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1 Introduction

Mesoscopic physics is a field within solid-state physics which deals with systems
at the borderline between the microscopic and macroscopic world [1–3]. This
field started to prosper due to the demand for miniaturized electronic compo-
nents. The size of integrated circuits has greatly diminished in recent years, and
will continue to diminish down to length scales on which quantum-mechanical
effects influence the operation of the circuit.

On the (sub-)micrometer scale, the wave nature of the electrons introduces
significant corrections to the classical conductivity. Quantum-mechanical in-
terference effects can be experimentally observed in transport experiments on
metals small compared to the phase-breaking length. Due to the random im-
purity potential, one is committed to a statistical description of ensembles of
samples. In an experiment, such an ensemble can be realized by varying the
external parameters of a single sample, such as magnetic field or gate voltage.
(This statement is known as the hypothesis of ergodicity.) A striking example
of interference effects are the conductance fluctuations of universal magnitude
e2/h, which have been observed in mesoscopic samples as a function of both
magnetic field and gate voltage.

Interference effects are greatly enhanced if the metal is brought into con-
tact with a superconductor. Instead of being a small correction of order e2/h,
quantum interference may change the conductance by an order of magnitude.
Mesoscopic superconductivity is a new development within mesoscopic physics,
and it is the subject of this thesis.

1.1 Quantum transport in disordered wires

According to Ohm’s law, the resistance of a wire increases linearly with its
length. This macroscopic law is no longer valid if the length is comparable to or
smaller than the phase-breaking length Lφ. In that case, phase coherence may be
preserved over the whole sample, and interference effects modify the resistance.
The phase-breaking length decreases with increasing temperature, so that these
interference effects can only be observed at low temperatures (typically below 1
K) and in small structures (typically sub-micron dimensions). In this subsection,
we introduce the quantum transport theory which we will use to describe such
“mesoscopic” structures.
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Figure 1-1. The scattering matrix couples incident modes to outgoing modes.

1.1.1 Scattering matrix

The conduction of electrons through a wire can be compared with the propa-
gation of waves in a waveguide. At a given energy E, the confinement in the
transverse direction allows for only a discrete set of longitudinal wave vectors,
called modes. A propagating mode has a real wave vector. There is a finite num-
ber N of propagating modes. For example, in a two-dimensional wire of width
W , the propagating modes along the x-axis have wave functions

ψ±n = k−1/2
n sin(nπy/W)e±iknx, n = 1,2, . . . ,N, (1.1.1)

kn =
√

2mE/�2 −n2π2/W 2. (1.1.2)

The wave function has been normalized by 1/
√
kn so that allψn’s carry the same

current.
The wave function (1.1.1) is valid for a perfectly conducting wire. We want to

describe the conduction properties of a disordered wire, containing an impurity
potential. We do so by means of the scattering approach pioneered by Landauer
[4]. We assume that the disordered wire is coupled to electron reservoirs by two
perfectly conducting wires (ideal leads). The propagating modes incident on the
disordered region have amplitudes i and i′ in the left and right lead (see Figure
1-1). Together, i and i′ form a vector of length 2N. The 2N × 2N scattering
matrix S relates the probability amplitudes o and o′ of the outgoing modes in
the left and right lead to i and i′:


 o
o′


 = S


 i
i′


 , S ≡


 r t′

t r ′


 . (1.1.3)

The scattering matrix consists of four N × N block matrices which contain the
reflection amplitudes r and r ′ (reflection from left to left and from right to right)
and the transmission amplitudes t and t′ (transmission from left to right and
from right to left). The scattering matrix is unitary (SS† = 1), because of current
conservation. The conductance is determined by the Landauer formula,

G = G0 Tr tt† = G0

N∑
n=1

Tn, G0 = 2e2/h. (1.1.4)

The eigenvalues Tn of tt† are real numbers between 0 and 1.
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1.1.2 DMPK equation

Our interest lies in the statistical properties of the conductance: What is the
average conductance and how large is its variance? To that end, we need the
distribution function of scattering matrices. This distribution has been deter-
mined using methods of random-matrix theory [5,6].

In a wire geometry (length L much greater than width W ), the distribution
of scattering matrices is isotropic, which means that it depends only on the
transmission eigenvalues Tn(n = 1,2, . . . , N). The polar decomposition then
provides a useful parameterization of the scattering matrix,

S =

 U 0

0 V




 −i√1− T

√
T√

T −i√1− T




 U ′ 0

0 V ′


 , (1.1.5)

where T = diag(T1, T2, . . . , TN). The N × N unitary matrices U,U ′, V , V ′ are uni-
formly distributed in the unitary group. In the presence of time-reversal sym-
metry (in the absence of a magnetic field or magnetic impurities), the scattering
matrix is symmetric, S = ST, so we have U ′ = UT and V ′ = VT. In the presence
of a magnetic field, the four matrices U,U ′, V ,V ′ are independent.

The distribution of the transmission eigenvalues remains to be determined.
A scaling equation for this distribution has been derived by Dorokhov [7] and by
Mello, Pereyra, and Kumar [8]. By computing the change in S under an incremen-
tal increase in L, they obtained a Fokker-Planck equation under the assumption
that the mean free path l is much greater than the Fermi wavelength λF. This
equation is called the DMPK equation, and is usually written in terms of the
variable λn ≡ (1− Tn)/Tn:

1
2l(βN + 2− β)∂P({λn}, L)

∂L
=

N∑
n=1

∂
∂λn

λn(1+ λn)J ∂
∂λn

P
J
, (1.1.6)

J =
N∏
i=1

N∏
j=i+1

|λi − λj|β. (1.1.7)

The integer β = 1(2) in the presence (absence) of time-reversal symmetry.1 An
exact solution of the DMPK equation is known for β = 2 [9]. Perturbative solu-
tions for all β can be used in the metallic regime L� Nl.

The conductance is an example of a linear statistic, which is a quantity of the
form: A = ∑N

n=1 a(Tn). In order to calculate the average 〈A〉 and the variance
VarA = 〈A2〉 − 〈A〉2 of the linear statistic A, the eigenvalue density 〈ρ(T)〉 and
the two-point correlation function K(T , T ′) are required. These are defined in
terms of the microscopic eigenvalue density ρ(T) =∑Nn=1 δ(T − Tn) through

〈ρ(T)〉 =
∫ 1

0
dT1 · · ·

∫ 1

0
dTN ρ(T)P({Tn}), (1.1.8)

1The value β = 4 is taken on in systems with spin-orbit scattering in zero magnetic field.
We will not consider that case in this thesis.
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K(T , T ′) = 〈ρ(T)〉〈ρ(T ′)〉 − 〈ρ(T)ρ(T ′)〉. (1.1.9)

The average and variance of A are then found from

〈A〉 =
∫ 1

0
dT 〈ρ(T)〉a(T), (1.1.10)

VarA = −
∫ 1

0
dT

∫ 1

0
dT ′K(T , T ′)a(T)a(T ′). (1.1.11)

An evolution equation for the eigenvalue density in the metallic regime Nl�
L is obtained after multiplying the DMPK equation (1.1.6) with

∑N
n=1 δ(λ − λn)

and integrating over λ1, λ2, . . . , λN . To close the equation, one decomposes 〈ρ〉 =
ρ0 + δρ, with ρ0 of order N and δρ of order 1, and linearizes. When L� l, the
density ρ0(x), with T = 1/ cosh2x, is uniform with a cutoff at x = L/l:

ρ0(x) = NlL θ(L/l− x). (1.1.12)

The density 〈ρ(T)〉 is related to 〈ρ(x)〉 via 〈ρ(T)〉 = 〈ρ(x)〉dx/dT . Using Eqs.
(1.1.10) and (1.1.12) with a(T) = T , one recovers the Drude formula for the
average conductance,

〈G〉 = G0
Nl
L
. (1.1.13)

The first-order correction δρ reads [6]

δρ(x) = (1− 2/β)[1
4δ(x − 0+)+ (4x2 +π2)−1], (1.1.14)

describing a dip in the density near x = 0 (T = 1) for β = 1. It gives rise to a
weak-localization correction to the conductance,

〈δG〉 = G0
β− 2

3β
, (1.1.15)

which is observable as a dip in the conductance as a function of magnetic field
around zero field.

The two-point correlation function K(x, x′) can be computed similarly [9,10]:

K(x, x′) = K(x − x′)+K(x + x′) (1.1.16)

K(x) = − 1
2βπ2

d2

dx2
ln[1+ (π/x)2]. (1.1.17)

Using this expression in Eq. (1.1.11), the variance of the conductance becomes

VarG/G0 = 2/15β. (1.1.18)

Since the fluctuations in G are independent of the number of modes N in the
wire, they are called universal.
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Figure 1-2. The dispersion relation for quasi-particle excitations in a normal metal (left) and

in a superconductor with excitation gap ∆0 (right). The arrows indicate normal reflection (left)

and Andreev reflection (right).

1.2 Mesoscopic superconductivity

1.2.1 Excitation spectrum

The quasiparticle excitations of a normal metal consist of electrons (occupied
states above the Fermi level) and holes (empty states below the Fermi level).
Their dispersion relation is shown in Figure 1-2. In a superconductor, an excited
state has both an electron component u and a hole component v . The states
(u,v) and their energy E follow from the Bogoliubov-de Gennes equation [11]

 H0 ∆
∆∗ −H∗0




 u
v


 = E


 u
v


 , (1.2.1)

which is a 2 × 2 matrix Schrödinger equation. On the diagonal, it contains the
normal-state Hamiltonian

H0 = 1
2m

[~p + e ~A(~r)]2 + V(~r)− EF. (1.2.2)

Electrons and holes are coupled by the superconductor pair potential ∆(~r),
which is determined self-consistently according to

∆(~r) = g(~r)
∑
n
v∗n(~r)un(~r) tanh

( En
2kBT

)
. (1.2.3)

Here g is a measure of the strength of the electron-phonon interaction, and the
sum is over all eigenstates En > 0 with a cutoff at the Debije frequency ωD.

In a homogeneous system, the electron-hole states are plane waves and the
pair potential is spatially constant. It is given by the BCS equation

∆0 = �ωD exp(−N(0)g), (1.2.4)
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N S

e
h

Figure 1-3. An electron (e) incident on the interface between a normal conductor and a super-

conductor is retroreflected as a hole (h). A Cooper pair is formed at the interface and absorbed

in the superconducting condensate.

with N(0) the density of states at the Fermi energy (E = 0) in the normal state.
The amplitudes u and v are given by


 u
v


 = 1

2V 1/2
√
E2 −∆2

0/2


 E ±

√
E2 −∆2

0

E ∓
√
E2 −∆2

0


 , (1.2.5)

such that u = v when E = ∆0. The state (u,v) is normalized to unity on the
volume V of the superconductor. For E � ∆0, either u or v goes to zero, cor-
responding to electron excitations (upper sign) or hole excitations (lower sign).
The dispersion relation,

E2 =
(
�2k2

2m
− EF

)2

+∆2
0, (1.2.6)

is shown in Figure 1-2. The excitation spectrum has a gap of ∆0 at the Fermi
wave vector kF = (2mEF/�2)1/2.

1.2.2 Andreev reflection

Andreev reflection [12] is the process that enables charge transport through
a junction between a normal conductor and a superconductor (NS junction)
at energies below ∆0: An electron incident from the normal metal at the NS-
interface is reflected back as a hole with reversed velocity (See Fig. 1-3). The
charge deficit of 2e forms a Cooper pair which is absorbed in the supercon-
ducting condensate. The process of Andreev reflection can be understood from
the Bogoliubov-de Gennes equation, by matching eigenfunctions in the normal
metal (where ∆ = 0) to decaying solutions in the superconductor (where ∆ = ∆0).
For E < ∆0 � EF only states with (nearly) identical wave vectors couple. Con-
sequently, normal reflection (k → −k) is negligible, and reflection of an electron
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e

h

SN

Figure 1-4. Scattering by disorder and Andreev reflection are shown schematically. (Solid lines

represent electrons, dashed lines represent holes.) Reflection processes comprising an odd

number of Andreev reflections contribute to the current through the NS interface.

as a hole (and vice versa) is the only scattering process allowed, since this can
occur at constant k. The Andreev reflected particle acquires a phase shift of
χ = − arccosE/∆0. The difference between normal reflection and Andreev re-
flection is indicated in hte dispersion relations shown in Fig. 1-2.

1.2.3 Conductance of a normal-metal–superconductor junction

Because the proximity to a superconductor introduces a coupling between the
motion of electrons (e) and holes (h) in the normal conductor, the dimension of
the scattering matrix is doubled,

S =

 See Seh
She Shh


 . (1.2.7)

The scattering theory of an NS junction is reviewed in Ref. [13]. We consider
separately the scattering at the NS-interface and the scattering in the normal
conducting part of the sample (see Figure 1-4). The scattering matrix SN of the
normal part does not couple electrons and holes,

SN =

 S0(E) 0

0 S∗0 (−E)


 , (1.2.8)

where S0 is the scattering matrix associated with the Hamiltonian H0 of Eq.
(1.2.2). In zero magnetic field (B = 0) the matrix S0 is symmetric, so S∗0 = S†0 .
The Andreev scattering matrix SA exclusively couples electrons and holes (for
E < ∆0),

SA = eiχ

 0 1

1 0


 , χ = arccos(E/∆). (1.2.9)



14 Chapter 1: Introduction

Figure 1-5. The pair potential ∆ drops to zero abruptly at the NS interface (solid curve), while

the order parameter Ψ extends into the normal metal (dashed curve).

The conductance requires knowledge of S at the Fermi level (E = 0). An inci-
dent electron contributes to the current if it is reflected as a hole. The reflection
matrix rhe from electron to hole is a geometrical series of 1,3,5, . . . Andreev
reflections (see Figure 1-4), which can be summed to yield (for E = 0 and B = 0)

rhe = t†(1+ r ′r ′†)−1t. (1.2.10)

Just as the normal conductance is given by the Landauer formula G = G0Tr tt†,
the conductance of an NS-junction is given by GNS = 2G0Tr rher

†
he. The extra

factor of two is there because Andreev reflection doubles the current (electrons
and holes carry current in the same direction). Substitution of Eq. (1.2.10) yields
an expression for GNS in terms of the N eigenvalues Tn of tt†,

GNS = 4e2

h

N∑
n=1

T 2
n

(2− Tn)2
. (1.2.11)

Like the normal-state conductance (1.1.4), GNS is a linear statistic, so its mean
and variance are given by Eqs. (1.1.10) and (1.1.11).

1.2.4 Induced superconductivity

In a normal metal without pairing interaction, the interaction parameter g van-
ishes. Hence, the pair potential ∆ drops to zero abruptly at the NS interface
(see Figure 1-5). However, the phase coherence of electrons and holes extends
into the normal metal, an effect known as the proximity effect. This is described
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by the superconductor order-parameter Ψ(~r) = ∆(~r)/g(~r), which vanishes if
electrons and holes are incoherent. The decay of |Ψ| in the normal metal is al-
gebraic, with a characteristic length scale ξ0 = �vF/∆0. (In a disordered metal,

ξ0 is to be replaced by
√
ξ0l.) Exponential suppression of the order parameter

occurs beyond the pair-breaking length ξ = �vF/kBT , which is � ξ0 if T � Tc .
(In a disordered metal, ξ is also to be replaced by

√
ξl.)

Phase coherence between electrons and holes gives rise to several effects,
both in transport and in thermodynamic properties: The conductance, as well
as the density of states are modified at low temperatures and low voltages or
energies. The typical energy window in which effects can be observed at a dis-
tance L from the interface is the Thouless energy ET = �vF min(l, L)/L2, such
that ξ ' L when kBT ' ET.

1.2.5 Josephson effect

The pair potential ∆(~r) has an amplitude and a phase. When two superconduc-
tors S1 and S2 are connected by a normal metal, a current may flow in equilib-
rium (at zero voltage), if the pair potential in S1 and S2 has a different phase.
This is known as the Josephson effect. The equilibrium current I(φ) is a 2π -
periodic function of the phase difference φ = φ1 − φ2 of the superconductor
pair potentials. The critical current Ic is the maximum of I(φ).

The original Josephson effect was predicted for a thin tunnel barrier separat-
ing two superconductors, where the separation is� ξ0. However, the Josephson
effect also exists in SNS structures where the separation of the superconductors
is much larger than ξ0, provided it is smaller than ξ.

Since the supercurrent is an equilibrium quantity, it can be obtained from a
thermodynamic relation,

I = 2e
�
dF
dφ
, (1.2.12)

where F is the free energy of the junction. The free energy can be obtained from
the excitation spectrum by

F = −2kBT
∑
n

ln[2 cosh(En/2kBT)]+
∫

d~r
|∆|2
g

+ TrH0. (1.2.13)

The excitation spectrum consists of a discrete part for E ≤ ∆0 and a continuous
part for E > ∆0. The discrete spectrum can be found from the condition Z ≡
Det[1 − SASN] = 0, whereas the continuous spectrum has density of states ρ =
−π−1Im ∂ lnZ/∂E. In order of magnitude, Ic ' (eET/�δ)min(ET,∆0) at zero
temperature, where ET is the Thouless energy and δ the level spacing of the
Josephson junction.

The most important application of the Josephson effect is the superconduct-
ing quantum-interference device (SQUID), which consists of a superconducting
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Figure 1-6. Trajectories in a chaotic billiard (left) and an integrable billiard (right). Solid and

dashed lines illustrate the divergence of two trajectories in the chaotic billiard, which start in

almost the same direction at point A.

ring contacted to two leads. Both branches of the ring contain a Josephson junc-
tion. The SQUID is a high-precision magnetometer. It exploits the fact that a
modulation on the conductance of the device can be measured with increasing
magnetic field, which is due to the modulation of the phase difference φ of
either Josephson junction by the magnetic flux enclosed by the ring.

1.3 Quantum chaos

1.3.1 Closed systems

In classical mechanics, one can make a clear distinction between integrable and
chaotic dynamics by looking at trajectories. A system is called integrable if it
has a conserved quantity for each degree of freedom. In the circular billiard of
Fig. 1-6, the conserved quantities are the energy and the angle of incidence of
a trajectory with the boundary. A chaotic system has no conserved quantities
other than the energy, see for example the stadium billiard in Figure 1-6. Chaotic
motion is associated with an extreme sensitivity of the trajectories on initial
conditions, which is absent for integrable motion.

In quantum mechanics, chaotic and integrable systems can be distinguished
from their energy spectrum [14, 15]. Neighboring levels have a distribution of
spacings s which vanishes as sβ in a chaotic system. An integrable system, in
contrast, has a Poisson distribution of spacings, with a maximum at s = 0 (see
Figure 1-7).
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Figure 1-7. Normalized level spacing distributions for chaotic and integrable systems. The

dashed lines are the theoretical predictions. The histogram is the experimental result for a

chaotic microwave resonator [16].

1.3.2 Open systems

In an open system, chaotic and integrable dynamics is distinghuised by the
distribution of dwell times. The dwell time τ of a particle is the time that it
spends in the billiard before leaving it. Since the dwell time distributions of
both types of billiards differ, this offers a possibility to distinguish billiards with
chaotic and integrable dynamics by making weak contacts to them and perform-
ing transport experiments. For weak coupling, when the number of collisions
of a particle with the boundary before it escapes is very large, the dwell times
of particles in a chaotic billiard with nearly identical — but different — initial
conditions are uncorrelated. The dwell time distribution is therefore that of
stochastic decay, i.e. it is exponential, P(τ) ∝ exp(−τ/τdwell). In an integrable
billiard, on the other hand, correlations between initial and final conditions per-
sist. It is possible to “focus” the trajectory of a particle, such that its dwell
time is arbitrarily long. This gives rise to an algebraic decay of dwell times,
P(τ)∝ τ−3 [17,18].

The mean dwell time τdwell in chaotic and integrable billiards is the same,
given by the inverse of the Thouless energy, τdwell ' �/ET. The Thouless energy
of a billiard with two narrow openings (containing N modes each) is given by
ET ' Nδ, where δ is the level spacing in the billiard.

A related distribution in a magnetic field is the distribution of fluxes Φ that
trajectories enclose. This distribution is exponential for chaotic billiards, P(Φ)∝
exp(−c|Φ|) (c is a constant), and algebraic for integrable billiards, P(Φ)∝ |Φ|−2.
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The shape of the weak-localization peak 〈δG(B)〉 around B = 0 is the Fourier
transform of the distribution of fluxes [19]. As a result, this shape is different
for chaotic and integrable systems. The weak-localization peak has a Lorent-
zian shape for chaotic billiards, and a triangular shape in integrable billiards.
The observation by Chang et al. [20] of this quantum signature of chaos in a
semiconducting 2D electron gas has been reproduced in Figure 1-8.

0
Φe/h

µ1 m

µ1 m

Figure 1-8. Magnetoconductance of ensembles of chaotic billiards (top) and integrable billiards

(bottom), confirming the expected Lorentzian and triangular shapes for both types of billiards.

The insets show the shape of the billiards, which were fabricated in the 2D electron gas of a

GaAs/AlGaAs heterostructure [20].

1.4 Electrostatic charging effects

Coulomb repulsion is important in nearly isolated conducting objects with small
electrostatic capacitances. The electrostatic energy that is required to add a
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C 1 C2

V g

C g

V

Figure 1-9. The single-electron transistor (left) consists of two tunnel junctions with ca-

pacitances C1, C2, tunnel resistances R1, R2, and a gate capacitance Cg by means of which

a fractional charge CgVg can be induced on the island. The island has total capacitance

C = C1 + C2 + Cg . The current-voltage characteristic (right) has a threshold which depends

on the induced charge. For the curves shown, we have used C1 = C2, R1 = R2 = R, and

CgVg/e = 0 (solid line), 0.25 (dotted) and 0.5 (dashed).

charge to a metal particle with capacitance C equals e2/2C. This charging en-
ergy becomes an important energy scale if it is of the order of or larger than kBT :
Current through the particle is blocked at voltages V below the charging energy,
provided that the resistance of the tunnel barriers is greater than h/e2 (to sup-
press quantum fluctuations of the charge). This effect is known as the Coulomb
blockade [21]. A typical current-voltage characteristic is shown in Figure 1-9.

By means of a gate, an arbitrary charge can be capacitively induced on the
particle. This so-called single-electron transistor (see Figure 1-9) is one of the
simplest and most studied systems in which the Coulomb blockade can be ob-
served. Using the gate, the threshold voltage for transport through the particle
can be tuned to any value between 0 and e/[2max(C1, C2) + Cg]. The single-
electron transistor can therefore be used as a switch. Other applications of the
single-electron tunneling effect are single-electron memory and thermometry.

1.5 This thesis

Quantum transport through disordered wires with obstacles

The DMPK equation (1.1.6) describes how the transmission eigenvalues Tn =
1/(1 + λn) in a wire change with increasing wire length L. It has been derived
under the assumption of weak impurity scattering (l � λF). It is not suitable
to describe a wire containing obstacles (such as point contacts or tunnel bar-
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L

L

Figure 1-10. Two wires containing disordered regions (dotted) and obstacles (black) in a dif-

ferent sequence. The statistics of the transmission eigenvalues of the two wires is the same.

riers), since these give rise to discontinuities in the evolution of transmission
eigenvalues. In Chapter 2, we show that the distribution of transmission eigen-
values is independent of the order of the constituent parts of the sample (disor-
dered regions, point contacts, and tunnel barriers), if each part of the wire has
an isotropically distributed scattering matrix. In that case, the disordered wire
containing obstacles is equivalent to a ballistic wire containing all the obstacles
which is coupled in series to a disordered wire (see Figure 1-10). Putting the dis-
order behind the obstacles has the technical advantage that the distribution of
transmission eigenvalues can be found by integrating the DMPK equation over
the disordered region, using the distribution of the ballistic wire with obstacles
as the initial condition.

In Section 2.1, we study the conduction through a ballistic point contact in
a disordered wire. The point contact is treated as an initial condition on the
DMPK equation. The conduction problem is further simplified by mapping this
geometry on a wire with identical width to the opening of the point contact,
identical length as the original wire, but with an increased mean free path. This
mapping allows us to solve the problem of point contact plus disordered wire
using known results for a disordered wire alone.

In Section 2.2, the magnitude of the conductance fluctuations of a (disor-
dered) double-barrier junction is calculated. In the limit that the conductance
is dominated by the tunnel barriers, the fluctuations have a maximal value of
VarG/G0 = 1/4β for two identical barriers. With increasing disorder, the vari-
ance crosses over to the result 2/15β for a disordered wire without barriers.
In 1991, Kastalsky and coworkers observed that the differential conductance of
a Nb-InGaAs junction shows a large and narrow peak around zero voltage [22].
Their result has been reproduced in Figure 1-11. The effect originates from the
constructive interference of multiple Andreev reflections [23]. At zero voltage
(E = 0) and magnetic field (B = 0), the phase shift acquired by an electron
along a trajectory is exactly cancelled by the phase shift of a hole retracing the
trajectory. Therefore, multiple Andreev reflections (as in Figure 1-4) interfere
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Figure 1-11. Normalized conductance-voltage characteristics of a Nb-InGaAs contact at differ-

ent temperatures and zero magnetic field [22]. The peak which is observable at low tempera-

tures is due to reflectionless tunneling.

constructively, which greatly increases the current through the junction.

The average conductance 〈GNS〉 of the NS junction depends on the trans-
parancy Γ of the tunnel barrier at the NS interface, the amount of disorder
in the normal metal (characterized by the ratio of its length L and mean free
path l), and on the number of modes N in the junction. When phase coher-
ence is destroyed by either a magnetic field or an applied voltage, 〈GNS〉 =
(2Ne2/h)(L/l+ 2Γ−2)−1, which equals the classical resistance. The contribution
from the tunnel barrier is quadratic in Γ , since both the incoming electron and
the Andreev-reflected hole have to tunnel through the barrier. Upon restoring
phase coherence, the conductance crosses over to 〈GNS〉 = (2Ne2/h)(L/l+Γ−1)−1

(valid for ΓL/l� 1). Multiple coherent Andreev reflections increase the effective
barrier transparancy from Γ 2 to Γ . It is as if, once the electron has tunneled
through the barrier, the hole tunnels back without reflections, hence the name
reflectionless tunneling [13].

Reflectionless tunneling can occur in microstructures where multiple reflec-
tion processes with a tunnel barrier determine the conductance. In Chapter 3 of
this thesis, we consider the case that a second tunnel barrier instead of disor-
der causes the multiple reflections. The conductance is ∝ Γ instead of ∝ Γ 2 if
both transparancies are comparable. Studying reflectionless tunneling in a semi-
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2D electron gas

L
Nb

gate

InAlAs/InGaAs

Figure 1-12. Differential resistance of a double-barrier structure in a two-dimensional electron

gas (2DEG) formed at a InAlAs/InGaAs heterojunction with a superconducting Nb-contact [24].

The Schottky barrier at the NS interface has fixed transparancy. The gate voltage Vgate tunes

the transparancy of the second barrier by depleting the 2DEG underneath it. Low gate voltages

Vgate correspond to low tunnel probabilities.

conducting double-barrier tunneling structure has the advantage that the barrier
transparancies can be tuned by means of gates, whereas it is not easy to change
the length L or the mean free path l of a disordered NS-junction. This enables
a direct observation of the Γ -dependence. A resistance minimum as a function
of barrier transparancy has recently been observed by Takayanagi et al. [24] (see
Figure 1-12). One notices that the normal-state resistance (open dots) increases
monotonically with decreasing gate voltage, whereas the NS-resistance (closed
dots) shows a clear minimum.

Giant backscattering peak in angle-resolved Andreev reflection

The weak-localization correction to the conductance of a disordered normal
metal is due to coherent backscattering of electrons. In the absence of a mag-
netic field, time-reversed paths interfere constructively, leading to an aver-
age reflection probability 〈|rmn|2〉 into the incoming mode (say n) which is
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twice as large as the probability for reflection into any other mode m ≠ n:
〈|rmn|2〉 = (1+δmn)/(N+1) plus small corrections of order l/L. If time-reversal
symmetry is broken by a magnetic field, coherent backscattering disappears, and
〈|rmn|2〉 = 1/N is the same for m = n and m ≠ n.

As is shown in Chapter 4, the coherent backscattering is greatly enhanced
if the disordered normal metal is backed by a superconductor. The probability
of reflection of an electron as a hole into the same mode is Nl/L times more
probable than reflection into any other mode. This giant backscattering peak
does not give rise to a large magnetoconductance, because the enhancement
of |(rhe)nn|2 is almost completely cancelled by a reduction of |(rhe)mn|2 for
m ≠ n. The enhanced backscattering can however be observed if we increase
the sensitivity to reflection at the angle of incidence. To that end, a point contact
is coupled in series to the disordered NS-contact. We then find that a magnetic
field can increase the conductance by as much as a factor of two.

Induced superconductivity distinguishes chaotic from integrable billiards

Chaotic and integrable dynamics can be distinguished in the different distri-
bution of spacings of adjacent energy levels (see Figure 1-7). The mean level
density 〈ρ〉 = δ−1, however, is not sensitive to the dynamics of the billiard,
because the mean level spacing δ depends only on the available phase space
and not on the dynamics within that phase space. In Chapter 5 we will show,
that the level density does become a probe for quantum chaos if the billiard is
brought into contact with a superconductor: The level density of the billiard has
a gap around the Fermi energy if its dynamics is chaotic, whereas it increases
linearly with energy if its dynamics is integrable. There is a qualitative expla-
nation in terms of the dwell-time distribution discussed in Section 1.3.2: Long
dwell-times correspond to small energies. The asymptotic tails of the dwell-time
distributions thus reflect the energy-dependence of the density of states at small
energies. The algebraic tail P(τ) ∝ τ−3 of integrable billiards corresponds to a
linear density of states, 〈ρ(E)〉 ∝ E, whereas the exponential tail for chaotic
billiards corresponds to an exponentially small density of states. The relevant
energy scale in both cases is the Thouless energy ET, such that 〈ρ(E)〉 → 1/δ
when E � ET. The relevance of this signature of quantum chaos lies in the fact
that the Thouless energy is a mesoscopic energy scale: It is typically much larger
than the microscopic energy scale of δ on which chaotic and integrable billiards
differ in normal systems.

The density of states can be measured by tunneling into the particle, since
the tunneling conductance is∝ ρ(eV). A difficulty lies in the design and fabrica-
tion of the billiards: It is possible to fabricate billiards which are highly regular
or highly chaotic, using a 2D electron gas with gates (see Figure 1-8). However,
the coupling of a semiconducting 2D electron gas to a superconductor is dif-
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ficult because of the appearance of Schottky barriers, which suppress Andreev
reflection.

Coulomb blockade threshold in inhomogeneous one-dimensional arrays
of tunnel junctions

Operation of electronic devices such as the single-electron transistor in Figure
1-9 requires that one can control charge fluctuations well within the unit charge.
This is a major problem in practical designs of single-electron devices contain-
ing many elements: Unscreened charges in the environment of the device have
the effect of inducing unknown “background charges” on the elements. More-
over, the induced charges may change in time due to charge fluctuations in the
environment. In laboratory experiments, one can apply a different gate voltage
to each element to compensate for the background charge on all islands in the
device, although this is impractical for applications as a transistor. The work
described in Chapter 6 is an attempt to treat the effect of background charges in
the Coulomb charging of a one-dimensional array of metallic islands. The focus
is on the threshold voltage for transport through the array. In contrast to the
previously predicted saturation of the threshold voltage with increasing array
length at fixed gate coupling for arrays without background charge [25], we find
that the expected threshold voltage increases algebraically with the number of
islands in the array if background charges are taken into account. The results
are consistent with experimental results [26,27].
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2 Quantum transport through disordered
wires with obstacles

2.1 Conductance fluctuations, weak localization,
and shot noise for a ballistic constriction in a
disordered wire

2.1.1 Introduction

The problem addressed in this section is that of phase-coherent electron trans-
port through a ballistic point contact between disordered metals. The geometry
is shown schematically in Fig. 2-1. The same problem was studied recently by
Maslov, Barnes, and Kirczenow (MBK) [1], to which paper we refer for an exten-
sive introduction and bibliography. The analytical theory of MBK is limited to
the case that the mean free path l for elastic impurity scattering is much greater
than the total length L of the system. In this “quasi-ballistic” case of l� L, the
backscattering through the point contact by disorder in the wide regions can
be treated perturbatively. In the present work we go beyond MBK by solving
the problem for arbitrary ratio of l and L, from the quasi-ballistic, through the
diffusive, into the localized regime of quantum transport.

Just as in Ref. [1], we model the scattering by the impurities and by the con-
striction by independent and isotropic transfer matrices. That is to say, we write
the transfer matrix M of the whole system as the product M = M2M0M1 of the
transfer matrices M1 and M2 of the two wide disordered regions and the trans-
fer matrix M0 of the ballistic constriction, and then we assume that the three

N,l N,l

L1 L2

Figure 2-1. Schematic illustration of the point contact geometry, consisting of a ballistic con-

striction [with conductance N0(2e2/h)] in a disordered wire [with length L = L1 + L2, mean

free path l, and N transverse modes]. To define a scattering geometry, the disordered regions

(dotted) and the point contact (black) are separated by scattering-free segments.
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νN l/0,

L

Figure 2-2. Unconstricted geometry, with length L, mean free path l/ν, and N0 transverse

modes. The key result of this section is the equivalence with the constricted geometry of Fig.

2-1, for ν given by Eq. (2.1.1).

transfer matrices are distributed according to independent and isotropic distri-
butions pi(Mi) (i = 0,1,2). [A distribution p(M) is called isotropic if it is only
a function of the eigenvalues of MM†.] The assumption of three independent
transfer matrices requires a spatial separation of scattering by the impurities
and by the constriction, which prevents us from treating the effects of impurity
scattering on the conductance quantization. (This problem has been treated ex-
tensively in the past, cf. Ref. [2] for a recent review.) The isotropy assumption for
the transfer matrix M0 of the constriction is a simple but realistic model of the
coupling between wide and narrow regions, which implies that all N transverse
modes in the wide regions (of width W ) to the left and right of the constriction
(of width W0) are equally coupled to each other [3]. The basic requirement here
is that the widening from W0 to W occurs abruptly and without spatial sym-
metries.1 The isotropy assumption for the transfer matrices M1 and M2 of the
disordered regions (of length L1 and L2) requires aspect ratios L1/W,L2/W � 1
corresponding to a wire geometry [4]. Finally, we assume that the impurity scat-
tering is weak in the sense that l � λF (with λF the Fermi wavelength). Under
these assumptions we can treat the impurity scattering within the framework of
the Dorokhov-Mello-Pereyra-Kumar (DMPK) equation [5,6].

The key result which enables us to go beyond MBK is a mapping between the
constricted and unconstricted geometries in Figs. 2-1 and 2-2. The unconstricted
geometry of Fig. 2-2 is a disordered wire of length L = L1+L2, with N0 transverse
modes and mean free path l/ν. The number N0 is determined by the quantized
conductance N0(2e2/h) of the point contact in the constricted geometry. The
fraction ν is defined by

ν = βN0 + 2− β
βN + 2− β . (2.1.1)

(Here β ∈ {1,2,4} is the Dyson index, which equals 1 in zero magnetic field,
2 in a time-reversal-symmetry breaking magnetic field, and 4 in zero field with
strong spin-orbit scattering.) Starting from the DMPK equation, we will deduce
(in Sec. 2.1.2) that the conductance has the same probability distribution in the
two geometries. The equivalence holds for all moments of the conductance,

1It was assumed in Ref. [1] that the constriction has a spatial symmetry such that coupling
between even and odd modes is forbidden in the absence of disorder. This assumption seems
to be irrelevant in the presence of disorder.
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L

N,l

Figure 2-3. Constricted geometry with all disorder at one side of the point contact. For

isotropic transfer matrices this geometry is statistically equivalent to that of Fig. 2-1.

so that it allows us to obtain (in Sec. 2.1.3) the effect of the point contact on
weak localization and universal conductance fluctuations directly from known
results for disordered wires [7] — without the restriction l � L of Ref. [1]. It
also holds for other transport properties than the conductance (in fact it holds
for the complete distribution of the transmission eigenvalues). As an example
of current interest, we will compute the suppression of shot noise in the point
contact geometry.

In Sec. 2.1.4 we consider the case N0 = 1 of a quantum point contact with
a single transmitted channel. The mapping is then onto a single-mode wire (or
one-dimensional chain) of length L and mean free path 1

2(βN + 2− β)l. The 1D
chain has been studied extensively in the past as the simplest possible system
exhibiting localization [8,9]. The precise correspondence with the problem of a
single-channel ballistic constriction in a multi-channel disordered wire seems to
be both novel and unexpected. From this correspondence we predict that the
resistance R of the point contact has an exponential distribution,

P(R) = βe
2

h
Nl
L

exp

[
−βe

2

h
Nl
L
(R − h/2e2)

]
, R ≥ h/2e2, (2.1.2)

provided the disordered wire is metallic (Nl/L� 1). The width of the distribu-
tion decreases by a factor of two upon breaking time-reversal symmetry in the
absence of spin-orbit scattering (β = 1 → β = 2).

To test the theoretical predictions we present (in Sec. 2.1.5) results of nu-
merical simulations, both for N0 � 1 and for N0 = 1. The numerical data for
the density of transmission eigenvalues provides independent support for the
mapping. In particular, we find good agreement with Eq. (2.1.2), including the
decrease in width upon application of a magnetic field.

2.1.2 Mapping of constricted unto unconstricted geometry

The first step is to show that the geometry of Fig. 2-1, with lengths L1 and L2

of disordered wire to the left and right of the point contact, is equivalent to the
geometry of Fig. 2-3, with a length L = L1 + L2 of disordered wire to one side
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only. The transfer matrix for Fig. 2-1 is M = M2M0M1, the transfer matrix of
Fig. 2-3 is M′ = M0M1M2. The corresponding probability distributions p(M) and
p′(M′) are

p = p2 ∗ p0 ∗ p1, (2.1.3)

p′ = p0 ∗ p1 ∗ p2, (2.1.4)

where the symbol ∗ denotes a convolution:

pi ∗ pj(M) =
∫
dMj pi(MM−1

j )pj(Mj). (2.1.5)

(The invariant measure dM on the group of transfer matrices is introduced in
Refs. [6] and [7].) Isotropic distributions have the property that their convolution
does not depend on the order: pi∗pj = pj∗pi if both pi and pj are isotropic (see
the Appendix for a proof). It follows that p = p′, and hence that the geometries
of Figs. 2-1 and 2-3 are equivalent. Note that the isotropy assumption is crucial
here, otherwise the convolution would not commute.

The second step is to show the equivalence of the constricted geometry of
Fig. 2-3 with the unconstricted geometry of Fig. 2-2. We recall [4] that the 2N
eigenvalues of the transfer matrix productMM† come in inverse pairs exp(±2xn),
n = 1,2, . . .N. The ratio L/xn ∈ [0,∞) has the significance of a channel-
dependent localization length. We define

Tn = 1/ cosh2xn, (2.1.6)

λn = sinh2xn = (1− Tn)/Tn. (2.1.7)

The numbers Tn ∈ [0,1] are the transmission eigenvalues (i.e. the eigenvalues
of the matrix product tt†, with t the N × N transmission matrix). A ballistic
point contact, with conductance N0(2e2/h), has to a good approximation Tn = 1
(λn = 0) for 1 ≤ n ≤ N0, and Tn = 0 (λn → ∞) for N0 + 1 ≤ n ≤ N. (This is
a statement about transmission eigenvalues, not about the transmission proba-
bilities of individual modes, which are all of order N0/N.) The joint probability
distribution PN(λ1, λ2, . . . λN, L) of the λ-variables depends on the length L of the
disordered wire according to the DMPK equation [5,6],

1
2l(βN + 2− β)∂PN

∂L
=

N∑
n=1

∂
∂λn

λn(1+ λn)JN ∂
∂λn

PN
JN
, (2.1.8)

JN =
N∏
i=1

N∏
j=i+1

|λi − λj|β. (2.1.9)

In this formulation the ballistic point contact appears as an initial condition

lim
L→0
PN = lim

Λ→∞

N0∏
n=1

δ(λn)
N∏

n=N0+1

δ(λn −Λ). (2.1.10)
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The closed channels N0+1 ≤ n ≤ N are irrelevant for conduction and can be
integrated out. The reduced distribution function P̃N(λ1, λ2, . . . λN0 , L) is defined
by

P̃N =
∫∞

0
dλN0+1

∫∞
0
dλN0+2 · · ·

∫∞
0
dλN PN, (2.1.11)

and satisfies the evolution equation

1
2l(βN + 2− β)∂P̃N

∂L
=

N0∑
n=1

∂
∂λn

λn(1+ λn)JN0

∂
∂λn

P̃N
JN0

,

lim
L→0
P̃N =

N0∏
n=1

δ(λn). (2.1.12)

We now compare with the unconstricted geometry of Fig. 2-2, which consists
of a wire with N0 transverse modes, length L, and mean free path l/ν. The
probability distribution PN0(λ1, λ2, . . . λN0 , L) for this geometry is determined by

1
2(l/ν)(βN0 + 2− β)∂PN0

∂L
=

N0∑
n=1

∂
∂λn

λn(1+ λn)JN0

∂
∂λn

PN0

JN0

,

lim
L→0
PN0 =

N0∏
n=1

δ(λn). (2.1.13)

Comparison of Eqs. (2.1.12) and (2.1.13) shows that P̃N = PN0 if ν is given by Eq.
(2.1.1), as advertized in the Introduction.

We will apply the mapping between constricted and unconstricted geome-
tries to study the distribution of transport properties A of the formA =∑n a(λn),
with limλ→∞a(λ) = 0 (so that only the channels n ≤ N0 contribute). We denote
by P(A, s) and P0(A, s) the distribution of A in, respectively, the constricted
and unconstricted geometries, with s = L/mean free path. Since the mean free
path in the constricted geometry is a factor ν smaller than in the unconstricted
geometry, we conclude that

P(A, s) = P0(A, νs). (2.1.14)

This is the key result which allows us to solve the problem of a ballistic con-
striction in a disordered wire, for arbitrary ratio s of wire length to mean free
path.

2.1.3 Many-channel point contact

In this Section we study a point contact which has a conductance much greater
than e2/h, so that N0 � 1. We mainly consider the metallic regime Nl/L �
1, in which the conductance of the disordered region separately is also much
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greater than e2/h. Two transport properties are studied in detail: Firstly the
conductance G, given by the Landauer formula

G = G0

∑
n
Tn, (2.1.15)

where G0 = 2e2/h is the conductance quantum. Secondly the shot-noise power
S, given by [10]

S = S0

∑
n
Tn(1− Tn), (2.1.16)

with S0 = 2e|V |G0 for an applied voltage V . We also study the transmission-
eigenvalue density, from which other transport properties can be computed. In
each case we apply the mapping (2.1.14) between the constricted and uncon-
stricted geometries. The fraction ν which rescales the mean free path in this
mapping has, according to Eq. (2.1.1), the series expansion

ν = 1
N

[
N0 − (1− 2/β)(1−N0/N)+O(N−1

0 )
]
. (2.1.17)

To lowest order, ν = N0/N. The next term, proportional to 1− 2/β, contributes
to the weak localization effect.

A. Weak localization and conductance fluctuations

The mean Ḡ and variance VarG of the conductance distribution P0(G, νs) in the
unconstricted geometry were computed by Mello and Stone [Eq. (C23) in Ref. [7]]

Ḡ/G0 = N0

1+ νs +
1
3
(1− 2/β)

( νs
1+ νs

)3

+O(νs/N0), (2.1.18)

VarG/G0 = 2
15
β−1

(
1− 1+ 6νs

(1+ νs)6
)
+O(νs/N0). (2.1.19)

Substitution of the expansion (2.1.17) yields for the constricted geometry the
average conductance Ḡ = Gseries + δG, with Gseries given by Gseries = G0(N−1

0 +
s/N)−1 and δG given by (denoting γ ≡ N0s/N):

δG/G0 = (1− 2/β)


1

3

(
γ

1+ γ

)3

+
(

1− N0

N

)
γ

(1+ γ)2


+O(s/N). (2.1.20)

The term of order s/N = L/Nl can be neglected in the metallic regime. The
term Gseries is the series addition of the Sharvin conductance GSharvin = G0N0

of the ballistic point contact and the Drude conductance 2 GDrude = G0Nl/L of
2The Drude formula for the conductance is GDrude = αdG0Nltr/L, with ltr the transport

mean free path and αd a number which depends on the dimensionality d of the density of
states: α2 = π/2 (Fermi circle) and α3 = 4/3 (Fermi sphere). A 1D chain has α1 = 2. These
numerical coefficients are absorbed into the mean free path l ≡ αdltr which appears in the
DMPK equation.
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Figure 2-4. Suppression by the point contact of the weak localization correction δG and the

root-mean-square conductance fluctuations (VarG)1/2. The dashed and solid curves are from

Eqs. (2.1.21) and (2.1.22), respectively. For γ = GSharvin/GDrude = N0s/N � 1 the curves

approach the values δG∞ and (VarG∞)1/2 of an unconstricted disordered wire (normalized to

unity in the plot).

the disordered region. The term δG is the weak localization correction to the
classical series conductance. This term depends on the ratio γ of the Sharvin
and Drude conductances as well as on the ratio N0/N of the width of the point
contact and the wide regions. In the limit N0/N → 0 at constant γ, Eq. (2.1.20)
simplifies to

δG/G0 = 1
3
(1− 2/β)[1− (1+ γ)−3]. (2.1.21)

The variance VarG of the sample-to-sample fluctuations of the conductance a-
round the average depends only on γ (to order s/N). From Eqs. (2.1.17) and
(2.1.19) we find

VarG/G0 = 2
15
β−1

(
1− 1+ 6γ

(1+ γ)6
)
. (2.1.22)

InFig.2-4wehaveplottedδGand(VarG)1/2 as a function of γ = GSharvin/GDrude.
(The limit N0/N → 0 is assumed for δG.) For large γ the curves tend to δG∞ =
1
3(1 − 2/β)G0 and VarG∞ = 2

15β
−1G2

0, which are the familiar values [7] for weak
localization and universal conductance fluctuations in a wire geometry without a
point contact. These values are universal to the extent that they are independent
of wire length and mean free path. The presence of a point contact breaks
this universality, but only if the Sharvin conductance is smaller than the Drude
conductance. For γ > 1 the universality is quickly restored, according to

δG
δG∞

= 1− γ−3 +O(γ−4), (2.1.23)



34 Chapter 2: Quantum transport through disordered wires with obstacles

VarG
VarG∞

= 1− 6γ−5 +O(γ−6). (2.1.24)

For γ < 1 both δG and VarG are suppressed by the presence of the point con-
tact, according to

δG/G0 = (1− 2/β)γ +O(γ2), (2.1.25)

VarG/G0 = 2β−1γ2 +O(γ3). (2.1.26)

Maslov, Barnes, and Kirczenow [1] have studied the quasi-ballistic regime
l � L. They consider a geometry as in Fig. 2-1, with L1 = L2, and relate the
variance VarG of the whole system to the variance VarG1 of one of the two
disordered segments of length 1

2L. Their result (in the present notation) is

VarG = γ2(l/L1)2 VarG1, (2.1.27)

in precise agreement with our small-γ result (2.1.26) [since VarG1 = 2β−1(L1/l)2
for l� L1].

So far we have considered the metallic regime N/s � 1. We now briefly
discuss the insulating regime N/s � 1. In the unconstricted geometry the con-
ductance then has a log-normal distribution [4,11],

P0(G, νs) = C exp

(
−(2β

−1νs/N0 + lnG/G0)2

8β−1νs/N0

)
, if νs/N0 � 1, (2.1.28)

with C a normalization constant. The mapping (2.1.14) implies that the conduc-
tance in the constricted geometry has also a log-normal distribution, with mean
〈lnG/G0〉 = −2β−1s/N and variance Var(lnG/G0) = 4β−1s/N. This distribution
is independent of the conductance of the point contact, as long as N0 � 1.

B. Suppression of shot noise

The average shot-noise power in the unconstricted geometry is [Eq. (A10) in
Ref. [12]]

S̄/S0 = 1
3
N0(1+ νs)−1[1− (1+ νs)−3]+O(1). (2.1.29)

The term O(1) is the weak localization correction on the shot noise, which is not
considered here. The mapping (2.1.14) implies for the constricted geometry

S̄/S0 = 1
3
N0(1+ γ)−1[1− (1+ γ)−3], (2.1.30)

with γ ≡ N0s/N. Since S0N0(1 + γ)−1 = 2e|V |Gseries = 2e|I| (with I the current
through the point contact), we can write Eq. (2.1.30) in terms of the Poisson noise
SPoisson = 2e|I|,

S̄ = 1
3
SPoisson[1− (1+ γ)−3]. (2.1.31)
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Figure 2-5. Suppression of the shot-noise power S below the Poisson noise SPoisson. The solid

curve is computed from Eq. (2.1.31). The one-third suppression of a diffusive conductor is

indicated by the dashed line.

The suppression of the shot-noise power below the value SPoisson of a Poisson
process is plotted in Fig. 2-5, as a function of the ratio γ of Sharvin and Drude
conductances. For γ � 1 the shot noise is zero, as expected for a ballistic
constriction [10,13–15]. For γ � 1 the shot noise is one third the Poisson noise,
as expected for a diffusive conductor [12,16,17]. The formula (2.1.31) describes
the crossover between these two regimes.

C. Density of transmission eigenvalues

We consider the eigenvalue densities

ρ(x, s) =
〈 N0∑
n=1

δ(x − xn)
〉
, (2.1.32)

ρ(T , s) =
〈 N0∑
n=1

δ(T − Tn)
〉
, (2.1.33)

which are related by ρ(T , s) = ρ(x, s)|dT/dx|−1 (with T = 1/ cosh2x). The
(irrelevant) closed channels n > N0 have been excluded from the densities. In
the unconstricted geometry we have, according to Ref. [18],

ρ(x, νs) = 2
π
N0 ImU(x − i0+, νs)+O(1), (2.1.34)

where the complex function U(z, s) is determined by

U = cotanh (z − sU), 0 > Im (z − sU) > −1
2π. (2.1.35)
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Figure 2-6. Density ρ(x, s) as a function of x, computed from Eqs. (2.1.35) and (2.1.36) for sev-

eral values of γ ≡ N0s/N . Curves a, b, c, d, and e correspond, respectively, to γ = 0.2, 0.5, 1, 2,

and 4. The inset shows the corresponding density ρ(T , s) = ρ(x, s)|dT/dx|−1 of transmission

eigenvalues T = 1/ cosh2 x. Note the crossover from unimodal to bimodal distribution near

γ = 1.

The mapping (2.1.14) implies for the constricted geometry

ρ(x, s) = 2
π
N0 ImU(x − i0+, N0s/N)+O(1). (2.1.36)

The solution ρ(x, s) of Eqs. (2.1.35) and (2.1.36) is plotted in Fig. 2-6, for
several values of γ ≡ N0s/N. The inset shows the corresponding density of
transmission eigenvalues ρ(T , s). For γ <∼ 1, ρ(T , s) has a single peak at unit
transmission. For γ >∼ 1 a second peak develops near zero transmission, so
that the distribution becomes bimodal. A crossover from unimodal to bimodal
distribution on increasing the disorder has also been found in the case of a
tunnel barrier [18, 19]. The difference with a point contact is that for a tunnel
barrier the single peak is near zero, rather than near unit, transmission.

2.1.4 Single-channel point contact

In this Section we study a point contact with a quantized conductance of 2e2/h,
so that N0 = 1. The DMPK equation (2.1.13) for the distribution P1(λ1, L) ≡
P(λ, L) of the single transmitted channel is

(l/ν)
∂
∂L
P(λ, L) = ∂

∂λ
λ(1+ λ) ∂

∂λ
P(λ, L), (2.1.37)

lim
L→0
P(λ, L) = δ(λ), (2.1.38)
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since J1 ≡ 1. Eq. (2.1.1) for the fraction ν which rescales the mean free path
becomes

ν = 2
βN + 2− β. (2.1.39)

The partial differential equation (2.1.37,2.1.38) has been studied as early as 1959
in the context of propagation of radio-waves through a waveguide with a random
refractive index [20,21]. In the eighties it was rederived and investigated in great
detail [22–26], in connection with the problem of localization in a 1D chain [8,9].
The solution can be written in terms of Legendre functions, or more conveniently
in the integral representation

P(λ, L) = e−νL/4l√
2π(νL/l)3

∫∞
arccosh(1+2λ)

du
u exp(−u2l/4νL)
(coshu− 1− 2λ)1/2

. (2.1.40)

According to the Landauer formula (2.1.15), the conductance G of the whole
system is related to the variable λ ≡ (1 − T)/T by G = G0(1 + λ)−1 (with G0 =
2e2/h). It follows that the resistance δR = 1/G − h/2e2 after subtraction of the
contact resistance is just given by δR = λ/G0. In view of the mapping (2.1.14),
the resistance distribution P(δR, s) is given by

P(δR, s) = G0e−νs/4√
2π(νs)3

∫∞
arccosh(1+2G0δR)

du
u exp(−u2/4νs)

(coshu− 1− 2G0δR)1/2
. (2.1.41)

The mean and variance of δR can be computed either by integrating the distri-
bution (2.1.41), or directly from the differential equation (2.1.37,2.1.38) [22]. The
result is

δR = 1
2G0

(
e2νs − 1

)
, (2.1.42)

VarδR = 1
6G2

0

(
e6νs − 3

2e4νs + 1
2

)
. (2.1.43)

These results hold in both the metallic and the insulating regimes. We now
consider in some more detail the metallic regime N/s � 1. This implies νs � 1.
Eqs. (2.1.42) and (2.1.43) reduce to

δR = 2s
G0
(βN + 2− β)−1 +O(s/N)2 = (VarδR)1/2. (2.1.44)

The complete distribution of the resistance δR (which follows from Eq. (2.1.41)
in the limit νs � 1) is the exponential distribution

P(δR, s) = G0

νs
exp

(
−G0

νs
δR
)
, δR ≥ 0. (2.1.45)

For N � 1 the width νs ' 2s/βN of the distribution (2.1.45) has the 1/β depen-
dence announced in the Introduction [Eq. (2.1.2)]. In Fig. 2-7 we have plotted the
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Figure 2-7. Probability distribution of the resistance δR = R − h/2e2 of a single-channel point

contact, for several values of νs = 2(L/l)(βN + 2 − β)−1. Curves a, b, and c, correspond,

respectively, to νs = 0.1, 0.2, and 0.5. The solid curves are computed from Eq. (2.1.41), the

dashed curves are the exponential distribution (2.1.45) which is approached in the metallic

regime νs � 1.

exact distribution (2.1.41) [solid curves] for several values of s and compared
with the metallic limit (2.1.45) [dashed curves]. For νs <∼ 0.1 [curves labeled a]
the two results are almost indistinguishable.

To make connection with some of the recent literature, we remark that the
exponential resistance distribution (2.1.45) implies for the conductance the dis-
tribution

P(G, s) = G0

νs
G−2 exp

(
1−G0/G
νs

)
, 0 ≤ G ≤ G0, (2.1.46)

which is strongly peaked at G = G0. This is completely different from the con-
ductance distribution of a quantum dot which is weakly coupled by two point
contacts to electron reservoirs [27,28].

2.1.5 Numerical simulations

To test the analytical predictions we have carried out numerical simulations of
the Anderson model in the geometry of Fig. 2-3, using the recursive Green’s func-
tion technique [29]. The disordered region (dotted) was modeled by a tight-bind-
ing Hamiltonian on a square lattice (lattice constant a), with a random impurity
potential at each site (uniformly distributed between ±1

2Ud). The constriction
was introduced by assigning a large potential energy to sites at one end of the
lattice (black in Fig. 2-1), so as to create a nearly impenetrable barrier with an
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Figure 2-8. Comparison between theory and simulation of the integrated eigenvalue density

forN0/N = 1/3 and for three different disorder strengths (s = 0,3,11.7). Solid curves are from

Eqs. (2.1.35) and (2.1.36), data points are the N0 smallest xn’s from the simulation plotted in

ascending order versus n/N0 [filled data points are for a square geometry, open points for a

rectangular disordered region (L/W = 3)].

opening in the center. The constriction itself contained no disorder (the dis-
ordered region started at two sites from the barrier). The Fermi energy was
chosen at EF = 1.5u0 from the band bottom (with u0 ≡ �2/2ma2). The ratio s
of sample length to mean free path which appears in the theory was computed
numerically from Tr tdt

†
d = N(1 + s)−1, with td the transmission matrix of the

disordered region without the constriction.3

The simulations for the many-channel and single-channel point contact are
discussed in two separate sub-sections.

A. Many-channel point contact

Two geometries were considered for the wide disordered region: a square ge-
ometry (L = W = 285a, corresponding to N = 119), and a rectangular geometry
(L = 285a, W = 93a, corresponding to N = 39). In each case the width of the
constriction was 1

3W (corresponding to N0 = 40 and N0 = 13 in the square and
rectangular geometries, respectively). The length of the constriction was one
site. The strength Ud of the impurity potential was varied between 0 and 1.5u0,
corresponding to s between 0 and 11.7.

In Fig. 2-8 we compare the integrated eigenvalue density N−1
0

∫ x
0 dx′ ρ(x′, s),

3The identification Tr tdt
†
d = N(1+ s)−1 has the status of an interpolation formula between

the Sharvin and Drude conductances, which differs by only a few percent from the exact result:
M. J. M. de Jong, Phys. Rev. B 49, 16070 (1994).
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which is the quantity following directly from the simulation. The points are raw
data from a single sample. (Sample-to-sample fluctuations are small, because the
xn’s are self-averaging quantities [4].) The data is in good agreement with the
analytical result of Sec. 2.1.3C, without any adjustable parameters. No significant
geometry dependence was found (compare open and closed symbols in Fig. 2-8).

B. Single-channel point contact

We considered a square geometry (L = W = 47a, corresponding to N = 20),
and a rectangular geometry (L = 47a, W = 23a, corresponding to N = 10). The
point contact was three sites wide and two sites long, corresponding to N0 = 1.
(The conductance in the absence of disorder was within 5% of 2e2/h.) The dis-
tribution P(δR, s) of the resistance δR ≡ R − h/2e2 was computed by collecting
data for some 104 realizations of the impurity potential. To compare the cases
β = 1 and β = 2, we repeated the simulations in the presence of a magnetic
field of 50 flux quanta h/e through the disordered region. (The magnetic field
was graded to zero in the ideal leads.) Two disorder strengths were consid-
ered: Ud = 1.5u0 (corresponding to s = 1.8) and Ud = 3.0u0 (corresponding
to s = 8.3). The results are collected in Fig. 2-9 and are in good agreement with
the theoretical prediction (2.1.41), again without any adjustable parameters. The
theory agrees comparably well with the simulations for the square and rectan-
gular geometries, which shows that the condition L� W for the validity of the
DMPK equation can be relaxed to a considerable extent.

We find it altogether quite remarkable that the amusingly simple mapping
(2.1.14) between the constricted and unconstricted geometries is capable of reli-
ably predicting the complete distribution of the point-contact resistance, includ-
ing the effect of broken time-reversal symmetry. We know of no other conven-
tional theoretical technique which could do the same.

2.2 Conductance fluctuations in a disordered double-
barrier junction

Resonant tunneling through two planar barriers in series is a textbook problem
in quantum mechanics. Because of the separation of longitudinal and transverse
motion, the problem is essentially one-dimensional and can be solved in an ele-
mentary way. Realistic double-barrier junctions contain in general some amount
of disorder in the region between the barriers. At low temperatures and small
applied voltages, the inelastic electron-phonon and electron-electron scattering
processes are suppressed, but the elastic scattering by impurities remains. Scat-
tering events couple the transverse and longitudinal motion of the tunneling
electron, which substantially complicates the problem but also leads to novel
physical effects.

The effects of disorder have been studied in the past [30–33] with an em-
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Figure 2-9. Comparison between theory and simulation of the distribution of the excess re-

sistance δR of a single-channel point contact, for s = 1.8 (a) and s = 8.3 (b). The histograms

are the numerical data (for square and rectangular disordered regions), the smooth curves are

computed from Eq. (2.1.41) — without any adjustable parameters. Solid curves are for zero

magnetic field (β = 1), dash-dotted curves for a magnetic flux of 50h/e through the disor-

dered region (β = 2). For clarity, the curves for the square geometry are offset vertically by 1.5

and 0.25 in figures (a) and (b), respectively.

phasis on isolated transmission resonances (energy spacing between the reso-
nances much greater than their width). Those studies are relevant for tunneling
through a semiconductor quantum well, where the resonances are widely sep-
arated because the barrier separation L is comparable to the Fermi wavelength
λF. Here we consider the opposite regime L � λF of strongly overlapping res-
onances, relevant to metal structures (where λF is very short, comparable to
the inter-atomic separation), or to tunneling in the plane of a two-dimensional
electron gas (where L can be quite long, because of the large phase-coherence
length). Two types of disorder can play a role, interface roughness at the barriers
and impurities between the barriers. Interface roughness leads to mesoscopic
(sample-to-sample) fluctuations in the conductance even in the absence of any
phase coherence, because the tunnel probability Γ of a single barrier depends
strongly on its thickness. Conductance fluctuations for a single rough tunnel
barrier have been studied by Raikh and Ruzin [34]. Here we consider the case
of impurity scattering in the absence of interface roughness. Phase coherence is
then essential.

A methodological difference with earlier work on resonant tunneling is our
use of random-matrix theory to describe the mode-mixing in the inter-barrier re-
gion. We assume that the disorder is weak enough that its effect on the average
conductance is negligibly small. This requires a mean free path l � ΓL. Still,
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the disorder should be sufficiently strong to fully mix the transverse modes in
the inter-barrier region. This requires both l � L/Γ and W � L/Γ (where W is
the transverse dimension of the junction). We may then describe the disorder-
induced mode-mixing by a random N×N unitary matrix (N being the total num-
ber of propagating transverse modes at the Fermi energy). This single assump-
tion permits a complete analytical solution of the statistical properties of the
conductance, using basic results for the so-called circular ensemble of random
matrices [35]. The circular ensemble is fully characterized by the symmetry
index β, which equals 1 in the presence of time-reversal symmetry (circular or-
thogonal ensemble) and 2 if time-reversal symmetry is broken by a magnetic
field (circular unitary ensemble). (A third possibility, β = 4, applies to zero
magnetic field in the presence of strong spin-orbit scattering.)

As described in Section 2.2.1, we find that the conductance G of the double-
barrier junction exhibits sample-to-sample fluctuations around the classical se-
ries conductance

Gseries = (2e2/h)N(1/Γ1 + 1/Γ2)−1. (2.2.1)

(We denote by Γ1 and Γ2 the transmission probabilities per mode through barrier
1 and 2, and assume that these are mode-independent and � 1.) We find that
the root-mean-square fluctuations rmsG of the conductance depend only on the
ratio ν = Γ1/Γ2 of the two transmission probabilities, according to

rmsG = 4e2

h
β−1/2 ν

(1+ ν)2 . (2.2.2)

Corrections to Eq. (2.2.2) are smaller by a factor e2/hGseries, which is � 1 if
NΓi � 1. For a symmetric junction (ν = 1) the fluctuations are of order e2/h,
independent of N or Γi (as long as NΓi � 1). This universality is reminiscent
of the universal conductance fluctuations in diffusive metals [36,37]. Just as in
those systems, we expect the sample-to-sample fluctuations to be observable in
a single sample, as reproducible fluctuations of the conductance as a function
of Fermi energy or magnetic field.

Eq. (2.2.2) assumes weak disorder, l� ΓiL (but still l� L/Γi). We generalize
our results in Sec. 2.2.2 to stronger disorder, when the effects of the impurities
on the average conductance have to be taken into account. We do this by means
of the Dorokhov-Mello-Pereyra-Kumar (DMPK) equation [5,6]. We find that impu-
rity scattering leads to the appearance of a weak-localization effect on the aver-
age conductance (observable as a negative magnetoresistance). The conductance
fluctuations become independent of Γ1 and Γ2 if L� l(Γ−1

1 + Γ−1
2 ). A similar con-

clusion was reached previously by Iida, Weidenmüller, and Zuk [38], who studied
the conductance fluctuations of a chain of disordered grains as a function of the
coupling strength to two electron reservoirs. These authors found that the uni-
versal conductance fluctuations are recovered for a chain length L much greater
than some length L0 which is parametrically greater than the mean free path. A
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W

L

Γ2Γ1

Figure 2-10. Weak-localization correction δG to the average conductance (in units of G0 =
2e2/h) and root-mean-square fluctuations rmsG ≡ (VarG)1/2, computed from Eqs. (2.2.21)

and (2.2.22) for β = 1. The arrows give the limit ΓL/l� 1. The inset shows the geometry of

the double-barrier junction (the disordered region is dotted). The curves plotted in the figure

are for a symmetric junction, Γ1 = Γ2 ≡ Γ � 1.

more detailed comparison with Ref. [38] is not possible, because we consider a
homogeneously disordered conductor rather than a chain of disordered grains.

To test our random-matrix description of mode-mixing by weak disorder, we
present in Sec. 2.2.3 results from a numerical simulation of a disordered double-
barrier junction defined on a two-dimensional lattice. The agreement with the
theory is quite reasonable.

2.2.1 Double-barrier junction with strong mode-mixing

The double-barrier junction considered is shown schematically in the inset of
Fig. 2-10. Since we assume λF � L, the scattering matrix S of the whole system
can be constructed from the scattering matrices Si of the individual barriers.
Similar to the case of a wire geometry (1.1.5), the 2N × 2N unitary matrix Si can
be written as a polar decomposition [4,39]

Si ≡

 ri t′i
ti r ′i




=

 Ui 0

0 Vi




 −i(1− Γi)1/2 Γ 1/2

i

Γ 1/2
i −i(1− Γi)1/2




 U ′i 0

0 V ′i


 , (2.2.3)

where the U ’s and V ’s are N×N unitary matrices. In zero magnetic field, U ′i = UT
i

and V ′i = VT
i , so that Si is symmetric — as it should be in the presence of time-
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reversal symmetry. The transmission matrix t of the whole system is given by

t = t2(1− r ′1r2)−1t1. (2.2.4)

Substitution of the polar decomposition (2.2.3) yields the matrix product tt† in
the form

tt† = V2

[
a+ 1

2b(Ω +Ω†)
]−1
V †2 , (2.2.5)

Ω = U ′2V1V ′1U2, (2.2.6)

a = [1+ (1− Γ1)(1− Γ2)]/Γ1Γ2, (2.2.7)

b = 2
√
(1− Γ1)(1− Γ2)/Γ1Γ2. (2.2.8)

The eigenvalues Tn of tt† are related to the eigenvalues exp(iφn) of Ω by

Tn = (a+ b cosφn)−1. (2.2.9)

The Tn’s determine the conductance G of the double-barrier junction, according
to the Landauer formula 2.1.15.

We consider an isotropic ensemble of double-barrier junctions, analogous to
the isotropic ensemble of disordered wires [4]. We assume that l � L/Γi and
W � L/Γi, so that the tunneling is accompanied by strong mode-mixing: An elec-
tron entering the junction in mode n is randomly distributed among all modes
m before leaving the junction. We assume in this section that mode-mixing is
the dominant effect of the disorder, and that the reduction of the average con-
ductance by the impurity scattering can be neglected. This requires l � ΓiL.
(The case of stronger disorder is treated in the next section.) In the polar de-
composition (2.2.3) the mode-mixing is accounted for by the unitary matrices
U and V . The number of different unitary matrices is 2β, where β = 1 in zero
magnetic field and β = 2 if time-reversal symmetry is broken by a magnetic field.
The isotropic ensemble is the ensemble where the 2β unitary matrices are inde-
pendently and uniformly distributed over the unitary group. In other words, the
U ’s and V ’s are drawn independently from the circular unitary ensemble (CUE)
of random-matrix theory [35].

To determine the statistics of the conductance (2.1.15) we need the proba-
bility distribution P({φn}) of the eigenvalues of Ω. For β = 2, Ω = U ′2V1V ′1U2

is the product of four independent matrices from the CUE, and hence Ω is also
distributed according to the CUE. For β = 1, Ω = UT

2V1VT
1U2 is of the form WWT

with W a member of the CUE. The ensemble of Ω is then the circular orthogonal
ensemble (COE). The distribution of the eigenvalues in the CUE and COE is given
by [35]

P({φn}) = C
∏
n<m

∣∣exp(iφn)− exp(iφm)
∣∣β , (2.2.10)

where C is a normalization constant.
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We compute the average 〈A〉 and variance VarA = 〈A2〉−〈A〉2 of linear statis-
tics A = ∑N

n=1 a(φn) on the eigenphases φn. Since in the circular ensemble the
φn’s are uniformly distributed in (0,2π), the average is exactly equal to

〈A〉 = N
2π

∫ 2π

0
dφa(φ). (2.2.11)

An exact expression for the variance can also be given [35], but is cumbersome
to evaluate. For N � 1 we can use a variation on the Dyson-Mehta formula [40]
(derived in App. A) [41],

VarA = 1
π2β

∞∑
n=1

n|an|2 +O(N−1), (2.2.12)

an =
∫ 2π

0
dφ einφa(φ). (2.2.13)

For the conductance [given by Eqs. (2.2.9) and (2.1.15)], we substitute a(φ) =
(a+ b cosφ)−1, with Fourier coefficients
an = 2π(a2 − b2)−1/2b−n

[
(a2 − b2)1/2 − a]n. The results are

〈G/G0〉 = N(1/Γ1 + 1/Γ2 − 1)−1, (2.2.14)

VarG/G0 = 4
β
(1− Γ1)(1− Γ2)Γ 2

1 Γ 2
2

(Γ1 + Γ2 − Γ1Γ2)4
. (2.2.15)

Equation (2.2.14) for the average conductance is what one would expect from
classical addition of the resistances (NΓiG0)−1 of the individual barriers. (The
−1 in Eq. (2.2.14) corrects for a double counting of the contact resistance and be-
comes irrelevant for Γi � 1.) Each member of the ensemble contains a different
set of overlapping transmission resonances, and the ensemble average removes
any trace of resonant tunneling in 〈G〉. In a previous paper [42], we have shown
that the average conductance differs drastically from the series conductance if
the double-barrier junction is connected to a superconductor, but here we con-
sider only normal-metal conductors.

Eq. (2.2.15) for the conductance fluctuations tells us that VarG becomes com-
pletely independent of N in the limit N → ∞. [More precisely, corrections to
Eq. (2.2.15) are of order 〈G/G0〉−1, which is � 1 if NΓi � 1.] Since Γi � 1, we
may simplify Eq. (2.2.15) to

VarG/G0 = 4
β

Γ 2
1 Γ 2

2

(Γ1 + Γ2)4
, (2.2.16)

which depends only on the ratio Γ1/Γ2 and not on the individual Γi’s. The variance
reaches a Γ -independent maximum for two equal barriers,

VarG/G0 = 1
4β

−1, if Γ1 = Γ2. (2.2.17)

The variance is almost twice the result 2
15β

−1 for an isotropic ensemble of disor-
dered wires [43,44], and precisely twice the result 1

8β
−1 for an isotropic ensemble

of ballistic quantum dots [28,38].



46 Chapter 2: Quantum transport through disordered wires with obstacles

2.2.2 Effects of strong disorder

In this section we relax the assumption l� ΓiL of Sec. II, to include the case that
the impurity scattering is sufficiently strong to affect the average conductance.
We assume W � L, so that we are justified in using an isotropic distribution for
the scattering matrix SL of the inter-barrier region [4]. The scattering matrix S
of the entire system is now composed from the three scattering matrices S1, SL,
and S2 in series. The composition is most easily carried out in terms of the
transfer matrices M1,ML, and M2 associated with S1, SL, and S2, respectively.
The transfer matrix M of the entire system is the matrix product M = M2MLM1,
so the total distribution P(M) is a convolution of the individual distributions
P1(M1), PL(ML), and P2(M2): P = P2∗PL∗P1. The convolution ∗ is defined in Eq.
(2.1.5). The isotropy assumption implies that each distribution Pi(Mi) is only a
function of the eigenvalues of MiM

†
i .

We now use the fact that the convolution of isotropic distributions of trans-
fer matrices commutes. (A proof is given in Appendix A.) This permits us to
consider an equivalent system, with transfer matrix M = MLM2M1, where all
disorder is at one side of the double-barrier junction — instead of in between
the barriers. The L-dependence of the distribution of transmission eigenvalues
for this system is governed by the DMPK equation (1.1.6).The initial condition of
Eq. (1.1.6) now corresponds to taking ML = 1, which implies for P the isotropic
ensemble given by Eq. (2.2.10).

To compute the L-dependence of the mean and variance of the conductance,
we use the method of moments of Mello and Stone [43, 44], who have derived
a hierarchy of differential equations for the moments of Tq ≡

∑N
n=1 T

q
n . The

hierarchy closes order by order in an expansion in powers of 1/N. Mello and
Stone considered a ballistic initial condition, corresponding to 〈T p

q 〉 → Np for
s ≡ L/l → 0. We have the different initial condition of a double-barrier junction.
The differential equations and initial conditions for the moments are given in
App. B. For the mean conductance and its variance we obtain

〈G/G0〉 = N
s + ρ +

1
3
(1− 2/β)

− 1− 2/β
(s + ρ)3

(
s2 − s(a− ρ − ρ2)+ 1

3ρ
3
)
, (2.2.18)

VarG/G0 = 2
15β

+ 2
β(s + ρ)6

(
s2(1

2a
2 + 1

2ρ
2 − 2aρ2 + ρ4)

+ s(−2a2ρ + 2aρ3 − 2
5ρ

5)+ 1
2a

2ρ2 − 1
2ρ

4 − 1
15ρ

6
)
, (2.2.19)

where a has been defined in Eq. (2.2.5) and ρ is defined by

ρ = 1/Γ1 + 1/Γ2 − 1. (2.2.20)

Corrections to Eqs. (2.2.18) and (2.2.19) are of order (s+ρ)/N. For two equal
barriers (Γ1 = Γ2 ≡ Γ ) in the limit Γ → 0 at fixed Γs, Eqs. (2.2.18) and (2.2.19)
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simplify to

δG/G0 ≡ 〈G/G0〉 −N(s + ρ)−1

= 1
3
(1− 2/β)− 1− 2/β

(2+ Γs)3
(

8
3
+ 2Γs

)
, (2.2.21)

VarG/G0 = 2
15β

+ 4
β(2+ Γs)6

(
Γ 2s2 + 8

5
Γs + 28

15

)
. (2.2.22)

Eqs. (2.2.21) and (2.2.22) are plotted in Fig. 1 (for β = 1). In the limit of large
disorder (Γs � 1), we recover the familiar results [43,44] for a disordered wire:
δG/G0 = 1

3(1 − 2/β), VarG/G0 = 2
15β

−1 (indicated by arrows in Fig. 1). In the
opposite limit Γs � 1, we find δG = 0, VarG/G0 = 1

4β
−1 — as in Sec. 2.2.1 [cf.

Eqs. (2.2.14) and (2.2.17)].

2.2.3 Numerical simulations

To test our results we have performed numerical simulations, using the recur-
sive Green’s function method of Ref. [29], which is described in Sec. 2.1.5:. The
sample geometry consisted of a rectangle with length L = 142d, and width
W = 71d (corresponding to N = 30 propagating modes). We chose Ud = 0.6u0,
corresponding to L/l = 0.9. The transfer matrix ML was computed numerically,
and then multiplied with the transfer matrices M1 and M2 of the two barriers
(which we constructed analytically, given the mode-independent tunnel proba-
bilities Γ1 and Γ2). We took Γ2 = 0.15 and varied Γ1 between 0.05 and 0.5. These
parameter values were chosen in order to be close to the regime ΓiL� l� L/Γi,
W � L/Γi in which disorder is expected to cause strong mode-mixing, without
having a large effect on the average conductance (the regime studied in Sec.
2.2.1).

In Fig. 2-11 we show the comparison between theory and simulation. The
solid curve is VarG/G0 computed from 2250 realizations of the disorder po-
tential. The dotted curve is the theoretical prediction from Eq. (2.2.19) for the
parameter values of the simulation (and for β = 1, since there was no magnetic
field). There are no adjustable parameters. The agreement is quite reasonable.
It is likely that the remaining discrepancy is due to the fact that the theoretical
condition NΓi � 1 was not well met in the simulation (where NΓ2 = 4.5). The
value N = 30 of the simulation is already at the limit of our computational ca-
pabilities and we are not able to provide a more stringent numerical test of the
theory.
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Figure 2-11. Solid curve: variance of the conductance from a numerical simulation of an

ensemble of disordered double-barrier junctions (L/W = 2, N = 30, s = 0.9), as a function of

the ratio Γ1/Γ2, with Γ2 = 0.15 held constant. There is no magnetic field (β = 1). The dashed

curve is the prediction from Eq. (2.2.19) . There are no adjustable parameters.

Appendix A: Isotropically distributed transfer matri-
ces commute

We wish to show that the probability distribution p(M) of a prod-
uct M = M1M2M3 · · · of transfer matrices is independent of the order of the
matrix product, under the assumption that the matrices Mi are independently
distributed with isotropic distributions pi. Since p = p1 ∗ p2 ∗ p3 · · ·, it is
sufficient to show that the convolution

pi ∗ pj(M) =
∫
dMj pi(MM−1

j )pj(Mj) (A.1)

of any two isotropic distributions commutes.
By definition, the distribution p(M) is isotropic if it is only a function of the

eigenvalues of the product MM†. This implies that p(M) = p(MT). (The super-
scripts † and T denote, respectively, the hermitian conjugate and the transpose
of a matrix.) As shown by Mello et al. [6, 7], the convolution of two isotropic
distributions is again isotropic. Hence

pi ∗ pj(M) = pi ∗ pj(MT)

=
∫
dMj pi(MTM−1

j )pj(Mj)

=
∫
dMj pi(MT

j
−1M)pj(MT

j )
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=
∫
dMi pi(Mi)pj(MM−1

i )

= pj ∗ pi(M), (A.2)

which proves the commutativity of the convolution of isotropic distributions.

Appendix B: Dyson-Mehta formula for the circular en-
semble

The variance VarA of a linear statistic A = ∑N
n=1 a(φn) on the eigenphases is

given by a double integral,

VarA = −
∫ 2π

0
dφ

∫ 2π

0
dφ′ a(φ)a(φ′)K(φ,φ′), (B.1)

over the two-point correlation function

K(φ,φ′) = 〈ρ(φ)〉〈ρ(φ′)〉 − 〈ρ(φ)ρ(φ′)〉. (B.2)

The brackets 〈· · ·〉 denote an average over the circular ensemble, and

ρ(φ) =
N∑
n=1

δ(φ−φn) (B.3)

is the microscopic density of eigenphases. In this appendix we computeK(φ,φ′)
in the large N-limit, using the method of functional derivatives of Ref. [45]. This
leads to Eq. (2.2.12) for VarA, which is the analogue for the circular ensemble
of the Dyson-Mehta formula for the Gaussian ensemble [40]. The analogy is
straightforward, but we have not found it in the literature [41].

We consider a generalized circular ensemble, with probability distribution

PV({φn}) = C exp


−β


∑
i<j

U(φi −φj)+
N∑
i=1

V(φi)




 , (B.4)

C−1 =
∫ 2π

0
dφ1

∫ 2π

0
dφ2 · · ·

∫ 2π

0
dφN PV({φn}), (B.5)

U(φ) = − ln |2 sin 1
2φ|. (B.6)

The “potential” V(φ) is arbitrary. If V ≡ 0, Eq. (B.4) is the same as the distri-
bution (2.2.10) of the circular ensemble. The brackets 〈· · ·〉V denote an average
with the V -dependent distribution (B.4). Following Ref. [45], we express the two-
point correlation function as a functional derivative of the density with respect
to the potential,

K(φ,φ′) = 1
β
δ〈ρ(φ)〉V
δV(φ′)

. (B.7)
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The functional derivative can be computed in the large-N limit from the rela-
tionship [46]

−
∫ 2π

0
dφ′U(φ−φ′)〈ρ(φ′)〉V = V(φ)+ const. (B.8)

Corrections to Eq. (B.8) are smaller by a factor 1/N. The additive constant is
obtained from the normalization

∫
dφ 〈ρ(φ)〉V = N.

Fourier transformation of Eq. (B.8) yields

− π|n|〈ρn〉V = Vn, n ≠ 0. (B.9)

We have defined the Fourier coefficients

fn =
∫ 2π

0
dφ einφf(φ), (B.10)

and we have used that Un = π/|n| for n ≠ 0. From Eqs. (B.7) and (B.8) we
see that K(φ,φ′) = K(φ − φ′) depends on the difference φ − φ′ only, and is
independent of V . The Fourier coefficients of K(φ) are

Kn = −|n|/πβ, (B.11)

for n ≠ 0. Since K0 = 0 by definition, Eq. (B.11) holds in fact for all n. Inversion
of the Fourier transform yields the correlation function

K(φ) = − 1
π2β

d2

dφ2
ln
∣∣∣sin 1

2φ
∣∣∣ , (B.12)

which has an integrable singularity at φ = 0.
For φ ≠ 0, K(φ) = [4π2β sin2(φ/2)]−1. Substitution of Eq. (B.12) into Eq. (B.1)
gives the required analogue of the Dyson-Mehta formula for the large N-limit of
the variance of a linear statistic,

VarA = − 1
π2β

∫ 2π

0
dφ

∫ 2π

0
dφ′

(
da(φ)

dφ

)(
da(φ′)

dφ′

)
ln
∣∣∣∣sin

φ−φ′
2

∣∣∣∣
= 1

π2β

∞∑
n=1

n|an|2. (B.13)

Appendix C: Moment expansion of the DMPK equation

Mello and Stone [44] have derived from the DMPK equation (1.1.6) a hierarchy of
differential equations for the moments of Tq =

∑N
n=1 T

q
n . The hierarchy closes

order by order in the series expansion

〈T p〉 = Npfp,0(s)+Np−1fp,1(s)+Np−2fp,2(s)+ . . . , (C.1)

〈T pT2〉 = Np+1gp+1,0(s)+Npgp+1,1(s)+Np−1gp+1,2(s)+ . . . , (C.2)

〈T pT3〉 = Np+1hp+1,0(s)+Nphp+1,1(s)+Np−1hp+1,2(s)+ . . . , (C.3)

〈T pT 2
2 〉 = Np+2lp+2,0(s)+Np+1lp+2,1(s)+Nplp+2,2(s)+ . . . , (C.4)
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where we have defined T ≡ T1. The functions given above suffice to calculate
expectation values up to second moments of the conductance. To that end,
one needs to determine 〈T p〉 down to O(Np−2), 〈T pT2〉 down to O(Np), and
〈T pT3〉 and 〈T pT 2

2 〉 only to the highest occurring order. The resulting set of
differential equations we have to solve is [44]

f ′p,0(s)+ pfp+1,0(s) = 0, (C.5)

g′p,0(s)+ (p + 3)gp+1,0(s) = 2fp+1,0(s), (C.6)

f ′p,1(s)+ pfp+1,1(s) = (1− 2/β)
[
f ′p,0(s)+ pgp,0(s)

]
, (C.7)

l′p,0(s)+ (p + 6)lp+1,0(s) = 4gp+1,0(s), (C.8)

h′p,0(s)+ (p + 5)hp+1,0(s) = 6gp+1,0(s)− 3lp+1,0(s), (C.9)

g′p,1(s)+ (p + 3)gp+1,1(s) = 2fp+1,1(s)− (1− 2/β)
[
−g′p,0(s)+ 2gp,0(s)

−4hp,0(s)− (p − 1)lp,0(s)
]
, (C.10)

f ′p,2(s)+ pfp+1,2(s) = (1− 2/β)
[
f ′p,1(s)+ pgp,1(s)

]
+2β−1p(p − 1)

[
gp−1,0(s)− hp−1,0(s)

]
. (C.11)

We need to determine the initial conditions f(0), g(0), h(0), and l(0) from
the distribution function (2.2.10) for the eigenphases in the circular ensemble.
In the large-N limit, the linear statistic Tq on the eigenphases has a Gaussian
distribution wit h a width of order N0. Therefore, if we write Tq = 〈Tq〉 + δTq,
we know that 〈Tq〉 = O(N), 〈δTq〉 = 0, 〈(δTq)2n+1〉 = O(N−1) and 〈(δTq)2n〉 =
O(N0). This implies that, for s → 0,

〈T p〉 = 〈T 〉p + 1
2p(p − 1)〈T 〉p−2〈(δT )2〉 + O(Np−4), (C.12)

〈T pT2〉 = 〈T 〉p〈T2〉 + O(Np−1), (C.13)

〈T pT3〉 = 〈T 〉p〈T3〉 + O(Np−1), (C.14)

〈T pT 2
2 〉 = 〈T 〉p〈T2〉2 +O(Np). (C.15)

The average 〈(δT )2〉 is just VarG/G0, which is given by Eq. (2.2.15),

〈(δT )2〉 = β−1b2ρ−4 +O(N−1). (C.16)

The other averages in Eq. (C.12-C.15) follow from

〈Tq〉 = N
2π

∫ 2π

0
dφ(a+ b cosφ)−q. (C.17)

The resulting initial conditions read

fp,0(0) = ρ−p, fp,1(0) = 0, fp,2(0) = 1
2β

−1p(p − 1)ρ−(p+2)b2, (C.18)

gp,0(0) = aρ−(p+2), gp,1(0) = 0, (C.19)

hp,0(0) = ρ−(p+2)(3
2a

2ρ−2 − 1
2), lp,0(0) = a2ρ−(p+4). (C.20)
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The set of differential equations (C.5) can be solved by substitution of the
following Ansatz for the p-dependence (adapted from Ref. [12]):

xp,l(s) = (s + ρ)−(p+2l+n)[p2ϕ(s)+ pχ(s) +ψ(s)], (C.21)

where n = 0 if x is f , n = 3 if x is g, and n = 6 if x is h or x is l.The mean and
variance of the conductance, to order N−1, then follow from

〈G/G0〉 = Nf1,0(s)+ f1,1(s), (C.22)

VarG/G0 = N2[f2,0(s)− f1,0(s)2]+N[f2,1(s)− 2f1,0(s)f1,1(s)]+
f2,2(s)− 2f1,0(s)f1,2(s)− f1,1(s)2. (C.23)

The results are Eqs. (2.2.18) and (2.2.19).
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3 Reflectionless tunneling through a
double-barrier NS junction

3.1 Introduction

Reflectionless tunneling is a novel quantum interference effect which occurs
when dissipative normal current is converted into dissipationless supercurrent
at the interface between a normal metal (N) and a superconductor (S) [1]. Experi-
mentally, the effect is observed as a peak in the differential conductance around
zero voltage or around zero magnetic field [2]. Its name refers to the fact that,
for full phase coherence, the Andreev-reflected quasiparticle can tunnel through
the potential barrier at the NS interface without suffering reflections. (The po-
tential barrier can be the insulator (I) in an NIS junction, or the Schottky barrier
in a semiconductor–superconductor junction.) Application of a voltage or mag-
netic field destroys the phase coherence between electrons and holes, and thus
reduces the conductance of the junction. We now have a good theoretical under-
standing of the effect, based on a combination of numerical [3,4], and analytical
work [5–10]. The basic requirement for reflectionless tunneling is that the nor-
mal region has a resistance which is larger than the resistance of the interface.
In that case the disorder is able to open a fraction of the tunneling channels,
i.e. it induces the appearance of transmission eigenvalues close to one [10]. As
a result of these open channels, the resistance has a linear dependence on the
transparency of the interface, instead of the quadratic dependence expected for
Andreev reflection [11] (which is a two-particle process).

The purpose of this work is to present a study of reflectionless tunneling in
its simplest form, when the resistance of the normal metal is due to a second
tunnel barrier, in series with the barrier at the NS interface. This allows an exact
calculation, which shows many of the features of the more complicated case
when the resistance of the normal region is due to disorder. Furthermore, the
double-barrier geometry provides an experimentally realizable model system,
for example in tunneling from an STM into a superconductor via a metal particle
[12].

The outline of this chapter is as follows. In Section 3.2 we consider the
problem of a NI1NI2S junction without disorder. We compute the resistance of
the junction as a function of the transmission probabilities per mode Γ1 and Γ2
of the two barriers. The resistance at fixed Γ2 shows a minimum as a function of
Γ1 when Γ1 ≈

√
2Γ2 ≡ Γ . The resistance in the minimum depends linearly on 1/Γ ,

in contrast to the quadratic dependence in the case of a single barrier. In Section
3.3 we apply a recent scaling theory [9], to find the influence on the resistance
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minimum of disorder in the region between the barriers (length L, mean free
path l). The resistance minimum persists as long as l >∼ ΓL. In the diffusive
regime (l � L) our results agree with a previous Green’s function calculation
by Volkov, Zaitsev, and Klapwijk [7]. The analytical results are supported by
numerical simulations, using the recursive Green’s function technique [13]. We
conclude in Section 3.4.

3.2 NINIS junction without disorder

We consider a NI1NI2S junction, where N = normal metal, S = superconductor,
and Ii = insulator or tunnel barrier (see inset of Fig. 2-10). The transmission
probability per mode of Ii is denoted by Γi. For simplicity we neglect the mode-
dependence of Γi. In this section, we assume ballistic motion between the bar-
riers. (The effect of disorder in the normal region is considered in Sec. 3.3.) A
straightforward calculation yields the transmission probabilities Tn of the two
barriers in series,

Tn = (a+ b cosφn)−1, (3.2.1)

where

a = 1+ 2− Γ1 − Γ2
Γ1Γ2

, (3.2.2)

b = 2 (1− Γ1)1/2(1− Γ2)1/2
Γ1Γ2

, (3.2.3)

and φn is the phase accumulated between the barriers by mode n = 1,2, · · ·N
(with N the number of propagating modes at the Fermi level). If we substitute
Γi = 1/cosh2αi (αi ≥ 0), the coefficients a and b can be rewritten as

a = 1
2 + 1

2 cosh 2α1 cosh 2α2, (3.2.4)

b = 1
2 sinh 2α1 sinh 2α2. (3.2.5)

Since the transmission matrix t is diagonal, the transmission probabilities
Tn are identical to the eigenvalues of tt†. We use the general relationship be-
tween the conductance GNS ≡ GNINIS of the NINIS junction and the transmission
eigenvalues of the normal region [14],

GNS = 4e2

h

N∑
n=1

T 2
n

(2− Tn)2
, (3.2.6)

which is the analogue of the Landauer formula

GN = 2e2

h

N∑
n=1

Tn, (3.2.7)
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for the conductance GN ≡ GNININ in the normal state. We assume that L� λF (λF

is the Fermi wavelength) and NΓi� 1, so that the conductance is not dominated
by a single resonance. In this case, the phases φn are distributed uniformly in
the interval (0,2π) and we may replace the summations in Eqs. (3.2.6), (3.2.7)
by integrals over φ:

∑N
n=1 f(φn)→ (N/2π)

∫ 2π
0 dφf(φ). The result is

GNS = 4e2N
h

cosh 2α1 cosh 2α2(
cosh2 2α1 + cosh2 2α2 − 1

)3/2 , (3.2.8)

GN = 4e2N
h
(cosh 2α1 + cosh 2α2)−1. (3.2.9)

These expressions are symmetric in the indices 1 and 2: it does not matter which
of the two barriers is closest to the superconductor.

In the same way we can compute the entire distribution of the transmission
eigenvalues, ρ(T) ≡ ∑

n δ(T − Tn) → (N/2π)
∫ 2π
0 dφδ(T − T(φ)). Substituting

T(φ) = (a+ b cosφ)−1 from Eq. (3.2.1), we find

ρ(T) = N
πT

(
b2T 2 − (aT − 1)2

)−1/2
. (3.2.10)

Figure 3-1. Dependence of the resistances RN and RNS of ballistic NININ and NINIS structures,

respectively, on barrier transparancy Γ1, while transparancy Γ2 = 0.1 is kept fixed [computed

from Eqs. (3.2.8) and (3.2.9)]. The inset shows the NINIS structure considered.

In Fig. 3-1 we plot the resistance RN = 1/GN and RNS = 1/GNS, following from
Eqs. (3.2.8) and (3.2.9). Notice that RN follows Ohm’s law,

RN = h
2Ne2

(1/Γ1 + 1/Γ2 − 1), (3.2.11)
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as expected from classical considerations. In contrast, the resistance RNS has a
minimum if one of the Γ ’s is varied while keeping the other fixed. This resistance
minimum cannot be explained by classical series addition of barrier resistances.
If Γ2 � 1 is fixed and Γ1 is varied, as in Fig. 3-1, the minimum occurs when
Γ1 =

√
2Γ2. The minimal resistance Rmin

NS is of the same order of magnitude as
the resistance RN in the normal state at the same value of Γ1 and Γ2. (For Γ2 � 1,
Rmin

NS = 1.52RN) In particular, we find that Rmin
NS depends linearly on 1/Γi, whereas

for a single barrier RNS ∝ 1/Γ 2.
The linear dependence on the barrier transparency shows the qualitative sim-

ilarity of a ballistic NINIS junction to a disordered NIS junction. To illustrate
the similarity, we compare in Fig. 3-2 the densities of transmission eigenvalues
throught the normal region. The left panel is for an NIS junction (computed
using the results of Ref. [9]), the right panel is for an NINIS junction (computed
from Eq. (3.2.10)). In the NIS junction, disorder leads to a bimodal distribution
ρ(T), with a peak near zero transmission and another peak near unit transmiss-
sion (dashed curve). A similar bimodal distribution appears in the ballistic NINIS
junction, for approximately equal transmission probabilities of the two barriers.
There are also differences between the two cases: The NIS junction has a uni-
modal ρ(T) if L/l < 1/Γ , while the NINIS junction has a bimodal ρ(T) for any
ratio of Γ1 and Γ2. In both cases, the opening of tunneling channels, i.e., the ap-
pearance of a peak in ρ(T) near T = 1, is the origin for the 1/Γ dependence of
the resistance.

3.3 Effects of disorder

Let us now investigate what happens to the resistance minimum if the region of
length L between the tunnel barriers contains impurities, with elastic mean free
path l. We denote s ≡ L/l. When introducing disorder, it is necessary to consider
ensemble-averaged quantities. To calculate the ensemble-averaged conductance
〈GNS〉, we need to know the density ρ of the transmission eigenvalues Tn as a
function of s. It is convenient to work with the parameterization

Tn = 1/ cosh2xn, xn ≥ 0. (3.3.1)

The density of the xn’s is defined by ρ(x, s) ≡ 〈∑n δ(x − xn)〉. From Eq. (3.2.1)
we know that, for s = 0 (no disorder),

ρ(x,0) = N
∫ 2π

0

dφ
2π

δ(x − arccosh
√
a+ b cosφ)

= N
π

sinh 2x
(
b2 − (a− cosh2x)2

)− 1
2 , (3.3.2)

for arccosh
√
a− b ≡ xmin ≤ x ≤ xmax ≡ arccosh

√
a+ b.
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Figure 3-2. Density of normal-state transmission eigenvalues for an NS junction with a po-

tential barrier at the interface (transmission probability Γ = 0.4). The left panel (a) shows the

disorder-induced opening of tunneling channels in an NIS junction (solid curve: s = 0.04; dot-

ted: s = 0.4; dashed: s = 5; where s ≡ L/l). The right panel (b) shows the opening of channels

by a second tunnel barrier (transparancy Γ ′) in an NINIS junction (solid curve: Γ ′ = 0.95; dot-

ted: Γ ′ = 0.8; dashed: Γ ′ = 0.4). The curves in (a) are computed from Ref. [9], the curves in (b)

from Eq. (3.2.10). Notice the similarity of the dashed curves.

For s > 0 we obtain the density ρ(x, s) from the integro-differential equation
[15]

∂
∂s
ρ(x, s) = − 1

2N
∂
∂x
ρ(x, s)

∂
∂x

∫∞
0

dx′ρ(x′, s) ln | sinh2x − sinh2x′|, (3.3.3)

which is the large N-limit of the scaling equation that one obtains after multiply-
ing the DMPK equation (1.1.6) on both sides with

∑N
n=1 δ(x−xn) and integrating

over x1, x2, . . . , xN . This equation describes the evolution of ρ(x, s) when an
infinitesimal slice of disordered material is added. With initial condition (3.3.2)
it therefore describes a geometry where all disorder is on one side of the two
tunnel barriers, rather than in between. In fact, only the total length L of the
disordered region matters, and not the location relative to the barriers. The
argument is similar to that in Ref. [18]. The total transfer matrix M of the nor-
mal region is a product of the transfer matrices of its constituents (barriers and
disordered segments): M = M1M2M3 · · ·. The probability distribution of M is
given by the convolution p(M) = p1 ∗ p2 ∗ p3 ∗ · · · of the distributions pi of
transfer matrices Mi [this convolution is defined in Eq. (2.1.5)]. It is shown in
Appendix A of Chapter 2 that the convolution of the pi commutes, if for all
parts i of the system, pi(Mi) is a function of the eigenvalues of MiM

†
i only. The
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distributions pi are then called isotropic. A disordered segment (length L, width
W ) has an isotropic distribution if L� W . A planar tunnel barrier does not mix
the modes, so a priori it does not have an isotropic distribution. However, if the
mode-dependence of the transmission probabilities is neglected (as we do here),
it does not make a difference if we replace its distribution by an isotropic one.
The commutativity of the convolution of isotropic distributions implies that the
location of the tunnel barriers with respect to the disordered region does not
affect ρ(x, s). The systems in Figs. 3-3a, b, and c then have identical statistical
properties.

S

L

N

Γ2Γ1

SN

L

SN

1 2L L

a

b

c

Figure 3-3. The systems a,b, and c are statistically equivalent, if the transfer matrices of each

of the two barriers (solid vertical lines) and the disordered regions (shaded areas, L1 + L2 = L
in case b) have isotropic distributions; in that case, the position of the disorder with respect

to the barriers does not affect the eigenvalue density ρ(x, s).

Once ρ(x, s) is known, the conductances 〈GNS〉 and 〈GN〉 can be determined
from

〈GNS〉 = 4e2

h

∫∞
0

dx
ρ(x, s)

cosh2 2x
, (3.3.4)

〈GN〉 = 2e2

h

∫∞
0

dx
ρ(x, s)
cosh2x

, (3.3.5)

where we have substituted Eq. (3.3.1) into Eqs. (3.2.6), (3.2.7). In Ref. [18] a
general solution to the evolution equation was obtained for arbitrary initial con-
dition. It was shown that Eq. (3.3.3) can be mapped onto Euler’s equation of
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hydrodynamics
∂
∂s
U(ζ, s)+ U(ζ, s) ∂

∂ζ
U(ζ, s) = 0, (3.3.6)

by means of the substitution

U(ζ, s) = sinh 2ζ
2N

∫∞
0

dx′
ρ(x′, s)

sinh2 ζ − sinh2x′
. (3.3.7)

Here, U ≡ Ux+ iUy and ζ ≡ x+ iy . Eq. (3.3.6) describes the velocity field U(ζ, s)
of a 2D ideal fluid at constant pressure in the x-y plane. Its solution is1

U(ζ, s) = U0(ζ − sU(ζ, s)), (3.3.8)

in terms of the initial value U0(ζ) ≡ U(ζ, 0). The probability distribution ρ(x, s)
follows from the velocity field by inversion of Eq. (3.3.7),

ρ(x, s) = 2N
π
Uy(x − iε, s), (3.3.9)

where ε is a positive infinitesimal.
In our case, the initial velocity field [from Eqs. (3.3.2) and (3.3.7)] is

U0(ζ) = −1
2 sinh 2ζ

[
(cosh2 ζ − a)2 − b2

]− 1
2 . (3.3.10)

The resulting density (3.3.9) is plotted in Fig. 3-4 for Γ1 = Γ2 ≡ Γ and several
disorder strengths. The region near x = 0 is of importance for the conductance
(since x near zero corresponds to near-unit transmission). The number Nopen ≡
ρ(0, s) is an estimate for the number of transmission eigenvalues close to 1 (so-
called “open channels” [19]). In the absence of disorder, Nopen is non-zero only
if Γ1 ≈ Γ2 (then a − b = 1 ⇒ xmin = 0). From Eq. (3.3.2) we find Nopen = NΓ/π
for s = 0 and Γ1 = Γ2 ≡ Γ � 1. Adding disorder reduces the number of open
channels. If Γ1 ≠ Γ2 there are no open channels for s = 0 (xmin > 0). Disorder
then has the effect of increasing Nopen, such that Nopen ≈ N/s if (Γ1 + Γ2)s � 1.
The disorder-induced opening of channels was studied in Refs. [9, 10] for the
case of a single tunnel barrier.

To test our analytical results for the eigenvalue density ρ(x, s), we have car-
ried out numerical simulations, similar to those reported in Ref. [9]. The sample
was modeled by a tight-binding Hamiltonian on a square lattice with lattice con-
stant a. The tunnel barriers were accounted for by assigning a non-random
potential energy UB = 2.3EF to a single row of sites at both ends of the lattice,
which corresponds to a mode averaged barrier transparency Γ1 = Γ2 = 0.18. The
Fermi energy was chosen at 1.5u0, with u0 = �2/2ma2. Disorder was intro-
duced by randomly assigning a value between ±1

2UD to the on-site potential of
1The implicit equation (3.3.8) has multiple solutions in the entire complex plane; we need

the solution for which both ζ and ζ − sU(ζ, s) lie in the strip between the lines y = 0 and
y = −π/2.
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Figure 3-4. Eigenvalue density ρ(x, s) as a function of x (in units of s ≡ L/l) for Γ1 = Γ2 = 0.2.

Curves a,b,c,d, and e are for s = 0.5,2,5,20,100, respectively. In the special case of equal

tunnel barriers, open channels exist already in the absence of disorder.

the lattice points between the barriers. The disorder strength UD was varied
between 0 and 1.5u0, corresponding to s between 0 and 11.7. We considered
geometries with both a square disordered region (285 × 285 sites, N = 119)
and a rectangular one (285 × 75 sites, N = 31), to test the geometry depen-
dence of our results. In Fig. 3-5, we compare the integrated eigenvalue density
ν(x, s) ≡ N−1

∫ x
0 dx′ρ(x′, s) with the numerical results.

The quantity ν(x, s) follows directly from our simulations, by plotting the
xn’s in ascending order versus n/N ≡ ν. We want to sample ν(x, s) at many
points along the x-axis, so we need N large. Since the xn’s are self-averaging
(fluctuations are of the order of 1/N), it is not necessary to average over many
samples. The data shown in Fig. 3-5 are from a single realization of the impurity
potential. There is good agreement with the analytical results. No geometry
dependence is observed, which indicates that the restriction L� W of Eq. (3.3.3)
can be relaxed to a considerable extent.

Using Eqs. (3.3.4) and (3.3.7), the average conductance 〈GNS〉 can be directly
expressed in terms of the velocity field,

〈GNS〉 = 2Ne2

h
lim

ζ→−iπ/4

∂
∂ζ
U(ζ, s). (3.3.11)

For ζ → −iπ/4, U → iUy , Uy > 0. The implicit solution (3.3.8) then takes the
form

φ
√
(2a+ sinφ− 1)2 − 4b2 = 2s cosφ, (3.3.12)
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Figure 3-5. Comparison between theory and simulation of the integrated eigenvalue density

for Γ1 = Γ2 = 0.18. The labels a,b, c indicate, respectively, s = 0,3,11.7. Solid curves are from

Eq. (3.3.8); data points are the xn’s from the simulation plotted in ascending order versus n/N .

Filled data points are for a square geometry, open points are for an aspect ratio L/W = 3.8.

where φ ≡ 2sUy ∈ [0, π/2]. We now use that

∂
∂ζ
U(ζ, s)|ζ=− iπ

4
= −[ ∂

∂s
U(− iπ

4
, s)]/U(− iπ

4
, s) (3.3.13)

[see Eq. (3.3.6)]. Combining Eqs. (3.3.11) and (3.3.12) we find

〈GNS〉 = 2Ne2

h
(s + 1/Q)−1, (3.3.14)

where the effective tunnel rate Q is given in terms of the angle φ in Eq. (3.3.12)
by

Q = φ
s cosφ

(
sinφ+ φ

2

4s2
[sinφ+ (1− 2/Γ1)(1− 2/Γ2)]

)
. (3.3.15)

Eqs. (3.3.12)–(3.3.15) completely determine the conductance of a double-barrier
NS-junction containing disorder.

In Fig. 3-6, we plot 〈RNS〉 for several values of the disorder, keeping Γ2 = 0.1
fixed and varying the transparency of barrier 1. For weak disorder (Γ2s � 1),
the resistance minimum is retained, but its location moves to larger values of
Γ1. On increasing the disorder, the minimum becomes shallower and eventually
disappears. In the regime of strong disorder (Γ2s � 1), the resistance behaves
nearly Ohmic.
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Figure 3-6. Dependence of the ensemble-averaged resistance 〈RNS〉 for a disordered NINIS

junction on barrier transparancy Γ1, while Γ2 = 0.1 is kept fixed [computed from Eqs. (3.3.14)

and (3.3.15)]. Curves a,b, c, d are for s = 0,2,7,30, respectively. The resistance minimum

persists for small disorder.

We stress that these results hold for arbitrary s ≡ L/l, all the way from
the ballistic into the diffusive regime. Volkov, Zaitsev, and Klapwijk [7] have
computed 〈GNS〉 in the diffusive limit s � 1. In that limit our Eqs. (3.3.12) and
(3.3.15) take the form:

s cosφ
φ

= 1
Γ1

√√√√1−
( φ
Γ2s

)2

+ 1
Γ2

√√√√1−
( φ
Γ1s

)2

, (3.3.16)

1
Q
=

2∑
i=1

1
Γi

[
1−

( φ
Γis

)2
]−1/2

, (3.3.17)

in precise agreement with Ref. [7]. Nazarov’s circuit theory [10], which is equiv-
alent to the Green’s function theory of Ref. [7], also leads to this result for 〈GNS〉
in the diffusive regime.

Two limiting cases of Eqs. (3.3.16) and (3.3.17) are of particular interest. For
strong barriers, Γ1, Γ2 � 1, and strong disorder, s � 1, one has the two asymp-
totic formulas

〈GNS〉 = 2Ne2

h
Γ 2
1 Γ 2

2(
Γ 2
1 + Γ 2

2

)3/2 , if Γ1, Γ2 � 1/s, (3.3.18)

〈GNS〉 = 2Ne2

h
(s + 1/Γ1 + 1/Γ2)−1, if Γ1, Γ2 � 1/s. (3.3.19)
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Eq. (3.3.18) coincides with Eq. (3.2.8) in the limit α1, α2 � 1 (recall that Γi ≡
1/ cosh2αi). This shows that the effect of disorder on the resistance mini-
mum can be neglected as long as the resistance of the junction is dominated
by the barriers. In this case 〈GNS〉 depends linearly on Γ1 and Γ2 only if Γ1 ≈
Γ2. Eq. (3.3.19) shows that if the disorder dominates, 〈GNS〉 has a linear Γ -
dependence regardless of the relative magnitude of Γ1 and Γ2.

3.4 Conclusions

In summary, we have derived an expression for the conductance of a ballistic
NINIS junction in the limit NΓ � 1 that the tunnel resistance is much smaller
than h/e2. In this regime the double-barrier junction contains a large number
of overlapping resonances, so that in the normal state the resistance depends
monotonically on 1/Γ . In contrast, the NINIS junction shows a resistance min-
imum when one of the barrier transparencies is varied while the other is kept
fixed. The minimal resistance (at Γ1 ' Γ2 ≡ Γ ) is proportional to 1/Γ , instead of
the 1/Γ 2 dependence expected for two-particle tunneling into a superconductor.
This is similar to the reflectionless tunneling which occurs in an NIS junction.
Using the results of the ballistic junction, we have described the transition to a
disordered NINIS junction by means of an evolution equation for the transmis-
sion eigenvalue density [9]. We found that the resistance minimum is unaffected
by disorder, as long as l� L/Γ , i.e., as long as the barrier resistance dominates
the junction resistance. As the disorder becomes more dominant, a transition to
a monotonic Γ -dependence takes place. In the limit of diffusive motion between
the barriers, our results agree with Ref. [7].

Throughout this chapter we have assumed zero temperature, zero magnetic
field, and infinitesimal applied voltage. Each of these quantities is capable of de-
stroying the phase coherence between the electrons and the Andreev-reflected
holes, which is responsible for the resistance minimum. As far as the temper-
ature T and voltage V are concerned, we require kBT, eV � �/τdwell for the
appearance of a resistance minimum, where τdwell is the dwell time of an elec-
tron in the region between the two barriers. For a ballistic NINIS junction we
have τdwell ∼ L/vFΓ , while for a disordered junction τdwell ∼ L2/vFΓ l is larger by
a factor L/l. It follows that the condition on temperature and voltage becomes
more restrictive if the disorder increases, even if the resistance remains domi-
nated by the barriers. As far as the magnetic field B is concerned, we require
B � h/eS (with S the area of the junction perpendicular to B), if the motion
between the barriers is diffusive. For ballistic motion the trajectories enclose no
flux, so no magetic field dependence is expected.

A possible experiment to verify our results might be scanning tunneling mi-
croscopy of a metal particle on top of a superconducting substrate [12]. The
metal-superconductor interface has a fixed tunnel probability Γ2. The probabil-
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ity Γ1 for an electron to tunnel from STM to particle can be controlled by varying
the distance. (Volkov has recently analyzed this geometry in the regime that the
motion from STM to particle is diffusive rather than by tunneling [20].) Another
possibility is to create an NINIS junction using a two-dimensional electron gas in
contact with a superconductor. The tunnel barriers could then be implemented
by means of two gate electrodes. In this way both transparancies might be tuned
independently.
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4 Giant backscattering peak in
angle-resolved Andreev reflection

4.1 Enhanced backscattering

Coherent backscattering is a fundamental effect of time-reversal symmetry on
the reflection of electrons by a disordered metal [1, 2]. The angular reflection
distribution has a narrow peak at the angle of incidence, due to the constructive
interference of time-reversed sequences of multiple scattering events. At zero
temperature, the peak is twice as high as the background. Coherent backscat-
tering manifests itself in a transport experiment as a small negative correction
of order G0 = 2e2/h to the average conductance G of the metal (weak local-
ization [3]). Here we report the theoretical prediction, supported by numerical
simulations, of a giant enhancement of the backscattering peak if the normal
metal (N) is in contact with a superconductor (S). At the NS interface an electron
incident from N is reflected either as an electron (normal reflection) or as a hole
(Andreev reflection). Both scattering processes contribute to the backscattering
peak. Normal reflection contributes a factor of two. In contrast, we find that
Andreev reflection contributes a factor G/G0, which is � 1.

If the backscattering peak in an NS junction is so large, why has it not been
noticed before in a transport experiment? The reason is a cancellation in the
integrated angular reflection distribution which effectively eliminates the con-
tribution from enhanced backscattering to the conductance of the NS junction.
However, this cancellation does not occur if one uses a ballistic point contact
to inject the current into the junction. We discuss two configurations, both of
which show an excess conductance due to enhanced backscattering which is a
factor G/G0 greater than the weak-localization correction.

We consider a disordered normal-metal conductor (length L, width W , mean
free path l, with N propagating transverse modes at the Fermi energy EF) which
is connected at one end to a superconductor (see inset of Fig. 1). An electron
(energy EF) incident from the opposite end in mode m is reflected into some
other mode n, either as an electron or as a hole, with probability amplitudes
r ee
nm and r he

nm, respectively. The N ×N matrices r ee and r he are given by [4]

r ee = s11 − s12s
∗
22(1+ s22s

∗
22)

−1s21, (4.1.1)

r he = −is∗12(1+ s22s
∗
22)−1s21. (4.1.2)

The sij ’s are submatrices of the scattering matrix S of the disordered normal
region,

S =
( s11 s12s21 s22

)
=
(
u 0
0 v

)( −√R
√

T√
T

√
R

)(
u′ 0
0 v′

)
,
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where u,v,u′, v′ are N × N unitary matrices, R = 1 − T, and T is a diagonal
matrix with the transmission eigenvalues T1, T2, . . . TN on the diagonal.

We first consider zero magnetic field (B = 0). Time-reversal symmetry then
requires that S is a symmetric matrix, hence u′ = uT, v′ = vT. Eq. (4.1.1)
simplifies to

r ee = −2u
√

1− T
2− T

uT, r he = −iu∗
T

2− T
uT. (4.1.3)

We seek the average reflection probabilities 〈|rnm|2〉, where 〈· · ·〉 denotes an
average over impurity configurations. Following Mello, Akkermans, and Shapiro
[5], we assume that u is uniformly distributed over the unitary group. This “iso-
tropy assumption” is an approximation which ignores the finite time scale of
transverse diffusion. The reflection probabilities contain a product of four u’s,
which can be averaged by means of the formula [6]

〈uniumju∗nku∗ml〉 = (N2 − 1)−1(δikδjl + δnmδilδjk)−
(N3 −N)−1(δilδjk + δnmδikδjl). (4.1.4)

The result is (with the definition τk ≡ Tk(2− Tk)−1)

〈|r ee
nm|2〉 = δnm + 1

N2 +N
(
N − 〈∑kτ2

k〉
)
, (4.1.5)

〈|r he
nm|2〉 = δnm + 1

N2 +N 〈
∑
kτ2
k〉 +

Nδnm − 1
N3 −N 〈∑k≠k′τkτk′〉.

(4.1.6)

In the metallic regime N � L/l � 1. In this large-N limit we may factorize
〈∑k≠k′ τkτk′〉 into 〈∑k τk〉2, which can be evaluated using [7]

〈∑kf (Tk)〉 = (Nl/L)∫∞0 dx f(1/ cosh2x). (4.1.7)

The result for normal reflection is

〈|r ee
nm|2〉 = (1+ δnm)N−1(1− 1

2l/L). (4.1.8)

Off-diagonal (n ≠m) and diagonal (n =m) reflection differ by precisely a factor
of two, just as in the normal state [5]. In contrast, for Andreev reflection we find

〈|rhe
nm|2〉 = 1

2l/NL (n ≠m), 〈|r he
nn|2〉 = (πl/4L)2. (4.1.9)

Off-diagonal and diagonal reflection now differ by an order of magnitude Nl/L '
G/G0 � 1.

Eqs. (4.1.8) and (4.1.9) hold for B = 0. If time-reversal symmetry is broken
(by a magnetic field B >∼ Bc ≡ h/eLW ), then the matrices u,u′, v, v′ are all
independent [7]. Carrying out the average in the large-N limit, we find

〈|r ee
nm|2〉 = N−1(1− 1

2l/L), 〈|r he
nm|2〉 = 1

2l/NL. (4.1.10)
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Figure 4-1. Numerical simulation of a 300 × 300 tight-binding model for a disordered normal

metal (L = 9.5 l), in series with a superconductor (inset). The histograms give the modal

distribution for reflection of an electron at normal incidence (mode number 1). The top two

panels give the distribution of reflected holes (for B = 0 and B = 10h/eL2), the bottom panel

of reflected electrons (for B = 0). The arrow indicates the ensemble-averaged height of the

backscattering peak for Andreev reflection, predicted from Eq. (4.1.9).

Diagonal and off-diagonal reflection now occur with the same probability.

We have checked this theoretical prediction of a giant backscattering peak by
a numerical simulation along the lines of Ref. [8]. The disordered normal region
was modeled by a tight-binding Hamiltonian on a two-dimensional square lat-
tice (dimensions 300× 300, N = 126), with a random impurity potential at each
site (L/l = 9.5). The scattering matrix S was computed numerically and then
substituted into Eq. (4.1.1) to yield r ee and r he. Results are shown in Fig. 4-1.
This is raw data from a single sample. For normal reflection (bottom panel) the
backscattering peak is not visible due to statistical fluctuations in the reflection
probabilities (speckle noise). The backscattering peak for Andreev reflection is
much larger than the fluctuations and is clearly visible (top panel). A magnetic
flux of 10h/e through the disordered region completely destroys the peak (mid-
dle panel). The arrow in the top panel indicates the ensemble-averaged peak
height from Eq. (4.1.9), consistent with the simulation within the statistical fluc-
tuations. The peak is just one mode wide, as predicted by Eq. (4.1.9). If W > L
the isotropy assumption breaks down [5] and we expect the peak to broaden
over W/L modes. Fig. 4-1 tells us that for L = W the isotropy assumption is still
reasonably accurate in this problem.
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4.2 Large magnetoresistance in a point contact

Coherent backscattering in the normal state is intimately related to the weak-
localization correction to the average conductance. We have found that the back-
scattering peak for Andreev reflection is increased by a factor G/G0. However,
the weak-localization correction in an NS junction remains of order G0 [4,9]. The
reason is that the conductance

G = 2G0
∑
n,m|r he

nm|2 (4.2.1)

contains the sum over all Andreev reflection probabilities [10], so that the back-
scattering peak is averaged out. Indeed, Eqs. (4.1.9) and (4.1.10) give the same
G, up to corrections smaller by factors 1/N and l/L. In order to observe the
enhanced backscattering in a transport experiment one has to increase the sen-
sitivity to Andreev reflection at the angle of incidence. This can be done by
injecting the electrons through a ballistic 1 point contact (width � l, number of
transmitted modes N0). For B = 0, one can compute the average conductance
from [4]

〈G〉 = 2G0
∫ 1
0dT ρ(T)T

2(2− T)−2. (4.2.2)

The density of transmission eigenvalues ρ(T) is known [11, 12], in the regime
N0 � 1, N � L/l. One finds

〈G〉 = G0[1
2(1+ sinϑ)/N0 + L/Nl ]−1, (4.2.3)

1
2ϑ(1+ sinϑ) = (N0L/Nl) cosϑ, ϑ ∈ (0, π/2). (4.2.4)

In the absence of time-reversal symmetry (B >∼ Bc) we find from the large-N limit
of Eqs. (4.1.1) and (4.2.1) that

〈G〉 = G0(1/N0 + L/Nl)−1. (4.2.5)

This is just the classical addition in series of the Sharvin conductance N0G0 of
the point contact and the Drude conductance (Nl/L)G0 of the disordered region.

In Fig. 4-2 we have plotted the difference ∆G = 〈G(B = 0)〉 − 〈G(B >∼ Bc)〉 of
Eqs. (4.2.3) and (4.2.5). If N0/N � l/L � 1 the conductance drops from 2N0G0

to N0G0 upon breaking time-reversal symmetry. A doubling of the contact con-
ductance at B = 0 is well-known [13] in ballistic NS junctions (l � L). There it
has a simple classical origin: An electron injected towards the NS interface is
reflected back as a hole, doubling the current through the point contact. Here
we find that the conductance doubling can survive multiple scattering by a dis-
ordered region (l � L), as a result of enhanced backscattering at the angle of
incidence.

1It is essential that the point contact is ballistic. The conductance doubling at B = 0 was
not found in a recent study of a diffusive point contact (width � l), by A. F. Volkov, Phys. Lett.
A 187, 404 (1994).
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Figure 4-2. Excess conductance ∆G = 〈G(B = 0)〉 − 〈G(B >∼ Bc)〉 of a ballistic point contact in

series with a disordered NS junction (inset), computed from Eqs. (4.2.3) and (4.2.5). At B = 0

the contact conductance is twice the Sharvin conductance N0G0, provided N0L/Nl� 1.

4.3 Excess conductance in a Josephson junction

As a second example we discuss how enhanced backscattering manifests itself
when electrons are injected into a Josephson junction. The system considered
is shown schematically in Fig. 4-3. A disordered metal grain is contacted by four
ballistic point contacts (withNi modes transmitted through contact i = 1,2,3,4).
The scattering matrix S has submatrices sij, the matrix element sij,nm being the
scattering amplitude from mode m in contact j to mode n in contact i. The
grain forms a Josephson junction in a superconducting ring. Coupling to the
two superconducting banks is via point contacts 3 and 4 (phase difference φ,
same electrostatic potential). Contacts 1 and 2 are connected to normal metals
(potential difference V ). A current I is passed between contacts 1 and 2 and one
measures the conductance G = I/V as a function of φ. Spivak and Khmel’nitskĭı
computed 〈G(φ)〉 at temperatures higher than the Thouless energy [14]. They
found a periodic modulation of the weak-localization correction, with amplitude
of order G0. Zaitsev and Kadigrobov et al. have discovered that at lower temper-
atures the amplitude increases to become much greater than G0 [15, 16]. Here
we identify enhanced backscattering as the origin of this increase.

The reflection matrices r ee and r he (with elements rij,nm) contain the com-
bined effect of scattering in the normal grain (described by the matrix S) and
Andreev reflection at the two contacts with the superconductor. By summing
a series of multiple Andreev reflections we obtain expressions analogous to Eq.
(4.1.1),

r ee = a− bΩc∗Ω∗(1+ cΩc∗Ω∗)−1d, (4.3.1)

r he = −ib∗Ω∗(1+ cΩc∗Ω∗)−1d, (4.3.2)

where we have abbreviated

a =
( s11 s12s21 s22

)
, b =

( s13 s14s23 s24

)
, c =

( s33 s34s43 s44

)
,
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Figure 4-3. Solid curves: excess conductance ∆G = 〈G(φ)〉COE − 〈G〉CUE of a four-terminal

Josephson junction (inset), computed from Eqs. (4.3.1) and (4.3.3) for N1 = N2 ≡ N , N3 =
N4 ≡ ρN , with N = 10. The dotted curves are the large-N limit calculated according to [12].

The excess conductance at φ = 0 is a factor G/G0 = O(N) larger than the negative weak-

localization correction at φ = π .

d =
( s31 s32s41 s42

)
, Ω =

(
eiφ/2 0
0 e−iφ/2

)
.

The four-terminal generalization of Eq. (4.2.1) is [17]

G/G0 = Ree
21 + Rhe

21 +
2(Rhe

11R
he
22 − Rhe

12R
he
21)

Rhe
11 + Rhe

22 + Rhe
12 + Rhe

21

, (4.3.3)

Ree
ij =

∑
n,m|r ee

ij,nm|2, Rhe
ij =

∑
n,m|r he

ij,nm|2. (4.3.4)

Following Ref. [18], we evaluate 〈G〉 by averaging S over the circular ensem-
ble. At B = 0 this means that S = UUT with U uniformly distributed in the group
U(M) of M ×M unitary matrices (M = ∑4

i=1Ni). This is the circular orthogonal
ensemble (COE). If time-reversal symmetry is broken, then S itself is uniformly
distributed in U(M). This is the circular unitary ensemble (CUE). In the CUE we
can do the average analytically for any Ni and φ. The result is

〈G〉CUE = G0N1N2/(N1 +N2), (4.3.5)

independent of φ. In the COE we can do the average analytically for Ni � 1
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and φ = 0, and numerically 2 for any Ni and φ. We find that the difference
∆G(φ) = 〈G(φ)〉COE − 〈G〉CUE is positive for φ = 0,

∆G(0)
〈G〉CUE

= ρ + 1
2(1+ ρ)2 − (1+ ρ)

√
ρ + 1

4(1+ ρ)2, (4.3.6)

with ρ ≡ (N3 + N4)/(N1 + N2). The excess conductance (4.3.6) is a factor G/G0

greater than the negative weak-localization correction, which is observable in
Fig. 3 at φ = π . For Ni >∼ 10 the finite-N curves (solid) are close to the large-N
limit 3 (dotted) which we have obtained using the Green’s function formulation
of Refs. [12,15].

The excess conductance is a direct consequence of enhanced backscattering.
This is easiest to see for the symmetric case N1 = N2 ≡ N, when 〈Rhe

12〉 = 〈Rhe
21〉,

〈Rhe
11〉 = 〈Rhe

22〉. Current conservation requires Rhe
11 + Rhe

21 + Ree
11 + Ree

21 = N. For
N � 1 we may replace 〈f(Rij)〉 by f(〈Rij〉). The average of Eq. (4.3.3) then
becomes

〈G/G0〉 = 1
2N −

1
2〈Ree

11 − Ree
21〉 + 1

2〈Rhe
11 − Rhe

21〉. (4.3.7)

The first term 1
2N is the classical series conductance. The second term is the

weak-localization correction due to enhanced backscattering for normal reflec-
tion. Since 〈Ree

11 − Ree
21〉 = O(1) this negative correction to 1

2N can be neglected if
N � 1. The third term gives the excess conductance due to enhanced backscat-
tering for Andreev reflection. Since 〈Rhe

11−Rhe
21〉 = O(N) this positive contribution

is a factor G/G0 = O(N) greater than the negative weak-localization correction.
In conclusion, we have predicted (and verified by numerical simulation) an

order G/G0 enhancement of coherent backscattering by a disordered metal con-
nected to a superconductor. The enhancement can be observed as an excess con-
ductance which is a factor G/G0 greater than the weak-localization correction,
provided ballistic point contacts are used to inject the current into the junction.
The junction should be sufficiently small that phase coherence is maintained
throughout. Several recent experiments [19] are close to this size regime, and
might well be equipped with ballistic point contacts.

2To average Eq. (4.3.3) numerically we generated up to 104 random matrices in U(M). This
can be done efficiently by parameterizing the matrix elements by Euler angles [K. Życzkowski
and M. Kuś, Phys. Rev. E 53, 319 (1996)].

3By applying Nazarov’s large-N formulas [12] to the geometry of Fig. 3, we find
∆G(φ) = 1

2NG0 tan2 1
2ϑ, with ϑ ∈ (0, π/2) determined by sinϑ + sin2 ϑ cos 1

2φ = ρ(cosϑ +
cos2 ϑ) cos 1

2φ.
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5 Induced superconductivity distinguishes
chaotic from integrable billiards

The quantization of a system with a chaotic classical dynamics is the funda-
mental problem of the field of “quantum chaos” [1, 2]. It is known that the
statistics of the energy levels of a two-dimensional confined region (a “billiard”)
is different if the dynamics is chaotic or integrable [3–5]: A chaotic billiard has
Wigner-Dyson statistics, while an integrable billiard has Poisson statistics. The
two types of statistics are entirely different as far as the level correlations are
concerned [6]. However, the mean level spacing is essentially the same: Particles
of massm in a billiard of area A have density of statesmA/2π�2, regardless of
whether their dynamics is chaotic or not.

In the solid state, chaotic billiards have been realized in semiconductor mi-
crostructures known as “quantum dots” [7]. These are confined regions in a
two-dimensional electron gas, of sufficiently small size that the electron motion
remains ballistic and phase-coherent on long time scales. (Long compared to
the mean dwell time tdwell of an electron in the confined region, which itself is
much longer than the ergodic time terg in which an electron explores the avail-
able phase space.) A tunneling experiment measures the density of states in the
quantum dot, if its capacitance is large enough that the Coulomb blockade can
be ignored. As mentioned above, this measurement does not distinguish chaotic
from integrable dynamics.

In this chapter we show that the density of states becomes a probe for quan-
tum chaos if the electron gas is brought into contact with a superconductor.
We first consider a chaotic billiard. Using random-matrix theory, we compute in
Sec. 5.1 the density of states ρ(E) near the Fermi level (E = 0), and find that the
coupling to a superconductor via a tunnel barrier induces an energy gap Egap of
the order of the Thouless energy ET ' �/tdwell. More precisely,

Egap = cNΓδ/2π, (5.0.1)

where N is the number of transverse modes in the barrier, Γ is the tunnel prob-
ability per mode, 2δ is the mean level spacing of the isolated billiard, and c is
a number which is weakly dependent on Γ (c decreases from 1 to 0.6 as Γ in-
creases from 0 to 1). Eq. (5.0.1) requires 1 � NΓ � ∆0/δ, where ∆0 is the energy
gap in the bulk of the superconductor. In this limit ρ(E) vanishes identically
for E ≤ Egap. In contrast, for an integrable billiard we do not find an energy gap
in which ρ = 0, but instead find in Sec. 5.2 that the density of states vanishes
linearly with energy near the Fermi level. We present a general argument that in
an integrable billiard ρ has a power-law dependence on E for small E. In section
5.3 we describe the transition to the case of broken time-reversal symmetry.
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5.1 Chaotic billiards

NS

Figure 5-1. Density of states of a chaotic billiard coupled to a superconductor (inset), for

various coupling strengths. The energy is in units of the Thouless energy ET = NΓδ/2π . The

solid curves are computed from Eqs. (5.1.8) and (5.1.10), for Γ = 1, 0.5, 0.25, 0.1. The dashed

curve is the asymptotic result (5.1.15) for Γ � 1. The data points are a numerical solution

of Eq. (5.1.2), averaged over 105 matrices H0 in the Gaussian orthogonal ensemble (M = 400,

N = 80). The deviation from the analytical curves is mainly due to the finite dimensionality M
of H0 in the numerics.

The system considered is shown schematically in the inset of Fig. 5-1. A
confined region in a normal metal (N) is connected to a superconductor (S) by
a narrow lead containing a tunnel barrier. The lead supports N propagating
modes at the Fermi energy. Each mode may have a different tunnel probability
Γn, but later on we will take all Γn’s equal to Γ for simplicity. The confined region
is characterized by a scattering matrix S0. The modes in the leads which form
the basis of S0 are chosen such that their wave functions are real at the NS in-
terface. Evanescent modes in the leads are disregarded. The proximity effects
considered here require time-reversal symmetry, so we assume zero magnetic
field. (The transition to the case of broken time-reversal symmetry is studied in
Sec. 5.3. The case of completely broken time-reversal symmetry has been stud-
ied previously [8–10].) The quasi-particle excitation spectrum of the system is
discrete for energies below ∆0. We are interested in the low-lying part of the
spectrum, consisting of (positive) excitation energies En � ∆0. The energy de-
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pendence of S0 is set by the Thouless energy ET, which is inversely proportional
to the dwell time of an electron in the billiard. We assume that the Thouless
energy ET ≡ NΓδ/2π is also much smaller than ∆0.1 Andreev reflection at the
superconductors scatters electrons (at energy E > 0) into holes (at energy −E),
with a phase increment − arccos(E/∆0). (Normal reflection at the superconduc-
tors can be neglected if ∆0 � EF.) We assume that E and ET are both � ∆0, so
that we may replace arccos(E/∆0) by π/2, while retaining the E-dependence of
S0. The excitation spectrum is obtained from the determinantal equation [11]

Det[1+ S0(E)S
∗
0 (−E)] = 0. (5.1.1)

The N×N unitary matrix S0(E) is the scattering matrix of the quantum dot plus
tunnel barrier at an energy E above the Fermi level. Eq. (5.1.1) is a convenient
starting point for the case that the quantum dot is an integrable billiard. For the
chaotic case, we will use an alternative — but equivalent — determinant equation
involving an effective Hamiltonian [10],

Det(E −Heff) = 0, Heff =

 H −πWWT

−πWWT −H∗


 . (5.1.2)

The equivalence is proved by the relation between the scattering matrix S0 and
the Hamiltonian matrix H of the isolated billiard [12],

S0(E) = 1− 2πiW †(E −H + iπWW †)−1W. (5.1.3)

The M ×M Hermitian matrix H is the Hamiltonian of the isolated quantum dot.
(The finite dimension M is taken to infinity later on.) Because of time-reversal
symmetry, H = H∗. The M ×N coupling matrix W has elements

Wmn = δmn
(

2Mδ
π2

)1/2(
2Γ−1
n − 1+ 2Γ−1

n

√
1− Γn

)1/2
,

m = 1,2, . . .M, n = 1,2, . . .N. (5.1.4)

The energy δ is one half the mean level spacing of H, which equals the mean
level spacing of Heff if W = 0.

We now proceed to compute the density of states. We first consider the
case of a chaotic billiard. The Hamiltonian H then has the distribution of the
Gaussian orthogonal ensemble [6],

P(H) ∝ exp
(
−1

4Mλ
−2 TrH2

)
, λ = 2Mδ/π. (5.1.5)

We seek the density of states

ρ(E) = −π−1Im Tr 〈(E + i0+ −Heff)−1〉, (5.1.6)
1The opposite regime ET � ∆0 has a trivial discrete spectrum, consisting of N states with

energies En just below ∆0.
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where 〈· · ·〉 denotes an average over Heff for fixed W and H distributed accord-
ing to Eq. (5.1.5). The method we use to evaluate this average is a perturbation
expansion in 1/M , adapted from Refs. [13, 14]. Because of the block structure
of Heff [see Eq. (5.1.2)], the Green function G(z) = 〈(z −Heff)−1〉 consists of four
M×M blocks G11, G12, G21, G22. By taking the trace of each block separately, one
arrives at a 2× 2 matrix Green function

G = λ
M


 TrG11 TrG12

TrG21 TrG22


 . (5.1.7)

(We have multiplied by λ/M = 2δ/π for later convenience.) One more trace
yields the density of states,

ρ(E) = −1
2δ

−1ImTrG(E + i0+). (5.1.8)

To leading order in 1/M , the matrix G satisfies

G = λ
M

M∑
n=1


 z − λG11 πw2

n + λG12

πw2
n + λG21 z − λG22



−1

, (5.1.9)

where we have abbreviated w2
n = (WWT)nn. Eq. (5.1.9) is a matrix-generalization

of Pastur’s equation [15]. A unique solution is obtained by demanding that G
goes to λ/z times the unit matrix as |z| → ∞.

We now restrict ourselves to identical tunnel probabilities, Γn ≡ Γ . For M �
N � 1/Γ Eq. (5.1.9) simplifies to

NG11δ = πzG12(−G12 + 1− 2/Γ), G22 = G11, G21 = G12, G2
12 = 1+G2

11. (5.1.10)

This set of equations can be solved analytically.2 The result is that ρ(E) = 0 for
E ≤ Egap, where Egap is determined by

k6 − k4

(1− k)6x
6 − 3k4 − 20k2 + 16

(1− k)4 x4 + 3k2 + 8
(1− k)2x

2 = 1,

x = Egap/ET, k = 1− 2/Γ . (5.1.11)

The solution of this gap equation is the result (5.0.1) announced in the introduc-
tion. The complete analytical solution of Eq. (5.1.10) is not very insightfull and
is therefore omitted here. In Fig. 5-1 we plot the resulting density of states. In

2It is worth noting that Eqs. (5.1.10-5.1.15) also apply to the case that the chaotic billiard
is coupled via two identical leads to two superconductors, having a phase difference φ. The
density of states of such a quantum-dot Josephson junction is obtained by the replacement
Γ → Γeff = 2 cos(1

2φ)[cos (1
2φ) − 1 + 2/Γ ]−1. For a phase shift of π the excitation gap closes

(since φ→ π corresponds to Γeff → 0), in agreement with Ref. [9].
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the limit Γ = 1 of ideal coupling it is given by

ρ(E) = ET
√

3
6Eδ

[Q+(E/ET)−Q−(E/ET)], (5.1.12)

Q±(x) =
[
8− 36x2 ± 3x

√
3x4 + 132x2 − 48

]1/3
, (5.1.13)

E > Egap = 2ET γ5/2 ≈ 0.6ET, (5.1.14)

where γ = 1
2(
√

5− 1) is the golden number. In the opposite limit Γ � 1 of weak
coupling we find

ρ(E) = Eδ−1(E2 − E2
T)−1/2, E > Egap = ET. (5.1.15)

To check the validity of the perturbation theory, we have computed ρ(E)
numerically from Eq. (5.1.2) by generating a large number of random matrices H
in the Gaussian orthogonal ensemble. The numerical results (data points in Fig.
5-1) are consistent with Eq. (5.1.10), given the finite dimensionality of H in the
numerics.

Figure 5-2. Histograms: density of states of a billiard coupled to a superconductor, computed

from Eq. (5.1.1) and averaged over a range of Fermi energies. A chaotic Sinai billiard (top inset,

solid histogram) is contrasted with an integrable circular billiard (bottom inset, dashed his-

togram). The number of propagating transverse modes at the normal-metal—superconductor

interface (dotted line in the insets) equals N = 20 in the chaotic billiard and N = 30 in the cir-

cular billiard. The solid curve is the prediction from random-matrix theory, the dashed curve

is the prediction from the Bohr-Sommerfeld approximation.

So far we have used random-matrix theory to describe the chaotic system.
As a more rigorous test, we can compute the exact quantum mechanical density
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of states of a specific billiard, coupled to a superconductor. Following Doron,
Smilansky, and Frenkel [16] we study a segment of a Sinai billiard, drawn to
scale in the top inset of Fig. 5-2. The scattering matrix S0(E) is determined by
matching wave functions at the dotted line separating the billiard (area A) from
the lead (width W ). The NS interface is also chosen at the dotted line. The
density of states ρ(E) follows from Eq. (5.1.1). We average ρ(E) over a small
variation of EF, such that the number of modes N = Int[mvFW/π�] in the lead
does not change. The result for N = 20 is shown in Fig. 5-2 (solid histogram),
and is seen to agree quite well with the prediction from random-matrix theory
(solid curve). There is no adjustable parameter in this comparison, the mean
level spacing δ following directly from δ = π�2/mA.

Figure 5-3. Histogram: density of states for a rectangular billiard (shown to scale in the upper

left inset), calculated numerically from Eq. (5.1.1). Dashed curve: Bohr-Sommerfeld approx-

imation (5.2.2). The lower right inset shows the integrated density of states, which is the

quantity following directly from the numerical computation. The energy ET = Nδ/2π , with

N = 200 modes in the lead to the superconductor.

5.2 Integrable billiards

We now turn to non-chaotic billiards. We consider two types of billiards: rectan-
gular and circular ones.

The rectangular billiard has a lead perpendicular to one of the sides of the
rectangle which connects it to a superconductor. (The billiards are drawn to
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scale in the insets of Fig. 5-2 and Fig. 5-3). There are no tunnel barriers in
the leads. The scattering matrix S0(E) is computed by matching wave func-
tions in the rectangle to transverse modes in the lead. The density of states
then follows from Eq. (5.1.1). To improve the statistics, we averaged over 16
rectangles with small differences in shape but the same area A (and hence the
same δ = π�2/mA). The number of modes in the lead (width W ) was fixed at
N = mvFW/π� = 200 (where vF is the Fermi velocity). In the lower right inset
of Fig. 5-3 we show the integrated density of states ν(E) =

∫ E
0 dE′ρ(E′), which is

the quantity following directly from the numerical computation. The density of
states ρ(E) itself is shown in the main plot.

We next turn to a circular billiard. The scattering matrix S0(E) is again deter-
mined by matching wave functions at the dotted line (see inset of Fig. 5-2), which
also determines the location of the NS interface. A wedge-shaped lead (opening
angle θ) is chosen in order not to break the rotational symmetry (which simpli-
fies the calculations). The density of states is averaged over a range of Fermi
energies at fixed N = Int[mvFRθ/π�]. The result for N = 30 is the dashed
histogram in Fig. 5-2.

The density of states in an integrable billiard can be approximated with a
Bohr-Sommerfeld quantization rule,

ρBS(E) = N
∫∞

0
ds P(s)

∞∑
n=0

δ
(
E − (n+ 1

2)π�vF/s
)
. (5.2.1)

Here P(s) is the classical probability that an electron entering the billiard will
exit after a path length s. Eq. (5.2.1) is the Bohr-Sommerfeld quantization rule
for the classical periodic motion with path length 2s and phase increment per
period of 2Es/�vF − π . The periodic motion is the result of Andreev reflection
at the interface with the superconductor, which causes the electron to retrace
its path as a hole. The phase increment consists of a part 2Es/�vF because
of the energy difference 2E between electron and hole, plus a phase shift of
−π from two Andreev reflections. In the rectangular billiard we find for s → ∞
P(s)→ 8(A/W)2s−3, which implies a linear E-dependence of the density of states
near the Fermi-level,

ρBS(E) → 4E
Nδ2

= 2E
πETδ

, E → 0. (5.2.2)

In Fig. 5-3 we see that the exact quantum mechanical density of states also has
(approximately) a linear E-dependence near E = 0, but with a smaller slope than
the semi-classical Bohr-Sommerfeld approximation. For the circular billiard, we
have calculated P(s) by generating a large number of classical trajectories. The
resulting density of states ρBS(E) is in good agreement with the quantum me-
chanical result in Fig. 5-2.

We argue that the absence of an excitation gap found in the rectangular and
circular billiards is generic for the whole class of integrable billiards. Our argu-
ment is based on the Bohr-Sommerfeld approximation. It is known [17,18] that
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an integrable billiard has a power-law distribution of path lengths, P(s) → s−p
for s → ∞. Eq. (5.2.1) then implies a power-law density of states, ρ(E) ∝ Ep−2

for E → 0.

5.3 Partially broken time-reversal symmetry

The results in the previous section have been obtained for the case of zero mag-
netic field. They are a result of the special symmetry of the effective Hamiltonian
Heff. In this section, we extend the results of the former section to the case of
partially broken time-reversal symmetry. The time-reversal symmetry is broken
by applying a magnetic flux through the normal dot. We consider a Josephson
junction geometry.

NS1 S2

Figure 5-4. Density of states of a chaotic billiard coupled to two superconductors by identical

ballistic point contacts, for four values of the magnetic flux Φ through the billiard. The phase

difference φ between the superconductors equals 5π/6 and 0 in the top and bottom panel,

respectively. The curves are computed from Eqs. (5.1.8) and (5.3.5). The Thouless energy is

given by ET = Nδ/2π , and the critical flux Φc is defined by Eqs. (5.3.2) and (5.3.6).
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The system studied is shown schematically in the inset of Fig. 5-4. A billiard
consisting of a normal metal (N) in a perpendicular magnetic field B is connected
to two superconductors (S1, S2) by narrow leads, each containing N/2 transverse
modes at the Fermi energy EF. The order parameters in S1 and S2 have a phase
difference φ ∈ [0, π]. Mode n couples to a superconductor with phase φn =
φ/2 for 1 ≤ n ≤ N/2, φn = −φ/2 for 1 + N/2 ≤ n ≤ N. For simplicity,
we assume in this section that there are no tunnel barriers in the leads (Γ =
1). (The generalization to Γ 6= 1 is straightforward: the mapping {Γ , cos φ2 } →
{1, Γ

2−Γ cos φ2 } produces identical results.)
We assume that the Hamiltonian matrix H has the Pandey-Mehta distribution

[6,19]

P(H) ∝ exp


−M(1+α2)

4λ2

M∑
i,j=1

[
(ReHij)2 +α−2(ImHij)2

] , (5.3.1)

with λ = 2Mδ/π . The parameter α ∈ [0,1] measures the strength of the time-
reversal symmetry breaking. The relation between α and the magnetic flux Φ
through a two-dimensional billiard (area A, no impurities, Fermi velocity vF)
is [20,21]

Mα2 = c(Φe/h)2�vF(Aδ2)−1/2, (5.3.2)

with c a numerical coefficient of order unity. (For example, c = 2
3

√
π for a

circular billiard which is chaotic because of diffuse boundary scattering [21].)
Time-reversal symmetry is effectively broken when Mα2 ' N, which occurs for
Φ � h/e. The effect of such weak magnetic fields on the bulk superconductor
can be ignored.

In order to determine the density of states, we adopt the Green function
technique described in Sec. 5.1, using the slightly modified effective Hamiltonian

Heff =

 H −πWeiφWT

−πWe−iφWT −H∗


 . (5.3.3)

To highest order in 1/M , the self-consistency equation for G now reads

G = λ
M

M∑
n=1


 z − λG11 πw2

n + xλG12

πw∗2
n + xλG21 z − λG22



−1

, (5.3.4)

where we have abbreviated w2
n = (WeiφWT)nn and x = (1 − α2)/(1 + α2). Eq.

(5.3.4) is complemented with the boundary condition G → λ/z for |z| → ∞.
We take the limit M → ∞ at fixed Mα2 and δ, and assume in addition that

N � 1. Eq. (5.3.4) then simplifies to

G11 = [1
2(Φ/Φc)2G11 −πz/Nδ]× [G2

12 +G12/ cos(φ/2)],
G22 = G11, G21 = G12, G2

12 = 1+G2
11, (5.3.5)
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where we have defined the critical flux Φc by

Mα2 = 1
8N(Φ/Φc)2. (5.3.6)

The solution of Eq. (5.3.5) for φ = 0 and φ = 5π/6 is plotted in Fig. 5-4 for
several values of Φ/Φc. For Φ = 0 andφ = 0 the excitation gap equals Egap = aET,
with ET = Nδ/2π and a = 2−3/2(

√
5 − 1)5/2 ≈ 0.6. The gap decreases with

increasing flux Φ or phase difference φ. When φ = 0, the gap closes at the
critical flux Φc ' (h/e)(Nδ/�vF)1/2A1/4. When φ = π , there is no gap at any
magnetic field. For φ between 0 and π , the gap closes at the flux Φc(φ) given by

Φc(φ) =
[

2 cos(φ/2)
1+ cos(φ/2)

]1/2

Φc. (5.3.7)

5.4 Conclusion

To conclude, we have shown that the presence of an excitation gap in a bil-
liard connected to a superconductor is a signature of quantum chaos, which
is special in two respects: It appears in the spectral density rather than in a
spectral correlator, and it manifests itself on the macroscopic energy scale of
the Thouless energy rather than on the microscopic scale of the level spacing.
Both these characteristics are favorable for experimental observation. The exci-
tation gap closes at a critical flux Φc through the billiard. In order of magnitude,
Φc ' (h/e)(τergodic/τdwell)1/2, where τdwell is the mean dwell time of an electron in
the billiard and τergodic is the time required to explore the entire available phase
space. The precise value of Φc depends on the shape of the billiard, but the
dependence on the tunnel probability Γ and the phase difference φ is universal:

Φc(Γ ,φ) = Φc(1,0)
[

2 cos(φ/2)
cos(φ/2)− 1+ 2/Γ

]1/2

. (5.4.1)

The density of states in integrable billiards ρ(E) ∝ E for small E. We have
presented an argument that the results for the rectangle and the circle are
generic for the whole class of integrable billiards, based on the semi-classical
Bohr-Sommerfeld approximation. The agreement with the semi-classical Bohr-
Sommerfeld approximation is better for the circular than for the rectangular
billiard. A rigorous semi-classical theory for this problem remains to be devel-
oped.
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6 Coulomb blockade threshold in
inhomogeneous one-dimensional arrays of
tunnel junctions

6.1 Introduction

Since the pioneering work by Gorter in 1951, [1] single charge tunneling ef-
fects have been extensively studied in various kinds of geometries. [2] Research
on single electronics has led to potential applications in e.g. current stan-
dards, [3,4] ultradense integrated digital electronics, [5] thermometry, [6,7] and
room-temperature memory. [8] In many of these applications, tunneling occurs
through a large number of junctions in series. Most theoretical work has as-
sumed homogeneous arrays. [9–13] The problem is that the number of avail-
able states at a finite current rapidly increases with the circuit size, so that one
either restricts the analysis to homogeneous arrays or adopts a numerical ap-
proach. [14] Using modern techniques, it is possible to fabricate arrays of metal-
lic islands separated by tunnel junctions with almost uniform capacitances. It is
however very difficult to avoid non-uniform background charges on the islands.
This is relevant, since the charging energy is very sensitive to the background
charge.

The aim of this chapter is to provide results for inhomogeneous one-dimens-
ional arrays of metallic islands. The inhomogeneity can be both in the junc-
tion capacitances and in the background charges on the islands in the array. In
particular, we study the threshold voltage for charge transport. The results ob-
tained are exact within the classical (orthodox) model of single electron tunnel-
ing, [15] which is accurate when quantum size effects and macroscopic quantum
tunneling effects may be ignored.

Using a general expression for the inverse capacitance matrix, we calculate
in Section 6.2 the change in the free energy of an N-junction array due to an
arbitrary tunneling event. In Section 6.3, we focus on the threshold voltage
for transport Vt, which is an observable quantity. We find that inhomogene-
ity of the junction capacitances C has a small effect on the threshold voltage
in large arrays: The expectation value as N → ∞ for the threshold voltage of
an array without gate coupling (gate capacitance Cg = 0 for each junction) and
without background charges is 〈Vt〉 = 1

2Ne〈C−1〉, with 〈C−1〉 being typically not
much different from 1/〈C〉. However, as we show in Section 6.4, a random vari-
ation in background charges may change the threshold voltage considerably: In
a short array with weak gate coupling (N2Cg/6.25C < 1) and random charges
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g,N-1Cg,2Cg,1C

NCN-1C3C2CC1

g,N-1Vg,2VVg,1

VcVe

Figure 6-1. Schematic diagram of a one-dimensional array of N tunnel junctions. Island i is

coupled to island i+ 1 by a tunnel barrier with capacitance Ci+1, and to a gate electrode by an

insulating barrier with capacitance Cg,i. The capacitance C1 (CN ) denotes the coupling of the

first (last) island to the emitter (collector) electrode.

on all N islands, we find 〈Vt〉 ∝
√
N. In a long array with strong gate coupling

(N2Cg/6.25C � 1, but still Cg � C), we find 〈Vt〉 ∝ N. We compare our results
with experiments. [16]

6.2 Free energy

The system under consideration is shown schematically in Fig. 6.2. Within the
orthodox model, the state of the system is described by the numbers ni of elec-
trons on the i-th island, which we combine in a vector: ~n ≡ (n1, n2, . . . , nN−1).
The tunneling rate, Γk(~n), corresponding to a single electron tunneling from is-
land k− 1 to island k is given by [2]

Γk(~n) = ∆Gk(~n)
e2Rk[1− exp(−∆Gk(~n)/kBT)]

. (6.2.1)

Here Rk is the resistance of the k-th tunnel junction and ∆Gk(~n) is defined as the
difference in free energy of the final and initial states. The free energy comprises
the electrostatic energies of the charged capacitors in the system, as well as the
potential energies of all electrodes: [9]

G(~n) = 1
2

N−1∑
i=1

Cg,i(φi − Vg,i)2 + 1
2

N∑
i=1

Ci(φi −φi−1)2

−VeQe − VcQc −
N−1∑
i=1

Vg,iQg,i. (6.2.2)

We denote by φi the electrochemical potential of island i (φ0 ≡ Ve and φN ≡
Vc), and by Qe, Qc , and Qg,i the charges on the emitter, collector, and gates,
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respectively:

Qe = C1(Ve −φ1)+ ene, (6.2.3)

Qc = CN(Vc −φN−1)+ enc, (6.2.4)

Qq,i = Cg,i(Vg,i −φi). (6.2.5)

Here ne (nc) is the number of electrons that has tunneled from the emitter (col-
lector) electrode through the first (last) capacitor.

The difficulty in determining the energy difference ∆Gk(~n) lies in the deter-
mination of the electrochemical potentials ~φ ≡ (φ1,φ2, . . . ,φN−1). They follow
from the condition that the total capacitive charge on each island i equals eni
plus a background charge Q0,i:

Cg,i(φi − Vg,i)+ Ci(φi −φi−1)+ Ci+1(φi −φi+1)
= eni +Q0,i, i = 1,2, . . . , N − 1. (6.2.6)

The background chargeQ0,i ∈ (−e/2, e/2) is due to incompletely screened charges
in the environment of the island. Eq. (6.2.6) can be written in matrix form as
C ~φ = ~Q′, with

Cij = δi,j(Ci + Ci+1 + Cg,i)− δi+1,jCj − δi,j+1Ci, (6.2.7)

Q′i = eni +Q0,i + Cg,iVg,i + δi,1C1Ve + δi,N−1CNVc.
(6.2.8)

The capacitance matrix C can be inverted exactly. The elements Ri,j of the in-
verse capacitance matrix R = C−1 are given by

Ri,j = Ci+1Ci+2 · · ·CjDi−1D̃j+1D−1
N−1, i ≤ j,

Rj,i = Ri,j. (6.2.9)

Here we have introduced the subdeterminants Di (D̃N−i) of the upper left (lower
right) capacitance submatrix of dimension i. These can be found recursively
from

Di = (Ci + Ci+1 + Cg,i)Di−1 − C2
i Di−2, (6.2.10)

D̃i = (Ci + Ci+1 + Cg,i)D̃i+1 − C2
i+1D̃i+2, (6.2.11)

D0 ≡ D̃N ≡ 1. (6.2.12)

For a homogeneous array with identical capacitances, C1 = C2 = . . . = CN and
Cg,1 = Cg,2 = . . . = Cg,N−1, we recover the inverse capacitance matrix of Ref. [12].

We now derive a general expression for the difference in free energy ∆Gk(~n)
when an electron tunnels from island k − 1 to island k. Applying Eq. (6.2) and
making use of the orthogonality relation

(Ci + Ci+1 + Cg,i)Ri,j = CiRi−1,j + Ci+1Ri+1,j + δi,j, (6.2.13)
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we find that ∆Gk(~n) takes the form

∆Gk(~n) = −e
2

2
(Rk−1,k−1 + Rk,k − Rk−1,k − Rk,k−1)

+ e
N−1∑
i=1

Qi(Ri,k−1 − Ri,k)+ e(Ve − Vg,1)A1,k

+ e
N−1∑
i=2

(Vg,i−1 − Vg,i)Ai,k + e(Vg,N−1 − Vc)AN,k, (6.2.14)

Ai,k = Ci(Ri−1,k + Ri,k−1 − Ri−1,k−1 − Ri,k)+ δi,k. (6.2.15)

Here, Ri,N = R0,i = 0 is implied.
Although we are now able to construct all relevant transition rates from

expressions (6.2.9) and (6.2.14), the analytic evaluation of the current-voltage
characteristic at arbitrary voltage remains a technically involved problem. The
threshold voltage, however, is determined by a single transition rate and is there-
fore easier to evaluate. In the next two sections, we apply our results to this
quantity for several characteristic geometries.

6.3 Threshold voltage

Electron transport through a one-dimensional array is realized by a sequence of
tunneling events through all junctions between the emitter and the collector (we
refer to this as a tunneling sequence). At zero temperature, a specific tunneling
sequence contributes to the conductance if the free energy difference of each
tunneling event in the sequence is positive. The threshold voltage Vt of the
Coulomb blockade is the smallest voltage at which a current can flow through
the array at zero temperature. When |Ve − Vc| < |Vt|, there exists no conductive
tunneling sequence. We first consider the simple case where the system is not
gated (Cg,i = 0 for all i), and then discuss the turnstile configuration, i.e. an
array which is coupled to a gate electrode via a single island: Cg,i = Cgδi,n.

6.3.1 No gate coupling

In the absence of gate coupling, the determinants D and D̃, following from Eq.
(6.2), have a simple form. For convenience, we introduce the notation

Slk ≡
l∑

i=k+1

1
Ci
, Sl ≡ Sl0, Sk ≡ SNk . (6.3.1)

In terms of these quantities,

Dk = C1C2 · · ·Ck+1Sk+1, (6.3.2)

D̃k = CkCk+1 · · ·CNSk−1, (6.3.3)

Ri,j = SiSj/SN, i ≤ j. (6.3.4)
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We further define ~q ≡ ~n+~q0, ~q0 ≡ e−1(Q0,1,Q0,2, . . . ,Q0,N−1). From the condition
∆Gk(~q) = 0, we determine the threshold voltage Vt,k(~q) for tunneling through
capacitance Ck at arbitrary occupation ~q of the array:

Vt,k(~q) = e2
(
SN − 1

Ck

)
− e

k−1∑
i=1

qiSi + e
N−1∑
i=k
qiSi. (6.3.5)

The threshold voltage is determined as follows. For an initial charge state, we
determine the minimal activation energy eVt,k(~q) to allow a tunneling event in
the array, as well as the corresponding final charge state. The final charge state
becomes the initial state in the next step. The minimal activation energy for the
new charge state and the corresponding final charge state are again determined,
and this procedure is repeated until one electron has been transported from
emitter to collector. The largest of the activation energies found equals eVt . In
the special case that all background charges are zero, one has

Vt = 1
2e


 N∑
i=1

1/Ci −Max[1/C1,1/C2, . . . ,1/CN]


 , (6.3.6)

which is an extension of the result Vt = 1
2eMin[1/C1,1/C2] for a double junction.

[17] For N → ∞, Vt has a Gaussian distribution with average 1
2Ne〈C−1〉 and

variance VarVt = 1
4Ne

2VarC−1.

6.3.2 Turnstile configuration

We next consider a turnstile configuration, i.e. an array with a single gate elec-
trode coupled capacitively (capacitance Cg) to island n. The elements of the
inverse capacitance matrix are then given by

Ri,j = (Si + CgSnSin)Sj(SN + CgSnSn)−1, n ≤ i ≤ j
Ri,j = SiSj(SN + CgSnSn)−1, i ≤ n ≤ j
Ri,j = Si(Sj + CgSnj Sn)(SN + CgSnSn)−1, i ≤ j ≤ n
Rj,i = Ri,j. (6.3.7)

In order to determine the threshold voltage Vt,k(~q), we have to distinguish be-
tween k ≤ n and k > n. From Eqs. (6.2.14) and (6.3.7) we find that Vt,k(~q) now
depends on the gate voltage Vg: [18]

Vt,k(~q) = e
2

(
S′N − 1

C′k

)
− e

k−1∑
i=1

qiS′i + e
N−1∑
i=k
qiS′i

+ Cg[Vg − 1
2(Ve + Vc)]×


 Sn(1+

1
2CgSn)

−1, k ≤ n
−Sn(1+ 1

2CgS
n)−1, k > n

(6.3.8)
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where S′ is defined as in Eq. (6.3.1) in terms of modified capacitances C′:

C′l = Cl(1+ 1
2CgSn)(1+ CgSn)−1, k ≤ n, l ≤ n,

C′l = Cl(1+ 1
2CgSn), k ≤ n, l > n,

C′l = Cl(1+ 1
2CgS

n), k > n, l ≤ n,
C′l = Cl(1+ 1

2CgS
n)(1+ CgSn)−1, k > n, l > n.

(6.3.9)

6.4 Background charge

The background charge in a single-electron tunneling device has a large influ-
ence on its properties. For example, by tuning the background charge in a dou-
ble junction with one gate one can set the threshold voltage to any value between
zero and e/(2C + Cg). In this section, we investigate the effect of background
charges on the threshold voltage of an array of tunnel junctions. For reasons of
clarity, we choose identical junction capacitances in the following (Ci = C for all
i). We start by investigating an array with a non-zero background charge on a
single island. We then give ensemble-averaged results for random background
charges on all islands and compare with the experiments of Delsing et al. [16]

In the absence of gate coupling (Cg,i = 0 for all i) and for a non-zero back-
ground charge q0,m = Q0,m/e on island m, there are three initial tunneling
events which may form the bottleneck for conduction:

• transfer of an electron from the emitter to the first island (electron injec-
tion through junction k = 1);

• tunneling through junction k = m + 1 if q0,m > 0 or through junction
k =m if q0,m < 0 (electron-hole creation at island m);

• transfer from the last island to the collector (hole injection through junc-
tion k = N).

An analysis of the corresponding tunneling sequences results in the threshold
voltage

Vt = e
2C

(
N − 1− 2Min[mq0,m, (N −m)(1− q0,m)]

)
,

q0,m ≥ 0, (6.4.1)

Vt = e
2C

(
N − 1− 2Min[m(1− |q0,m|), (N −m)|q0,m|]

)
,

q0,m < 0. (6.4.2)

For a uniform distribution of q0,m between ±1
2 and a uniform distribution of

m between 1 and N − 1 its expectation value is 〈Vt〉 = (5N − 7)e/12C, with
variance VarVt = (e/2C)2(N + 1)(3N2 − 5N + 8)/180N. The expectation value
is slightly smaller than for a homogeneous array without background charges:
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Figure 6-2. Derivative of the average threshold voltage with respect to the array length N , for

ensembles of arrays with identical capacitances (Ci = C and Cg,i = Cg for all i) and random

background charges on all islands, calculated from Eq. (6.4.3). The average is determined

numerically from ensembles of 10000 samples for N ≤ 128 and ensembles of 1000 samples

for larger arrays. A cross-over from 〈Vt〉 ∝ N1/2 to 〈Vt〉 ∝ N occurs at Nc ≈ 2.5
√
C/Cg . Solid

lines are the extrapolation formulas (6.4.7) and (6.4.8). The dashed curves are obtained from

the result (6.4.5) for zero background charges and Cg/C = 0 (upper curve) and Cg/C = 0.01

(lower curve).

Vt = (N−1)e/2C. In the limit N →∞ the root-mean-square deviation is rmsVt ∝
Ne/C, of the same order as the threshold voltage itself.

We next consider a one-dimensional array of equally gated islands (Ci = C,
Cg,i = Cg for all i). In Refs. [9] and [12] the charge transport in homogeneous
arrays by soliton-like excitations was introduced. In terms of the soliton width
λ−1 = [2arsinh

√
Cg/4C]−1 of Ref. [9], the threshold voltage for an electron tun-

neling through junction k is given by

Vt,k(~q) = e
2C


−2

k−1∑
i=1

(qi + qg) sinh(iλ) cosh[(N − k+ 1
2)λ]

+ 2
N−1∑
i=k
(qi + qg) sinh[(N − i)λ] cosh[(k− 1

2)λ]

+ sinh[(N − 1
2)λ]− cosh[(N − 2k+ 1)λ] sinh

λ
2
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(
sinhλ cosh

Nλ
2

cosh
(N − 2k+ 1)λ

2

)−1

. (6.4.3)

Here, the gate-induced charge qg ≡ Cg[Vg − 1
2(Ve + Vc)] acts as an offset on

the background charge. The average threshold voltage (averaged over the back-
ground charge) is therefore independent of Vg. For N = 2, we find

〈Vt〉 = e/(4C + 2Cg). (6.4.4)

In the absence of background charges and for qg = 0, we find

Vt = e
2C

sinh[(N − 1)λ/2]
cosh(Nλ/2) sinh(λ/2)

, (6.4.5)

which approaches a constant value as N → ∞, provided λ 6= 0, i.e. provided
Cg/C 6= 0. In Figure 6-2 we show the effect of random background charges on
all islands in arrays of different lengths for several gate couplings, as calculated
from Eq. (6.4.3). The averages are computed numerically by putting a random
charge q0,k ∈ (−1

2 ,
1
2) on each island k. The dependence of 〈Vt〉 on the array

length differs drastically from the result (6.4.5) without background charges:
Instead of a threshold voltage which exponentially approaches a constant value
as N → ∞, we find 〈Vt〉 ∝

√
N − 1 for small arrays, with a cross-over to a linear

N-dependence for large arrays. For Cg � C, the array length Nc at which the
cross-over occurs is found to be 2.5 times the soliton width,

Nc ≈ 2.5
√
C/Cg ≈ 2.5λ−1. (6.4.6)

For N < Nc the average threshold voltage is well described by an extrapola-
tion of the result (6.4.4) for N = 2:

〈V<t 〉 =
e

4C + 2Cg

√
N − 1√
2− 1

. (6.4.7)

For N > Nc we can describe the numerical data by

〈V>t 〉 = 〈V<t 〉N=Nc + (N −Nc)
d〈V<t 〉

dN

∣∣∣∣
N=Nc

= e
4C + 2Cg

1√
2− 1

(
N +Nc
2
√
Nc

− 1

)
. (6.4.8)

The cross-over to a linear N-dependence supports the intuitive idea that the
background charge in the array is screened beyond Nc . The rms deviation
rmsVt = 0.31e(

√
N − 1)/(2C +Cg) for all N. The rms deviation of the threshold

voltage for tunneling through a specific junction k has a much stronger depen-
dence on N than rmsVt itself: rmsVt,k ∝ N3/2. Since Vt is chosen as the maximal
threshold voltage in a sequence of N minimal values for single tunneling events,
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Figure 6-3. Comparison of experimental threshold voltages (taken from Ref. [16], solid dots)

with the result of Eq. (6.4.3), averaged over the random background charge (open squares with

error bars). We used identical gate and junction capacitances, with Cg/C = 0.044 (Nc = 12), as

estimated in Ref. [16]. There are no adjustable parameters.

the fluctuations in Vt are smaller than those in Vt,k. In Figure 6-3 we compare the
threshold voltage from Eq. (6.4.3), averaged over all background charges, with
experimental threshold voltages for arrays of different lengths. [16] We used the
values C = 0.28 fF and Cg=0.012 fF from Ref. [16], giving Nc = 12. Thus, the
experimental results are in the regime of a linear dependence of 〈Vt〉 on N. The
qualitative agreement is satisfactory, without any adjustable parameters.

In conclusion, we have derived an exact analytical expression for the thresh-
old voltage Vt,k(~q) for tunneling through a junction k in a one-dimensional array
of N metallic islands at arbitrary occupation ~q of the islands. We have calculated
the average threshold voltage for transport and its fluctuations in a few simple
cases. In particular, we have found that including random background charges
results in a Na dependence of 〈Vt〉, with a = 1

2 for N < 2.5
√
C/Cg and a = 1

for N > 2.5
√
C/Cg. We have made a comparison with the available experimental

data on gated one-dimensional arrays, [16] and found a reasonable agreement.



100 Coulomb blockade threshold



References
[1] C. J. Gorter, Physica 17, 777 (1951).
[2] For an introduction, see Single Charge Tunneling, edited by H. Grabert and

M. H. Devoret (Plenum, New York, 1992); D. V. Averin and K. K. Likharev, in
Mesoscopic Phenomena in Solids, edited by B. L. Al’tshuler, P. A. Lee, and R.
A. Webb (North-Holland, Amsterdam, 1991).

[3] L. J. Geerligs, V. F. Anderegg, P. A. M. Holweg, J. E. Mooij, H. Pothier, D.
Esteve, C. Urbina, and M. H. Devoret, Phys. Rev. Lett. 64, 2691 (1990).

[4] H. Pothier, P. Lafarge, P. F. Orfila, C. Urbina, D. Esteve, and M. H. Devoret,
Physica B 169, 573 (1991); Europhys. Lett. 17, 249 (1992).

[5] See the recent overview of A. N. Korotkov, in Molecular Electronics, edited
by J. Jortner and M. A. Ratner (Blackwell, Oxford, to be published).

[6] J. P. Pekola, K. P. Hirvi, J. P. Kauppinen, and M. A. Paalanen, Phys. Rev. Lett.
73, 2903 (1994).

[7] K. P. Hirvi, J. P. Kauppinen, A. N. Korotkov, M. A. Paalanen, and J. P. Pekola,
Appl. Phys. Lett. 67, 2096 (1995).

[8] K. Yano, T. Ishii, T. Hashimoto, T. Kobayashi, F. Murai, and K. Seki, IEEE
Trans. Electron Devices 41, 1628 (1994).

[9] N. S. Bakhvalov, G. S. Kazacha, K. K. Likharev, and S. I. Serdyukova, Zh. Eksp.
Teor. Fiz. 95, 1010 (1989) [Sov. Phys. JETP 68, 581 (1989)]; Physica B 173,
319 (1991).

[10] E. Ben-Jacob, K. Mullen, and M. Amman, Phys. Lett. A 135, 390 (1989); M.
Amman, E. Ben-Jacob, and K. Mullen, Phys. Lett. A 142, 431 (1989).

[11] D. V. Averin, A. A. Odintsov, S. V. Vyshenskii, J. Appl. Phys. 73, 1297
(1993).

[12] G. Y. Hu and R. F. O’Connell, Phys. Rev. B 49, 16773 (1994).
[13] Young Bong Kang, G. Y. Hu, R. F. O’Connell, and Jai Yon Ryu, J. Appl. Phys.

80, 1526 (1996).
[14] L. R. C. Fonseca, A. N. Korotkov, K. K. Likharev, and A. A. Odintsov, J. Appl.

Phys. 78, 3238 (1995).
[15] D. V. Averin and K. K. Likharev, J. Low Temp. Phys. 62, 345 (1986); Zh. Eksp.

Teor. Fiz. 90, 733 (1986) [Sov. Phys. JETP 63, 427 (1986)].
[16] P. Delsing, T. Claeson, K. K. Likharev, and L. S. Kuzmin, Phys. Rev. B 42,

7439 (1990).
[17] M. Amman, R. Wilkins, E. Ben-Jacob, P. D. Maker, and R. C. Jaklevic, Phys.

Rev. B 43, 1146 (1991).
[18] A similar calculation for the charging energy of a single-electron memory

cell has been done by K. Nakazato, R. J. Blaikie, and H. Ahmed, J. Appl. Phys.
75, 5123 (1994).



102 REFERENCES



Samenvatting

Gëınduceerde supergeleiding in microstructuren

De klassieke theorieën van mechanica en elektromagnetisme voldoen op de
schaal van onze macroscopische belevingswereld prima, maar afwijkingen kun-
nen optreden beneden lengteschalen waarop het golfkarakter van de elektro-
nen zich manifesteert. Zulke afwijkingen worden beschreven door de theorie
van de quantummechanica. Mesoscopische fysica richt zich op systemen die zó
klein zijn dat elektronen zich merkbaar als golven gedragen, met een ruimtelijke
kansverdeling, een amplitude en een fase. Toch zijn de systemen nog zo groot
dat een statistische beschrijving mogelijk is. Dit onderscheidt mesoscopische
van microscopische systemen.

We onderzoeken in dit proefschrift transporteigenschappen van structuren
die bestaan uit metalen of halfgeleiders, en onderzoeken hoe deze eigenschap-
pen veranderen wanneer ze contact maken met supergeleiders. Deze structuren
zijn ruwweg een micrometer groot. Een typisch quantummechanisch effect
in zulke microstructuren is dat het geleidingsvermogen gequantiseerd is: het
transport vindt plaats in modes (zoals in een golfpijp) en elke mode draagt e2/h
bij aan het geleidingsvermogen. Een tweede typisch quantummechanisch effect
is tunnelen door een barrière: als een barrière hoger is dan de energie van een
elektron, kan het er doorheen tunnelen. Het heeft de kans de barrière “over te
slaan” en aan de andere kant te belanden. Op de schaal van macroscopische
barrières als muren en deuren is dit moeilijk voorstelbaar. Een resonantie-effect
kan optreden als twee tunnelbarrières na elkaar volgen: als de afstand tussen
twee barrières een veelvoud is van de halve golflengte heeft het elektron een
grote kans gelijk door beide barrières te tunnelen.

Het geleidingsvermogen is een veelvoud van e2/h als alle modes volledig
doorgelaten worden. Een mode met transmissiekans kleiner dan 1 draagt slechts
gedeeltelijk bij aan het geleidingsvermogen. In een wanordelijke geleider vol-
doen de transmissiekansen aan een statistische verdeling. We kunnen de trans-
missiekansen die verdeling laten doorlopen door een variatie van externe groot-
heden zoals magneetveld of energie. Het blijkt dat de transmissiekansen zó
fluctueren, dat de fluctuaties in het geleidingsvermogen onafhankelijk zijn van
het gemiddelde geleidingsvermogen, namelijk ongeveer gelijk aan e2/h. Om
deze reden worden deze fluctuaties universeel genoemd. In hoofdstuk 2 van dit
proefschrift beschouwen we draden die met tunnelbarrières zijn afgesloten. We
berekenen de gemiddelde grootte van de fluctuaties in het geleidingsvermogen
en vinden dat die slechts afhangt van de verhouding in de hoogte van beide
barrières. Voor twee gelijke barrières blijken de fluctuaties twee keer zo groot
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te zijn als in afwezigheid van tunnelbarrières.

Wat gebeurt er nu als we de microstructuren koppelen aan supergeleiders?
In tegenstelling tot normale geleiders hebben supergeleiders geen weerstand:
er kan een stroom in lopen zonder aangelegde spanning. De stroom wordt
gedragen door zwak gebonden elektronparen, Cooper-paren geheten. De bind-
ingsenergie die betaald moet worden om een Cooper-paar te ontbinden (te “ex-
citeren”) is 2∆, ofwel ∆ per elektron. In normale geleiders mogen excitaties een
willekeurig kleine energie hebben, maar in een supergeleider kan een ongepaard
elektron alleen voorkomen als het tenminste een excitatie-energie ∆ heeft.

De overgang van een normale geleider naar een supergeleider gaat gepaard
met een weerstand voor elektrische stroom. Op het eerste gezicht zou deze
contactweerstand oneindig groot moeten zijn. Immers, vanwege de minimale
excitatie-energie ∆ voor een ongepaard elektron in de supergeleider kan bij lage
spanningen geen enkel elektron de supergeleider binnendringen, hetgeen een
oneindig grote weerstand inhoudt. Gelukkig bestaat er een mechanisme dat
voor lage spanningen ladingstransport van een normale geleider naar een su-
pergeleider mogelijk maakt. Aan het grensvlak wordt door toedoen van een
inkomend elektron uit de normale geleider een extra elektron uit de omgeving
gehaald om een Cooper-paar te kunnen vormen. Dit Cooper-paar wordt pro-
bleemloos in de supergeleider geabsorbeerd. Waar het elektron uit de omgeving
werd gehaald, blijft een gat over. Net als in een Chinees schuifspelletje kan
dit gat zich verplaatsen doordat steeds een elektron in een naburige toestand
de lege plek opvult en zelf weer een lege plek achterlaat. Het gevormde gat
keert als een echo terug in de normale geleider in de richting van waaruit het
inkomende elektron kwam. Dit mechanisme heet Andreev-reflectie. Het komt in
dit proefschrift veelvuldig voor.

Het voorbeeld van Andreev-reflectie toont aan dat de koppeling aan een
supergeleider de eigenschappen van een normale geleider bëınvloedt. Infor-
matie over de supergeleider wordt meegegeven aan elektronen en gaten die
aan het grensvlak reflecteren, zodanig dat de supergeleiding zelf als het ware
gëınduceerd wordt in de normale geleider. De titel van dit proefschrift verwijst
naar de effecten van de koppeling tussen normale geleiders en supergeleiders
in mesoscopisch kleine structuren, ofwel: gëınduceerde supergeleiding in mi-
crostructuren.

In hoofdstuk 3 koppelen we een normaal geleidende draad met daarin een-
zelfde dubbele barrière als in hoofdstuk 2 aan een supergeleidende draad. De
geleiding door dit systeem wordt bepaald door de kans op Andreev-reflectie. Als
een inkomend elektron resonant tunnelt door beide barrières, doet het Andreev-
gereflecteerde gat dat automatisch ook. Door de tunnel-barrières in hoogte
van elkaar te laten verschillen neemt de transmissiekans van resonante toe-
standen af, terwijl die van niet-resonante toestanden toeneemt. Als we alle
transmissiekansen sommeren blijkt, dat het geleidingsvermogen van een nor-
maal geleidende draad met een dubbele barrière monotoon daalt als één van
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de barrières hoger wordt gemaakt. De koppeling aan een supergeleider zorgt
er echter voor, dat er een maximum optreedt als beide barrières ongeveer even
hoog zijn. Dit door ons voorspelde maximum is recent waargenomen door een
groep in Japan.

Als de normale geleider geen wanorde bevat, volgt het Andreev-gereflecteerd
gat precies dezelfde weg als het inkomend elektron. Deze vorm van reflectie
wordt wel “retro-reflectie” genoemd. Een bundel elektronen wordt dan als een
perfecte echo van gaten tot in de bron weerkaatst. In hoofdstuk 4 laten we
zien dat deze echo ook in aanwezigheid van verstrooiing door onzuiverheden
waarneembaar blijft, alleen met een kleinere amplitude.

In hoofdstuk 5 richten we ons op het energiespectrum van een metaaldeeltje
in contact met een supergeleider. De vraag is of er een laagste excitatie-energie
is, net als in een supergeleider (waar de excitatiedrempel ∆ is). We vinden dat er
in een wanordelijk deeltje inderdaad zo’n excitatiedrempel optreedt, maar veel
kleiner dan ∆. In een wanordelijk deeltje is de beweging van de elektronen chao-
tisch. Het blijkt dat chaotische beweging essentieel is voor de inductie van een
excitatiedrempel. Dit is verrassend, omdat het energiespectrum in afwezigheid
van supergeleiders hetzelfde is voor chaotische en niet-chaotische systemen.

De elektrostatische energie die nodig is om een elektron op een metaaldeeltje
met capaciteit C te plaatsen is e2/2C. Voor zeer kleine deeltjes met lage ca-
paciteiten is dit een belangrijke energieschaal. In hoofdstuk 6 behandelen we
transport van elektronen door een keten van kleine metaaldeeltjes. Transport
door de keten vindt plaats doordat elektronen van deeltje naar deeltje tunne-
len. Het transport is geblokkeerd als de aangelegde spanning te laag is om de
benodigde elektrostatische energie te leveren. In hoofdstuk 6 berekenen we de
drempelspanning, waarboven een stroom door de keten loopt.
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STELLINGEN
behorend bij het proefschrift

Induced Superconductivity in Microstructures
van Joost Melsen

1. In afwezigheid van tijdomkeersymmetrie volgt de verdeling van energie-
niveaus van een metaalkorrel in contact met een supergeleider uit het La-
guerre ensemble van de toevalsmatrixtheorie.

K. M. Frahm, P. W. Brouwer, J. A. Melsen en C. W. J. Beenakker,
Phys. Rev. Lett. 76, 2981 (1996).

2. Door matrices te kiezen volgens een parameterisatie in Eulerhoeken kan
het circulaire unitaire ensemble van de toevalsmatrixtheorie worden gere-
produceerd, indien de door Życzkowski en Kuś voorgestelde invariante
maat dµ wordt vervangen door

dµ = dα
N∏
s=1

s∏
r=1

dχ1sdψrsd(cos2r φrs).

K. Życzkowski en M. Kuś, Phys. Rev. E 53, 319 (1996).

3. Het is niet gerechtvaardigd om de NMR-lijnvorm in kleine metaalkorrels te
identificeren met de verdeling van de lokale toestandsdichtheid.

K. B. Efetov en V. N. Prigodin, Phys. Rev. Lett. 70, 1315 (1993).

4. Het temperatuurbereik van een thermometer gebaseerd op de temperatuur-
afhankelijke tunnelstroom door een dubbele potentiaalbarrière kan dras-
tisch worden vergroot door parallelle schakeling van verscheidene dubbele
potentiaalbarrières met verschillende elektrostatische capaciteiten.

H.-O. Müller, U. Hanke, K.-A. Chao en J. A. Melsen,
Nanotechnology 8, 29 (1997).

5. Polarisatiebijdragen tot de energie van de 4f-elektronen, vergelijkbaar met
die in atomen, verklaren de divalentie van de metalen Europium en Yt-
terbium in hun grondtoestand, in tegenstelling tot de trivalentie van de
overige Lanthanide metalen.

J. A. Melsen, J. M. Wills, B. Johansson en O. Eriksson,
J. Alloys and Compounds 209, 15 (1994).
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6. Onder compressie zijn open kristalstructuren in Scandium stabiel.

O. Eriksson, J. M. Wills, P. Söderlind, J. A. Melsen, R. Ahuja, A. M. Boring en
B. Johansson, J. Alloys and Compounds 213, 268 (1994).

7. De golflengte van licht geëmitteerd door Silicium nanokristallen verandert
door oxidatie.

8. Parallaxmetingen door de satelliet Hipparcos aan Cephëıden maken een
aanpassing van 10 % in astronomische lengteschalen noodzakelijk.

M. W. Feast en R. M. Catchpole, Monthly Notices of the
Royal Astronomical Society, 286, L1 (1997).

9. Kunst is schaars.

Joost Melsen
Leiden, 18 juni 1997


