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Chapter 1

Introduction

1.1 Preface

Nonrelativistic quantum mechanics is based on the Schrodinger equation,
which describes particles with a quadratic dependence of energy on mo-
mentum. Conduction electrons in metals and semiconductors follow this
equation. The effective mass is different from the free electron mass, due
to the effect of the lattice potential, but it does not vanish.

In recent years materials were discovered in which the energy of ex-
citations near the Fermi level depends linearly rather than quadratically
on momentum. This is the same linear dispersion relation as for photons,
so these materials mimic the dynamics of massless relativistic particles
(although the Fermi velocity is much less than the speed of light). The
excitations could be electrons or holes in a carbon monolayer (graphene),
or they could be neutral quasiparticle excitations in an unconventional su-
perconductor (with p-wave or d-wave symmetry of the order parameter).

The massless excitations are called Dirac fermions, because they satisfy
a Dirac equation rather than a Schrédinger equation. The Dirac equation
was studied extensively in the context of relativistic quantum mechan-
ics, but questions related to the effect of disorder did not play a role in
that context. These effects are, however, central to the behavior of Dirac
fermions in condensed matter.

Localization is a purely quantum mechanical effect of disorder, discov-
ered by P.W. Anderson in 1958 [7]. Interference prevents the spreading of
a wave packet, turning a metal into an insulator. This effect is now well
understood, both by an intuitive scaling theory [1] and by field theoretical
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Figure 1.1. The left panel shows the sp?-hybridized orbitals of a carbon atom,
the central panel shows their arrangement in a honeycomb lattice known as
graphene. The right panel shows the A and B sublattices that form the hon-
eycomb lattice, with lattice vectors a1, as and nearest neighbor vectors 81, da,
d3. From Ref. [22].

approaches [125]. It has been tested by numerical simulations [65] and by
experiments [37].

These studies considered massive electrons, starting from the Schro-
dinger equation. Localization of massless Dirac fermions is qualitatively
different. Some aspects of the localization of Dirac fermions are studied in
this thesis.

In this introductory chapter we present background material, and an
outline of the following chapters. We start by introducing the physical
realizations of Dirac fermions that we will be considering.

1.2 Dirac fermions in graphene

1.2.1 Gapless graphene

Graphene is a monolayer of graphite. The atomic configuration of the
carbon atoms is 1522s22p?, in graphene their electronic configuration is
152252p3. Due to sp*-hybridization the atoms form a hexagonal lattice (o-
bonds), see Fig. 1.1. The p, orbitals do not participate in the hybridization
(m-bond). Electrical conduction is due to hopping between the p, orbitals.

The unit cell of the hexagonal lattice consists of two atoms, which
form the A and B sublattices. The tight-binding model with nearest
neighbor hopping only couples different sublattices, corresponding to the
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off-diagonal blocks in the Hamiltonian

94— < 0 t*> 103 exp(—ik - (5]')> '
tdj—123exp(ik - d;) 0

The J;’s are three nearest neighbor vectors,

(1.1)

61=5(1.V3). &= 5(1,—V3). & =a(L0)

a ~ 1.42 A is the lattice constant, and ¢ ~ 2.8 ¢V is the nearest neighbor
hopping energy.
The Hamiltonian (1.1) has energy bands E(k) given by

\/gkya 3kpa

5 05— (1.2)

E = it\/3+2008\/§kya+4cos

At the points

2r 2w 2 2
K: o 0 o = 7K/: 5 0 o =
(o) = = (5o 5vm)

the gap in the spectrum is closed. Near these two socalled Dirac points
the energy-momentum relation is linear.

Linearization of the tight-binding Hamiltonian near a Dirac point gives
the two-dimensional massless Dirac Hamiltonian,

_ 0 Ok, F 10k,
H=hvr (51% Liok, 0 ) ! (13)
which can be written more compactly in terms of Pauli matrices,
H = hvp(o,0ky £ 0ydky). (1.4)

The wave vector dk is measured relative to point K (upper sign) or relative
to point K’ (lower sign). The Fermi velocity vg is expressed through the
parameters of the lattice as vp = 3at/2 ~ 10° m/s. This is relatively
large, but still much smaller than the speed of light, so the dynamics only
mimics that of relativistic particles.

The literature on graphene has exploded, since the first isolation of
carbon monolayers in 2004 by A. K. Geim and K. S. Novoselov with their
group (recently honored by a Nobel prize). We refer to a comprehensive
review 22| for references.
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1.2.2 Gapped graphene

The relatively large Fermi velocity in graphene is promising for transistor
applications, but the absence of a band gap is a complication: It is impos-
sible to completely switch off the conductivity. A band gap is represented
by an additional term mv%az in Dirac equation, which in the relativistic
analogue would correspond to a mass term,

H = muvto, + hwp(o.0k, £ 0y0k,). (1.5)

The physical meaning of this term is a potential which takes on different
values on the two sublattices. Such a staggered potential can be imposed
on graphene in different ways, for example, by chemisorption of atoms to
the m-bonds or by a substrate.

Let us consider the first possibility in some more detail [27]. We assume
that the adatom deposited on graphene forms a covalent bond with a par-
ticular carbon atom (fluorine, hydrogen, or hedroxyl groups are known to
act like this). Then the sublattice symmetry is locally broken. In general
the concentration of adatoms on the two sublattices is almost equivalent.
But spontaneous sublattice symmetry breaking can happen if it is energet-
ically more favorable for adatoms to be on the same sublattice. Namely,
each adsorbent locally changes the electronic density and interacts via this
change of electronic density with another adatom, in such a way that the
interaction depends on which sublattice the adatom is placed.

If the configuration with adatoms on the same sublattice has lower
energy than with adatoms on different sublattices, then domains with bro-
ken sublattice symmetry are generated. This can happen if the adatoms
may move along the flake, which requires that the activation barrier is
smaller than the desorption barrier. This condition is not met for hy-
drogen adatoms, but it can be valid for other adatoms, for example the
halogens.

Turning to the second possibility, there are substrates for graphene
which break the sublattice symmetry [46, 130], for example SiC or BN.
Such substrates have a hexagonal lattice structure and almost the same
lattice constant as graphene. The onsite potentials are different for each
sublattice, due to different atoms on the sublattices, see Fig. 1.2. If the
graphene lattice is matched with the substrate lattice, then the sublattice
symmetry is broken, which leads to a band gap (estimated in Ref. [46] at
53 meV for BN).
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Figure 1.2. Schematic representation of crystal structure and dispersion re-
lation: a) free-standing graphene; b) boron-nitride, BN (with different atoms
represented by different colours); c¢) graphene on BN. As different atoms of the
substrate have different potentials, the sublattice symmetry is broken and a gap
is opened. From Ref. [89].

1.3 Dirac fermions in superconductors

In conventional superconductors an electron with spin up, momentum k
forms a Cooper pair with an electron with spin down, momentum —k.
This spin-singlet, s-wave pairing is isotropic both with respect to the spin
and with respect to the orbital degree of freedom. Superconductors with
anisotropic pairing are called unconventional. The high-T, cuprate super-
conductors are a notable example, where the Cooper pairs have spin sin-
glet, d-wave symmetry. Spin-triplet, p-wave pairing appears in strontium
ruthenate (SroRuOy). Quasiparticle excitations in these superconductors
are Dirac fermions, as we will discuss in this section.

1.3.1 Pairing symmetry

Let us first classify the types of electron pairing, consistent with the re-
quirement of an antisymmetric wave function. The wave function of two
electrons consists of a spin part x and orbital part A (also called the pair
potential). The full wave function should be antisymmetric with respect
to interchange of the two fermions: A(k)xi2 = —A(—k)x21, with k the
momentum of the relative motion of the electron pair.
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The spin state is given in terms of the Pauli matrices

P L N (R T

The basis states for a single spin are the spinors

m=(5). w=(7)- (1.7

The basis states for two spins are

1) = ((1) 8) 1) = (8 é) ) = <(1) 8) W)= (8 ‘1)) (1.8)

The spin-singlet state is given by

)= [41) = (_01 (1)) — oy, (1.9)

which is antisymmetric with respect to interchange of the particles. Hence
for spin-singlet superconductivity the Cooper pair wave function is

U = A(k)ioy, (1.10)

with A(—k) = A(k).

For s-wave pairing the pair potential A = Ag is a constant. The
superconducting gap is then isotropic, equal to Agy. For d-wave pairing
one has an anisotropic pair potential,

A(k) = (Do/k) (k3 — k). (1.11)
The gap in this case vanishes along the nodal lines |k;| = |k,].
Spin-triplet pairing is described by the wave function
U= App(k) [11) + Ay (R)(ITH+ 1) + Ay (k) ). (1.12)

An equivalent representation is in terms of the three-dimensional vector
d(k) and the vector of Pauli matrices o,

‘I’:Z(d"’)"y:( a dx+idy>'

For p-wave pairing the function d(k) is linear in k. In SroRuOy it has
the form [57]

(1.13)

d(k) = (Ao/kp) (ke % iky)do. (1.14)

This state breaks time-reversal symmetry (by choosing the sign +). It is
called a chiral p-wave state.
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Figure 1.3. Ellipsoidal equal-energy contours of low-energy excitations in the
Brillouin zone of superconductor with d,, symmetry. The contours are centered
at the four nodal points (solid dots), where the order parameter vanishes on the
Fermi surface. From Ref. [9].

1.3.2 Dirac fermions in d-wave superconductors

In the vicinity of the nodal lines (where the pair potential (1.11) van-
ishes) the Hamiltonian for the quasiparticle excitations can be linearized,
resulting in a Dirac Hamiltonian, see Fig. 1.3.

To see how this works out, we start from a tight-binding Hamiltonian
in second quantization,

_ t o ((tig — 10ij A it
H= Z(cmcu) < A _t, +M5ij> ( t ) : (1.15)
ij

g i

Here ¢;, is the annihilation operator for an electron with spin o on site ¢ of
a square lattice (lattice constant a), the t;;’s are hopping matrix elements,

p is the Fermi energy, and A;; is the d-wave pair potential.

Upon particle-hole transformation dy = ¢4, d| = CL rotation of opera-

tors (dy,d;) = d +— exp(imo,/4)d, and Fourier transformation the Hamil-
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tonian becomes:

H =Y d [(t(k) — w)o, + Alk)o] d, (1.16)
k

with t(k) = to[cos(kga) + cos(kya)] and A(k) = Ag[cos(kza) — cos(kya)].

For a half-filled band, the superconducting gap closes at the Fermi
level in four points, namely at (ky,ky) = (£7/2a,+7/2a). Expansion
near these four nodal points, k, = +7/2a + 0k,, k, = £7/2a + 6k, gives
the linear dispersion relation

E = ta\/(6ks + 0ky)? + AJ(Sk, — ok,)?. (1.17)

The linearized Hamiltonian takes the form, after rotation by 7 /4 4+ 7n /2,
of an anisotropic Dirac Hamiltonian,

(1.18)

" hor ( 0 Sky — (Ao /to)aky> |

Sk + (Ao /to)Sky 0

with vp = atp/h. The anisotropy is typically large, Ag/tg ~ 0.07 in the
cuprate superconductor YBasCuzO7_..

Electrostatic potential fluctuations move the location of the nodal
points, thereby shifting the vector dk +— Jdk + A by some offset vector
A. If the potential varies slowly on the scale of 1/a, different nodal points
remain uncoupled and we may fully account for the potential fluctuations
by the effect on each node separately. The slowly varying function A(r)
then enters into the Dirac equation as a fictitious vector potential.

1.3.3 Dirac fermions in chiral p-wave superconductors

The chiral p-wave superconductor SroRuQy is a two-dimensional layered
structure in the z — y plane. The vector dy in Eq. (1.14) is oriented along
the perpendicular z-direction in zero magnetic field, which implies the
antiparallel-spin-triplet pairing [t})+ [{1). In a perpendicular magnetic
field, it is energetically more favorable for dy to lie in the x — y plane,
where it can rotate freely. This implies equal-spin pairing, with decoupled
pairs [11) and [1}).

Chiral p-wave superconductors with equal-spin pairing can be in two
topologically distinct phases, distinguished by the sign of the mass term in
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the Dirac equation [122]. To see how this arises, we start from the pairing
Hamiltonian

H = Z [fkc;;ck + %(A;;kaCk + AkchT_k) ) (1.19)
k

The operator ¢ is the fermionic annihilation operator (wave vector k,
spin omitted). We denote by &, = h%k?/2m — p the single-particle kinetic
energy (relative to the Fermi energy u). The pair potential has the chiral
p-wave form

A = (Ao/kp) (ks — iky), (1.20)

where we have chosen a specific chirality.
The Hamiltonian (1.19) is diagonalized, H = ), a,tak + constant, via
a Bogoliubov transformation,

Qp = UkCl — vkcik, a}; = u,*cc;rc — VpC_ - (1.21)
The electron and hole wave amplitudes ug and vy satisfy the Bogoliubov-
De Gennes equations,

Erup = &pug — Apvg, Epve = —Epvk — Agug. (1.22)

Upon substitution of Eq. (1.20), we see that the electron-hole wave
function v = (u,v) is an eigenstate of the Hamiltonian

_ &k (Ao/kp)(—ky — iky)
= ((AO/kF)(_kx + iky) —&k ’ )

= &0 + (Do /kp)(=ky0, + kyoy), (1.23)

which is a Dirac Hamiltonian with a k-dependent mass &.

At low energies, k — 0 and we may approximate & ~ —u. The sign
of u is a topological invariant, in the sense that it cannot change without
closing the excitation gap in the system. Superconductors have typically
w1 > 0, so a negative mass in the Dirac equation. This is the socalled weak-
pairing state. (The strong-pairing state with © < 0 and positive mass can
appear in superfluids [122].)

Electrostatic potential fluctuations cause fluctuations in x4 and hence
in the mass of the Dirac fermions in the chiral p-wave superconductor.
This is in contrast to what we saw in the previous subsection for the d-
wave superconductor, where electrostatic potential fluctuations appear as
a vector potential for the Dirac fermions.
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1.4 Majorana fermions

The Bogoliubov-De Gennes equations (1.22) have particle-hole symmetry,
such that if (u(r),v(r)) is an eigenstate at energy E then (v*(r),u*(r)) is
an eigenstate at energy —FE. (We work in real space, with k = —id/0r.)
In terms of the quasiparticle annihilation operator a(E) of an eigenstate
at energy E, this symmetry relation reads a(E) = af(—E). At zero ex-
citation energy, o = ozT, so the excitation is a Majorana fermion (particle
equal to antiparticle). Because zero energy is measured relative to the
Fermi level, at the center of the excitation gap, such Majorana bound
states are midgap states.

Chiral p-wave superconductors can have Majorana bound states, trapped
inside the normal core of a magnetic vortex [122]. A vortex in a conven-
tional s-wave superconductor also traps states inside the gap, but these
are displaced from E = 0 by the energy A3/FEp of zero-point motion, so
they are not midgap states.

Because the Majorana bound states are all at the same energy, tunnel-
ing from one vortex to the other is a resonant process. For a sufficient den-
sity of vortices the wave functions extend throughout the system, rather
than being localized inside the vortices. The superconductor is then a
thermal metal rather than a thermal insulator. The adjective “thermal” is
added because the excitations in a superconductor are charge neutral, so
they transport thermal energy but no electrical charge.

One of the findings of our thesis, is that Majorana fermions can be
created in chiral p-wave superconductors by a purely electrostatic mech-
anism, without requiring a magnetic vortex. A change in the sign of the
mass p(r) along a line defect creates Majorana bound states at the two
end points.

One might wonder whether this mechanism would be operative also in
graphene, if a staggered potential would create a similar line defect. The
answer is negative, as we will show later in the thesis, for the following
reason: A sign change in the mass will only produce a Majorana bound
state if the mass has a nonzero k? term. This is the case for the mass
term &, = h%k%/2m — u in the chiral p-wave superconductor Hamiltonian
(1.23), but not for the graphene Hamiltonian (1.5).
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Figure 1.4. Typical wavefunction for a) delocalized and b) localized states, with
the mean free path [ and the localization length ¢ indicated. From Ref. [69].

1.5 Scaling theory of localization

We will study the phase transition from a thermal metal to a thermal
insulator within the context of the scaling theory of localization [69]. A
summary of that theory is presented here, for the electrical metal-insulator
transition. We will see later in the thesis what qualitative differences
appear for the thermal metal-insulator transition.

1.5.1 Single-parameter scaling

The single-parameter scaling hypothesis [1| states that the conductance
of a d-dimensional conductor of linear size L depends on the microscopic
parameters of the system through a single length scale £, called the lo-
calization length in the insulator and the correlation length (or mean free
path) in the metal. (See Fig. 1.4.) In units of e2/h, the dimensionless con-
ductance g = f(L/€) is therefore a function of the ratio L/{. The function
f may depend on the dimensionality d and on fundamental symmetries of
the system (for example, the presence or absence of time-reversal symme-
try), but it may not depend on microscopic parameters (such as the mean
free path [).

In a metal, Ohm’s law implies that g oc L2 depends as a power law
on L. In an insulator, the conductance decays exponentially, g oc e %/¢. In
order to interpolate between these two limits, it is convenient to work with
the logarithmic derivative 5 = dIng/dIn L. According to single-parameter
scaling, 3(g) can be expressed as a function of g itself. The two limits are

B(g) =1n(g/gc), (1.24)
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v

Figure 1.5. Schematic g-function for the electrical metal-insulator transition in
different dimensions, in the presence of time-reversal symmetry.

in an insulator and

Blg) =d—2+6(9), (1.25)

in a metal. The first quantum correction to Ohm’s law, §(g) = a/g with
a < 0, can be calculated by perturbation theory.

The B-function for the electrical metal-insulator transition is shown
in Fig. 1.5, for different dimensions and in the presence of time-reversal
symmetry [1]. (We also assumed that spin is a conserved quantity.) For
d = 3 there is a critical point g. where the S-function equals zero, meaning
that the conductance of the system is scale invariant (independent of L).
This fixed point signals the metal-insulator transition. It is an unstable
fixed point, since on one side the system scales to a metal and on the other
side to an insulator.

1.5.2 Ciritical exponent

The critical exponent v quantifies how unstable the fixed point is. Let
us assume that 1/v is the slope of the S-function at g., with 8(g.) = 0.
Integration of 5(g) = dlng/dIn L from the metallic side gives

1/v
g L) Ix
In=={(— In ==, 1.26
9e </\ 9e ( )
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where (A, gy) is some point on the scaling curve in the vicinity of g. with
B(gx) > 0. Integration from the insulating side gives

g ~ geexp(—BLdg"/\), (1.27)

with B a constant and dg = g, — g.
In the metallic regime the point 3(g¢) = 1 is determined by the corre-

lation length
1 —v
€=\ <ln gA) . (1.28)
Vo ge

The correlation length (or mean free path) is the minimal length when
Ohm’s law is applicable. In the insulating regime the localization length
¢ following from the definition g = g. exp(—L/§) is

A

&= Bég¥’

(1.29)

1.5.3 Finite-size scaling

The hypothesis of single-parameter scaling holds in the large-L limit. For
finite L corrections appear, which one needs to take into account in order
to reliably determine the critical conductance and critical exponent [65].

Let us consider a finite system which is characterized by several pa-
rameters {z;}, for example, mean free path, electron density, etc. We
consider the L dependence of a variable F' which becomes scale invariant
at the metal-insulator transition. Typically, F' is the conductance, but
other quantities can be useful in computer simulations.

According to the scaling hypothesis, the function Fy, = F({x;}, L) can
be written in the form

Fr = F(xL'", 1LY, o L¥2, ..., (1.30)

with v > 0 the critical exponent and all y; < 0. So in the large-L limit the
terms with g; die out and the parameters ¢; become irrelevant.

Near the phase transition x as a function of a control parameter x can
be expanded as

x=x1(z —20) + x2(z —2)? + .. .. (1.31)

The vanishing of x at the phase transition x. implies that ' becomes scale
invariant in the large-L limit.
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1.5.4 Symmetry classes

The electrical metal-insulator transition discussed so far, with the scaling
function shown in Fig. 1.5, holds for electrons described by the Schrédinger
equation, in the presence of time-reversal symmetry and spin-rotation sym-
metry. This symmetry class is denoted as Al. (The name comes from the
mathematics literature.)

The thermal metal-insulator transition in a chiral p-wave superconduc-
tor is in a different universality class: The excitations are described by a
Dirac equation, with time-reversal symmetry and spin-rotation symmetry
both broken, but with an additional symmetry, which is particle-hole sym-
metry. This symmetry class is denoted as BD or D (depending on whether
or not there is vortex disorder).

There are in total 10 symmetry classes in the theory of localization,
depending on the presence or absence of time-reversal symmetry, spin-
rotation symmetry, particle-hole symmetry, and sublattice (or chiral) sym-
metry [36]. In this thesis we will be concerned mainly with class BD/D.
One other symmetry class will appear for d-wave superconductors, which
is class AIII (chiral symmetry without time-reversal symmetry).

The p-function is different in each symmetry class. In particular, in
class BD there can be a metal-insulator transition already in two dimen-
sions, which is not possible in class Al. In class AIII there is no insulating
phase at all.

1.6 Dirac fermions on a lattice

Our numerical studies of localization of Dirac fermions are based on a
transfer matrix discretization of the Dirac equation, either in real space or
in momentum space. We will introduce the different discretization schemes
in this section.

An alternative approach, which we have not taken, is based on models
which are in the same universality class D as the Dirac equation, but which
do not approach the Dirac equation in the continuum limit [36]. These
generic class D models are variations of the Chalker-Coddington network
model [24]. Our preference for a discretization of the Dirac equation is
that we can stay closer to a specific physical system (graphene or a chiral
p-wave superconductor) and have direct access to a physical observable
(electrical or thermal conductance).
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One obvious requirement of any discretization is that it should preserve
Hermiticity of the Hamiltonian. In a transfer matrix formulation this re-
quirement appears as the requirement of current conservation. Two further
requirements are special for Dirac fermions: we should avoid fermion dou-
bling and preserve symplectic symmetry.

1.6.1 Avoid fermion doubling

Dirac fermions on a lattice were introduced in the context of QCD [100]. It
was discovered in that context that a straightforward discretization of the
Dirac equation introduces a spurious second Dirac point in the spectrum.
This is the notorious fermion doubling problem.

A simple one-dimensional discretization shows the nature of the prob-
lem. Let us assume that there is a lattice with lattice spacing a and number
of lattice points N. We want to discretize on it the equation

—i0p0(x) = M)(z). (1.32)

Notice that the spectrum of the continuous equation is A(k) = k. A naive
discretization of the derivative,

Yt a) -~ d)

Oz () , (1.33)

does not produce a Hermitian operator —i0,1 on the lattice. There is a
simple way to make it Hermitian, namely by symmetrization,

et —da—a)

0:1(2) =

(1.34)
Fourier transformation, ¢(z) = >_ exp(ipz)y(p) with p = 2rm/aN,
m=1,2,..., N, gives the spectrum

A(p) = sin(pa)/a. (1.35)

Near p = 0 we recover the linear spectrum of the continuous equation (1.32).
The derivative OA/Op > 0 near p = 0, so the particles are right-moving.
But in the vicinity of p = 7/a there is one more zero in the dispersion
relation (see Fig. 1.6), with O\/Jp < 0, so a second species of left-moving
particles has appeared — which is not present in the continuous equation.
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Figure 1.6. Illustration of fermion doubling in one dimension. From Ref. [30].

The Nielsen-Ninomiya “no-go” theorem 85| states that fermion dou-
bling (with an equal number of left-movers and right-movers) is unavoid-
able for a discretization scheme which is Hermitian, local, and translation-
ally invariant. The reason is that periodicity in lattice momentum p gives
an equal number of zeros with positive and negative slopes.

If some of the conditions of the theorem are not met, then it is possi-
ble to avoid fermion doubling. The transfer matrix discretization schemes
that we will use in this thesis (in real space and momentum space) are
nonlocal. This complicates the algorithm, but it has the great advantage
that it preserves the symplectic symmetry of the Dirac equation. An alter-
native approach is to make one of the two fermion species massive (Wilson
fermion). This produces an easier algorithm, but breaks symplectic sym-
metry.

1.6.2 Conserve current and preserve symmetries
The transfer matrix of the Dirac Hamiltonian
H = vp(poy +py0y) + m(T)v%Uz +u(r), (136)

can be calculated by integrating the eigenvalue equation H¥ = EWV in the
form

with U = (u — E)/hvp and M = mup/h.
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For this integration we discretize a rectangular strip on an M x N lat-
tice, with M columns in the z-direction and N rows in the y-direction.
We take periodic boundary conditions in the y-direction. The values
Upn = U(@m,yn) of the wave function at a lattice point are collected
into a set vectors ¥,,. The transfer matrix 7, of slice m is defined by

D e (1.38)

The transfer matrix 7 through the entire strip is then the product of the
Tm's.

Current conservation, with current operator 7, along the strip, requires
that

(U1 | Te|W1) = (| T O ps) = To = T T (1.39)

Preservation of symplectic symmetry imposes an additional condition
on the transfer matrix. Symplectic symmetry is the invariance of the
Hamiltonian under inversion of momentum and spin. It is broken by a
mass term, so this is not an important requirement if one studies, for
example, gapped graphene.

For massless Dirac fermions in a scalar potential u the Hamiltonian
H = vpp - o + u(r) is invariant under inversion p — —p, o — —o. This
symmetry can equivalently be written as H = o, H"0,, where the complex
conjugation is carried out in the real space basis (when p = —ihd/0r).
The condition on the transfer matrix is

T =0,T"0,. (1.40)

The Dirac Hamiltonian H = vp(pgoz + pyoy) + mv%az with a mass
term, but without the scalar potential, has no symplectic symmetry but
instead has particle-hole symmetry: o,H*0, = —H. This is the rele-
vant Hamiltonian for a chiral p-wave superconductor. The corresponding
symmetry relation for the transfer matrix is

T(E) =0,T"(—E)o,. (1.41)

1.6.3 Real space discretization

The transfer matrix resulting from the real space discretization of Eq.
(1.37) was calculated in Ref. [119], using the staggered fermion approach
from QCD [100]. We summarize this method.
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Figure 1.7. Square lattice (filled circles) on which the wave function ¥ is
discretized as W, ,. The finite differences are evaluated at the displaced points
indicated by crosses. The Dirac equation (1.37) is applied at the empty circles,
by taking the mean of the contributions from the two adjacent crosses. From
Ref. [119].

Discretized operators are defined at points of the displaced lattice
shown in Fig. 1.7. The differential operators are discretized by

1

0,V — %(\Pm-ﬁ-l,n + Uintinsr = Yimn — \va”"‘l)’ (1.42)
1

OV — %(\Pmm—i—l + Vg1t = Ymn — ‘Ilm+1v”>' (1.43)

The potential and mass terms are replaced by averages over adjacent lattice
points,

Mo ¥ = tMyoe(Vigin + Uinstnt + Uinn + rnng1),  (1.44)
Uv — Umn (Uit 1 + gttt + Yo + Uipg1),  (1.45)

with My, , = M (2, + a/2,yn + a/2) and Uy, = Uz, + a/2,yn + a/2).

The zero-energy Dirac equation H¥ = 0 is applied at the points (x,, +
a/2,y,) by averaging the terms at the two adjacent points (z,, +a/2, y, £
a/2). The resulting finite difference equation can be written in a compact
form with the help of the N, x I, tridiagonal matrices J, K, M)
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defined by the following nonzero elements:

j 1 jn n+l = jnn 1= %7 (146)
K, i1 =13, Kpno1=—3, (1.47)
Mg)}b = %(an + an 1) Mq(f:r;l)+1 = 1]\4m n,Mgm) 1= %Mm,n—ly
(1.48)
VSZ) == %(Um,n + Um,n—l)a Z/{?g?:l)_l,_l - %Um,n7u7(7::;)_1 - %Um,n—l- (149)

In accordance with the periodic boundary conditions in the transverse
direction, the indices n 4= 1 should be evaluated modulo N,.

The discretized Dirac equation is expressed in terms of the matrices
(1.46)—(1.49) by

1 i .
5T (U1 — ) = < 2@(;2/6 - 41) 25, M™ — —25, ) >> (U + Wpi1).

4
(1.50)

Rearranging Eq. (1.50) we arrive at Eq. (1.38) with the transfer matrix

-1
T = (j—l—wle + v aay/\/l(m)) (j — 10, K — %UQQUyM(m)) )
(1.51)
For a uniform mass M,,, = M and uniform potential U,,, = €, we may
calculate the eigenvalues €% of T,,, analytically. This gives the dispersion
relation

tan?(kya/2) + tan®(kya/2) + (Mavp/2h)* = (¢/2)?, (1.52)

with k, = 2nl/Ny, | = 1,2,... Ny. The zero of the dispersion relation at
k, = 7/a, responsible for the fermion doubling, is replaced by a pole. The
nonlocality of the staggered discretization scheme works around the no-go
theorem.

This discretization scheme conserves the current operator
Jp = tvo,J. (1.53)

It preserves symplectic symmetry for M = 0 and obeys particle-hole sym-
metry for U = 0.
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1.6.4 Momentum space discretization

An alternative momentum space discretization was developed in Ref. [11].
The differential equation (1.37) is integrated in the x-direction by a straight-
forward discretization in real space, but in the y-direction the discretization
of p, is carried out in momentum space. The combination of these two
discretizations produces a nonlocal transfer matrix, which works around
the no-go theorem for fermion doubling, preserving current and all sym-
metries.

The algorithm is simplified by carrying out the two discretizations in
separate steps. One step accounts for scattering S by disorder in a single
slice, another step accounts for free propagation P from one slice to the
next:

Sm = exp(—iUpoy — Mpoy), (1.54)
P = exp(—ipyo.a/h). (1.55)

Here Uy, and M,, are diagonal matrices containing the potential and mass
at column m on the diagonal.
The transfer matrix is the product

T = PUSMUTPU - - - SgUTPUSIUTP, (1.56)

with U the matrix that Fourier transforms from real space to momentum
space. The size of this matrix is made finite by truncating the transverse
momentum p, at some large value.

1.7 This thesis

We summarize the contents of the following chapters.

1.7.1 Chapter 2

This chapter is a numerical study of quasiparticle localization in symme-
try class BD (realized, for example, in chiral p-wave superconductors),
by means of a staggered-fermion lattice model for two-dimensional Dirac
fermions with a random mass. For sufficiently weak disorder, the system
size dependence of the average (thermal) conductivity o is well described
by an effective mass Mg, dependent on the first two moments of the ran-
dom mass M (r). The effective mass vanishes linearly when the average
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mass M — 0, reproducing the known insulator-insulator phase boundary
with a scale invariant dimensionless conductivity o. = 1/7 and critical ex-
ponent v = 1. For strong disorder a transition to a metallic phase appears,
with larger o, but the same v. The intersection of the metal-insulator and
insulator-insulator phase boundaries is identified as a repulsive tricritical
point.

1.7.2 Chapter 3

In this chapter we look at quasiparticle localization in symmetry class D.
It is different from class BD by absence of the bound states at zero energy.
The system is modeled by staggered fermions in momentum space and uses
convergence in momentum space to realize a smooth potential landscape
in real space. Graphene with a random gap in a known realization of such
system. It is known that fluctuations in the electrostatic potential allow
for metallic conduction (nonzero conductivity in the limit of an infinite
system) if the carriers form a single species of massless two-dimensional
Dirac fermions. A nonzero uniform mass M opens up an excitation gap,
localizing all states at the Dirac point of charge neutrality. Here we in-
vestigate numerically whether fluctuations 6M > M # 0 in the mass
can have a similar effect as potential fluctuations, allowing for metallic
conduction at the Dirac point. Our negative conclusion confirms earlier
expectations, but does not support the recently predicted metallic phase
in a random-gap model of graphene [131].

1.7.3 Chapter 4

Vortices in two-dimensional superconductors with broken time-reversal
and spin-rotation symmetry can bind states at zero excitation energy.
These socalled Majorana bound states transform a thermal insulator into
a thermal metal and may be used to encode topologically protected qubits.
We identify an alternative mechanism for the formation of Majorana bound
states, akin to the way in which Shockley states are formed on metal sur-
faces: An electrostatic line defect can have a pair of Majorana bound states
at the end points. The Shockley mechanism explains the appearance of a
thermal metal in vortex-free lattice models of chiral p-wave superconduc-
tors and (unlike the vortex mechanism) is also operative in the topologi-
cally trivial phase.
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1.7.4 Chapter 5

The bulk microwave conductivity of a dirty d-wave superconductor is
known to depend sensitively on the range of the disorder potential: long-
range scattering enhances the conductivity, while short-range scattering
has no effect. In this chapter we show that the three-terminal electri-
cal conductance of a normal-metal—d-wave superconductor-normal-metal
junction has a dual behavior: short-range scattering suppresses the con-
ductance, while long-range scattering has no effect.

1.7.5 Chapter 6

In this chapter we investigate nanomechanical properties, namely the con-
ductivity of a clean graphene sheet, deformed by a gate electrode. The
effect of the deformation on the conductivity is twofold: The lattice dis-
tortion can be represented as a pseudovector potential in the Dirac equa-
tion, whereas the gate causes a inhomogeneous density redistribution. We
use elasticity theory to find the profile of the graphene sheet and then
evaluate the conductivity by means of the transfer matrix approach. We
find that the two effects provide qualitatively different contributions to
the conductivity. For small deformations and not too high residual stress
the correction due to the charge redistribution dominates and leads to the
enhancement of the conductivity. For stronger deformations, the effect of
the lattice distortion becomes more important and eventually leads to the
suppression of the conductivity. We consider homogeneous as well as local
deformation. We also suggest that the effect of the charge redistribution
can be best measured in a setup containing two gates, one fixing the overall
charge density and another one deforming graphene locally.



Chapter 2

Effective mass and tricritical
point for lattice fermions
localized by a random mass

2.1 Introduction

Superconductors with neither time-reversal symmetry nor spin-rotation
symmetry (for example, having chiral p-wave pairing) still retain one fun-
damental symmetry: the charge-conjugation (or particle-hole) symmetry
of the quasiparticle excitations. Because of this symmetry, quasiparticle
localization in a disordered chiral p-wave superconductor is in a different
universality class than in a normal metal [36]. The difference is partic-
ularly interesting in two dimensions, when the quantum Hall effect gov-
erns the transport properties. The electrical quantum Hall effect in a
normal metal has the thermal quantum Hall effect as a superconducting
analogue (97, 109, 121|, with different scaling properties because of the
particle-hole symmetry.

The thermal quantum Hall transition is analogous to the electrical
quantum Hall transition at the center of a Landau level, but the scaling of
the thermal conductivity ¢ near the phase boundary is different from the
scaling of the electrical conductivity because of the particle-hole symmetry.
A further difference between these two problems appear if the supercon-
ducting order parameter contains vortices |97, 17, 98]. A vortex contains
a Majorana bound state at zero excitation energy, in the weak-pairing
regime [124, 47]. A sufficiently large density of Majorana bound states
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Figure 2.1. Phase diagram in symmetry class BD, calculated numerically from
the lattice model of staggered fermions described in Sec. 2.3. (A qualitatively sim-
ilar phase diagram was calculated for a different model [28] in Refs. [23] and [55].)
The thermal conductivity decays exponentially o e~ ~/¢ in the localized phase
and increases « In L in the metallic phase. The thermal conductivity is scale
invariant on the metal-insulator (M-I) phase boundary (red solid line), as well
as on the insulator-insulator (I-I) phase boundary (blue dashed line). The M-I
and I-1 phase boundaries meet at the tricritical point éM*.

allows for extended states at the Fermi level, with a thermal conductiv-
ity increasing o In L with increasing system size L [109]. This socalled
thermal metal has no counterpart in the electronic quantum Hall effect.

The Bogoliubov-De Gennes Hamiltonian of a disordered chiral p-wave
superconductor can be approximated at low energies by a Dirac Hamilto-
nian with a random mass (see Sec. 2.2). For that reason, it is convenient
to parameterize the phase diagram in terms of the average mass M and
the fluctuation strength d M. As indicated in Fig. 2.1, there are two types
of phase transitions [23, 55|, a metal-insulator (M—I) transition upon de-
creasing 6M at constant M and an insulator-insulator (I-1) transition
upon decreasing M through zero at constant (not too large) §M. The
I-I transition separates phases with a different value of the thermal Hall
conductance, while the M-I transition separates the thermal metal from
the thermal insulator. Only the I-I transition remains if there are no vor-
tices, or more generally, if there are no Majorana bound states [97, 17, 98].
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In the nomenclature of Ref. [17], the symmetry class is called BD with
Majorana bound states and D without.

The primary purpose of this chapter is to investigate, by numerical
simulation, to what extent the scale dependence of localization by a ran-
dom mass can be described in terms of an effective non-fluctuating mass:
o(L,M,0M) = o(L, Mg, 0), for some function Meg(M,5M). Because
there is no other length scale in the problem at zero energy, o(L, Mg, 0)
can only depend on L and Mg through the dimensionless combination
LMgv/h = L/§. The effective-mass hypothesis thus implies one-parameter
scaling: o(L,M,0M) = oo(L/€¢). Two further implications concern the
critical conductivity o, (which is the scale invariant value of o on the phase
boundary M = 0) and the critical exponent v (governing the divergence
of the localization length & oc M~Y).

Both o, and v follow directly from the effective mass hypothesis. By
construction, the scaling function o¢ is the conductivity of ballistic mass-
less Dirac fermions, which has been calculated in the context of graphene.
For a system with dimensions L x W, and periodic boundary conditions
in the transverse direction, it is given by [58, 118§]

o

70(L/€) = Gor > cosh® v/ @2n L W)E+ (L/E)?

n=—0o0

1 oo
W2k, GOW/ dq cosh™2 \/q2 + (L/€)2. (2.1)
0

A scale invariant conductivity

{11;110 oo(L/E) =0, = Gg% Z cosh™2(2znL/W) (2.2)

n=—0oo

is reached for vanishing effective mass. In the limit of a large aspect ratio
W/L > 1 we recover the known value o, = G/ of the critical conductiv-
ity for a random mass with zero average |75|. The critical exponent v = 1
follows by comparing the expansion of the conductivity

o(L, M,0M) = oo+ [LYY M f(6M))? + O(M)* (2.3)

in (even) powers of M with the expansion of the scaling function (2.1) in
powers of L. This value for v is aspect-ratio independent and agrees with
the known result for the I-I transition [36].
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The description in terms of an effective mass breaks down for strong
disorder. We find that the scaling function at the M-I transition differs
appreciably from g, with an aspect-ratio independent critical conductivity
oc =~ 0.4 Gy. The critical exponent remains close to or equal to v =1 (in
disagreement with earlier numerical simulations [55]).

The secondary purpose of this chapter is to establish the nature of the
tricritical point dM* at which the two insulating phases and the metallic
phase meet. The existence of such a fixed point of the scaling flow is ex-
pected on the basis of general arguments [17], but whether it is a repulsive
or attractive fixed point has been a matter of debate. From the scale de-
pendence of ¢ near this tricritical point, we conclude that it is a repulsive
fixed point (in the sense that o scales with increasing L to larger values for
dM > 0M* and to smaller values for 0M < 6M™*). An attractive tricritical
point had been suggested as a possible scenario [80, 56|, in combination
with a repulsive critical point at some dM™** < §M*. Our numerics does
not support this scenario.

The outline of this chapter is as follows. In the next two Sections we in-
troduce the Dirac Hamiltonian for chiral p-wave superconductors and the
lattice fermion model that we use to simulate quasiparticle localization
in symmetry class BD. We only give a brief description, referring to the
Section 1.6.2 and Ref. [119] for a more detailed presentation of the model.
The scaling of the thermal conductivity and the localization length near
the insulator-insulator and metal-insulator transitions are considered sep-
arately in Secs. 2.4 and 2.5, respectively. The tricritical point, at which
the two phase boundaries meet, is studied in Sec. 2.6. We conclude in Sec.
2.7.

2.2 Chiral p-wave superconductors
The quasiparticles in a superconductor have electron and hole components

Ve, Yy, that are eigenstates, at excitation energy e, of the Bogoliubov-De
Gennes equation

Hy — Erp A e\ [ e
( Al —H3+EF> (wh>‘€(wh>' 24

In a chiral p-wave superconductor the order parameter A = %{X(r), Dy —
ipy} depends linearly on the momentum p = —ihd/0r, so the quadratic
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terms in the single-particle Hamiltonian Hy = p?/2m + U(r) may be ne-
glected near p = 0.

For a uniform order parameter x(r) = xo, the quasiparticles are eigen-
states of the Dirac Hamiltonian

Hpirac = v(peos + pyoy) + v2M(r)az, (2.5)

with velocity v = xo and mass M = (U — Ep)/x2 (distinct from the
electron mass m). The Pauli matrices are

S S P i DO (R T

The particle-hole symmetry for the Dirac Hamiltonian is expressed by
UzHBiracUI = — Hpirac- (27)

Randomness in the electrostatic potential U(r) translates into random-
ness in the mass M (r) = M +3JM (r) of the Dirac fermions. The sign of the
average mass M determines the thermal Hall conductance [97, 109, 121],
which is zero for M > 0 (strong pairing regime) and quantized at Gy =
m2k%T/6h for M < 0 (weak pairing regime).

The Dirac Hamiltonian (2.5) provides a generic low-energy descrip-
tion of the various realizations of chiral p-wave superconductors proposed
in the literature: strontium ruthenate [57], superfluids of fermionic cold
atoms [116, 105], and ferromagnet-semiconductor-superconductor heterostruc-
tures [106, 68, 4]. What these diverse systems have in common, is that they
have superconducting order with neither time-reversal nor spin-rotation
symmetry. Each of these systems is expected to exhibit the thermal quan-
tum Hall effect, described by the phase diagram studied in this work.

2.3 Staggered fermion model

Earlier numerical investigations [23, 80, 55, 56| of the class BD phase di-
agram were based on the Cho-Fisher network model [28|. Here we use a
staggered fermion model in the same symmetry class, originally developed
in the context of lattice gauge theory [113, 14] and recently adapted to
the study of transport properties in graphene [119]. An attractive fea-
ture of the lattice model is that, by construction, it reduces to the Dirac
Hamiltonian on length scales large compared to the lattice constant a.
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The model is defined on a square lattice in a strip geometry, extending
in the longitudinal direction from x = 0 to x = L = Nza and in the
transverse direction from y = 0 to y = W = Nya. We use periodic
boundary conditions in the transverse direction. The transfer matrix T
from = 0 to = L is derived in Ref. [119]!, and we refer to that paper
and to 1.6.2 for explicit formulas.

The dispersion relation of the staggered fermions,

tan2(kpa/2) + tan2(kya/2) + <Ag2”)2 - (%)2 (2.8)

has a Dirac cone at wave vectors |k|la < 1 which is gapped by a nonzero
mass. Staggered fermions differ from Dirac fermions by the pole at the
edge of Brillouin zone (|k;| — 7/a or |k,| — m/a), which is insensitive to
the presence of a mass. We do not expect these large-wave number modes
to affect the large-length scaling of the conductivity, because they preserve
the electron-hole symmetry.

The energy is fixed at ¢ = 0 (corresponding to the Fermi level for
the superconducting quasiparticles). The transfer matrix 7 is calculated
recursively using a stable QR decomposition algorithm [65]. An alternative
stabilization method [119] is used to recursively calculate the transmission
matrix ¢. Both algorithms give consistent results, but the calculation of
T is more accurate than that of ¢ because it preserves the electron-hole
symmetry irrespective of round-off errors.

The random mass is introduced by randomly choosing values of M on
each site uniformly in the interval (M — &M, M +JM). Variations of M (r)
on the scale of the lattice constant introduce Majorana bound states, which
place the model in the BD symmetry class [127]. In principle, it is possible
to study also the class D phase diagram (without Majorana bound states),
by choosing a random mass landscape that is smooth on the scale of a.
Such a study was recently performed [12]|, using a different model [11],
to demonstrate the absence of the M-I transition in class D [97, 17, 98].
Since here we wish to study both the I-I and M-I transitions, we do not
take a smooth mass landscape.

!This paper considers scattering of staggered fermions by a potential V' rather than
by a mass M, but one simply needs to replace V by v>?Mo. to obtain the transfer
matrix required here.
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Figure 2.2. Average conductivity o (with error bars indicating the statistical
uncertainty) at fixed disorder strength éM = 2.5h/va, as a function of system
size L. The aspect ratio of the disordered strip is fixed at W/L = 5. Data sets at
different values of M (listed in the figure in units of i#/va) collapse upon rescaling
by £ onto a single curve (solid line), given by Eq. (2.1) in terms of an effective
mass Meg = h/v€.

2.4 Scaling near the insulator-insulator transition

2.4.1 Scaling of the conductivity

In Fig. 2.2 we show the average (thermal) conductivity o = (L/W)(Tr tt!)
(averaged over some 103 disorder realizations) as a function of L for a
fixed 6 M in the localized phase. Data sets with different M collapse on a
single curve upon rescaling with £. (In the logarithmic plot this rescaling
amounts simply to a horizontal displacement of the entire data set.) The
scaling curve (solid line in Fig. 2.2) is the effective mass conductivity (2.1),
with Mg = h/v€. Fig. 2.3 shows the linear scaling of o with (ML)? for
small M, as expected from Eq. (2.3) with v = 1.

We have studied the aspect ratio dependence of the critical conduc-
tivity o.. As illustrated in Fig. 2.4 (blue data points), the convergence
for W/L — oo is to the value o, = 1/m expected from Eq. (2.1). The
conductivity of ballistic massless Dirac fermions also has an aspect ratio



30

Chapter 2. Effective mass and tricritical point ...

I I I
0.35 L Lia=41+—e—
L 77
99 —e—
S osl e 1
? N 239
\\E\
0.25 - s
0.2 \ \ |
0 1 2 3
(MLv/h)2

Figure 2.3. Plot of the average conductivity o versus (M L)?, for fixed 6M =
2.5h/va and W/L = 3. The dashed line is a least-square fit through the data,
consistent with critical exponent v = 1.

dependence,[118] given by Eq. (2.2) (for periodic boundary conditions).
The comparison in Fig. 2.4 of 0. with Eq. (2.2) shows that o, at the I-I
transition follows quite closely this aspect ratio dependence (unlike at the
M-I transition discussed in Sec. 2.5.1).

2.4.2 Scaling of the Lyapunov exponent

The transfer matrix 7 provides an independent probe of the critical scaling
through the Lyapunov exponents. The transfer matrix product 77 has
eigenvalues et with 0 < 11 < pg < ---. The n-th Lyapunov exponent
ay, is defined by

(2.9)

The dimensionless product Way = A is the inverse of the MacKinnon-
Kramer parameter.|76] We obtain oy by increasing L at constant W until
convergence is reached (typically for L/W ~ 103). The large-L limit is
self-averaging, but some improvement in statistical accuracy is reached by
averaging over a small number (10-20) of disorder realizations.

We seek the coefficients in the scaling expansion

A=Ae+ WYY (M — M) + O(M — M,)?, (2.10)
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Figure 2.4. Dependence on the aspect ratio W/L of the critical conductivity

at the insulator-insulator (I-I) transition (M = 0, 6M = 2.5Rh/va) and at the
metal-insulator (M-I) transition (M = 0.032 %/va, 6 M tuned to the transition).
The dashed curve is the aspect ratio dependence of the conductivity of ballistic

massless Dirac fermions [Eq. (2.2)]. It describes the I-I transition quite well, but
not the M-I transition.

for fixed 6M. The fit in Fig. 2.5 gives A, = 0.03, v = 1.05, M, = 7- 1074,
consistent with the expected values [23] A, =0, v =1, M, = 0.

2.5 Scaling near the metal-insulator transition

2.5.1 Scaling of the conductivity

To investigate the scaling near the metal-insulator transition, we increase
dM at constant M. Results for the conductivity are shown in Fig. 2.6. In
the metallic regime M > 6 M, the conductivity increases logarithmically
with system size L, in accord with the theoretical prediction [109, 36]:

1
o/Go = ;1nL+constant. (2.11)

(See the dashed line in Fig. 2.6, upper panel.)

In the insulating regime M < JM, the conductivity decays expo-
nentially with system size, while it is scale independent at the critical
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Figure 2.5. Plot of A = Way (with a; the first Lyapunov exponent) as a
function of M near the insulator-insulator transition, for fixed 0M = 2.5hv/a
and different values of W. The dashed lines are a fit to Eq. (2.10).

point M = §M,.. Data sets for different 0 M collapse onto a single func-
tion of L/&, but this function is different from the effective mass scaling
oo(L/E) of Eq. (2.1). (See the dashed curve in Fig. 2.6, lower panel.) This
indicates that the effective mass description, which applies well near the
insulator-insulator transition, breaks down at large disorder strengths near
the metal-insulator transition. The two transitions therefore have a differ-
ent scaling behavior, and can have different values of critical conductivity
and critical exponent (which we denote by ol and /).

Indeed, the critical conductivity o/, = 0.41 Gy is significantly larger
than the ballistic value Go/m = 0.32 G. Unlike at the insulator-insulator
transition, we found no strong aspect-ratio dependence in the value of o,
(red data points in Fig. 2.4). To obtain the critical exponent v/ we follow
Ref. [8] and fit the conductivity near the critical point including terms of
second order in dM — 6 M..:

o =0+ LYY [6M — M, + co(6M — 5M,)?]
+ s LV (M — 6M.)>. (2.12)

Results are shown in Fig. 2.7, with v/ = 1.02 4+ 0.06. The quality of the
multi-parameter fit is assured by a reduced chi-squared value close to unity
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Figure 2.6. Average conductivity o at fixed average mass M = 0.032 h/va, as
a function of system size L. (The two panels show the same data on a different
scale.) The aspect ratio of the disordered strip is fixed at W/L = 5. Data sets
at different values of §M (listed in the figure in units of i/va) collapse upon
rescaling by £ onto a pair of curves in the metallic and insulating regimes. The
metal-insulator transition has a scale invariant conductivity o’, larger than the
value Go/m which follows from the effective mass scaling (dashed curve in the
lower panel). The upper panel shows that the conductivity in the metallic regime
follows the logarithmic scaling (2.11).
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Figure 2.7. Plot of the average conductivity o as a function of M near the
metal-insulator transition, for fixed M = 0.032%/va. The length L is varied at
fixed aspect ratio W/L = 3. The dashed curves are a fit to Eq. (2.12).

(x? = 0.95). Within error bars, this value of the critical exponent is the
same as the value v = 1 for the insulator-insulator transition.

2.5.2 Scaling of the Lyapunov exponent

As an independent measurement of v/, we have investigated the finite-size
scaling of the first Lyapunov exponent. Results are shown in Fig. 2.8.
Within the framework of single-parameter scaling, the value of v/ should
be the same for o and A, but the other coefficients in the scaling law may
differ,

A=A+ LYY M — M + &y (M — 5M!)?]
+ LY (M — 5M)2. (2.13)

Results are shown in Fig. 2.8, with v/ = 1.064:0.05. The chi-squared value
for this fit is relatively large, x> = 5.0, but the value of ¢/ is consistent
with that obtained from the conductivity (Fig. 2.7).
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Figure 2.8. Plot of A = Wa; (with «; the first Lyapunov exponent) as a
function of 6 M near the metal-insulator transition, for fixed M = 0.032 hv/a and
different values of W. The dashed curves are a fit to Eq. (2.13).

2.6 Tricritical point

As indicated in the phase diagram of Fig. 2.1, the tricritical point at M =
0, 6M = dM* is the point at which the insulating phases at the two sides
of the I-I transition meet the metallic phase. We have searched for this
tricritical point by calculating the scale dependence of the conductivity o
on the line M = 0 for different M. Results are shown in Fig. 2.9.

The calculated scale dependence is consistent with the identification
of the point 6M* = 3.44 h/va as a repulsive fixed point. The conductiv-
ity increases with increasing L for 6M > dM™*, while for M < dM* it
decreases towards the scale invariant large-L limit o..

2.7 Discussion

We have studied quasiparticle localization in symmetry class BD, by means
of a lattice fermion model [119]. The thermal quantum Hall effect [97,
109, 121] in a chiral p-wave superconductor at weak disorder is in this
universality class, as is the phase transition to a thermal metal [109] at
strong disorder.
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Figure 2.9. Conductivity o as a function of 6M on the critical line M = 0, for
different values of L at fixed aspect ratio W/L = 3. (The dotted lines through
data points are guides to the eye.) The tricritical point M* is indicated, as well
as the scale invariant large-L limit o, for M < §M*.

For weak disorder our lattice model can also be used to describe the
localization of Dirac fermions in graphene with a random gap [12, 131,
132] (with o the electrical, rather than thermal, conductivity and Gy =
4e? /h the electrical conductance quantum). The metallic phase at strong
disorder requires Majorana bound states [97, 17, 98], which do not exist
in graphene (symmetry class D rather than BD). We therefore expect the
scaling analysis in Sec. 2.4 at the insulator-insulator (I-I) transition to be
applicable to chiral p-wave superconductors as well as to graphene, while
the scaling analysis of Sec. 2.5 at the metal-insulator (M-I) transition
applies only in the context of superconductivity. (Here we disagree with
Refs. [131, 132], which maintain that the M-I transition exists in graphene
as well.)

Our lattice fermion model is different from the network model [28]
used in previous investigations [23, 80, 55, 56|, but it falls in the same
universality class so we expect the same critical conductivity and critical
exponent. For the I-I transition analytical calculations [36, 75| give o, =
Go/m and v = 1, in agreement with our numerics. There are no analytical
results for the M-I transition. We find a slightly larger critical conductivity
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(ol = 0.4Gy), which has the qualitatively more significant consequence
that the effective mass scaling which we have demonstrated at the I-I
transition breaks down at the M-I transition (compare Figs. 2.2 and 2.6,
lower panel).

We conclude from our numerics that the critical exponents v at the I-1
transition and v/ at the M-I transition are both equal to unity within a 5%
error margin, which is significantly smaller than the result v =/ = 1.4 &+
0.2 of an earlier numerical investigation [55], but close to the value found
in later work by these authors [56]. The logarithmic scaling (2.11) of the
conductivity in the thermal metal phase, predicted analytically [109, 36],
is nicely reproduced by our numerics (Fig. 2.6, upper panel).

The nature of the tricritical point has been much debated in the lit-
erature [80, 56]. Our numerics indicates that this is a repulsive critical
point (Fig. 2.9). This finding lends support to the simplest scaling flow
along the I-I phase boundary [75], towards the free-fermion fixed point at
M =0,6M =0.

In conclusion, we hope that this investigation brings us closer to a
complete understanding of the phase diagram and scaling properties of
the thermal quantum Hall effect. We now have two efficient numerical
models in the BD universality class, the Cho-Fisher network model [28]
studied previously and the lattice fermion model [119] studied here. There
is a consensus on the scaling at weak disorder, although some disagreement
on the scaling at strong disorder remains to be resolved.
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Chapter 3

Absence of a metallic phase in
charge-neutral graphene with
a random gap

3.1 Introduction

Two-dimensional Anderson localization in the Dirac equation shows a
much richer phase diagram than in the Schrédinger equation [75]. The
discovery of graphene [45] has provided a laboratory for the exploration of
this phase diagram and renewed the interest in the transport properties of
Dirac fermions [36]. One of the discoveries resulting from these recent in-
vestigations [11, 86, 108] was that electrostatic potential fluctuations V ()
induce a logarithmic growth of the conductivity o o In L with increasing
system size L. In contrast, in the Schréodinger equation all states are local-
ized by sufficiently strong potential fluctuations [69] and the conductivity
decays exponentially with L.

Localized states appear in graphene if the carriers acquire a mass M (r),
for example due to the presence of a sublattice symmetry breaking sub-
strate |46, 130] or due to adsorption of atomic hydrogen [35, 20]. Anderson
localization due to the combination of (long-range) spatial fluctuations in
M(r) and V(r) appears in the same way as in the quantum Hall effect
(QHE) [75, 87]: All states are localized except on a phase boundary! of

'The localized phases at the two sides of the phase boundary at M = 0 are distin-
guished by the presence or absence of chiral edge states. This is similar to the QHE,
but the edge states produced by a mass in graphene do not lead to a Hall voltage be-
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zero average mass M = 0, where o takes on a scale invariant value of the
order of the conductance quantum Gg = 4e?/h (the factor of four accounts
for the two-fold spin and valley degeneracies in graphene).

An altogether different phase diagram may result if only the mass fluc-
tuates, at constant electrostatic potential tuned to the charge neutrality
point (Dirac point, at energy E = 0). The universality class is now differ-
ent from the QHE, because of the particle-hole symmetry o, H*o, = —H
of the single-valley Dirac Hamiltonian

Hpirac = 'U(pzam +py0y) + ’UQM(T)Uz' (3'1)

The Pauli matrices o; act on the spinor (14,%p), containing the wave
function amplitudes on the A and B sublattices of graphene. The term
proportional to o, represents a staggered sublattice potential, equal to
v2M (—v?M) on sublattice A (B). Anderson localization in the presence of
particle-hole symmetry has been studied extensively [28, 109, 23, 80, 55] in
the context of superconductivity, where the Dirac spectrum appears from
the superconducting order parameter rather than from the band structure.
The (numerical) models used in those studies contain randomly distributed
vortices in the order parameter, and are therefore not appropriate models
for graphene.

It is the purpose of this chapter to identify, by numerical simulation,
what is the phase diagram of the Dirac Hamiltonian with a random mass
M(r) = M + 6M(r) — in the absence of any other source of disorder.
This study was motivated by recent analytical work by Ziegler in the
context of graphene [131], which predicted a transition into a metallic
phase upon increasing the disorder strength M at constant average mass
M # 0. Such a metal-insulator transition was known in the context of
superconductivity [109], but it was understood that this requires vortex
disorder [97, 17, 98]. In order to resolve this controversy, we perform a
numerical scaling analysis of the conductivity and find no metallic phase
as we increase M.

cause they are counterprogating in the two valleys. In the computer simulations we use
periodic boundary conditions, so there are no edge states and the two sides of the phase
boundary are equivalent.
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Figure 3.1. Contour plot of a random mass with Gaussian correlator (5.27),
for Ky = 10. The zero-mass contours are indicated in black.

3.2 Results

We calculate the conductivity o for a two-dimensional strip geometry be-
tween electron reservoirs (at x = 0 and x = L, see inset in Fig. 3.2), with
periodic boundary conditions in the transverse direction (at y = 0 and
y = W). The Fermi level is tuned to the Dirac point in the strip, while
it lies infinitely far above the Dirac point in the reservoirs. For zero mass
M and large aspect ratio W/ L the conductivity has the scale independent
value [58, 118] 09 = Go/m. We generate a random mass with Gaussian
correlator oK

(6M(r)6M(r')) = (/2?5206'” NES (3.2)
characterized by a correlation length £ and a dimensionless strength

Ko = (v/h)? / dr (SM(0)5M (r)). (3.3)

A contour plot for a single realization of the disorder is shown in Fig. 3.1.
The N x N transmission matrix ¢ through the strip is calculated from
Hpirae by application of the numerical method of Ref. [11] to a random
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Figure 3.2. Average conductivity ¢ as a function of length L (for fixed W =
800¢). The average mass is set at M = 0, while the mass fluctuations are varied
by varying Ky. The dashed line is at 09/Gog = 1/7. The inset shows the layout
of the disordered charge neutral strip (dotted rectangle) between infinitely doped
electron reservoirs at a voltage difference V' (gray rectangles).

mass rather than to a random scalar potential. We obtain ¢ from the
transfer matrix 7, which relates |¢p(z = L)) = T|¢(xz = 0)) and is given
by

a v

Ny,
T = H e%&CQéﬁe%MQ, Q = —io, o h

n=1

Mo,. (3.4)

Scattering from the fluctuating mass 6 M (r) in the slice (n — 1)dzx < z <
ndx, of incremental length dx = L/Np, is approximated by the transfer
matrix

1— 26My(y)oy

5T, = , 3.5
"1 LM (o, (3.52)
nox
SMp(y) = % /( N dx SM (r). (3.5b)

The approximation (3.5) becomes exact in the limit N, — oco. More-
over, for any Ny it satisfies the requirements of particle-hole symmetry
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Figure 3.3. Same as Fig. 3.2, but now for a nonzero average mass M =

5-1073 h/v€ (solid curves, W = 800¢) and M = 5- 1072 h/vé (dashed curves,
W = 400¢). The lower panel shows the same data on a logarithmic horizontal
scale, rescaled by o = &/ f(Ko, M).
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(0.T*0, = T) as well as current conservation (0,7 fo, = 7).

We thus obtain the conductance G = GoTrtt! and the conductivity
o = G x L/W. The number of transverse modes N and longitudinal slices
Ny, are truncated at a finite value, which is increased until a sample specific
convergence is reached. For the data presented, this is typically achieved
when N = 400—800 and Nj = 300—600, the larger values needed for
larger values of Ky. The sample width W = 4006—800¢ is chosen large
enough that the conductivity is independent of the ratio W/ L. (Typically,
W/L 2 3—5, with the larger values needed for smaller values of M.)
Averages over a large number of disorder configurations (typically 1000)
produce the results plotted in Figs. 3.2 and 3.3.

For M = 0 (Fig. 3.2) the conductivity stays close to the scale invariant
value oy (dashed line), no matter how large the disorder strength, while
for nonzero M (Fig. 3.3) the conductivity decays with increasing L. For
sufficiently large L/& we expect single-parameter scaling, meaning that
the data for different Ky and M should all fall on a single curve upon
rescaling L — f(Ko, M)L. (This amounts to a horizontal displacement of
data sets on a logarithmic horizontal scale.) The length & = &/ f(Ko, M)
can then be identified with the localization length (up to a multiplicative
constant). As one can see in the lower panel of Fig. 3.3, the data sets
collapse reasonably well onto a single curve upon rescaling. (The remaining
deviations may well be due to finite-size effects.)

For weak disorder (K < 1) our results are similar to earlier work on
the superconducting random mass model [28]|. That model however shows
a metal-insulator transition at values of Ky = K, of order unity [23, 55|
(weakly dependent on M), such that for larger disorder the conductivity
increases logarithmically with system size [36, 109]:

o=o9ln(L/§), for Koy > K.~ 1. (3.6)

As argued by Read, Green, and Ludwig [97, 98] and by Bocquet, Ser-
ban, and Zirnbauer [17], metallic conduction in a random mass landscape
requires resonant transmission through contours of zero mass (the black
contours in Fig. 3.1). These contours support a bound state at zero energy,
if and only if they enclose an odd number of vortices. Without vortices,
the phase shift accumulated upon circulating once along a zero-mass con-
tour equals m — so there can be no bound state and hence no resonant
transmission. (The 7 phase shift is the Berry phase of the rotating pseu-
dospin o in Hpjac, without any dynamical phase shift because the energy
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is zero.) Our numerical finding that there is no metallic conduction in
the random mass landscape without vortex disorder is therefore consistent
with these analytical considerations.

From the more recent analytical work by Ziegler [131] we would expect
a transition into a phase with a scale invariant conductivity

oc = oo[l — (M/M,.)?], (3.7)

when M. = (h/v€) exp(—n/Kpy) becomes larger than M with increasing
disorder strength K. The corresponding critical disorder strength K, =
7/In|vé/AM| ~ 0.6—1.0 for the values of M in Fig. 3.3. The numerical
findings of Fig. 3.3, with a decaying conductivity for Ky > 10K., do not
support this prediction of a nonzero M.. Note that the numerical data of
Fig. 3.2, with a scale invariant conductivity o. = oq for M = 0, does agree
with Eq. (3.7) — it is the M > 0 data that is in disagreement.

3.3 Discussion

In conclusion, we have presented numerical calculations that demonstrate
the absence of metallic conduction for the Dirac Hamiltonian (3.1), in a
random mass landscape with nonzero average and dimensionless variance
Ky > 1. The decay of the conductivity with system size L is slower for
larger disorder strengths, but no metal-insulator transition is observed. A
transition into a metallic phase (with ¢ o In L) has been attributed to
vortex disorder [97, 17, 98]. Our numerical results are consistent with this
attribution, since our model contains no vortices and has no metallic phase
even if Ko > 1.
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Chapter 4

Majorana bound states
without vortices in topological
superconductors with
electrostatic defects

4.1 Introduction

Two-dimensional superconductors with spin-polarized-triplet, p-wave pair-
ing symmetry have the unusual property that vortices in the order pa-
rameter can bind a nondegenerate state with zero excitation energy [64,
124, 97, 53]. Such a midgap state is called a Majorana bound state, be-
cause the corresponding quasiparticle excitation is a Majorana fermion
— equal to its own antiparticle. A pair of spatially separated Majorana
bound states encodes a qubit, in a way which is protected from any local
source of decoherence [62]. Since such a qubit might form the building
block of a topological quantum computer [84], there is an intensive search
[57, 116, 105, 106, 68, 4] for two-dimensional superconductors with the re-
quired combination of broken time-reversal and spin-rotation symmetries
(symmetry class D [6]).

The generic Bogoliubov-De Gennes Hamiltonian H of a chiral p-wave
superconductor is only constrained by particle-hole symmetry, o, H*o, =
—H. At low excitation energies F (to second order in momentum p =
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—thd/0r) it has the form
H = A(pxax +pyay) + (U(T‘) +p2/2m)02, (4.1)

for a uniform (vortex-free) pair potential A. The electrostatic potential
U (measured relative to the Fermi energy) opens up a band gap in the
excitation spectrum. At U = 0 the superconductor has a topological
phase transition (known as the thermal quantum Hall effect) between two
localized phases, one with and one without chiral edge states [123, 109,
121, 122].

0 Up=03] -

energy levels

9 15 -1 —0.5 0

Figure 4.1. Emergence of a pair of zero-energy MS states as the defect potential
Uy + 68U is made more and more negative, at fixed positive background potential
Uy = 0.3. (All energies are in units of v = hA/a.) The energy levels are the
eigenvalues of the Hamiltonian (4.1) on a square lattice (dimension 100 a x 100 a,
B = h?/2ma® = 0.4+, periodic boundary conditions). The line defect has length
50 a. The dense spectrum at top and bottom consists of bulk states.

4.2 Majorana-Shockley bound states in lattice Hamil-
tonians

Our key observation is that the Hamiltonian (4.1) on a lattice has Ma-
jorana bound states at the two end points of a linear electrostatic defect
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(consisting of a perturbation of U on a string of lattice sites). The mecha-
nism for the production of these bound states goes back to Shockley [110]:
The band gap closes and then reopens upon formation of the defect, and
as it reopens a pair of states splits off from the band edges to form local-
ized states at the end points of the defect (see Fig. 4.1). Such Shockley
states appear in systems as varied as metals and narrow-band semicon-
ductors [31], carbon nanotubes [107], and photonic crystals [77]. In these
systems they are unprotected and can be pushed out of the band gap by
local perturbations. In a superconductor, in contrast, particle-hole sym-
metry requires the spectrum to be +F symmetric, so an isolated bound
state is constrained to lie at £ = 0 and cannot be removed by any local
perturbation.

We propose the name Majorana-Shockley (MS) bound state for this
special type of topologically protected Shockley states. Similar states have
been studied in the context of lattice gauge theory by Creutz and Horvath
[30, 29], for an altogether different purpose (as a way to restore chiral
symmetry in the Wilson fermion model of QCD [126]).

Consider a square lattice (lattice constant a), at uniform potential Up.
The Hamiltonian (4.1) on the lattice has dispersion relation

E? = [Uy + 28(2 — cos ak, — cos ak,))* + 7*sin? ak, +v*sin? ak,. (4.2)

(We have defined the energy scales 8 = h?/2ma?, v = hA/a.) The spec-
trum becomes gapless for Uy = 0, —43, and —8/, signaling a topological
phase transition [95]. The number of edge states is zero for Uy > 0 and
Uy < —803, while it is unity otherwise (with a reversal of the direction of
propagation at Uy = —4). The topologically nontrivial regime is therefore
reached for Uy negative, but larger than —8/.

We now introduce the electrostatic line defect by changing the potential
to Up + 0U on the N lattice points at r = (na,0), n =1,2,... N. In Figs.
4.1 and 4.2 we show the closing and reopening of the band gap as the
defect is introduced, accompanied by the emergence of a pair of states at
zero energy. The eigenstates for which the gap closes and reopens have
wave vector ky parallel to the line defect equal to either 0 or +7/a (in the
limit N — oo when k, is a good quantum number).

We have calculated that the gap closing at k, = 0 happens at a critical
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energy gap
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Figure 4.2. Main plot: Closing and reopening of the excitation gap at Uy = 0.3,
B = 0.4 (in units of v), for states with k, = 0 (black solid curve) and k, = 7/a
(black dashed curve). The MS states exist for defect potentials in between two
gap-closings, indicated as a function of Uy by the shaded regions in the inset.
(The red solid and blue dashed curves show, respectively Uy + 6Uy and Uy + 60Uy
The label T indicates the topologically trivial phase.)

potential 6U = 0Uj given by (derived in Section 4.A)

—/Uo(Up +48) + 2 for Uy > 0,
0Ty = 4 /Uo(Uo + 4B) + 2 for Uy < —48, (4.3)

no finite value otherwise.

The critical potential U, for closing of the gap at k, = £7/a is obtained
from Eq. (4.3) by the replacement of Uy with Uy + 43. The MS states ap-
pear for defect potentials Uy + U in between two subsequent gap closings,
as indicated in the inset of Fig. 4.2.

We conclude that MS states exist for any value of Uy. In contrast, Ma-
jorana bound states in vortices exist only in the topologically nontrivial
regime [97, 47]. The index theorem [101] for the production of zero-energy
modes by the vortex mechanism, which requires the topologically nontriv-
ial phase, is therefore not applicable to the Shockley mechanism.
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energy gap

Figure 4.3. Closing and reopening of the excitation gap at Uy = —0.3, 8 = 0.4
(in units of ), for states with k, = 0 (red curves) and k, = 7/a (black curves).
The results were obtained from numerical calculations using a constant isotropic
pair potential A (solid lines) as in Fig. 4.2 as well as a spatially dependent,
anisotropic pair potential (A (r), Ay(r)) determined self-consistently from the
gap equation (dashed lines), Sec. 4.B.

Our reasoning so far has relied on the assumption of a constant pair po-
tential A, unperturbed by the defect. In order to demonstrate the robust-
ness of the Majorana-Shockley mechanism, we have performed numerical
calculations that determine the pair potential self-consistently by means
of the gap equation [44]|, Sec. 4.B. In Fig. 4.3 we show a comparison of the
closing and reopening of the band gap as obtained from calculations with
and without self-consistency, in the relevant weak pairing regime (Uy < 0).
The self-consistency does not change the qualitative behavior. In particu-
lar, the gap only closes at k, = 7/a for the parameters chosen (c.f. inset in
Fig. 4.2) and the self-consistent determination of A only shifts the critical
potential dU slightly.

In Fig. 4.4 we demonstrate that the MS states are localized at the end
points of the line defect. The exponentially small, but nonzero overlap of
the pair of states displaces their energy from 0 to £F (with corresponding
eigenstates ¢_ = 0,17 related by particle-hole symmetry). The unpaired
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Figure 4.4. Probability density of the paired (1;) and unpaired (1,2)
Majorana bound states at the end points of a line defect of length 50 a, calculated
for Uy =0.1v, Uy + 6U = —1.3~, 8 =04~.

Majorana bound states 17 and 19 are given by the linear combinations

1 =51 —i)vg + 5(1+ i)y, (4.4a)
Yo =2 (14 i)y + 5(1— i)y, (4.4b)

shown also in Fig. 4.4. These states are particle-hole symmetric, ¢ 2 =
047 9, so the quasiparticle in such a state is indeed equal to its own
antiparticle (hence, it is a Majorana fermion).

If the line defect has a width W which extends over several lattice sites,
multiple gap closings and reopenings appear at k,; = 0 upon increasing the
defect potential Uy +0U = —(hkr)?/2m to more and more negative values
at fixed positive background potential Uy. In the continuum limit W/a —
00, the gap closes when ¢gWW =nw+v, n=0,1,2,... (Sec. 4.C), with g =
(k2 — (mA)?]'/2 the real part of the transverse wave vector and v € (0, )
a phase shift that depends weakly on the potential. (Similar oscillatory
coupling energies of zero-modes have been found in Refs. |26, 73].) The MS
states at the two ends of the line defect alternatingly appear and disappear
at each subsequent gap closing.
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Figure 4.5. Average density of states for a potential that fluctuates randomly
from site to site (U = 0.01y, AU = 27, 8 = 0.27). The lattice has size
400 a x 400a. The right inset shows the same data as in the main plot, over a
larger energy range. The left inset has a logarithmic energy scale, to show the
dependence p o In|E| expected for a thermal metal (red dashed line).

4.3 Electrostatic disorder in p-wave superconduc-
tors

So far we constructed MS states for a linear electrostatic defect. More
generally, we expect a randomly varying electrostatic potential to create
a random arrangement of MS states. To test this, we pick U(r) at each
lattice point uniformly from the interval (U — AU, U + AU) and calcu-
late the average density of states p(E). The result in Fig. 4.5 shows the
expected peak at £ = 0. This peak is characteristic of a thermal metal,
studied previously in models where the Majorana bound states are due
to vortices [17, 23, 80]. The theory of a thermal metal [109] predicts a
logarithmic profile, p(F) o In|E|, for the peak in the density of states,
which is consistent with our data.

Without Majorana bound states, the chiral p-wave superconductor
would be in the thermal insulator phase, with an exponentially small ther-
mal conductivity at any nonzero U [97, 17, 98, 12]. Our findings imply
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that electrostatic disorder can convert the thermal insulator into a ther-
mal metal, thereby destroying the thermal quantum Hall effect. Numerical
results for this insulator-metal transition are shown in chapter 2.

4.4 Continuum limit for electrostatic defects

These results are all for a specific model of a chiral p-wave superconductor.
We will now argue that our findings are generic for symmetry class D
(along the lines of a similar analysis of solitons in a polymer chain [54]).
Let p be the momentum along the line defect and « a parameter that
controls the strength of the defect. Assume that the gap closes at o = ag
and at p = 0. (Because of particle-hole symmetry the gap can only close
at p =0 or p = +hn/a and these two cases are equivalent.) For o near «y
and p near 0 the Hamiltonian in the basis of left-movers and right-movers
has the generic form

H(a) = <(vo +u)p  —ila— ao)> ’ (4.5)

ila—ag) —(vo—v1)p

with velocities 0 < v; < vg. No other terms to first order in p = —ihd/0x
and a — aq are allowed by particle-hole symmetry, H(a) = —H*(«).

The line defect is initially formed by letting o depend on x on a scale
much larger than the lattice constant. We set one end of the defect at
z = 0 and increase a from a(—00) < ag to a(+00) > «ag. Integration
of Hla(x)](x) = 0 then gives the wave function of a zero-energy state
bound to this end point,

o= (Veo/u=1\ (  [Tal@)-a
i )_<\/vo/v1+1> p( 0 \/vgfv%d ) (4.6)

This is one of the two MS states, the second being at the other end of
the line defect. We may now relax the assumption of a slowly varying
a(z), since a pair of uncoupled zero-energy states cannot disappear without
violating particle-hole symmetry.

4.5 Outlook

We have identified a purely electrostatic mechanism for the creation of
Majorana bound states in chiral p-wave superconductors. The zero-energy
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(mid-gap) states appear in much the same way as Shockley states in non-
superconducting materials, but now protected from any local perturbation
by particle-hole symmetry. An experimentally relevant consequence of our
findings is that the thermal quantum Hall effect is destroyed by electro-
static disorder (in marked contrast to the electrical quantum Hall effect). A
recent proposal to realize Wilson fermions in optical lattices [16] also opens
the possibility to observe Majorana-Shockley states using cold atoms.

Our analysis is based on a generic model of a two-dimensional class-D
superconductor (broken time-reversal and spin-rotation symmetry). An
interesting direction for future research is to explore whether Majorana-
Shockley bound states exist as well in the other symmetry classes [6]. Since
an electrostatic defect preserves time-reversal symmetry, we expect the
Majorana-Shockley mechanism to be effective also in class DIII (when only
spin-rotation symmetry is broken). That class includes proximity-induced
s-wave superconductivity at the surface of a topological insulator [42] and
other experimentally relevant topological superconductors |96, 103, 43].

It would also be interesting to investigate the braiding of two elec-
trostatic defect lines, in order to see whether one obtains the same non-
Abelian statistics as for the braiding of vortices [53].

Appendix 4.A Line defect in lattice fermion mod-
els

We calculate the closing and reopening of the excitation gap upon in-
troduction of a line defect in a lattice fermion model with particle-hole
symmetry. First we treat the Wilson fermion model [126] considered in
the main text, and introduced in the context of topological insulators in
Refs. |15, 41]. Then, in order to demonstrate the generic nature of the
results, we consider an alternative lattice model, the staggered fermion (or
Kogut-Susskind) model [63, 113, 14], introduced in the context of graphene
in Refs. [119, 79].

4.A.1 Wilson fermions

The Wilson fermion model has Hamiltonian

H= Z cl Ene, — Z & Trmt,,- (4.7)

n,m (nearest neighb.)
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Each site n on a two-dimensional square lattice (lattice constant a) has
electron and hole states |e) and |h). Fermion annihilation operators for
these two states are collected in a vector ¢, = (cp,e,Cnp). States on the
same site are coupled by the 2 x 2 potential matrix &, and states on
adjacent sites by the 2 x 2 hopping matrix T, defined by [15, 41]

(U, 0 _ B yeifnm
G (% 0) Tm (B ). e

Here U, is the electrostatic potential on site n and 0,,,, € [0, 7] is the angle
between the vector 7, — 7, and the positive y-axis (s0 Opn = T — Opim).
In the continuum limit ¢ — 0, the tight-binding Hamiltonian (4.7) is
equivalent to the chiral p-wave Hamiltonian (4.1), with 8 = A%/2ma? and
v = hA/a.

It is convenient to transform from position to momentum represen-
tation. For that purpose we take periodic boundary conditions in the
y-direction, so that the transverse wavevector (in units of 1/a) has the
discrete values k; = 27l/N, I = —(N —1)/2,...,—1,0,1,..., (N —1)/2
(for an odd number N of sites in the y-direction). The Fourier transfor-
mation from position to momentum representation is carried out by the
unitary matrix with elements [F],; = N~1/2¢™". We take an infinitely
long system in the z-direction, so the longitudinal wavevector k varies
continuously in the interval (—m, 7.

For a uniform potential, U,, = Uy for all n, the Fourier transformed
Hamiltonian Hy(k) has matrix elements

[Ho(k)lur = dw&i(k), (4.9)

E(k) = Upo, +2B0,(2 — cosk — cosky) + y(ozsink + oy sink;).  (4.10)

The corresponding dispersion relation is

E(k, k) = [Up + 28(2 — cos k — cos k;)]?
+ 2 (sin? k + sin® k), (4.11)

cf. Eq. (4.2).
A line defect at row ng (parallel to the z-axis) adds to Hy the pertur-
bation

[6H]w = N~ temolkv =k g1y (4.12)
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The determinantal equation Det (Hy + 6H — E) = 0 for eigenenergy F
reads

Det (1 4+ FjoUo.Fo(Hoy — E)~') =0, (4.13)

in terms of an 1 x N matrix Fy with elements [Fyly = N—1/2¢inokr
Sylvester’s theorem, Det(1 + AB) = Det(1 + BA), allows us to rewrite
the determinant in the form

Det (14 6Uo.Fo(Hy — E) ' F}) =0, (4.14)

which reduces to

1 1

_ 1 S(k)+E
= Det (1 + U0 zl: Flh ) E2> : (4.15)

A zero-mode is a pair of states (one left-mover and one right-mover)
at energy E = 0. This can only occur at k = 0 or k = 7 (because for any
eigenenergy F at k there must also be an eigenenergy —F at —k). From
Egs. (4.10) and (4.15) we obtain the condition for such a zero-mode,

1 Up+26(1+ 9 —cosk) 1
N2

= —— 4.16
[Uo +2B(1 + § — cos k;)]2 + 42 sin? k; U’ (4.16)

l

where 6 = 0if k = 0 and 6 = 2 if kK = 7. In the limit N — oo we
may replace the sum by an integral, N~1 >, — (27)~1 firﬂ dk;, which can
be evaluated by contour integration. The resulting critical value of dU is
given in the main text [Eq. (4.3) and following].

4.A.2 Staggered fermions

The staggered fermion model is a discretization of the Hamiltonian (4.1)
without the p? term. It is formulated in Refs. [113, 14, 119] in terms
of the transfer matrix M,,, which relates the transverse wave functions
Vi1 = MV, at columns m and m + 1 (parallel to the y-axis). For a
line defect along the x-axis, the transfer matrix is m-independent, so we
can omit the column number m.
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The transfer matrix (at energy F) has the form

1—1X
= - 4.17
M 1+iX’ (4.17)
= (vJ)  (yo. K + tEo,J — SioU). (4.18)
In reference to Eq. (4.1), the parameter v = AA/a for lattice constant a.
The N x N matrices J and K have nonzero elements

jn,n - 17 jn,n-‘,—l - jn,n—l = %, (419)
ICn,n—i—l = %7 Icn,n—l = _%7 (420)
while the potential matrix U (for a line defect at row ng) is given by
z/{nn/ = U(]jnn’ + %5U(5n,n/5n,no + 5n,n/5n,ng+1
+ 5n+1,n’5n,no + 5n,n’+15n’,no)~ (4'21)

In momentum representation, the matrix X has elements

Ul Ul/

X = A0 —i(6U/2 _— 4.22
w = Aiow —i(0U/2v)oy 2(/2)" (4.22)
where we have defined
A =io, tan(k;/2) + (E/2v)o, — i(Uo/27)0y, (4.23)
v = N7V2emoki(q 4 ¢thr), (4.24)

The dispersion relation of the staggered fermions is tan?(k/2) = A(k, k;)?,
with
Ak, k) = (/2 — tan®(ki/2) — (Uo/20)%. (4.25)

An eigenstate at energy FE and longitudinal wavevector k is an eigen-
state of X with eigenvalue — tan(k/2). The determinantal equation Det[ X +
tan(k/2)] = 0 can again be simplified using Sylvester’s theorem. The re-
sult, analogous to Eq. (4.15), is

oU. 1 1
0 = Det (1 - %ZUyNZ,éHwIM>

B A — tan(k/2
= Det ( wyNZA . /il T tan? (k/Q)) (4.26)
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Figure 4.6. Main plot: Closing and reopening of the excitation gap in the
staggered fermion model. The MS states exist for defect potentials in the shaded
regions in the inset. (All energies are in units of ~.)

Because of the pole in the dispersion relation at k = m, the zero-mode
now exists only at £ = 0. The condition for this zero-mode, analogous to
Eq. (4.16), is

Uo/2v 2

1
N zl: (Uo/27)? + tan2(k;/2) U’

(4.27)

For N — 0o we may again transform the sum into an integral, and thus
obtain the critical potential

“Up—2y if
6U:{ Uo=2y it Uo>0, (4.28)

—Up+2v if Uy<DO.

Upon varying the potential Uy + 6U of the line defect, at fixed bulk
potential Uy, the closing and reopening of the gap thus happens at Uy +
0U = —2vsign (Uy) (see Fig. 4.6). The inset shows the region in parameter
space where the Majorana-Shockley states exist in the staggered fermion
model. This phase diagram is much simpler than the corresponding phase
diagram for Wilson fermions (Fig. 4.2, inset), because of the absence of
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the extra parameter 3 (which quantifies the strength of the p? term in the
Wilson fermion model).

Appendix 4.B Self-consistent determination of the
pair potential

In order to determine the pair potential self-consistently in a spatially non-
homogeneous situation, it is necessary to allow for a position-dependent,
anisotropic pair potential A(r) = (A,(r), Ay(r)). The Hamiltonian then
reads [44]

H :% {Ax(r),p:c} Oy + % {Ay(’f'),py} Oy
+ (U(r) +p*/2m) o, (4.29)

where {-,-} denotes the anticommutator. In the discretization of this
Hamiltonian on a square lattice, the spatial dependence of A(r) is taken
into account in the hopping between neighbors as an average value of A(r)
on the two lattice points.

When the pair potential is homogeneous, the lattice Hamiltonian has
the spectrum

E? = [Up + 23(2 — cos ak, — cos aky)]?
+ ~2 sin? ak, + 75 sin? ak, (4.30)

with v, = hA,/a, v, = hA,/a and 8 = h%/2ma®.

The Hamiltonian must be solved self-consistently together with the
equation for the pair potential. These read [44] (with derivatives dis-
cretized on the lattice)

Ya(r) = —ig > (un(z + a,y) — tn(z — a,y)) vj(z,y)
En,>0

—un(z,y) (vp(z + a,y) — vp(z — a,y)),
W(r) =g Y (un(z,y+a) — un(z,y + a)) vi(z,y)
E,>0
— up(z,y) (v)(z,y +a) — v (x,y + a)). (4.31)

Here u,, and v,, are the electron and hole component of the wave function,
respectively, and assumed to be from the tight-binding model, i.e. they
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are dimensionless and represent the probability amplitude per lattice point
(2,9).

The coupling constant ¢ must be chosen such that it gives the correct
pair potential v in the bulk. It can be calculated as

% :% _7r d(ak,) _7r d(aky) sin(aks) u(k)v*(k)
:;ﬁf /_ ' d(ak;) /_ ' d(ak,) sin(ak,) u(k)v* (k), (4.32)

where u(k) and v(k) are the electron and hole coefficients of the plane
wave solutions of the bulk lattice Hamiltonian with E > 0.

In the particular case of a system that is translationally invariant in
x-direction, as is the case for an infinitely extended line defect, the gap
equations can be written as:

g x :
Yo (T) = — Z U (kg, y)vy (ks y) sin(aky)
¥ En>0k,

g
’Yy("“) = EE .

(<un<kx,y T a) — unlke, g + @) ke )

~ tn(ker ) (s y + @) — 0 (ke + a))), (4.33)

summing over N, longitudinal momenta k., and solving the tight-binding
problem for each k, individually.

The self-consistent solution of the tight-binding Hamiltonian and the
gap equation (4.33) is obtained in an iterative procedure. In the iteration,
we neglect the influence of the vector potential arising from local currents
[44] as those effects are expected to be minor for the examples considered
in this work. Furthermore, we also avoid adjusting the chemical potential
Up to obtain a fixed number of electrons in the system and instead use
a large unit cell so that the bulk value of A is recovered away from the
defect.

Appendix 4.C Line defect in the continuum limit

We calculate the closing and reopening of the excitation gap upon intro-
duction of a line defect in the Hamiltonian (4.1), which is the continuum
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Figure 4.7. The red solid curves are the solution of Eq. (4.38) for W = 4A/mA.
The MS states exist in the shaded regions.

limit (a — 0) of the Wilson fermion lattice model of App. 4.A.1. The
mode matching calculation presented here is the one-dimensional version
of the two-dimensional calculation in Refs. [73, 72, 74].

The line defect, of width W, is formed by the electrostatic potential

profile
U, if > W/2,
Ulr) =4 ° iyl > W/ (4.34)
Uo +6U if |y| < W/2.

A zero-mode ¢ = (u,v) is a (doubly degenerate) eigenstate of the Hamil-
tonian (4.1) at £ =0, p, = 0. The zero-mode should thus satisfy

(U —l—p;/Qm)u = 1Apyv, (4.35a)
(U —|—p§/2m)v = iApyu. (4.35D)

For uniform U the solution is a plane wave,

gy = €Fss’Y (i) , 8,8 =41, (4.36)
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with transverse wave vector

kss = (m/h)(isA + §'/—A2 — 2U/m). (4.37)

In the region |y| < W/2 the zero-mode v is a superposition of the
four states ¢4, ¢4, ¢_y,__. For y > W/2 two decaying states with
Im kgy > 0 appear in the superposition, while for y < —W/2 the other two
states with Im ks < 0 appear. In total ¥ has eight unknown coefficients,
which we determine by demanding continuity of ¢ and di/dy at y = W/2
and y = —W/2. The determinant of this set of equations should vanish, in
order to have a nontrivial solution. There is only a zero-mode for Uy > 0,
Up + 6U < —mA2 /2, determined by

2qq0
tan = . 4.38
qW pry (4.38)
We have defined
q= (m/h)\/—AQ—(Q/m)(Ug+5U), (4.39)

qo = (m/h)\/A2 42Uy /m. (4.40)

The MS states exist in between subsequent gap closings, as indicated in
Fig. 4.7 (shaded regions).
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Chapter 5

Effects of disorder on the
transmission of nodal fermions
through a d-wave
superconductor

5.1 Introduction

As pointed out by Lee in an influential paper |70], disorder has two com-
peting effects on the microwave conductivity of a layered superconductor
with d-wave symmetry of the pair potential. On the one hand, disorder
increases the density of low-energy quasiparticle excitations, located in the
Brillouin zone near the intersection of the Fermi surface with the nodal
lines of vanishing excitation gap. On the other hand, disorder reduces
the mobility of these nodal fermions. For short-range scattering the two
effects cancel [40], producing a disorder independent microwave conductiv-
ity o =~ (e2/h)kr& per layer in the low-temperature, low-frequency limit
(with & the coherence length and kp the Fermi wave vector). For long-
range scattering the first of the two effects wins [34, 90], which explains
the conductivity enhancement measured in the high-T, cuprates |71, 49|
(where long-range scattering dominates [32]).

The microwave conductivity is a bulk property of an unbounded sys-
tem, of length L and width W large compared to the mean free path [.
A finite system makes it possible to study the crossover from diffusive to
ballistic transport, as L and W become smaller than /. We have recently
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Figure 5.1. Geometry to measure the transmission of quasiparticles at the
nodes (red circles) of the pair potential with d, symmetry.

shown [9] that the transmission of nodal fermions over a length L in the
range & < L < I, W is pseudodiffusive: The transmission probability has
the W/L scaling of a diffusive system, even in the absence of any disorder.
The corresponding conductance Gy is close the value (W/L)og which one
would expect from the microwave conductivity, up to a small correction of
order (kr&p) 2 < 1.

It is the purpose of this Chapter to investigate the effects of disorder
on the pseudodiffusive conductance, as L becomes larger than [. We find a
qualitatively different behavior than for the microwave conductivity, with
an exponentially suppressed conductance in the case of short-range scat-
tering and an unaffected conductance G ~ Gy for long-range scattering.

5.2 Formulation of the problem

The geometry to measure the transmission of nodal fermions is illustrated
in Fig. 5.1. It consists of a superconducting strip S between two normal
metal contacts N1 and Ns. The transverse width W of the superconductor
is assumed to be large compare to the separation L of the NS interfaces, in
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order to avoid edge effects. Contact Nj is at an elevated voltage V', while
S and Ny are both grounded. The current I» through contact No measures
the transmitted charge, which is carried entirely by nodal fermions if L >
&o. The nodal lines are the = and y axes, oriented at an angle « relative to
the normal to the NS interfaces. There are four nodal points A, B,C, D
in the Brillouin zone, at the intersection of the nodal lines and the Fermi
surface. The nodal fermions have an anisotropic dispersion relation, with
a velocity vp parallel to the nodal axis and a much smaller velocity va =
vr/kr& perpendicular to the nodal axis.

The (three-terminal) conductance G = Iy/V was calculated in Ref. 9
in the clean limit L < I, with the result (per layer)

2¢2 W v% + v4 [T
h L wvpva (2-T1)(2—-T9)’

Gclean = (5-1)

independent of «. The factors I'y, 'y € (0,1) are the (mode-independent)
transmission probabilities of tunnel barriers at the N1S and NoS interfaces.
We have assumed that the tunnel barriers do not couple the nodes, which
requires a > §p/L and 7/4 — a > §/L. Since §/L < 1, this is the
generic case.

We now wish to move away from the clean limit and include scatter-
ing by electrostatic potential fluctuations. We distinguish two regimes,
depending on the magnitude of the correlation length [. of the potential
fluctuations. In the regime kpl. > 1 of long-range disorder, the nodes
remain uncoupled and can be treated separately. We consider this regime
of intranode scattering first, and then include the effects of internode scat-
tering when [, becomes smaller than 1/kp.

5.3 Intranode scattering regime

In the absence of internode scattering, the electron and hole components
of the wave function ¥ = (¥, ¥}) of nodal fermions (at excitation energy
¢) are governed by the anisotropic Dirac equation HU = eW¥. Near node
A the Hamiltonian takes the form [5]

H = —ih(vro.0; + vA0.0y) + Vo, + Vao,. (5.2)

The two terms V,(x,y) and Va(x,y) describe, respectively, long-range
disorder in the electrostatic potential and in the s-wave component of
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the pair potential. These two types of disorder preserve time-reversal
symmetry. The Hamiltonian anti-commutes with the Pauli matrix o,
belonging to the chiral symmetry class AIII of Ref. 5.

Following Refs. 108, 117, at zero energy, the disorder potentials can be
transformed out from the Dirac equation by means of the transformation
U — exp(i¢ + xoy)¥o, with fields ¢ and x determined by

VpOr® +vA0yx = =V, /I, (5.3a)
VpOrX — vAOy¢ = Va/h. (5.3b)

If HV = 0 then also HyWy = 0, where Hy is the Dirac Hamiltonian without
disorder (V,, =0 and Va =0).

The transformation from ¥ to Wy leaves the particle current density
unaffected but not the electrical current density: The particle current
density j reads

(Ja»r Jy) = ‘I/T(’UFUZ, VA0, W = \I/(T)(UFO'Z,UAUCE)\I/(], (5.4)
while for the electrical current density i one has
iy =0, iy = evpWI¥ = evF\I/(T) exp(2xoy)Yo. (5.5)

This is consistent with the findings of Durst and Lee [34], that the low-
energy effects of intranode scattering on the density-of-states and on the
mobility cancel for the thermal conductivity (proportional to the parti-
cle current) but not for the electrical conductivity (which is increased by
disorder).

As we now show, for the conductance of a finite system, the effect of
intranode scattering is entirely different. Following Ref. [9], the conduc-
tance is determined by the transfer matrix M relating right-moving and
left-moving states ®; = (®],®;) in Ny to right-moving and left-moving
states @y = (@5, ®,) in No. It is convenient to rotate the coordinate
system from x and y along the nodal axes to coordinates s and t perpen-
dicular and parallel to the NS interfaces. The transfer matrix is defined
by

Bo(L, 1) = / At M(t,)D1(0,1)). (5.6)
For wave vectors in the normal metal coupled to node A, the right-movers

are electrons @} and the left-movers are holes ®,, so an electron incident
from contact Ny can only be transmitted into contact No as an electron,
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not as a hole. The corresponding transmission matrix te. is determined by
the transfer matrix via

_ A (M Myo
tee = (M})) ,M—<M21 Mm). (5.7)

The contribution G 4 to the electrical conductance from node A then fol-

lows from
2¢2 t
Ggp=—"Trt_t (5.8)

h ee’ee’

with a factor of two to account for both spin directions. The full con-
ductance contains an additional contribution from node B, determined by
similar expressions with « replaced by a — /2.

The Hamiltonian (5.2) does not apply within a coherence length &
from the NS interfaces, where the depletion of the pair potential should be
taken into account. We assume weak disorder, [ > &, so that we can use
the clean-limit results of Ref. [9] in this interface region. For simplicity, we
do not include tunnel barriers at this stage (I'y = 'y = 1). The transfer
matrix through the superconductor is then given by

M = exp(igr + oyXR) exp(—iLvFvAv;2ay8t + Lpa0r)
X exp(—igL — oyXL), (5.9)

with the abbreviations

2

Vg = \/v%7 cos? a + v3 sin” @, 10)
11)
The fields ¢r,(t), x1.(t) are evaluated at the left NS interface (s = 0) and
the fields ¢r(t), xr(t) are evaluated at the right NS interface (s = L).

We now follow Ref. [108] and use the freedom to impose boundary
conditions on the solution of Eq. (5.3). Demanding xy = 0 on the NS
interfaces fixes both y and ¢ (up to an additive constant). The transfer
matrix (5.9) then only depends on the disorder through the terms exp(i¢r)
and exp(—i¢r, ), which are unitary transformations and therefore drop out
of the conductance (5.8). We conclude that the electrical conductance
(5.1) is not affected by long-range disorder.

Tunnel barriers affect the conductance in two distinct ways. Firstly, at
both NS interfaces, we need to consider all four states @eih that have the

(5.
Pa = 5052 (vF — v ) sin 20 (5.

same component of the wave vector parallel to the NS interface (@}, @,
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have the opposite perpendicular component than &, , <I>;l“) However, only
one right-moving and one left-moving superposition of these modes, CI%,
is coupled by the transfer matrix to the other side of the system:

OF = (2-T,) 2[0f + (1 -Ty) 0], (5.12a)
o, =(2-T,) 21 -1, +0,]. (5.12b)

The superposition of incoming electron and hole states orthogonal to @' is
fully reflected by the tunnel barrier and the superconductor, and so plays
no role in the conductance. For a detailed derivation of these formulas see
Appendix 5.A.

Secondly, the modes ®; are only partially transmitted through the
barriers. We have calculated the transmission probability (see Appendix
5.A for details), and found that it can be accounted for by the following
transformation of the transfer matrix,

M — e’yzayMe’hUy7 Vo = %1n(2/f‘n — 1), (513)

With tunnel barriers, the transmission matrix contains mixed electron
and hole elements,

T <tee teh> —ul ((Mk)l 0) U, (5.14)

the thh 0 0

where the unitary matrices U, transform from the electron-hole basis to
the basis state @ and its (fully reflected) orthogonal complement,

o oL/2
wze—mﬂ”Q_gW2“T))- (5.15)

Finally, the contribution G4 to the electrical conductance from node A
follows from

2¢? i i
Ga="—Tr (tetl, —t,.t}.). (5.16)

h ee-ee

With tunnel barriers, not just nodes A and B, but nodes C' and D also
contribute to the full conductance.

Collecting results, we substitute Eq. (5.9) (with xr, and xgr both fixed
at zero) into Eq. (5.13) to obtain the transfer matrix, and then substitute
the 1,1 block into Eq. (5.14) for the transmission matrix. Disorder only
enters through the factors exp(i¢r) and exp(—i¢r,), which mix the modes
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on the superconducting side of the tunnel barriers. Since the tunnel prob-
abilities are assumed to be mode independent, these factors commute with
the U,’s and cancel upon taking the trace in Eq. (5.16). We thus recover
the clean-limit result (5.1), independent of any disorder potential. Disor-
der would have an effect on the conductance for mode-dependent tunnel
probabilities, but since the modes in the normal metal couple to a narrow
range of transverse wave vectors in the superconductor, the assumption of
mode-independence is well justified.

As an aside we mention that the thermal (rather than electrical) con-
ductance Gihermal < Tt 77T would be independent of disorder also for the
case of mode-dependent tunnel probabilities, since the U,’s drop out of
the trace. The tunnel barriers would then still enter in the transfer ma-
trix through the terms €% in Eq. (5.13), but these terms have the same
effect as delta function contributions to V, and can therefore be removed
by including them in Eq. (5.3). The conclusion is that the thermal con-
ductance is independent of both disorder and tunnel barriers, while the
electrical conductance is independent of disorder but dependent on tunnel
barriers through the factors I',,/(2 — I'y). Notice that the Wiedemann-
Franz relation between thermal and electrical conductance does not apply.

5.4 [Effect of internode scattering

So far we have only considered intranode scattering. For short-range dis-
order we have to include also the effects of internode scattering. Intern-
ode scattering suppresses the electrical conductance, measured between
the normal metals N1 and No, because an electron injected from N into
nodes A or B and then scattered to nodes C or D will exit into Ny as a
hole, of opposite electrical charge. (The charge deficit is drained to ground
via the superconductor.) The thermal conductance, in contrast, remains
unaffected by internode scattering because electrons and holes transport
the same amount of energy. (Again, the Wiedemann-Franz relation does
not apply.)

We first give a semiclassical analytical theory, and then a fully quantum
mechanical numerical treatment.

5.4.1 Semiclassical theory

We assume that the mean free path [ for intranode scattering is short
compared to the internode scattering length. Semiclassically we may then
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describe the internode scattering by a (stationary) reaction-diffusion equa-
tion for the carrier densities n,,

V- -D, -Vn, + Z (’yl,,/nl,/ — 'y,/,,ny) =0. (5.17)
v'#v

The labels v,/ € {A, B,C, D} indicate the nodes, with diffusion tensor
D, and scattering rate ,,, from ¢/ to v. For simplicity we assume there
is no tunnel barrier at the NS interfaces, and seek a solution n,(s) with
boundary conditions

1
n,(0) = 5(5%,4 +0y,8)eVpr, n,(L)=0. (5.18)

Here pr is the density of states per node at the Fermi energy, and we have
chosen the sign of the applied voltage V' such that electrons (rather than
holes) are injected into the superconductor from Nj.

The diffusion tensor is diagonal in the x — y basis, with components
D, and Da in the direction of v, and wa, respectively. The average
diffusion constant is D = £(D,,+Da) and we also define Dy, = D,, cos® -+
Dasin? . We distinguish internode scattering between opposite nodes,
with rate 1, and between adjacent nodes, with rate 2. Because the
solution n,(s) in the s —¢ basis is independent of the transverse coordinate
t, we may replace the Laplacian V- D, -V + D, d?/ds? with Dy = D¢ =
Da and DB = DD = 2D - Da.

We seek the current into Na, given by

d
I, = —eW lim d*[DAnA‘FDBnB—DCnC—DDnD]o (5.19)

s—L as

This can be obtained by integrating the reaction-diffusion equation (5.17)
in the way explained in Ref. 114. The result is

1 2(11 +72)Da

2 [ sinh \/2L2(’yl +72)/Dq
V2(11 +72)(2D — Do)

sinh \/2L2(71 + 72)/(2D — Dq) |’

Iy = eQV,oFW

(5.20)

In the small-L limit (when intervalley scattering can be neglected) we re-
cover an a-independent conductance Iy/V — e2ppDW/L, consistent with
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the expected result (5.1). For large L the conductance decays exponen-
tially oc e~ L/binter with

later = \/ 3 min(Da, 2D — Da) /(31 +72) (5.21)

the internode scattering length. For weak disorder (kpl > 1) this decay
length is much shorter than the Anderson localization length ~ leFF!,
we are justified in treating the transport semiclassically by a diffusion
equation.

SO

5.4.2 Fully quantum mechanical solution

The Hamiltonian in the presence of internode scattering belongs to symme-
try class CI of Ref. [5], restricted by time-reversal symmetry and electron-
hole symmetry — but without the chiral symmetry that exists in the ab-
sence of internode scattering.

To write the Hamiltonian H of the four coupled nodes in a compact
form we use three sets of Pauli matrices: For each ¢ = x,y,z the 2 x 2
Pauli matrix o; couples electrons and holes, v; couples opposite nodes (A
to C and B to D), and 7; couples adjacent nodes (A to B and C to D).
The requirements of time-reversal symmetry and electron-hole symmetry
are given, respectively, by

YH Ve =H, (12 @ 0y)H (72 ® 0y) = —H. (5.22)
In the absence of disorder, the Hamiltonian is given by

Helean = Pz (UFT+ Ko, +VAT- ® Ux) X Vz
+py (VT ® 0, + VAT Q@ 05) @ 7. (5.23)

The momentum operator is p = —ihd/dr and we have defined 74 =
%(7’0 + 7,), with 79 the 2 x 2 unit matrix.

Since the effects of disorder in the electrostatic potential V,(r) and
in the pair potential Va(r) are equivalent [5], we restrict ourselves to the
former. The relevant Fourier components of V,(r) can be represented by
the expansion

Viu(r) =po(r)

+ pg(r)e kBRI Ly (p)eithehp) T (5.24)
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where kx is the wave vector of node X = A, B,C, D (see Fig. 5.1). The
Fourier amplitudes p,(r) are all slowly varying functions of r, with cor-
relation length £ > 1/kp. The amplitude g is responsible for intranode
scattering, arising from spatial Fourier components of V() with wave vec-
tor < kp (long-range scattering). The other four amplitudes arise from
Fourier components with wave vector 2 kp (short-range scattering). Of
these internode scattering potentials, w1, e scatter between opposite nodes
and pus, 4 scatter between adjacent nodes.

The Hamiltonian H = Hclean + Hdisorder contains an electrostatic dis-
order contribution Hgisorder X 0. Six combinations of Pauli matrices are
allowed by the symmetry (5.22), five of which have independent ampli-
tudes:

4
Haisorder = Z Hp ® o,, with (525)

n=0
Ho = po(r) [T+ @ 70 + 7= @ Y0] = p0(r)70 @ Yo,
Hi = p1(r)74 @9z, Ha = pa(r)7- @ Ya,
Hs = pus3(r)me @ Y0, Ha = pa(r)7 @ Yy (5.26)

We have solved the quantum mechanical scattering problem of the four
coupled Dirac Hamiltonians numerically, by discretizing H on a grid. Since
the electrostatic potential appears in the form of a vector potential in the
Dirac Hamiltonian, in our numerical discretization we are faced with a no-
torious problem from the theory of lattice fermions: How to avoid fermion
doubling while preserving gauge invariance [113]. The transfer matrix dis-
cretization method we use, from Ref. [11], satisfies gauge invariance only
in the continuum limit. We ensure that we have reached that limit, by
reducing the mesh size of the grid until the results have converged.

We fixed the width of the d-wave strip at W = 150&, oriented at an
angle o = 7/8 with the nodal lines, and increased L at fixed {. We set the
anisotropy at vp/va = 2 and did not include tunnel barriers for simplicity.
All five amplitudes p,(r) are taken as independently fluctuating Gaussian
fields, with the same correlation length £. The Gaussian fields have zero
ensemble average, (u,(r)) = 0, and second moment

Ky = (o) [ dr Gy (0)mn(r) (5.27)

We took Ky = 1 and either K1 = Ky = K3 = K4 = 0 (only intranode
scattering) or K3 = Ky = K3 = K4 = 0.4 (both intranode and intern-
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Figure 5.2. Differential conductance as a function of sample length, calculated
numerically from the four coupled Dirac Hamiltonians of nodal fermions. The
solid curves are at zero voltage and the dashed curves at nonzero voltage. If
only intranode scattering is present (upper curves), the differential conductance
is close to the value Gejean from Eq. (5.1). Including also internode scattering
(lower curves) causes the conductance to decay strongly below Gjean.
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ode scattering). The results in Fig. 5.2 give the differential conductance
dI»/dV, both at zero voltage and at a voltage of V' = 0.2 hup/e.

Without internode scattering, we recover precisely the analytical result
dl2/dV = Gelean at V' = 0. At nonzero voltages, dIs/dV rises above Gelean
with increasing L, consistent with the expectations [108] for the crossover
from pseudo-diffusive to ballistic conduction at V ~ hvg/eL. Internode
scattering causes dly/dV to drop strongly below Gejean with increasing
L, both at zero and at nonzero voltages. The decay is approximately
exponential, consistent with our semiclassical theory (although the range
accessible numerically is not large enough to accurately extract a decay
rate).

5.5 Conclusion

In summary, we have shown that the effect of disorder on the electrical
current transmitted through a normal-metal—d-wave-superconductor—nor-
mal metal junction is strikingly different depending on the range of the
disorder potential: Long-range scattering has no effect, while short-range
scattering suppresses the current exponentially. This behavior is dual to
what is known [34, 90| for the bulk conductivity, which is unaffected by
short-range scattering and increased by long-range scattering. Because of
the exponential sensitivity o< e=L/kinter | we propose the setup of Fig. 5.1 as
a way to measure the internode scattering length lipge;-

As a direction for future research, it would be interesting to study the
transmission in the geometry of Fig. 5.1 of low-energy excitations that are
not located near the nodal points of the pair potential. A mechanism for
the formation of non-nodal zero-energy states in d-wave superconductors
has been studied in Refs. |2, 3].

Appendix 5.A Tunnel barrier at the NS interface

We consider a tunnel barrier between the normal metal contact N; and
the superconductor. To be specific, we describe the left end of our setup,
the derivations for the right contact follow analogously. We introduce an
additional normal metal of zero length between the tunnel barrier and
the superconductor, as illustrated in Fig. 5.3. For simplicity we assume
translation invariance along the NS interface holds: then the energy and
the wave number along the NS interface are good quantum numbers. The
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Figure 5.3. Sketch of the normal-superconducting interface, with the plane wave
modes taking part in conduction with a fixed energy and transverse momentum.
To define the modes (]5:’}:, a piece of normal metal with length — 0 is inserted
between the tunnel barrier I and the superconductor S.

tunnel barrier mixes the 4 modes with these constants in the normal lead
Np: ®7 for right-/left-propagating electrons, and @;_ for right- /left-
propagating holes, with the 4 modes with these constants in N{: ¢¢ '~ and
@5, - We have

i3 vt 0 0 oF
of| [t ¢ 0 o0 oo
o | |0 0 v || (5.28)
o) 0 0 t v*) \¢;

Here t = /TieX and ¢ = / Fleixl are the electron transmission ampli-
tudes, x,x’ € R, and v and t/ are the electron reflection amplitudes.

Since the angle o between the normal to the NS interface and the nodal
line is taken to be generic, 0 < o < —m/4, the modes qb; and ¢, cannot
propagate in the superconductor. They are localized near the NS interface,
and follow Andreev reflection: ¢, = —iqbz. Using this, we can write the
scattering matrix S representing the combined effect of the tunnel barrier
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and the Andreev reflections on the propagating modes as

—tit —tid”

O o t
ol =5(o|; S=10 ¢ " (5.29)
o o t it "

Now there are two incoming propagating modes from the left, but only
one outgoing propagating mode to the right. This implies that there is a
superposition of ®} and (IDZ that is reflected with unit probability into a su-
perposition of & and ®, . Orthogonal to these uncoupled superpositions
are the relevant modes <I>ir = ueD —l—uh@z and 7 = v, @, +v, P, , which
are coupled to the propagating modes in the superconductor. We can find
them from Eq. (5.29) by just observing what ST and S take (0,0,1)" to:

©)-2() (-5 o
up, N it e'X vp N\ e ix
where N = /2 —T'; is a normalizing factor. For our setup, all phase
factors here can be absorbed into the definitions of the plane wave modes
in contact Ny, and we obtain Egs. (5.12).

Acting with S on (u},u},0)" allows us to infer the transmission and
reflection amplitudes of the relevant modes, from which we can obtain the
transfer matrix,

¢i> _ (@f) : _ 1+ (1 —-T)ay
(@7 =Milor ) M= T2 T (5:31)

This transfer matrix can be written in a succint form with a real parameter
~1 characterizing the tunnel barrier:
1. 2—-1I4

My =exp[mioyl; 1= 3 In T

(5.32)

This and the analagous calculation for the right edge of the system lead
directly to Eq. (5.13).



Chapter 6

Piezoconductivity of gated
suspended graphene

6.1 Introduction

Graphene is a novel material with highly unusual electron properties, re-
lated to the Dirac form of its energy spectrum at low energies, and demon-
strated in many seminal experiments (for review see [13, 22|). Experiments
on single-layer graphene have been performed on the flakes obtained by
exfoliation as well as grown on a substrate.

Graphene also has excellent mechanical properties. Indeed, the elas-
tic properties have been measured on suspended graphene flakes mechan-
ically deposited over a hole by indentation in an atomic force micro-
scope [67, 94, 39|; the results showed that graphene is incredibly stiff,
with the breaking strength of the order of 40N/m, the Young modulus
of 1 TPa, and possibility to be stretched elastically up to 20%. Bending
properties have been determined experimentally for several-layer graphene
flakes [94] and are not yet available for a monolayer. Theoretically, these
properties have been predicted from the calculations using the analyti-
cal form of the interatomic potential, and from molecular dynamic stud-
ies |52, 51|. Graphene is currently one of the most prospective candidates
for high-frequency nanomechanical resonators [21, 25|, with the quality
factor and eigenfrequency extracted from measurements to be ) ~ 75,
fo = 70.5 MHz for a monolayer, and @ =~ 120, fo = 42 MHz for 15nm
thick graphite. Quality factor further increases with decreasing tempera-
ture. An alternative method to investigate elastic properties of graphene
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is to put the film on a flexible substrate and deform the substrate |60, 82].
The strain influences optical phonon spectrum [82|, which has been mea-
sured by Raman spectroscopy.

Recent experiments combine mechanical and electrical properties of
graphene by measuring conductivity [18, 19, 120, 33| of suspended graphene
flakes. This is a very promising direction since suspended graphene flakes
exhibit much higher mobility than graphene on substrate due to much
weaker disorder [18, 19]. Potentially electrons can produce back-action on
the resonator. Graphene resonators are expected to have high sensitivity
to mass and prebuilt strain [25], so that they can be used to ultra-sensitive
mass detection.

Suspension of graphene flakes always leads to their deformation, which
in turn affects the conduction properties of graphene. Deformation creates
inhomogeneous elongation of the lattice constant [92, 38| which locally af-
fects the electron spectrum of graphene. One way to look at the variations
of the band structure of the strained graphene is to perform density func-
tional calculations [99]. Alternatively, the variation of the lattice constant
can be represented at the level of Dirac equation in the form of pseudo-
magnetic fields [115]. Ref. [38] pointed out that local shifts of the Fermi
surface in suspended graphene in the vicinity of the Dirac point can block
the conductivity — if the Fermi-surfaces at different parts of the flake
do not overlap, the conduction is tunnel rather than metallic. Effects of
disorder due to charged impurities and midgap states, optical and acous-
tic phonons were taking into account for calculating conductivity of gated
graphene in [112|. For strong enough deformation, graphene quasiparticles
can become localized [61].

In experiments, graphene flakes are typically suspended over a back-
gate. This gate redistributes the electron density in the flake due to the
spatial variation of the capacitance. The regions in the center of the sus-
pended part of the flake have higher electron density then the regions near
the clamping edges, as the central part is closer to the gate. This density
redistribution affects the transmission coefficients through the entire flake.
The corresponding effect on the piezoresistivity in ballistic regime is of the
first order in the maximum deformation of the flake in the transverse direc-
tion, and it increases the conductivity. This has to be contrasted with the
effect of the pseudomagnetic fields which suppress the conductivity. The
contribution from pseudovector potential depends on the strain [38] over
the flake and is of the second order in the maximum deformation. Thus,
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this contribution is expected to be weaker than effect from the charge re-
distribution. We will show however that this effect can be important for
graphene under high enough residual stress. Inhomogeneous deformation
of graphene yields the corrections to the conductivity which are of the
fourth order in the maximum deformation, which is even smaller.

In this Chapter, we calculate the effect of the gate-induced density
redistribution on the conductivity of the graphene flake. We find that, in-
deed, for high residual stress the correction resulting from the pseudovector
potential is important, and the correction to the conductivity is negative.
We mostly focus on the regime of low residual stress and show that the
correction from the charge redistribution becomes the most important.

Experimentally, influence of deformation on the conductivity would be
difficult to observe on a suspended graphene flake with one gate since the
main effect of the gate is the global shift of the density rather than its
redistribution. To separate density redistribution and elastic deformation,
one needs to employ two gates. For instance, one can use the configuration
with a large bottom gate and a narrow top gate. The bottom gate deforms
the graphene flake and determines the maximum transverse deformation
Emaz- When voltage is switched on the narrow top gate it does not influ-
ence much of deformation of the flake depleting the charge density below
the top gate. Since the region under the top gate has the lowest density it
determines the conductivity of the whole flake. If this region is brought to
the Dirac point, the correction to conductivity is determined only by the
deformation of graphene [38] and is proportional to ({max(Vy)/ L)%, with
Vy and L being the voltage applied to the bottom gate and the length
of the strip under the top gate. However, for higher voltages the charge
redistribution is more important, and the correction to conductivity is pro-
portional to {maq(Vy)/d, d being the distance to the bottom gate. Instead
of the top gate, one can use an AFM tip.

The chapter is organized as follows. In Section 6.2 we derive equations
for the deformation of suspended graphene from general theory of elastic-
ity. We consider two situations — graphene deformed homogeneously by
a gate and graphene deformed locally by an AFM tip. The capacitance
between the gate and suspended graphene varies due to deformation of
the flake. We calculate the density redistribution over the flake taking
into account the shape of the flake. In Section 6.3, we use these results to
evaluate correction to the conductivity. We use the perturbation theory to
calculate the transmission eigenvalues, and the correction to the conduc-
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Figure 6.1. Side view of a deformed graphene flake suspended over a gate. The
deformation is caused only by the interaction with a gate (left) or by the gate
and an AFM-tip (right).

tivity is obtained using the Landauer formula. This correction can be big
for sufficiently strong deformations of the flake which can be produced by
an AFM tip. In Section 6.4 we discuss the results and the not considered
in this Chapter.

6.2 Deformation of the graphene sheet

In this Section, we calculate the profile of the graphene sheet formed by
electrostatic forces induced by the gates. For this purpose, we decompose
the total energy of the flake as the sum of electrostatic and elastic en-
ergies. We consider a graphene flake of the length L (direction x) and
the width W (direction y). For simplicity, we assume W > L. An un-
deformed sheet occupies a part of the plain z = 0; the electrostatically
induced deflection is &(x,y). Below we only consider small deformations
so that we can stay within the limits of linear theory of elasticity (Hooke’s
law). At stronger deformations, as expected from the general theory [66]
and also confirmed by theoretical modeling [10] and by experiments [21]
on graphene, non-linear terms become important. However, there is a con-
siderable parameter range, with the displacements up to 50 nm for length
of the flake about 1 um, where the linear regime is still valid. We discuss
the terms which go beyond Hooke’s law [10] in Section 6.4.

For electrostatic energy, similarly to Ref. [104], we model the system
as a capacitor between the flake and the gate, with the distributed capac-
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itance C,; dependent on the profile of the flake,

¢, = [ cléte.v)ldzdy, (6.1)

Electrostatic coupling to the leads is modeled via contact capacitances C7,,
Cr and resistances Ry, Rp, see. Fig (6.1). The total electrostatic energy
of the system carrying the charge @ is

Q> Q CLCy VLV,
Futeetr = — 5 + = e
electr 200 + CO (CLVL + Cg%) 200 +
n CLVE(Co — Cy) . +Cgvg2(CO —Cy) ’
2Cy 2C)H

with Cy = Cr, + Cr + C.
From now on, we assume that the contacts are ideal, C;, = Cr = 0,
and thus the electrostatic energy is

Feectr = =5+ + QVy. (6.2)
The effect of non-ideal contacts is discussed in Section 6.4.

6.2.1 Elastic energy

We evaluate the elastic energy in the thin-plate approximation. The elastic
energy consists of the bending contribution Fj(£(x,y)) and the stretching
contribution F(uag(x,y)), where uqg(x,y) is the deformation tensor, and
a and [ denote the coordinates in the plane of the sheet (z and y). In
the linear regime, the bending contribution is less important than the
stretching one, however, we consider both contributions for completeness.
Explicitly, we have [66]

D 9% 9%\’
F1(§):2//da:dy<ax§+8y§> +

o | (0P N® 0% 0%
+//d:1;dy(1—1/ ) !(8z3y) ~ ooy (6.3)

UaqBO o
Fy(ugp) = ho% . (6.4)

and
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Here D = Eh3/(12(1 —v?)) is the bending rigidity, F is the Young modu-
lus, v is the Poisson ratio, hg is the thickness of the plate (graphene flake)
, and o, is the stress tensor.

In addition, if a local force (for instance, an AFM tip) acts on the
graphene flake, it is best represented by external pressure P, (z,y). The
work of this external pressure to deform the flake by 0¢(x,y) is F3 =
| Pegt0&(x, y)df, where df is the surface element.

The profile of the sheet is determined by minimizing its total energy.

Performing the variation, we find the equation describing the shape of the
flake,

0 0
DAQf B 6$5 (hoo—aﬁaxg ) = Pel(x7y) + Pezt(xay)? (65)
o
doy
6:35 =0 (6.6)

with P (x,y) being the electrostatic pressure on the plate, induced by
the variation of electrostatic energy (6.2). For ideal contacts, Py (z,y) =
n?(z,y)/2¢. Here n(z,y) is the electron density. Eq. (6.5) is the most
general equation for £(z, y) in the linear approximation of elasticity theory.
For an infinitely wide graphene flake, W > L, the deformation in the y
direction is homogeneous.

At sufficiently small deformations, the tension along the sheet is con-
stant over the sheet (6.6), hgagﬁ = Té4p. The tension T' is the sum of two
contributions:

Ehy

— 2

T=Ty+Ty, Ty = 1 AL/L (67)
The first one, Ty, is the residual stress which results from the fabrication
process or is induced by the ripple formation [94, 67|. The second contribu-
tion, T, is an internal force due to the relative elongation AL/L (Hooke’s
law). If we take this term into account, we can go beyond the thin-plate
approximation and consider deformations bigger then the thickness of the
graphene layer.

In the two following Subsections, we solve the above equations for two
specific situations: homogeneous external force (which can be produced by
a bulk bottom gate), and local force (produced for example by an AFM
tip).
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6.2.2 Homogeneous force: Deformation by a bottom gate

Applying a voltage on a bottom gate is a standard way to vary electron
density in graphene. If the suspended graphene flake is charged, it is sub-
ject to a mechanical force proportional to the charge density. If the area
of the gate is much larger than the area of the flake, the electron density
induced by the gate is constant almost everywhere, n = /W L, except for
the clamping points of the flake, where it is determined not only by the
solution of the Poisson equation (providing singularities at the capacitor
edges), but also by the metallic leads to which the flake is clamped. In-
deed, experimental evidence for this charge inhomogeneity exist and can
be accessed by asymmetry of the Dirac peak in conductivity [102]. How-
ever, these density inhomogenities at the clamping areas very little affect
the deformation, since the displacement vanishes at the edges of the flake.
Therefore we can approximate the effect of the gate by homogeneous elec-
trostatic pressure over the flake, P = 60Vg2 /2d?, Vy and d being the gate
voltage and the distance to the gate. The profile of the graphene sheet is
found from the equation

D= _-TZ>=p (6.8)

where the stress T is constant over the sheet (6.7) and the deformation-
dependent contribution to it depending has to be found self-consistently,

L
Ty = 2(1E_h0ﬂ) /O £2(2)dz (6.9)

(the case for inhomogeneous T derived in Ref. [10] is discussed in Sec-
tion 6.4 and does not induce significant difference in results). For the
boundary condition corresponding to the clamping the sheet, £(0) = £(L) =
£'(0) = ¢ (L) =0, the profile is

PL inh pL
E(x) = 5T [cozlliullf— 1 (cosh px — 1) — sinh px + px
2
BT T

The profile (6.10) is parabolic in the middle of the strip (as noted in Ref.
[38]). As we show below, in graphene the dimensionless parameter pL
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assumes large values. In this case, the profile can be simplified, and near
the middle of the strip has the form

£(z) = % <x - f) | (6.11)

Close to the edges, the profile becomes &(z) = PuLx?/4T. Substituting
this shape into Egs. (6.3) and (6.4), we find the values of the parameters
F1 and FQ,

P2LW
= , 6.12
T 16T (=8 + ul) (6.12)
and ) ( 2)
T*WL(1—v
h=—"7 6.13
2 Ehq (6.13)
The maximum vertical displacement obeys the equation
PL?
(6.14)

Smar = Ty T 8B ho€2,0/(3(1 — A)L2))

The deformation of the sheet leads to the redistribution of the electron
density, which in the Thomas-Fermi approximation is

n(z) = Vyeo/(d — ().

In its turn, the density redistribution affects the profile of the sheet, and
needs, in principle, to be calculated self-consistently. However, as soon as
the displacement &,,4, is much smaller than the distance to the gate, the
later effect is insignificant (of the order of &,4,/d), and we will use the
shape (6.10) not modified by the density redistribution.

The charge over the graphene flake is determined from minimization
of the total energy of the system with respect to electron density n,

nd 8 fmax 1 fmax 1 gmax
—Vo+ =12 14 = = = 6.15
9+m[ 3ci+<+2>@L+3d] 0 (6.15)

where the maximum deformation of the sheet in the middle, &4, (6.14),
depends on charge density. The second term in the brackets and 1 from the
third term come from electrostatic energy and originate from the redistri-
bution of the charge density due to variation of the distance between parts
of deformed graphene and the gate. The rest (1/2) of the third term comes
from bending energy. The fourth term takes into account dependence of
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Figure 6.2. Dependence of the maximum deviation on the gate voltage,
Emaz(Vy). The solid curves represent the self-consistent solution of nonlinear
coupled equations for the deformation of the flake and the charge induced by
the gate, Egs. (6.14) and (6.16). The distance to the gate is d = 300 nm (top
panel) and d = 100 nm (bottom panel). Other parameters of the graphene flake,
length L = 1 pm, Young’s modulus £ = 1 TPa, Poisson ratio v = 0.15, and the
thickness of the flake hy = 0.34 nm, are chosen in order to model real experimen-
tal data. The results are given for the different values of the residual stress: the
curve 1 is for Ty = 0.001 N/m, 2 is for Tp = 0.01 N/m, 3 is for Tp = 0.1 N/m. For
each value of the residual stress, the asymptotic curves at low gate voltages (6.17)
are shown as dashed lines, the curve 3 for high residual stress coincide perfectly
with its asymptote. The asymptotic curves for low residual stress, Eq. (6.19),
are shown by dashed-dotted lines. The correspondence between the solution of
equations and asymptotes for low residual stress is not perfect. The reason is
that the asymptotes are calculated for the linear charge-voltage dependence, and
n(Vy) is non-linear according to Eq. (6.16) for sufficiently high gate voltages on
the flake.
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the stretching force T over the flake on the charge density via the deflection
(Eq. (6.9)). Calculations are made under the assumption pL > 1, which
is realistic for available experiments. Simplifying Eq. (6.15), we obtain

nd 7€ma(lj S’Smam
~Vo+—(1-= = =0 6.16
97t ( 3 d 2 duL> (6.16)

At low gate voltages, Eq. (6.16) yields the linear gate voltage dependence
of the electron density, ng = Vyep/d. There is non-linear deviation from
this dependence at higher gate voltages and at rather low initial strain 7.

The maximum deformation can be expressed analytically in two limit-
ing cases. First, if the residual stress Ty is stronger than the induced stress
Ty, it mostly accounts for the deformation of the sheet,

EhoP2L? EhoP212\ /3
Ty = ————— < Ty, | =——— Ti
i (11 S\ ua ) S
EOVQQL2
maxr s 1
¢ 16d2Ty (6.17)
n—mngo 7 §mam 72
= - 1——|. 6.18
no 3 d ( 7\/TO/DL> (6.18)
In the case of low residual stress, one obtains
1 ( EhoP2L2\'/?
T Ty = - —7—-
o<t = 5 (5i)
1 (3V2e(1 — )L\ 10
Emaz = Z 2d2Eh0 ’ ( : )
n—mno 7 gmax 3D(1 — 1/2)
= - — 124/ ————=. 2

The maximum deviation &4, obtained from the numerical solution
of coupled nonlinear equations Eqs. (6.14), (6.16), as well as asymptotic
expressions (6.17) and (6.19), are shown in Fig. 6.2 for different values
of initial stress 7p. According to Egs. (6.18) and (6.20), the nonlinear
part of the charge induced on the graphene flake follows the dependence
&maz(V)/d. Consequently, we encounter several regimes for the deforma-
tion,
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Figure 6.3. Regimes of the deformation of suspended graphene. For large
residual stress T the asymptotics Eq. (6.17) are valid, and the charge on the
flake follows the gate voltage linearly. For small Ty the asymptotes Eq. (6.19)
are valid, the charge is linear with the gate voltage at low gate voltages and starts
to follow non-linear dependence with increasing voltage. At high gate voltages,
when the deformation of the flake is bigger than &,,4./d ~ 0.1, one needs to solve
self-consistently the electrostatic problem and the problem of elasticity, analytical
results for this region are not available.

e at large Ty the charge—voltage dependence is linear for realistic pa-
rameters because the maximum deformation is not too large for re-
alistic characteristics of graphene flake. It is shown in Fig. 6.2 for
To = 0.1 N/m that the maximum deformation is in a good agreement

with Eq. (6.17);

e at small Tp and low gate voltages V; the charge-voltage depen-
dence can be in linear regime, and the maximum deformation fol-
lows Eq. (6.19). We illustrate this for the flake with the parameters
To = 0.001 N/m and distance to the gate d = 300 nm (See. Fig. 6.2,
top), where the solutions of coupled electrostatic and elastic equa-
tions, Eq. (6.14), (6.16), follow asymptotic expression Eq. (6.19).
The charge redistribution does not need to be taken into account;
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Figure 6.4. Dependence of the maximum deformation &,,,, on the applied force
Psl for the case of the point force in the middle of the graphene sheet. Only the
curve for Ty = 0 is shown, since the residual stress is not important for this case:
The strain created by deformation becomes large (more than 0.1 N/m) already
at moderate deformations in the middle, £,,4, ~ 10 nm. Other parameters of the
flake are L = 1um, d = 300 nm, £ =1 TPa, v = 0.15, hy = 0.34nm.

e at small Tj and large Vj the system is in the non-linear charge regime.
This situation can be realized for small distances to the gate when
the coupling of the graphene sheet to the gate is large, so that it is
possible to create large deformations using low gate voltages. For
example, at d = 100 nm the non-linear charge regime influences the
deformation already at voltage V;, = 2 V, at the bottom plot Fig. 6.2
we can see the intersection of the asymptotical curve (6.19) and the
actual solution of Egs. (6.14), (6.16).

The schematic representation of these regimes is shown in Fig. 6.3.

6.2.3 Local force: Deformation by an AFM tip

Next, we consider a concentrated force acting on graphene. This force can
be provided, for example, by an AFM tip. The effect of the tip is modeled
by strong pressure exerted on a narrow area of the width [ < L. We assume
that the problem is still homogeneous in the y-direction, which simplifies
the calculations enormously. Inclusion of a pressure action in a narrow
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circle, which is experimentally relevant for an AFM tip, is not expected to
bring qualitatively new features. We consider pressure P(z) = P;,0 < z <
L/2—-1/2,L/2+1/2<x < Land P(x) =Py, L/2—-1/2<x<L/2+41/2.
Here P, is the local pressure, and P; can describe homogeneous pressure
due to electrostatics, for realistic setups local pressure is much larger than
pressure due to interaction with the gate P; < Ps.

The maximum displacement of the flake (realized at the central point)
is easy to write down for uL > 1 and | < L:

Py ((uL/2)%ert/2 — 2¢=Ht)

gmax = 2M2T
Py (e ™ + et 2L /4
2 ( A /9 (6.21)
w2
For P, « Py and 1 < /2 Luly/4 we obtain

PlL

§mam = 427T . (6.22)
The profile of the graphene sheet in this approximation becomes
2

E(a) = 2o jp g o) (6.23)

In the limits of weak and strong residual stress the deformation is
determined by

Ehy [ Po\? Ehy 5\
Ty=—-2 (X Ty, ( =2 P2 T,
" (To> = (8(1—V2) ? <o

8(1—v2)
bz = (6.24)
e 1 [ EhgP22\ /3
To < Ty = 5 (1052> ;
€mas = L (W)US (6.25)

The dependence of the maximum deformation on the applied external
local force is shown in Fig. 6.4. The deformation produced by this force is
much bigger than the deformation caused by electrostatic pressure of the
gate. The electrostatic problem for this case can be solved separately from
the problem of elasticity.
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6.3 Piezoconductivity of graphene flake

It was shown experimentally [19] that suspended graphene flakes are de-
scribed with good precision as purely ballistic. Theoretically, conductance
is determined by Landauer formula [118]

N-1
G=4¢*/h Y Ty, (6.26)
n=0

where T}, is the transmission eigenvalue in the transport channel n, and
the factor 4e?/h is conductance of a single transport channel which takes
into account valley and spin degeneracy. The number of open transport
channels N = Wkpg/m is proportional to the Fermi momentum kp =
(wn/e)1/2, and thus the conductivity, c = GL/W, is proportional to the
square root of the electron density n, o o y/n.

The conductivity of graphene flake suspended over a gate can deviate
from this dependence. To start with, due to electrostatic interaction with
the gate, the density becomes inhomogeneous [111]. In particular, Poisson
equation leads to the square root divergence of the electron density at the
clamping points, as in any capacitor (see e.g. Ref. [83], 1). To treat this
divergence properly, one has to take into account electrostatic interaction
with the contacts near the edge of the graphene strip, which modifies
significantly the electron density near the edge, removing the divergence.
However, the effect of this inhomogeneous density close to the contacts
does not affect the piezoconductivity of the flake, since the deformation
close to the clamping points is very weak, and thus it can be included into
the contact resistance at the clamping points.

We now turn to the effects of the deformation on the conductivity.
Deformation of graphene can change the conductivity by inducing changes
in the band structure (which results in pseudo-magnetic fields) as well
as by changing the electron density over the flake. We consider both
these mechanisms and will show that typically the effect of the density
redistribution dominates.

Electrons in graphene obey Dirac equation. Deformation of the flake
influences on the Dirac equation in three ways — it shifts the K-points by
a certain amount dk/kp (pseudomagnetic field), renormalizes the Fermi

'For the case of edges of half-infinite capacitor [83] and the distance between the
plates of capacitor d = 300 nm the region near the edge where the electrostatic diver-
gence plays role is about 200 nm.
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velocity by dvg/vp, and induces the variation of the electron density on
the flake dn/n. The deformation correction to the conductivity is thus a
function of these three dimensionless parameters.

The pseudomagnetic field, produced by the shift of the K-point, is
caused by stretching and bending. The shift of the K-point due to stretch-
ing generates the vector potential [115, 3§]

AT = %(um —Uyy), A= —20—%@, (6.27)

a a

where C is the order of 1, and § = —dlog(t)/dlog(a), t and a being
the overlap integral in the tight-binding model and the lattice parameter,
respectively. For L < W one has uy, = 0, and hence A5 = 0. The
deformation is homogeneous within the limits of applicability of Hooke’s
law, and thus u,,; = const and Aztr = const. This means that there is no
pseudomagnetic field over the graphene flake. The pseudomagnetic field
only appears in the region where the flake goes from the substrate to the
suspended state [38] and, as noted above, its effect to the piezoconductivity
is small, of the second order in &4, /L,

str
0o _ Ay

— 6.28
x_ L (6.25)

where the deformation on the edges has been estimated as
42 2 2
um—gmaI/L —|—T0(1—1/ )/Eh(],

and kp = /megV,/de. Taking into account the value of C3/a 2, we obtain

(50’[{ d[ﬂm] (51%“11 + TO(l - V2)> . (629)

— =205

o VyIV] \ L? Ehy
Note the contribution from two terms induced by deformation stress and
residual stress, as well as multiplication with the big prefactor 205.

2Parameter Cf3/a can be taken in the form 3t.,.3/ka, where according to calcula-
tions [128] k = 8.98N/m?, B/a = 0.4 N/m? and the parameter 8/(ka) = 0.0445, tg,
can be determined by different methods, it is approximately ts¢ = 247" (from fem-
tosecond time-resolved photoemission experiement [48], tstr & 1A717 from analitycal es-
timations [93] and optical spectrum of polyacetylene, tsir & 2.0A_1, from tight-binding
approximation tst, &2 2‘51&71). Finally, the estimation of the C’B/a is 0.27A7".
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The underlying physical picture for the model of Ref. [38] is that the
graphene flake is "glued" to the walls at the suspension point. Whereas this
has been realized in some experiments [67], it describes the situation when
the residual strain Tj is of the same order or higher than the strain induced
by the gate voltage. The residual strain results from the fabrication process
and is most likely to be created by impurities in the substrate. It can
be made low on purpose since the strain is reduced after annealing [25].
In the opposite situation, when the residual stress is not significant, the
pseudomagnetic field is inhomogeneous and distributed over the whole
suspension area.

The pseudomagnetic field is also inhomogeneous if one considers the
bending contribution. Bending leads to the inhomogeneous modification
of the overlap of the orbitals, and the resulting pseudovector potential has

lhe fOl"m [50]
bend tbend 9 (a'; x) 6 ( D) x)

0(a, ) being the angle between normal vectors to the graphene surface at
the points # and z + a, and the constant [59] tpenq = 3.21 3. The shape
dependence of 0(a,x) has the form

. 2 (P (L (YY)
0%(a,x) =a <€)a;2> <1+ <8x> >
This yields Aze"d ~ (3tpend/8a)(Emaza/L?)?. Hence the contribution from
bending is approximately (a/L)? times smaller than from stretching with-
out residual stress, and is thus negligibly small, even though the resulting
magnetic field is not homogeneous.

The easiest way to estimate inhomogeneous stretching of graphene is
to take Hooke’s law in the local form, T () = Ehouge(z). Since the max-
imum relative deformation can be estimated as uz, = £2,,,/L?, naively,
the correction from non-homogeneous stretching is of the same order as
the one from delta-functional pseudomagnetic field at the clamping edges.
We show below, however, that the correction from non-uniform stretching
is of the order of ¢X . /L* but still due to large prefactor it can reduce
the conductivity at low gate voltages.

Another effect induced by the deformation is the renormalization of
the Fermi velocity. The renormalized value of the velocity can be derived

3follows from consideration of orbital overlapping.
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Figure 6.5. Schematic behavior of piezoconductivity. For low residual stress T
the correction is mainly due to the charge redistribution and has positive sign.
For high residual stress the correction is negative.

from the tight-binding model. Assuming that the graphene sheet is only
deformed in the x-direction, we find that the x-component of the Fermi
velocity is unchanged wheres the y-component is renormalized,

vpy = vp(1 — Cﬁum), (6.31)

so that approximately vpy ~ vp(1 —£2,,,/L?). The effect of the renormal-
ization on the conductivity is not significant and has the order of magni-
tude ¢2,,./L?. Note that this is the same dependence on &,4./L as for
pseudomagnetic fields, however, it is not enhanced by a big prefactor.
The influence on conductivity of such change in Fermi velocity is not
significant. This influence can be in principle measured experimentally as
the conductivity variation at the Dirac point, similarly to how we explain

below in Subsection 6.3.2.
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Figure 6.6. The correction to conductivity. Parameters of the flake are the same
as for Fig. 6.2 (top). Asymptotic expressions for the high gate voltage are shown
by the dashed-dotted lines. Additionally, the correction (with the opposite sign)
due to the delta-functional pseudomagnetic field at the suspension regions [38],
Eq. (6.29), is shown by dotted lines (1’, 3’).

6.3.1 Correction to conductivity due to the charge redis-
tribution

Redistribution of electric charge due to interactions with the gate is found
from the assumption that the potential along the graphene sheet is con-
stant, U(x) = dQ(x)/0C(x) = const, where §C(z) is the capacitance of
the element of the length dx of graphene, 6C(x) = eWdz/(d — £(x)),
and dQ(x) = n(x)Wdz is the charge of this element. In the first order
approximation, this gives dn(z)/ng = &(x)/d.

The conductivity of graphene is proportional to charge density n, and
thus the contribution to conductivity due to charge redistribution is ex-
pected to be linear in the maximum deviation from the homogeneous
density, 6nmqz. Thus, the correction to conductivity is expected to be
00 /0 ~ Emax/d. Before starting the calculation of the correction to con-
ductivity, we estimate the range where this correction of the order of
Emaz/d is more important than the correction due to pseudovector po-
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Figure 6.7. Dependence of the piezocorrection to conductivity on the gate
voltage for fixed deformation, obtained by solving the Dirac equation by exact
transfer matrix method. Here, doy, the curve marked 1, is the correction with
only charge redistribution taken into account, and do 4 7, the curve 2, encom-
passes both contributions, the one due to non-uniform tension and the one due to
charge redistribution. At low gate voltages the correction do 4y is mostly caused
by pseudomagnetic field and is negative, for higher gate voltages it changes sign
and approaches doy;. The correction only due to pseudomagnetic field according
to Eq. (6.40) is proportional to 1//Vy, so that it vanishes at large gate voltages.
The parameters of the graphene flake are L = 1um, d = 300 nm, £ =1 TPa,
v = 0.15, hy = 0.34nm.

tential which we considered above, Fig. 6.5,

5/2
s L [ Vg7 [V]
To[N/m] < 107324/ 22— 6.32
As noticed in Ref. [38] the pseudovector potential at low gate voltages
blocks conductivity, this is seen from Eq. (6.29). For large deformation
the expressions (6.19) are valid, residual stress is not important any more,
and thus the gate voltage should be large enough to see the decrease of

conductivity,
Vv sest L (6.33)
a0 = 28 ] |

This deformation is so strong that in can not be reached in practice.
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For the deformation with AFM the residual stress is not important and
at deviations
L2[um] | Vy[V]

Smaclim] > 2550 T dlyum)

(6.34)

correction to pseudovector potential starts to suppress the conductivity.

To calculate the correction due to the charge redistribution, we notice
that the density variation is translated into the correction for conductivity
via the variation of the transmission probabilities T},, which are the eigen-
values of the matrix #£, ¢ being the transmission matrix of the graphene
sheet. The transmission eigenvalues ¢, are determined in Appendix by the
transfer matrix method. The correction to the conductivity is linear in the
density shift dn, and consequently in the maximum deformation &4, (as
is shown above from simple qualitative considerations). It has the form
(see Appendix)

q2k2
dou :% Z4|tq|2 k3Fsink:L
q

L
/ dxg(dx) sin k(L — ) sin kz, (6.35)
0

where [t,|? = (cos? kL + k% sin? kL/k*)~! is the transmission probability
for the mode labeled by the transverse momentum ¢ = 27n/W, n being an
integer number, and k is a wave number in the direction along the strip,
so that k% = k>4 ¢%

To carry out more detailed analysis, we consider specific deformation
setups discussed in Section 6.2 — homogeneous and local deformation.

Eq. (6.35) can be analyzed analytically for small and large values of
the parameter krL, which characterizes the charge density over the flake.
The correction to conductivity for the homogeneous deformation (bottom
gate) has the following asymptotic behavior for small and large values of
krL (for more details, see Appendix),

5 maa/2d, 1 < kpL;
dou _ {5 / d (6.36)

o 0.021&mae(krL)?/d, kpL < 1.

Taking into account the functional dependence of the maximum devi-
ation for small and large initial stress Ty, Eqgs. (6.19) and (6.17), we get
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the asymptotic dependence of the correction to conductivity on the gate
voltage, for Ty < Tp:

dou(Vy) L2V Tod?, 1< kpL; (6.37)
U(Vf]) L4V93/T0d4, krl < 1,
and for Ty <« Tx:
dou(Vy)  [LPVEP a3, 1 < kpL;
o(V,) 2 /725/3 (6.38)
a(Vy) (VoL2/d?)°"” | kpL < 1.

Fig. 6.6 shows the exact result of summation over modes Eq. (6.35).
At both high (kpL > 1) and low (kpL < 1) gate voltages, the correc-
tion follows the asymptotic behavior both for weak and strong residual
stress Tp, Eqgs. (6.38) and (6.37). On the same plot we compare the cor-
rection we found with the correction due to pseudomagnetic fields at the
edges [38]. The latter one has a different sign (conductivity decreases with
an increasing the stress). For high residual stress this correction is more
important than due to charge redistribution, according to Ref. [38] it can
block conductivity. For low residual stress it is about 10 times lower than
the increasing conductivity correction. The oscillations of do /o have the
period of kp L and are associated with the shift of Fabry-Perot resonances
in conductivity for deformed graphene flake as compared with an unde-
formed flake. This shift occurs since the effective longitudinal wave vector
of an electron in graphene depends on the deformation since it feels differ-
ent charge density over the graphene flake. Note also that the contribution
from pseudomagnetic fields does not oscillate since the value of kg is the
same for the whole flake. The first order perturbation theory in &4, /d is
valid until this parameter reaches a rather large value, &,q4./d ~ 0.1 (see
Appendix for more details).

For the case of local deformation, using the graphene profile (6.23)
and using the same technique as in Appendix, we find the correction for
conductivity due to the charge redistribution,

(6.39)

g

dou Emaz/2d, 1 < krpL;
0.088¢maz(kpL)?/d, kpL < 1.

Note that the asymptotic behavior for large kr L has the same form as
for homogeneous deformation.
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Figure 6.8. Dependence of the piezocorrection to conductivity on the maximum
deviation, do(&max) /0, at the fixed gate voltage V, = 0.03 V (top), 3 V (bottom).
We show both the correction related to the term due to non-uniform pseudovector
potential, and the contribution without this term. For V, = 0.03 V, we also
include the best fit V = a4z + B8&4, ., Which represent the sum of linear in &4,
correction due to charge redistribution and the correction due to nonuniform
pseudovector potential &2 The parameters of the graphene flake are L =

max*®

lpm, d =300 nm, E =1 TPa, v = 0.15, hy = 0.34nm.
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We can also estimate the influence of inhomogeneous pseudomagnetic
field assuming the local form of Hooke’s law as in [10] and using the per-
turbation theory for the transfer matrix, as detailed in Appendix. We
find that the first order perturbation theory correction in pseudovector
potential vanishes, whereas the second order correction can be estimated

as
5UA 5574nam d[:um]
— =551 . A4
%~ 551070 A (6.40)

At low gate voltages and large deformations (for instance, induced by local
deformation), this correction can be more important that the one from
the charge redistribution, and thus the conductivity will be suppressed.
From comparison of Egs. (6.40) and (6.39) this supression happens for

deformations: )
Emaz _ o oldlpm] (L\?

1 = . 41

R AR (641)

We demonstrate this by solving numerically by transfer matrix method
the Dirac equation with additional potential due to charge redistribution
and pseudovector potential, Fig. 6.7. At fixed large &nae = 12 nm (es-
timated using Eq. (6.41)) and at low voltages the conductivity starts to
decrease due to inhomogeneous tension distribution in the flake, and at
higher voltages increases again due to the effect of charge redistribution.
Fig. 6.8 shows that for small gate voltages lower maximum deformation
Emaz 18 Tequired to reach the point where the conductivity starts to de-
crease, in agreement with Eq. (6.40). For high gate voltages V, ~ 3 V
pseudomagnetic fields lead to saturation of the conductivity rather than
to its decrease.

6.3.2 Two-gate geometry

Conductivity can also be used to measure relative stretching of deformed
suspended graphene. Note that the influence of stretching on the conduc-
tivity of graphene deposited on a substrate has been demonstrated exper-
imentally [60]. For suspended graphene it is more difficult to extract the
value of stretching than from the graphene on the substrate, since the gate
voltage simultaneously varies the concentration and deforms graphene, as
shown above.

To measure relative stretching of suspended graphene, we propose the
two-gate geometry (Fig. 6.9). The deformation of the graphene flake is
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top 7 —
gate’ to ] E;
D Vs ——

Figure 6.9. Schematic dependence of conductivity of suspended graphene on
the top gate voltage for several fixed bottom gate voltages. The conductivity
at the Dirac point is slightly shifted due to change in Fermi velocity caused by
deformation. The difference between the values of conductivity of the Dirac peaks
for different bottom gate voltages, V1 and Vjs, is proportional to the difference
in relative deformations, (cp(Vi1) — op(Vi2)) /oD ~ tes (V1) — gz (Viz).

created by the large bottom gate, the influence of the top gate on the
deformation is small as the top gate is narrow. The top gate is used to
vary the charge density in the region underneath it. In this geometry at the
fixed voltage at the bottom gate one can move through the Dirac point
by varying the voltage at the top gate (the experiment for bilayer with
two gates on the substrate [91]). The value of conductivity at this point
depends on the deformation.

The stretching of the graphene flake, as discussed above, induces varia-
tions of the conductivity for two reasons. First, it induces pseudomagnetic
fields. These, however, can be gauged away of Dirac equation [75]| at
the Dirac point and do not influence the conductivity. Second, it shifts
the Fermi velocity. The relative shift is proportional to the deformation,
Svp/vp ~ €2, /L%, and leads to the positive correction of the conductiv-
ity at the Dirac point, éc/c ~ Svp/vp ~ &2,,./L* Thus, for different
bottom gate voltages, which is equivalent to different maximum deforma-
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tions &,nqz, the conductivity at the Dirac point is slightly different, and the
relative graphene stretching can be restored from this dependence. For ex-
ample, consider the dependence of conductivity on the top gate voltage for
different bottom gate voltages (Fig. 6.9). At a fixed value of the bottom
gate voltage, the conductivity as a function of the top gate voltage exhibits
a peak dependence, with the minimum corresponding to the Dirac point.
The difference between the values of conductivity at Dirac peaks, op, for
different bottom gate voltages, Vi1 and Vje, is proportional to the difference
in relative deformation, (op (Vi) —op(Via))/op ~ tge (Vi) — tzs(Vao) (we
remember that g, ~ &2,,./L?).

6.4 Discussion

In this Chapter, we investigated two mechanisms which affect the con-
ductivity of suspended graphene — charge redistribution induced by the
gate(s), and pseudomagnetic fields induced by the deformation of graphene.
We find that for the small residual stress Ty, the charge redistribution
mechanism dominates. For low gate voltages and strong deformation,
which experimentally is best realized by using AFM, the correction due
to nonuniform pseudomagnetic fields is more significant. The correction
due to pseudovector potential at the region of suspension can decrease
conductivity at the large residual stress [38]. It is important that the
two mechanisms provide corrections to conductivity which are of different
signs. Indeed, the correction from pseudomagnetic fields suppresses the
conductivity [38] by shifting K-points due to the vector potential. The
shift is different at different points of the suspended sample, and if the
deformation is big enough, the Fermi circles at the clamping points and at
the centre of the flake do not overlap: The system becomes insulating. If
now we take into account the effects of the gate, not only the Fermi circles
are shifted, but their radii are greater at the center of the flake since the
charge density is greater in the areas closer to the gate. The increase of
the radii and the shift of the center compete, and we find that typically
the radius increase is more important.

It is difficult to measure piezoconductivity only by using a bottom gate
since the gate voltage not only bends graphene and produces the correction
to the conductivity, but also shifts the overall charge density. The density
dependence of the conductivity is different from the density dependence
of the correction. Thus, to extract the value of piezoconductivity, one has
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to compare the conductance of deformed and undeformed graphene sheet
at the same density, which can only be done in the one-gate geometry by
comparing the results with the theoretical prediction. In contrast, the two-
gate setup, with a bottom gate fixing the overall density and the top gate
(which can be an AFM tip) creating the deformation is more convenient
to extract piezoconductivity. One can fix the voltage on the bottom gate
and start to deform the flake with the AFM tip. At low gate voltages the
conductivity decreases due to the pseudomagnetic fields, whereas at higher
voltages it starts to grow due to the charge redistribution.

In the real experimental situation, the AFM tip has a point shape,
whereas in this Chapter we considered for illustration the deformation
homogeneous in one direction, ¢.e. replaced the tip by a rod. Non-
homogeneous deformation in all directions creates pseudomagnetic fields,
with the conductivity depending not only on the transverse displacement,
but also locally on the position over the graphene sheet. The conductivity
is the largest if the tip is placed in the middle of the sheet, and decreases if
the tip moves to the side. We can understand this behavior from a simple
reasoning. Indeed, the electrons which from the two sides of the tip feel
the pseudomagnetic fields and interfere similarly to an Aharonov-Bohm
ring. The interference is more destructive if the tip is further from the
center, and thus the conductivity decreases.

Another parameter which affects the conductivity is the residual stress
Ty. It can be varied experimentally for instance if one uses graphene
suspended over piezosubstrate. Putting voltage on the substrate would
induce extra stress on graphene, and one can move from the situation
where pseudovector potential blocks the conductivity at low gate voltages
to the case where residual stress does not play a role and the correction
due to charge redistribution increases the conducitivity.

In this Chapter, we considered ideal ballistic graphene. In particular,
we disregarded the contact resistance, assuming the clamping points to be
ideal contacts. Finite transparency of the contacts would suppress both the
conductivity itself and the piezocorrection to the conductivity; in addition,
it would raise the amplitude of Fabry-Perot resonances.

For strong deformations of the graphene sheet, the problem becomes
much more complicated, since one has now to solve elasticity equations
self-consistently, taking into account that the displacement depends on
the charge redistribution. This leads to additional terms in the equa-
tions of the elasticity theory. Taking into account influence of the density
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redistribution on the term with electrostatic pressure in the equation of
deformation, one can show that the self-consistency condition increases the
deformation in the middle of the graphene sheet. This effect only becomes
important at sufficiently strong deformations.

In real experiments the charge inhomogeneity of the graphene flake is
not only due to surrounding electrodes but also e.g. charge redistribution
due to charge impurities in the substrate, puddles in the non-suspended
part of graphene, or left-over dopants from the process of fabrication.

First we consider the effect of the leads and inhomogeneities in the
substrate or over the substrate. These density inhomogeneities are created
by external electrostatic potential (see Sec. 6.2.2). This potential is not
expected to change by gate voltage and merely shifts the position of the
Dirac point. In this case all results involving gate voltage V, should be
corrected by the finite gate voltage offset of the Dirac point V,p as V, —
(Vg—Vyp). Moreover, due to the screening effects in graphene the influence
of the substrate impurities is weakened.

Second, we consider intrinsic charge puddles in graphene, though ac-
cording to the experiments where fractional quantum Hall effect was ob-
served [33| in suspended graphene, even in the presence of charge puddles
the overall electron density remains almost homogeneous. For instance, it
is reasonable to assume that every puddle contains an extra electron|78|.
The gate voltage variation leads to the variation of the total potential
(intrinsic plus electrostatic) over the graphene flake, and eventually one
more electron enters the system. This additional electron is delocalized
over the flake and shifts the conductance as discussed above. estimation
by the means discussed in the Chapter. The gate voltage at which this
extra electron enters the system is approximately e/C (0V ~ 1meV for
d = 300nm, L =W = 1um). Thus, at noticeable gate voltages (V' > 0.1V
for these parameters), when the number of delocalized electrons is large,
the influence of intrinsic puddles is insignificant with respect to the contri-
bution of delocalized electrons, and the conclusions of the Chapter remain
unchanged. At low gate voltages, however, the puddle contribution may
become significant.

Finally, we assumed that undeformed graphene is flat. In reality, it is
always rippled, and, in principle, one needs to use the elasticity theory for
membranes. However, we do not expect that taking ripples into account
would significantly affect the results of this chapter. First, the ripples are
small and have a large radius of curvature, which means they are very
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little affected by the overall deformation of the graphene sheet. Second,
the main effect of the ripples is to renormalize the energy over the graphene
sheet [108]. We thus expect that our results are valid, but for renormalized
energy over the flake (energy is determined by gate voltage in clean case,
and is renormalized in the rippled case).

Appendix 6.A Perturbative corrections to conduc-
tivity

In this Appendix, we calculate the corrections to the conductivity due to
both charge redistribution and pseudomagnetic fields, using the perturba-
tion theory.

The Dirac equation for one valley in graphene has the form

vpep + oU (z,y) = E (6.42)
with & = (04, 0y), D= (P2, Dy):
Do = —ihy + Ay, py = —ili0, + Ay,

Ay (z,y) and Ay (z,y) being the components of the pseudomagnetic vector-
potential, given by Eq. (6.27), and dU(z,y) is the additional electrostatic
potential due to the charge redistribution over the graphene flake. It is
determined by local variations of the Fermi energy over the flake. Since
the Fermi energy depends on the charge density over the flake, EFr(z) =

hvpkp(x), kp(x) = \/mn(z)/e, one has
OU(z)/E = 0kp(z)/kp = dn(z)/2n = £(z)/2d.

We only consider the deformation homogeneous in y-direction.Then both

A, and U only depend on the coordinate x, and A, = 0 (see Section 6.3).
The problem becomes effectively one-dimensional since the momentum ¢
in y-direction is conserved. It is convenient to use the transfer matrix
representation of Dirac equation [108] to calculate the correction to the
conductivity caused by the deformation A, (z), 0U(x),

Tu (l’z,l‘l):'ﬁ)H(xQ,xl)— (6.43)
- / daTop (w2, 7) (0,00 (2) + i Ay () Tra (1) |

1
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200 (| .
o 150 VRV AVAVAVAVAVAYA |
© i 1
L10r |
o : '
- / First order appr. —— 1
050/ Exact transfer matrix 21
/ ) max/éd T
0.021 (kL) 28"/ o
30 40

10 20
koL
Figure 6.10. Dependence of the relative correction to conductivity on krL,

do/c(kpL) for constant &,,4../d = 1/3000, for the correction of the first order in
Emaz/d, Eq. (6.47), the curve 1, and exact transfer matrix solution of integral

equation, the curve 2. The correction from the exact solution has the same
dependence on kgL as the first order correction, the oscillations are in the same
phase. Asymptotes for small and large krL, Eq. (6.35), are shown as dashed
lines. The parameters of the graphene flake are L = 1ym, d = 300 nm, £ =1
TPa, v = 0.15, hg = 0.34nm.
where Tz is the Hadamard transformed transfer matrix, and 7oz is the
Hadamard transformed transfer matrix of the unperturbed system,
Tor = exp (iokpL + o,qL) . (6.44)

We perform the perturbation expansion of the integral form for Eq. (6.44),

and in the first order in 6U(z) and A,(x) we obtain
Ti(x2,21) = To(w2, 1) — (6.45)

2
—i/ dxTo(zo, x) (0,0U(x) + io,Ay(x)) To(x, x1).
1
The conductance of the graphene sheet is determined by Landauer for-
mula (6.26). According to general scattering theory [108], the transmission

matrix element ¢ is an inverse element of Ty,
(6.46)

= (1)
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Taking into account Eq. (6.45), Landauer formula (6.26), and the defini-
tion (6.46), the first order corrections to conductivity due to electrostatics
and pseudo-magnetic field are

L *kr
Soy = WZ4|tq|4IUk:FL )

5 sinkL, (6.47)

Iy = /0 C?f;d) ink(L — z)sin kzx,

k
4 Fq
doq = WE 2[ty|" =5 14, (6.48)

L
Iy = / dxdA(x) x
0
x  (sin? kL — 2cos kLsin kxsin k(L — x)), (6.49)

where ¢ = 2mn/W is a wave vector in the y-direction, n is an integer
number, and k is a wave vector along the strip,

K+ ¢* = ki

Furthermore, ¢, is the transmission probability for clean system for the
mode ¢, and
Ity)* = (cos® kL + k% sin® kL/k*)~!

Note that the first-order correction due to the pseudo-vector potential
(6.48) only contains odd powers of ¢, so that the sum over ¢ vanishes.
Thus, the first-order correction to the conductivity is determined solely by
the density redistribution. It is linear in the maximum deviation &, /d
for small deviations.

First, we remark on the validity of Eq. (6.47). The expansion of the
expression

sin kL

)2 ¢k
L —d(tgt))“IvkrL 13

has been made under assumption that the second term is small in com-
parison with unity due to the small prefactor &4,k L/d. Following this
argument, the expression for the first order correction to the conductivity
in &naqe/d is formally only valid for &4, /dkrpL < 1. However, solving the
integral equation numerically, we find that this expression is valid for a
broader parameter range. We compare results of calculations for the first
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order correction Eq. (6.47) and numerical solution of Eq. (6.44) for the
two cases: for the fixed ratio &,4,/d and for the fixed value of krpL. For
the first case, the dependence of do /o on krL shows the same oscillation
period and the same asymptotic behavior at large krL, Fig. 6.10. For
the second case, at large kpL ~ 40 (for the distance to the gate d = 300
nm this corresponds to the gate voltage V; = 3 V) the expansion clearly
ceases to be valid, see Fig. 6.11. We thus conclude from the results of our
numerical solution that the expression for the correction linear in &4, /d
is applicable until &,,4,/d < 1, which is weaker than the perturbation
theory suggestion &q:krpL/d < 1.

The second order correction to conductivity contains also a term with
the pseudo-vector potential, the magnitude of the term being (&naz/L)?.

We consider both corrections separately. Now we perform the analysis
of Eq. (6.47) for deformation with constant pressure. For this case, the
shape of the strip is nearly parabolic (Section 6.2) and can be approximated

as

4 max
£(w) = 2o

The integral with the induced potential U (z) from Eq. (6.47), Iy, is

(z — L/2)%

I Emaz kL(6 — (kL)) cos kL — 3(2 — (kL)?)sin kL
Y7 124 (KL)3 '

(6.50)

Now we can perform the summation over modes for do, Eq. (6.47), ana-
lytically in two asymptotic cases: kpL < 1 and kpL > 1.

For kpL < 1, the evanescent modes give the most important contri-
bution to the conductivity [13],

L W [* dx 1
kpL < 1) = — = — 6.51

and to the correction to the conductivity,

L &nae W
50’U(]{7FL < 1) = 75

e 2
= a5 WPLPT (6.52)

with

)

I—o /°° dz sinh z(z(6 + 22) coshz — 3(2 + 2?) sinh )
) x4 cosh* z
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Figure 6.11. Dependence of the relative correction to conductivity on the max-
imum deformation, d0(&max)/o for constant krpL = 40, in the first order in
&maz/d, Eq. (6.47), the curve 2, and the exact transfer matrix solution of inte-
gral equation, the curve 2. Both the expansion and summation of the (7~7)~!
are not valid for &,q-krL/d > 1 for small parameter as mentioned in the text.
The dashed line, the curve 3, is the summation result. The exact solution shows
linear dependence on deviation even for rather large deviation, and this linear
dependence is close both to the correction Eq. (6.47) and to the correction av-
eraged over fast oscillations, &4, /2d. The parameters of the graphene flake are
L=1um,d =300 nm, E =1 TPa, v = 0.15, hy = 0.34nm.

and its numerical value is I ~ 0.124. The relative correction to conductiv-
ity reads

dou gmaxl 2 fmax 2
— = ~ 0.021 . .
. 0 (ki L)? A 0.021°" (i L) (6.53)

For kpL > 1 we average over fast oscillations. In this case, only the
propagating modes contribute significantly to the conductivity.
To perform the averaging, we replace the summation over ¢ by the

integration,
w
g — /dq.
p 27

To simplify subsequent calculations, we make the change of variables g =
kpsin ¢, k = kp cos ¢, and then go from the integral over dq to the integral
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over d¢. The correction to the conductivity Eq. (6.47) has the form

. L kpW gmax
U =W
" /”/2 g cos ¢ sin? psin?(kp L cos ¢)
0 (cos? ¢ cos?(kp L cos ¢) + sin?(kp L cos ¢))2

In this expression only the term with 3sinkL/kL from Eq.(6.50) sur-
vived: All terms with cos kL vanish after averaging, and the term with
—6sinkL/(kL)? is smaller than one which is taken into account). For
large kpL the terms cos(kpL cos ¢) and sin(kpLsin ¢) in Eq. (6.47) oscil-
late very rapidly. We can represent fow/ 2 d¢ as a sum of fast oscillating
terms, with each term being an average over the period,

j‘ﬂ'/? d¢ s
Nm” f¢”+1 do f(dn+1/2, cos(kpLcos @), sin(kp L cos ¢)),

with kpLsin¢, = 27n. The integrand f is determined by structure of
Eq. (6.47) and Eq. (6.50),

2 2 sin® zdx 27
[ ro - | : A

a? cos? x + sin® z) a

The sum over n remains, and this yields to What is left is the sum over n,

L fmam kFW
dour = 52" 27rzn: V1= (zn/krL)2, (6.54)

™

zn = 7(2n + 1). Finally,
L gmax
W 8d

The conductivity after averaging over fast oscillations becomes o = kpW /4L /W,
and the relative correction to the conductivity is

Soy = kpW. (6.55)

5O-U gmaac
o 2d -
From general physical considerations about the correction (see main text),
one also expects the dependence 00 /0 ~ &nar/d for do/o.

Concerning the correction due to the pseudomagnetic fields, it is of the
second order in dA, and the analytical expressions are too cumbersome.
Instead, we illustrate our conclusions using the numerical solution of the
integral equation (6.44). It is done by multiplying transfer matrices for
small intervals of the length dz. Convergence with the size of dx is reached.
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Samenvatting

Dit proefschrift is gewijd aan het effect van wanorde in twee-dimensionale
systemen van Dirac fermionen. Deze quasi-deeltjes komen voor in grafeen
(monolagen van koolstofatomen), in supergeleiders waarbij de orde para-
meter een p-golf of d-golf symmetrie heeft en in topologische isolatoren.

We richten onze aandacht op een specifiek gevolg van deze wanorde,
namelijk het verschijnsel van lokalisatie. Het is bekend dat gewone elek-
tronen (wier gedrag beschreven wordt door de Schrédinger vergelijking, en
niet door de Dirac vergelijking), gelokaliseerd worden onder invloed van
wanorde. Concreet betekent dit dat de golffunctie van een excitatie ex-
ponentieel vervalt, en geen uitgebreide vlakke golf is. Lokalisatie maakt
zodoende van een metaal een isolator.

De reactie van Dirac fermionen op wanorde is kwalitatief anders dan
die van gewone elektronen. Al vroeg is ontdekt dat Dirac fermionen niet
gelokaliseerd kunnen worden met behulp van elektrostatische wanorde, als
deze wanorde glad is op de schaal van de roosterconstante. In dit proef-
schrift concentreren we ons op een ander type wanorde, die in de Dirac
vergelijking optreedt als een plaatsafhankelijke massa. In grafeen ontstaat
dit door wanorde in het substraat. Tegen de verwachtingen van eerder on-
derzoek in, hebben we ontdekt dat door een wanordelijke massa in grafeen
er geen overgang plaatsvindt naar een metallische toestand. Alle golffunc-
ties blijven dus gelokaliseerd en grafeen is isolerend.

De situatie is volledig anders voor Dirac fermionen in een p-golf super-
geleider. In dit type supergeleiders verschijnt de plaatsafhankelijke massa
in de Dirac vergelijking ten gevolge van elektrostatische wanorde. Voor
zwakke wanorde is er lokalisatie, maar in tegenstelling tot onze bevindin-
gen bij grafeen, vindt bij sterke wanorde een overgang naar een metallische
toestand plaats.

Met behulp van een roostermodel van zogenaamde “staggered” fermi-
onen, dat voortkomt uit de kwantumchromodynamica, onderzoeken we
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de metaal-isolator overgang in p-golf supergeleiders. We berekenen de
kritische exponent en identificeren een afstotend trikritisch punt in het
fasediagram.

Het kwalitatieve verschil tussen het gevolg van wanorde in het gedrag
van Dirac fermionen in grafeen en in p-golf supergeleiders vraagt om een
verklaring. Deze vinden we in de aanwezigheid van gebonden Majorana
toestanden in de p-golf supergeleider. Deze “mid-gap” excitaties in p-
golf supergeleiders maken resonant tunnelen en een metallische toestand
mogelijk. Grafeen heeft geen gebonden Majorana toestanden en dus geen
metallische toestand in de aanwezigheid van een wanordelijke massa.

Elektrostatische wanorde in een d-golf supergeleider manifesteert zich-
zelf op een volledig andere wijze, namelijk als een wanordelijke vector
potentiaal in de Dirac vergelijking. Met behulp van een ijktransformatie
kan dit type wanorde worden verwijderd op het Fermi niveau, mits de
wanorde glad is op de schaal van de roosterconstante. Hieruit volgt dat de
transmissie van Dirac fermionen door een d-golf supergeleider slechts be-
perkt beinvloed wordt door lange-dracht fluctuaties in de elektrostatische
potentiaal. Fluctuaties van korte dracht hebben wel een sterk effect. Zij
onderdrukken exponentieel de elektrische stroom die gedragen wordt door
de excitaties, terwijl ze de thermische stroom niet beinvloeden.

In het laatste hoofdstuk van dit proefschrift keren we terug naar gra-
feen, en bestuderen we twee van zijn prominente eigenschappen, namelijk
het vormen van een sterk geleidend twee-dimensionaal elektronengas en
tegelijkertijd het vormen van een mechanisch stabiel membraan. Het sa-
menspel tussen de elektrische en mechanische eigenschappen wordt bestu-
deerd door het berekenen van de verandering van de geleidbaarheid van
opgehangen grafeen als gevolg van de vervorming door een “gate” elektrode.



Summary

This thesis is devoted to the effects of disorder on two-dimensional sys-
tems of Dirac fermions. These quasiparticles appear in condensed matter
in graphene (carbon monolayers), and also in superconductors with p-wave
or d-wave symmetry of the order parameter, as well as in topological in-
sulators.

The effect of disorder on which we focus our attention is the phe-
nomenon of localization. It is known that ordinary electrons (described
by the Schrodinger equation, rather than the Dirac equation) are localized
by disorder, meaning that the wave function of an excitation decays ex-
ponentially, rather than being an extended plane wave. Localization thus
transforms a metal into an insulator.

Dirac fermions respond qualitatively different to disorder. An early
discovery was that electrostatic disorder cannot localize Dirac fermions in
graphene, if it is smooth on the scale of the lattice constant. We concen-
trate on a different type of disorder, namely on a random mass term in the
Dirac equation. It is realized in graphene by randomness in the substrate.
We have discovered, somewhat unexpectedly in view of earlier work on
this problem, that Dirac fermions in graphene are localized by a random
mass, without any transition into a metallic state.

The situation is entirely different for Dirac fermions in a p-wave su-
perconductor. There electrostatic disorder appears in the Dirac equation
as a random mass, which localizes the excitation, but only if the disorder
is relatively weak. For large mass fluctuations a transition into a metallic
state appears, in contrast to what we found in graphene. We investigate
the metal-insulator transition in p-wave superconductors using a lattice
model of staggered fermions (originally proposed in the context of QCD).
We calculate the critical exponents and identify a repulsive tricritical point
at the phase diagram.

The qualitatively different response to disorder of Dirac fermions in
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graphene and in p-wave superconductors calls for an explanation, which
we find in the appearance of Majorana bound states.

These midgap excitations in a p-wave superconductor allow for reso-
nant tunneling and a metallic state. Graphene has no Majorana bound
states, hence no metallic state in the presence of a random mass.

Electrostatic disorder in a d-wave superconductor manifests itself in an
alltogether different form, as a random vector potential in the Dirac equa-
tion. A gauge transformation can eliminate this type of disorder at zero
energy, if it is smooth on the scale of the lattice constant. The transmis-
sion of Dirac fermions through a d-wave superconductor is therefore only
slightly affected by long-range electrostatic potential fluctuations. Short-
range fluctuations do have a strong effect, exponentially suppressing the
electrical current carried by the excitations, while leaving the thermal cur-
rent unaffected.

We return to graphene in the final chapter of the thesis, to study two
of its prominent properties: it forms a highly conducting two-dimensional
electron gas and at the same time is a mechanically stable membrane.
The interplay of electrical and mechanical properties is studied by calcu-
lating the correction to the conductivity of suspended graphene due to its
deformation by a gate electrode.
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conductor is unaffected by intra-node scattering.
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mechanism for superconductivity, not mediated by any quasiparticle.
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