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1 Introduction

The topic of this thesis originates from quantum optics. The statistics of the
number of photons absorbed by a photodetector in a fixed time interval char-
acterizes the quantum state of the electromagnetic field. For example, Poisson
statistics is the signature of the coherent state emitted by a laser. An analogous
tool in the solid state would be an electron counter. It must be fundamentally
different from a photon counter because electrons cannot be absorbed. This
provides for a rich new topic of research, to which this thesis is a contribution.

The experimental motivation for this research came from studies of current
fluctuations in nanostructures. In macroscopic systems inelastic scattering av-
erages out all non-equilibrium contributions to the fluctuations. Only thermal
fluctuations remain, which contain little information about the system. On the
nanoscale, however, elastic scattering dominates and current fluctuations con-
tain much information that is not present in the mean current. By studying the
statistics of transferred charge we seek to provide a theoretical framework to
extract this information from the measured correlators of current fluctuations.

In this introductory chapter we give some background material. We refer to
Ref. [1] for a brief tutorial and to Ref. [2] for a comprehensive review.

1.1 Current fluctuations

A photodetector (cf. Fig. 1-1) counts the numbern of photons that reach it within
a given time τ by absorbing them. By repeating the experiment many times one
arrives at the counting distribution P(n).

Electrons in an electrical circuit cannot be absorbed. To obtain the distribu-
tion P(Q) of transferred charge Q in a time τ one can use the coupling of the
electrical current I to the electromagnetic field. The magnetic field generated by
I can be detected in a current meter. Alternatively, the voltage drop induced by

source detector

Figure 1-1. Schematic of photodetection.
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I over a resistor can be measured by a voltage meter.
Moments of the transferred charge Q =

∫ τ
0 dt I(t) are related to correlators

of the current by

〈Qn〉 =
〈[∫ τ

0
dt I(t)

]n〉
=

n∏
i=1

∫ τ
0
dt1 · · ·

∫ τ
0
dtn 〈I(t1) · · · I(tn)〉, (1.1.1)

where 〈· · · 〉 denotes a statistical average. This relation can be rewritten in the
frequency domain, as a relation between moments of Q and correlators of the
frequency dependent current I(ω) =

∫
dt eiωtI(t). In the limit of a long detec-

tion time τ and low frequency ω→ 0 the relation takes the simple form

〈〈I(ω1) · · · I(ωn)〉〉 = 2π
τ
δ


 n∑
k=1

ωk


 〈〈Qn〉〉. (1.1.2)

The double brackets 〈〈· · · 〉〉 indicate irreducible moments, or cumulants. For
n = 1,2,3,4 one has

〈〈x1〉〉 = 〈x1〉, 〈〈x1x2〉〉 = 〈δx1δx2〉, 〈〈x1x2x3〉〉 = 〈δx1δx2δx3〉,
〈〈x1x2x3x4〉〉 = 〈δx1δx2δx3δx4〉 − 〈δx1δx2〉〈δx3δx4〉

− 〈δx1δx3〉〈δx2δx4〉 − 〈δx1δx4〉〈δx2δx3〉, (1.1.3)

with δxi = xi − 〈xi〉.
We see that moments of P(Q) can be inferred from a measurement of correl-

ators of current fluctuations. The setup of a typical experiment is shown in Fig.
1-2. A mesoscopic conductor R is connected in series with a macroscopic con-
ductor R0. Current fluctuations δI produced in R induce voltage fluctuations
δV over R0 that are first passed through a band filter, then amplified and de-
tected. The band filter is typically centered at a frequency of order 1 MHz to
eliminate contamination by a high level of background noise. That is mainly due
to randomly moving impurities in the conductor and called 1/f -noise, because
of its characteristic frequency dependence. To relate the measured correlators
to P(Q) one may still use the low frequency formula (1.1.2), provided that the
measurement frequencies ωi are � max(eV/�, kT/�), with V the voltage ap-
plied over the conductor R and T its temperature. (e is the elementary charge, k
Boltzmann’s constant, and � Planck’s constant.)

1.2 Counting statistics

1.2.1 Fermions versus bosons

The counting statistics of non-interacting indistinguishable particles is closely
tied to their quantum statistics. Electrons have as fermions an anti-symmetric



Section 1.2: Counting statistics 9

i0R0R
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coax. cable

amplifier

δV(t)

Figure 1-2. Circuit used in the measurement of the third moment of current fluctuations by

Reulet, Senzier, and Prober [3].

wavefunction and obey the Pauli exclusion principle, that is, every single-particle
quantum state can be occupied by at most one electron. Photons, on the other
hand, have as bosons a symmetric wavefunction and are not subject to such
a restriction. They tend to “bunch” together in the same quantum state. We
begin with an elementary example: The counting statistics for a single source
of particles in thermal equilibrium. For photons this applies to black body ra-
diation. For electrons there is no direct application, because we have not yet
closed the circuit.

The setup is schematically shown in Fig. 1-3. A single-mode waveguide is con-
nected to a large particle reservoir at temperature T . For simplicity we consider
only particles in a narrow energy interval [E, E + δE]. The single propagating
mode in that interval has group velocity v = ∂E/∂�k, with k the longitudinal
wave number. Single-particle states in a waveguide of length L are labeled by
wave numbers spaced by �k = 2π/L. Consequently, N = δE/v��k = δEL/hv
single-particle states in the waveguide take part in the transport.

To obtain the probabilities for n particles to transfer through the waveguide
in a time τ it suffices to calculate the probabilities P(n) of having the wave-
guide occupied with n particles. Since all particles travel at the same velo-
city v this equals the probability that n particles are transferred during a time
τ = L/v = Nh/δE. In other words, N = τδE/h. The restriction to integer N is
not significant if we assume N � 1. The (artificial) length L of the waveguide
drops out of the final answer.
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reservoir

v

...

waveguide

reservoir

v

...

waveguide, length L

bosons:

fermions:

Figure 1-3. Illustration of the difference between fermion and boson counting statistics. A

waveguide, containing N discrete single-particle states in an energy range δE, is populated

by particles from a reservoir at temperature T . Depending on the quantum statistics in-

dividual states can be only singly or also multiply occupied. The upper panel shows the

situation for fermions — every state is at most singly occupied. The bottom panel is for bo-

sons. The particles in the waveguide move with velocity v over a length L in a time τ. Then

N = δEL/hv = τδE/h. The number of transferred particles is distributed according to Eq.

(1.2.1) for fermions and to Eq. (1.2.2) for bosons.
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In thermal equilibrium each particle configuration with n particles at energy
E has weight exp(−nE/kT). It remains to count how many ways there are to
distribute the n particles over the N states of the lead. Fermions occupy every
state at most once and the number of configurations is

(
N
n

)
. We consequently

have

Pfermion(n) ∝
(
τδE/h
n

)
e−nE/kT . (1.2.1)

Bosons, on the other hand, may multiply occupy single states and there are(
N+n−1
n

)
ways to distribute n of them over N states. The probability distribution

then becomes

Pboson(n)∝
(
τδE/h+n− 1

n

)
e−nE/kT . (1.2.2)

This is the statistics of radiation emitted by a black body [4]. It is called the
negative-binomial distribution.

It is often convenient to characterize a probability distribution P(n) through
the generating function F of its cumulants 〈〈nm〉〉,

F(ξ) =
∞∑
m=1

(−iξ)m
m!

〈〈nm〉〉 = ln
∞∑
n=0

P(n)e−iξn. (1.2.3)

The cumulants are generated by differentiation of F ,

〈〈nm〉〉 = im d
m

dξm
F
∣∣∣
ξ=0
, (1.2.4)

and the probability distribution P can be reconstructed from F by Fourier trans-
formation,

P(n) =
∫
dξ exp [inξ +F(ξ)]. (1.2.5)

This generalizes the definition of cumulants given in Eq. (1.1.3) to arbitrary or-
der.

The cumulant generating function corresponding to Pfermion is

Ffermion(ξ) = τ δE2π
ln
[
1+ ffermion(E)

(
e−iξ − 1

)]
, (1.2.6)

with the Fermi-Dirac distribution function ffermion(E) = [exp(E/kT) + 1]−1. The
corresponding result for bosons reads

Fboson(ξ) = −τ δE2π
ln
[
1− fboson(E)

(
e−iξ − 1

)]
, (1.2.7)

with the Bose-Einstein distribution function fboson(E) = [exp(E/kT)− 1]−1.
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eV

E

0

electrons

left
reservoir

right
reservoir

barrier

Figure 1-4. Illustration of electrons tunneling through a barrier between two reservoirs at zero

temperature, with a voltage difference V . The currents due to electron states below the Fermi

energy E = 0 cancel each other pairwise, so they need not be considered.

1.2.2 Electron gas at zero temperature

For the electron counting statistics in a closed electrical circuit we need to con-
sider a second reservoir. This is easiest at zero temperature, as illustrated in
Fig. 1-4. Since all states originating from the reservoirs are either filled or empty
at T = 0, the reservoirs are noiseless. Current fluctuations arise from scattering
events in the conductor that connects the two reservoirs. We assume for simpli-
city that this scattering is described by a single transmission probability Γ , in an
energy interval δE = eV above the Fermi level. Particle transfer is in this case a
Bernoulli process [5]: N = τeV/h particles try to pass the barrier independently
of each other in a time τ and each of them succeeds with probability Γ . The
number n of transmitted particles for a given number of trials N has binomial
statistics, with distribution

Pbinomial(n) =
(
N
n

)
Γn(1− Γ)N−n. (1.2.8)

The cumulant generating function is

Fbinomial(ξ) = N ln
[
1+ Γ

(
e−iξ − 1

)]
. (1.2.9)

The first few cumulants are

〈〈n2〉〉 = NΓ(1− Γ) (1.2.10)

〈〈n3〉〉 = NΓ(1− Γ)(1− 2Γ). (1.2.11)

If the transmission probability Γ is � 1, the transfer of a particle through
the barrier is a rare event. In this limit the quantum statistics of the particles is
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irrelevant and the counting statistics follows the Poisson distribution,

PPoisson(n) = 〈n〉
n

n!
e−〈n〉, (1.2.12)

where 〈n〉 = NΓ = τeV Γ/h is the mean number of transferred particles. The
Poisson distribution has the cumulant generating function

FPoisson(ξ) = 〈n〉
(
e−iξ − 1

)
, (1.2.13)

with all cumulants equal to 〈n〉.
All these distributions tend to a Gaussian distribution in the limit N → ∞,

as a consequence of the central limit theorem. Since a Gaussian has a quadratic
cumulant generating function, all cumulants higher than the second are sup-
pressed in this limit. This makes the measurement of higher order cumulants
difficult. For example, the ratio 〈〈n3〉〉1/3/〈〈n2〉〉1/2 vanishes as N−1/6 for large
N. Nevertheless, it is possible to extract higher order cumulants from measure-
ments of current fluctuations, as demonstrated by a recent experiment [3].

1.2.3 Electron gas at finite temperature

At a finite temperature of the electron reservoirs the statistics of charge trans-
fer through the conductor depicted in Fig. 1-4 is more complicated. Current
fluctuations originating from both reservoirs are mixed by the scattering at the
barrier.

The statistics simplifies, however, if the transmission probability Γ through
the barrier is � 1. This is typical for a tunnel junction. At zero temperature
the statistics of charge transfer is then Poissonian, cf. Eq. (1.2.12). At finite
temperature electron states on both sides of the barrier can be partially filled
and the charge transfer consists of two independent Poisson processes [6]. One
of them transfers electrons from the left side of the tunnel junction to the right
side with rate rL→R, and the other one from right to left with rate rR→L. The
statistics of transferred charge Q = en has in this case the cumulant generating
function

Ftunnel(ξ) = τ
[
rL→R(e−ieξ − 1)+ rR→L(eieξ − 1)

]
. (1.2.14)

The rates are given by

rL→R = Γ eVh
1

1− exp(−eV/kT), rR→L = e
−eV/kTrL→R. (1.2.15)

From Eq. (1.2.14) we obtain the cumulants of charge transfer,

〈〈Q2n〉〉 = τe2n[rL→R + rR→L], (1.2.16)

〈〈Q2n+1〉〉 = τe2n+1[rL→R − rR→L]. (1.2.17)
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At zero temperature rR→L vanishes and we have the result 〈〈Q2〉〉 = e〈Q〉 for
the second cumulant. At finite temperature 〈〈Q2〉〉 > e〈Q〉, because of thermal
noise. The zero temperature contribution is known as “shot noise”, because it
is entirely due to the discreteness of the electron charge. Its experimental sig-
nature is the linear dependence on the applied voltage V . It dominates thermal
noise if eV � kT . Shot noise was first studied in 1918 by Schottky [7], who pro-
posed to measure the elementary charge from the ratio of the second moment
to the mean current. The same idea was used 70 years later [8] in the quantum
Hall effect, to measure the fractional charge of the tunneling particles (there e
is replaced by an effective e∗). Levitov and Reznikov [6] proposed to use the
third cumulant for a charge measurement at high temperature. According to Eq.
(1.2.17), 〈〈Q3〉〉 = e∗2〈Q〉 regardless of the temperature of the conductor.

1.2.4 Multichannel generalization

So far we have assumed for simplicity that there is only a single transmission
probability Γ . More generally, one has M transmission channels in the energy
range δE, each with a different transmission probability Γk, k = 1,2, · · ·M .
These numbers are defined as the eigenvalues of the transmission matrix product
tt†.

The multi-channel generalization of the binomial distribution of charge trans-
fer at zero temperature is a multinomial distribution. It has the cumulant gen-
erating function

Ffermion(ξ) = eVτh
M∑
k=1

ln
[
1+ Γk

(
e−ieξ − 1

)]
, (1.2.18)

which reduces to Eq. (1.2.9) for M = 1. For later reference we also give the full
finite-temperature result of Levitov and Lesovik [5],

F(ξ) = τ
∫
dε
h

M∑
k=1

ln
{
1+ Γk

[
(e−ieξ − 1)fL(1− fR)+ (eieξ − 1)fR(1− fL)

]}
,

(1.2.19)
with the electron distribution functions fL(ε) = [e(ε−eV)/kT + 1]−1 and fR(ε) =
(eε/kT + 1)−1 in the left and the right reservoirs. In the tunneling limit Γk � 1
this reduces to the bi-directional Poisson distribution of Sec. 1.2.3.

1.3 Microscopic theory

In this section we outline how the results obtained in the previous section from
intuitive physical arguments and combinatorics can be derived more rigorously.
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C

Figure 1-5. Simple model of an electron counter. The magnetic moment �m precesses in the

field �B produced by the current I through a nearby conductor. The total precession angle after

a time τ is a direct measure for the number of electrons that have passed �m during τ. This

model was analysed in Ref. [5].

The first attempt in the literature [9] to evaluate the counting statistics of elec-
trons flowing through a mesoscopic conductor was a straight forward calcula-

tion of expectation values
〈[∫ τ

0 dt I(t)
]m�

. However, for m > 2 this leads to

unphysical results. The electron counting statistics obtained in this way for
a conductor of non-interacting electrons suggests that the charge transfer in-
volves carriers with a fraction of the electron charge.

The underlying problem was identified and solved in Ref. [5]. There the cor-
rect statistics was found by analyzing a simple model of a current meter, the
magnetic moment of a spin-1/2 (cf. Fig. 1-5). See Fig. 1-5. The model has been
reviewed in Ref. [10]. Here we follow an alternative route [11] to find the proper
expression for the charge transfer statistics.

For this we study the statistics of charge Q on one side of the cross-section
C (at x = 0) of a conductor through which the charge transfer takes place, see
Fig. 1-6. If Q is known at time 0, the statistics of Q(τ) at time τ corresponds to
the statistics of the charge Q that has traversed C in the time interval [0, τ].

The operator of electric charge to the right of the cross-section C is Q =
eθ(x), with θ(x) = 1 for x > 0 and θ(x) = 0 for x ≤ 0. . The generating
function of cumulants of Q(τ) reads

Fc(ξ) =
∞∑
m=1

(−iξ)m
m!

〈〈Qm(τ)〉〉 = ln
〈
e−iξQ(τ)

〉
= ln

〈
eiHτe−iξQe−iHτ

〉
. (1.3.1)

Here H is the Hamiltonian of the conductor and the average is taken over the



16 Chapter 1: Introduction

C Q

x<0 x>0

Figure 1-6. The amount of chargeQ to the right of the cross-section C is related to the number

of electrons that is transferred through C. The generating function of Q is given by Eq. (1.3.6),

in agreement with Ref. [5].

initial density matrix of the conductor. For ease of notation we set � = 1 from
now on.

Using the identity

eiξQ/2eAe−iξQ/2 = exp(eiξQ/2Ae−iξQ/2), (1.3.2)

we rewrite Eq. (1.3.1) as

F(ξ) = ln
〈
e−iξQ/2 exp

(
ieiξQ/2He−iξQ/2τ

)
× exp

(
−ie−iξQ/2HeiξQ/2τ

)
e−iξQ/2

〉
. (1.3.3)

The charge operator Q commutes with all position operators x contained in the
Hamiltonian H = H(p, x). It does not, however, commute with the momentum
operators p. As a consequence, momentum operators are transformed as

p→ e−iξQ/2peiξQ/2 = p− e
2
ξ∇θ(x) ≡ pξ. (1.3.4)

The term e
2ξ∇θ(x) plays the role of a fictitious vector potential. We define a

new Hamiltonian Hξ = H(pξ,x). The cumulant generating function then takes
the form

F(ξ) = ln
〈
e−iξQ/2eiH−ξτe−iHξτe−iξQ/2

〉
. (1.3.5)

If the initial state of the conductor is an eigenstate of charge with eigenvalue
Q0, the two factors e−iξQ/2 in Eq. (1.3.6) merely account for the initial chargeQ0.
The generating function then becomes

F(ξ) = ln
〈
eiH−ξτe−iHξτ

〉
− iξQ0, (1.3.6)
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in agreement with Ref. [5].
In the semiclassical approximation to the kinetic energy of the electrons one

may expand Hξ = H + ξI/2+O(ξ2). The counting variable ξ couples to the cur-
rent I through the conductor. Eq. (1.3.6) may then be rewritten as an expectation
value of time-ordered exponentials,

F(ξ) = ln
〈←−
T e−i

∫
dt ξI(t)/2 −→T e−i

∫
dt ξI(t)/2

〉
, (1.3.7)

where we have used the identity

e−i(H+ξI/2)t = e−iHt −→T exp

[
−iξ

∫ t
0
dt′ I(t′)/2

]
, (1.3.8)

with I(t) = eiHtIe−iHt. The symbols (
←−
T )
−→
T denote (inverse) time ordering. In this

form of F it is explicit that moments of the transferred charge Q are indeed
given by averages over powers of

∫ τ
0 dt I(t) as one would immediately guess. In

contrast to what might be the first guess, however, the current operators I(t) in
such powers have to be time-ordered as in Eq. (1.3.7). This time ordering cures
the spurious fractional charges found in Ref. [9]. The charge transfer statistics
(1.3.7) evaluated for a normal metal mesoscopic conductor takes the form of Eq.
(1.2.19) [5] with all the special cases that we have found from intuitive arguments
before.

1.4 Keldysh formulation of counting statistics

Starting with the seminal paper of Levitov and Lesovik [5] a variety of techniques
have been developed over the years to calculate the charge transfer statistics
(1.3.6). In Refs. [12,13] a cascaded Langevin approach to higher order moments
of current fluctuations in diffusive wires and chaotic cavities has been proposed.
A semiclassical theory of counting statistics has been put forward in Ref. [14],
based on a stochastic path integral. In this thesis we predominantly employ the
Keldysh approach to counting statistics due to Nazarov [15].

The generating function F of the statistics of charge transfer Eq. (1.3.6) has
the form of a Keldysh partition function. It contains one time development
exponential that propagates the system forward in time and one that evolves
backwards. This is particularly evident in the form of Eq. (1.3.7). In the ana-
logous Keldysh partition function the two time evolution operators in Eq. (1.3.7)
correspond to the forward and the backward part of the Keldysh time contour
cK (see Fig. 1-7). Based on this formal analogy Nazarov proposed to evaluate F
with an extension of the Keldysh Green function technique [15]. (A general re-
view of the Keldysh Green function technique can be found in [16].) In chapters
2 and 3 we develop a path integral representation of the statistics of various
observables in electrical circuits. Dealing with a system that is brought out of
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Figure 1-7. Keldysh time contour cK on the time interval [0, τ]. In a Keldysh path integral

fields on the two parts of the contour, here φ+ and φ−, propagate the system forward and

backward in time respectively.

thermal equilibrium (usually by an applied voltage) we employ also for this the
Keldysh approach. The resulting Keldysh path integral is taken over two sets of
integration fields, one responsible for the propagation of the system forward in
time and one for backward propagation. An introductory text on this topic can
be found in [17]. Also in our path integral approach objects very similar to the
F of Eq. (1.3.7) play a central role. For this reason we outline in this section how
we evaluate them using the Green function approach of Ref. [15].

In this approach, we treat phase-coherent conductors, characterized by a
scattering matrix S. We take S to be energy independent. This is justified for
energies (voltages) smaller than the Thouless energy, which is the inverse dwell
time of electrons in the conductor [18]. The scattering region is connected to
two reservoirs that contain electrons in local thermal equilibrium. We assume
the electrons to be non-interacting.

The source ξ enters the Hamiltonian Hξ as the fictitious vector potential
introduced in Eq. (1.3.4). We choose this coupling here in a slightly more general
form,

Hξ = H[p − eAξ(x)], Aξ(x) = 1
2

e||a(x)ξ. (1.4.1)

The vector potential Aξ with the normalization
∫
dx a(x) = 1, points along the

direction of current flow e|| and depends only on the coordinate along the con-
ductor x. It is chosen a pure gauge. For a time-dependent ξ(t) it introduces,
however, an additional voltage V(t) over the conductor. The corresponding
phase φ(t) =

∫ t dt′ V(t′) is φ(t) =
∫
dx e||Aξ(x, t) = ξ(t)/2.

To expressF in terms of Keldysh Green functions we collect the time ordered
and the anti-time ordered exponential in Eq. (1.3.7) into one contour ordered
exponential along a contour cK that is the usual Keldysh contour restricted to a
finite time interval [0, τ] (see Fig. 1-7).

We write the many-electron states of the system in second quantized form,
defining one electron field operator per transport channel m, direction of mo-
tion σ ∈ {−1,1} (left (−) or right (+)), and time direction on the Keldysh contour
γ ∈ {+,−} (forward contour (+) and backward contour (−)). We collect those
fields into a vector φγm,σ (x). The vector ψγm,σ (x) = exp(−iσkmx)φγm,σ (x) is its
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semiclassical counterpart, km being the Fermi wavevector of the m-th channel.
With this notation we have

F(ξ) = ln
〈T±Uξ〉 , Uξ = e−i ∫ τ0 dt ∫ dxψ†(x,t)τ̃3H̃ξψ(x,t) (1.4.2)

with the Hamiltonian

H̃ξ = −iṽ∂x + eξṽτ̃3a(x)+ Ṽ (x). (1.4.3)

The notation T± denotes the Keldysh time ordering: operators with Keldysh
index − stand to the left of +-operators, earlier −-operators to the left of later
ones, earlier +-operators to the right of later +-operators. Matrices in the product
space of mode, direction and Keldysh space are denoted by a tilde, for example
H̃. We have applied the semiclassical approximation to the kinetic energy of the
electrons. The matrix τ̃3 acts as the third Pauli matrix in the Keldysh space. We
have further defined the matrix ṽmσ,nσ ′ = σvmδm,nδσ,σ ′ of the Fermi velocity
vm in the m-th channel. The potential Ṽ represents the scattering potential for
electrons inside the conductor. The matrix τ̃3 that multiplies Hξ in Eq. (1.4.2)
accounts for the sign difference between the exponents of the two time devel-
opment operators in Eq. (1.3.7). The τ̃3 in the source term of Eq. (1.4.3) appears
because the sign of the source ξ differs for forward and backward propagation.
Differentiating both sides of Eq. (1.4.2) with respect to ξ,

d
dξ
F(ξ) = −i

〈
T±

∫ τ
0 dt

∫
dx ea(x)ψ†(x, t)ṽψ(x, t)Uξ

〉
〈T±Uξ〉 , (1.4.4)

we relate F to the semiclassical Keldysh Green function

G̃γγ
′

ξmσnσ ′(x, t;x
′, t′) = −iγ

〈
T±ψγmσ (x, t)ψγ

′†
nσ ′(x′, t′)Uξ

〉
〈T±Uξ〉 . (1.4.5)

The matrix G̃ξ is related to the exact Green function G̃γγ′ξmσnσ ′(x, t;x
′, t′) as

G̃γγ′ξmσnσ ′(x, x
′) =

∑
σ,σ ′=±1

e−iσkmx+iσ
′knx′G̃γγ

′
ξmσnσ ′(x, x

′). (1.4.6)

Eqs. (1.4.4) together with (1.4.5) imply that

∂
∂ξ
F = e

∫ τ
0
dt
∫
dx a(x)Tr τ̃3ṽG̃ξ(x, t;x, t). (1.4.7)

The trace in Eq. (1.4.7) is taken over mode, direction, and Keldysh indices. The
problem is therefore reduced to computing an electron Green function G̃ξ in the
presence of the source field ξ.

We evaluate G̃ξ by solving its equation of motion. It turns out that G̃ξ(x, x′)
is determined by the condition that it does not grow exponentially with respect
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to its relative coordinate x − x′ inside the reservoirs. In the calculation that
proceeds very closely along the lines of [19] we assume that the mechanism
that isotropizes the direction of motion of the electrons inside the reservoirs
is scattering from point defects. The matrix G̃ξ turns out to depend on the
semiclassical Green functions GR and GL of the electrons in the two reservoirs
to the right and to the left of the conductor,

GL =

 1− 2fL(ωk) 2fL(ωk)

2[1− fL(ωk)] 2fL(ωk)− 1


 , (1.4.8)

and correspondingly GR. The functions fL and fR are the energy dependent oc-
cupation numbers of electron states in the two reservoirs. The two matrices GR
and GL enter the expression through the self-energy of the impurity scattering
process. Integrating Eq. (1.4.7) with the resulting Gξ one finds that

F(ξ) = 1
2

∑
k

Tr ln
[

1+ 1
4
Γk
({
G̃L, GR

}
− 2

)]
. (1.4.9)

The trace is taken over Keldysh indices, {, } denotes the anti-commutator, and
the Green function of the left reservoir is rotated,

G̃L = e−ieξτ3/2GLeieξτ3/2. (1.4.10)

After having performed the trace one ends up with Eq. (1.2.19).
The generating functional for finite frequency current correlators

Zcon[φ+,φ−] =
〈←−
T ei

∫
dt φ−(t)I(t) −→T e−i

∫
dt φ+(t)I(t)

〉
(1.4.11)

can be derived along the same lines with a time-dependent vector potential
A±(x, t) = e||a(x)φ±(t) instead of the Aξ of Eq. (1.4.1). It can be again cast
in the form of Eq. (1.4.9). The trace, however, includes then also frequency in-
dices and the rotated Green function G̃L reads

G̃L(t, t′) =

 e−ieφ+(t) 0

0 e−ieφ−(t)


GL(t − t′)


 eieφ+(t′) 0

0 eieφ−(t′)


 (1.4.12)

in the time domain. The functional (1.4.11) is what enters the path integral
formulation of counting statistics that we develop in chapters 2 and 3.

1.5 This thesis

1.5.1 Chapter 2: Counting statistics of a general observable

In Ref. [20] the charge transfer statistics (1.3.6) has been evaluated for a Joseph-
son junction between two superconductors. The corresponding probability dis-
tribution turned out to be negative for certain values of the transmitted charge
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Q. The reason for this is that in Ref. [20] the Josephson junction has been as-
sumed to be in a phase eigenstate. The step from Eq. (1.3.5) to Eq. (1.3.6) in our
derivation of the counting statistics formula is then unjustified.

In the original derivation of Eq. (1.3.6) of Ref. [5] a quasi-classical assumption
has been made. By the paradoxical result of the “negative probabilities” one is
led to believe that this assumption breaks down for superconductors. In chapter
2 we confirm this by studying a model of a charge detector that does not rely on
quasi-classical assumptions.

We analyze the process of current measurement with a linear detector. The
electrons in a conductor couple to their environment, including any current de-
tector, only by the electromagnetic interaction. The current through an electrical
conductor couples in the low frequency regime to the phase φ(t) =

∫ t dt′ V(t′),
where V is the voltage drop over the conductor. It is related to the vector po-
tential A inside the conductor through an integral φ = ∫

Ldl A(l) along a line L
through the conductor. We choose this coupling field to be a part of the current
detector. The Hamiltonian of the problem reads then

H = Hconductor +φI +Hdetector, (1.5.1)

with the operator φ corresponding to the phase φ(t). A simple example of a
current detector is a capacitor that stores the charge flowing through the con-
ductor. It has Hamiltonian Hdetector = Q2/2C. The charge Q on the capacitor is
the variable conjugated to φ, with commutation relation [Q,φ] = i� [21]. The
equation of motion Q̇(t) = i[H,Q(t)]/� = I(t), written in the Heisenberg pic-
ture, confirms that Q is a direct measure for the charge transfer Q =

∫ τ
0 dt I(t)

through the conductor. This is the detection model we analyze in chapter 2.
The detector influences the conductor by the coupling term φI in Eq. (1.5.1).

One would like to achieve that φ = 0 to minimize this influence. As a con-
sequence of the Heisenberg uncertainty principle, this is impossible, however,
without loosing all information about the detector variable Q that one wants to
measure. This charge-phase duality turns out to be the clue to understand the
“negative probabilities”. An analysis of the detector influence on the conductor
is therefore a central part of chapter 2.

This detector influence is treated in a path integral formulation. We employ a
formalism pioneered by Feynman and Vernon [22] to express the time evolution
of the conductor coupled to a detector as a path integral over detector degrees
of freedom. The dynamics of the conductor enters the path integral in the form
of a so-called “influence functional”. In this formalism the final detector density
matrix ρf at time τ is related to the initial density matrix ρin at time 0 by the
path integral

ρf (φ+,φ−) =
∫
D[φ+]
φ+(τ)=φ+,

D[φ−]
φ−(τ)=φ−

e−iSdet[φ+,φ−]Zcon[φ+,φ−] ρin[φ+(0),φ−(0)],

(1.5.2)
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with detector action

Sdet[φ+,φ−] = −
∫ τ

0
dt
C
2

[
(φ̇+)2 − (φ̇−)2]. (1.5.3)

The influence functional Zcon of the conductor is given in Eq. (1.4.11). Eq. (1.5.2)
has the structure of a Keldysh path integral. The integration over φ+ propagates
the detector forward in time, while that over φ− is responsible for the backward
propagation (see Fig. 1-7).

The fluctuating phase in Eq. (1.5.2) influences the electrons in the conductor.
In the limit of a static detector, C →∞, the phase undergoes no time-dependent
fluctuations and only the initial phase uncertainty of the detector remains. In
this limit the influence functional Zcon is a generalization of the generating func-
tion (1.3.7) to two arguments φ+ and φ−. We identify a quasi-classical limit in
which Zcon reduces to F and is associated with a positive probability distribu-
tion. We suggest schemes that allow to access Zcon experimentally in the general
case when no correspondence to a probability distribution exists. All of this ana-
lysis is done for the measurement of time integrals of an arbitrary observable A,
with A = I as a special case.

1.5.2 Chapter 3: Counting statistics in electrical circuits

The detection model that we employ in chapter 2 is not yet realistic. The device
that we describe with the path integral (1.5.2), a capacitor in series with the
conductor, is not of great practical use as a current meter. Any capacitor with
a finite capacitance develops a counter voltage in response to the charge stored
on it and one would not be able to measure current flow in a steady state of
the conductor. We therefore improve on this detection model in chapter 3, such
that it allows us to describe an arbitrary linear detector.

A linear system has a quadratic Hamiltonian that can be diagonalized. Any
linear device is therefore represented by a set of non-interacting bosons. Caldeira
and Leggett [23] showed that such systems may be efficiently described through
a path integral that is formulated in terms of relevant degrees of freedom only.
Having a Gaussian action, all degrees of freedom that do not interact with the
outside world can be integrated over easily. The procedure is applicable to many
macroscopic systems. Due to the large number of degrees of freedom that are
involved in their dynamics, each one of them typically needs to be displaced
only infinitesimally in order to accomplish a macroscopic displacement of the
entire system. The equations of motion of all the constituent degrees of free-
dom may therefore often safely be linearized. Taking our current detector to
be macroscopic and assuming that it obeys linear equations of motion we can
accordingly still express the dynamics of the conductor coupled to the detector
as a path integral of the form (1.5.2). The relevant detector degree of freedom
for which we formulate the path integral is again the phase that couples the
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Figure 1-8. Electric circuit studied in chapter 3. The conductor G has a series impedance Z,

its “electromagnetic environment”. A current or a voltage meter is part of the electromagnetic

environment.

detector to the current through the conductor. The effective detector action
that one finds after integrating out all internal degrees of freedom depends only
on the classical response functions (impedance matrix) of the detector and its
temperature.

So far we have been referring to everything outside the conductor as “the
detector”. In reality, the environment to a conductor consists of an electrical
circuit around it, equivalent to a series impedance (see Fig. 1-8). What one would
really call the detector is just a part of this electromagnetic environment. It
still holds true, however, that the electrons in the conductor couple to the out-
side world only through the electromagnetic interaction. At low frequencies, the
coupling of the conductor to the electromagnetic field is well approximated by
the interaction term φI. Provided the environment to the conductor is macro-
scopic and linear we can therefore describe also the series circuit of Fig. 1-8 by
the path integral (1.5.2). (The linearity of the environment manifests itself by a
linear current-voltage characteristic and by current and voltage fluctuations that
are Gaussian and independent of the voltage applied to the circuit. The envir-
onment does not produce shot noise, but only thermal noise.) The generating
function Z(ξ) of moments of the measured quantity is obtained from the dens-
ity matrix at the time of observation ρf of Eq. (1.5.2). Evaluated for a thermal
initial state ρin it takes the form

Z(ξ) =
∫
D �φe−iSe[ξ, �φ] Zcon[ �φ], (1.5.4)

with an action Se that depends on the impedance of the electromagnetic en-
vironment and its temperature. Here we have collected the phases on the two
branches of the Keldysh contour into a vector �φ = (φ+,φ−).

The static detector of the previous section influenced the measured con-
ductor in a subtle quantum mechanical way by a vector potential that was a
pure gauge. In the infinite capacitance limit there is no classical back action of a
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capacitor in series with the conductor. A dynamical detector, or, equivalently, a
general series impedance, produces a time-dependent vector potential that has a
voltage V = φ̇ associated with it. By this voltage the detector has a robust, clas-
sical back action on the conductor. We study the effect of this back action on the
statistics of charge transfer through the conductor. In other words, we assess
with our approach the effect on the statistics of current flow of interactions of
electrons inside the conductor with electrons in its environment. The environ-
ment electrons create an effective electric field for the conductor electrons that
we account for by the additional voltage V = φ̇ over the conductor.

Ohm’s law states that a macroscopic resistor with impedance Z in series with
a conductor of conductance G reduces the mean current through the conductor
by a factor of (1+ ZG)−1. One might surmise that this rescaling carries over to
current fluctuations, such that the correlator 〈δIn〉 would be reduced by a factor
(1 + ZG)−n. This is indeed true for the variance, n = 2. We find, however, that
it is not valid for n > 2. Lower order cumulants mix in because the effect of the
feedback of the series impedance is nonlinear. We explore the consequences of
this nonlinear feedback in chapters 4 (at zero temperature) and 5 (at nonzero
temperature).

In chapters 3, 4, and 5 we analyze Eq. (1.5.4) in saddle point approximation.
The procedure is justified if the impedance of the circuit at the characteristic
frequency Ω of charge transfer through the conductor is small compared to
h/e2, which is the case in many experiments. For kT <∼ eV the scale Ω is set by
the smallest of Ī/e and eV/h.

1.5.3 Chapter 4: Charge versus phase statistics

A conductor is current biased when the current flowing through it is not allowed
to fluctuate. Experimentally a current source is implemented by a voltage source
in series with a resistor that has much larger resistance than the conductor to
be biased. The magnitude of the current through the conductor is then dictated
by the macroscopic resistor of the current source and does not fluctuate. A
conductor under current bias corresponds therefore to the circuit in Fig. 1-8 in
the limit of a large series impedance Z. We can describe it by the path integral
(1.5.4) in the limit of Z →∞.

As a result of the nonlinear feedback of the series impedance discussed in
chapter 3, the statistics of fluctuations under current bias is fundamentally dif-
ferent from that under voltage bias. We find that the statistics of phase incre-
ments φ =

∫ τ
0 dt V(t) in a conductor under current bias I0 obeys the Pascal-

distribution

PPascal(N′) =
(
N′ − 1
n′ − 1

)
Γn

′
(1− Γ)N′−n′ , (1.5.5)

with N′ = eφ/h and n′ = I0τ/e. The Pascal distribution of voltage fluctuations
under current bias is to be contrasted with the binomial distribution (1.2.8) of
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Figure 1-9. Measurement of the third moment of voltage fluctuations over a tunnel contact

by Reulet, Senzier, and Prober [3]. Voltage fluctuations over a tunnel junction of resistance

R = 87Ω were measured with an amplifier of input impedance R0 = 42Ω, that constitutes

the main part of the electromagnetic environment to the junction. The temperature T of the

sample was 4.2 K and the effective amplifier temperature T0 seen by the sample 12.3 K. The

experimental curve (solid) is quantitatively fitted by our theoretical prediction (dashed curve).

The short-dashed line is the result without feedback from the environment (“Votage bias”).

charge fluctuations under voltage bias. It has the following intuitive interpreta-
tion.

As explained in section 1.3, charge transfer at zero temperature under voltage
bias V0 represents a Bernoulli process with N = eV0τ/h attempted transfers and
individual success probability Γ . The binomial distribution (1.2.8) gives then the
probabilities to have n successful attempts in this process. Under current bias
the dynamics of the process is changed by the series impedance Z. The number
n′ of electrons that are transferred in the detection time is fixed to n′ = I0τ/e.
For this to be achieved, Z regulates the voltage V over the conductor, such that
the number of attempted transfers N′ may fluctuate. This physical picture har-
monizes with the statistical interpretation of the Pascal distribution as giving
probabilities of the number of attempts N′ that are needed to achieve I0τ/e
successes in a Bernoulli experiment.

1.5.4 Chapter 5: Temperature dependence

The second moment (1.2.10) of the shot noise at a tunnel barrier becomes un-
observable on the background of thermal current noise for kT >∼ eV . This makes
experiments difficult, since high voltages tend to heat up the conductor. To cir-
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cumvent this problem, Levitov and Reznikov [6] suggested instead to measure
the third cumulant. As shown in Eq. (1.2.17), odd-order cumulants in a tun-
nel junction are strictly proportional to the applied voltage V , regardless of the
temperature of the conductor.

The first experiment to test this theoretical prediction gave a completely dif-
ferent picture, as shown in Fig. 1-9. The third cumulant of voltage fluctuations
over a tunnel junction is not a linear function of V . Even the sign is different
from the prediction. In chapter 5 we explain the experiment by including the
feedback effect of the environment. This could be done directly from the path
integral method of chapter 3, but as an alternative we present in chapter 5 a
technically simpler Langevin approach that yields the same result. A detailed
comparison of our theory with the experimental data has been carried out by
the authors of Ref. [3]. As shown in Fig. 1-9, there is good agreement between
theory and experiment.

1.5.5 Chapter 6: Interaction effects

The path integral (1.5.4) accounts for the interaction of electrons in a nanoscale
conductor with those in a macroscopic series resistor Z (cf. Fig. 1-8). In chapters
3, 4, and 5 we have been solving it in saddle point approximation. This ap-
proximation breaks down when the impedance at the characteristic frequency
scale Ω for charge transfer through the conductor is not small, Z(Ω) >∼ h/e2,
Ω = min(eV/h, Ī/e). In this regime the impedance can react fast enough to af-
fect the dynamics of the transfer of a single electron. This phenomenon is called
the “environmental Coulomb blockade”, the resulting corrections to quantities
evaluated at the saddle point “fluctuation” or “quantum” corrections [21,24].

An impedance falls off at high frequencies. We denote by Λ the frequency
scale where Z has dropped below h/e2. Quantum corrections are then negli-
gible at sufficiently high voltages, where eV > Λ, while they become important
for a small bias voltage V and temperature T , where kT � eV � Λ. As a con-
sequence mesoscopic conductors exhibit a “zero bias anomaly”. The current at
bias voltages that are low enough for quantum corrections to be important no
longer increases linearly with V . For a tunnel junction with a macroscopic series
resistor Z the current at low voltage follows the power law [24],

I(eV) ∝ (eV/Λ)2z+1 for z < 1. (1.5.6)

Here it is assumed that the impedance z = Z(ω)e2/h is constant up to the
cut-off Λ� eV .

In our path integral approach the physics of the zero-bias anomaly is de-
scribed by time-dependent fluctuations around the saddle point. To treat them
we need the influence functional Zcon at finite frequencies. We evaluate it as
outlined in section 1.4, with the result (1.4.9). Using a perturbative renormal-
ization group analysis of Eq. (1.5.4), we then quantify the zero bias anomaly of
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Figure 1-10. Freely suspended wire fabricated by M. L. Roukes.

the counting statistics of charge transfer. We find the fluctuation corrections to
this statistics for arbitrary nanoscale conductors with a series resistor of not too
large impedance Z. We find that a power law current-voltage characteristic like
Eq. (1.5.6) emerges at small voltages not only for a tunnel barrier, but generic-
ally for mesoscopic conductors. The scaling behaviour at small applied voltage
divides such conductors into two broad classes. For a first class of conductors
I(eV) scales like the current through a tunnel barrier, according to Eq. (1.5.6). A
second class of conductors, including two tunnel barriers in series and diffusive
conductors, exhibits scaling with the exponent z + 1 instead of 2z + 1.

1.5.6 Chapter 7: Momentum transfer statistics

In chapter 7 of this thesis we study a mechanical aspect of charge transport
through nanowires. An active line of research in the field of nanomechanics
is the fabrication of very small mechanical oscillators that have high vibration
frequencies. It is the aim to study such mechanical degrees of freedom at their
quantum limit. These oscillators not only have high resonance frequencies, they
are also very light. For this reason they are sensitive force detectors. A common
design for such oscillators is a free-standing bridge between two solid metal
banks [25], cf. Fig. 1-10. The bridge constitutes a freely suspended nanowire and
one can drive electrical currents through it. We address the question whether
and how strongly the electrons that flow then through the oscillator and exert
forces on it can excite vibrations. This has been studied before for a diffusive
wire using a Boltzmann equation approach [26]. In chapter 7 we treat phase-
coherent conductors in a quantum mechanical framework. We compute the
probability distribution of displacements of the wire in response to an applied
voltage.

The effect is naturally small due to the small ratio of the electron mass to the
mass of the oscillator. Still, the result is, that at sufficiently (and experimentally
achievably) low temperatures, the vibration induced by the current flow domin-



28 Chapter 1: Introduction

ates the thermal background excitation. The non-Gaussian character of the dis-
placement distribution induced by this mechanism distinguishes it additionally
from thermal motion. The sensitivity of present day position detectors should
be high enough to observe the effect.

1.5.7 Chapter 8: Optical analogy

In the last chapter of the thesis we close the circle and turn back to the count-
ing statistics of photons. We compare it with the statistics of a comparable
electronic system. We focus on chaotic radiation with a high filling factor f of
modes. (The term ”chaotic”means that there is no phase coherence between dif-
ferent photons such as in the light emitted by a laser.) The wave character of
the light then becomes apparent and deviations from the electronic behaviour
are to be expected. We propose one specific experiment in which the signature
of the quantum statistics should be particularly pronounced. In that experiment
light should first be passed through one barrier with a very small transmission
probability Γ � 1. The measured probability distribution of photocounts should
then be compared with the situation of two such barriers after one another. For
the single barrier the photon noise is comparable to the mean number of trans-
ferred photons, as is to be expected for a Poisson process. In the two barrier
system, resonances are formed. As a result, there are some modes k for which
the probabilities of photon transfer are high, Γk � 1. The prediction is then, that
the variance of the photon count is not of the order of its mean anymore. In-
stead, it is enhanced by a factor proportional to the filling factor f of the modes.
In the wave regime f � 1 the photon noise in the two barrier system is there-
fore much larger than that in the situation with a single barrier, although the
mean photo-count in both situations is comparable. No such effect exists for
electrons, since then f ≤ 1.
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2 Full counting statistics of a general
quantum mechanical variable

2.1 Introduction

The measurement paradigm in quantum mechanics assumes that a measure-
ment is done instantly. [1] This is to be contrasted with a realistic measurement
of, say, electric current, where the result of measurement is averaged over a
sufficiently long time interval. If one intends to measure a variable A, the in-
dividual measurement gives

∫ τ
0 A(t)dt/τ. The reason for this is obvious: any

measurement has to be accurate. The integration over time averages over in-
stant fluctuations of A(t) resulting in a more accurate outcome of an individual
measurement of this sort. The dispersion of the probability distribution of the
outcomes is supposed to vanish in the limit of τ → ∞. In this chapter we focus
on the problems related to the determination of this probability distribution, the
statistics of the measurement results.

Several years ago Levitov and Lesovik [2–4] have made a significant step in
the understanding of this fundamental issue. They have introduced the concept
of full counting statistics (FCS) of electric current and have found this statistics
for the generic case of a one-mode mesoscopic conductor. The word ”count-
ing”reflects the discreteness of the electric charge. If electrons were classical
particles, one could just count electrons traversing a conductor. The FCS could
be readily defined in terms of the probability to have N electrons transferred
through the conductor during a time interval τ, Pτ(N). With this distribu-
tion function one calculates the average current 〈N〉/τ, current noise (〈N〉2 >
−〈N〉2)/τ and all higher cumulants of the current. A non-trivial value of in-
terest is the probability to have big deviations from the average value. This
can be measured with a threshold detector. The probability distribution Pτ(N)
would be the goal of a quantum-mechanical calculation.

The operator of electric current through a conductor, Î, is well-defined in
the Fock space spanned by the scattering states of electrons. The initial idea of
Lesovik and Levitov [2] was to define an operator of transferred charge by means
of a seemingly obvious relation

Q̂tr =
∫ τ

0
dt Î(t). (2.1.1)

To this operator one applies the general paradigm of quantum measurement
[1]: The probability to have a certain charge q transferred equals the square
of the projection of the wave function of the system on the eigenstate of Q̂tr
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with eigenvalue q. Lesovik and Levitov were able to perform the challenging
calculation of these projections. However, they were hardly satisfied with the
results. For instance, the transferred charge was not quantized in units of the
elementary charge.

This is why in the subsequent paper [3] the same authors have proposed
another method of evaluating Pτ(N). Their scheme invoked a measuring device.
As a model device, they chose a precessing spin-1/2 whose precession angle
should be proportional to the transferred charge. The measurement paradigm
is then applied to the device. In this way they were able to obtain a satisfactory
definition of the statistics Pτ(N) with an integer number of charges transferred.
The details of the calculation and a thorough discussion are presented in [4].

It was clear to the authors of [4] that their definition of the FCS does not
depend on a specific measurement scheme. However, this fact was not expli-
citly evident. For several years this hindered the impact of these outstanding
contributions.

One of the authors has recently proposed a slightly different calculation
scheme of FCS that does not invoke any measuring device but still leads to the
same results [5]. The observation was that the cumulants of the current can be
obtained as non-linear responses of a system to a fictitious field that can only
be defined in the framework of the Keldysh diagrammatic technique [6]. The
calculation of FCS can be accomplished with a slight extension of the Keldysh
technique. This meant some progress since the methods of the Keldysh tech-
nique are well elaborated and can be readily applied to a variety of physical
systems and situations.

More recently, it has been shown, that a statistics very similar to the one
defined in [4] can be obtained also without explicitly modeling a charge detector,
as a property of the current conductor only [7].

In [8] the charge transfer between two superconductors has been addressed.
The problem can be tackled with an extension of the above-mentioned Keldysh
technique. The expressions for Pτ(N) were obtained. Albeit the authors have
encountered a significant difficulty with understanding the results in classical
terms, using the schemes proposed in [3,7]. The calculation gave negative prob-
abilities. This indicates that the results cannot be interpreted without invoking
a quantum description of a detector.

All this suggests that the quantum mechanical concept of counting statist-
ics shall be refined and the generality of previously used definitions shall be
accessed. This is done in the present article.

To preserve generality, we analyze the counting statistics of an arbitrary
quantum mechanical variable A. Then the result does not have to be discrete,
and, strictly speaking, no counting takes place. We keep the term ”counting”for
historical reasons.

We introduce a detector whose read-off we can interpret as the statistics of∫
dt Â(t) and we determine its quantum mechanical time evolution. It turns
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out, that the answer does not depend on details of the detector. This allows
for a formal separation of the measured system from the measuring device. We
develop an exact quantum mechanical description of the measurement setup
in terms of a path integral over detector variables and derive our results from
this description. We show that a classical interpretation of FCS is only possible
in the presence of a certain symmetry. For the FCS of the electric current, this
symmetry is gauge invariance. In superconductors gauge invariance is broken
and the FCS must be interpreted along quantum mechanical lines.

It is the main message of the present chapter that this interpretation problem
does not make the concept of full counting statistics useless and/or unphysical.
We show that it is the FCS that completely determines the evolution of the dens-
ity matrix of the detector. We show that thereby the statistics is observable in
experiments. We propose and discuss two concrete measuring schemes.

The chapter is organized as follows. We start with a general compact discus-
sion of the interpretation problems. We present our detection model in section
2.3. It is analyzed in the subsequent section. Section 2.5 defines the FCS and
gives its interpretation. The subsequent sections provide examples of the FCS
for a system in the ground state, a normal conductor and a harmonic oscillator.
We characterize the FCS in sections 2.9 and 2.10 where two concrete schemes
are discussed that allow to measure it experimentally.

2.2 General discussion

It is not a priori clear why the operator definition (2.1.1) produces senseless res-
ults. We list below possible intuitive reasons for this. To start with, the paradigm
concerns an instant measurement. The operator definition (2.1.1) is not local in
time and accumulates information about the quantum state of the system for a
(long) interval of time. The applicability of the paradigm is therefore not obvi-
ous. For instance, the averages of powers of Q̂tr can be expressed in terms of
correlators of currents

〈Q̂Ntr 〉 =
∫ τ

0
dt1...dtN〈Î(t1)Î(t2)...Î(tN)〉. (2.2.1)

Usually causality comes into quantum mechanics via time ordering of operator
products. There is no time ordering of current operators in (2.2.1). This may
indicate implicit problems with causality. The second reason is as follows. It
seems obvious that the time integral of Î can be associated with a physical op-
erator of charge. For an arbitrary operator Â it may be difficult to find such a
physical associate. Still, integrals of Â can be measured, and the statistics of
them can be accumulated.

In view of this problem it seems to be necessary to model the measurement
process in order to define a statistics of time averages. This has been done
in [3] by introducing the spin-1/2 detector. Since within this detection model
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the described interpretation problems (“negative probabilities”) [8] arose, we re-
fine now the model [9]. We adopt a detector model that has already been used
by John von Neumann in an analysis of the quantum measurement process [10].
We introduce a detector variable x, whose operator x̂ commutes with all oper-
ators of the system to be measured. We assume that the canonically conjugated
variable, q, ([x̂, q̂] = i, in units with � = 1) can be measured according to the
paradigm. Next we introduce an interaction between the system and the de-
tector in a way that in the time interval (0, τ) the Heisenberg equation of motion
reads

˙̂q(t) = Â(t), (2.2.2)

simulating Eq. (2.1.1). In this way we avoid all possible difficulties with misin-
terpretations of the paradigm. The integral of A(t) is now correctly associated
with an operator that can a priori be measured.

Albeit there is a price to pay. As we show below, the FCS can be defined in
this way as an operator that relates the density matrices of the detector before
and after the measurement. In general, it is not the same as the probability
distribution of shifts of the detector momentum which can be associated with
probabilities of

∫ τ
0 dt Â(t) in the classical limit. The FCS can be interpreted in

such terms only under certain conditions, which are satisfied for the statistics
of current in normal metal conductors.

To make the detector more realistic and thus to show the generality of the
results, one shall introduce internal dynamics of the detector variable. This
dynamics would make the detector a non-ideal one: the readings may differ
from the definitions (2.1.1) and (2.2.2). The path integral approach we describe
below provides the most convenient way to incorporate this internal dynamics.

2.3 Model

The detector in our model consists of one degree of freedom x (with conjug-
ated variable q) with the Hamiltonian q̂2/2m. The system shall be coupled to
the position x of the detector during the time interval [0, τ] and be decoupled
adiabatically for earlier and later times. For this we introduce a smooth coup-
ling function ατ(t) that takes the value 1 in the time interval [0, τ] and is zero
beyond the interval [t1, t2] (t1 < 0 and t2 > τ). The values for t1 < t < 0 and
τ < t < t2 are chosen in a way that provides an adiabatic switching. The entire
Hamiltonian reads then

H(t) = Ĥsys −ατ(t)x̂Â+ q̂2

2m
. (2.3.1)

The Heisenberg equation of motion for the detector momentum q

˙̂q(t) = ατ(t)Â(t) (2.3.2)
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suggests, that the statistics of outcomes of measurements of the detector’s mo-
mentum after having it uncoupled from the system corresponds to the statistics
of the time average

∫ τ
0 dt Â(t) that we are interested in.

The coupling term can be viewed as a disturbance of the system measured
by the detector. To minimize this disturbance, one would clearly like to con-
centrate the detector wave function around x = 0. The uncertainty principle
forbids, however, to localize it completely. Thereby one would loose all inform-
ation about the detector momentum, which is to be measured. This is a funda-
mental limitation imposed by quantum mechanics, and we are going to explore
its consequences step by step. To discern it form a classical back action of the
detector we take the limit of a static detector with m → ∞, such that ˙̂x = 0 and
any classical back action is ruled out.

2.4 Approach

To predict the statistics of measurement outcomes in our detection model we
need the reduced density matrix of the detector after the measurement, at t > t2.
If there were no system to measure we could readily express it in the form
of a path integral in the (double) variable x(t) over the exponential of the de-
tector action. This is still possible in the presence of a system coupled to the
detector [11]. The information about the system to be measured can be com-
pressed into an extra factor in this path integral, the so-called influence func-
tional. This makes the separation between the detector and the measured sys-
tem explicit. To make contact with [4], we write the influence functional as an
operator expression that involves system degrees of freedom only. We denote
the initial detector density matrix (at t < t1) by ρin(x+, x−) and the final one (at
t > t2, after having traced out the system’s degrees of freedom) by ρf(x+, x−).
R̂ denotes the initial density matrix of the system. The entire initial density
matrix is assumed to factorize, D̂ = R̂ρ̂in.

We start out by inserting complete sets of states into the expression for the
time development of the density matrix

ρf (x+, x−) = Tr
System

〈x+| −→T e−i
∫ t2
t1
dt
[
Ĥsys−ατ(t)x̂Â+q̂2/2m

]
D̂

←−
T ei

∫ t2
t1
dt
[
Ĥsys−ατ(t)x̂Â+q̂2/2m

]
|x−〉. (2.4.1)

Here, (
←−
T )
−→
T denote (inverse) time ordering. As the complete sets of states we

choose product states of any complete set of states of the system and alternat-
ingly complete sets of eigenstates of the position or the momentum operator of
the detector. Those intermediate states allow us to replace the position and mo-
mentum operators in the time development exponentials by their eigenvalues.
We can then do the integrals over the system states as well as the momentum
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integrals and arrive at the expression

ρf(x+, x−) =
∫
D[x+]
x+(t2)=x+

D[x−]
x−(t2)=x−

ρin[x+(t1), x−(t1)] e−iSDet([x+],[x−])

Tr
System

−→
T e−i

∫ t2
t1
dt
[
Ĥsys−ατ(t)x+(t)Â

]
R
←−
T ei

∫ t2
t1
dt
[
Ĥsys−ατ(t)x−(t)Â

]
(2.4.2)

with the detector action

SDet([x+], [x−]) = −
∫ t2
t1
dt
m
2

[
(ẋ+)2 − (ẋ−)2]. (2.4.3)

We rewrite the expression as

ρf(x+, x−) =
∫
dx+1 dx−1 K(x+, x−;x+1 , x−1 , τ)ρin(x+1 , x−1 ) (2.4.4)

with the kernel

K(x+, x−;x+1 , x−1 , τ) =
∫

D[x+]
x+(t2)=x+,x+(t1)=x+1

D[x−]
x−(t2)=x−,x−(t1)=x−1

ZSys([ατx+], [ατx−]) e−iSDet([x+],[x−]) (2.4.5)

that contains the influence functional

ZSys([χ+], [χ−]) = Tr
System

−→
T e−i

∫ t2
t1
dt
[
Ĥsys−χ+(t)Â

]
R̂
←−
T ei

∫ t2
t1
dt
[
Ĥsys−χ−(t)Â

]
. (2.4.6)

Taking the limit of an infinite detector mass now, we find that SDet in Eq. (2.4.5)
suppresses all fluctuations in the path integral. In the appendix we show that
the kernel K(x+, x−, x+1 , x−1 , τ) becomes local in position space,

K(x+, x−, x+1 , x−1 , τ) = δ(x+ − x+1 ) δ(x− − x−1 ) P(x+, x−, τ) (2.4.7)

with

P(x+, x−, τ) = Tr
System

−→
T e−i

∫ t2
t1
dt
[
Ĥsys−ατ(t)x+Â

]
R̂
←−
T e i

∫ t2
t1
dt
[
Ĥsys−ατ(t)x−Â

]
. (2.4.8)

It is constructive to rewrite now the density matrices in Wigner representa-
tion

ρ(x, q) =
∫
dz
2π

e−iqz ρ(x + z
2
, x − z

2
) (2.4.9)

and define

P(x, q, τ) =
∫
dz
2π
e−iqz P(x + z

2
, x − z

2
, τ). (2.4.10)

This gives the convenient relation

ρf (x, q) =
∫
dq1 P(x, q − q1, τ) ρin(x, q1). (2.4.11)
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2.5 Interpretation of the FCS

We adopt the relations (2.4.8), (2.4.10) and (2.4.11) as the definition of the FCS of
the variable A. Let us see why. First let us suppose that we can treat the detector
classically. Then the density matrix of the detector in the Wigner representation
can be interpreted as a classical probability distribution Π(x, q) to be at a cer-
tain position x with momentum q. This allows for a classical interpretation of
P(x, q, τ) as the probability to have measured q =

∫ τ
0 A(t). Indeed, one sees

from (2.4.10) that the final Π(x, q) is obtained from the initial one by shifts in
q, P(x, q, τ) being the probability distribution of those shifts.

In general, the density matrix in the Wigner representation cannot be inter-
preted as a probability to have a certain position and momentum since it is not
positive. Concrete calculations given below illustrate that P(x, q, τ) does not
have to be positive either. Consequently, it cannot be interpreted as a probab-
ility distribution. Still it predicts the results of measurements according to Eq.
(2.4.11).

There is, however, an important case when the FCS can indeed be interpreted
as a probability distribution. It is the case that P(x, q, τ) does not depend on x,
P(x, q, τ) ≡ P(q, τ). Then, integrating Eq. (2.4.11) over x, we find

Πf (q) =
∫
dq′ P(q − q′, τ) Πin(q′) (2.5.1)

with Π(q) ≡
∫
dx ρ(x, q). Therefore, the FCS in this special case is the kernel

that relates the probability distributions of the detector momentum before and
after the measurement, Πin(q) and Πf (q), to each other. Those distributions
are positive and so is P(q, τ).

When studying the FCS of a stationary system and the measurement time
τ exceeds time scales associated with the system, the operator expression in
Eq. (2.4.8) can be seen as a product of terms corresponding to time intervals.
Therefore in this limit of τ → ∞ the dependence on the measuring time can be
reconciled into

P(x+, x−, τ) = e−E(x+,x−)τ (2.5.2)

where the expression in the exponent is supposed to be large. Then the integral
(2.4.10) that defines the FCS can be done in the saddle point approximation.
Defining the time average Ā = q/τ, that is, Ā is the result of a measurement of∫ τ
0 A(t)dt/τ, the FCS can be recast into the from

P(x, Ā, τ) = e−Ẽ(x,Ā)τ (2.5.3)

where Ẽ is defined as the (complex) extremum with respect to (complex) z:

Ẽ = extr
z
{E(x + z

2
, x − z

2
)+ iĀz}. (2.5.4)
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The average value of Ā and its variance (noise) can be expressed in terms of
derivatives of E:

〈Ā〉 = − lim
z→0

∂E(x + z/2, x − z/2)
i∂z

; τ〈〈Ā2〉〉 = lim
z→0

∂2E(x + z/2, x − z/2)
∂z2

.
(2.5.5)

More generally, the quantity P(x+, x−, τ) is the generating function of moments
of q. It is interesting to note that in general this function may generate a variety
of moments that differ in the time order of operators involved, for instance,

QNM = (−1)MiN lim
x±→0

∂M

∂(x−)M
∂N−M

∂(x+)N−M
P(x+, x−, τ)

=
∫ τ

0
dt1...dtN 〈

←−
T {A(t1)...A(tM)}

−→
T {A(tM+1)...A(tN)}〉. (2.5.6)

The moments of (the not necessarily positive) P(0, q, τ) are expressed through
these moments and binomial coefficients,

Q(N) ≡
∫
dqqNP(0, q, τ) = 2−N

∑
M

(
N
M

)
QNM. (2.5.7)

2.6 FCS of a system in the ground state

To acquire a better understanding of the general relations obtained we consider
now an important special case. We will assume that the system considered is
in its ground state |g〉, so that its initial density matrix is R̂ = |g〉〈g|. In this
case the FCS is easily calculated. We have assumed that the coupling between the
system and the detector is switched on adiabatically. Then the time development
operators in (2.4.8) during the time interval t1 < t < 0 adiabatically transfer the
system from |g〉 into the ground state |g(x±)〉 of the new Hamiltonian Ĥsys −
x±Â . In the time interval 0 < t < τ the time evolution of the resulting state has
then the simple form

e−it(Ĥsys−x± Â) |g(x±)〉 = e−itE(x±) |g(x±)〉. (2.6.1)

Here, E(x±) are the energies corresponding to |g(x±)〉. This gives the main
contribution to the FCS if the measurement time is large and the phase acquired
during the switching of the interaction can be neglected in comparison with this
contribution,

P(x+, x−, τ) = e−iτ[E(x+)−E(x−)]. (2.6.2)

We now assume the function E(x) to be analytic and expand it in its Taylor
series. We also re-scale q as above, Ā = q/τ. We have then for the FCS

P(x, Ā, τ) =
∫
dz e−izĀτ · e−iτ[E′(x)z+E′′′(x)z3/24+...]. (2.6.3)
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First we observe that P(x, Ā, τ) is a real function in this case, since the exponent
in (2.6.3) is anti-symmetric in z. A first requirement for being able to interpret it
as a probability distribution is therefore fulfilled. However, the same asymmetry
assures that all even cumulative moments of Ā are identically zero, whereas the
odd ones need not. On one hand, since the second moment corresponds to
the noise and the ground state cannot provide any, this makes sense. On the
other hand, this would be impossible if P(0, Ā, τ) were a positive probability
distribution unless it had no dispersion at all.

Belzig and Nazarov [8] encountered this situation analyzing the FCS of a
super-conducting junction. In a certain limit the junction becomes a Joseph-
son junction in its ground state. In this limit the interpretation of the FCS as
a probability distribution does not work any longer. Fortunately enough, the
relation (2.4.11) allows us to interpret the results obtained.

In the limit τ → ∞ of Eq. (2.6.3) terms involving higher derivatives of E(x)
are negligible and we have

lim
τ→∞ P(x, Ā, τ) = δ[Ā+ E

′(x)]. (2.6.4)

According to the Hellman-Feynman theorem E′(x) = −〈g(x)|Â|g(x)〉. As one
would expect, in this limit the measurement gives the expectation value of the
operator Â in a ground state of the system that is somewhat altered by its in-
teraction with the detector at position x. Therefore the resulting dispersion of
A will be determined by the initial quantum mechanical spread of the detector
wave function. The error of the measurement stems from the interaction with
the detector rather than from the intrinsic noise of the measured system.

2.7 FCS of electrical current in a normal conductor

A complementary example is a normal conductor biased at finite voltage. This
is a stationary non-equilibrium system far from being in its ground state. Here
we do not intend to go to microscopic details of the derivation. Our immediate
aim is to make contact with the approaches of Refs. [4,5]. We keep the original
notations of the references wherever it is possible.

The starting points of the approaches differ much. Levitov and Lesovik pro-
pose a detector model where the z-component of a spin-1/2 creates a local vec-
tor potential felt by the electrons. This corresponds to a total Hamiltonian of
the form

Ĥ = Ĥsys − λ
2e
σ̂zÎ

which is studied at different coupling constants λ. Reference [5] starts with an
extension of the Keldysh technique to only formally defined systems where the
evolution of the wave function in different time directions is governed by two
different Hamiltonians

Ĥ± = Ĥsys ± χÎ (2.7.1)
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and shows that the so defined Green functions can be used to generate moments
of Î. This is to be compared with our detection model.

Despite different starting points, all three approaches quickly concentrate on
the calculation of the quantity

〈exp[−i(Ĥsys − x+Î)τ] exp[−i(Ĥsys − x−Î)τ]〉. (2.7.2)

This quantity is denoted by χ(λ) in [4] and by exp[−S(χ)] in [5]. It corres-
ponds to our definition of the FCS Eq. (2.4.8) and we see now that the final result
does not depend on the starting point.

As a concrete example we consider the FCS of the current in a phase-coherent
conductor which is characterized by a set of transmission coefficients Tn [Eq.
(37) of [3]]. In general, the answer is expressed in terms of energy-dependent
electron filling factors fR(L) on the right (left) side of the conductor,

lnP(x+, x−, τ) = τ
2π

∑
n

∫ +∞
−∞
dε ln[1+ Tn(eie(x−−x+) − 1)fR(1− fL)

+Tn(eie(x+−x−) − 1)fL(1− fR)]. (2.7.3)

This expression depends on x+ − x− only. This is a direct consequence of
gauge invariance. Indeed, in each of the Hamiltonians the coupling term is the
coupling to a vector potential localized in a certain cross-section of the con-
ductor. The gauge transform that shifts the phase of the wave functions by ex±
on the right side of the conductor, eliminates this coupling term. This trans-
form was explicitly implemented in [5]. Since there are two Hamiltonians in the
expression, the coupling terms cannot be eliminated simultaneously provided
that x+ �= x−. However, the gauge transform with the phase shift e(x+ + x−)/2
makes the coupling terms depending on x+ − x− only.

Since P(x+, x−, τ) depends on x+ − x− only, the FCS P(x, q, τ) does not
depend on x. As we have seen in section 2.5, this enables one to interpret the
FCS as a probability distribution.

Superconductivity breaks gauge invariance, thus making such an interpreta-
tion impossible.

2.8 FCS of a harmonic oscillator

Let us now illustrate the proposed measuring process with a simple example. We
consider the measurement of the position of a harmonic oscillator in its ground

state. The Hamiltonian of the system is then Ĥ0 = Q̂2

2M+
1
2Mω

2X̂2 and Â = X̂ shall
be measured. The entire Hamiltonian in the measurement period reads then

Ĥ = Q̂
2

2M
+ 1

2
Mω2X̂2 − x̂ X̂. (2.8.1)
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The perturbed ground state |g(x)〉 is in this simple example obtained by shift-
ing the original ground state wave function by x/Mω2 in X-representation. Its
energy is Eg(x) = Eg(0)− 1

2Mω2 x2 . We then find from (2.6.4), that

P(x, q, τ) = δ(q − xτ/Mω2). (2.8.2)

Following our first classical interpretation of P(0, q, τ) we would now conclude,
that a harmonic oscillator in its ground state does not transmit any fluctuations
of its position variable to the detector and that the detector’s wave function is
not altered by the oscillator. Calculating, however, the read-off of the detector
with a Gaussian wave of uncertainty �q in the momentum as the initial state of
the detector,

ρin(x, q) = exp
[− q2

2(�q)2 − 2(�q)2x2
]
, (2.8.3)

we find for the final momentum distribution

Πf (q) = exp
[− q2

2(�q)2 + τ2/2M2ω4(�q)2
]
. (2.8.4)

The uncertainty �qf of the final detector momentum increases in time,

(�qf )2 = (�q)2 + τ2

4M2ω4(�q)2 , (2.8.5)

in contradiction to our first interpretation of Eq. (2.8.2). A �qf that is grow-
ing with the detection time τ seems to imply that the detector does sense
noise in the oscillator variable X. The true origin of this is, however, the in-
teraction of the measured system with the detector. The detector position is
spread over an interval �x >∼ 1/2�q. Since the oscillator is in its ground
state the resulting disturbance drives it into ground states of new Hamilto-
nians Ĥ0 + xX̂ . For every detector influence x a different expectation value
E′(x) = 〈g(x)|X̂|g(x)〉 is measured. The read-off of the detector will then be
a superposition of measurement outcomes corresponding to all those different
influences. As a result, the uncertainty in the detector momentum grows with
time, (�qf )�x ≈ τ�x ∂〈g(x)|X̂|g(x)〉/∂x. We conclude that the the quantum
fluctuations of the detector set an upper bound on the accuracy of the measure-
ment process. It vanishes if the FCS is x-independent and a classical interpreta-
tion of the process is possible.

2.9 Characterization of the FCS. First scheme

As we have already seen, the statistics P(x, q, τ) proposed above allows to pre-
dict the outcomes of measurements within our detection model and it resolves
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inconsistencies that arose in earlier interpretations. It remains to be shown now,
that it is real in the sense that it is experimentally observable.

For a first scheme of measuring the FCS we start from relation (2.4.11) between
the initial and the final density matrix. Writing this equation in (x+, x−)-space,
we find that

P(x+, x−, τ) = ρ
f (x+, x−)
ρin(x+, x−)

(2.9.1)

or

P(x, q, τ) =
∫
dz
2π

eiqz
ρf(x + z/2, x − z/2)
ρin(x + z/2, x − z/2). (2.9.2)

We would already be done if we could measure all elements of the detector’s
final and initial density matrices. This is not possible in general, however. By
successively measuring a certain observable we can measure the diagonal ele-
ments of the density matrix in a basis of eigenstates of that observable, but not
the off-diagonal entries. We can therefore measure the functions Π(q), but not
ρ̂ itself.

The key idea that we will pursue to solve this problem is to repeat the same
measurement many times for shifted but otherwise identical initial detector
density matrices. We suggest to repeat the measurement of the final momentum
distribution Πf (q) for a number of initial density matrices that differ only in the
expectation value x0 of the position of the detecting particle and define the
function

Γ f (x0, q, τ) =
∫
dx dq′ P(x, q− q′, τ) ρin(x − x0, q′). (2.9.3)

This way we expose the system during the measurement to different detector
influences and one can hope that by doing so this influence can be identified
and eliminated by a deconvolution procedure. Defining the Fourier transform of
Γ f (x0, q, τ) with respect to both of its variables

Γ̃ f (q0, z, τ) ≡ 1
2π

∫
dx0 dq eix0q0−izq Γ f (x0, q, τ) (2.9.4)

we find, that the FCS can indeed be reconstructed from this function by means
of the relation

P(x, q, τ) = 1
2π

∫
dq0 dz eiqz−iq0x Γ̃

f (q0, z, τ)
ρ̃in(q0, z)

(2.9.5)

where

ρ̃(q0, z) ≡
∫
dx eiq0x ρ(x + z

2
, x − z

2
). (2.9.6)

To interpret the result of the measurement, we still have to know the full initial
density matrix of the detector. This should be feasible, however. One might
either prepare the detector initially in a specific, well-known state, or one might
let the detector equilibrate with an environment. The initial density matrix is
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then stationary, 0 = [ρ̂in, Ĥ] ∝ [ρ̂in, q̂2], it is diagonal in a basis of momentum
eigenstates and can be determined by a momentum measurement only. We
conclude that the FCS is an observable.

To illustrate the procedure we apply it now to the example of a harmonic
oscillator. The final momentum distribution with shifted initial detector states
is

Γ f (x0, q, τ) = exp
[− (q − x0τ/Mω2)2

(2(�q)2 + τ2/2M2ω4(�q)2)
]
. (2.9.7)

On transforming this into Fourier space it becomes

Γ̃ f (q0, z, τ) = exp
[−(�q)2z2

2
− τ2z2

8M2ω4(�q)2
]
δ(q0 − τz/Mω2). (2.9.8)

Employing now Eq. (2.9.5) with ρ̃in(q0, z) = exp
[−(�q)2z2/2 − q2

0/8(�q)2
]

we
indeed recover the desired FCS Eq. (2.8.2).

2.10 Second scheme

If the system is in one state only, for example its ground state, or in a mixture of
a limited number of discrete states, one can measure the FCS without knowledge
of the initial detector state. We first assume that the system is in its ground
state. Then we have the explicit expression (2.6.2) for the time evolution and we
find, that

Γ f (x0, q, τ) =
∫
dx dz dq′ e−iz(q−q

′)−iτ(E′(x) z+ 1
24E

′′′(x) z3+...) ρin(x − x0, q′),
(2.10.1)

Γ f (x0, q, τ) again being the final momentum distribution for shifted initial de-
tector wave functions. In the limit of large τ we find with (2.6.4) that

lim
τ→∞ Γ

f (x0, q, τ) ∝
∫
dx ρin(x − x0, q + τE′(x)). (2.10.2)

This formula suggests that one can measure the function E′(x) arbitrarily ex-
actly in the limit of a long measurement time τ by determining the peak of the
final momentum distribution. The only assumption we have to make about the
initial detector density matrix now is, that it is well centered around x = 0 and
that it falls off sufficiently fast for momenta higher than some arbitrary�q. We
want ρ̂in to be peaked in x-space such that E′(x) is measured at the point x0

only (E(x) is assumed to be analytic). Of course, this means, that the width �q
in momentum space of ρ̂in and therefore also of ρ̂f will be wide. For big τ,
however, the peak position, that increases linearly in time, can still be detected
with arbitrary precision.
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Integrating E′(x) we can then reconstruct the FCS for arbitrary detection
times,

P(x, q, τ) =
∫
dz
2π

exp

{
−iqz − iτ

∫ x+z/2
x−z/2

dx′ E′(x′)
}
. (2.10.3)

When the system is in a mixture ofN distinct states, the expression for P(x, q, τ)
is a sum of terms of the form (2.6.2) with different functions En(x). There ap-
pear in general N distinct peaks in the final momentum distribution allowing to
record all N functions E′n(x). Again, one can reconstruct P(x, q, τ) for arbitrary
τ.

2.11 Conclusions

We have been studying the statistics of time averages of a quantum mechanical
variable A. A simple model describing a detector without internal dynamics
has been employed. The formalism that we have presented is, however, general
enough to allow for the description of a generic detector. In our approach, the
measurement outcome is expressed in terms of an object that we have called full
counting statistics (FCS) of the variable A. It is an extension of another function
proposed earlier in this context. This extension basically consists of accounting
for the detector influence on the measured system. We find that the interplay
of this influence with the quantum nature of the detector hampers in general
a classical interpretation of the detector read-off. This way we have been able
to remove inconsistencies that arose in earlier interpretations. Finally, we have
shown, that this FCS is not only a theoretical construct that predicts results of
measurements, but that it is an observable itself.

Appendix A:

Here we give a detailed derivation of the infinite mass limit of the kernel (2.4.5).
First, we define a Fourier transformed influence functional

F̃[k+, k−, τ] =
∫
D[x+]D[x−]F[x+, x−, τ]ei

∫ t2
t1
dt
[
x+k+−x−k−

]
(A.1)

and correspondingly

K̃(q+, q−, q+1 , q−1 , τ) =
∫
dx+ dx− dx+1 dx−1 eix

+q+−ix−q−−ix+1 q+1+ix−1 q−1

K(x+, x−, x+1 , x−1 , τ). (A.2)

The k± are functions on the interval [t1, t2]. Inserting the identity

exp

{
i
∫ t2
t1
dt
m
2
ẋ2

}
=
∫
D[q] exp

{
i
∫ t2
t1
dt

[− q2

2m
− qẋ]

}
(A.3)
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and using (2.4.5) we derive then

K̃(q+, q−, q+1 , q−1 , τ) =
∫

D[q+]
q+(t2)=q+,q+(t1)=q+1

D[q−]
q−(t2)=q−,q−(t1)=q−1

F̃[q̇+, q̇−, τ]

exp

{
i
∫ t2
t1
dt
q+2

2m
− q

−2

2m

}
. (A.4)

In the infinite mass limit, the kinetic term in this expression disappears. Now,
we change integration variables from D[q±] to D[q̇±] and call k± = q̇±. Then,

K̃(q+, q−, q+1 , q
−
1 , τ) =

∫
D[k+]∫ t2

t1
dt k+=q+−q+1

D[k−]∫ t2
t1
dt k−=q−−q−1

F̃[k+, k−, τ]. (A.5)

We can represent the functions k± by their Fourier series, k±(t) = ∑∞
n=0

k±n cos nπ(t − t1)/(t2 − t1). Changing the integration variables in (A.5) to the
coefficients k±n in this expansion, we notice, that only the integrals over the
zeroth components k±0 are constrained by the boundary conditions. We can
therefore do all the integrals over higher Fourier modes in (2.4.5) and obtain

K̃(q+, q−, q+1 , q−1 , τ) =
∫
D[k+n]
n≠0

D[k−n]
n≠0

D[x+n] D[x−n] F[x+, x−, τ]

exp


it2 − t12

∞∑
n=1

(k+nx+n − k−nx−n)+ i
[
x+0 (q

+ − q+1 )− x−0 (q− − q−1 )
] .(A.6)

We have also expanded the functions x± in Fourier series now, x±(t) = ∑∞
n=0

x±n cos nπ(t − t1)/(t2 − t1).
We see, that the k±n-integrations result in δ-functions that constrain the x±n ,

n ≠ 0, to zero and allow us to do the corresponding x±n - integrals:

K̃(q+, q−, q+1 , q−1 , τ) =
∫
dx+0 dx

−
0 ei

[
x+0 (q

+−q+1 )−x−0 (q−−q−1 )
]

Tr
System

−→
T exp

{
−i
∫ t2
t1
dt
[
Ĥsys −ατx+0 Â

]}
R̂
←−
T exp

{
i
∫ t2
t1
dt
[
Ĥsys −ατx−0 Â

]}

(A.7)

or
K(x+, x−, x+1 , x−1 , τ) = δ(x+ − x+1 ) δ(x− − x−1 ) P(x+, x−, τ) (A.8)

with

P(x+, x−, τ) = Tr
System

−→
T e−i

∫ t2
t1
dt
[
Ĥsys−ατx+Â

]
R̂
←−
T e i

∫ t2
t1
dt
[
Ĥsys−ατx−Â

]
. (A.9)

This establishes the locality of the kernel K(x+, x−, x+1 , x−1 , τ).
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3 Feedback of the electromagnetic
environment on current and voltage
fluctuations out of equilibrium

3.1 Introduction

A mesoscopic conductor is part of a macroscopic electrical circuit that influ-
ences its transport properties. This electromagnetic environment is a source
of decoherence and plays a central role for single-electron effects [1–5]. Most
studies address time-averaged properties. Time-dependent fluctuations of the
electrical current are also affected by the environment, which reduces the low-
frequency fluctuations by a feedback loop: A current fluctuation δI induces a
counter-acting voltage fluctuation δV = −ZδI over the conductor, which in turn
reduces the current by an amount −GδV . (Here G and Z are, respectively, the
conductance of the mesoscopic system and the equivalent series impedance of
the macroscopic voltage-biased circuit.)

At zero temperature the macroscopic circuit does not generate any noise it-
self, and the feedback loop is the only way it affects the current fluctuations
in the mesoscopic conductor, which persist at zero temperature because of the
shot noise effect [6–8]. In the second cumulant C(2), or shot-noise power, the
feedback loop may be accounted for by a rescaling of the current fluctuations:
δI → (1 + ZG)−1δI. For example, the Poisson noise C(2) = eĪ(1 + ZG)−2 of
a tunnel junction is simply reduced by a factor (1 + ZG)−2 due to the negat-
ive feedback of the series impedance. We have recently discovered that this
textbook result breaks down beyond the second cumulant [9]. Terms appear
which depend in a nonlinear way on lower cumulants, and which can not be
incorporated by any rescaling with powers of 1 + ZG. In the example of a
tunnel junction the third cumulant at zero temperature takes the form C(3) =
e2Ī(1− 2ZG)(1 + ZG)−4.

Ref. [9] was restricted to zero temperature. In Ref. [10] we removed this re-
striction and showed that the nonlinear feedback of the electromagnetic envir-
onment drastically modifies the temperature dependence of C(3). Earlier theory
[11–13] assumed an isolated mesoscopic conductor and predicted a temperature-
independent C(3) for a tunnel junction. The coupling to an environment intro-
duces a temperature dependence, which can even change the sign of C(3) as the
temperature is raised. No such effect exists for the second cumulant. The pre-
dicted temperature dependence has been measured in a recent experiment [14].
The method we used in Ref. [10] to arrive at these results was phenomenolo-
gical. The nonlinear feedback was inserted by hand into the Langevin equation,
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through a cascade assumption [13]. The purpose of the present chapter is to
provide a fully quantum mechanical derivation. Our results agree with Ref. [10],
thereby justifying the Langevin approach.

The outline of this chapter is as follows. In Secs. 3.2 and 3.3 we present the
general quantum mechanical framework within which we describe a broad class
of electrical circuits that consist of mesoscopic conductors embedded in a mac-
roscopic electromagnetic environment. The basis is a path integral formulation
of the Keldysh approach to charge counting statistics [15, 16]. It allows us to
compute correlators and cross-correlators of currents and voltages at arbitrary
contacts of the circuit. The method is technically involved, but we give an in-
tuitive interpretation of the results in terms of “pseudo-probabilities”. Within
this framework we study in Secs. 3.4 and 3.5 series circuits of two conductors.
For concrete results we specialize to a low-frequency regime where the path in-
tegrals over fluctuating quantum fields can be taken in saddle-point approxima-
tion. The conditions of validity for this approximation are discussed. We obtain
general relations between third order correlators in a series circuit and correl-
ators of the individual isolated conductors. We specialize to the experimentally
relevant case of a single mesoscopic conductor in series with a macroscopic
conductor that represents the electromagnetic environment. Most experiments
measure voltage correlators. In Sec. 3.6 we propose an experimental method
to obtain current correlators, using the Hall voltage in a weak magnetic field.
The fundamental difference between current and voltage correlators rests on
whether the variable measured is odd or even under time reversal. In Sec. 3.7 we
relax the low-frequency approximation by addressing Coulomb blockade effects
from the environment [17–19]. We conclude in Sec. 3.8.

3.2 Description of the circuit

We consider a circuit consisting of electrical conductors Gi, a macroscopic elec-
tromagnetic environment [with impedance matrix Z(ω)], plus ideal current and
voltage meters Mi. The current meter (zero internal impedance) is in series
with a voltage source, while the voltage meter (infinite internal impedance) is
in parallel to a current source. Any finite impedance of meters and sources is
incorporated in the electromagnetic environment. In Fig. 3-1 we show examples
of such circuits.

The electromagnetic environment is assumed to produce only thermal noise.
To characterize this noise we consider the circuit without the mesoscopic con-
ductors, see Fig. 3-2. Each pair of contacts to the environment is now attached
to a current source and a voltage meter. The impedance matrix is defined by
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VG

GIG
GIG

VG

IM

IM

VM

VM

Figure 3-1. Electrical circuits studied in this chapter. The black boxes represent conductors

embedded in an electromagnetic environment (dashed rectangle). A voltage source is present

at the contacts for a current measurement (right circuit) and a current source at the contacts

for a voltage measurement (left circuit). The two circuits can also be combined into one larger

circuit containing two conductors and both a current and a voltage meter.

partial derivatives of voltages with respect to currents,

Z =

 ZGG ZGM
ZMG ZMM


 =




∂VG
∂IG

∣∣∣
IM

∂VG
∂IM

∣∣∣
IG

∂VM
∂IG

∣∣∣
IM

∂VM
∂IM

∣∣∣
IG


 . (3.2.1)

(All quantities are taken at the same frequencyω.) If there is more than one pair
of contacts of type G or M , then the four blocks of Z are themselves matrices.
Positive and negative frequencies are related by Zαβ(−ω) = Z∗αβ(ω). We also
note the Onsager-Casimir [20] symmetry Zαβ(B,ω) = Zβα(−B,ω), in an external
magnetic field B. The thermal noise at each pair of contacts is Gaussian. The co-
variance matrix of the voltage fluctuations δVα is determined by the fluctuation-
dissipation theorem,

〈δVα(ω)δVβ(ω′)〉 = πδ(ω+ω′)�ω coth
(
�ω
2kT

)
[Zαβ(ω)+ Z∗βα(ω)], (3.2.2)

with T the temperature of the environment.
We seek finite frequency cumulant correlators of the variables measured at

the current and voltage meters,

〈〈X1(ω1) · · ·Xn(ωn)〉〉 = 2πδ


 n∑
k=1

ωk


C(n)X (ω1, · · · ,ωn). (3.2.3)
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IM

VM

VG

IG

Figure 3-2. Circuit used to characterize the impedance matrix of the electromagnetic environ-

ment. All contacts are now connected to a voltage meter plus a current source.

Here Xi stands for either VM or IM . Fourier transforms are defined by Xi(ω) =∫
dt exp(iωt)Xi(t). Our aim is to relate the correlators at the measurement

contacts to the correlators one would measure at the conductors if they were
isolated from the environment.

3.3 Path integral formulation

Correlators of currents IM and voltages VM at the measurement contacts are
obtained from the generating functional

ZX[�j] =
〈
T−ei

∫
dt [H+j−(t)X]T+e−i

∫
dt [H+j+(t)X]

〉
. (3.3.1)

They contain moments of outcomes of measurements of the variable X (equal
to IM or VM) at different instants of time. The symbols T+(T−) denote (inverse)
time ordering, different on the forward and the backward part of the Keldysh
contour. The exponents contain source terms j± and a Hamiltonian H, which
we discuss separately.

The source term j±(t) is a charge QM =
∫ t dt′ IM(t′) if X = VM , whereas it is

a phase ΦM =
∫ t dt′ VM(t′) if X = IM . (We have set � to unity.) The superscript

± determines on which part of the Keldysh contour the source is effective. The
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vector �j = (jcl, jq) indicates the linear combinations

jcl = 1
2
∂
∂t
(j+ + j−), jq = j+ − j−. (3.3.2)

We denote vectors in this two-dimensional “Keldysh space” by a vector arrow.
The “classical” source fields jcl = (jcl1 , j

cl
2 , · · · ) account for current or voltage

sources at the measurement contacts. Cumulant correlators of the measured
variables are generated by differentiation of lnZX with respect to the “quantum”
fields jq = (jq1 , jq2 , · · · ):〈〈 n∏

k=1

Xk(tk)
〉〉

=
n∏
k=1

δ
−iδjqk(tk)

lnZX
∣∣∣
jq=0

. (3.3.3)

The Hamiltonian consists of three parts,

H = He +
∑
i

HGi −ΦGIG. (3.3.4)

The term He =
∑
j Ωja

†
jaj represents the electromagnetic environment, which

we model by a collection of harmonic oscillators at frequencies Ωj . The conduct-
ors connected to the environment have Hamiltonians HGi . The interaction term
couples the phases ΦG (defined by i[He,ΦG] = VG) to the currents IG through
the conductors. The phases ΦG, as well as the measured quantities X, are linear
combinations of the bosonic operators aj of the electromagnetic environment,

ΦG =
∑
j

(
cGj aj + cG∗j a†j

)
, (3.3.5)

X =
∑
j

(
cXj aj + cX∗j a†j

)
. (3.3.6)

The coefficients cGj and cXj depend on the impedance matrix of the environment
and also on which contacts are connected to a current source and which to a
voltage source.

To calculate the generating functional we use a path integral formulation in
Keldysh space [16,21]. We first present the calculation for the case of a voltage
measurement at all measurement contacts (so Xk = VMk and jk = QMk for all k).
We will then show how the result for a current measurement can be obtained
from this calculation. The path integral involves integrations over the environ-
mental degrees of freedom aj weighted with an influence functional ZIG due to
the conductors. Because the conductors are assumed to be uncoupled in the
absence of the environment, this influence functional factorizes:

ZIG[�ΦG] =
∏
i

ZIGi [�ΦGi]. (3.3.7)
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An individual conductor has influence functional

ZIGi =
〈
T− e

i
∫
dt
[
HGi+Φ

−
Gi
(t)IGi

]
T+e

−i
∫
dt
[
HGi+Φ

+
Gi
(t)IGi

]�
. (3.3.8)

Comparing Eq. (3.3.8) with Eq. (3.3.1) for X = IM , we note that the influence func-
tional of a conductor Gi is just the generating functional of current fluctuations
in Gi when connected to an ideal voltage source without electromagnetic envir-
onment. That is why we use the same symbol Z for influence functional and
generating functional.

The integrals over all environmental fields except �ΦG are Gaussian and can
be done exactly. The resulting path integral expression for the generating func-
tional ZVM takes the form

ZVM[ �QM] =
∫
D[�ΦG] exp

{
−iSe[ �QM , �ΦG]

}
ZIG[�ΦG], (3.3.9)

up to a normalization constant [22]. We use for the integration fields �ΦG the
same vector notation as for the source fields: �ΦG = (ΦclG ,ΦqG)with ΦclG = 1

2(∂/∂t)(Φ
+
G+

Φ−G) and ΦqG = Φ+G − Φ−G. The Gaussian environmental action Se is calculated in
App. A. The result is given in terms of the impedance matrix Z of the environ-
ment,

Se[ �QM , �ΦG] = 1
2

∫
dω
2π

[
�Q∗
MŽMM �QM +

(
�Φ∗G − �Q∗

MŽMG
)
Y̌
(
�ΦG − ŽGM �QM

) ]
,

(3.3.10)

Y̌(ω) =

 0 Z†−1

GG (ω)
Z−1

GG(ω) − i2ω[2N(ω) + 1][Z−1
GG(ω)+ Z†−1

GG (ω)]


 ,

(3.3.11)

ŽMM(ω) =

 0 Z†MM(ω)
ZMM(ω) − i2ω[2N(ω) + 1][ZMM(ω)+ Z†MM(ω)]


 ,

(3.3.12)

ŽMG(ω) =

 −Z†GM(ω) 0

i
2ω[2N(ω) + 1][ZMG(ω)+ Z†GM(ω)] ZMG(ω)


 = ŽTGM(−ω),

(3.3.13)

with the Bose-Einstein distribution N(ω) = [exp(ω/kT)−1]−1. We have marked
matrices in the Keldysh space by a check, for instance Y̌.

When one substitutes Eq. (3.3.10) into Eq. (3.3.9) and calculates correlators
with the help of Eq. (3.3.3), one can identify two sources of noise. The first source
of noise is current fluctuations in the conductors that induce fluctuations of
the measured voltage. These contributions are generated by differentiating the
terms of Se that are linear in �QM . The second source of noise is the environment
itself, accounted for by the contributions quadratic in �QM .
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Generating functionals ZIM for circuits where currents rather than voltages
are measured at some of the contacts can be obtained along the same lines
with modified response functions. It is also possible to obtain them from ZVM
through the functional Fourier transform derived in App. B,

ZIM [�ΦM] =
∫
D[ �QM] e−i �QM×�ΦM ZVM [ �QM]. (3.3.14)

We have defined the cross product

�Q× �Φ ≡
∫
dt (QclΦq − ΦclQq). (3.3.15)

This transformation may be applied to any pair of measurement contacts to
obtain current correlators from voltage correlators.

Eq. (3.3.14) ensures that the two functionals

P[V , I] =
∫
D[q] ei

∫
dt qV ZV

[
�Q = (I, q)

]
, (3.3.16)

P′[V , I] =
∫
D[ϕ] ei

∫
dt ϕI ZI

[
�Φ = (V ,ϕ)

]
, (3.3.17)

are identical: P[V , I] = P′[V , I]. This functional P has an intuitive probabilistic
interpretation. With the help of Eq. (3.3.3) we obtain from P the correlators

〈V(t1) · · ·V(tn)〉I =
∫
D[V]V(t1) · · ·V(tn)P[V , I]∫

D[V]P[V , I] ,

(3.3.18)

〈I(t1) · · · I(tn)〉V =
∫
D[I] I(t1) · · · I(tn)P[V , I]∫

D[I]P[V , I] .

(3.3.19)

This suggests the interpretation of P[V , I] as a joint probability distribution
functional of current and voltage fluctuations. Yet, P can not properly be called
a probability since it need not be positive. In the low frequency approximation
introduced in the next section it is positive for normal metal conductors. How-
ever, for superconductors, it has been found to take negative values [23]. It is
therefore more properly called a “pseudo-probability”.

We conclude this section with some remarks on the actual measurement pro-
cess. The time-averaged correlators (3.2.3) may be measured in two different
ways. In the first way the variable X is measured repeatedly and results at dif-
ferent times are correlated afterwards. In the second way (and this is how it is
usually done [24]) one uses a detector that measures directly time integrals of
X (for example, by means of a spectral filter). The correlators measured in the
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first way are obtained from the generating functional according to Eq. (3.3.3),

2πδ


 n∑
k=1

ωk


C(n)X (ω1, · · · ,ωn)

=
∏
k

[∫∞
−∞
dt eiωkt

δ
−iδjqk(t)

]
lnZX

∣∣∣
jq=0

. (3.3.20)

The second way of measurement is modelled by choosing cross-impedances that
ensure that an instantaneous measurement at one pair of contacts yields a time
average at another pair, for example ZMG(ω) ∝ δ(ω −ω0). The resulting fre-
quency dependent correlators do not depend on which way of measurement one
uses.

3.4 Two conductors in series

We specialize the general theory to the series circuit of two conductors G1 and
G2 shown in Fig. 3-3 (lower panel). We derive the generating functional ZV,I
for correlators of the voltage drop V ≡ VM1 over conductor G1 and the current
I ≡ IM2 through both conductors. (The voltage drop over conductor G2 equals
VM2 − VM1 ≡ Vbias − V , with Vbias the non-fluctuating bias voltage of the voltage
source.) To apply the general relations of the previous section we embed the
two conductors in an electromagnetic environment, as shown in the top panel
of Fig. 3-3. In the limit of infinite resistances R1, R2, and R3 this 8-terminal
circuit becomes equivalent to a simple series circuit of G1 and G2. We take the
infinite resistance limit of Eq. (3.3.9) in App. C. The result

ZV,I[ �Q, �Φ] =
∫
D[ �Φ′] e−i�Φ′× �Q Z1[�Φ′]Z2[�Φ − �Φ′] (3.4.1)

shows that the generating functional of current and voltage correlators in the
series circuit is a functional integral convolution of the generating functionals
Z1 ≡ ZIG1

and Z2 ≡ ZIG2
of the two conductors G1 and G2 defined in Eq. (3.3.8).

Eq. (3.4.1) implies a simple relation between the pseudo-probabilities PG1+G2

of the series circuit (obtained by means of Eq. (3.3.17) from ZV,I| �Q=0) and the
pseudo-probabilities PGk of the individual conductors (obtained by means of Eq.
(3.3.17) from Zk). We find

PG1+G2[V , I] =
∫
DV ′ PG1[V − V ′, I]PG2[V

′, I]. (3.4.2)

This relation is obvious if one interprets it in terms of classical probabilities:
The voltage drop over G1+G2 is the sum of the independent voltage drops over
G1 and G2, so the probability PG1+G2 is the convolution of PG1 and PG2. Yet the
relation (3.4.2) is for quantum mechanical pseudo-probabilities.
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Figure 3-3. Top panel: Circuit of two conductors G1, G2 in an electromagnetic environment

modelled by three resistances R1, R2, R3. In the limit R1, R2, R3 → ∞ the circuit becomes

equivalent to the series circuit in the lower panel.

We evaluate the convolution (3.4.1) in the low-frequency regime, when the
functionals Z1 and Z2 become local in time,

lnZk[�Φ] ≡ −iSk[�Φ] = −i
∫
dt Sk(�Φ(t)). (3.4.3)

We then do the path integration in saddle-point approximation, with the result

lnZV,I[ �Q, �Φ] = −i extr
[�Φ′]

{
�Φ′ × �Q+

∫
dt
[
S1(�Φ′(t))+ S2(�Φ(t)− �Φ′(t))

]}
. (3.4.4)

The notation “extr” indicates the extremal value of the expression between curly
brackets with respect to variations of �Φ′(t). The validity of the low-frequency
and saddle-point approximations is addressed at the end of this section.

We will consider separately the case that both conductors G1 and G2 are
mesoscopic conductors and the case that G1 is mesoscopic while G2 is a macro-
scopic conductor. The action of a macroscopic conductor with impedance Z is
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quadratic,

Smacro[�Φ] = 1
2

∫
dω
2π

�Φ†Y̌ �Φ, (3.4.5)

corresponding to Gaussian current fluctuations. The matrix Y̌ is given by Eq.
(3.3.11), with a scalar ZGG = Z. The corresponding pseudo-probability Pmacro is
positive,

Pmacro[V , I] = exp

{
−
∫
dω

4πω
|V − ZI|2

ReZ
tanh

( ω
2kT

)}
. (3.4.6)

Substitution of Pmacro for PG2 in Eq. (3.4.2) gives a simple result for PG1+G2 at
zero temperature,

PG1+G2[V , I] = PG1[V − ZI, I], if T = 0. (3.4.7)

The feedback of the macroscopic conductor on the mesoscopic conductor amounts
to a negative voltage −ZI produced in response to a current I.

The action of a mesoscopic conductor in the low-frequency limit is given by
the Levitov-Lesovik formula [25,26],

Smeso(�Φ) = 1
2π

N∑
n=1

∫
dε ln[1+ Γn(eieϕ − 1)nR(1−nL)

+ Γn(e−ieϕ − 1)nL(1−nR)], (3.4.8)

with �Φ = (V ,ϕ). The Γn’s (n = 1,2, · · ·N) are the transmission eigenvalues of
the conductor. The two functions nL(ε, T) = [exp(ε/kT) + 1]−1 and nR(ε, T) =
nL(ε + eV , T) are the filling factors of electron states at the left and right con-
tacts, with V the voltage drop over the conductor and T its temperature.

The criterion for the applicability of the low-frequency and saddle-point ap-
proximations to the action of a mesoscopic conductor depends on two time
scales. The first scale τ1 =min(1/eV ,1/kT) is the mean width of current pulses
due to individual transferred electrons. The second scale τ2 = e/I � (e2/G)τ1

is the mean time between current pulses. At frequencies below 1/τ1 the action
of the conductor becomes local in time. Below the second scale 1/τ2 the ac-
tion of the conductor is large for values of �Φ where the nonlinearities become
important. This justifies the saddle-point approximation. The nonlinearities in
Smeso become relevant for ϕ � 1/e, so for time scales τ � τ2 we indeed have
Smeso � τIϕ � τI/e � τ/τ2 � 1.

These two approximations together are therefore justified if fluctuations with
frequencies ω above Λ � min(1/τ1,1/τ2) are suppressed by a small effective
impedance: Z(ω) � h/e2 for ω>∼Λ. A small impedance acts as a heavy mass
term in Eq. (3.4.1), suppressing fluctuations. This is seen from Eq. (3.4.5) for a
macroscopic conductor and it carries over to other conductors. In Sec. 3.7 we
will examine the Coulomb blockade effects that appear if Z(ω) is not small at
high frequencies.
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3.5 Third cumulants

3.5.1 Two arbitrary conductors in series

We use the general formula (3.4.4) to calculate the third order cumulant correl-
ator of current and voltage fluctuations in a series circuit of two conductors G1

and G2 at finite temperature. We focus on correlators at zero frequency (finite
frequency generalizations are given later).

The zero-frequency correlators C(n)X (V) depend on the average voltage V over
G1, which is related to the voltage Vbias of the voltage source by V = Vbias(1 +
G1/G2)−1. The average voltage over G2 is Vbias−V = Vbias(1+G2/G1)−1. Our goal
is to express C(n)X (V) in terms of the current correlators C(n)1 (V) and C(n)2 (V)
that the conductors G1 and G2 would have if they were isolated and biased with
a non-fluctuating voltage V . These are defined by

〈〈Ii(ω1) · · · Ii(ωn)〉〉V = 2πδ


 n∑
k=1

ωk


C(n)i (V), (3.5.1)

where Ii is the current through conductor i at fixed voltage V .
To evaluate Eq. (3.4.4) it is convenient to discretize frequenciesωn = 2πn/τ.

The Fourier coefficients are fn = τ−1
∫ τ
0 dt eiωnt f (t). The detection time τ is

sent to infinity at the end of the calculation. For zero-frequency correlators the
sources at non-zero frequencies vanish and there is a saddle point configuration
such that all fields at non-zero frequencies vanish as well. We may then write Eq.
(3.4.4) in terms of only the zero-frequency fields �Φ0 = (V0,ϕ0), �Φ′0 = (V ′0,ϕ′0),
and �Q0 = (I0, q0), with actions

τ−1Sk(�Φ′0) = Gkϕ′0V ′0 + i
∞∑
n=2

(−iϕ′0)n
n!

C(n)k (V ′0). (3.5.2)

For �Φ0 = (Vbias,0) and �Q0 = (0,0) the saddle point is at �Φ′0 = (V ,0). For the
third order correlators we need the extremum in Eq. (3.4.4) to third order in ϕ0

and q0. We have to expand Sk to third order in the deviation δ�Φ′0 = �Φ′0 − (V ,0)
from the saddle point at vanishing sources. We have to this order

τ−1S1(�Φ′0) = G1ϕ′0(V + δV ′0)−
i
2
C(2)1 (V)ϕ′20 −

1
6
C(3)1 (V)ϕ

′3
0

− i
2
d
dV
C(2)1 (V)δV ′0ϕ

′2
0 +O(δ�Φ′40 ), (3.5.3)

τ−1S2(�Φ0 − �Φ′0) = G2ϕ′0(Vbias − V − δV ′0)−
i
2
C(2)2 (Vbias − V)ϕ′20

− 1
6
C(3)2 (Vbias − V)ϕ′30 +

i
2
d
dV
C(2)2 (Vbias − V)δV ′0ϕ′20 +O(δ�Φ′40 ).

(3.5.4)
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Minimizing the sum S1(�Φ′0)+S2(�Φ0− �Φ′0) to third order in q0 and ϕ0 we then
find the required relation between the correlators of the series circuit and the
correlators of the isolated conductors. For the second order correlators we find

C(2)II (V) = (R1 + R2)−2[R2
1C(2)1 (V)+ R2

2C(2)2 (Vbias − V)], (3.5.5a)

C(2)VV (V) = (R1 + R2)−2(R1R2)2[C(2)1 (V)+C(2)2 (Vbias − V)], (3.5.5b)

C(2)IV (V) = (R1 + R2)−2R1R2[R2C(2)2 (Vbias − V)− R1C(2)1 (V)], (3.5.5c)

with Rk = 1/Gk. The third order correlators contain extra terms that depend on
the second-order correlators,

C(3)III (V) = (R1 + R2)−3[R3
1C(3)1 (V)+ R3

2C(3)2 (Vbias − V)]+ 3C(2)IV
d
dV
C(2)II ,

(3.5.6a)

C(3)VVV (V) = (R1 + R2)−3(R1R2)3[C(3)2 (Vbias − V)− C(3)1 (V)]+ 3C(2)VV
d
dV
C(2)VV ,

(3.5.6b)

C(3)VVI(V) = (R1 + R2)−3(R1R2)2[R1C(3)1 (V)+ R2C(3)2 (Vbias − V)]
+ 2C(2)VV

d
dV
C(2)IV + C(2)IV

d
dV
C(2)VV , (3.5.6c)

C(3)IIV (V) = (R1 + R2)−3R1R2[R2
2C(3)2 (Vbias − V)− R2

1C(3)1 (V)]

+ 2C(2)IV
d
dV
C(2)IV + C(2)VV

d
dV
C(2)II . (3.5.6d)

These results agree with those obtained by the cascaded Langevin approach [10].

3.5.2 Mesoscopic and macroscopic conductor in series

An important application is a single mesoscopic conductor G1 embedded in an
electromagnetic environment, represented by a macroscopic conductor G2. A
macroscopic conductor has no shot noise but only thermal noise. The third
cumulant C(3)2 is therefore equal to zero. The second cumulant C(2)2 is voltage
independent, given by [7]

C(2)2 (ω) =ω coth
( ω

2kT2

)
ReG2(ω), (3.5.7)

at temperature T2. We still assume low frequencies ω � max(eV , kT1), so the
frequency dependence of S1 can be neglected. We have retained the frequency
dependence of S2, because the characteristic frequency of a macroscopic con-
ductor is typically much smaller than of a mesoscopic conductor.

From Eq. (3.5.6) (and a straightforward generalization to frequency depend-
ent correlators) we can obtain the third cumulant correlators by setting C(3)2 = 0
and substituting Eq. (3.5.7). We only give the two correlators C(3)III and C(3)VVV ,
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Figure 3-4. Third cumulant of voltage and current fluctuations of a tunnel junction (conduct-

ance G) in an electromagnetic environment (impedance Z, assumed frequency independent).

Both C(3)I and C(3)V are multiplied by the scaling factor A = (1 + ZG)3/eGkT . The two curves

correspond to different values of ZG (solid curve: ZG = 1; dashed curve: ZG = 0). The

temperatures of the tunnel junction and its environment are chosen the same, T1 = T2 = T .

since these are the most significant for experiments. To abbreviate the formula
we denote G = G1 and Z(ω) = 1/G2(ω). We find

C(3)III (ω1,ω2,ω3) = 1
[1+ Z(ω1)G][1+ Z(ω2)G][1+ Z(ω3)G]

{
C(3)1 (V)

− dC
(2)
1 (V)
dV

3∑
j=1

Z(−ωj)[C(2)1 (V)−GZ(ωj)C(2)2 (ωj)][1 + Z(−ωj)G]−1
}
,

(3.5.8)

− C
(3)
VVV (ω1,ω2,ω3)

Z(ω1)Z(ω2)Z(ω3)
= 1
[1+ Z(ω1)G][1+ Z(ω2)G][1+ Z(ω3)G]

×
{
C(3)1 (V)−

dC(2)1 (V)
dV

3∑
j=1

Z(−ωj)[C(2)1 (V)+ C(2)2 (ωj)][1 + Z(−ωj)G]−1
}
.

(3.5.9)

We show plots for two types of mesoscopic conductors: a tunnel junction and
a diffusive metal. In both cases it is assumed that there is no inelastic scattering,
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Figure 3-5. Same as Fig. 3-4, but now for a diffusive metal.

which is what makes the conductor mesoscopic. The plots correspond to global
thermal equilibrium (T1 = T2 = T ) and to a real and frequency-independent
impedance Z(ω) ≡ Z. We compare C(3)I ≡ C(3)III with C(3)V ≡ −C(3)VVV /Z3. (The
minus sign is chosen so that C(3)I = C(3)V at T = 0.)

For a tunnel junction one has

C(2)1 (V) = GeV coth
eV
2kT

, C(3)1 (V) = Ge2V. (3.5.10)

The third cumulant of current fluctuations in an isolated tunnel junction is tem-
perature independent [11], but this is changed drastically by the electromagnetic
environment [10]. Substitution of Eq. (3.5.10) into Eqs. (3.5.8) and (3.5.9) gives
the curves plotted in Fig. 3-4 for ZG = 0 and ZG = 1. The slope dC(3)V (V)/dV
becomes strongly temperature dependent and may even change sign when kT
becomes larger than eV . This is in qualitative agreement with the experiment of
Reulet, Senzier, and Prober [14]. In Ref. [14] it is shown that Eq. (3.5.9) provides
a quantitative description of the experimental data.

For a diffusive metal we substitute the known formulas for the second and
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Figure 3-6. Four-terminal voltage measurement.

third cumulants without electromagnetic environment [12,13],

C(2)1 (V) = 1
3
GeV

(
cothp + 2/p

)
, (3.5.11)

C(3)1 (V) = e2GV
p(1− 26e2p + e4p)− 6(e4p − 1)

15p(e2p − 1)2
.

(3.5.12)

We have abbreviated p = eV/2kT . Plots for ZG = 0 and ZG = 1 are shown in
Fig. 3-5. The diffusive metal is a bit less striking than a tunnel junction, since
the third cumulant is already temperature dependent even in the absence of the
electromagnetic environment. In the limit ZG →∞ we recover the result for C(3)V
obtained by Nagaev from the cascaded Langevin approach [27].

3.6 How to measure current fluctuations

In Fig. 3-4 we have plotted both current and voltage correlators, but only the
voltage correlator has been measured [14]. At zero temperature of the macro-
scopic conductor there is no difference between the two, as follows from Eqs.
(3.5.8) and (3.5.9): C(3)III = −C(3)VVV/Z3 if C(2)2 = 0, which is the case for a macro-
scopic conductor G2 at T2 = 0. For T2 ≠ 0 a difference appears that persists in
the limit of a non-invasive measurement Z → 0 [10]. Since V and I in the series
circuit with a macroscopic G2 are linearly related and linear systems are known
to be completely determined by their response functions and their temperat-
ure, one could ask what it is that distinguishes the two measurements, or more
practically: How would one measure C(3)III instead of C(3)VVV ?

To answer this question we slightly generalize the macroscopic conductor to
a four-terminal, rather than two-terminal configuration, see Fig. 3-6. The voltage
VM over the extra pair of contacts is related to the current IG through the series
circuit by a cross impedance, ∂VM/∂IG = ZMG. The full impedance matrix Z is
defined as in Eq. (3.2.1). For simplicity we take the zero-frequency limit. For this
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VbiasG1 VH

LV

B

Figure 3-7. Hall bar that allows one to measure the voltage correlator C(3)V ∝ 〈〈V3
L 〉〉 as well as

the current correlator C(3)I ∝ 〈〈V3
H〉〉.

configuration the third cumulant C(3)VMVMVM of VM is given by

C(3)VMVMVM
Z3
MG

= C(3)IGIGIG +
ZGM + ZMG

2ZGM


C(3)VGVGVG
Z3
GG

− C(3)IGIGIG


 . (3.6.1)

It contains the correlator 〈〈δVM(ω)δVG(ω′)〉〉 = 2πδ(ω+ω′)CGM of the voltage
fluctuations over the two pairs of terminals of the macroscopic conductor, which
according to the fluctuation-dissipation theorem (3.2.2) is given in the zero-
frequency limit by

CGM = kT2(ZGM + ZMG). (3.6.2)

The correlator CGM enters since C(3)VMVMVM depends on how thermal fluctuations
in the measured variable VM correlate with the thermal fluctuations of VG which
induce extra current noise in G1.

We conclude from Eq. (3.6.1) that the voltage correlator C(3)VMVMVM becomes

proportional to the current correlator C(3)IGIGIG if ZGM + ZMG = 0. This can be
realized if VM is the Hall voltage VH in a weak magnetic field B. Then ZMG =
−ZGM = RH , with RH ∝ |B| the Hall resistance. The magnetic field need only be
present in the macroscopic conductor G2, so it need not disturb the transport
properties of the mesoscopic conductor G1. If, on the other hand, VM is the lon-
gitudinal voltage VL, then ZMG = ZGM = RL, with RL the longitudinal resistance.
The two-terminal impedance ZGG is the sum of Hall and longitudinal resistances,
ZGG = RL + RH . So one has

C(3)VLVLVL =
( RL
RL + RH

)3

C(3)VGVGVG, (3.6.3)

C(3)VHVHVH = R3
HC

(3)
IGIGIG. (3.6.4)

One can generalize all this to an arbitrary measurement variable X that is
linearly related to the current IG through G1. In a linear circuit the off-diagonal
elements of the response tensor Z relating (X, VG) to the conjugated sources are
linked by Onsager-Casimir relations [20]. If X is even under time-reversal, then
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ZXG = ZGX , while if X is odd, then ZXG = −ZGX . In the first case C(3)XXX ∝ C(3)VGVGVG ,

while in the second case C(3)XXX ∝ C(3)IGIGIG .

3.7 Environmental Coulomb blockade

The saddle-point approximation to the path integral (3.4.1) for a mesoscopic
conductor G1 in series with a macroscopic conductor G2 (impedance Z) breaks
down when the impedance at the characteristic frequency scaleΛ = 1/max(τ1, τ2)
discussed in section 3.4 is not small compared to the resistance quantum h/e2.
It can then react fast enough to affect the dynamics of the transfer of a single
electron. These single-electron effects amount to a Coulomb blockade induced
by the electromagnetic environment [4]. In our formalism they are accounted
for by fluctuations around the saddle point of Eq. (3.4.1).

In Ref. [17] it has been found that the Coulomb blockade correction to the
mean current calculated to leading order in Z is proportional to the second cu-
mulant of current fluctuations in the isolated mesoscopic conductor (Z = 0).
More recently, the Coulomb blockade correction to the second cumulant of cur-
rent fluctuations has been found to be proportional to the third cumulant [18].
It was conjectured in Ref. [18] that this relation holds also for higher cumulants.
Here we give a proof of this conjecture.

We show that at zero temperature and zero frequency the leading order Cou-
lomb blockade correction to the n-th cumulant of current fluctuations is pro-
portional to the voltage derivative of the (n + 1)-th cumulant. To extract the
environmental Coulomb blockade from the other effects of the environment we
assume that Z vanishes at zero frequency, Z(0) = 0. The derivation is easiest in
terms of the pseudo-probabilities discussed in Sec. 3.3.

According to Eq. (3.3.19), cumulant correlators of current have the generating
functional

FG1+G2[�Φ = (V ,ϕ)] = ln
∫
DI e−i

∫
dt IϕPG1+G2[V , I]. (3.7.1)

Zero frequency current correlators are obtained from

〈〈I(0)n〉〉G1+G2 = in
δn

δ[ϕ(0)]n
FG1+G2[�Φ]

∣∣∣
ϕ=0
. (3.7.2)

We employ now Eq. (3.4.7) and expand FG1+G2[�Φ] to first order in Z,

FG1+G2[�Φ] = FG1[�Φ]−
∫
DI e−i

∫
dt Iϕ

∫ dω
2π Z(ω)I(ω)

δ
δV(ω)PG1[V , I]∫

DI e−i
∫
dt IϕPG1[V , I]

= FG1[�Φ]− i
∫
dω
2π

Z(ω)
δ2

δV(ω)δϕ(ω)
FG1[�Φ]. (3.7.3)
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The last equality holds since single derivatives of FG1[�Φ] with respect to a vari-
able at finite frequency vanish because of time-translation symmetry. Substitu-
tion into Eq. (3.7.2) gives

〈〈I(0)n〉〉G1+G2 = 〈〈I(0)n〉〉G1 −
∫
dω
2π

Z(ω)
δ

δV(ω)
〈〈I(ω)I(0)n〉〉G1 ,

(3.7.4)

which is what we had set out to prove.

3.8 Conclusion

In conclusion, we have presented a fully quantum mechanical derivation of the
effect of an electromagnetic environment on current and voltage fluctuations in
a mesoscopic conductor, going beyond an earlier study at zero temperature [9].
The results agree with those obtained from the cascaded Langevin approach [10],
thereby providing the required microscopic justification.

From an experimental point of view, the nonlinear feedback from the envir-
onment is an obstacle that stands in the way of a measurement of the transport
properties of the mesoscopic system. To remove the feedback it is not sufficient
to reduce the impedance of the environment. One also needs to eliminate the
mixing in of environmental thermal fluctuations. This can be done by ensur-
ing that the environment is at a lower temperature than the conductor, but this
might not be a viable approach for low-temperature measurements. We have
proposed here an alternative method, which is to ensure that the measured
variable changes sign under time reversal. In practice this could be realized
by measuring the Hall voltage over a macroscopic conductor in series with the
mesoscopic system.

The field theory developed here also provides for a systematic way to in-
corporate the effects of the Coulomb blockade which arise if the high-frequency
impedance of the environment is not small compared to the resistance quantum.
We have demonstrated this by generalizing to moments of arbitrary order a rela-
tion in the literature [17,18] for the leading-order Coulomb blockade correction
to the first and second moment of the current. We refer to Ref. [19] for a renor-
malization group analysis of the Coulomb blockade corrections of higher order.

Appendix A: Derivation of the environmental action

To derive Eq. (3.3.10) we define a generating functional for the voltages V =
(VM,VG) in the environmental circuit of Fig. 3-2,

Ze[ �Q] =
〈
T−ei

∫
dt [H+Q−(t)V]T+e−i

∫
dt [H+Q+(t)V]

〉
. (A.1)
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We have introduced sources Q = (QM,QG). Since the environmental Hamilto-
nian is quadratic, the generating functional is the exponential of a quadratic
form in �Q,

Ze[ �Q] = exp
(
− i

2

∫
dω
2π

�Q
†
(ω)Ǧ(ω) �Q(ω)

)
. (A.2)

The off-diagonal elements of the matrix Ǧ are determined by the impedance of
the circuit,

i
δ2

δQclβ (ω′)δQ
q∗
α (ω)

lnZe
∣∣∣ �Q=0

= δ
δIβ(ω′)

〈Vα(ω)〉 = 2πδ(ω−ω′)Zαβ(ω). (A.3)

The upper-diagonal (cl, cl) elements in the Keldysh space vanish for symmetry
reasons (Ze|Qq=0 = 0, cf. Ref. [21]). The lower-diagonal (q, q) elements are de-
termined by the fluctuation-dissipation theorem (3.2.2),

− δ2

δQq∗α (ω)δQ
q∗
β (ω′)

lnZe
∣∣∣ �Q=0

= 〈δVα(ω)δVβ(ω′)〉

= πδ(ω+ω′)ω coth
( ω

2kT

)
[Zαβ(ω)+ Z∗βα(ω)].

(A.4)

Consequently we have

Ǧ(ω) =

 0 Z†(ω)
Z(ω) − i2ω coth

(
ω

2kT

)
[Z(ω)+ Z†(ω)]


 . (A.5)

The environmental action Se is defined by

Ze[ �Q] =
∫
D[�ΦG] exp

(
−iSe[ �QM , �ΦG]− i�ΦG × �QG

)
. (A.6)

One can check that substitution of Eq. (3.3.10) into Eq. (A.6) yields the same Ze
as given by Eqs. (A.2) and (A.5).

Appendix B: Derivation of Eq. (3.3.14)

In the limit R → ∞ a voltage measurement in the circuit of Fig. 3-8 corresponds
to a voltage measurement at contacts M and M′ of the circuit C. We obtain
the generating functional ZV of this voltage measurement from Eq. (3.3.9). The
influence functional is now due to C and it equals the generating functional
ZI of a current measurement at contacts M and M′ of C. From Eq. (3.3.10)
with ZMM = ZGG = −ZMG = −ZGM = R we find in the limit R → ∞ that the
environmental action takes the simple form Se[ �QM, �ΦG] = �Φ× �Q, with the cross-
product defined in Eq. (3.3.15). Consequently, we have

ZV[ �Q] =
∫
D[�Φ] e−i�Φ× �QZI[�Φ]. (B.1)
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circuit  C

IM

VM

R

M M’

Figure 3-8. Circuit to relate voltage to current measurements.

This equation relates the generating functionals of current and voltage measure-
ments at any pair of contacts of a circuit.

Appendix C: Derivation of Eq. (3.4.1)

To derive Eq. (3.4.1) from Eq. (3.3.9) we need the environmental action Se of the
circuit shown in Fig. 3-3. The impedance matrix is

Z = 1
R1 + R2 + R3




R1(R2 + R3) −R1R2 −R1(R2 + R3) −R1R3

−R1R2 R2(R1 + R3) −R1R2 −R2R3

−R1(R2 + R3) −R1R2 R1(R2 + R3) −R1R3

−R1R3 −R2R3 −R1R3 R3(R1 + R2)


 .

(C.1)
We seek the limit R1, R2, R3 → ∞. The environmental action (3.3.10) takes the
form

Se[ �QM , �ΦG] = �ΦG1 × �QM1 + �ΦG1 × �QM2 + �ΦG2 × �QM2 . (C.2)

Substitution into Eq. (3.3.9) gives ZVV . Employing Eq. (3.3.14) to obtain ZVI from
ZVV we arrive at Eq. (3.4.1).
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4 Distribution of voltage fluctuations in a
current-biased conductor

The current–voltage or charge–phase duality plays a central role in the theory of
single-electron tunneling through tunnel junctions of small capacitance [1]. At
the two extremes one has a voltage-biased junction (in which the voltage is kept
fixed by a source with zero internal resistance, while the current fluctuates) and
a current-biased junction (fixed current from a source with infinite internal res-
istance, fluctuating voltage). The two current–voltage characteristics are entirely
different. In the current-biased case the Coulomb blockade introduces a jump
in the voltage at low current [2], while in the voltage-biased case the Coulomb
blockade is inoperative.

Quantum mechanically, the duality appears because current I and voltage
V are noncommuting operators [3]. This is conveniently expressed by the ca-
nonical commutator [Φ,Q] = ie of the transferred charge Q =

∫ τ
0 I(t)dt and

accumulated phase Φ = (e/�)
∫ τ
0 V(t)dt (in a given detection time τ). Moments

of charge and phase determine the measured correlators of current and voltage,
respectively [4].

While all moments of Q in a voltage-biased conductor are known ( [5]), the
dual problem (moments of Φ under current bias) has only been studied for
the first two moments [6, 7]. In the absence of Coulomb-blockade effects, the
first two moments in the dual problems are simply related by rescaling I(t) →
V(t)×G (with G the conductance). One might surmise that this linear rescaling
carries over to higher moments, so that the dual problems are trivially related in
the absence of the Coulomb blockade. However, the rescaling (as derived for ex-
ample in Ref. [8]) follows from a Langevin approach that is suspect for moments
higher than the second [9,10] — so that one might expect a more complex dual-
ity relation.

The resolution of this issue is particularly urgent in view of recent proposals
to measure the third moment of shot noise in a mesoscopic conductor [9–11].
Does it matter if the circuit is voltage biased or current biased, or can one relate
one circuit to the other by a linear rescaling? That is the question addressed in
this chapter.

We will demonstrate that, quite generally, the rescaling breaks down beyond
the second moment. We calculate all moments of the phase (hence all correlators
of the voltage) for the simplest case of a single-channel conductor (transmission
probability Γ ) in the zero-temperature limit. In this case the charge Q ≡ qe for
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voltage bias V0 ≡ hφ0/eτ is known to have the binomial distribution [5]

Pφ0(q) =
(
φ0

q

)
Γ q(1− Γ)φ0−q. (4.0.1)

We find that the dual distribution of phase Φ ≡ 2πφ for current bias I0 ≡ eq0/τ
is the Pascal distribution [12]

Pq0(φ) =
(
φ− 1
q0 − 1

)
Γ q0(1− Γ)φ−q0 . (4.0.2)

(Both q and φ are integers for integer φ0 and q0.)
In the more general case we have found that the distributions of charge and

phase are related in a remarkably simple fashion for q,φ→∞:

lnPq(φ) = lnPφ(q)+O(1). (4.0.3)

(The remainder O(1) equals ln(q/φ) in the zero-temperature limit.) This mani-
festation of charge-phase duality, valid with logarithmic accuracy, holds for any
number of channels and any model of the conductor. Before presenting the
derivation we give an intuitive physical interpretation.

The binomial distribution (4.0.1) for voltage bias has the interpretation [5]
that electrons hit the barrier with frequency eV0/h and are transmitted inde-
pendently with probability Γ . For current bias the transmission rate is fixed
at I0/e. Deviations due to the probabilistic nature of the transmission process
are compensated for by an adjustment of the voltage drop over the barrier. If
the transmission rate is too low, the voltage V(t) rises so that electrons hit the
barrier with higher frequency. The number of transmission attempts (“trials”)
in a time τ is given by (e/h)

∫ τ
0 V(t)dt ≡ φ. The statistics of the accumulated

phase φ is therefore given by the statistics of the number of trials needed for
I0τ/e successful transmission events. This stochastic process has the Pascal
distribution (4.0.2).

Starting point of our derivation is a generalization to time-dependent bias
voltage V(t) = (�/e)Φ̇(t) of an expression in the literature [5,13] for the gener-
ating functional Z[Φ(t), χ(t)] of current fluctuations:

Z[Φ, χ] =
〈←−

T exp
{
i
e

∫
dt
[
Φ(t)+ 1

2χ(t)
]
Î(t)

}

× −→T exp
{
i
e

∫
dt
[−Φ(t)+ 1

2χ(t)
]
Î(t)

}�
. (4.0.4)

(The notation
−→
T (
←−
T ) denotes time-ordering of the exponentials in ascending (des-

cending) order.) Functional derivatives of the Keldysh action lnZ with respect
to χ(t)/e produce cumulant correlators of the current operator Î(t) to any or-
der desired. To make the transition from voltage to current bias we introduce
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a second conductor B in series with the mesoscopic conductor A (see Fig. 4-1).
The generating functional ZA+B of current fluctuations in the circuit is a (path
integral) convolution of ZA and ZB ,

ZA+B[Φ, χ] =
∫
DΦ1Dχ1ZA[Φ1, χ1]ZB[Φ − Φ1, χ − χ1]. (4.0.5)

One can understand this expression as the average over fluctuating phases Φ1, χ1

at the node of the circuit shared by both conductors.
In general the functional dependence of ZA,ZB is rather complicated and

non-local in time, but we have found an interesting and tractable low-frequency
regime: The non-locality may be disregarded for sufficiently slow realizations
of the fluctuating phases. In this regime the functional Z can be expressed in
terms of a function S,

lnZ[Φ(t), χ(t)] =
∫
dt S

(
Φ̇(t), χ(t)

)
. (4.0.6)

The path integral (4.0.5) can be taken in saddle-point approximation, with the
result

SA+B(Φ̇, χ) = SA(Φ̇s , χs)+ SB(Φ̇ − Φ̇s , χ − χs). (4.0.7)

Here Φ̇s and χs stand for the (generally complex) values of Φ̇1 and χ1 at the
saddle point (where the derivatives with respect to these phases vanish).

The validity of the low-frequency and saddle-point approximations depends
on two time scales. The first time scale τ1 = min (�/eV ,�/kT) (with T the
temperature) sets the width of current pulses associated with the transfer of
individual electrons. The second time scale τ2 = e/I sets the spacing of the
pulses. Let ω be the characteristic frequency of a particular realization of the
fluctuating phase. For the low-frequency approximation we require ωτ1 � 1
and for the saddle-point approximation ωτ2 � 1. Both conditions are satis-
fied if frequencies greater than Ωc = min (1/τ1,1/τ2) do not contribute to the
path integral. To provide this cut-off we assume that |Z(ω)| � �/e2 at fre-
quencies ω>∼Ωc . The small high-frequency impedance acts as a “mass term” in
the Keldysh action, suppressing high-frequency fluctuations. The low-frequency
impedance can have any value. Since the frequency dependence of Z(ω) is typ-
ically on scales much below Ωc , it can be readily accounted for within the range
of validity of our approximations.

Eqs. (4.0.6) and (4.0.7) are quite general and now we apply them to the specific
circuit of Fig. 4-1. We assume that the mesoscopic conductor A (conductance G)
is in series with a macroscopic conductor B with frequency dependent imped-
ance Z(ω). We denote the zero-frequency limit by Z(0) ≡ Z0 ≡ z0h/e2. The
circuit is driven by a voltage source with voltage V0. Both the voltage drop V at
the mesoscopic conductor and the current I through the conductor fluctuate in
time for finite Z0, with averages Ī = V0G(1+Z0G)−1, V = V0(1+Z0G)−1. Voltage
bias corresponds to Z0G � 1 and current bias to Z0G � 1, with I0 = V0/Z0 the
imposed current.
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V0

I

V

Z( )ω

A

B

Φ ,χ1 1 Φ,χ

Figure 4-1. Mesoscopic conductor (shaded) in a circuit containing a voltage source V0 and

series impedance Z(ω). Both the current I through the circuit and the voltage drop V over the

conductor may fluctuate in time. The dual problems contrasted here are: voltage bias (Z → 0,

fixed V = V0, fluctuating I) and current bias (Z →∞, fixed I = V0/Z, fluctuating V ). The phases

Φ, χ appearing in Eq. (4.0.5) are indicated.

We assume that the temperature of the entire circuit is sufficiently low (kT �
eV ) to neglect thermal noise relative to shot noise. (See Ref. [14] for the effects of
a finite temperature of mesoscopic conductor and/or series impedance.) We will
also restrict ourselves to frequencies below the inverse RC-time of the circuit,
where Z(ω) ≈ Z0. The low-temperature, low-frequency Keldysh action of the
external impedance is simply SB(Φ̇, χ) = iχΦ̇/2πz0, while the action SA of the
mesoscopic conductor is given by [5]

SA(Φ̇, χ) = Φ̇
2π
S(iχ), S(ξ) =

N∑
n=1

ln
[
1+ (eξ − 1)Tn

]
. (4.0.8)

The Tn’s are the transmission eigenvalues, with
∑
n Tn = Gh/e2 ≡ g the dimen-

sionless conductance.
We seek the cumulant generating function of charge

F(ξ) = ln


 ∞∑
q=0

eqξP(q)


 = ∞∑

p=1

〈〈qp〉〉ξ
p

p!
, (4.0.9)

where 〈〈qp〉〉 is the p-th cumulant of the charge transferred during the time
interval τ. It is related to the Keldysh action (4.0.7) by

F(ξ) = τSA+B(eV0/�,−iξ). (4.0.10)
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We also require the cumulant generating function of phase, G(ξ). Since V =
V0 − Z0I (in the absence of thermal noise from the external impedance), it is
related to F(ξ) by a change of variables (from q to φ = φ0 − qz0). The relation
is

G(ξ) =
∞∑
p=1

〈〈φp〉〉ξ
p

p!
= φ0ξ +F(−z0ξ). (4.0.11)

In the limit Z0 → 0 of voltage bias the saddle point of the Keldysh action
is at Φ̇s = Φ̇, χs = χ, and from Eqs. (4.0.7), (4.0.9), and (4.0.11) one recovers the
results of Ref. [5]: The cumulant generating function F0(ξ) = τSA(eV0/�,−iξ) =
φ0S(ξ) and the corresponding probability distribution

Pφ0(q) = lim
x→0

1
q!
dq

dxq

N∏
n=1

[1+ (x − 1)Tn]φ0 . (4.0.12)

The parameterφ0 = eV0τ/h is the number of attempted transmissions per chan-
nel, assumed to be an integer � 1. The first few cumulants are 〈q〉0 = φ0g,
〈〈q2〉〉0 = φ0

∑
n Tn(1 − Tn), 〈〈q3〉〉0 = φ0

∑
n Tn(1 − Tn)(1 − 2Tn). In the single-

channel case (N = 1, T1 ≡ Γ ) the distribution (4.0.12) has the binomial form
(4.0.1).

After these preparations we are now ready to generalize all of this to finite Z0,
and in particular to derive the dual distribution of phase (4.0.2) under current
bias. The key equation that allows us to do that follows directly from Eqs. (4.0.7)
and (4.0.10):

F(ξ) = φ0

z0
[ξ − σ(ξ)], σ + z0S(σ) = ξ. (4.0.13)

The implicit function σ(ξ) (which determines the saddle point of the Keldysh ac-
tion) provides the cumulant generating function of charge F for arbitrary series
resistance z0 = (e2/h)Z0. One readily checks that F(ξ) → φ0S(ξ) in the limit
z0 → 0, as it should.

By expanding Eq. (4.0.13) in powers of ξ we obtain a relation between the
cumulants 〈〈qp〉〉 of charge at Z0 ≠ 0 and the cumulants 〈〈qp〉〉0 at Z0 = 0. The
Langevin approach discussed in the introduction predicts that the fluctuations
are rescaled by a factor 1 + z0g as a result of the series resistance. Indeed,
to second order we find 〈〈q2〉〉 = (1 + z0g)−3〈〈q2〉〉0, in agreement with Ref. [8].
However, if we go to higher cumulants we find that other terms appear, which
can not be incorporated by any rescaling. For example, Eq. (4.0.13) gives for the
third cumulant

〈〈q3〉〉 = 〈〈q3〉〉0
(1+ z0g)4

− 3z0g
(1+ z0g)5

(〈〈q2〉〉0
)2

〈q〉0
. (4.0.14)

The first term on the the right-hand-side has the expected scaling form, but the
second term does not. This is generic for p ≥ 3: 〈〈qp〉〉 = (1 + z0g)−p−1〈〈qp〉〉
plus a nonlinear (rational) function of lower cumulants [15]. All terms are of the



76 Distribution of voltage fluctuations

same order of magnitude in z0g, so one can not neglect the nonlinear terms.
The Langevin approach ignores the nonlinear feedback that causes the mixing
in of lower cumulants. This deficiency can be corrected, see Ref. [14].

Turning now to the limit z0g → ∞ of current bias, we see from Eq. (4.0.13)
that F → F∞ with

F∞(ξ) = q0ξ − q0Sinv(ξ/z0) (4.0.15)

defined in terms of the functional inverse Sinv of S. The parameter q0 = φ0/z0 =
I0τ/e (assumed to be an integer � 1) is the number of charges transferred by
the imposed current I0 in the detection time τ. Transforming from charge to
phase variables by means of Eq. (4.0.11), we find that G → G∞ with

G∞(ξ) = −q0Sinv(−ξ). (4.0.16)

In the single-channel case Eq. (4.0.16) reduces to G∞(ξ) = −q0 ln[1+Γ−1(e−ξ−1)],
corresponding to the Pascal distribution (4.0.2). The first three cumulants are
〈φ〉 = q0/Γ , 〈〈φ2〉〉 = (q0/Γ 2)(1− Γ), 〈〈φ3〉〉 = (q0/Γ 3)(1− Γ)(2− Γ).

For the general multi-channel case a simple expression for Pq0(φ) can be
obtained in the ballistic limit (all Tn’s close to 1) and in the tunneling limit (all
Tn’s close to 0). In the ballistic limit one has G∞(ξ) = q0ξ/N + q0(N − g)(eξ/N −
1), corresponding to a Poisson distribution in the discrete variable Nφ − q0 =
0,1,2, . . .. In the tunneling limit G∞(ξ) = −q0 ln(1 − ξ/g), corresponding to a
chi-square distribution Pq0(φ) ∝ φq0−1e−gφ in the continuous variable φ > 0. In
contrast, the charge distribution Pφ0(q) is Poissonian both in the tunneling limit
(in the variable q) and in the ballistic limit (in the variable Nφ0 − q).

For large q0 and φ, when the discreteness of these variables can be ignored,
we may calculate Pq0(φ) from G∞(ξ) in saddle-point approximation. If we also
calculate Pφ0(q) from F0(ξ) in the same approximation (valid for large φ0 and
q), we find that the two distributions have a remarkably similar form:

Pφ0(q) = Nφ0(q) exp[τΣ(2πφ0/τ, q/τ)], (4.0.17)

Pq0(φ) = Nq0(φ) exp[τΣ(2πφ/τ, q0/τ)]. (4.0.18)

The same exponential function

Σ(x,y) = SA(x,−iξs)−yξs (4.0.19)

appears in both distributions (with ξs the location of the saddle point). The pre-
exponential functions Nφ0 and Nq0 are different, determined by the Gaussian
integration around the saddle point.

Since these two functions vary only algebraically, rather than exponentially,
we conclude that Eq. (4.0.3) holds with the remainder O(1) = ln(q/φ) obtained
by evaluating ln[2π(∂2Σ/∂x2)1/2(∂2Σ/∂y2)−1/2] at x = 2πφ/τ, y = q/τ.

The distributions of charge and phase are compared graphically in Fig. 4-2, in
the tunneling limit Γ � 1. We use the rescaled variable x = q/〈q〉 for the charge
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Figure 4-2. Comparison of the distributions of charge (dashed curve, with x = q/〈q〉) and

of phase (solid curve, with x = φ/〈φ〉), calculated from Eqs. (4.0.20) and (4.0.21) for N =
q0 = φ0Γ = 30 transferred charges in the tunneling limit Γ � 1. The main plot emphasizes

the non-Gaussian tails on a semi-logarithmic scale, the inset shows on a linear scale that the

Gaussian body of the distributions coincides.

and x = φ/〈φ〉 for the phase, and take the same mean number N = q0 = φ0Γ
of transferred charges in both cases. We plot the asymptotic large-N form of
the distributions,

Pcharge(x) = (N /2π)1/2x−1/2eN (x−1−x lnx), (4.0.20)

Pphase(x) = (N /2π)1/2x−1eN (1−x+lnx), (4.0.21)

corresponding to the Poisson and chi-square distribution, respectively. Since the
first two moments are the same, the difference appears in the non-Gaussian tails.
The difference should be readily visible as a factor of two in a measurement of
the third cumulant: 〈〈x3〉〉 = N−2 for the charge and 〈〈x3〉〉 = 2N−2 for the
phase.

In summary, we have demonstrated theoretically that electrical noise be-
comes intrinsically different when the conductor is current biased rather than
voltage biased. While the second moments can be related by a rescaling with the
conductance, the third and higher moments can not. From a fundamental point
of view, the limit of full current bias is of particular interest. The counterpart
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of the celebrated binomial distribution of transferred charge [5] turns out to be
the Pascal distribution of phase increments.
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5 Temperature dependent third cumulant of
tunneling noise

Shot noise of the electrical current was studied a century ago as a way to meas-
ure the fundamental unit of charge [1]. Today shot noise is used for this pur-
pose in a wide range of contexts, including superconductivity and the fractional
quantum Hall effect [2]. Already in the earliest work on vacuum tubes it was real-
ized that thermal fluctuations of the current can mask the fluctuations due to
the discreteness of the charge. In semiconductors, in particular, accurate meas-
urements of shot noise are notoriously difficult because of the requirement to
maintain a low temperature at a high applied voltage.

Until very recently, only the second cumulant of the fluctuating current was
ever measured. The distribution of transferred charge is nearly Gaussian, be-
cause of the law of large numbers, so it is quite nontrivial to extract cumu-
lants higher than the second. Much of the experimental effort was motivated by
Levitov and Reznikov’s prediction [3] that odd cumulants of the current through
a tunnel junction should not be affected by the thermal noise that contamin-
ates the even cumulants. This is a direct consequence of the Poisson statistics
of tunneling events. The third cumulant should thus have the linear depend-
ence on the applied voltage characteristic of shot noise, regardless of the ratio
of voltage and temperature. In contrast, the second cumulant levels off at the
thermal noise for low voltages.

The first experiments on the voltage dependence of the third cumulant of
tunnel noise have now been reported [4]. The pictures are strikingly different
from what was expected theoretically. The slope varies by an order of magnitude
between low and high voltages, and for certain samples even changes sign. Such
a behavior is expected for a diffusive conductor [5], but not for a tunnel junction.
Although the data is still preliminary, it seems clear that an input of new physics
is required for an understanding. It is the purpose of this chapter to provide
such input.

We will show that the third cumulant of the measured noise (unlike the
second cumulant [6]) is affected by the measurement circuit in a nonlinear way.
The effect can be seen as a backaction of the electromagnetic environment [7].
We have found that the backaction persists even in the limit of zero impedance,
when the measurement is supposed to be noninvasive. The temperature inde-
pendent result for the third cumulant of tunneling noise is recovered only if the
measurement circuit has both negligible impedance and negligible temperature.

The circuit is shown schematically in Fig. 5-1. Two resistors (impedances Z1,
Z2 and temperatures T1, T2) are connected in series to a voltage source (voltage
V0). We will specialize later to the case that resistor 1 is a tunnel junction and



82 Chapter 5: Temperature dependent third cumulant

V0
I+

V

Z  , T 1      1

∆

Z  , T 2      2

V+
I∆

Figure 5-1. Two resistors in series with a voltage source. The fluctuating current and voltage

are indicated.

that resistor 2 represents the macroscopic measurement circuit, but our main
results hold for any two resistors. We disregard possible Coulomb blockade
effects on fluctuations [8–10], which is justified if the impedances at frequencies
of order eV/� are small compared to �/e2 [11].

We have calculated the temperature dependence of the third cumulant by two
altogether different methods, the Keldysh formalism [12] and the Langevin ap-
proach [13]. The equivalence of the two methods has already been demonstrated
for a single resistor in the absence of any measurement circuit [14]. Likewise, we
have obtained the same results in both calculations of the backaction from the
measurement. We choose to present the Langevin approach in this chapter, be-
cause it can be explained in elementary terms and provides an intuitive physical
insight.

Starting point of the Langevin approach is the separation of the fluctuation
∆Ii of the current through resistor i = 1,2 into an intrinsic fluctuation δIi plus
a term induced by a fluctuation ∆Vi of the voltage over the resistor: ∆Ii = δIi +
∆Vi/Zi. At low frequencies ∆I1 = ∆I2 ≡ ∆I and ∆V1 = −∆V2 ≡ ∆V . Upon
substitution we arrive at the two equations

Z∆I = Z1δI1 + Z2δI2, Z∆V = Z1Z2(δI2 − δI1), (5.0.1)

where Z = Z1 + Z2 is the total impedance of the circuit.
For simplicity we assume that Zi is real and frequency independent in the

frequency range of the measurement. All formulas have a straightforward gen-
eralization to complex Zi(ω). We do not need to assume at this stage that
the current-voltage characteristic of the resistors is linear. If it is not, then
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one should simply replace 1/Zi by the differential conductance evaluated at the
mean voltage Vi over the resistor.

The mean voltages are given by V1 = (Z1/Z)V0 ≡ V and V2 = V0 − V . The
intrinsic current fluctuations δIi are driven by the fluctuating voltage Vi = Vi +
∆Vi, and therefore depend in a nonlinear way on ∆V . The nonlinearity has the
effect of mixing in lower order cumulants of δIi in the calculation of the p-th
cumulant of ∆I, starting from p = 3.

Before addressing the case p = 3 we first consider p = 2, when all averages
〈· · · 〉V can be performed at the mean voltage. At low frequencies one has

〈δIi(ω)δIi(ω′)〉V = 2πδ(ω+ω′)C(2)i (Vi). (5.0.2)

The noise power C(2)i depends on the model for the resistor. We give two ex-
amples. In a macroscopic resistor the shot noise is suppressed by electron-
phonon scattering and only thermal noise remains:

C(2)i = 2kTi/Zi (5.0.3)

at temperature Ti, independent of the voltage. (The noise power is a factor
of two larger if positive and negative frequencies are identified.) In a tunnel
junction both thermal noise and shot noise coexist, according to [2]

C(2)i (V i) = (eVi/Zi) cotanh (eV i/2kTi). (5.0.4)

From Eq. (5.0.1) we compute the correlator

〈∆X(ω)∆Y(ω′)〉V = 2πδ(ω+ω′)SXY(V), (5.0.5)

where X and Y can represent I or V . The result is

SII = Z−2[Z2
1C(2)1 (V)+ Z2

2C(2)2 (V0 − V)], (5.0.6a)

SVV = Z−2(Z1Z2)2[C(2)1 (V)+C(2)2 (V0 − V)], (5.0.6b)

SIV = Z−2Z1Z2[Z2C(2)2 (V0 − V)− Z1C(2)1 (V)]. (5.0.6c)

Eq. (5.0.5) applies to a time independent mean voltage V . For a time depend-
ent perturbation v(t) one has, to linear order,

〈∆X(ω)∆Y(ω′)〉V+v = 〈∆X(ω)∆Y(ω′)〉V + v(ω+ω′)
d
dV
SXY(V). (5.0.7)

We will use this equation, with v = ∆V , to describe the effect of a fluctuating
voltage over the resistors. This assumes a separation of time scales between ∆V
and the intrinsic current fluctuations δIi, so that we can first average over δIi
for given ∆V and then average over ∆V .

Turning now to the third cumulant, we first note that at fixed voltage the
intrinsic current fluctuations δI1 and δI2 are uncorrelated, with third moment

〈δIi(ω1)δIi(ω2)δIi(ω3)〉V = 2πδ(ω1 +ω2 +ω3)C(3)i (Vi). (5.0.8)
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The spectral density C(3)i vanishes for a macroscopic resistor. For a tunnel junc-
tion it has the temperature independent value [3]

C(3)i (Vi) = e2Vi/Zi = e2Ī, (5.0.9)

with Ī the mean current.
We introduce the nonlinear feedback from the voltage fluctuations through

the relation

〈∆X1∆X2∆X3〉 = 〈∆X1∆X2∆X3〉V +
∑

cyclic

〈∆Xj∆V(ωk +ωl)〉V
d
dV
SXkXl(V).

(5.0.10)
The variable Xj stands for I(ωj) or V(ωj) and the sum is over the three cyclic
permutations j, k, l of the indices 1,2,3. These three terms account for the fact
that the same voltage fluctuation ∆V that affects SXkXl also correlates with Xj ,
resulting in a cross-correlation.

Eq. (5.0.10) has the same form as the “cascaded average” through which
Nagaev introduced a nonlinear feedback into the Langevin equation [13]. In that
work the nonlinearity appears because the Langevin source depends on the elec-
tron density, which is itself a fluctuating quantity — but on a slower time scale,
so the averages can be carried out separately, or “cascaded”. In our case the
voltage drop ∆Vi over the resistors is the slow variable, relative to the intrinsic
current fluctuations δIi.

Eq. (5.0.10) determines the current and voltage correlators

〈∆X(ω1)∆Y(ω2)∆Z(ω3)〉 = 2πδ(ω1 +ω2 +ω3)CXYZ(V). (5.0.11)

We find

CIII = Z−3[Z3
1C(3)1 (V)+ Z3

2C(3)2 (V0 − V)]+ 3SIV
d
dV
SII,

(5.0.12a)

CVVV = Z−3(Z1Z2)3[C(3)2 (V0 − V)−C(3)1 (V)]+ 3SVV
d
dV
SVV ,

(5.0.12b)

CVVI = Z−3(Z1Z2)2[Z1C(3)1 (V)+ Z2C(3)2 (V0 − V)]+ 2SVV
d
dV
SIV + SIV ddV SVV ,

(5.0.12c)

CIIV = Z−3Z1Z2[Z2
2C(3)2 (V0 − V)− Z2

1C(3)1 (V)]+ 2SIV
d
dV
SIV + SVV ddV SII.

(5.0.12d)

We apply the general result (5.0.12) to a tunnel barrier (resistor number 1) in
series with a macroscopic resistor (number 2). The spectral densities C(2)1 and
C(3)1 are given by Eqs. (5.0.4) and (5.0.9), respectively. For C(2)2 we use Eq. (5.0.3),
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while C(3)2 = 0. From this point on we assume linear current-voltage character-
istics, so V -independent Zi’s. We compare CI ≡ CIII with CV ≡ −CVVV/Z3

2 . The
choice of CV is motivated by the typical experimental situation in which one
measures the current fluctuations indirectly through the voltage over a macro-
scopic series resistor. From Eq. (5.0.12) we find

Cx = e2Ī
(1+ Z2/Z1)3

[
1+ 3(sinhu coshu−u)

(1+ Z1/Z2) sinh2u

(T2

T1

gx
u
− cotanhu

)]
, (5.0.13)

with gI = 1, gV = −Z1/Z2, and u = eV/2kT1.
In the shot noise limit (eV � kT1) we recover the third cumulant obtained in

Ref. [7] by the Keldysh technique:

CI = CV = e2Ī
1− 2Z2/Z1

(1+ Z2/Z1)4
. (5.0.14)

In the opposite limit of small voltages (eV � kT1) we obtain

CI = e2Ī
1+ (Z2/Z1)(2T2/T1 − 1)

(1+ Z2/Z1)4
, (5.0.15)

CV = e2Ī
1− Z2/Z1 − 2T2/T1

(1+ Z2/Z1)4
. (5.0.16)

We conclude that there is a change in the slope dCx/dĪ from low to high
voltages. If the entire system is in thermal equilibrium (T2 = T1), then the change
in slope is a factor ±(Z1 − 2Z2)(Z1 + Z2)−1, where the + sign is for CI and the
− sign for CV . In Fig. 5-2 we plot the entire voltage dependence of the third
cumulants.

The limit Z2/Z1 → 0 of a noninvasive measurement is of particular interest.
Then CI = e2Ī has the expected result for an isolated tunnel junction [3], but CV
remains affected by the measurement circuit:

lim
Z2/Z1→0

CV = e2Ī
(

1− T2

T1

3(sinhu coshu−u)
u sinh2u

)
. (5.0.17)

This limit is also plotted in Fig. 5-2, for the case T2 = T1 ≡ T of thermal equi-
librium between the tunnel junction and the macroscopic series resistor. The
slope then changes from dCV/dĪ = −e2 at low voltages to dCV/dĪ = e2 at high
voltages. The minimum CV = −1.7ekT/Z1 = −0.6 e2Ī is reached at eV = 2.7kT .

In conclusion, we have demonstrated that feedback from the measurement
circuit introduces a temperature dependence of the third cumulant of tunneling
noise. The temperature independent result e2Ī of an isolated tunnel junction [3]
acquires a striking temperature dependence in an electromagnetic environment,
to the extent that the third cumulant may even change its sign. Precise predic-
tions have been made for the dependence of the noise on the environmental
impedance and temperature, which are in accordance with the recent experi-
ment [4].
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Figure 5-2. Voltage dependence of the third cumulants CI and CV of current and voltage for a

tunnel junction (resistance Z1) in series with a macroscopic resistor Z2. The two solid curves

are for Z2/Z1 → 0 and the dashed curves for Z2/Z1 = 1. The curves are computed from Eq.

(5.0.13) for T1 = T2 ≡ T . The high voltage slopes are the same for CI and CV , while the low

voltage slopes have the opposite sign.
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V. Sukhorukov, and M. Büttiker, Phys. Rev. Lett. 90, 206801 (2003).

[14] D. B. Gutman, Y. Gefen, and A. D. Mirlin, cond-mat/0210076.



88 BIBLIOGRAPHY



6 Interaction effects on counting statistics
and the transmission distribution

It has been shown that at low energy scales the relevant part of the electron-
electron interaction in mesoscopic conductors comes from their electromag-
netic environment [1]. The resulting dynamical Coulomb blockade has been
thoroughly investigated for tunnel junctions [2]. The measure of the inter-
action strength is the external impedance Z(ω) at the frequency scale Ω =
max(eV , kBT) determined by either the voltage V at the conductor or its tem-
perature T . If z ≡ GQZ(Ω)� 1 (with the conductance quantum GQ = e2/2π�)
the interaction is weak, otherwise Coulomb effects strongly suppress electron
transport.

A tunnel junction is the simplest mesoscopic conductor. An arbitrary meso-
scopic conductor in the absence of interactions is characterized by its scattering
matrix or, most conveniently, by a set of transmission eigenvalues Tn [3]. This
Landauer-Büttiker approach to mesoscopic transport can be extended to access
the full counting statistics (FCS) of charge transfer [4]. The FCS contains not
only the average current but also current noise and all higher moments of cur-
rent correlations in a compact and elegant form.

Interaction effects on general mesoscopic conductors are difficult to quantify
for arbitrary z. For z � 1, one can employ perturbation theory to first order
in z [5]. Recent work [6, 7] associates the resulting interaction correction to
the conductance with shot noise properties of the conductor. The interaction
correction to noise is associated with the third cumulant of charge transfer [8].
This motivates us to study the interaction correction to all cumulants of charge
transfer, i.e. to the FCS. The recent experiment [9] addresses the correction to
the conductance at arbitrary transmission.

A tunnel junction in the presence of an electromagnetic environment exhib-
its an anomalous power-law I-V characteristic, I(V) � V 2z+1. The same power
law behavior is typical for tunnel contacts between one-dimensional interacting
electron systems, the so-called Luttinger liquids [10]. It has also been found for
contacts with arbitrary transmission between single-channel conductors in the
limit of weak interactions [11]. In this case, the interactions have been found to
renormalize the transmission.

In this chapter we study the effects of weak interactions z� 1 on the FCS of
a phase coherent multi-channel conductor. In the energy range below the Thou-
less energy that we restrict our analysis to, its transmission probabilities Tn are
energy independent in the absence of interactions. We first analyze the interac-
tion correction to first order in z. We identify an elastic and an inelastic contri-
bution. The elastic contribution comes with a logarithmic factor that diverges
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V
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φ , φ+ − Φ,χ

G { }Tn

Figure 6-1. Phase-coherent conductor (conductance G) in an electromagnetic environment (im-

pedance Z(ω)). We formulate the quantum dynamics of the system in terms of the fluctuating

fields φ±(t).

at low energies suggesting that even weak interactions can suppress electron
transport at sufficiently low energies. To quantify this we sum up interaction
corrections to the FCS of all orders in z by a renormalization group analysis. We
show that the result is best understood as a renormalization of the transmis-
sion eigenvalues similar to that proposed in [11]. The renormalization brings
about an energy dependence of the transmission eigenvalues according to the
flow equation

dTn(E)
dlnE

= 2z Tn(E)[1− Tn(E)]. (6.0.1)

To calculate transport properties in the presence of interactions, one evaluates
Tn(E) at the energy E � Ω.

With relation (6.0.1) we explore the effect of interactions on the distributions
of transmission probabilities for various types of mesoscopic conductors. In
general, their conductance G and their noise properties display a complicated
behavior at z| lnE| � 1 that depends on details of the conductor. However, in
the limit of very low energies z| lnE| � 1 we find only two possible scenarios.
The first one is that the conductor behaves like a single tunnel junction with
G(V) � V 2z. In the other scenario, the transmission distribution approaches
that of a symmetric double tunnel junction. The conductance scales then as
G(V) � Vz. Any given conductor follows one of the two scenarios. This divides
all mesoscopic conductors into two broad classes.

We start out by evaluating the interaction correction to the FCS to first order
in z. We analyze a simple circuit that consists of a mesoscopic conductor in
series with an external resistor Z(ω) biased with a voltage source V (Fig. 1).
For this we employ a non-equilibrium Keldysh action technique [12]. Within this
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approach, one represents the generating function F(χ) of current fluctuations
in the circuit as a path integral over the fields φ±(t) defined on the time interval
[0, τ], that represent the fluctuating voltage in the node shared by mesoscopic
conductor and external resistor. The path integral representation of F(χ) reads

F(χ) =
∫
Dφ+Dφ− exp

{−iSc [φ+,φ−]

−iSenv [Φ + χ/2−φ+,Φ − χ/2−φ−]
}

(6.0.2)

where dΦ(t)/dt ≡ eV . Derivatives of F(χ) with respect to χ at χ = 0 give the
moments of the charge transferred through the circuit during a time interval of
length τ. The Keldysh action is a sum of two terms Senv and Sc describing the
environment and the mesoscopic conductor respectively.

We assume a linear electromagnetic environment that can be fully charac-
terized by its impedance Z(ω) and its temperature T . Its action is bilinear in
φ±,

Senv = 1
2π

∫ τ
0
dt
∫ τ

0
dt′ [φ+(t)A++(t − t′)φ+(t′)

+φ+(t)A+−(t − t′)φ−(t′)+φ−(t)A−−(t − t′)φ−(t′)]

with

A++(ω) = −iω[z−1(ω)+ 2N(ω)Rez−1(ω)]
A+−(ω) = 4iωN(ω)Rez−1(ω)
A−−(ω) = −[A++(ω)]∗. (6.0.3)

Here, N(ω) ≡ {exp[ω/kBT]− 1}−1 is the Bose-Einstein distribution function
and z(ω) = GQZ(ω) the dimensionless frequency-dependent impedance.

The action Sc of the mesoscopic conductor can be expressed in terms of
Keldysh Green functions ǦR,L (the ”check”denotes 2 × 2 matrices in Keldysh
space) of electrons in the two reservoirs adjacent to the conductor [13]. It takes
the form of a trace over frequency and Keldysh indices,

Sc = i2
∑
n

Tr ln
[
1+ Tn

4

({
ǦL, ǦR

}
− 2

)]
(6.0.4)

and depends on the set of transmission eigenvalues Tn that characterizes the
conductor. The fields φ±(t) enter the expression as a gauge transform of Ǧ in
one of the reservoirs,

ǦR = Ǧres, (6.0.5)

ǦL(t, t′) =

 eiφ+(t) 0

0 eiφ−(t)


Ǧres(t − t′)


 e−iφ+(t′) 0

0 e−iφ−(t′)


. (6.0.6)
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Gres is the equilibrium Keldysh Green function

Ǧres(ε) =

 1− 2f(ε) 2f(ε)

2[1− f(ε)] 2f(ε)− 1


 , (6.0.7)

f(ε) being the equilibrium electron distribution function.
This defines our model that is valid for any external impedance but is hardly

tractable in the general case. We proceed with perturbation theory in z assuming
that z� 1. To zeroth order in z the fields φ±(t) do not fluctuate and are fixed
to eVt ± χ/2. Substituting this into Eq. (6.0.4) we recover Levitov’s formula for
non-interacting electrons,

lnF (0)(χ) ≡ −iτS(0) (χ) = τ
∫
dε
2π

∑
n

ln {1

+Tn
[
(eiχ − 1)fL(1− fR)+ (e−iχ − 1)fR(1− fL)

]}
(6.0.8)

(fR ≡ f and fL(ε) ≡ f(ε−eV)). Interaction effects manifest themselves at higher
orders in z. To assess the first order correction, we expand the non-linear Sc to
second order in the fluctuating fields φ±(t). We integrate it over φ± with the
weight given by Senv. The expression for the correction can be presented as [15]

lnF (1)(χ) = −iτ
∫∞

0
dω

Rez(ω)
ω

{
[2N(ω) + 1]S(1)el (χ)

+N(ω)S(1)in (ω,χ)+ [N(ω)+ 1]S(1)in (−ω,χ)
}
. (6.0.9)

The three terms in square brackets correspond to elastic electron transfer, in-
elastic transfer with absorption of energy �ω from the environment, and in-
elastic electron transfer with emission of this energy respectively. It is crucial to
note that inelastic processes can only occur at frequencies ω <∼ Ω and that their
contribution to the integral is thus restricted to this frequency range. In con-
trast, elastic contributions come primarily from frequencies exceeding the scale
Ω. If z = const(ω) for ω <∼ Λ, the elastic correction diverges logarithmically, its
magnitude being � z lnΛ/Ω. This suggests that i. the elastic correction is more
important than the inelastic one and ii. a small value of z can be compensated
for by a large logarithm, indicating the breakdown of perturbation theory. The
upper cut-off energy Λ is set either by the inverse RC-time of the environment
circuit or the Thouless energy of the electrons in the mesoscopic conductor.

The concrete expression for S(1)in reads

S(1)in (ω,χ) = i
∑
n

∫
dε
2π

{
DnD+n

[
Tn(fL − f+L )+ 2Tn(eiχ − 1)fL(1− f+R )

+2T 2
n(cosχ − 1)fL(1− f+L )(f+R − fR)

]
+TnDn + (1−Dn)(1−D+n)

}
+

 R↔ L

χ ↔ −χ


 , (6.0.10)
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where we have introduced the functions

Dn =
{
1+ Tn

[
fL(1− fR)(eiχ − 1).+ fR(1− fL)(e−iχ − 1)

]}−1
(6.0.11)

and the notation

f+(ε) = f(ε +ω), D+n(ε) = Dn(ε +ω). (6.0.12)

We do not analyze S(1)in further and instead turn to the analysis of the elastic
correction.

It is important that the explicit form of the elastic correction can be presen-
ted as

Sel =
∑
n
δTn

∂S(0)
∂Tn

with δTn = −2Tn(1− Tn). (6.0.13)

This suggests that the main effect of interactions is to change the transmission
coefficients Tn. It also suggests that we can go beyond perturbation theory by
a renormalization group analysis that involves the Tn only. In such an analysis
one concentrates at each renormalization step on the ”fast”components of φ±
with frequencies in a narrow interval δω around the running cut-off frequency
E. Integrating out these fields one obtains a new action for the ”slow”fields.
Subsequently one reduces E by δω and repeats the procedure until the running
cut-off approaches Ω. We find that at each step of renormalization the action
indeed retains the form given by Eq. (6.0.4) and only the Tn change, provided
z�min{1, GQ/G}. The resulting energy dependence of the Tn obeys Eq. (6.0.1).
The strict proof of this involves manipulations on the action (6.0.4) with time
dependent arguments φ±(t). It is very technical and we do not give it here. The
approximations that we make in this renormalization procedure amount to a
summation of the leading logarithms in every order of the perturbation series.

In the rest of the chapter we analyze the consequences of Eq. (6.0.1) for
various mesoscopic conductors. Equation (6.0.1) can be explicitly integrated to
obtain

Tn(E) =
ξTΛn

1− TΛn (1− ξ)
, ξ ≡

(E
Λ

)2z
(6.0.14)

in terms of the ”high energy”(non-interacting) transmission eigenvalues TΛ. A
mesoscopic conductor containing many transport channels is most conveniently
characterized by the distribution ρΛ(T) of its transmission eigenvalues [14]. It
follows from Eq. (6.0.14) that the effective transmission distribution at the en-
ergy scale E reads

ρE(T) = ξ
[ξ + T(1− ξ)]2ρΛ

(
T

ξ + T(1− ξ)

)
. (6.0.15)
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We now analyze its low energy limit ξ → 0. Any given transmission eigenvalue
will approach zero in this limit. Seemingly this implies that for any conductor
the transmission distribution approaches that of a tunnel junction, so that all
Tn� 1. The overall conductance would be proportional to ξ in accordance with
Ref. [5].

Indeed, this is one of the possible scenarios. A remarkable exception is the
case that the non-interacting ρΛ has an inverse square-root singularity at T → 1.
Many mesoscopic conductors display this feature, most importantly diffusive
ones [14]. In this case, the low-energy transmission distribution approaches a
limiting function

ρ∗(T) ∝
√

ξ
T 3(1− T). (6.0.16)

The conductance scales like ξ1/2. ρ∗ is known to be the transmission distribu-
tion of a double tunnel junction: two identical tunnel junctions in series [16]. In-
deed, one checks that for a double tunnel junction the form of the transmission
distribution is unaffected by interactions. This sets an alternative low-energy
scenario. We are not aware of transmission distributions that would give rise to
other scenarios.

We believe that this is an important general result in the theory of quantum
transport and suggest now a qualitative explanation. The statement is that the
conductance of a phase-coherent conductor at low voltage and temperatureΩ�
Λ asymptotically obeys a power law with an exponent that generically takes two
values,

G ∝
(Ω
Λ

)2z

, or G ∝
(Ω
Λ

)z
. (6.0.17)

For tunneling electrons the exponent is 2z. An electron traverses the conductor
in a single leap. The second possible exponent z has been discussed in the lit-
erature as well, in connection with resonant tunneling through a double tunnel
barrier in the presence of interactions [10]. This resonant tunneling takes place
via intermediate discrete states contained between the two tunnel barriers. The
halved exponent α = z occurs in the regime of the so-called successive electron
tunneling. In this case, the electron first jumps over one of the barriers ending
up in a discrete state. Only in a second jump over the second barrier the charge
transfer is completed. Since it takes two jumps to transfer a charge, the elec-
tron feels only half the counter voltage due to interactions with electrons in the
environmental impedance Z at each hop. Consequently, the exponent at each
jump takes half the value for direct tunneling. Our results strongly suggest that
this transport mechanism is not restricted to resonant tunneling systems, or,
in other words, that resonant tunneling can occur in systems of a more generic
nature than generally believed. As far as transport is concerned, a mesoscopic
conductor is characterized by its scattering matrix regardless of the details of
its inner structure. In this approach it is not even obvious that the conductor
can accommodate discrete states. Nevertheless, the transmission distribution of
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Figure 6-2. Renormalization of conductance G (logarithmically), Fano factor F = C2/G and

third cumulant C3 normalized by the conductance in a tunnel junction (solid line), a double

tunnel barrier (dotted line), a double point contact (short dashed line), and a diffusive con-

ductor (long lashed line).

this scattering matrix does depend on the internal structure of the conductor.
The inverse square root singularity of this distribution at T → 1 for a double
tunnel barrier is due to the formation of Fabry-Perot resonances between the
two barriers. Probably similar resonances are at the origin of the same singular-
ity for more complicated mesoscopic conductors with multiple scattering. They
are then the intermediate discrete states that give rise to the modified scaling of
the conductance in presence of interactions. One may speculate that in diffusive
conductors these resonances are the so-called ”nearly localized states” found
in [17].

From equation (6.0.14) one concludes that the resonant tunneling scaling
holds only if G(E) � GQ so that many transport channels contribute to the
conductance. At sufficiently small energies, G(E) becomes of the order of GQ.
All transmission eigenvalues are then small and the conductance crosses over
to the tunneling scaling.

With Eqs. (6.0.14) and (6.0.15) we can evaluate the transmissions and the FCS
in the intermediate regime ξ ∼ 1. Fig. 6-2 shows the results for the first three
cumulants of charge transfer Cn for several types of conductors whose non-
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interacting transmission distributions ρΛ(T) are known. Apart from the tunnel
contact all these conductors approach the resonant tunneling scaling with noise
properties of a double tunnel barrier at very small bias voltage (ξ� 1).

We remark, that Eq. (6.0.13) generalizes the statements made in [7, 8]: At
zero temperature, the interaction correction to the n-th cumulant of transferred
charge is proportional to the (n+1)-th cumulant.

To conclude, we have investigated the effects of interactions on the FCS of
a Landauer-Büttiker conductor and found that their main effect can be incor-
porated into an energy dependence of the transmission eigenvalues. For an
arbitrary conductor, the conductance in the low-energy limit obeys one of two
generic scaling laws.
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7 Quantum theory of electromechanical
noise and momentum transfer statistics

7.1 Introduction

Electrical current is the transfer of charge from one end of the conductor to
the other. The statistics of this charge transfer was investigated by Levitov and
Lesovik [1]. It is binomial for a single-channel conductor at zero temperature and
double-Poissonian at finite temperature in the tunneling regime [2]. The second
cumulant, the noise power, has been measured in a variety of systems [3]. Ways
of measuring the third cumulant have been proposed [2,4].

Electrical current also transfers momentum to the lattice. The second cu-
mulant, the electromechanical noise power, determines the mean square dis-
placement of an oscillator through which a current is driven. It has been stud-
ied theoretically [5–8] and is expected to lie within the range of sensitivity of
nanomechanical oscillators [9]. No theory exists for higher order cumulants of
the transferred momentum (which would determine higher cumulants of the os-
cillator displacement). It is the purpose of the present chapter to provide such
a theory.

In the context of charge transfer statistics there exist two approaches: a fully
quantum mechanical approach using Keldysh Green functions [1,10] and a semi-
classical approach using the Boltzmann-Langevin equation [11]. Here we take the
former approach, to arrive at a quantum theory of momentum transfer statist-
ics. As a test, we show that the second moment calculated from Keldysh Green
functions coincides in the semiclassical limit with the result obtained from the
Boltzmann-Langevin equation by Shytov, Levitov, and one of the authors [8].

A calculation of the complete cumulant generating function of transferred
momentum (or, equivalently, of oscillator displacement) is presented for the
case of a single-channel conductor with a localized scatterer. The generating
function in this case can be written entirely in terms of the transmission prob-
ability Γ of the scatterer. In the more general multi-channel case one also needs
knowledge of the wavefunctions. This is an essential difference from the charge
transfer problem, which can be solved in terms of transmission eigenvalues for
any number of channels. At zero temperature the momentum statistics is bino-
mial, just as for the charge. At finite temperature it is multinomial, even in the
limit Γ → 0, different from the double-Poissonian distribution of charge.

The outline of the chapter is as follows. In Sec. 7.2 we formulate the prob-
lem in a way that is suitable for further analysis. The key technical step in
that section is a unitary transformation which eliminates the dependence of the
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electron-phonon coupling Hamiltonian on the (unknown) scattering potential of
the disordered lattice. The resulting coupling Hamiltonian contains the electron
momentum flow and the phonon displacement. In the next section we use that
Hamiltonian to derive a general formula for the generating function of the dis-
tribution of momentum transferred to a phonon (as well as the distribution of
phonon displacements). It is the analogue of the Levitov-Lesovik formula for the
charge transfer distribution [1]. For a localized scatterer we can evaluate this
statistics in terms of the scattering matrix. We show how to do this in Sec. 7.4,
and give an application to a single-channel conductor in Sec. 7.5. In Secs. 7.6
and 7.7 we turn to the case that the scattering region extends throughout the
conductor. We follow the Keldysh approach to derive a general formula for the
generating function and check its validity by rederiving the result of Ref. [8].
We conclude in Sec. 7.8 with an order of magnitude estimate of higher order
cumulants of the momentum transfer statistics.

7.2 Formulation of the problem

The excitation of a phonon mode by conduction electrons is described by the
Hamiltonian

H = Ωa†a+
∑
i

p2
i /2m+

∑
i

V[ri −Qu(ri)], (7.2.1)

where we have set � = 1. The phonon mode has annihilation operator a, fre-
quency Ω, mass M , and displacement Qu(r), where Q = (2MΩ)−1/2(a + a†) is
the amplitude operator. The electrons have position ri, momentum pi = −i∂/∂ri,
and massm. Electrons and phonons are coupled through the ion potential V(r).
We assume zero magnetic field. Electron-electron interactions and the interac-
tions of electrons and phonons with an external electric field have also been
omitted.

We assume that electrons and phonons are uncoupled at time zero and meas-
ure moments of the observable A of the phonons after they have been coupled
to the electrons for a time t. The operator A(a,a†) could be the amplitude Q of
the phonon mode, its momentum P = −i(MΩ/2)1/2(a−a†), or its energy Ωa†a.
The moment generating function for A is

F(ξ) =
∞∑
m=0

ξm

m!
〈Am(t)〉 = Tr eξAe−iHtρeiHt. (7.2.2)

The initial density matrix ρ = ρeρp is assumed to factorize into an electron and
a phonon part.

We assume small displacements, so an obvious way to proceed would be to
linearize V(r−Qu) with respect to the phonon amplitude Q. Such a procedure
is complicated by the fact that the resulting coupling −Qu ·∇V of electrons and
phonons depends on the ion potential V . Because of momentum conservation,
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it should be possible to find the momentum transferred by the electrons to the
lattice without having to consider explicitly the force −∇V . In the semiclassical
calculation of Ref. [8] that goal is achieved by the continuity equation for the
flow of electron momentum. The unitary transformation that we now discuss
achieves the same purpose in a fully quantum mechanical framework.

What we need is a unitary operator U such that

U†V[r−Qu(r)]U = V(r). (7.2.3)

For constant u we have simply U = exp[−iQu · p]. More generally, for space-
dependent u, we need to specify the operator ordering (denoted by colons : · · · :)
that all position operators r stand to the left of the momentum operators p. We
also need to include a Jacobian determinant ||J|| to ensure unitarity of U . As
shown in App. A, the desired operator is

U = ||J||1/2 : e−iQu(r)·p : , Jαβ = δαβ −Q∂αuβ(r), (7.2.4)

with ∂α ≡ ∂/∂rα. All this was for a single electronic degree of freedom. The
corresponding operator for many electrons is U = ∏

i Ui, where Ui is given by
Eq. (7.2.4) with r, p replaced by ri, pi.

The Hamiltonian (7.2.1) transforms as U†HU = H0 +Hint, with

H0 = Ωa†a+
∑
i

[p2
i /2m+ V(ri)], (7.2.5a)

Hint = −QF − 1
M
PΠ+O(u2). (7.2.5b)

Here F is the driving force of the phonon mode,

F = 1
4m

∑
i

[uαβ(ri)piαpiβ + piαuαβ(ri)piβ]+H.c, (7.2.6)

and Π is the total electron momentum,

Π = 1
2

∑
i

u(ri) · pi +H.c., (7.2.7)

weighted with the (dimensionless) mode profile u(r). We have defined the shear
tensor uαβ = 1

2(∂αuβ + ∂βuα). The abbreviation H.c. indicates the Hermitian
conjugate and a summation over repeated cartesian indices α,β is implied.

The interaction Hamiltonian Hint is now independent of the ion potential, as
desired. In the first term −QF we recognize the momentum flux tensor, while
the second term −PΠ/M is an inertial contribution to the momentum transfer.
The inertial contribution is of relative order Ωλ/vF (λ being the wavelength of
the phonon and vF the Fermi velocity of the electrons) and typically� 1. In what
follows we will neglect it. We also neglect the terms in Hint of second and higher
order in u, which contribute to order λF/L to the generating function (with L the
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length scale on which u varies). These higher order interaction terms account
for the momentum uncertainty of an electron upon a position measurement by
the phonon.

If we apply the unitary transformation U to the generating function (7.2.2),
we need to transform not only H but also A → U†AU = Ã and ρ → U†ρU = ρ̃,
resulting in

F(ξ) = Tr eξÃe−it(H0+Hint)ρ̃eit(H0+Hint). (7.2.8)

In App. A we show that, quite generally, the distinction between ρ,A and ρ̃, Ã
is irrelevant in the limit of a long detection time t, and we will therefore ignore
this distinction in what follows.

If u is smooth on the scale of λF , so that gradients of uαβ can be neglected,
one can apply the effective mass approximation to the Hamiltonian (7.2.5). The
ion potential V = Vlat + Vimp is decomposed into a contribution Vlat from the
periodic lattice and a contribution Vimp from impurities and boundaries that
break the periodicity. The effects of Vlat can be incorporated in an effective
massm∗ (assumed to be deformation independent [12,13]) and a corresponding
quasimomentum p∗. The unperturbed Hamiltonian takes the usual form

H0 = Ωa†a+
∑
i

[p∗2
i /2m

∗ + Vimp(ri)]. (7.2.9)

As shown in App. B, the force operator in Hint is then expressed through the
flow of quasi-momentum,

F = 1
m∗

∑
i

p∗iαuαβ(ri)p
∗
iβ, (7.2.10)

whereas the inertial contribution is still given by Eq. (7.2.7) in terms of the true
electron momentum.

7.3 Momentum transfer statistics

7.3.1 Generating function

A massive phonon mode absorbs the momentum that electrons transfer to it
without changing its displacement. We may therefore define a statistics of mo-
mentum transfer to the phonons without back action on the electrons by choos-
ing the observable A = P = −i(MΩ/2)1/2(a − a†) in Eq. (7.2.2) and taking the
limit M → ∞, Ω → 0 at fixed MΩ. We assume that the phonon mode is initially
in the ground state, so that aρp = 0.

We transform to the interaction picture by means of the identity

eiH0te−iHt = T exp

[
−i
∫ t

0
dt′Hint(t′)

]
, (7.3.1)
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where T denotes time ordering (earlier times to the right of later times) of the
time dependent operator Hint(t) = eiH0tHinte−iH0t . In the massive phonon limit
we have Hint(t) = −QF(t) with time independent Q (since Q commutes with H0

when Ω → 0). Eq. (7.2.2) takes the form

F(ξ) = 〈T± exp[−iQK−(t)]eξP exp[iQK+(t)]〉, (7.3.2)

where K±(t) =
∫ t
0 dt± F(t±) and T± denotes the Keldysh time ordering: times t−

to the left of times t+, earlier t− to the left of later t−, earlier t+ to the right of
later t+.

Taking the expectation value of the phonon degree of freedom we find

F(ξ) = eξ2MΩ/2

〈
T± exp

[
1
2ξ(K− + K+)−

(K+ − K−)2
4MΩ

]〉
. (7.3.3)

The factor exp(ξ2MΩ/2) originates from the uncertainty (MΩ)1/2 of the mo-
mentum of the phonon mode in the ground state (vacuum fluctuations). It is
a time-independent additive contribution to the second cumulant and we can
omit it for long detection times. The quadratic term ∝ K2

±/MΩ becomes small
for a small uncertainty (MΩ)−1/2 of the displacement in the ground state. It de-
scribes a back action of the phonon mode on the electrons that persists in the
massive phonon limit. (A similar effect is known in the context of charge count-
ing statistics [14].) This term may be of importance in some situations, but we
will not consider it here, assuming that the electron dynamics is insensitive to
the vacuum fluctuations of the phonon mode.

With these simplifications we arrive at a formula for the momentum transfer
statistics,

F(ξ) = 〈T± exp[1
2ξK−(t)] exp[1

2ξK+(t)]〉, (7.3.4)

that is of the same form as the formula for charge counting statistics due to
Levitov and Lesovik [1],

Fcharge(ξ) = 〈T± exp[1
2ξJ−(t)] exp[1

2ξJ+(t)]〉. (7.3.5)

The role of the integrated current J(t) =
∫ t
0 dt′ I(t′) is taken in our problem by

the integrated force K(t).

7.3.2 Relation to displacement statistics

Cumulants 〈〈�P(t)〉〉 of the momentum transferred in a time t are obtained
from the cumulant generating function lnF(ξ) = ∑

n〈〈�P(t)n〉〉ξn/n!. Cumu-
lants 〈〈F(ω)n〉〉 of the Fourier transformed force F(ω) =

∫
dt eiωtF(t) then fol-

low from the relation �P(t) =
∫ t
0 dt′ F(t′). The limit t → ∞ of a long detection

time corresponds to the low frequency limit,〈〈 n∏
i=1

F(ωi)
〉〉

→ 2πδ


 n∑
i=1

ωi


 lim
t→∞

1
t
〈〈�P(t)n〉〉 . (7.3.6)
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Cumulants of the Fourier transformed displacement Q(ω) of the oscillator
follow from the phenomenological equation of motion

Q(ω) = R(ω)F(ω), R(ω) = 1
M
(Ω2 −ω2 − iωΩ/Q)−1, (7.3.7)

whereQ is the quality factor of the oscillator. Since the force noise is white until
frequencies that are typically � Ω, one has in good approximation〈〈 n∏

i=1

Q(ωi)
〉〉

= 2πδ


 n∑
i=1

ωi


 n∏
j=1

R(ωj) lim
t→∞

1
t
〈〈�P(t)n〉〉 . (7.3.8)

Optical or magnetomotive detection of the vibration, as in Refs. [15–17],
measures the probability distribution P(Q) of the displacement at any given
time. The cumulants of P(Q) are obtained by Fourier transformation of Eq.
(7.3.8),

〈〈Qn〉〉 = Rn lim
t→∞

1
t
〈〈�P(t)n〉〉, (7.3.9)

Rn =
∫
dω1

2π
· · ·

∫
dωn
2π

R(ω1) · · ·R(ωn)2πδ

 n∑
i=1

ωi




=
∫∞
−∞
dt R(t)n. (7.3.10)

ForQ� 1 the odd moments can be neglected, while the even moments are given
by

R2k ≈ 1
2k
(MΩ)−2kQ

Ω
, k�Q. (7.3.11)

7.3.3 Validity of the massive phonon approximation

These results were obtained in the massive phonon limit. Let us estimate how
large M should be, for the simplest case of the scattering of an electron (mass
m, velocity vF ) by a barrier (massM , velocity Q̇). FiniteM corrections appear be-
cause a reflected electron transfers to the barrier not only a momentum 2pF but
also an energy δE � 2pFQ̇. This energy transfer effectively changes the voltage
drop over the barrier by an amount δV = δE/e, because reflected electrons suf-
fer this energy change whereas transmitted electrons do not.

A voltage drop δV creates a feedback loop: The current is changed by δI =
GδV , hence the force on the barrier is changed by δF = (2pF/e)δI, hence the
velocity of the barrier is changed by δQ̇ = iωR(ω)δF = 4iω(pF/e)2R(ω)GQ̇
(in Fourier representation). The feedback may be neglected if δQ̇ � Q̇ at the
resonance frequency Ω (where it is strongest). Since R(Ω) = iQ/MΩ2 the re-
quirement for negligible feedback, and therefore for the validity of the massive
phonon approximation, is

α = QGh
e2

EF
�Ω
m
M
� 1. (7.3.12)
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The left-hand-side of this inequality is the product of three large ratios (qual-
ity factor, dimensionless conductance, and the ratio of Fermi energy over phonon
energy) and one small ratio (electron mass over mass of the resonator). For
typical parameter values of a single-channel conductor one has Gh/e2 < 1,
M = 10−20 kg, Ω/2π = 5 GHz, and EF/� = 0.5 · 1015 Hz, yielding α < 10−3

for Q = 103.

7.4 Evaluation in terms of the scattering matrix

The Levitov-Lesovik formula (7.3.5) for the charge transfer statistics can be eval-
uated in terms of the scattering matrix of the conductor [1, 18, 19], without ex-
plicit knowledge of the scattering states. This is possible because the current
operator depends only on the asymptotic form of the scattering states, far from
the scattering region. The formula (7.3.4) for the momentum transfer statistics
can be evaluated in a similar way, but only if the mode profile u(r) is approxim-
ately constant over the scattering region.

To this end, we first write the force operator (7.2.6) in second quantized form
using a basis of scattering states ψn,ε(r),

F(t) =
∫∫
dεdε′

2π

∑
n,n′
ei(ε−ε

′)tc†n(ε)Mnn′(ε, ε′)cn′(ε′),

(7.4.1)

Mnn′(ε, ε′) = 1
m

∫
drψ∗n,ε

(
pαuαβpβ + [[uαβ,pα], pβ]

)
ψn′,ε′. (7.4.2)

The operator cn(ε) annihilates an electron in the n-th scattering channel at en-
ergy ε. The mode index n runs from 1 to N (or from N + 1 to 2N) for waves
incident from the left (or from the right). (See Fig. 7-1 for a diagram of the
geometry and see Ref. [20] for the analogous representation of the current op-
erator.) The commutator [[uαβ,pα], pβ] can be neglected if u is smooth on the
scale of the wavelength (hence if λF/L� 1). We assume that the derivative uαβ
of the mode profile vanishes in the scattering region, so that for the scattering
states we may use the asymptotic form

ψn,ε(r) = φin
n,ε(r)+

∑
m
Smn(ε)φout

m,ε(r), (7.4.3)

in terms of incident and outgoing waves φin,out
n,ε (normalized to unit current) and

the scattering matrix Smn(ε). Since we are neglecting the Lorentz force we may
assume that φout

m,ε = φin∗
m,ε. The scattering matrix has the block structure

S =

 r t′

t r ′


 , (7.4.4)
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t’

tr

r’

V

Figure 7-1. Sketch of a freely suspended wire. The matrices t, t′ and r , r ′ describe transmis-

sion and reflection by a localized scatterer (shaded). A voltage V drives a current through the

conductor, exciting a vibration.

with N × N transmission and reflection matrices t, t′, r , r ′. These matrices are
related by unitarity (S = S†) and possibly also by time-reversal symmetry (S =
ST ).

The operator pαuαβpβ will couple only weakly the incident to the outgoing
waves, provided u is smooth on the scale of λF , and we neglect this coupling.
The matrix M then separates into an incident and outgoing part,

M(ε, ε′) =M in(ε, ε′)+ S†(ε)Mout(ε, ε′)S(ε′). (7.4.5)

The matrices M in and Mout are defined as in Eq. (7.4.2) with ψ replaced by φin

and φout, respectively. (They are Hermitian and related by Mout = M in∗.) These
two matrices vary with energy on the scale of the Fermi energy EF , while the
scattering matrix S has a much stronger energy dependence (on the scale of
the Thouless energy). We may therefore replace M in, Mout by their value at ε =
ε′ = EF and assume that the energy dependence of M is given entirely by the
scattering matrix.

The force operator can similarly be separated into F = F in + Fout, where F in

and Fout are defined as in Eq. (7.4.1) with the matrix M replaced by M in and
S†MoutS, respectively. We now proceed in the same way as in Ref. [19] for the
current operator, by noting that the analyticity of S(ε) in the upper half of the
complex plane implies simple commutation relations:

[F in(t), F in(t′)] = 0, [Fout(t), Fout(t′)] = 0, ∀ t, t′,
[F in(t), Fout(t′)] = 0 if t > t′. (7.4.6)

It follows that the Keldysh time ordering T± of the force operators is the same
as the so-called input-output ordering, defined by moving the operators Fin(t−)
to the left and Fin(t+) to the right of all other operators — irrespective of the
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value of the time arguments. The reason for preferring input-output ordering
over time ordering is that Fourier transformation from time to energy commutes
with the former ordering but not with the latter.

In the limit t → ∞ different energies become uncoupled, and the cumulant
generating function takes the simple form

lnF(ξ) = t
2π

∫
dε ln〈eF in(ε)ξ/2eF

out(ε)ξeF
in(ε)ξ/2〉, (7.4.7)

entirely analogous to the input-output ordered formula for charge transfer [19].
The Fourier transformed force is defined as

F in(ε) = c†(ε)M in(ε, ε)c(ε), (7.4.8a)

Fout(ε) = c†(ε)S†(ε)Mout(ε, ε)S(ε)c(ε). (7.4.8b)

(The operators cn have been collected in a vector c.)
The matrices M in,out are block diagonal,

M in = Mout∗ =

 ML 0

0 MR


 , (7.4.9)

but the N ×N matrices ML,R are in general not diagonal themselves. They take a
simple form for a longitudinal phonon mode, when u is a function of x in the x-
direction (along the conductor), so that uαβ(r) = δαxδβxu′(x). The commutator
[[u′, px], px] does not contribute because φin,out

n is an eigenstate of px (with
eigenvalue pin

n = −pout
n ≡ pn). Hence for a longitudinal vibration one has

(ML)nn′ = δnn′ |pn|(u0 −uL), (7.4.10a)

(MR)nn′ = δnn′ |pn|(uR −u0). (7.4.10b)

The value of u(x) in the scattering region is denoted by u0, while uL, uR denote
the values at the left and right end of the conductor. The more complex situation
of a transverse phonon mode, when the matrices ML,R are no longer diagonal, is
treated in Ref. [21].

We are now ready to calculate the expectation value in Eq. (7.4.7). We as-
sume that the incident waves originate from reservoirs in thermal equilibrium
at temperature T , with a voltage difference V between the left and right reser-
voir. The Fermi function in the left (right) reservoir is fL (fR). We collect the
Fermi functions in a diagonal matrix f and write

〈c†n(ε)cn′(ε′)〉 = fnn′(ε)δ(ε − ε′), f =

 fL 0

0 fR


 . (7.4.11)

All other expectation values of c, c† vanish. We evaluate Eq. (7.4.7) with help of
the determinantal identity〈∏

i

exp(c†Aic)
〉
=
∣∣∣∣∣∣1− f + f

∏
i

eAi
∣∣∣∣∣∣, (7.4.12)
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valid for an arbitrary set of matrices Ai, and the identity

exp(S†AS) = S†eAS, (7.4.13)

valid for unitary S. The result is

lnF(ξ) = t
2π

∫
dε ln ||1− f + feξM in

S†(ε)eξM
out
S(ε)||, (7.4.14)

where we have also used that the two matrices M in and f commute.
At zero temperature fL = θ(EF + eV − ε), fR = θ(EF − ε). The energy range

ε < EF , where fL = fR = 1, contributes only to the first moment, while the energy
range EF < ε < EF + eV , where fL = 1 and fR = 0, contributes to all moments.
For small voltages we may neglect the energy dependence of S(ε) in that range.
Using the block structure (7.4.4), (7.4.9), of S, M in,out the generating function for
the second and higher cumulants takes the form

lnF(ξ) = eVt
2π

ln ||r†eξM∗L r + t†eξM∗R t|| + O(ξ). (7.4.15)

(By O(ξ) we mean terms linear in ξ.) This determinant can not be simplified
further without knowledge of S. That is a major complication relative to the
analogous formula for the charge transfer statistics [1], which can be cast en-
tirely in terms of the transmission eigenvalues Γn (eigenvalues of tt†):

lnFcharge(ξ) = t
2π

∫
dε

∑
n

ln
[
1+ Γn(eeξ − 1)fL(1− fR)

+ Γn(e−eξ − 1)fR(1− fL)
]
. (7.4.16)

In the case of momentum transfer, eigenvalues and eigenvectors both play a
role.

7.5 Application to a one-dimensional conductor

7.5.1 Straight wire

Further simplification of Eqs. (7.4.14) and (7.4.15) is possible if the conductor
is so narrow that it supports only a single propagating mode to the left and
right of the scattering region (N = 1). The scattering matrix then consists of
scalar transmission and reflection coefficients t, t′, r , r ′ (related to each other
by unitarity). We consider the case of a longitudinal vibration with

M in =Mout = pF

 u0 −uL 0

0 uR −u0


 , (7.5.1)
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cf. Eq. (7.4.10). Because of unitarity the result depends only on the transmission
probability Γ = |t|2 = |t′|2 = 1− |r |2 = 1− |r ′|2,

lnF(ξ) = t
2π

∫
dε ln

[
1+ (e2ξpF (uR−uL) − 1)fLfR

+ Γ(eξpF (uR−uL) − 1)[fL(1− fR)+ fR(1− fL)]
+ (1− Γ)(e2ξpF (u0−uL) − 1)fL(1− fR)
+ (1− Γ)(e2ξpF (uR−u0) − 1)fR(1− fL)

]
. (7.5.2)

At zero temperature this simplifies further to

lnF(ξ) = eVt
2π

ln[1+ ΓeξpF(uR+uL−2u0) − Γ]+O(ξ). (7.5.3)

The zero temperature statistics (7.5.3) is binomial, just as for the charge.
[The generating function Fcharge(ξ) at T = 0 is obtained from Eq. (7.5.3) after
substitution of pF(uR + uL − 2u0) by e, cf. Eq. (7.4.16).] At finite temperatures
one has the multinomial statistics (7.5.2), made up of stochastically independent
elementary processes with more than two possible outcomes. The elementary
processes may be characterized by the numbers (nL

in, nR
in) ∈ {0,1} of electrons

incident on the scatterer from the left, right and the numbers (nL
out, nR

out) ∈
{0,1} of outgoing electrons to the left, right. The non-vanishing probabilities
P[(nLin, nRin)→ (nLout, nRout)] of scattering events evaluate to:

P[(0,0)→ (0,0)] = (1− fL)(1− fR),
P[(0,1)→ (0,1)] = (1− fL)fR(1− Γ),
P[(0,1)→ (1,0)] = (1− fL)fRΓ ,
P[(1,0)→ (1,0)] = fL(1− fR)(1− Γ),
P[(1,0)→ (0,1)] = fL(1− fR)Γ ,
P[(1,1)→ (1,1)] = fLfR. (7.5.4)

These probabilities appear in the generating function (7.5.3), multiplied by ex-
ponentials of ξ times the amount of transferred momentum.

A longitudinal vibration of a straight wire clamped at both ends would cor-
respond to uL = uR = 0, u0 ≠ 0. In that special case Eq. (7.5.2) is equivalent
to Eq. (7.4.16) for Fcharge(ξ) under the substitution Γ → 1 − Γ , 2pFu0 → e. In
this case the multinomial statistics becomes a double-Poissonian in the limit
Γ → 0, corresponding to two independent Poisson processes originating from
the left and right reservoirs [2]. A longitudinal vibration is difficult to observe,
in contrast to a transverse vibration which can be observed optically [15, 16] or
magnetomotively [17]. However, the direct excitation of a transverse mode is
not possible in a single-channel conductor, while in a multi-channel conductor
(width W ) it is smaller than the excitation of a longitudinal mode by a factor
(W/L)2 [21]. So it would be desirable to find a way of coupling longitudinal
electron motion to transverse vibration modes. In the following subsection we
discuss how this can be achieved by bending the wire.
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7.5.2 Bent wire

The bending of the wire is described as explained in Ref. [22], by means of a
vector Ω(s) that rotates the local coordinate system ex(s), ey(s), ez(s) as one
moves an infinitesimal distance ds along the wire: δeα = Ω × eαδs. The local
coordinate x is along the wire and y, z are perpendicular to it. The component
Ω|| of Ω along the wire describes a torsion (with |Ω||| the torsion angle per
unit length), while the perpendicular component Ω⊥ describes the bending (with
|Ω⊥|−1 the radius of curvature).

The momentum operators and wavefunctions, written in local coordinates,
depend on the bending by terms of order λF |Ω|, which we assume to be � 1.
These quantities may therefore be evaluated for a straight wire (Ω = 0). The
dependence on the bending of the strain tensor is of order L|Ω| and can not
be neglected. For the interaction Hamiltonian (7.2.5) we need ∇u in the global
coordinate system. It is obtained by differentiating the local coordinates of u as
well as the local basis vectors. A bent wire can then be represented by a straight
wire with an effective displacement ueff related to u (in local coordinates) by

∂
∂x

ueff = ∂
∂x

u+Ω× u, (7.5.5a)

∂
∂y

ueff = ∂
∂y

u,
∂
∂z

ueff = ∂
∂z

u. (7.5.5b)

The second term on the right-hand-side of Eq. (7.5.5a) accounts for the cent-
rifugal force exerted by an electron moving along the bent wire. It rotates a
transverse mode, with u pointing in radial direction, into a fictitious longitud-
inal mode with ueff,x of order L|Ω⊥|. Note that in order for ∂ueff,x/∂x to be
non-zero, the displacement u needs to induce a stretching/compression of the
wire. Only then is ex · ∂u/∂x = ∂ux/∂x + ex · (Ω× u) = ∂ueff,x/∂x ≠ 0.

Fig. 7-2 shows two vibration modes in a bent wire with the corresponding
longitudinal component ueff,x of the effective displacement. To apply the for-
mulas of the previous subsection we need uL = ueff,x(xL), uR = ueff,x(xR), and
u0 = ueff,x(x0). The first mode, Fig. 7-2a, has uL = uR = 0 and u0 ≠ 0. It
measures the amount of electron momentum that has been transferred to the
scatterer (located at x0). The statistics of this process is equivalent to the charge
transfer statistics (7.4.16), as mentioned at the end of the previous subsection.

The second mode, Fig. 7-2b, has uL = 0, uR ≠ 0 and u0 � uR (assuming
that the scatterer is located much closer to the left reservoir than to the right
reservoir). It measures the amount of momentum transferred from the left to
the right reservoir. Its statistics reads

lnF(ξ) = t
2π

∫
dε ln {1 + (e2ξpFuR − 1)[fR − ΓfR(1− fL)]

+ Γ(eξpFuR − 1)[fL(1− fR)+ fR(1− fL)]
}
. (7.5.6)
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Figure 7-2. Two vibration modes in a bent wire (top) and the corresponding longitudinal

displacements ueff in the straight wire (bottom).

It cannot be reduced to the charge transfer statistics (7.4.16) by a substitution of
variables, and in particular does not reduce to a double Poissonian in the limit
Γ → 0. (It remains multinomial in this limit.) Comparing the second cumulant
C(2) of momentum with the second cumulant C(2)charge of charge [the terms of
order ξ2 in Eqs. (7.4.16) and (7.5.6)], we find (setting uR ≡ 1)

C(2) − (pF/e)2C(2)charge =
2
π
tp2
FkBT(1− Γ). (7.5.7)

The difference vanishes at zero temperature, in accordance with Eq. (7.5.3). It
is independent of the voltage (as long as the energy dependence of Γ can be
ignored), so the difference is an equilibrium property.

Eq. (7.5.7) can be given a physical interpretation by grouping the electrons to
the right of the scattering region into n> right movers and n< left movers. The
momentum transfer to the right reservoir is proportional to the sum n> + n<
while the charge transfer is proportional to the difference n> −n<, hence

C(2) − p
2
F

e2
C(2)charge ∝ 〈〈(n> +n<)2〉〉 − 〈〈(n> −n<)2〉〉

= 4(〈n>n<〉 − 〈n>〉〈n<〉). (7.5.8)

We see that the difference measures correlations between left and right-moving
electrons. Such correlations are due to electrons that are backscattered with
probability 1− Γ . Eq. (7.5.7) describes the variance in the number of such backs-
cattered electrons, given that electrons in an energy range kBT leave the right
reservoir independently of each other.
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7.6 Evaluation in terms of the Keldysh Green function

A scattering approach as in Sec. 7.4 is not possible if the displacement u(r)
varies in the scattering region. Time ordering then no longer reduces to input-
output ordering and we need the Keldysh technique to make progress [23]. Fol-
lowing the analogous formulation of the charge counting statistics [10], we write
the generating function (7.3.4) as a single exponential of an integral along the
Keldysh time contour,

F(ξ) =
〈
T± exp

[
1
2ξ
∫ t

0
dt′

∫
dr F±(r, t′)

]〉
, (7.6.1a)

F±(r, t) = 1
m

∑
σ=±

ψ†σ(r, t)pαuαβ(r)pβψσ(r, t). (7.6.1b)

We have written the force operator in second quantized form, as in Eq. (7.4.1),
but do not assume that the electron field operator ψ±(r, t) ≡ ψ(r, t±) takes its
asymptotic form in terms of incident and outgoing states.

The generating function can be expressed in terms of the Keldysh Green
function G,

d
dξ

lnF(ξ) = i
2m

∑
σ=±

σ
∫ t

0
dt′

∫
dRuαβ(R)

∂2

∂rα∂rβ
Gσσ(R, r, t′, t′;ξ)

∣∣∣
r=0
.

(7.6.2)

The Green function Gσσ ′ is a 2 × 2 matrix in the indices σ,σ ′ ∈ {+,−} that
assure the correct time ordering of the operators. It is defined by

Gσσ ′(R, r, t, t′;ξ) =
−iσ

〈
T±ψσ(R+ 1

2r, t)ψ†σ ′(R− 1
2r, t′) exp

[
1
2ξ
∫ t
0 dt′

∫
dr′ F±(r′, t′)

]〉
〈
T± exp

[
1
2ξ
∫ t
0 dt′

∫
dr′ F±(r′, t′)

]〉 .

(7.6.3)

7.7 Application to a diffusive conductor

We apply the formalism of Sec. 7.6 to the example of diffusive electron transport
through a freely suspended disordered wire. The semi-classical calculation of
the transverse momentum noise in this geometry was done in Ref. [8], so we can
compare results.

For long detection times we may assume that the Green function (7.6.3) de-
pends only on the difference τ = t − t′ of the time arguments. A Fourier trans-
form gives

Gσσ ′(R,p, ε; ξ) =
∫
dr

∫
dτ e−ip·r−iετGσσ ′(R, r, τ;ξ). (7.7.1)
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We write p = |p|n and use the fact that in the semi-classical limit the Green
function is peaked as a function of the absolute value |p| of the momentum.
Integration over this variable yields the semi-classical Green function [23]

Gσσ ′(R,n, ε;ξ) = i
π

∫
dε′ Gσσ ′(R,n

√
2mε′, ε;ξ). (7.7.2)

We next make the diffusion approximation, expanding the n-dependence in spher-
ical harmonics,

Gσσ ′(R,n, ε; ξ) = G(0)σσ ′(R, ε; ξ)+nαG(1)ασσ ′(R, ε;ξ)
+ (nαnβ − 1

3δαβ)G
(2)
αβσσ ′(R, ε; ξ). (7.7.3)

Substituting Eq. (7.7.3) into Eq. (7.6.2) we find

d
dξ

lnF(ξ) = 1
2tEFν

∑
σ=±

σ
∫
dε

∫
dR uαβ(R)

×
[

1
3
δαβG(0)σσ (R, ε;ξ)+

2
15
G(2)αβσσ(R, ε; ξ)

]
, (7.7.4)

where ν = p2
F/2π2vF is the density of states.

The equation of motion for the semi-classical Green function in the diffusion
approximation is derived in the same way as for the charge statistics [10]. We
find

2lnα
∂
∂Rα

G+ [G(0), G]+ ξpFluαβnαnβ[τ3, G] = 0. (7.7.5)

The length l is the mean free path, assuming isotropic impurity scattering. The
commutators [.., ..] are taken with respect to the Keldysh indices σ,σ ′ and τ3 is
the third Pauli matrix in these indices. The Green function satisfies the normal-
ization condition G2 = 1 that is respected by the differential equation (7.7.5).
The boundary conditions at the left and right ends of the wire are [10]

GL =

 1− 2fL 2fL

2− 2fL 2fL − 1


 ,

GR =

 1− 2fR 2fR

2− 2fR 2fR − 1


 . (7.7.6)

By projecting Eq. (7.7.5) onto spherical harmonics we find that, to leading
order in l/L, the second harmonic G(2) depends only on the zeroth harmonic
G(0):

G(2)αβ =
ξ
2
pFl(uαβ − 1

3
δαβuγγ)G(0)[τ3, G(0)][1+O(l/L)2]. (7.7.7)

Combining this relation with Eq. (7.7.4) we see that the momentum statistics of
a transverse mode, with uxx = 0, uxy ≠ 0, follows from

d
dξ

lnF(ξ) = ξ
30
tpFlEFν

∑
σ,α,β

∫
dε

∫
dR u2

αβ

(
τ3G(0)[τ3, G(0)]

)
σσ
.(7.7.8)
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It remains to compute G(0). To calculate lnF to order ξ2, that is to calculate
the variance C(2) of the force noise, it is sufficient to know G(0) for ξ = 0. The
solution to the unperturbed diffusion equation (7.7.5) is known [10],

G(0)(R, ε; ξ = 0) =

 1− 2f(R, ε) 2f(R, ε)

2− 2f(R, ε) 2f(R, ε)− 1


 , (7.7.9)

where f(R, ε) = fL(ε) + (x/L)[fR(ε) − fL(ε)]. (The coordinate x runs along the
wire, from x = 0 to x = L.) We find

C(2) = t16
15
pFlEFνA

∫ L
0
dxdε u2

xy(x)f (x, ε)[1− f(x, ε)], (7.7.10)

with A the cross-sectional area of the wire. This is the same result as in Ref. [8].
More complicated networks of diffusive wires, including tunnel barriers or

point contacts, can be treated in the same way. In such situations the unper-
turbed Green function G(0)(R, ε;ξ = 0) can be determined using Nazarov’s cir-
cuit theory [24] and then substituted into Eq. (7.7.8).

7.8 Conclusion

We conclude by estimating the order of magnitude of the cumulants of the dis-
placement distribution P(Q) of a vibrating current-carrying wire. For an os-
cillator with a large quality factor only the even order cumulants 〈〈Q2k〉〉 are
appreciable, given in good approximation by

〈〈Q2k〉〉 ≈ 1
2k
(Mω0)−2k Q

ω0
lim
t→∞

1
t
〈〈�P(t)2k〉〉, (7.8.1)

cf. Eqs. (7.3.9) and (7.3.11). The cumulants of transferred momentum �P have
been calculated for a single-channel conductor with a localized scatterer in Sec.
7.5. At zero temperature one has

lim
t→∞

1
t
〈〈�P(t)2k〉〉 = eV

2π�
p2k
F (uR+uL−2u0)2k

d2k

dξ2k ln[1+Γ(eξ−1)]
∣∣∣
ξ=0
, (7.8.2)

cf. Eq. (7.5.3). (We have reinserted Planck’s constant � for clarity.)
Combining Eqs. (7.8.1) and (7.8.2) we see that in order of magnitude 〈〈Q2k〉〉 �

(eVQ/�ω0)(pF/Mω0)2k. Inserting parameter values (following Ref. [7]) V =
1 mV, Q = 103, ω0/2π = 5 GHz, pF = 2 · 10−24 Ns, and M = 10−20 kg, we estim-
ate

〈〈Q2k〉〉1/2k ≈ 104/2k × 10−4Å. (7.8.3)

Detectors with a 10−4Å sensitivity have been proposed [25]. For a measure-
ment of higher order cumulants one would want cumulants of different or-
der to be of roughly the same magnitude. This can be achieved by choos-
ing the number eVQ/�ω0 not too large. For the parameters chosen above,
〈〈Q4〉〉1/4/〈〈Q2〉〉1/2 ≈ 0.1 .
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The theory presented in this work is more than a framework for the calcu-
lation of higher order cumulants in the momentum transfer statistics. It also
provides for a formalism to treat quantum effects in electromechanical noise. A
first application, to quantum size effects in a constriction, has been realized [21].
Other applications, including resonant tunneling, superconductivity, and inter-
action effects, are envisaged.

Appendix A: Derivation of the unitary transformation
(7.2.4)

We demonstrate that the operator U given in Eq. (7.2.4) has the desired prop-
erty (7.2.3) of eliminating the phonon displacement from the ion potential. By
expanding the exponential in Eq. (7.2.4) we calculate the effect of U on a one-
electron and one-phonon wavefunction in the position space representation:

Uψ(r , q) = ||J||1/2 ψ[r − qu(r), q]. (A.1)

We prove Eq. (7.2.3) by calculating matrix elements,

〈ψ1|U†V[r −Qu(r)]U|ψ2〉 =∫
dr
∫
dq ||J||ψ∗1 [r− qu(r), q]V[r − qu(r)]ψ2[r− qu(r), q]

=
∫
dr̃
∫
dq ψ∗1 (̃r, q)V(r̃)ψ2(̃r, q) = 〈ψ1|V |ψ2〉. (A.2)

The unitarity of U follows as the special case V ≡ 1.
We now justify the replacement of ρ̃ = U†ρU with ρ and Ã = U†AU by A in

the generating function (7.2.8), in the limit of a long detection time t. Since Q
commutes with U , it is sufficient to consider A = P . (Then Ã = A(Q, P̃) in the
more general case that A is a function of both Q and P .) To first order in the
displacement one has

P̃ = P −Π+O(u2). (A.3)

The difference between P̃ and P is of the order of the total momentum Π inside
the wire, which is t-independent in a stationary state. Since the expectation
value (as well as higher cumulants) of P increases linearly with t, we can neglect
the difference between P̃ and P for large t.

To justify the replacement of ρ̃ by ρ we note that the effect of U on the initial
state is to shift the electron coordinates by the local phonon displacement [cf.
Eq. (A.1)]. This initial shift has only a transient effect and can be neglected for
large t.
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Appendix B: Effective mass approximation

We start with the Hamiltonian (7.2.5) with V = Vlat + Vimp. In the absence of any
deformation of the periodic lattice one has, in the effective mass approximation,

1
2m

p2 + Vlat(r) = 1
2m∗p∗2. (B.1)

The quasimomentum operator p∗ is defined in terms of the Bloch function g(r)
by p∗ = −ig∇g−1. We seek a similar approximation to the same Hamiltonian
in a distorted lattice, assuming that u is sufficiently smooth that we can neglect
derivatives of the shear tensor uαβ. The Hamiltonian (7.2.5) (for one electron)
then has the form

H = 1
2m

pα(δαβ − 2Quαβ)pβ + Vlat + Vimp − 1
M
PΠ+Ωa†a. (B.2)

For small displacements Q the real symmetric matrix Xαβ = δαβ − 2Quαβ is
positive definite. We can therefore factorize X = TTT , with T real. We change
coordinates to r̃ = T−1r and find

H = − 1
2m

∂
∂r̃α

∂
∂r̃α

+ Vlat(Tr̃)+ Vimp(Tr̃)− 1
M
PΠ+Ωa†a. (B.3)

We now make the assumption of a deformation independent effective mass
[12,13], that is to say, we assume that the Hamiltonian with the distorted lattice
potential Vlat(Tr̃) is approximated as in Eq. (B.1) with distorted Bloch functions,
but the same effective mass m∗. Hence

H = − 1
2m∗

[
g(Tr̃)

∂
∂r̃α

1
g(Tr̃)

]2

+ Vimp(Tr̃)− 1
M
PΠ+Ωa†a. (B.4)

Transforming back to the original coordinates we arrive at the Hamiltonian

H = 1
2m∗p

∗
α(δαβ − 2Quαβ)p∗β + Vimp − 1

M
PΠ+Ωa†a

(B.5)

given in Sec. 7.2.
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8 Manipulation of photon statistics of
highly degenerate incoherent radiation

Chaotic radiation is the name given in quantum optics to a gas of photons that
has a Gaussian density matrix [1]. (To avoid misunderstanding, we note that
chaotic radiation is not in any way related to chaos in classical mechanics.) The
radiation emitted by a black body is a familiar example. The statistics of black-
body radiation, as measured by a photodetector, is very close to the Poisson
statistics of a gas of classical independent particles. Deviations due to photon
bunching exist, but these are small corrections. To see effects of Bose statistics
one needs a degenerate [2] photon gas, with an occupation number f of the
modes that is >∼ 1. Black-body radiation at optical frequencies is non-degenerate
to a large degree (f � e−�ω/kT � 1), even at temperatures reached on the surface
of the Sun.

The degeneracy is no longer restricted by frequency and temperature if the
photon gas is brought out of thermal equilibrium. The coherent radiation from
a laser would be an extreme example of high degeneracy, but the counting stat-
istics is still Poissonian because of the special properties of a coherent state [1].
One way to create non-equilibrium chaotic radiation is spectral filtering within
the quantum-limited line width of a laser [3]. This will typically be single-mode
radiation. For multi-mode radiation one can pass black-body radiation through
a linear amplifier. The amplification might be due to stimulated emission by
an inverted atomic population or to stimulated Raman scattering [4]. Alternat-
ively, one can use the spontaneous emission from an amplifying medium that is
well below the laser threshold [5], or parametric down-conversion in a non-linear
crystal [1].

The purpose of this chapter is to show that the statistics of degenerate
chaotic radiation can be manipulated by introducing scatterers, to an extent that
would be impossible for both non-degenerate chaotic radiation and degenerate
coherent radiation. We will illustrate the difference by examining in some de-
tail a simple geometry consisting of one or two weakly transmitting barriers (in
analogy with tunnel barriers for electrons) [6] embedded in a waveguide (see Fig.
8-1). For the single barrier the photocount distribution is close to Poissonian.
The mean photocount n̄ is only changed by a factor of two upon insertion of
the second barrier. But the fluctuations around the mean are greatly enhanced,
as a result of multiple scattering in a region of large occupation number. We
find that the distribution P(n) for the double-barrier geometry is not only much
broader than a Poisson distribution, it also has a markedly different shape.

We consider a source of chaotic radiation that is not in thermal equilibrium.
Chaotic radiation is characterized by a Gaussian density matrix ρ in the coherent
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state representation [1]. For a single mode it takes the form

ρ =
∫
dαdα∗(πµ)−1 exp(−α∗µ−1α)|α〉〈α|, (8.0.1)

where µ is a positive real number and |α〉 is a coherent state (eigenstate of
the photon annihilation operator a) with complex eigenvalue α. If one takes
into account more modes, α becomes a vector α and µ a matrix µ in the space
of modes. (The factor πµ then becomes the determinant ||πµ||.) We take a
waveguide geometry and assume that the radiation is restricted to a narrow
frequency interval δω aroundω0. In this case the indices n,m of αn, µmn label
the N propagating waveguide modes at frequency ω0.

In thermal equilibrium at temperature T , the covariance matrix µ = f� equals
the unit matrix � times the scalar factor f = (e�ω/kT − 1)−1, being the Bose-
Einstein distribution function. Multi-mode chaotic radiation out of thermal equi-
librium has in general a non-scalar µ. We assume that µ is a property of the
amplifying medium, independent of the scattering properties of the waveguide
to which it is coupled. Feedback from the waveguide into the amplifier is there-
fore neglected.

The radiation is fully absorbed at the other end of the waveguide by a pho-
todetector. We seek the probability distribution P(n) to count n photons in a
time t. It is convenient to work with the cumulant generating function F(ξ) =
ln[

∑
n eξnP(n)]. For long counting times tδω � 1 it is given by the Glauber

formula [1,7]

F(ξ) = tδω
2π

ln Tr
(
ρ : exp[(eξ − 1)a†outaout] :

)
. (8.0.2)

Here aout is the vector of annihilation operators for the modes going out of the
waveguide and into the photodetector. The colons : : indicate normal order-
ing (creation operators to the left of annihilation operators). The transmission
matrix t relates aout = ta to the vector a of annihilation operators entering the
waveguide. Substituting Eq. (8.0.1) for ρ, we find

F(ξ) = tδω
2π

ln
∫
dαdα∗||πµ||−1 exp[−α∗µ−1α)+ (eξ − 1)α∗t†tα]

= −tδω
2π

ln ||�− (eξ − 1)µt†t||. (8.0.3)

In thermal equilibrium, when µ = f�, the determinant can be evaluated in
terms of the eigenvalues Tn of the matrix product t†t. The resulting expression
[5,8]

F(ξ) = −tδω
2π

N∑
n=1

ln[1− (eξ − 1)fTn)] (8.0.4)

has a similar form as the generating function of the electronic charge counting
distribution at zero temperature [9],

Felectron(ξ) = teV2π�

N∑
n=1

ln[1+ (eξ − 1)Tn], (8.0.5)
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where V is the applied voltage.
If the eigenvalues of tµt† are� 1 , we may expand the logarithm in Eq. (8.0.3)

to obtain F(ξ) = n̄(eξ − 1), with mean photocount n̄ = (tδω/2π)Tr µt†t. The
corresponding photocount distribution is Poissonian,

PPoisson(n) = 1
n!
n̄ne−n̄. (8.0.6)

In thermal equilibrium the deviations from a Poisson distribution will be very
small, because the Bose-Einstein function is � 1 at optical frequencies for any
realistic temperature. There is no such restriction on the covariance matrix µ
out of equilibrium. This leads to striking deviations from Poisson statistics.

As a measure for deviations from a Poisson distribution we consider the
deviations from unity of the Fano factor. From Eq. (8.0.4) we derive

F = Var n
n̄

= 1+ Tr (µt†t)2

Tr µt†t
. (8.0.7)

A Fano factor F > 1 indicates photon bunching. For example, for black-body
radiation F = 1 + f . One might surmise that photon bunching is negligible if
the waveguide is weakly transmitting, so that N−1Tr t†t � 1. That is correct
if the weak transmission is due to a single barrier. Then each transmission
eigenvalue Tn� 1, hence F ≈ 1. However, if a second identical barrier is placed
in series with the first one a remarkable increase in the Fano factor occurs.

Let us first demonstrate this effect for a scalar µ = f�, when it has a well-
known electronic analogue [10, 11]. We assume that N � 1 so that we may
replace traces in Eq. (8.0.7) by integrations over the transmission eigenvalue T
with density ρ(T),

F = 1+ f
∫ 1
0 dTρ(T)T 2∫ 1
0 dTρ(T)T

. (8.0.8)

For a single barrier ρ(T) is sharply peaked at a transmittance Γ � 1. Hence,
F ≈ 1 for a single barrier. For two identical barriers in series the density is
bimodal [12],

ρ(T) = NΓ
2π
T−3/2(1− T)−1/2, (8.0.9)

with a peak near T = 0 and at T = 1. From this distribution we find that

F = 1+ 1
2f . (8.0.10)

While the second barrier reduces the mean photocount by only a factor of
two, independently of the occupation number f of the modes of the incident
radiation, it can greatly increase the Fano factor for large f (see Fig. 8-1). From
the electronic analogue (8.0.5) we would find F = 1 for a single barrier and
F = 1− 1

2 =
1
2 for a double barrier [10]. We conclude that for electrons the effect

of the second barrier on the mean current and the Fano factor are comparable
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Figure 8-1. Dependence of the Fano factor on the occupation number of the modes, for trans-

mission through one (dashed line) or two barriers (solid line). The inset shows schematically

the photodetector (shaded) and the waveguide containing one or two barriers.

(both being a factor of two), while for photons the effect on the Fano factor can
be orders of magnitude greater than on the mean current for f � 1.

The two terms 1 and 1
2f in Eq. (8.0.10) account, respectively, for the particle

and the wave nature of the radiation. For a classical wave the mean of the
squared intensity fluctuations is proportional to the mean intensity squared,
hence a classical wave has a Fano factor that varies linearly with f . In the double
barrier geometry there is a high intensity of the radiation in a region with strong
multiple scattering and this enhances the wave contribution to F relative to the
particle contribution. This explains in simple terms why F ∝ f for f � 1, but
to find the numerical coefficient 1

2 and the crossover to particle-like behaviour
relevant in the single barrier geometry requires an explicit calculation.

Changing the nature of the multiple scattering will change the numerical
coefficient. For example, multiple scattering by disorder would give F = 1+ 2

3f ,

in analogy with the electronic result [13, 14] F = 1 − 2
3 =

1
3 . What the double-

barrier and the disordered case have in common is a ρ(T) that is bimodal, with
peaks at T = 0,1. The shape of the peaks depends on the type of multiple
scattering, and that in turn affects the numerical coefficients, but the coefficient
remains of order unity. (The single barrier, in contrast, has a uni-modal ρ(T),
with a single peak at T = Γ .) The bimodal ρ(T) can be understood as being
a precursor of wave localization due to multiple scattering [16]. The bimodal
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ρ(T) does not depend on the separation L of the barriers, as long as it is large
compared to the wavelength λ and short compared to the absorption length ξ.
For L <∼ λ we are back to the single-barrier case and for L � ξ the Fano factor
tends to zero.

We now generalize Eq. (8.0.10) to a non-scalar µ. An extreme case is a co-
variance matrix of rank one having all eigenvalues µn equal to zero except a
single one. This would happen if the waveguide is far removed from the source,
so that its cross-sectional area A is smaller than the coherence area Ac [15].
Since Tr (µt†t)2 = (Tr µt†t)2 if µ is of rank one, the Fano factor reduces to
F = 1 + Tr µt†t. The trace of µt†t is � 1 for both a single and double barrier
geometry, hence a second barrier has no large effect on the noise if A <∼ Ac .

More generally, for a non-scalar µ the Fano factor (8.0.7) depends not just on
the eigenvalues Tn of t†t, but also on the eigenvectors. We write t†t = U†τU ,
with U the unitary matrix of eigenvectors. We assume strong intermode scat-
tering by disorder inside the waveguide. The resulting U will then be uniformly
distributed in the unitary group, independent of τ [16]. For N � 1 we can re-
place the traces in numerator and denominator in Eq. (8.0.7) by integrations over
U , with the result

F = 1+ 〈µ〉〈τ〉 + 〈µ〉〈〈τ
2〉〉
〈τ〉 + 〈τ〉

〈〈µ2〉〉
〈µ〉 . (8.0.11)

Here 〈µp〉 = N−1Tr µp, 〈τp〉 = N−1Tr τp denote the spectral moments and
〈〈µp〉〉, 〈〈τp〉〉 the corresponding cumulants. [For example, 〈〈τ2〉〉 = 〈τ2〉 − 〈τ〉2.]

Instead of Eq. (8.0.10) we now have for the double barrier geometry a Fano
factor

F = 1+ 1
2〈µ〉(1+ κ), κ = Γ

〈〈µ2〉〉
〈µ〉2 . (8.0.12)

We may estimate the magnitude of the correction κ by noting that, typically,
only Nc � A/Ac eigenvalues of µ will be significantly different from 0. If we
ignore the spread among these Nc eigenvalues, we have 〈µ2〉 ≈ (N/Nc)〈µ〉2,
hence κ ≈ Γ(N/Nc−1). This correction will be negligibly small for Γ � 1, unless
ΓN >∼ Nc .

In the final part of this chapter we consider the full photocount probability
distribution P(n) = (2π)−1

∫ 2π
0 dξ exp[F(iξ)− inξ]. For large detection time

this integral can be done in saddle point approximation. The result has the form
P(n) = exp

[
n̄g(n/n̄)

]
. For small relative deviations of n from n̄ the function

g(n/n̄) can be expanded to second order in n/n̄. Thus the body of the distribu-
tion tends to a Gaussian for t →∞, in accordance with the central limit theorem.
The same holds for the Poisson distribution (8.0.6). However, the tails of P(n)
for degenerate radiation remain non-Gaussian and different from the tails of
PPoisson(n).

Let us first investigate this for a scalar µ = f�. Replacing the sum over n in
Eq. (8.0.4) by the integral

∫ 1
0 dTρ(T), which is allowed in the large-N limit, we
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Figure 8-2. Logarithmic plot of the photocount distribution for f = 8 and n̄ → ∞. The solid

curve follows from Eq. (8.0.13) (describing the double barrier geometry) and is very close to the

large-f limit (8.0.14). The dashed curve is a Gaussian with variance (1+ 1
2f )n̄ and the dotted

curve is the Poisson distribution (8.0.6). (Notice the different vertical scale for the dotted

curve, chosen such that the Gaussian body of the Poisson distribution becomes evident.)

find, using Eq. (8.0.9), the generating function

F(ξ) = tδω
2π

NΓ
[
1−

√
1− (eξ − 1)f

]
. (8.0.13)

The corresponding P(n) is the K-distribution that has appeared before in a vari-
ety of contexts [7,8,17]. The K-distribution is usually considered only for f � 1,
as is appropriate for thermal equilibrium. In the regime 1 � f � n̄ of interest
here it has the form

P(n) = C n−3/2 exp

(
−n
f
− n̄

2

nf

)
, (8.0.14)

with a normalization constant C = n̄(πf)−1/2 exp(2n̄/f ). The essential sin-

gularity at n = 0 is cut off below n̄/
√
f , where the distribution saturates at

P(0) = exp(−2n̄/
√
f). In Fig. 8-2 we compare the distribution (8.0.14) with

a Gaussian and with a Poisson distribution, which has the asymptotic form
PPoisson = (2πn)−1/2 exp

[
n − n̄ − n ln(n/n̄)

]
. The logarithmic plot emphasizes

the tails, which are markedly different.
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For a non-scalar µ we find that the functional form of the large-n tail depends
only on the largest eigenvalue λmax � 1 of the Hermitian positive definite matrix
tµt†,

lim
n→∞P(n)∝ e

−n/λmax. (8.0.15)

The number λmax plays the role for a non-scalar µ of the filling factor f in the
result (8.0.14) for a scalar µ. While the large-n tail is exponential under very
general conditions, the tail for n� n̄ has no universal form.

In conclusion, we have calculated the effect of multiple scattering on the
photodetection statistics of radiation that is both chaotic (like thermal radiation
from a black body) and highly degenerate (like coherent radiation from a laser).
Even for weak transmission there appear large deviations of the photocount
distribution from Poisson statistics, that are absent in the radiation from a black
body or a laser. They take the form of an enhancement of Var n above n̄ by a
factor ∝ f and a slowing down of the large-n decay rate of P(n) by a factor
1/f . Explicit results have been given for a double barrier geometry, but these
findings are generic and would apply also, for example, to multiple scattering
by disorder. Because of this generality we believe that experimental observation
of our predictions would be both significant and feasible.
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Samenvatting

Fluctuaties in de elektrische stroom bevatten waardevolle informatie over de ge-
leider. Bijvoorbeeld, de lading van de deeltjes die de stroom dragen volgt uit een
meting van het gemiddelde van het kwadraat van de stroomfluctuaties. Dit soort
ruismetingen zijn heel succesvol gebleken. Het valt te verwachten, dat verder in-
zicht in het ladingstransport verkregen kan worden door ook hogere machten
van de fluctuaties te middelen. Uiteindelijk zou men de volledige kansverdeling
van de stroomfluctuaties willen kennen en niet alleen de eerste paar momenten.
Men noemt dit het probleem van de “elektronische telstatistiek”, omdat men de
kansverdeling van de stroomfluctuaties kan vinden door herhaaldelijk te tellen
hoeveel elektronen er in een gegeven tijdsinterval passeren. Er is een analogie
met de quantumoptica, waar het tellen van fotonen een heel effectieve manier
is om de stralingsbron te karakteriseren. Echter, in de elektronica staat deze
techniek nog in de kinderschoenen.

De elektronische telstatistiek is voor ’t eerst onderzocht door Levitov en Les-
ovik. Zij beschouwden niet-wisselwerkende elektronen in een mesoscopische
geleider (d.w.z. zonder inelastische verstrooiing) met een ideale spanningsbron.
Het resultaat van die berekening is dat het aantal gepasseerde elektronen een bi-
nomiale kansverdeling heeft. (Eenzelfde statistiek treedt op bij “kruis of munt”.)
De binomiale telverdeling voor elektronen is analoog aan de negatief-binomiale
telverdeling van fotonen uitgestraald door een zwart lichaam. Het verschil is te
verklaren door het verschil in de quantumstatistiek van fermionen en bosonen.

In tegenstelling tot fotonen, zijn elektronen sterk wisselwerkende deeltjes.
Men zou verwachten dat deze wisselwerking tot correlaties leidt die in de telsta-
tistiek zichtbaar worden. Nu is de wisselwerking binnen de geleider zelf goed
afgeschermd en dus niet zo effectief. Van groter belang is de elektromagnetische
wisselwerking tussen de geleider en het circuit waar hij in is opgenomen. Een
representatief voorbeeld, dat in dit proefschrift wordt behandeld, is de wissel-
werking tussen een mesoscopische geleider G en een macroscopische serieweer-
stand R. De gemiddelde stroom (eerste moment) wordt gewoon met een factor
1+ RG verminderd door de serieweerstand. Het tweede moment wordt vermin-
derd met een factor (1 + RG)2. We hebben ontdekt dat deze simpele regel niet
meer opgaat bij het derde en hogere moment. Zoals beschreven in hoofdstuk
3, treedt er een niet-lineaire terugkoppeling op die momenten van verschillende
orde koppelt.

In hoofdstuk 5 tonen we aan dat deze terugkoppeling een drastisch effect
heeft op de temperatuurafhankelijkheid van de stroomfluctuaties. We onderzoe-
ken het geval van een tunnelbarrière, waar het derde moment temperatuuronaf-
hankelijk zou zijn zonder serieweerstand. De eerste metingen uit Yale Univer-
sity lieten echter een sterke temperatuurafhankelijkheid zien, die zelfs gepaard
ging met een tekenomslag. Onze terugkoppelingstheorie blijkt een kwantitatieve
verklaring te geven van deze metingen.



130 Samenvatting

In hoofdstuk 4 onderzoeken we het verschil tussen enerzijds spannings-
fluctuaties met een ideale stroombron (oneindige inwendige weerstand) en an-
derzijds stroomfluctuaties met een ideale spanningsbron (nul inwendige weer-
stand). Dit verschil betreft de twee limieten R → ∞ en R → 0 van de theorie
uit hoofdstuk 3. Zoals gezegd hebben stroomfluctuaties de binomiale verdeling.
Voor spanningsfluctuaties vinden we de Pascalverdeling, ook wel bekend als de
binomiale wachttijdverdeling. In het geval van “kruis of munt”, geeft de binomi-
ale verdeling de kans op het aantal malen kruis bij een vast aantal worpen van
het muntstuk. De Pascalverdeling geeft de kans op het aantal keren dat men
moet werpen om een vast aantal malen kruis te vinden. De berekening is nogal
technisch, maar we geven ook een eenvoudige fysische verklaring.

De verschijnselen die we tot dit punt hebben beschreven zijn klassieke elek-
tromagnetische verschijnselen. Quantummechanische effecten treden op als de
serieweerstand groter is dan het quantum h/e2 bij frequenties van orde eV/�
(met V de aangelegde spanning). De serieweerstand is dan snel genoeg om het
passeren van een enkel elektron te kunnen volgen. Er treedt dan een effect op
dat de Coulomb blokkade wordt genoemd. De stroom wordt op een niet-lineaire
manier onderdrukt als de spanning naar nul gaat. De onderdrukking wordt voor
een tunnelbarrière beschreven door een machtswet. In hoofdstuk 6 onderzoe-
ken we de onderdrukking voor een willekeurige mesoscopische geleider. Nog
steeds geldt een machtswet, maar de exponent kan anders zijn dan voor de tun-
nelbarrière. Opmerkelijk genoeg vinden we dat er maar twee mogelijke waarden
zijn voor de exponent. Er zijn dus maar twee universaliteitsklassen. Alle gelei-
ders in dezelfde klasse gedragen zich hetzelfde bij lage spanningen. Een enkele
tunnelbarrière zit in de eerste klasse, een dubbele tunnelbarrière in de tweede
klasse.

De hoofdstukken 2, 7 en 8 betreffen ook telstatistiek, maar in een andere
context.

Hoofdstuk 2 betreft telstatistiek in supergeleiders. We presenteren een op-
lossing voor de paradox van de “negatieve waarschijnlijkheden”, die was opge-
treden in een eerdere studie van de elektronische telstatistiek in een Josephson
junctie. Dit is een supergeleidende ring, onderbroken door een zwakke schakel.
De stroom door de ring vloeit in evenwicht, zonder een aangelegde spanning. We
identificeren een quasiklassieke benadering in het model van Levitov en Lesovik
als de oorzaak voor het optreden van negatieve waarschijnlijkheden en geven
aan hoe die benadering vermeden kan worden.

Hoofdstuk 7 betreft de telstatistiek van impuls, in plaats van lading. Dit
is een probleem uit de nanomechanica. Fluctuaties in de elektrische stroom
door een vrij opgehangen geleider van nanometer-afmetingen kunnen een me-
chanische trilling veroorzaken, doordat de elektronen tegen verontreinigingen
aanbotsen. Eerdere semiklassieke berekeningen van het tweede moment van
de impulsoverdracht hadden aangetoond dat dit een waarneembaar effect zou
moeten zijn. We geven een volledig quantummechanische theorie voor alle mo-
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menten. Het is een klein effect, ten gevolge van de lage relatieve bijdrage van
de elektronen aan de massa van de geleider. Deze elektromechanische trillingen
kunnen worden onderscheiden van thermische trillingen via de spanningsafhan-
kelijkheid en de niet-normale verdeling van de verplaatsing.

Hoofdstuk 8, ten slotte, behandelt een opvallend verschil tussen elektroni-
sche en fotonische telstatistiek. Dit verschil treedt op als de gemiddelde bezet-
ting van de fotontoestanden groot is ten opzichte van 1, hetgeen uiteraard niet
mogelijk is voor elektronen. In het geval van meervoudige verstrooiing ontstaat
dan een grote toename van de fotonruis, die geen elektronisch analogon heeft.
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ten van veldentheorieën die een beschrijving geven van vloeibare kristallen en
vloeibaar 3He. Tijdens mijn afstudeeronderzoek nam ik deel aan een workshop
over topologische defecten in Capri.

In oktober 2000 begon ik mijn promotieonderzoek aan de Universiteit Lei-
den in dienst van de Stichting voor Fundamenteel Onderzoek der Materie (FOM).
Mijn begeleiders waren Prof.dr. C.W.J. Beenakker (Universiteit Leiden) en Prof.dr.
Yu.V. Nazarov (Technische Universiteit Delft). De belangrijkste resultaten van
dit onderzoek zijn beschreven in dit proefschrift.

Naast mijn onderzoek assisteerde ik in 2001 en 2002 bij het college Elek-
tromagnetisme II. Ik volgde zomerscholen in Windsor (Engeland), Bad Honnef
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