed dis-
order) through a system of length L. If the length of the system is
measured from the first barrier, we find for the case of quenched
disorder an average transmission 〈T〉 ∝ L−α ln L for 0 < α < 1
and 〈T〉 ∝ L−1 for α > 1. Note that the nonalgebraic length de-

1The authors of Ref. [14] calculate a lower bound to the mean square displace-
ment, with the result 〈x2〉 ≥ tmin(2,3−α) if the initial position of the particle is
randomly chosen along the chain (so superdiffusion for any 0 < α < 2). If the
particle starts at a barrier (which corresponds to the situation we consider in
the present work), the result is 〈x2〉 ≥ t2−α (so superdiffusion for 0 < α < 1).
Earlier papers [52, 36] gave different results for the mean square displacement,
but a direct comparison is problematic because those papers did not notice
the dependence on the starting position.
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Figure 3.1: Linear chain of randomly spaced tunnel barriers. We
study the statistics of conductance (or transmission)
over a length L for a Lévy distribution of spacings p(s).

pendence for 0 < α < 1 goes beyond what can be captured by a
renormalization of α.

In the electronic context the average conductance 〈G〉 is propor-
tional to 〈T〉, in view of the Landauer formula. In that context it
is also of interest to study the shot noise power S, which quan-
tifies the time dependent fluctuations of the current due to the
granularity of the electron charge. We calculate the Fano factor
F ∝ 〈S〉/〈G〉, and find that F approaches the value 1/3 charac-
teristic of normal diffusion [18, 96] with increasing L – but with
relatively large corrections that decay only as 1/ ln L for 0 < α < 1.

3.2 Formulation of the problem

We consider a linear chain of tunnel barriers, see Fig. 3.1, with
a distribution of spacings p(s) that decays for large s as 1/sα+1.
A normalizable distribution requires α > 0. For 0 < α < 1 the
mean spacing is infinite. We take for each barrier the same mode-
independent transmission probability Γ� 1 (no ballistic transmis-
sion). The corresponding tunnel resistance is r = (h/e2)(NΓ)−1,
with N the number of transverse modes. In the electronic context
we require r � h/e2, so that the Coulomb blockade of single-
electron tunneling can be ignored.
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We work in the regime of incoherent sequential tunneling (no
resonant tunneling). This regime can be reached for N � 1 as a
result of intermode scattering, or it can be reached even for small
N as a result of a short phase coherence length. For sequential
tunneling the resistance R of n barriers in series is just the series
resistance nr [corresponding to a transmission probability T =

(nΓ)−1]. We measure this resistance

R(L) = r ∑
n

θ(xn)θ(L− xn) (3.1)

between one contact at x = 0 and a second contact at x = L > 0.
The numbers xn indicate the coordinates of the tunnel barriers and
θ(x) is the step function [θ(x) = 1 if x > 0 and θ(x) = 0 if x < 0].

Without further restrictions the statistics of the conductance
would be dominated by ballistic realizations, that have not a single
tunnel barrier in the interval (0, L). The reason, discussed in Ref.
[14], is that the average distance between a randomly chosen point
along the chain and the nearest tunnel barrier diverges for any 0 <

α < 2 (so even if the mean spacing between the barriers is finite). To
eliminate ballistic transmission, we assume that one tunnel barrier
is kept fixed at x0 = 0+. (This barrier thus contributes r to the
resistance.) If we order the coordinates such that xn < xn+1, we
have

R(L) = r + r
∞

∑
n=1

θ(xn)θ(L− xn). (3.2)

We seek the scaling with L in the limit L → ∞ of the negative
moments 〈R(L)p〉 (p = −1,−2,−3, . . .) of the resistance. This
information will give us the scaling of the positive moments of the
conductance G = R−1 and transmission T = (h/Ne2)R−1. It will
also give us the average of the shot noise power S, which for an
arbitrary number of identical tunnel barriers in series is determined
by the formula [61]

S =
2
3

e|V|r−1[(R/r)−1 + 2(R/r)−3], (3.3)
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where V is the applied voltage. From 〈S〉 and 〈G〉 we obtain the
Fano factor F, defined by

F =
〈S〉

2e|V|〈G〉 . (3.4)

3.3 Arbitrary moments

The general expression for moments of the resistance is

〈R(L)p〉 = rp

〈(
1 +

∞

∑
n=1

θ(xn)θ(L− xn)

)p〉
, (3.5)

where the brackets 〈· · · 〉 indicate the average over the spacings,

〈· · · 〉 =
∞

∏
n=1

∫ ∞

−∞
dxn p(xn − xn−1) · · · , (3.6)

with the definitions x0 = 0 and p(s) = 0 for s < 0. We work out
the average,

〈R(L)p〉 = rp
∞

∑
n=1

np

(
n

∏
i=1

∫ ∞

−∞
dsi p(si)

)

× θ

(
n

∑
i=1

si − L

)
θ

(
L−

n−1

∑
i=1

si

)
. (3.7)

It is more convenient to evaluate the derivative with respect to L
of Eq. (3.7), which takes the form of a multiple convolution of the
spacing distribution2,

d
dL
〈Rp〉 = rp(2p − 1)p(L)

+ rp
∞

∑
n=2

[(n + 1)p − np]
∫ ∞

−∞
dxn−1 · · ·

∫ ∞

−∞
dx1

p(L− xn−1)p(xn−1 − xn−2) · · · p(x2 − x1)p(x1). (3.8)

2We cannot directly take the derivative of Eq. (3.5), because that would lead
(for p 6= 1) to an undefined product of θ(L − x) and δ(L − x). No such
complication arises if we take the derivative of Eq. (3.7).
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In terms of the Fourier (or Laplace) transform

f (ξ) =
∫ ∞

0
ds eiξs p(s), (3.9)

the series (3.8) can be summed up,

d
dL
〈Rp〉 = rp

2π

∫ ∞+i0+

−∞+i0+
dξ e−iξL

∞

∑
n=1

[(n + 1)p − np] f (ξ)n

=
rp

2π

∫ ∞+i0+

−∞+i0+
dξ e−iξL 1− f (ξ)

f (ξ)
Li−p[ f (ξ)]. (3.10)

The function Li(x) is the polylogarithm. The imaginary infinitesi-
mal i0+ added to ξ regularizes the singularity of the integrand at
ξ = 0. For negative p this singularity is integrable, and the integral
(3.10) may be rewritten as an integral over the positive real axis,

d
dL
〈Rp〉 = rp

π
Re

∫ ∞

0
dξ e−iξL 1− f (ξ)

f (ξ)
Li−p[ f (ξ)]. (3.11)

3.4 Scaling with length

3.4.1 Asymptotic expansions

In the limit L→ ∞ the integral over ξ in Eq. (3.11) is governed by
the ξ → 0 limit of the Fourier transformed spacing distribution.
Because p(s) is normalized to unity one has f (0) = 1, while the
large-s scaling p(s) ∝ 1/sα+1 implies

lim
ξ→0

f (ξ) =
{

1 + cα(s0ξ)α, 0 < α < 1,
1 + is̄ξ + cα(s0ξ)α, 1 < α < 2.

(3.12)

The characteristic length s0 > 0, the mean spacing s̄, as well as the
numerical coefficient cα are determined by the specific form of the
spacing distribution.
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The limiting behavior of the polylogarithm is governed by

Li1(1 + ε) = − ln(−ε), (3.13)

lim
ε→0

Li2(1 + ε) = ζ(2)− ε ln(−ε), (3.14)

lim
ε→0

Lin(1 + ε) = ζ(n) + ζ(n− 1)ε, n = 3, 4, . . . (3.15)

In combination with Eq. (3.12) we find, for 0 < α < 1, the following
expansions of the integrand in Eq. (3.11):

lim
ξ→0

1− f
f

Li−p( f ) = cα(s0ξ)α ln[−cα(s0ξ)α],

if p = −1, (3.16)

lim
ξ→0

1− f
f

Li−p( f ) = − ζ(−p)cα(s0ξ)α,

p = −2,−3 . . . (3.17)

For 1 < α < 2 we should replace cα(s0ξ)α by is̄ξ + cα(s0ξ)α.

3.4.2 Results

We substitute the expansions (3.16) and (3.17) into Eq. (3.11), and
obtain the large-L scaling of the moments of conductance with the
help of the following Fourier integrals (L > 0, α > −1):∫ ∞

0
dξ e−iξLξα ln ξ = iΓ(1 + α)e−iπα/2L−1−α

× (ln L + iπ/2 + γE − Hα), (3.18)∫ ∞

0
dξ e−iξLξα = −iΓ(1 + α)e−iπα/2L−1−α, (3.19)

Re
∫ ∞

0
dξ e−iξLiξ = 0, (3.20)

Re
∫ ∞

0
dξ e−iξLiξ ln ξ = − 1

2 πL−2. (3.21)

Here γE is Euler’s constant and Hα is the harmonic number. The
resulting scaling laws are listed in Table 3.1.

Two physical consequences of these scaling laws are:

45



0 < α < 1 1 < α < 2
〈R−1〉 ≡ 〈G〉 L−α ln L L−1

〈Rp〉 ≡ 〈G−p〉, p = −2,−3, . . . L−α L−α

Table 3.1: Scaling with L of moments of conductance (or, equiva-
lently, transmission).

• The Fano factor (3.4) approaches 1/3 in the limit L → ∞,
regardless of the value of α, but for 0 < α < 1 the approach
is very slow: F− 1/3 ∝ 1/ ln L. For 1 < α < 2 the approach
is faster but still sublinear, F− 1/3 ∝ 1/Lα−1.

• The root-mean-square fluctuations rms G =
√
〈G2〉 − 〈G〉2

of the conductance become much larger than the average
conductance for large L, scaling as rms G/〈G〉 ∝ Lα/2/ ln L
for 0 < α < 1 and as rms G/〈G〉 ∝ L1−α/2 for 1 < α < 2.

3.5 Numerical test

To test the scaling derived in the previous sections, in particu-
lar to see how rapidly the asymptotic L-dependence is reached
with increasing L, we have numerically generated a large number
of random chains of tunnel barriers and calculated moments of
conductance and the Fano factor from Eqs. (3.2)–(3.4).

For the spacing distribution in this numerical calculation we took
the Lévy stable distribution3 for α = 1/2,

p1/2(s) = (s0/2π)1/2s−3/2e−s0/2s. (3.22)

Its Fourier transform is

f1/2(ξ) = exp(−
√
−2is0ξ)⇒ c1/2 = i− 1. (3.23)

3For efficient algorithms to generate random variables with a Lévy stable distri-
bution, see Refs. [33, 88].
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Inserting the numerical coefficients, the large-L scaling of con-
ductance moments for the distribution (3.22) is

lim
L→∞
〈G〉 = 1

r
(2πL/s0)

−1/2[ln(2L/s0) + γE], (3.24)

lim
L→∞
〈Gp〉 = 2ζ(p)

1
rp (2πL/s0)

−1/2, p ≥ 2. (3.25)

The resulting scaling of the conductance fluctuations and Fano
factor is(

rms G
〈G〉

)2

≡ 〈G
2〉

〈G〉2 − 1 ≈ (π2/3)(2πL/s0)1/2

[ln(2L/s0) + γE]2
− 1, (3.26)

F ≈ 1
3
+

(4/3)ζ(3)
ln(2L/s0) + γE

. (3.27)

In Fig. 3.2 we compare these analytical large-L formulas with the
numerical data. The average conductance converges quite rapidly
to the scaling (3.24), while the convergence for higher moments
(which determine the conductance fluctuations and Fano factor)
requires somewhat larger systems. We clearly see in Fig. 3.2 the
relative growth of the conductance fluctuations with increasing
system size and the slow decay of the Fano factor towards the
diffusive 1/3 limit.

3.6 Conclusion and outlook

In conclusion, we have analyzed the statistics of transmission
through a sparse chain of tunnel barriers. The average spacing of
the barriers diverges for a Lévy spacing distribution p(s) ∝ 1/s1+α

with 0 < α < 1. This causes an unusual scaling with system length
L (measured from the first tunnel barrier) of the moments of trans-
mission or conductance, as summarized in Table 3.1. A logarithmic
correction to the power law scaling appears for the first moment.
Higher moments of conductance all scale with the same power
law, differing only in the numerical prefactor. As a consequence,
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sample-to-sample fluctuations of the transmission become larger
than the average with increasing L.

This theoretical study of a one-dimensional “Lévy glass” was mo-
tivated by an optical experiment on its three-dimensional analogue
[15]. The simplicity of a one-dimensional geometry has allowed
us to account exactly for the correlations between subsequent step
lengths, which distinguish the random walk through the sparse
chain of barriers from a Lévy walk. We surmise that step length
correlations will play a role in two and three dimensional sparse
arrays as well, complicating a direct application of the theory of
Lévy walks to the experiment. This is one line of investigation for
the future.

A second line of investigation is the effect of wave interference on
the transmission of electrons or photons through a sparse chain of
tunnel barriers. Here we have considered the regime of incoherent
sequential transmission, appropriate for a multi-mode chain with
mode-mixing or for a single-mode chain with a short coherence
length. The opposite, phase coherent regime was studied in Ref.
[25]. In a single-mode and phase coherent chain interference can
lead to localization, producing an exponential decay of transmis-
sion. An investigation of localization in this system is of particular
interest because the sparse chain belongs to the class of disordered
systems with long-range disorder, to which the usual scaling theory
of Anderson localization does not apply [115].

A third line of investigation concerns the question “what is the
shot noise of anomalous diffusion”? Anomalous diffusion [92]
is characterized by a mean square displacement 〈x2〉 ∝ tγ with
0 < γ < 1 (subdiffusion) or γ > 1 (superdiffusion). The shot noise
for normal diffusion (γ = 1) has Fano factor 1/3 [18, 96], and Ref.
[48] concluded that subdiffusion on a fractal also produces F =

1/3. Here we found a convergence, albeit a logarithmically slow
convergence, to the same 1/3 Fano factor for a particular system
with superdiffusive dynamics. We conjecture that F = 1/3 in the
entire subballistic regime 0 < γ < 2, with deviations appearing in
the ballistic limit γ→ 2 – but we do not have a general theory to
support this conjecture.
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Figure 3.2: Scaling of the average conductance (bottom panel), the
variance of the conductance (middle panel), and the
Fano factor (top panel), for a chain of tunnel barriers
with spacings distributed according to the α = 1/2
Lévy stable distribution (3.22). The data points are cal-
culated numerically, by averaging over a large number
of random chains of tunnel barriers. The solid curves
are the analytical results (3.24)–(3.27) of the asymptotic
analysis in the L→ ∞ limit.
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4 Finite difference method for
transport properties of massless
Dirac fermions

4.1 Introduction

The discovery of graphene [47] has created a need for efficient
numerical methods to calculate transport properties of massless
Dirac fermions. The two-dimensional massless Dirac equation
(or Weyl equation) that governs the low-energy and long-wave
length dynamics of conduction electrons in graphene has a time
reversal symmetry called symplectic – which is special because it
squares to −1. (The usual time reversal symmetry, which squares
to +1, is called orthogonal.) The symplectic symmetry is at the
origin of some of the unusual transport properties of graphene
[86, 104, 117, 20, 42], including the absence of back scattering [10],
weak antilocalization [137], enhanced conductance fluctuations
[67, 66], and absence of a metal-insulator transition [13, 99].

Numerical methods of solution can be divided into two classes,
depending on whether they break or preserve the symplectic sym-
metry.

The tight-binding model of graphene, with nearest neighbor
hopping on a honeycomb lattice, breaks the symplectic symmetry
by the two mechanisms of intervalley scattering [137] and trigo-
nal warping [90]. Intervalley scattering couples the two flavors of
Dirac fermions, corresponding to the two different valleys (at oppo-
site corners of the Brillouin zone) in the graphene band structure,
thereby changing the symmetry class from symplectic to orthog-
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onal. Trigonal warping is a triangular distortion of the conical
band structure that breaks the momentum inversion symmetry
(+p→ −p), thereby effectively breaking time reversal symmetry
in a single valley and changing the symmetry class from symplectic
to unitary.

Breaking of the symplectic symmetry eliminates both weak an-
tilocalization as well as the enhancement of the conductance fluctu-
ations, and drives the system to an insulator with increasing size or
disorder [6, 8]. As observed in computer simulations [116, 80, 148],
the breaking of the symplectic symmetry can be pushed to larger
system sizes and larger disorder strengths by reducing the lattice
constant (at fixed correlation length and fixed amplitude of the
disorder potential) – but this severely limits the computational
efficiency.

The Chalker-Coddington network model [32, 54, 75], applied
to graphene in Ref. [133], has a single flavor of Dirac fermions,
so there is no intervalley scattering – but it still belongs to the
same class of methods that break the symplectic symmetry of the
massless Dirac equation. (The symplectic symmetry is broken on
short length scales by the Aharonov-Bohm phases that appear in
the mapping of the Dirac equation onto the network model.)

Both the network model and the tight-binding model are real
space regularizations of the Dirac equation, with a smallest length
scale (the lattice constant) to cut off the unbounded spectrum at
large positive and large negative energies. There exists at present
just one method to calculate transport properties numerically while
preserving the symplectic symmetry, developed independently
(and implemented differently) in Refs. [13] and [99]. That method
(used also in Refs. [118, 100]) is based on a momentum space regu-
larization, with a cutoff of the Fourier transformed Dirac equation
at some large value of momentum.

It is the purpose of the present paper to develop and implement
an alternative method of solution of the Dirac equation, that shares
with the tight-binding and network models the convenience of
a formulation in real space rather than momentum space, but
without breaking the symplectic symmetry.
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A celebrated no-go theorem [98] in lattice gauge theory forbids
any regularization of the Dirac equation with local couplings from
preserving symplectic symmetry. (The problematic role of inter-
valley scattering appears in that context as the fermion doubling
problem.) Several nonlocal finite difference methods have been
proposed to work around the no-go theorem and we will adapt
one of these (developed by Stacey [134] and by Bender, Milton, and
Sharp [22]) to the study of transport properties.

The adaptation amounts to 1) the inclusion of a spatially depen-
dent electrostatic potential (which breaks the chiral symmetry that
played a central role in Refs. [134, 22]), and 2) a proper discretiza-
tion of the current operator (such that the total current through
any cross section is conserved). We implement the finite difference
method to solve the scattering problem of Dirac fermions in a disor-
dered potential landscape connected to ballistic leads, and compare
our numerical results for the scaling and statistics of conductance
and shot noise power with analytical theories [67, 66, 121].

Our numerical method is relevant for electrical conduction in
graphene under the assumption that the impurity potential in the
carbon monolayer is long-ranged (so that intervalley scattering is
suppressed) and weak (so that trigonal warping can be neglected).
Massless Dirac fermions are also expected to govern the electrical
conduction along the surface of a three-dimensional topological
insulator [45, 94, 114] (realized in BiSb [55]). In that case the
symplectic symmetry is preserved even for short-range scatterers,
and our numerical results should be applicable more generally.

4.2 Finite difference representation of the transfer
matrix

4.2.1 Dirac equation

We consider the two-dimensional massless Dirac equation,

HΨ = EΨ, H = −ih̄v(σx∂x + σy∂y) + U(r), (4.1)
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where v and E are the velocity and energy of the Dirac fermions,
U(x, y) is the electrostatic potential landscape, and Ψ(x, y) is the
two-component (spinor) wave function. The two spinor compo-
nents of Ψ refer to the two atoms in the unit cell in the application
to graphene, or to the two spin degrees of freedom in the applica-
tion to the surface of a topological insulator. We note the symplectic
symmetry of the massless Dirac Hamiltonian,

H = SHS−1 = σyH∗σy. (4.2)

The time reversal symmetry operator S = iσyC (with C the operator
of complex conjugation) squares to −1. The chiral symmetry
σzHσz = −H is broken by a nonzero U, so it will play no role
in what follows. For later use we also note the current operator

(jx, jy) = v(σx, σy). (4.3)

We consider a strip geometry of length L along the longitudinal
x direction and width W along the transversal y direction. For
the discretization we use a square lattice, xm = m∆, yn = n∆,
with indices m = 1, 2, . . . M (M = L/∆), n = 1, 2, . . . N (N =

W/∆). In the applications we will consider large aspect ratios
W/L � 1, for which the precise choice of boundary conditions
in the transverse direction does not matter. We choose periodic
boundary conditions, yN+1 ≡ y1, since they preserve the symplectic
symmetry. The values Ψm,n = Ψ(xm, yn) of the wave function at
a lattice point are collected into a set of N-component vectors
Ψm = (Ψm,1, Ψm,2, . . . Ψm,N)

T, one for each m = 1, 2, . . . M.
The N × N transfer matrixMm is defined by

Ψm+1 =MmΨm. (4.4)

The symplectic symmetry (4.2) of the Hamiltonian requires that Ψ
and σyΨ∗ are both solutions at the same energy E, so they should
both satisfy Eq. (4.4). The corresponding condition on the transfer
matrix is

Mm = σyM∗
mσy. (4.5)
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The transfer matrix should conserve the total current through any
cross section of the strip. In terms of the (still to be determined)
discretized current operator Jx, this condition reads

〈Ψm+1|Jx|Ψm+1〉 = 〈Ψm|Jx|Ψm〉, (4.6)

which then corresponds to the following condition on the transfer
matrix:

M†
m JxMm = Jx. (4.7)

Our problem is to discretize the differential operators in the
Dirac equation (4.1), as well as the current operator (4.3), in such a
way that the resulting transfer matrix describes a single flavor of
Dirac fermions and without violating the two conditions (4.5), (4.7)
of symplectic symmetry and current conservation.

4.2.2 Discretization

A local replacement of the differential operators ∂x, ∂y by finite
differences either violates the Hermiticity of H (thus violating
conservation of current) or breaks the symplectic symmetry (by
the mechanism of fermion doubling). A nonlocal finite difference
method that preserves the Hermiticity and symplectic symmetry
of H was developed by Stacey [134] and by Bender, Milton, and
Sharp [22]. These authors considered the case U = 0, when both
symplectic and chiral symmetry are present. We extend their
method to a spatially dependent U (thereby breaking the chiral
symmetry), and obtain the discretized transfer matrix and current
operator.

Since the transfer matrix relates Ψ(x, y) at two different values
of x, it is convenient to isolate the derivative with respect to x from
the Dirac equation (4.1). Multiplication of both sides by (i/h̄v)σx

gives
∂xΨ = (−iσz∂y − iσxV)Ψ, (4.8)

with the definition V = (U − E)/h̄v. We can now make contact
with the discretization in Refs. [134, 22] of the Dirac equation in
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Figure 4.1: Square lattice (filled circles) on which the wave func-
tion Ψ is discretized as Ψm,n. The finite differences are
evaluated at the displaced points indicated by crosses.
The Dirac equation (4.8) is applied at the empty cir-
cles, by taking the mean of the contributions from the
two adjacent crosses. The resulting finite difference
equation defines a transfer matrix in the x direction
that conserves current and preserves the symplectic
symmetry.

one space and one time dimension, with x playing the role of
(imaginary) time and y being the spatial dimension.

The key step by which Refs. [134, 22] avoid fermion doubling is
the evaluation of the finite differences on a lattice that is displaced
symmetrically from the original lattice. The displaced lattice points
(xm + ∆/2, yn + ∆/2) are indicated by crosses in Fig. 4.1. On the
displaced lattice, the differential operators are discretized by

∂xΨ→ 1
2∆

(Ψm+1,n + Ψm+1,n+1 −Ψm,n −Ψm,n+1), (4.9)

∂yΨ→ 1
2∆

(Ψm,n+1 + Ψm+1,n+1 −Ψm,n −Ψm+1,n), (4.10)
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and the potential term is replaced by

VΨ→ 1
4 Vm,n(Ψm+1,n + Ψm+1,n+1 + Ψm,n + Ψm,n+1), (4.11)

with Vm,n = V(xm + ∆/2, yn + ∆/2). The Dirac equation (4.8) is
applied at the points (xm + ∆/2, yn) (empty circles in Fig. 4.1) by
averaging the terms at the two adjacent points (xm + ∆/2, yn ±
∆/2).

The resulting finite difference equation can be written in a com-
pact form with the help of the N × N tridiagonal matrices J , K,
V (m), defined by the following nonzero elements:

Jn,n = 1, Jn,n+1 = Jn,n−1 = 1
2 , (4.12)

Kn,n+1 = 1
2 , Kn,n−1 = − 1

2 , (4.13)

V (m)
n,n = 1

2 (Vm,n + Vm,n−1), V (m)
n,n+1 = 1

2 Vm,n,

V (m)
n,n−1 = 1

2 Vm,n−1. (4.14)

In accordance with the periodic boundary conditions, the indices
n ± 1 should be evaluated modulo N. Notice that J and V (m)

are real symmetric matrices, while K is real antisymmetric. Fur-
thermore J and K commute, but neither matrix commutes with
V (m).

For later use, we note that J has eigenvalues

jl = 2 cos2(πl/N), l = 1, 2, . . . N, (4.15)

corresponding to the eigenvectors ψ(l) with elements

ψ
(l)
n = N−1/2 exp(2πiln/N). (4.16)

The eigenvalues of K are

κl = i sin(2πl/N), l = 1, 2, . . . N, (4.17)

for the same eigenvectors ψ(l). From Eq. (4.15) we see that for N
even there is a zero eigenvalue of J (at l = N/2). To avoid the
complications from a noninvertible J , we restrict ourselves to N
odd (when all eigenvalues of J are nonzero).
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4.2.3 Transfer matrix

The discretized Dirac equation is expressed in terms of the matrices
(4.12)–(4.14) by

1
2∆
J (Ψm+1 −Ψm) =

(
− i

2∆
σzK−

i
4

σxV (m)

)
(Ψm + Ψm+1). (4.18)

Rearranging Eq. (4.18) we arrive at Eq. (4.4) with the transfer matrix

Mm =
(
J + iσzK+ 1

2 i∆σxV (m)
)−1

(
J − iσzK− 1

2 i∆σxV (m)
)

. (4.19)

Since we take N odd, so that J is invertible, we may equivalently
write Eq. (4.19) in the more compact form

Mm =
1− iXm

1 + iXm
, Xm = J −1(σzK+ 1

2 ∆σxV (m)). (4.20)

As announced, the transfer matrix is nonlocal (in the sense that
multiplication of Ψm byMm couples all transverse coordinates).

One can readily check that the condition (4.5) of symplectic sym-
metry is fullfilled. In App. 4.A we demonstrate that the condition
(4.7) of current conservation holds if we define the discretized
current operator Jx in terms of the symmetric matrix J ,

Jx = 1
2 vσxJ . (4.21)

The absence of fermion doubling is checked in Sec. 4.4.1.
The transfer matrix M through the entire strip (from x = 0 to

x = L) is the product of the one-step transfer matricesMm,

M =
M

∏
m=1
Mm, (4.22)

ordered such that Mm+1 is to the left of Mm. The properties of
symplectic symmetry and current conservation are preserved upon
matrix multiplication.
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4.2.4 Numerical stability

The repeated multiplication (4.22) of the one-step transfer matrix to
arrive at the transfer matrix of the entire strip is unstable because it
produces both exponentially growing and exponentially decaying
eigenvalues, and the limited numerical accuracy prevents one
from retaining both sets of eigenvalues. We resolve this obstacle,
following Refs. [13, 133, 138], by converting the transfer matrix into
a unitary matrix, which has only eigenvalues of unit absolute value.
The formulas that accomplish this transformation are given in App.
4.B.

4.3 From transfer matrix to scattering matrix and
conductance

4.3.1 General formulation

The scattering matrix is obtained from the transfer matrix by con-
necting the two ends of the strip at x = 0 and x = L to semi-infinite
ballistic leads. The N transverse modes in the leads (calculated in
Sec. 4.4), consist of N0 propagating modes φ±l (labeled + for right-
moving and − for left-moving), and N − N0 evanescent modes χ±l
(decaying for x → ±∞). The propagating modes are normalized
such that each carries unit current.

Consider an incoming wave in mode l0 from the left. At x = 0,
the sum of incoming, reflected, and evanescent waves is given by

Φleft
l0 = φ+

l0
+ ∑

l
rl,l0 φ−l + ∑

l
αl,l0 χ−l , (4.23)

while the sum of transmitted and evanescent waves at x = L is
given by

Φright
l0

= ∑
l

tl,l0 φ+
l + ∑

l
α′l,l0 χ+

l . (4.24)

The N0 × N0 reflection matrix r and transmission matrix t are
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obtained by equating

Φright
l0

=MΦleft
l0 , (4.25)

eliminating the coefficients α, α′, and repeating for each of the N0

propagating modes incident from the left. Starting from a mode
incident from the right, we similarly obtain the reflection matrices
r′ and t′, which together with r and t form a 2N0 × 2N0 unitary
scattering matrix,

S =

(
r t′

t r′

)
. (4.26)

As a consequence of unitarity, the matrix products tt† and t′t′†

have the same set of eigenvalues T1, T2, . . . TN0 , called transmission
eigenvalues.

The number N0 of propagating modes in the leads is an odd
integer, because of our choice of periodic boundary conditions.
The symplectic symmetry condition (4.5) then implies that the
transmission eigenvalues Tn consist of one unit eigenvalue and
(N0 − 1)/2 degenerate pairs (Kramers degeneracy1).

The conductance G follows from the transmission eigenvalues
via the Landauer formula,

G = G0 ∑
n

Tn. (4.27)

The conductance quantum G0 = 4e2/h in the application to graphene
(which has both spin and valley degeneracies), while G0 = e2/h
in the application to the surface of a topological insulator. The
Kramers degeneracy, which is present in both applications, is ac-
counted for in the sum over the transmission eigenvalues.

1Symplectic symmetry also implies that the basis of modes in the leads can
be chosen such that S is antisymmetric (S = −ST). We use a different basis,
so our S will be not be antisymmetric. For a direct proof of the Kramers
degeneracy of the transmission eigenvalues from the antisymmetry of the
scattering matrix, see J. H. Bardarson, J. Phys. A 41, 405203 (2008).
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4.3.2 Infinite wave vector limit

Following Ref. [141], we model metal contacts by leads with an
infinitely large Fermi wave vector. In the infinite wave vector
limit all modes in the leads are propagating, so N0 = N and the
scattering matrix has dimension 2N × 2N. The states φ±l (l =

1, 2, . . . N) in this limit are simply the 2N eigenstates of the current
operator Jx, normalized such that each carries the same current.
In terms of the eigenvalues and eigenvectors (4.15), (4.16) of J we
have

φ±l = j−1/2
l

(
1
±1

)
ψ(l). (4.28)

Instead of the general Eqs. (4.23) and (4.24) we now have the
simpler equations

Φleft
l0 = φ+

l0
+ ∑

l
rl,l0 φ−l , Φright

l0
= ∑

l
tl,l0 φ+

l . (4.29)

To obtain from Eq. (4.25) a closed-form expression for S in terms
ofM, we first perform the similarity transformation

M̃ = RMR−1, R = σHJ 1/2, (4.30)

where σH is the Hadamard matrix,

σH = 2−1/2
(

1 1
1 −1

)
= σ−1

H . (4.31)

The notation σHJ 1/2 signifies a direct product, where σH acts
on the spinor degrees of freedom s = ± and J 1/2 acts on the
lattice degrees of freedom n = 1, 2, . . . N. Notice that the matrix
R is Hermitian [since J is Hermitian with exclusively positive
eigenvalues, see Eq. (4.15)].

We separate the spinor degrees of freedom ofM into four N×N
blocks,

M =

(M++ M+−

M−+ M−−

)
, (4.32)
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such thatMns,ms′ =Mss′
nm. The matrix M̃ has a corresponding de-

composition into submatrices M̃ss′ . As one can verify by substitu-
tion into Eq. (4.29) and comparison with Eq. (4.25), the submatrices
M̃ss′ are related to the transmission and reflection matrices by

r = −
(
M̃−−)−1 M̃−+, (4.33a)

t = M̃++ − M̃+− (M̃−−)−1 M̃−+, (4.33b)

t′ =
(
M̃−−)−1 , (4.33c)

r′ = M̃+− (M̃−−)−1 . (4.33d)

Similar formulas were derived in Ref. [133], but there the trans-
formation fromM to S involved only a Hadamard matrix and no
matrix J , because of the different current operator in that model.

4.4 Ballistic transport

For a constant U we have ballistic transport through the strip of
length L and width W. In this section we check that we recover
the known results [63, 141] for ballistic transport of Dirac fermions
from the discretized transfer matrix.

4.4.1 Dispersion relation

For U = U0 = constant the matrix (4.14) of discretized potentials
is given by V (m) = −(ε/∆)J , with ε = (E−U0)∆/h̄v the dimen-
sionless energy (measured relative to the Dirac point at energy
U0). Substitution into Eq. (4.20) gives the m-independent ballistic
transfer matrixMball,

Mball =
1 + i(ε/2)σx − iJ −1Kσz

1− i(ε/2)σx + iJ −1Kσz
. (4.34)

This is the one-step transfer matrix. The transfer matrix through
the entire strip, in this ballistic case, is simplyM = (Mball)

M.
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In accordance with Eqs. (4.15)–(4.17), the matrix J −1K can be
diagonalized (for N odd) by

J −1K = FΛF †, Λnn′ = i tan(πn/N)δnn′ , (4.35a)

Fnn′ = N−1/2 exp(2πinn′/N). (4.35b)

The Fourier transformed transfer matrix FMballF † is diagonal in
the mode index l = 1, 2, . . . N. A 2× 2 matrix structure ml in the
spin index remains, given by

ml =
1 + i(ε/2)σx + tan(πl/N)σz

1− i(ε/2)σx − tan(πl/N)σz
. (4.36)

The eigenvalues and eigenvectors of ml are

mlu±l = e±iku±l , u±l =

(
ε/2

i tan(πl/N)± tan(k/2)

)
, (4.37)

with the dimensionless momentum k given as a function of ε and l
by the dispersion relation

tan2(k/2) + tan2(πl/N) = (ε/2)2. (4.38)

In Fig. 4.2 we have plotted the dispersion relation (4.38) for two
different modes in the first Brillouin zone −π < k < π. For each
mode index l, there is one wave that propagates to positive x
(on the branch with dε/dk > 0) and one wave that propagates to
negative x (on the branch with dε/dk < 0).

As anticipated [134, 22], the discretization of the Dirac equa-
tion on the displaced lattice (crosses in Fig. 4.1) has avoided the
spurious doubling of the fermion degrees of freedom that would
have happened if the finite differences would have been calcu-
lated on the original lattice (solid dots in Fig. 4.1). In the low-
energy and long-wave-length limit k, ε → 0, the conical disper-
sion relation (vpx)2 + (vpy)2 = (E −U0)2 of the Dirac equation
(4.1) is recovered. The longitudinal momentum is px = h̄k/∆,
while the transverse momentum is py = (2πh̄/W)l if l/N → 0 or
py = −(2πh̄/W)(N − l) if l/N → 1.
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Figure 4.2: Dispersion relation (4.38) of the discretized Dirac equa-
tion, plotted in the first Brillouin zone for two transverse
modes (l = N, solid curve; l ≈ N/4, dotted curve). The
dispersion relation approaches that of the Dirac equa-
tion near the point (k, ε) = (0, 0), and avoids fermion
doubling at other points in the Brillouin zone.

4.4.2 Evanescent modes

For |ε| < 2 tan(π/N), hence for |E − U0| . 2πh̄v/W, only the
mode with index l = N is propagating. The other N − 1 modes
are evanescent, that is to say, their wave number k has a nonzero
imaginary part κ. There are two classes of evanescent modes, one
class with a purely imaginary wave number k = iκ+, and another
class with a complex wave number k = π + iκ−. The relation
between κ± and ε, following from Eq. (4.38), is

tanh2 (κ+/2) = tan2(πl/N)− (ε/2)2, (4.39a)

cotanh2 (κ−/2) = tan2(πl/N)− (ε/2)2. (4.39b)

In Fig. 4.3 we have plotted Eq. (4.39) for different mode indices,
parameterized by ξ = tan(πl/N). The evanescent modes in the
Dirac equation correspond to k = iκ+ in the limit ε → 0 (solid
contours in Fig. 4.3). The second “spurious” class of evanescent
modes, with k = π + iκ− (dashed contours), is an artefact of the
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Figure 4.3: Relation between the energy ε and the imaginary part
κ of the wave number of evanescent modes, calculated
from Eq. (4.39) for five different values of the mode
index [parameterized by ξ = tan(πl/N)]. The real
part of the wave number equals 0 on the solid contours
(corresponding to κ+), while it equals π on the dashed
contours (corresponding to κ−). Only the κ+ evanescent
modes have a correspondence to the Dirac equation in
the limit ε→ 0. The κ− evanescent modes that appear
for |ξ| > 1 are artefacts of the discretization for large
transverse momenta.

discretization that appears for large transverse momenta (|ξ| > 1,
or N/4 < l < 3N/4).

To minimize the effect of the spurious evanescent modes we
insert a pair of filters of length L0 between the strip of length L
and the leads with infinitely large Fermi wave vector. By choosing
a large but finite Fermi wave vector in the filters, they remove the
spurious evanescent modes of large transverse momenta which are
excited by the infinite Fermi wave vector in the leads.

The geometry is sketched in Fig. 4.4. In the filters we choose
U = 0, E = 2h̄v/∆ (so ε = 2 in the filters). Since |κ−| ≥ π/N for
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Figure 4.4: Potential profile of a strip (length L), connected to leads
by a pair of filters (length L0). The Fermi wave vector in
the leads is taken infinitely large; the finite Fermi wave
vector in the filters removes the spurious evanescent
modes excited by the leads.

the spurious evanescent modes [described by Eq. (4.39b)], their
longest decay length is of order N∆ = W. By choosing L0 = 10 W
we ensure that these modes are filtered out.

4.4.3 Conductance

We have calculated the conductance at fixed Fermi energy E =

2h̄v/∆ as a function of the potential step height U0. Results are
shown in Fig. 4.6 for aspect ratio W/L = 3 and lattice constant
∆ = 10−2 L (solid curve) and compared with the solution of the
Dirac equation (dashed curve). The agreement is excellent (for a
twice smaller ∆ the two curves would have been indistinguishable).

The horizontal dotted line in Fig. 4.6 indicates the value [63, 141]

lim
W/L→∞

lim
U0→E

(L/W)G/G0 = 1/π (4.40)

of the minimal conductivity at the Dirac point for a large aspect
ratio of the strip. The oscillations which develop as one moves away
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Figure 4.5: Same as Fig. 4.4, but now for the case that the potential
in the strip fluctuates around the Dirac point: U =

U0 + δU, with U0 = E and δU uniformly distributed in
the interval (−∆U, ∆U).

from the Dirac point are Fabry-Perot resonances from multiple
reflections at x = 0 and x = L. The filters of length L0 are not
present in the continuum calculation (dashed curve), but the close
agreement with the lattice calculation (solid curve) shows that
the filters do not modify these resonances in any noticeable way.
The filters do play an essential role in ensuring that the minimal
conductivity reaches its proper value (4.40): Without the filters the
lattice calculation would give a twice larger minimal conductivity,
due to the contribution from the spurious evanescent modes of
large transverse momentum.

4.5 Transport through disorder

We introduce disorder in the strip of length L by adding a random
potential δU to each lattice point, distributed uniformly in the
interval (−∆U, ∆U). Since our discretization scheme conserves the
symplectic symmetry exactly, there is no need now to choose a
finite correlation length for the potential fluctuations (as in earlier
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Figure 4.6: Solid curve: conductance in the geometry of Fig. 4.4.
The Fermi wave vector (E − U0)/h̄v in the strip of
length L and width W = 3L is varied by varying the po-
tential step height U0 at fixed Fermi energy E = 2h̄v/∆.
The lattice constant ∆ = 10−2 L. Dashed curve: the
result from the Dirac equation (calculated from the for-
mulas in Ref. [141]), corresponding to the limit ∆→ 0.
The horizontal dotted line is the mimimal conductivity
at the Dirac point.

numerical studies [13, 99, 116, 80, 148, 133, 118, 100]). Instead we
can let the potential of each lattice point fluctuate independently,
as in the original Anderson model of localization [9].

4.5.1 Scaling of conductance at the Dirac point

When U0 = E the potential U0 + δU in the strip fluctuates around
the Dirac point (see Fig. 4.5). Results for the scaling of the aver-
age conductivity σ ≡ (L/W)〈G〉 with system size are shown for
different disorder strengths in Fig. 4.7. We averaged over 3000

disorder realizations for L/∆ = 17, 41, 99 and over 300 realizations
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Figure 4.7: Scaling with system size of the average conductivity
σ ≡ (L/W)〈G〉 in a disordered strip at the Dirac point
(geometry of Fig. 4.5). The length L of the strip is varied
at fixed aspect ratio W/L = 3. The data are collected
for different disorder strengths ∆U (listed in units of
h̄v/∆).

for L/∆ = 239. The aspect ratio was fixed at W/L = 3.
For sufficiently strong disorder strengths ∆U & 3h̄v/∆ the data

follow the logarithmic scaling [13, 99]

σ/G0 = c ln[L/l∗(∆U)]. (4.41)

There is a consensus in the literature that c = 1/π can be calculated
perturbatively [121] as a weak antilocalization correction. The
quantity l∗ plays the role of a mean free path, dependent on the
disorder strength. We fit this scaling to our data with a common
fitting parameter c (disregarding the data sets with low ∆U as
being too close to the ballistic limit). The fitting gives l∗ for every
data set with the same ∆U.

The resulting single-parameter scaling is presented in Fig. 4.8
(including also the low ∆U sets, for completeness). The data sets
collapse onto a single logarithmically increasing conductivity with
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Figure 4.8: Dependence of the conductivity of Fig. 4.7 on the
rescaled system length L/l∗(∆U). The two dotted lines
are the analytical weak and strong disorder limits.

c ≈ 0.33(1), close to the expected value c = 1/π ≈ 0.318. To
assess the importance of finite-size corrections [131] we include a
non-universal lattice-constant dependent term to the logarithmic
scaling: σ/G0 = c ln[L/l∗(∆U)] + f (∆U)∆/L. We then find c ≈
0.316(5), again close to the expected value [121]. These results for
the absence of localization of Dirac fermions are consistent with
earlier numerical calculations [13, 99] using a momentum space
regularization of the Dirac equation.

4.5.2 Conductance fluctuations at the Dirac point

The sample-to-sample conductance fluctuations at the Dirac point
were calculated numerically in Ref. [116] using the tight-binding
model on a honeycomb lattice. An enhancement of the variance
above the value for point scatterers was observed, and explained
in Ref. [67] in terms of the absence of intervalley scattering. A
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Figure 4.9: Same as Fig. 4.8, but now for the variance of the con-
ductance (instead of the ensemble average). The hor-
izontal dotted line is the analytical prediction (4.42),
Var (G/G0) = 0.116 W/L with W/L = 3.

perturbative calculation [67, 66] of Var G = 〈G2〉 − 〈G〉2 gives

Var G =
3ζ(3)

π3
W
L

G2
0 , W/L� 1. (4.42)

Intervalley scattering would reduce the variance by a factor of four,
while trigonal warping without intervalley scattering would reduce
the variance by a factor of two.

In Fig. 4.9 we plot our results for the dependence of the variance
of the conductance on the rescaled system size L/l∗, with the ∆U
dependence of l∗ obtained from the scaling analysis of the average
conductance in Sec. 4.5.1. The convergence towards the expected
value (4.42) is apparent. The numerical data of Fig. 4.9 supports the
conclusion of Ref. [121], that the statistics of the conductance at the
Dirac point can be obtained from metallic diffusive perturbation
theory in the large-L limit.

The tight-binding model calculation of Ref. [116] only reached
about half the expected value (4.42), presumably because the po-
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Figure 4.10: Crossover from ballistic to diffusive conduction away
from the Dirac point. The conductivity is plot-
ted versus system size, at fixed Fermi wave vector
(E −U0)/h̄v = 0.8 ∆−1 in the strip and fixed aspect
ratio W/L = 3. The data is for different disorder
strengths ∆U, listed in units of h̄v/∆. The dotted
curves are a fit to the semiclassical formula (4.43), with
the transport mean free path l0 as a fit parameter.

tential was not quite smooth enough to avoid intervalley scattering.
This illustrates the power of the finite difference method used here:
We retain single-valley physics even when the correlation length of
the potential is equal to the lattice constant.

4.5.3 Transport away from the Dirac point

The results of Secs. 4.5.1 and 4.5.2 are for potential fluctuations
around the Dirac point (U0 = E). In this subsection we consider
the average conductance and the conductance fluctuations away
from the Dirac point. We take (E−U0) = 0.8 h̄v/∆ and vary the
sample length L at fixed aspect ratio W/L = 3. The resulting
size dependence of the conductivity is presented in Fig. 4.10, for
different disorder strengths ∆U.
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Figure 4.11: Same as Fig. 4.10, but now for the variance of the
conductance. The data is plotted as a function of the
rescaled sample size, using the values of the mean
free path obtained from the fit of the conductance.
The horizontal dotted line is the analytical prediction
(4.42).

Since antilocalization is a relatively small quantum correction
at these high Fermi energies, we are in the regime described by
the semiclassical Boltzmann equation [3, 4]. In App. 4.C we apply
a general theory [106] for the crossover from ballistic to diffusive
conduction, to arrive at the formula

〈G〉 = π

2
G0Nstrip

l0
L + 2l0

, (4.43)

for the average conductance in terms of the transport mean free
path l0 and the number Nstrip = |E−U0|(W/πh̄v) of propagating
modes in the strip. From the fit of 〈G〉 versus L in Fig. 4.10 we ex-
tract the dependence on ∆U of l0, and then we use that information
to investigate the scaling of the variance of the conductance with
system size. As seen in Fig. 4.11, the variance scales well towards
the expected value (4.42).
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4.6 Conclusion

In conclusion, we have presented in this paper what one might call
the “Anderson model for Dirac fermions”. Just as in the original
Anderson tight-binding model of localization [9], our model is a
tight-binding model on a lattice with uncorrelated on-site disorder.
Unlike the tight-binding model of graphene (with nearest neighbor
hopping on a honeycomb lattice), our model preserves the symplec-
tic symmetry of the Dirac equation – at the expense of a nonlocal
finite difference approximation of the transfer matrix.

Our finite difference method is based on a discretization scheme
developed in the context of lattice gauge theory [134, 22], with
the purpose of resolving the fermion doubling problem. We have
adapted this scheme to include the chiral symmetry breaking by a
disorder potential, and have cast it in a current-conserving transfer
matrix form suitable for the calculation of transport properties.

To test the validity and efficiency of the model, we have calcu-
lated the average and the variance of the conductance and com-
pared with earlier numerical and analytical results. We recover
the logarithmic increase of the average conductance at the Dirac
point, found in numerical calculations that use a momentum space
rather than a real space discretization of the Dirac equation [13, 99].
The coefficient that multiplies the logarithm is close to 1/π, in
agreement with analytical expectations [121]. The variance of the
conductance is enhanced by the absence of intervalley scattering,
and we have been able to confirm the scaling with increasing sys-
tem size towards the expected limit [67, 66] – something which
had not been possible in earlier numerical calculations [116] be-
cause intervalley scattering sets in before the large-system limit is
reached.

Our calculations support the expectation [121] that the statistics
of the conductance at the Dirac point scales towards that of a
diffusive metal in the large-system limit. This would imply that
the shot noise should scale towards a Fano factor F = 1/3 [18].
Earlier numerical studies using the momentum space discretization
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Figure 4.12: Scaling with system size of the Fano factor (average
shot noise power divided by average current) in a dis-
ordered strip at the Dirac point (geometry of Fig. 4.5).
The length L of the strip is varied at fixed aspect ratio
W/L = 3. The data are collected for different disorder
strengths ∆U (listed in units of h̄v/∆). The dotted hor-
izontal line is the value F = 1/3 for a diffusive metal.
The dotted curve is a fit to F = 1/3+ a[b+ ln(L/l∗)]−1,
included in order to indicate a possible scaling towards
the expected value.

[118] found a saturation at the smaller value of F = 0.295. Our
own numerical results, shown in Fig. 4.12, instead suggest a slow,
logarithmic, increase towards the expected F = 1/3. More research
on this particular quantity is required for a conclusive answer.

We anticipate that the numerical method developed here will
prove useful for the study of graphene with smooth disorder poten-
tials (produced for example by remote charge fluctuations), since
such potentials produce little intervalley scattering. Intervalley scat-
tering is absent by construction in the metallic surface states of topo-
logical insulators (such as BiSb [55]). These surface states might be

75



studied by starting from a three-dimensional tight-binding model,
but we would expect a two-dimensional formulation as presented
here to be more efficient.

Appendix 4.A Current conserving discretization
of the current operator

We seek a discretization of the current operator (4.3) that satisfies
the condition (4.7) of current conservation. Substitution of the
expression (4.20) into the condition (4.7) gives the requirement

J−1
x M†

m Jx =M−1
m ⇔ J−1

x X†
m Jx = Xm. (4.44)

The requirement that Eq. (4.44) holds for any choice of potential
fixes the discretization (4.21) of the current operator [up to a multi-
plicative constant, which follows from the continuum limit (4.3)].

This is an appropriate point to note that current conservation
could not have been achieved if the potential would have been
discretized in a way that would have resulted in a nonsymmetric
matrix Vm. For example, if instead of Eq. (4.11) we would have
chosen

VΨ→ 1
4 (Ṽm+1,nΨm+1,n + Ṽm+1,n+1Ψm+1,n+1

+ Ṽm,nΨm,n + Ṽm,n+1Ψm,n+1), (4.45)

with Ṽm,n = V(xm, yn), then the corresponding matrix Vm would
have been asymmetric and no choice of Jx could have satisfied Eq.
(4.44).

Appendix 4.B Stable multiplication of transfer
matrices

To perform the multiplication (4.22) of transfer matrices in a stable
way (avoiding exponentially growing and decaying eigenvalues),
we use the current conservation relation (4.7) to convert the product
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into a composition of unitary matrices (involving only eigenvalues
of unit absolute value). The same method was used in Refs. [13,
133, 138], but for a different current operator, so the required
transformation formulas need to be adapted.

We separate the spinor degrees of freedom s = ± of the transfer
matrixMm into four N × N blocks,

Mm =

(M++
m M+−

m
M−+

m M−−
m

)
. (4.46)

The current conservation relation (4.7) with current operator (4.21)
can be written in the canonical form,

M̃†
m

(
1 0
0 −1

)
M̃m =

(
1 0
0 −1

)
, (4.47)

in terms of a matrix M̃m related toMm by a similarity transforma-
tion,

M̃m = RMmR−1, R = 2−1/2
(J 1/2 J 1/2

J 1/2 −J 1/2

)
. (4.48)

Eq. (4.47) follows only from Eqs. (4.7) and (4.21) if the matrix R
is Hermitian, which it is since J is Hermitian with only positive
eigenvalues [see Eq. (4.15)].

It now follows directly from Eq. (4.7) that the matrix Um con-
structed from M̃m by

M̃m =

(
a b
c d

)
⇔ Um =

( −d−1c d−1

a− bd−1c bd−1

)
(4.49)

is a unitary matrix. Matrix multiplication of M̃m’s induces a
nonlinear composition of Um’s,

M̃1M̃2 ⇔ U1 ⊗U2, (4.50)
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defined by

(
A1 B1

C1 D1

)
⊗
(

A2 B2

C2 D2

)
=

(
A3 B3

C3 D3

)
, (4.51a)

A3 = A1 + B1(1− A2D1)
−1A2C1, (4.51b)

B3 = B1(1− A2D1)
−1B2, (4.51c)

C3 = C2(1− D1A2)
−1C1, (4.51d)

D3 = D2 + C2(1− D1A2)
−1D1B2. (4.51e)

To evaluate the product (4.22) ofMm’s in a stable way, we first
write it in terms of the matrices M̃m,

M = R−1

(
M

∏
m=1
M̃m

)
R. (4.52)

We then transform each transfer matrix M̃m into a unitary matrix
Um according to Eq. (4.49) and we compose the unitary matrices
according to Eq. (4.51). Each step in this calculation is numerically
stable.

At the end of the calculation, we may in principle transform
back from the final unitary matrix U to the transfer matrixM =

R−1M̃R by means of the inverse of relation (4.49),

U =

(
A B
C D

)
⇔ M̃ =

(
C− DB−1A DB−1

−B−1A B−1

)
. (4.53)

This inverse transformation is itself unstable, but we may avoid it
because [as we can see by comparing Eqs. (4.49) and (4.53) with
Eq. (4.33)] the final U is identical to the scattering matrix S between
leads in the infinite wave vector limit. Hence the conductance can
be directly obtained from U via the Landauer formula (4.27) [with
the Tn’s being the eigenvalues of BB† and CC†].
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Appendix 4.C Crossover from ballistic to diffusive
conduction

Away from the Dirac point (for Fermi wave vectors kF = |E −
U0|/h̄v in the strip large compared to 1/L) conduction through
the strip is via propagating rather than evanescent modes. If
the number Nstrip = kFW/π of propagating modes is � 1, the
semiclassical Boltzmann equation can be used to calculate the
conductance.

As the transport mean free path l0 is reduced by adding disorder
to the strip, the conduction crosses over from the ballistic to the
diffusive regime. How to describe this crossover is a well-known
problem in the context of radiative transfer [106]. An exact solution
of the Boltzmann equation does not provide a closed-form expres-
sion for the crossover, but the following formula has been found to
be accurate within a few percent:

〈G〉 = CdG0Nstrip
l0

L + 2ξ
. (4.54)

The coefficient Cd depends on the dimensionality d: C3 = 4/3,
C2 = π/2, C1 = 2. The length ξ is the socalled extrapolation length
of radiative transfer theory, equal to l0 times a numerical coefficient
that depends on the reflectivity of the interface at x = 0 and x = L.
An infinite potential step in the Dirac equation has ξ = l0, see
Ref. [124]. Substitution into Eq. (4.54) then gives the formula (4.43)
used in the text.
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5 Switching of electrical current by
spin precession in the first
Landau level of an inverted-gap
semiconductor

5.1 Introduction

A central goal of spin-transport electronics (or spintronics) is the
ability to switch current between spin-selective electrodes by means
of spin precession [151]. In the original Datta-Das proposal for such
a spin-based transistor [38], the current which is switched carries
both spin and charge. It has proven difficult to separate the effects
of spin precession from purely orbital effects (deflection of electron
trajectories), so most succesful implementations use a nonlocal
geometry [60] to modulate the spin current at zero charge current
[58, 85, 139]. Even in the absence of an orbital effect, the fact that
different electrons (moving along different trajectories) experience
different amounts of spin precession prevents a complete switching
of the current from one electrode to the other.

If the electron motion could somehow be confined to a single
spatial dimension, it would be easier to isolate spin effects from
orbital effects and to ensure that all electron spins precess by the
same amount. Complete switching of the current would then be
possible, limited only by spin relaxation processes. Edge state
transport in the quantum Hall effect is one-dimensional and spin
selective (in sufficiently strong perpendicular magnetic fields B⊥),
but spin precession plays no role in the traditional experiments
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Figure 5.1: Top panel: Schematic illustration of the one-
dimensional pathway along which the electron spin
is injected, precessed, and detected (filled circles: oc-
cupied states; open circles: empty states). Bottom
panel: Potential profile of the p-n junction, shown for
B⊥ > Bc (for B⊥ < Bc the labels E+ and E− should be
interchanged).

on a two-dimensional electron gas [17]. In this paper we show
how the quantum Hall effect in an inverted-gap semiconductor
offers the unique possibility to perform a one-dimensional spin
precession experiment.

The key idea is to combine the spin-selectivity of edge states
with free precession along a p-n interface. The geometry, shown
in Fig. 5.1, has been studied in graphene [146, 2, 105, 142] – but
there spin is only weakly coupled to the orbit and plays a minor
role [62, 1]. The strong spin-orbit coupling in inverted-gap semi-
conductors splits the first Landau level into a pair of levels E± of
opposite magnetic moment [74, 123]. One level E+ (say, with spin
up) has electron-like character and produces edge states in the
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conduction band. The other level E− (with spin down) has hole-
like character and produces edge states in the valence band. The
edge states from E+ and E− have opposite chirality, meaning that
one circulates clockwise along the edge while the other circulates
counter-clockwise. These spin-selective, chiral edge states provide
the spin injection at x = 0 and detection at x = W.

For the spin precession we need to combine states from E+ and
E−. This is achieved by means of a gate electrode, which creates a
smooth potential step (height U0, width d) centered at y = 0, such
that the Fermi level lies in the conduction band for y < 0 (n-doped
region) and in the valence band for y > 0 (p-doped region). At
the p-n interface states from the first Landau levels E+ and E−
overlap at the Fermi energy EF, to form a spin-degenerate one-
dimensional state. Spin precession can be realized externally by a
parallel magnetic field B‖ (in the x− y plane) or internally by bulk
or structure inversion asymmetry [74].

Good overlap at EF of the states from E+ and E− is crucial for
effective spin precession. The requirement is that the spatial sepa-
ration δy ' |E+ − E−|d/U0 of the states should be small compared
to the magnetic length lm = (h̄/eB⊥)1/2 (which sets their spatial
extent). This is where the inverted gap comes in, as we now explain.

Inversion of the gap means that the first Landau level in the con-
duction band goes down in energy with increasing magnetic field
(because it has hole-like character), while the first Landau level in
the valence band goes up in energy (because it has electron-like
character). As a consequence, the gap |E+ − E−| has a minimal
value Ec much less than the cyclotron energy h̄ωc at a crossover
magnetic field Bc. Indeed, Ec = 0 in the absence of inversion
asymmetry [74]. Good overlap can therefore be reached in an
inverted-gap semiconductor, simply by tuning the magnetic field.
In a normal (non-inverted) semiconductor, such as GaAs, the cy-
clotron energy difference between E+ and E− effectively prevents
the overlap of Landau levels from conduction and valence bands.

In the following two sections, we first present a general, model
independent analysis and then specialize to the case of a HgTe
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quantum well (where we test the analytical theory by computer
simulation).

5.2 General theory

We introduce a one-dimensional coordinate s± along the E± edge
states, increasing in the direction of the chirality (see Fig. 5.1). The
wave amplitudes ψ±(s±) of these two states can be combined into
the spinor Ψ = (ψ+, ψ−). Far from the p-n interface, ψ+ and ψ−
evolve independently with Hamiltonian

H0 =

(
H+ 0
0 H−

)
, H± = v±

(
−ih̄

∂

∂s±
− p±F

)
. (5.1)

This is the generic linearized Hamiltonian of a chiral mode, with
group velocity v± ≡ v(s±) and Fermi momentum p±F ≡ pF(s±).
Near the p-n interface the spin-up and spin-down states are coupled
by the generic precession Hamiltonian,

Hprec =

(
0 M∗

M 0

)
, (5.2)

with a matrix elementM to be specified later.
We seek the transfer matrix T, defined by

Ψ(s f
+, s f
−) = TΨ(si

+, si
−). (5.3)

We take for Ψ a solution of the Schrödinger equation,

(H0 + Hprec)Ψ = 0, (5.4)

at zero excitation energy (appropriate for electrical conduction
in linear response). The initial and final points si

± and s f
± are

taken away from the p-n interface. The unitary scattering matrix S
(relating incident and outgoing current amplitudes) is related to T
by a similarity transformation,

S =

(
v f
+ 0
0 v f

−

)1/2

T
(

vi
+ 0
0 vi

−

)−1/2

. (5.5)
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The two-terminal linear-response conductance G of the p-n junction
is given by the Landauer formula,

G =
e2

h
|S21|2. (5.6)

The transition matrix element M(s+, s−) between ψ+(s+) and
ψ−(s−) vanishes if the separation |s+ − s−| of the two states is
large compared to the magnetic length lm. We assume that B⊥ is
sufficiently close to Bc that |s+ − s−| < lm at the p-n interface y = 0,
0 < x < W, where we may take M = constant (independent of
x). At the two edges x = 0 and x = W we setM = 0, neglecting
the crossover region within lm of (0, 0) and (W, 0). (The precession
angle there will be small compared to unity for lm � h̄v±/|M|.)

In this “abrupt approximation” we may identify the initial and
final coordinates si

± and s f
± with the points (0, 0) and (W, 0), at

the two ends of the p-n interface. Integration of the Schrödinger
equation (5.4) along the p-n interface gives the transfer matrix, and
application of Eq. (5.5) then gives the scattering matrix

S = exp
[
−i

W
h̄

(
p+F M∗/

√
v+v−

M/
√

v+v− p−F

)]
. (5.7)

(We have assumed that v± and p±F , as well asM, do not vary along
the p-n interface, so we may omit the labels i, f .) One verifies that
S is unitary, as it should be.

Evaluation of the matrix exponent in Eq. (5.7) and substitution
into Eq. (5.6) gives the conductance,

G =
e2

h
sin2

( |peff|W
h̄

)
sin2 α. (5.8)

The effective precession momentum

peff =

(
ReM

v̄
,

ImM
v̄

,
δpF

2

)
(5.9)

(with δpF = p+F − p−F and v̄ =
√

v+v−) makes an angle α with the
z-axis. This is the final result of our general analysis.
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5.3 Application to a HgTe quantum well

We now turn to a specific inverted-gap semiconductor, a quantum
well consisting of a 7 nm layer of HgTe sandwiched symmetrically
between Hg0.3Cd0.7Te [73]. The properties of this socalled topologi-
cal insulator have been reviewed in [74]. The low-energy excitations
are described by a four-orbital tight-binding Hamiltonian [23, 44],

H = ∑
n

c†
nEncn − ∑

n,m (nearest neighb.)
c†

nTnmcm. (5.10)

Each site n on a square lattice (lattice constant a = 4 nm) has four
states |s,±〉, |px ± ipy,±〉 – two electron-like s-orbitals and two
hole-like p-orbitals of opposite spin σ = ±. Annihilation operators
cn,τσ for these four states (with τ ∈ {s, p}) are collected in a vector

cn = (cn,s+, cn,p+, cn,s−, cn,p−).

States on the same site are coupled by the 4× 4 potential matrix
En and states on adjacent sites by the 4× 4 hopping matrix Tnm.

In zero magnetic field and without inversion asymmetry H de-
couples into a spin-up block H+ and a spin-down block H−, de-
fined in terms of the 2× 2 matrices

E+n = E−n = diag (εs −Un, εp −Un), (5.11)

T +
nm =

(
T −nm

)∗
=

(
tss tspeiθnm

tspe−iθmn −tpp

)
. (5.12)

Here Un is the electrostatic potential and θnm is the angle between
the vector rn − rm and the positive x-axis (so θmn = π − θnm). The
orbital effect of a perpendicular magnetic field B⊥ is introduced
into the hopping matrix elements by means of the Peierls substitu-
tion

Tnm 7→ Tnm exp[i(eB⊥/h̄)(yn − ym)xn].

This breaks the degeneracy of the spin-up and spin-down energy
levels, but it does not couple them.
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Spin-up and spin-down states are coupled by the Zeeman effect
from a parallel magnetic field (with gyromagnetic factor g‖) and by
spin-orbit interaction without inversion symmetry (parameterized
by a vector ∆). In first-order perturbation theory, the correction δE
to the on-site potential has the form [74]

δE = (∆ · σ)⊗ τy +
1
2 µBg‖(B‖ · σ)⊗ (τ0 + τz)

+ µBB⊥σz ⊗ (ḡ⊥τ0 + δg⊥τz). (5.13)

The Pauli matrices σ = (σx, σy, σz) act on the spin-up and spin-
down blocks, while the Pauli matrices τy, τz and the unit matrix τ0

act on the orbital degree of freedom s, p within each block.
The parameters of the tight-binding model for a 7 nm thick

HgTe/Hg0.3Cd0.7Te quantum well (grown in the (001) direction)
are as follows [74]: tss = 74.9 meV, tpp = 10.9 meV, tsp = 45.6 meV,
εs = 289.5 meV, εp = −33.5 meV, ḡ⊥ = 10.75, δg⊥ = 11.96, g‖ =
−20.5, ∆ = (0, 1.6 meV, 0).

The quantum well is symmetric, so only bulk inversion asymme-
try contributes to ∆. The p-n junction is defined by the potential
profile

U(x, y) = 1
2U0[1 + tanh(4y/d)], 0 < x < W, (5.14)

with U0 = 32 meV, d = 12 nm, and W = 0.8 µm. We fix the Fermi
level at EF = 25 meV, so that it lies in the conduction band for
y < 0 and in the valence band for y > 0. (We have checked that
none of the results are sensitive to the choice of potential profile
or parameter values.) The scattering matrix of the p-n junction is
calculated with the recursive Green function technique, using the
“knitting” algorithm1 of Ref. [65]. Results for G as a function of B‖
are shown in Figs. 5.2 and 5.3.

The dependence of the conductance on the parallel magnetic field
B‖ shows a striking “bullseye” pattern, which can be understood

1 The computer code for the knitting algorithm was kindly provided to us by
Dr. Waintal.
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Figure 5.2: Dependence of the conductance of the HgTe quantum
well on the parallel magnetic field B‖, calculated from
the tight-binding model for B⊥ = Bc = 6.09 T.

as follows. To first order in B‖, the edge state parameters v± and
p±F are constant, while the precession matrix element

M = ∆eff + µBgeff(B‖x + iB‖y) (5.15)

varies linearly. Substitution into Eqs. (5.8) and (5.9) gives a circu-
larly symmetric dependence of G on B‖,

G =
e2

h

(
1 +

(v̄δpF)
2

4|µBgeff|2|B‖ −B0|2

)−1

× sin2
[

W
h̄v̄

√
|µBgeff|2|B‖ −B0|2 + 1

4 (v̄δpF)2

]
, (5.16)

B0 = µ−1
B
(((
Re[∆eff/geff], Im[∆eff/geff], 0

)))
. (5.17)

The parallel magnetic field B0 corresponds to the center of the
bullseye, at which the coupling between the ± edge states along
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Figure 5.3: Dependence of the conductance on B‖y for B‖x = 0, at
three values of the perpendicular magnetic field. The
solid curves are calculated numerically from the tight-
binding model, the dashed curves are the analytical
prediction (5.16). The arrow indicates the value of B0

from Eq. (5.17). (Only the numerical curve is shown in
the upper panel, because the analytical curve is nearly
indistinguishable from it.)

the p-n interface by bulk inversion asymmetry is cancelled by the
Zeeman effect.

The Fermi momentum mismatch δpF vanishes at a perpendic-
ular magnetic field B∗ close to, but not equal to, Bc. Then the
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magnetoconductance oscillations are purely sinusoidal,

G =
e2

h
sin2[(W/h̄v̄)µBgeff|B‖ −B0|]. (5.18)

For a quantitative comparison between numerics and analytics,
we extract the parameters v± and p±F from the dispersion relation of
the edge states ψ± along an infinitely long p-n interface (calculated
for uncoupled blocks H±). The overlap of ψ+ and ψ− determines
the coefficients

∆eff = (∆x + i∆y)〈ψ−|τy|ψ+〉, (5.19)

geff =
1
2 g‖〈ψ−|τ0 + τz|ψ+〉. (5.20)

For B⊥ = Bc = 6.09 T we find v̄δpF = 0.86 meV, h̄v̄/W =

0.23 meV, ∆eff = −1.59 meV, geff = −4.99. The Fermi momen-
tum mismatch δpF vanishes for B⊥ = B∗ = 5.77 T. Substitution
of the parameters into Eq. (5.16) gives the dashed curves in Fig.
5.3, in reasonable agreement with the numerical results from the
tight-binding model (solid curves). In particular, the value of B0 ex-
tracted from the numerics is within a few percent of the analytical
prediction (5.17).

Because of the one-dimensionality of the motion along the p-
n interface, electrostatic disorder and thermal averaging have a
relatively small perturbing effect on the conductance oscillations.
For disorder potentials ∆U and thermal energies kBT up to 10% of
U0 the perturbation is hardly noticeable (a few percent). As shown
in Fig. 5.4, the conductance oscillations remain clearly visible even
for ∆U and kBT comparable to U0. In particular, we have found
that the center of the bullseye pattern remains within 10% of B0

even for ∆U as large as the p-n step height U0.

5.4 Conclusion

In conclusion, we have proposed a one-dimensional spin precession
experiment at a p-n junction in an inverted-gap semiconductor. The
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Figure 5.4: The solid blue curve in both panels is the same as
in Fig. 5.3, top panel, calculated for B⊥ = B∗ from
the tight-binding model at zero temperature without
any disorder. The dotted black curve in the lower
panel shows the effect of raising the temperature to
30 K ≈ U0/3kB. The dotted red curve and dashed green
curve in the upper panel show the effect of disorder
at zero temperature. The on-site disorder potential is
drawn uniformly from the interval (−∆U0, ∆U0), with,
respectively, ∆U = U0/4 and ∆U = U0/2.

conductance as a function of parallel magnetic field oscillates in a
bullseye pattern, centered at a field B0 proportional to the matrix
element ∆eff of the bulk inversion asymmetry. Our numerical and
analytical calculations show conductance oscillations of amplitude
not far below e2/h, robust to disorder and thermal averaging.
Realization of the proposed experiment in a HgTe quantum well
[74] (or in other inverted-gap semiconductors [82]) would provide a
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unique demonstration of full-current switching by spin precession.
As directions for future research, we envisage potential applica-

tions of this technique as a sensitive measurement of the degree
of bulk inversion asymmetry, or as a probe of the effects of inter-
actions on spin precession. It might also be possible to eliminate
the external magnetic field and realize electrical switching of the
current in our setup: The role of the perpendicular magnetic field
in producing spin-selective edge states can be taken over by mag-
netic impurities or a ferromagnetic layer [83], while the role of the
parallel magnetic field in providing controlled spin precession can
be taken over by gate-controlled structural inversion asymmetry.
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6 Theory of the topological
Anderson insulator

6.1 Introduction

Topological insulators continue to surprise with unexpected phys-
ical phenomena [30]. A recent surprise was the discovery of the
topological Anderson insulator (TAI) by Li, Chu, Jain, and Shen
[81]. In computer simulations of a HgTe quantum well, these au-
thors discovered in the phase diagram a transition from an ordinary
insulating state (exponentially small conductance) to a state with
a quantized conductance of G0 = 2e2/h. The name TAI refers
to the latter state. The findings of Ref. [81] were confirmed by
independent simulations [59].

The phenomenology of the TAI is similar to that of the quan-
tum spin Hall (QSH) effect, which is well understood [62, 23]
and observed experimentally in HgTe quantum wells [70, 74, 113].
The QSH effect is a band structure effect: It requires a quantum
well with an inverted band gap, modeled by an effective Dirac
Hamiltonian with a negative (socalled “topological”) mass. The
matching of this negative mass inside the system to the usual pos-
itive mass outside leaves edge states in the gap. The edge states
are “helical”, in the sense that the direction of propagation is tied
to the electron spin. Opposite edges each contribute e2/h to the
conductance. The conductance remains quantized in the presence
of (weak) disorder, because time reversal symmetry forbids scatter-
ing between counter-propagating edge states (of opposite helicity)
[62, 23, 70, 74, 113].

The crucial difference between the TAI and QSH phases is that
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the QSH phase extends down to zero disorder, while the TAI phase
has a boundary at a minimal disorder strength. Put differently,
the helical edge states in the QSH phase exist in spite of disorder,
while in the TAI phase they exist because of disorder. Note that the
familiar quantum Hall effect is like the QSH effect in this respect:
The edge states in the quantum Hall effect exist already without
disorder (although, unlike the QSH effect, they only form in a
strong magnetic field).

The computer simulations of Refs. [81, 59] confront us, therefore,
with a phenomenology without precedent: By what mechanism
can disorder produce edge states with a quantized conductance?
That is the question we answer in this paper.

6.2 Model

We start from the low-energy effective Hamiltonian of a HgTe
quantum well, which has the form [23]

H = α(pxσx − pyσy) + (m + βp2)σz + [γp2 + U(r)]σ0. (6.1)

This is a two-dimensional Dirac Hamiltonian (with momentum
operator p = −ih̄∇, Pauli matrices σx, σy, σz, and a 2× 2 unit
matrix σ0), acting on a pair of spin-orbit coupled degrees of freedom
from conduction and valence bands. The complex conjugate H∗

acts on the opposite spin. We assume time reversal symmetry (no
magnetic field or magnetic impurities) and neglect any coupling
between the two spin blocks H and H∗1. The scalar potential U
accounts for the disorder. The parameters α, β, γ, m depend on
the thickness and composition of the quantum well [74]. For the
specific calculations that follow, we will use the same parameter

1We have repeated the calculations of the conductance including a coupling
Hamiltonian between the spin blocks of the form ±iκσy, with κ = 1.6 meV,
representative of bulk inversion asymmetry in a HgTe quantum well. The
effect on the phase diagram was negliglibly small.
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values as in Ref. [81], representative of a non-inverted HgTe/CdTe
quantum well2.

The terms quadratic in momentum in Eq. (6.1) are not present
in the Dirac Hamiltonian familiar from relativistic quantum me-
chanics, but they play an important role here. In particular, it is the
relative sign of β and m that determines whether the clean quantum
well (U ≡ 0) is inverted (βm < 0) or not-inverted (βm > 0). We
take β > 0, so the inverted quantum well has a negative topological
mass m < 0. The inverted quantum well is a topological insula-
tor (for Fermi energies EF inside the gap), while the non-inverted
quantum well is an ordinary band insulator. The phase transition
between these two types of insulators therefore occurs at m = 0 in
a clean quantum well.

6.3 TAI mechanism

We will now show that disorder can push the phase transition to
positive values of m, which is the hallmark of a TAI. Qualitatively,
the mechanism is as follows. Elastic scattering by a disorder poten-
tial causes states of definite momentum to decay exponentially as a
function of space and time. The quadratic term βp2 = −h̄2β∇2 in
H, acting on the decaying state ∝ e−x/λ, adds a negative correction
δm to the topological mass. The renormalized mass m̄ = m + δm
can therefore have the opposite sign as the bare mass m. Topologi-
cal mass renormalization by disorder, and the resulting change in
the phase diagram, has previously been studied without the terms
quadratic in momentum [127]. The sign of m̄ and m then remains
the same and the TAI phase cannot appear.

We extract the renormalized topological mass m̄, as well as the
renormalized chemical potential µ̄, from the self-energy Σ of the
disorder-averaged effective medium. To make contact with the

2The parameter values of H that we have used are: h̄α = 364.5 meV nm, h̄2β =
686 meV nm2, h̄2γ = 512 meV nm2, m = 1 meV. The lattice constant of the
discretization was a = 5 nm.
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computer simulations [81, 59], we discretize H on a square lattice
(lattice constant a) and take a random on-site disorder potential U,
uniformly distributed in the interval (−U0/2, U0/2). We denote
by H0(k) the lattice Hamiltonian of the clean quantum well in
momentum representation [23, 74].

The self-energy, defined by

(EF − H0 − Σ)−1 = 〈(EF − H)−1〉, (6.2)

with 〈· · · 〉 the disorder average, is a 2× 2 matrix which we de-
compose into Pauli matrices: Σ = Σ0σ0 + Σxσx + Σyσy + Σzσz. The
renormalized topological mass and chemical potential are then
given by

m̄ = m + lim
k→0

Re Σz, µ̄ = EF − lim
k→0

Re Σ0. (6.3)

The phase boundary of the topological insulator is at m̄ = 0, while
the Fermi level enters the (negative) band gap when |µ̄| = −m̄.

In the selfconsistent Born approximation, Σ is given by the inte-
gral equation [126]

Σ = 1
12U2

0(a/2π)2
∫

BZ
dk [EF + i0+ − H0(k)− Σ]−1. (6.4)

(The integral is over the first Brillouin zone.) The self-energy is
independent of momentum and diagonal (so there is no renor-
malization of the parameters α, β, γ). By calculating m̄ and µ̄ as a
function of EF and U0 we obtain the two curves A and B in Fig. 6.1.

We have also derived an approximate solution in closed form3,

m̄ = m− U2
0 a2

48πh̄2
β

β2 − γ2 ln

∣∣∣∣∣ β2 − γ2

E2
F −m2

(
πh̄
a

)4
∣∣∣∣∣ , (6.5a)

µ̄ = EF −
U2

0 a2

48πh̄2
γ

β2 − γ2 ln

∣∣∣∣∣ β2 − γ2

E2
F −m2

(
πh̄
a

)4
∣∣∣∣∣ , (6.5b)

3The approximate solution (6.5) of Eq. (6.4) amounts to the Born approximation
without selfconsistency (replacing Σ in the right-hand-side by zero) and
keeping only the logarithmically divergent part of the integral.
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showing that the correction δm = m̄−m to the topological mass
by disorder is negative – provided β > γ. For β < γ the clean HgTe
quantum well would be a semimetal, lacking a gap in the entire
Brillouin zone. Neither the TAI phase nor the QSH phase would
then appear. In HgTe the parameter β is indeed larger than γ, but
not by much4. Eq. (6.5) implies that the lower branch of curve B
(defined by µ̄ = m̄ < 0) is then fixed at EF ≈ m > 0 independent
of U0. This explains the puzzling absence of the TAI phase in
the valence band (EF < 0), observed in the computer simulations
[81, 59].

To quantitatively test the phase diagram resulting from the effec-
tive medium theory, we performed computer simulations similar
to those reported in Refs. [81, 59]. The conductance G is calculated
from the lattice Hamiltonian [23, 74] in a strip geometry, using
the method of recursive Green functions. The strip consists of a
rectangular disordered region (width W, length L), connected to
semi-infinite, heavily doped, clean leads5. Theory and simulation
are compared in Figs. 6.1 and 6.2.

Fig. 6.1 shows the phase diagram. The weak-disorder boundary
of the TAI phase observed in the simulations is described quite well
by the selfconsistent Born approximation (curve B) – without any
adjustable parameter. Curve B limits the region where (A) the renor-
malized topological mass m̄ is negative and (B) the renormalized
chemical potential µ̄ lies inside the band gap: |µ̄| < −m̄. Condition
(A) is needed for the existence of edge states with a quantized
conductance. Condition (B) is not needed for an infinite system,
because then Anderson localization suppresses conductance via
bulk states as well as coupling of edge states at opposite edges.
In the relatively small systems accessible by computer simulation,
the localization length for weak disorder remains larger than the
system size (see later). Condition (B) is then needed to eliminate

4See footnote on page 95.
5The reason we dope the leads in the computer simulations is to be able to access

the region |EF| < m in the phase diagram, where the band gap in the clean
leads would otherwise prevent conduction through the disordered region.
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Figure 6.1: Computer simulation of a HgTe quantum well (for pa-
rameters see footnote on page 95), showing the average
conductance 〈G〉 as a function of disorder strength U0

(logarithmic scale) and Fermi energy EF, in a disordered
strip of width W = 100 a and length L = 400 a. The
TAI phase is indicated. Curves A and B are the phase
boundaries resulting from the effective medium theory.
Curve A separates regions with positive and negative
renormalized topological mass m̄, while curve B marks
the crossing of the renormalized chemical potential µ̄

with the band edge (|µ̄| = −m̄). Both curves have been
calculated without any adjustable parameter. The phase
boundary of the TAI at strong disorder is outside of the
regime of validity of the effective medium theory.

the bulk conductance and to decouple the edge states.

Fig. 6.2 shows the average density of states ρ at the Fermi level.
The agreement between the selfconsistent Born approximation
(dashed black curve) and the computer simulation (solid black) is
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Figure 6.2: Black curves, left axis: Average density of states ρ

as a function of EF for U0 = 100 meV, calculated by
computer simulation (solid curve, for a disordered
100 a × 100 a square with periodic boundary condi-
tions) or by effective medium theory (dashed curve).
Red curve, right axis: Average conductance 〈G〉, cal-
culated by computer simulation in a disordered strip
(U0 = 100 meV, W = 100 a, L = 400 a). The TAI phase
of quantized conductance lines up with the band gap.

quite good, in particular considering the fact that this plot is for a
disorder strength which is an order of magnitude larger than the
band gap. The range of Fermi energies over which the gap extends
lines up nicely with the conductance plateau, shown in the same
figure (red curve).

The strong-disorder phase boundary of the TAI cannot be de-
scribed by effective medium theory, but it should be similar to the
QSH phase boundary. In the QSH effect the strong-disorder transi-
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Figure 6.3: Red dashed curve: Average conductance 〈G〉 as a func-
tion of disorder strength (EF = 25 meV, W = L = 100 a).
Black solid curve: Localization length ξ, showing the
peak at the strong-disorder edge of the conductance
plateau – characteristic of a localization transition. The
scaling with system size W of the width δU0 of the peak
is shown in the inset (double-logarithmic plot).

tion is in the universality class of the quantum Hall effect [102] –
in the absence of coupling between the spin blocks [103, 101]. To
ascertain the nature of the strong-disorder transition out of the TAI,
we have calculated the critical exponent ν governing the scaling of
the localization length ξ. For that purpose we roll up the strip into
a cylinder, thereby eliminating the edge states [59]. We determine
the localization length ξ ≡ −2 limL→∞ L〈ln G/G0〉−1 by increasing
the length L of the cylinder at fixed circumference W.

In Fig. 6.3 we show ξ as a function of disorder strength U0 at EF =
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25 meV, W = 100 a. As mentioned above, ξ becomes much larger
than W upon crossing the weak-disorder boundary of the TAI, so
there is no localization there6. At the strong-disorder boundary,
however, the dependence of ξ on U0 shows the characteristic peak
of a localization transition [42]. In the inset we plot the scaling
with W of the width δU0 at half maximum of the peak. This yields
the critical exponent via δU0 ∝ W−1/ν. We find ν = 2.66± 0.15,
consistent with the value ν = 2.59 expected for a phase transition
in the quantum Hall effect universality class [132].

6.4 Conclusion

In conclusion, we have identified the mechanism for the appearance
of a disorder-induced phase of quantized conductance in computer
simulations of a HgTe quantum well [81, 59]. The combination of
a random potential and quadratic momentum terms in the Dirac
Hamiltonian can change the sign of the topological mass, thereby
transforming a non-inverted quantum well (without edge states in
the band gap) into an inverted quantum well (with edge states).
The weak-disorder boundary in the phase diagram of the TAI has
been calculated by effective medium theory, in good agreement
with the simulations (curve B in Fig. 6.1).

Contrary to what the name “topological Anderson insulator”
might suggest, we have found that the hallmark of the TAI in the
simulations, the weak-disorder transition into a phase of quantized
conductance, is not an Anderson transition at all. Instead, the
weak-disorder boundary B marks the crossing of a band edge
rather than a mobility edge. A mobility edge (similar to the QSH

6A pronounced conductance dip between the quantized plateau and the high-
conductance regime exists for samples with a large aspect ratio L/W, becom-
ing broader and broader with increasing L/W. The dip is clearly visible in Fig.
6.2 (for L/W = 4) and absent in Fig. 6.3 (for L/W = 1). Our numerical data
suggests that the conductance dip extends over the parameter range where
W < ξ < L, so that conduction is suppressed both through the bulk and along
the edges.
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effect [102, 103, 101]) is crossed at strong disorder, as evidenced by
the localization length scaling (Fig. 6.3).

Our findings can be summed up in one sentence: “A topolog-
ical insulator wants to be topological”. The mechanism for the
conversion of an ordinary insulator into a topological insulator
that we have discovered is generically applicable to narrow-band
semiconductors with strong spin-orbit coupling (since these are
described by a Dirac equation, which generically has quadratic
momentum terms [150]). There is no restriction to dimensionality.
We expect, therefore, a significant extension of the class of known
topological insulators7 to disordered materials without intrinsic
band inversion.

7For introductions to topological insulators, see [149, 30, 95]
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[24] Ya. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).
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W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766

(2007).

[71] J. Kogut and L. Susskind, Phys. Rev. B 11, 395 (1975).

107



[72] H. Kohno and H. Yoshida, Solid State Comm. 132, 59 (2004).

[73] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann,
L. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766

(2007).

[74] M. König, H. Buhmann, L. Molenkamp, T. Hughes, C.-X. Liu,
X.-L. Qi, and S.-C. Zhang, J. Phys. Soc. Japan 77, 031007 (2008).

[75] B. Kramer, T. Ohtsuki, and S. Kettemann, Phys. Rep. 417, 211

(2005).

[76] R. Kutner and Ph. Maass, J. Phys. A 31, 2603 (1998).

[77] V. V. Kuznetsov, E. E. Mendez, X. Zuo, G. L. Snider, and E. T.
Croke, Phys. Rev. Lett. 85, 397 (2000).

[78] H. Larralde, F. Leyvraz, G. Martinez-Mekler, R. Rechtman,
and S. Ruffo, Phys. Rev. E 58, 4254 (1998).

[79] P. Levitz, Europhys. Lett. 39, 6593 (1997).

[80] C. H. Lewenkopf, E. R. Mucciolo, and A. H. Castro Neto, Phys.
Rev. B 77, 081410(R) (2008).

[81] J. Li, R.-L. Chu, J. K. Jain, and S.-Q. Shen, Phys. Rev. Lett. 102,
136806 (2009); commentary by S. Mitra in Physics, April 6,
2009.

[82] C.-X. Liu, T. Hughes, X.-L. Qi, K. Wang, and S.-C. Zhang, Phys.
Rev. Lett. 100, 236601 (2008).

[83] C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Phys.
Rev. Lett. 101, 146802 (2008).

[84] R. C. Liu, P. Eastman, and Y. Yamamoto, Solid State Comm.
102, 785 (1997).

[85] X. Lou, C. Adelmann, S. A. Crooker, E. S. Garlid, J. Zhang, K.
S. Madhukar Reddy, S. D. Flexner, C. J. Palmstrom, and P. A.
Crowell, Nature Phys. 3, 197 (2007).

108



[86] A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and G. Grinstein,
Phys. Rev. B 50, 7526 (1994).

[87] B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman,
New York, 1983).

[88] R. N. Mantegna, Phys. Rev. E 49, 4677 (1994).

[89] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet,
K. von Klitzing, and A. Yacoby, Nature Phys. 4, 144 (2008).

[90] E. McCann, K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando,
and B. L. Altshuler, Phys. Rev. Lett. 97, 146805 (2006).

[91] J. W. McClure, Phys. Rev. 104, 666 (1956).

[92] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).

[93] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J.
Booth, and S. Roth, Nature 446, 60 (2007).

[94] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306(R) (2007).

[95] J. Moore, Nature Phys. 5, 378 (2009).

[96] K. E. Nagaev, Phys. Lett. A 169, 103 (1992).

[97] Yu. V. Nazarov, Phys. Rev. Lett. 73, 134 (1994).

[98] H. B. Nielsen and M. Ninomiya, Nucl. Phys. B 185, 20 (1981).

[99] K. Nomura, M. Koshino, and S. Ryu, Phys. Rev. Lett. 99,
146806 (2007).

[100] K. Nomura, S. Ryu, M. Koshino, C. Mudry, and A. Furusaki,
Phys. Rev. Lett. 100, 246806 (2008).

[101] H. Obuse, A. Furusaki, S. Ryu, and C. Mudry, Phys. Rev. B
76, 075301 (2007).

[102] M. Onoda and N. Nagaosa, Phys. Rev. Lett. 90, 206601 (2003).

109



[103] M. Onoda, Y. Avishai, and N. Nagaosa, Phys. Rev. Lett. 98,
076802 (2007).

[104] P. M. Ostrovsky, I.V. Gornyi, and A. D. Mirlin, Phys. Rev.
Lett. 98, 256801 (2007).
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Summary

Imagine an indecisive hiker standing somewhere along a path,
constantly tossing a coin. Whenever the result is “heads”, he
walks one step further. Whenever the result is “tails”, he takes
a step back. How does this situation relate to someone heating
(for a short while) a metal bar with a lighter? Both the “density
of the hiker” (i.e. the probability to find him per piece of path),
and the density of heat in the rod (determined by the temperature)
spread with time according to the diffusion equation. This equation
essentially states that the extent of the density profile grows as the
square root of time. In the case of the hiker this means that if he
has (averaged over many repetitions of this tiresome procedure)
moved from his starting point by 20 meters after 15 minutes, we
can expect him to have moved by 40 meters on average after one
hour. Similar processes are abundant in nature and include the
spreading of impurities in crystals as well as the sprawling of
infected mosquitos.

The square-root-law of diffusion is remarkably universal, yet
there exist cases in nature where the random spreading does not
follow this law. Such diffusion is called anomalous – the width of the
density profile spreads as a power of time which lies somewhere
between 0 and 1, different from the power 1/2 of normal diffusion.
For example, it has been found that contaminations in ground water
spread slower than if they would be governed by normal diffusion.
This is due to the pollutants getting trapped underground for
long times too often to sustain normal diffusion. Slower-than-
normal diffusion is called subdiffusion. Superdiffusion, faster than
normal, is also possible, and has been observed for example in the
transmission of skylight through cloudy atmospheres.
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Anomalous diffusion can also occur in electrical conduction
through disordered metals and semiconductors. At low tempera-
tures quantum mechanics enters as another mechanism by which
the diffusion of electrons can become anomalous. It may slow
down to a complete halt due to destructive interference, while if
the interference is constructive, the opposite effect can happen.

This thesis addresses a variety of systems in which the diffusion
is anomalous, mainly motivated by recent experimental develop-
ments.

In Chapter 2 we look at the consequences that slower-than-
normal diffusion on fractals has for shot noise, the time-dependent
fluctuations of the electric current. Fractals are self-similar geo-
metric objects characterized by a non-integer dimension. (Cloud
patterns are a familiar example of fractals.) Our study is motivated
by the fractals which form from “puddles” of electrons and holes
in graphene, a one-atom thick sheet of carbon.

Faster-than-normal diffusion requires long steps to happen suffi-
ciently more often than in the case of normal diffusion. Recently,
superdiffusion of photons was reported in a medium consisting of
glass spheres with a large range of diameters. Because the arrange-
ment of the spheres is fixed in time, the steps which the photon
makes in the medium are correlated: a long step in one direction is
likely to be followed by another long step in the opposite direction.
To assess the importance of the correlations we examine in Chapter
3 the effects correlations have on superdiffusion in one dimension.
Working in one dimension enhances the correlations (thus provid-
ing a worst-case estimate) and allows an exact solution in closed
form.

Electrons in graphene have the unusual property that they are
massless, and their wave equation is the relativistic Dirac equa-
tion, rather than the nonrelativistic Schrödinger equation. (These
massless electrons are the Dirac fermions from the title.) Quantum
interference in graphene is constructive rather than destructive on
average. As a consequence, while increasing the disorder strength
in normal materials makes it more difficult for electrons to travel, in

116



the case of graphene the opposite effect can occur. In Chapter 4 we
develop and demonstrate the usefulness of a method to simulate
the anomalous diffusion of Dirac fermions in a computer.

The last two chapters of this thesis address other properties of
Dirac fermions, not directly related to anomalous diffusion. These
appear in socalled topological insulators, a novel class of materials
which are insulating in the bulk but can conduct via metallic edge
states. These edge states are unique because spin-up and spin-
down electrons move in opposite directions, regardless of any
obstacles they might find along their way. Chapter 5 proposes and
analyzes a spin precession experiment in topological insulators.
In Chapter 6 we present the mechanism for the conversion of an
ordinary insulator into a topological insulator by disorder. This
conversion was reported in the literature, on the basis of computer
simulations, but had remained unexplained.
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Samenvatting

Stel je voor, een twijfelende wandelaar ergens op een pad, die steeds
maar weer een munt opgooit. Als het resultaat “kruis” is, doet hij
een stap naar voren. Als het resultaat “munt” is, doet hij een stap
naar achteren. Wat is het verband met het (gedurende korte tijd)
opwarmen van een metalen staaf met een aansteker? Zowel de
“dichtheid van de wandelaar” (namelijk, de kans om hem in een
bepaald stuk van het pad aan te treffen), alsook de dichtheid van
warmte in de staaf (bepaald door de temperatuur) breiden zich met
de tijd uit volgens een diffusievergelijking. Deze vergelijking zegt
in essentie dat de uitgebreidheid van het dichtheidsprofiel groeit
met de wortel uit de tijd. In het geval van de wandelaar betekent
dit dat, als hij zich (gemiddeld over vele herhalingen van deze
vermoeiende operatie) 20 meter van zijn startpositie heeft verplaatst
na 15 minuten, we kunnen verwachten dat hij zich gemiddeld 40
meter heeft verplaatst na een uur. Soortgelijke processen komen
veel voor in de natuur, van de verspreiding van verontreinigingen
in een kristal tot de verspreiding van geı̈nfecteerde muskieten.

De wortel-uit-de-tijd wet van diffusie is opvallend universeel, en
toch zijn er gevallen in de natuur waar het toevallig verspreiden
van deze wetmatigheid afwijkt. Zulke diffusie heet anomaal – de
breedte van het dichtheidsprofiel breidt zich in de tijd uit met een
macht die ergens tussen 0 en 1 ligt, verschillend van de macht 1/2
van normale diffusie. Bijvoorbeeld, het is bekend dat verontreini-
gingen in water zich langzamer verspreiden dan het gevolg zou
zijn van normale diffusie. De reden is dat verontreinigingen lange
tijd onder de grond vast kunnen komen te zitten. Diffusie die
langzamer is dan normaal heet subdiffusie. Superdiffusie, sneller
dan normaal, is ook mogelijk, en is bijvoorbeeld waargenomen in
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de voortplanting van hemellicht door een bewolkte atmosfeer.
Anomale diffusie kan ook voorkomen in elektrische geleiding

door wanordelijke metalen en halfgeleiders. Bij lage temperaturen
doet de kwantummechanica haar intrede als een ander mechanisme
waardoor diffusie van elektronen anomaal kan worden. Het kan
vertragen tot een komplete stop ten gevolge van destructieve inter-
ferentie, terwijl constructieve interferentie het tegenovergestelde
kan bewerkstelligen.

Dit proefschrift behandelt een verscheidenheid van systemen
waarin de diffusie anomaal is, vooral gemotiveerd door recente
experimentele ontwikkelingen.

In hoofdstuk 2 onderzoeken we de gevolgen die langzamer-
dan-normale diffusie op fraktalen heeft voor hagelruis, de tijds-
afhankelijke fluctuaties van de elektrische stroom. Fraktalen zijn
geometrische objecten die gekarakteriseerd worden door een niet-
heeltallige dimensie. (Wolkpatronen zijn een vertrouwd voorbeeld
van fraktalen.) Onze studie is gemotiveerd door de fraktalen die
gevormd worden door de gebiedjes van elektronen en gaten in
grafeen, een enkele laag koolstofatomen.

Sneller-dan-normale diffusie vereist lange stappen, met een ho-
gere frequentie dan bij normale diffusie. Recent is superdiffusie
van fotonen gerapporteerd in een medium bestaande uit glazen
bollen met een grote verscheidenheid aan diameters. Omdat de
ordening van de bollen vast ligt in de tijd, zijn de stappen die een
foton maakt door het medium gecorreleerd: een lange stap in de
ene richting wordt waarschijnlijk gevolgd door een lange stap in
de omgekeerde richting. Om het belang van de correlaties te on-
derzoeken bestuderen we in hoofdstuk 3 het effect van correlaties
op superdiffusie in één dimensie. In één dimensie is het effect van
correlaties het sterkst (het is dus een “worst-case” geval), en deze
dimensie heeft het voordeel dat een exacte oplossing kan worden
opgeschreven.

Elektronen in grafeen hebben de ongebruikelijke eigenschap
dat ze massaloos zijn. Hun golfvergelijking is de relativistische
Dirac-vergelijking, in plaats van de niet-relativistische Schrödinger-
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vergelijking. (Deze masssaloze elektronen zijn de Dirac-fermionen
uit de titel.) Kwantum-interferentie in grafeen is constructief in
plaats van destructief, gemiddeld gesproken. Terwijl toename
van de wanorde in gewone materialen het moeilijker maakt voor
elektronen om zich voort te bewegen, gebeurt in grafeen het te-
genovergestelde. In hoofdstuk 4 ontwikkelen en demonstreren we
een methode om de anomale diffusie van Dirac-fermionen op een
computer te simuleren.

De laatste twee hoofdstukken van dit proefschrift behandelen
andere eigenschappen van Dirac-fermionen, niet direct gerelateerd
aan anomale diffusie. Deze treden op in zogenaamde topologische
isolatoren, een nieuwe klasse van materialen die isoleren in het
binnenste maar geleiden via metallische randtoestanden. Deze
randtoestanden zijn uniek omdat spin-op en spin-neer elektronen
in tegenovergestelde richtingen bewegen, ongeacht een obstakel
dat ze op hun weg zouden kunnen vinden. Hoofdstuk 5 stelt
een spin-precessie experiment voor in topologische isolatoren, en
analyseert het. In hoofdstuk 6 presenteren we een mechanisme
om een gewone isolator te converteren in een topologische isolator
door middel van wanorde. Deze conversie was gerapporteerd
in de literatuur, op basis van computersimulaties, maar zonder
verklaring.
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