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1 Introduction

In optics, a random medium is a system where the dielectric constant ε(r)
varies randomly as function of the position r. Light propagating through
such a medium is scattered by the fluctuations in ε. Furthermore, a non-
zero imaginary part of ε leads to absorption or amplification of the radi-
ation. In this thesis we study the transmission of light through various
types of random media. The initial motivation of this research was a prob-
lem in medical imaging.

1.1 Medical imaging

The human body is a random medium, at least on a certain length scale.
Due to the structure of cells and their components the dielectric constant of
human tissue fluctuates randomly from point to point. The goal of med-
ical imaging is to study the inside of a body, by transmitting radiation
through it. X-rays have been used for that purpose for over a century, but
they damage the tissue. Therefore it is advantageous to use longer wave-
lengths in the near infrared or in the visible parts of the spectrum. In this
frequency region the scattering is greatly enhanced with respect to that of
x-rays. It is a difficult problem to reconstruct an image from light which
has been multiply scattered.

An additional complication is absorption, which should be as low as
possible. The absorption by tissue is dominated by the absorption in water.
In the range between small (ionizing) wavelengths and wavelengths too
large for imaging purposes, the absorption minimum of water is around
500 nm. Near that wavelength, however, blood (haemoglobin) and pig-
ments (melanin) have their absorption peak. The effective absorption by
tissue is smallest at approximately 800 nm. Experiments are therefore done
in the near-infrared regime.

There are two major applications of medical imaging. First of all, one
can study the skin. The small thickness of the skin means that the amount
of scattering can be rather low. The second application is the detection
of tumors. This is possible either inside the head or in the female breast
(mammography). Both regions of the body are void of bones and hence
relatively homogeneous. Our research was motivated by the problem of
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Figure 1.1: Refraction of a photon-density wave. Shown are constant
phase contours (in 20◦ intervals) for the propagation of a diffusive photon-
density wave through a planar boundary that separates two regions with
different mean free path. From Ref. [1].

optical mammography.
The goal of mammography is the detection of an object, the tumor,

inside a tissue, which is rather homogenous. This is done by detecting at
various points around the breast the amount of light transmitted, coming
from a single source. By repeating the measurement for different sources
one gathers a large amount of data, from which in principle the interior of
the breast can be reconstructed.

To be able to do a reconstruction, one needs to understand first the
optical properties of the tissue when no tumor or other inhomogeneity is
present. These are determined by two length scales, the mean free path
for scattering and the absorption length. The angle-dependence of scatter-
ing is also of importance. (In general, tissue scatters predominantly in the
forward direction.) The next step is to calculate the influence of such an in-
homogeneity on the detected signals. The sensitivity of the measurement
depends on the geometry and boundary conditions, and on the positions
of the sources and detectors.

The source of light need not be a continuous wave, but could be a
short pulse. The time-dependence of the detected signal can be used to
gain extra information from the medium. Alternatively, one can use an
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Figure 1.2: Time-dependent intensity profiles after transmission through
a thin slab. Different scans belong to different positions along the slab,
which contains large objects at x = 0 mm and x = 10 mm. From Ref. [3].

amplitude or frequency modulated source. The phase of the detected sig-
nal then contains additional information from the medium. When using
amplitude modulation one speaks of a photon-density wave. In Fig. 1.1
we show refraction of a photon-density wave (interference has also been
observed [2]). The difference with normal waves is that photon-density
waves have a decay length which is of the same order of magnitude and
smaller than the wavelength.

Although time-resolved or frequency-modulated experiments are more
complicated than continuous-wave experiments, the reconstruction of the
image can be simpler. An example of this is shown in Fig. 1.2. In a time-
resolved measurement, the smallest times correspond to the shortest light
paths. When an object is in between the source and detector, short light
paths can not go around the object. Hence the small-time data can be used
for direct projection imaging. To have sufficient accuracy the medium
must not be too wide, since the amount of light with short path lengths
decays exponentially with the thickness of the medium.

1.2 Random lasers

The term “random laser” was coined by Wiersma et al. [4], in response to
an experiment by Lawandy et al. [5] on amplification of light in a strongly
scattering medium. To make a laser one needs an amplifying medium
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with a feedback mechanism. Usually feedback is provided by two mirrors.
The light moves back and forth between the mirrors. Stimulated emission
by atoms which have been pumped into an excited state leads to gain.
Transmission through the (partially reflecting) mirrors leads to loss. The
laser threshold is crossed when gain exceeds loss.

A random laser is a laser where feedback is provided by scattering by
disorder, rather than by mirrors. It has an analogy with a nuclear reactor.
Inside a reactor neutrons are generated by fission. These neutrons then
move through the medium, and undergo scattering. Some of the neutrons
are lost, either at the outer boundary, or at the cadmium control rods. They
may also cause a new fission process. The threshold for the nuclear reac-
tion is reached when, on average, each neutron generates another neutron
before being lost.

Already in 1967 Letokhov [6] invoked this analogy to describe lasing in
stellar atmospheres. He also argued that a mirrorless laser could be useful
as a frequency standard, because the central frequency of the emitted radi-
ation is set by the atomic transition frequency, and not by the geometry of
the system. The recent practical interest in mirrorless lasers is motivated
by futuristic applications such as “laser paint” [7]. The scientific interest is
to study the interplay of amplification and localization.

A precursor of localization is the effect known as “weak localization”,
manifested in the coherent backscattering peak [8, 9]. Consider a random
medium that is illuminated by a plane wave. The light can pass through
the medium via many different paths. These paths will interfere construc-
tively or destructively, depending on the difference in path length. For any
path there is also the time-reversed path, of the same length. These two
paths will always interfere constructively, which results in an enhance-
ment by a factor of two of the probability for closed paths, or equivalently
of the intensity of light reflected at the angle of incidence. This coherent
backscattering peak has a width of order λ/l, where λ is the wave vector
of the light and l is the transport mean free path.

The effect of amplification on the coherent backscattering peak was
investigated experimentally [10] and theoretically [11, 12]. The medium
studied in the experiment consists of Ti:sapphire powders which amplify
the light, doped with Ti2O3 particles which have a large dielectric constant
and cause scattering. As is shown in Fig. 1.3 the amplification leads to a
narrowing of the backscattering peak. The reason is that the tails of the
peak are due to short paths, and these are amplified less than long paths.
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Figure 1.3: Backscattering peak in an amplifying medium. From Ref. [10].

1.3 Phase-conjugating mirror

Phase conjugation is the effect that an incoming wave∝ cos(kx−ωt) is re-
flected as a wave∝ cos(−kx−ωt), with opposite sign of the phase kx. This
is equivalent to reversing the sign of the time t, so that phase conjugation
is sometimes called a time-reversal operation. The reflected wave has a
wavevector precisely opposite to that of the incoming wave, and therefore
propagates back along the incoming path. This is called retro-reflection.
The differences between an ordinary mirror and a phase-conjugating mir-
ror are depicted in Fig. (1.4) for two simple cases: an incoming plane wave
and an incoming spherical wave.

PCMOM PCMOM

Figure 1.4: Reflection by an ordinary mirror (OM) and a phase-conjuga-
ting mirror (PCM) of a plane wave (left) and a spherical wave (right).

There exist various methods to create a phase-conjugating mirror [13–
16]. A widely used method is the technique of four-wave mixing [13].
It makes use of a substance with a large third-order non-linear suscepti-
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Figure 1.5: Four-wave mixing cell which constitutes a phase-conjugating
mirror (PCM). The medium has a non-linear susceptibility χ3. Two pump
beams at frequency ω0 are counter-propagating. A probe beam at fre-
quency ωp enters and is amplified. In addition a fourth beam at frequency
ωc = 2ω0− ωp is reflected in the opposite direction as the probe beam.

bility χ3. Examples are BaTiO3 and CS2. The material is pumped by two
counter-propagating beams, both at the same frequency ω0 (see Fig. 1.5). A
third beam, the probe beam, impinges on the material with a much smaller
amplitude and a slightly different frequency ωp. The non-linear suscepti-
bility leads to an amplification of the probe beam, and to the generation of
a fourth beam. Basically two photons of the pump beams are converted
into one photon for the third and fourth beam each. Energy conservation
dictates that the frequency ωc of the fourth beam equals 2ω0 − ωp. Mo-
mentum conservation dictates that its wavevector is opposite to that of
the probe beam.

A phase-conjugating mirror can be used for wave-front reconstruc-
tion [14]. Imagine an incoming plane wave, that is distorted by some in-
homogeneity. When this distorted wave falls on the mirror, it is phase
conjugated and retro-reflected. Due to the time-reversal effect, the inho-
mogeneity that originally distorted the wave now changes it back to the
original plane wave. An experimental example is shown in Fig. 1.6. We
refer to Refs. [15–18] for a further introduction of phase conjugation.

1.4 Analogies between photons and electrons

In the previous sections we gave an overview of the subjects considered
in this thesis. Much of our intuition comes from the analogous problems
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Figure 1.6: Experimental example of phase conjugation. In both pho-
tographs the image of a cat was distorted by transmitting it through a
piece of frosted glass, and reflecting it back through the same piece of
glass. This yields a unrecognizable image (left panel) when reflected
by an ordinary mirror and the original image when reflected by a phase-
conjugating mirror (right panel). From Ref. [19].

in solid-state physics, involving scattering of electrons instead of light. We
introduce the analogies in this section.

The electric and magnetic fields E(r,ω) and B(r,ω) (at point r and fre-
quency ω) satisfy Maxwell’s equations,

∇ · ε(r,ω)E = 0, (1.1a)
∇ · B = 0, (1.1b)

∇× E− iω B = 0, (1.1c)

∇× B + ε(r,ω)
iω
c2 E = 0. (1.1d)

We assume that the relative magnetic permeability is unity and that the
relative dielectric constant ε(r,ω) is isotropic. Eliminating the magnetic
field from Eq. (1.1) one finds for the electric field the equation

∇2E + ε(r,ω)
ω2

c2 E = ∇(∇ · E). (1.2)

The vector character (polarization) of the light is a complication which
in disordered media is usually insignificant (since the multiple scattering
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randomizes the polarization). It is convenient to analyze a scalar wave
equation, obtained from Eq. (1.2) by replacing the vector field E by a scalar
field E and setting the right-hand-side equal to zero. The result is the
Helmholtz equation,

∇2E + ε(r,ω)
ω2

c2 E = 0. (1.3)

The scalar description is exact for effectively two-dimensional systems,
where the dielectric constant varies only in the xy-plane, the polarization
of the electric field being in the z-direction.

The Helmholtz equation (1.3) for classical waves has the same form as
the Schrödinger equation

− h̄2

2m
∇2Ψ(r) + V(r)Ψ(r) = UΨ(r) (1.4)

for quantum mechanical waves (Ψ(r) is the wave function, U is the energy
and V(r) is the potential). This is the basis for the analogy between elec-
tronic and optical systems [20]. To make the correspondence we write the
Helmholtz equation (1.3) as

−∇2E + c−2[1− ε(r,ω)]ω2E = c−2ω2E. (1.5)

We see that the correspondence with the Schrödinger equation (1.4) re-
quires

Ψ(r)↔ E(r), (1.6a)
2mU/h̄2↔ ω2/c2, (1.6b)

2mV(r)/h̄2↔ [1− ε(r,ω)]ω2/c2. (1.6c)

Using these mappings one can try to find similarities and differences be-
tween optical and electronic systems. We mention some of these.

The Schrödinger and Helmholtz equations are mathematically equiv-
alent at any fixed value of energy U and frequency ω. However because
of the different way in which U and ω appear in the two equations, the
solutions to the two equations are different when considering a range of
U or ω. In particular, the time-dependent equations (obtained by Fourier-
transformation with respect to U or ω) are entirely different in the elec-
tronic and optical cases. The Schrödinger equation has a first-order time-
derivative while the Helmholtz equation has a second-order time-deriva-
tive. This leads to the different dispersion relations for light and electrons.
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Furthermore, the frequency dependence of [1− ε(r,ω)]ω2 would be analo-
gous to a time-dependent potential V(r, t), whereas the electronic problem
has a time-independent potential V(r). This difference leads for instance
to a discrepancy between the group velocity of a wave and the energy
velocity [21]. In this thesis we will restrict ourselves mainly to a single
frequency, so that these effects are not important.

A difference which will be important here is that photons can be cre-
ated or absorbed, in contrast to electrons. The difference manifests itself
in the fact that the potential for electrons is real, while the dielectric con-
stant ε = ε′ + iε′′ may be complex. Absorption corresponds to ε′′ > 0.
Amplification by stimulated emission corresponds to ε′′ < 0.

Another difference between electronic and optical systems lies in the
fact that the real part of ε is positive (ε′ > 0, except for metals, but then
substantial absorption takes place within a single wavelength). This im-
plies for the corresponding electronic system that the energy is always
larger than the potential, U > V(r). Hence the simple tunnel barrier, fa-
miliar from quantum mechanics, does not exist in optics. The scattering
due to a fluctuating dielectric constant cannot be as strong as that of a fluc-
tuating potential with peaks higher than the energy of the electrons. Lo-
calization of light in three-dimensional systems requires strong disorder
and is therefore much more difficult to achieve than for electrons [22–24].
In one-dimensional geometries (length much greater than width) localiza-
tion sets in for arbitrary weak disorder, if the system is long enough. The
localization length ξ in a disordered waveguide, (number of propagating
modes N, mean free path l) is given by ξ � Nl. The transmittance de-
cays exponentially ∝ e−L/ξ for lengths L	 ξ. In this thesis we will only
consider one-dimensional localization.

In the next sections we describe the three techniques we will use in
this thesis. If interference effects can be neglected, then the theory of ra-
diative transfer is the most convenient starting point. Otherwise, we will
use a scattering theory, which fully accounts for interference effects. The
third method is a numerical method, a solution of the Helmholtz equation
discretized on a lattice.

1.5 Radiative transfer theory

The theory of radiative transfer was developed to study the propagation
of electromagnetic radiation through stellar atmospheres [25–28]. In such
a medium the free propagation of energy is randomly interrupted by a
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scattering process, which changes the propagation direction or causes a
loss of energy (absorption). When viewing the scattering process in time,
the light can visit some parts of space multiple times. In the theory of ra-
diative transfer the resulting correlations are not taken into account, but
every scattering process is treated independently. The other basic approx-
imation is that interference effects are disregarded.

The central quantity is the intensity I(r, t, ŝ), being the energy flux per
unit solid angle at position r and time t, in the direction ŝ. Its evolution is
governed by the Boltzmann equation, also called the equation of radiative
transfer,

1
v
∂ I(r, t, ŝ)

∂t
+ ŝ · ∇I(r, t, ŝ) = l−1Q(r, t, ŝ)− (l−1 + l−1

a )I(r, t, ŝ). (1.7)

Here v = c/n is the velocity of propagation (with c the speed of light in
vacuum and n the index of refraction), l is the mean free path for scatter-
ing and la the absorption length. The quantity Q consists of all the light
scattered from directions ŝ′ to ŝ,

Q(r, t, ŝ) =
∫ dŝ′

Ωd
F(ŝ · ŝ′)I(r, t, ŝ′), (1.8)

with a weight function F(ŝ · ŝ′) known as the phase function. The angular
integral is normalized by the area Ωd = 2πd/2/Γ( 1

2 d) of the unit sphere in d
dimensions. The anisotropy parameter

g =
∫ dŝ′

Ωd
F(ŝ · ŝ′) ŝ · ŝ′ (1.9)

is a measure of the amount of anisotropy of the scattering.
The angular average of the intensity

Ī(r, t) =
∫ dŝ

Ωd
I(r, t, ŝ) (1.10)

determines the energy density

u(r, t) = v−1Ωd Ī(r, t). (1.11)

Together with the net flux

F(r, t) =
∫

dŝ I(r, t, ŝ)ŝ, (1.12)

it satisfies the continuity equation

∂

∂t
u(r, t) + ∇ · F = −vl−1

a u(r, t), (1.13)

as one can verify by integrating Eq. (1.7).
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Figure 1.7: Energy density (times velocity) uv as a function of dis-
tance r to the source. The system has a mean free path l = 2.34 cm, is
anisotropic with g = 0.734, and is highly absorbing, la = 8.47 cm. Nonethe-
less, the diffusion approximation (dashed) is nowhere far of from the cal-
culation using radiative transfer theory (solid), and both are close to the
experimental data (crosses). From Ref. [32].

1.6 Diffusion approximation

After the light has undergone multiple scattering, the angular dependence
of the intensity will be weak. In this diffusive regime the equation of radia-
tive transfer can be simplified to a diffusion equation, in which the angular
variable has been eliminated. To derive the diffusion equation [26,27] one
retains only the linear dependence of I on ŝ,

I(r, t, ŝ) � 1
Ωd

[vu(r, t) + dŝ · F(r, t)]. (1.14)

We multiply the Boltzmann equation by ŝ and integrate over ŝ. Using the
ansatz (1.14) we find

1
v
∂

∂t
F(r, t) +

v
d
∇u(r, t) = −[l−1(1− g) + l−1

a ]F. (1.15)

The two terms involving the time derivative on the left-hand-side and the
absorption length on the right-hand-side should be neglected for a con-
sistent approximation [29–31] (see also section 3.3). To find the correct
expressions to the next order in l/la one needs to take higher order terms
in the ansatz (1.14) into account as well. From Eq. (1.15) we find Fick’s law

F(r, t) = −D∇u(r, t), (1.16)
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with the diffusion constant D = vltr/d and the transport mean free path
ltr = l/(1− g). Combining Eqs. (1.13) and (1.15) we find the diffusion equa-
tion

∂

∂t
u(r, t) = D∇2u(r, t)− vl−1

a u(r, t). (1.17)

The diffusion approximation breaks down within a transport mean
free path from a source or a boundary, or if la <∼ ltr. That it works well
can be seen in Fig. 1.7. In this experiment [32] the energy profile was
measured resulting from a time-independent point-like source in an in-
finite medium. Although the result from the radiative transfer equation
describes the experimental data better, the diffusion approximation is not
far off, even though ltr � la.

1.7 Scattering theory

To include interference effects, neglected in the radiative transfer theory,
we use a scattering approach. To this end the region where scattering takes
place is embedded into a waveguide (see Fig. 1.8). The modes in the wave-
guide are normalized such that each of them carries the same flux. We as-
sume that there are N propagating modes in the waveguide to the left of
the scattering region, and N to the right. Any incoming or outgoing wave
can be expanded as a sum of these 2N modes,

Ein =
2N

∑
n=1

unEin
n , Eout =

2N

∑
n=1

vnEout
n . (1.18)

The complex coefficients are combined into two vectors

u = (u1, u2, . . . , u2N), v = (v1, v2, . . . , v2N). (1.19)

The outgoing amplitudes vn are linearly related to the incoming ampli-
tudes un,

v = Su. (1.20)

The 2N× 2N scattering matrix S is symmetric, S = ST, due to time reversal
symmetry, and it is also unitary, S−1 = S†, due to flux conservation (when
no absorption is present).

For simplicity we will usually assume a scalar wave, disregarding po-
larization effects. We consider a waveguide with constant cross-section
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Figure 1.8: Schematic view of the scattering geometry in a waveguide.

(transverse coordinate vector ρ) and dielectric constant ε = 1. The modes
are given by

E>n (ρ, z, t) = k−1/2
n Ψn(ρ) exp(+iknz− iωt), (1.21a)

E<n (ρ, z, t) = k−1/2
n Ψn(ρ) exp(−iknz− iωt). (1.21b)

The superscript> (<) indicates a wave moving to the right (left) along the
z-axis, with frequency ω and wavenumber

kn = (ω2/c2− k2
⊥,n)1/2. (1.22)

The functions Ψn(ρ) are eigenfunctions of the Helmholtz equation

∇2Ψn(ρ) = −k2
⊥,nΨn(ρ), (1.23)

in the cross-sectional plane of the waveguide. We will take the simplified
condition that they vanish at the boundary. For the case of 2-dimensional
scattering, we have

Ψn(ρ) = sin
(nπy

W

)
(1.24)

where ρ = y, W is the width of the waveguide and k⊥,n = n/πW.
The scattering matrix

S =
(

r11 t12
t21 r22

)
(1.25)

is described by two N × N transmission matrices t21(ω) and t12(ω) (trans-
mission from left to right and from right to left) plus two N × N reflec-
tion matrices r11(ω) and r22(ω) (reflection from left to left and from right to
right). In the absence of absorption (when S is unitary), the reflection and
transmission matrices can be decomposed as [33, 34]
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r11 = i V
√

1− T VT, r22 = i U
√

1−T UT,

t12 = V
√

T UT, t21 = U
√

T VT.
(1.26)

Here U and V are N× N unitary matrices and T is a diagonal matrix with
the transmission eigenvalues Tn ∈ [0, 1] on the diagonal.

For a random medium, the scattering matrix is a random matrix, with
some probability distribution. To compute averages we can use the tech-
niques of random-matrix theory (two reviews of the random-matrix the-
ory of phase-coherent scattering are Refs. [33, 34]). In a good approxima-
tion (called the isotropy approximation) the matrices U and V are uni-
formly distributed over the unitary group. For large systems, l� L� Nl,
the density of transmission eigenvalues is bimodal,

ρ(T) =
N

2(L/l∗+ 1)
1

T
√

1− T
, (1.27)

with a peak near zero and one and a cut-off for exponentially small T. The
scaled mean free path l∗ differs from the transport mean free path ltr by a
numerical factor

l∗/ltr =
√
π Γ( 1

2 d + 1
2 )/Γ( 1

2 d + 1). (1.28)

1.8 Numerical simulations

To test the analytical results we compare with numerical simulations of
phase-coherent multiple scattering, using the recursive Green function
technique [35–38]. The technique was developed for the Schrödinger equa-
tion, and therefore assumes a real potential. This is equivalent to the
Helmholtz equation with a real dielectric constant. We will use the tech-
nique also for systems having absorption or amplification, which implies
a complex dielectric constant. Therefore we will repeat in short the theory
behind the simulations to show that they are still valid in this case.

The Helmholtz equation (1.3) is discretized on a square lattice (lattice
constant b):

Ei,a−1 + Ei,a+1 + Ei+1,a + Ei−1,a− 4Ei,a +
(
εiaω

2b2/c2
)

Eia = 0. (1.29)

The width M is finite (a = 0, 1, . . . , M + 1), while the length is infinite (i = 0,
±1, ±2, ±3, . . .). The boundary conditions are

Ei,0 = Ei,M = 0, for all i. (1.30)
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The geometry is therefore the same as that of Fig. 1.8. We introduce dis-
order in a segment of length L (i = 1, 2, . . . , L), by letting the relative di-
electric constant εia fluctuate from site to site between 1± δε. Outside this
region, we take εia = 1. In the leads (i ≤ 0 and i > L) there are N propa-
gating modes. The number N depends on the frequency ωb/c. We seek
the 2N × 2N scattering matrix S, for an ensemble of different realizations
of the disorder.

The scattering matrix is related [35] to the (retarded) Green function
Gnm(zp, zq), projected onto modes n and m at two points zp, zq in the leads
p, q = 1, 2. To compute G we use the recursive Green function technique,
which we explain following MacKinnon [37]. The Green function on the
lattice can be found from the equation

(Zδi jδab− Hia, jb)Gjb,kc = δikδac, (1.31)

with implicit summation over repeated indices. The matrix H is the dis-
cretized Helmholtz operator,

Hia, jb = δi j(δa,b−1 + δa,b+1) + δab(δi, j−1 + δi, j+1) + δi jδab(εiaω
2b2/c2− 4),

(1.32)
the parameter Z is a positive imaginary infinitesimal. The calculation of
G requires a matrix inversion. This can be done efficiently in a recursive
way, by adding slices of the disordered region, one at a time.

We take the elements belonging to one slice, at constant i, together,
writing

(Hi j)a,b = Hia, jb, (Gi j)a,b = Gia, jb. (1.33)

Equation (1.31) then becomes

(Zδi j1−Hi j)G jk = δik1. (1.34)

We start with the Green function G(I)
i j for a semi-infinite system, where

i, j ≤ I. This Green function can be found analytically for I ≤ 0, where no
disorder is present. We add one slice at a time until I = L, doing the cal-
culation numerically. The full Green function can then be found from the
Green function for i ≤ L and that for i > L, which can again be calculated
analytically since no disorder is present in that region. The calculation of
G(I+1) from G(I) can be done using the equations [37]

G(I+1)
I+1,I+1 = (Z1−HI+1,I+1−HI+1,IG

(I)
I,IHI,I+1)−1, (1.35a)

G(I+1)
I+1,i = G(I+1)

I+1,I+1HI+1,IG
(I)
I,i , (1.35b)
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G(I+1)
i,I+1 = G(I)

i,I HI,I+1G(I+1)
I+1,I+1, (1.35c)

G(I+1)
i, j = G(I)

i, j + G(I)
i,I HI,I+1G(I+1)

I+1,I+1HI+1,IG
(I)
I, j, (1.35d)

where i, j ≤ I. Once we know G, the scattering matrix, projected onto
modes n and m, follows from

(Spq)mn = iδpqδmn +
√

vnvmGnm(zp, zq). (1.36)

Here Spq is a reflection matrix for p = q and a transmission matrix for p �= q,

and vn =
(((
4−{ω2b2/c2−4+2 cos[nπ/(M+1)]}2

)))−1/2
is the velocity along

the waveguide of mode n.
The recursive method has the following advantages. For every slice

added, the matrix one has to invert remains of size M × M. The com-
putation time required, therefore, scales linearly with L. Furthermore the
method is stable, in contrast to transfer matrix calculations, which we do
not discuss here. The derivation does not require H to be Hermitian, and
therefore holds also for complex dielectric constant, i.e. for systems with
absorption or amplification.

To compare the numerical results with the theory we need to extract
the mean free path l∗ from the numerical data. This can be done by com-
puting the average transmission 〈T〉 ≡ 〈N−1 Tr t12t†12〉 averaged over dis-
order realizations, for a large number of modes N. The mean free path is
then obtained from

〈T〉 = 1
1 + L/l∗

. (1.37)

which is a good approximation for N	 1 [39].

1.9 This thesis

In the first three chapters following this introduction, we ignore interfer-
ence effects. The theme of the first two chapters is the accuracy of the
diffusion approximation to the theory of radiative transfer in the station-
ary (chapter 2) and the time-dependent case (chapter 3). The following
chapter describes the use of the diffusion approximation for imaging pur-
poses (chapter 4). In the next four chapters we include interference effects.
The theme of those chapters is the interplay of phase-coherent multiple
scattering with amplification (chapters 5–7) and phase conjugation (chap-
ter 8).



1.9 THIS THESIS 17

Extrapolated-boundary condition for the diffusion equation

As mentioned in section 1.6, the diffusion approximation is easier to use
than the full theory of radiative transfer, described in section 1.5. This
approximation is accurate far from boundaries and sources. In a finite
system, one needs to supplement the diffusion equation with boundary
conditions, derived from the equation of radiative transfer. In chapter 2,
we investigate this problem for a slab geometry, with a step in the index of
refraction at the boundary. We calculate the transmittance in the diffusion
approximation, and compare with the exact solution of the equation of
radiative transfer.

Propagation of a pulse through a random medium

In chapter 3, we extend the comparison between the theory of radiative
transfer and the diffusion approximation, to the time-dependent case. We
study the spreading of a light-pulse in an unbounded disordered medium.
Within the diffusion approximation the intensity distribution is Gaussian
in space, centered at r = 0 and with a width ∼√Dt. From the equation of
radiative transfer we find that the intensity has two peaks: a ballistic peak
at time t = r/c, in addition to the diffusion peak at t� r2/D. Forward scat-
tering adds a tail to the ballistic peak in 2 and 3 dimensions,∝ (ct− r)−1/2

and ∝ − ln(ct− r), respectively. This tail has not been noticed previously.

Influence of boundaries on the imaging of objects in turbid media

To image objects that are present in a random medium, one needs to know
how sensitive measurements are to different kinds of objects, and to the
position of those objects. In chapter 4 we calculate this sensitivity for ob-
jects which have a different absorption with respect to the background,
and for objects which differ in the scattering parameters. The medium that
contains the objects will be bounded, and in practice the sources and de-
tectors are at the boundaries. Using the previous results we compare three
systems, an unbounded medium, a medium having a black boundary, and
a medium having a mirror as boundary. We calculate the influence of the
boundaries on the sensitivity. Our results are confirmed by experiments.

Probability of reflection by a random laser

We start the study of the interplay of disorder and amplification with the
“random laser” introduced in section 1.2. In chapter 5 we consider the
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reflection of light from an amplifying random medium. We calculate the
sample-to-sample fluctuations of the albedo a (the ratio of reflected and
incident flux). The average albedo equals that calculated from theories
which do note take interference into account. We find, as expected, a laser
threshold, where the disorder and amplification are such that the average
albedo diverges, and we compute the enhancement of fluctuations close
to the laser threshold. Beyond the laser threshold, the distribution of a
remains well-defined, with a finite modal value and divergent moments.
This distribution is however unstable due to spontaneous emission events.

Localization with absorption or amplification

In chapters 6 and 7 we study the effect of amplification on the localiza-
tion length ξ of a disordered waveguide. As discussed in section 1.4 the
transmittance of these quasi-one-dimensional systems decays exponen-
tially ∝ e−L/ξ in the large-L limit. In the presence of absorption, the decay
length ξ becomes shorter. We show that dual systems, which differ only
in the sign of the imaginary part of ε, have the same decay length. Hence,
contrary to intuition, amplification suppresses the transmittance of a long
waveguide in the same way as absorption does. We use random-matrix
theory to calculate the localization lengths for systems with one and with
many modes, and compare with numerical simulations.

Random medium in front of a phase conjugating mirror

Optical phase-conjugation was introduced in section 1.3. In chapter 8 we
study the combination of a disordered medium and a phase-conjugating
mirror. As in previous chapters, we calculate the total flux reflected, for
given incoming flux. We compare the incoherent theory of radiative trans-
fer, with a phase-coherent scattering theory. The two approaches agree if
the frequency shift ∆ω acquired at the phase-conjugating mirror is large
compared to the inverse of the mean dwell time τdwell of a photon in the
disordered region. However, radiative transfer theory fails completely in
the opposite regime, ∆ω� 1/τdwell. We also consider the angular depen-
dence of the reflected intensity for an incident wave, to study wave-front
reconstruction. Perfect phase conjugation means that all of the light is
retro-reflected in the incident direction. This is possible only for a narrow
range of angles of incidence. The diffusive scattering by disorder prevents
perfect phase conjugation, but not completely: a clear peak in the reflected
intensity persists at the angle of incidence.
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2 Accuracy of the diffusion equation with
extrapolated-boundary condition

Multiple scattering of light in a turbid medium is well described by the
theory of radiative transfer [1–3]. This theory is based on a Boltzmann
equation for the stationary intensity I(r, ŝ) of monochromatic light at po-
sition r and with wave vector in the direction ŝ. In the simple case of
isotropic and non-absorbing scatterers (with mean free path l), the Boltz-
mann equation takes the form

l ŝ · ∇I(r, ŝ) = −I(r, ŝ) + Ī(r). (2.1)

Far from boundaries the angle-averaged intensity, given here for 3 dimen-
sions,

Ī(r) ≡
∫ dŝ

4π
I(r, ŝ) (2.2)

satisfies the diffusion equation

∇2 Ī(r) = 0, (2.3)

which is easier to solve than the Boltzmann equation. The diffusion equa-
tion breaks down within a few mean free paths from the boundary, and
one needs to return to the Boltzmann equation in order to determine Ī(r)
near the boundaries.

A great deal of work has been done on the choice of boundary con-
ditions for the diffusion equation which effectively incorporate the non-
diffusive boundary layer [1,2,4–8]. These studies have led to the so called
“extrapolated-boundary condition”

Ī(r) = −ξ n̂ · ∇ Ī(r), (2.4)

where r is a point on the boundary and n̂ is a unit vector perpendicular to
the boundary and pointing outwards. Equation (2.4) implies that a linear
density profile extrapolates to zero at a distance ξ beyond the boundary.
The extrapolation length ξ is of the order of the mean free path.

In this chapter we consider transmission through a slab of finite thick-
ness L. We compute the transmittance T, the ratio between the incident
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Figure 2.1: A sketch of the slab geometry. The disordered medium (thick-
ness L) has a refractive index n (relative to the outside) and a mean free
path l. The slab is illuminated by a plane wave incident at an angle θ0,vac,
which is refracted to an angle θ0 inside the medium. The transmittance T
is the ratio of the transmitted flux F and the incident flux F0.

flux and the transmitted flux, by solving the Boltzmann equation numer-
ically. Previous work on this problem used the diffusion equation with
the extrapolated-boundary condition [9–12] (or an alternative large-L/l
approximation [7]) to derive convenient analytical formulas for the depen-
dence of T on L and l, on the refractive index of the slab, and on the angle
of incidence. It is the purpose of the present study to determine the accu-
racy of these formulas, by comparison with the results from the Boltzmann
equation. We generalize and extend a previous study by De Jong [13] in
the context of electrical conduction through a disordered metal, where the
issue of refractive-index mismatch and angular resolution has not been
considered.

2.1 Exact calculation of the transmittance

We consider a slab containing a disordered medium between the planes
z = 0 and z = L (see Fig. 2.1). The intensity I(r, ŝ) depends only on the
z-coordinate and on the angle θ between ŝ and the z-axis. We define µ ≡
cos θ. The Boltzmann equation (2.1) takes the form

lµ
∂

∂z
I(z,µ) = −I(z,µ) + Ī(z), 0 < z < L, (2.5a)
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Ī(z) = 1
2

∫ 1

−1
dµ I(z,µ). (2.5b)

We supplement Eq. (2.5) with boundary conditions at z = 0 and z = L
that describe reflection due to a refractive index mismatch, with reflection
probability R(µ) :

I(0,µ) =R(µ)I(0,−µ) + I0(µ), µ > 0, (2.6a)
I(L,−µ) =R(µ)I(L,µ). µ > 0, (2.6b)

The boundary condition at z = 0 also contains the intensity due to a pla-
nar source with angular distribution I0(µ) inside the medium. Note that
the angular distribution is different from that outside the medium, due
to refraction at the boundary and due to the fact that part of the light is
reflected before even entering the medium.

The Boltzmann equation (2.5) with boundary conditions (2.6) implies
for Ī(z) an integral equation of the Schwarzschild-Milne type [1, 6, 7, 13]

Ī(z) =M0(z) +
∫ L

0
dz′ Ī(z′)

[
M1(z− z′) +

M2(z + z′) + M2
[
(L−z) + (L−z′)

]
+

M3(z− z′) + M3
[
(L−z)− (L−z′)

]]
. (2.7)

We have defined the kernels

M1(z) =
∫ 1

0

dµ
2lµ

e−|z|/lµ, (2.8a)

M2(z) =
∫ 1

0

dµ
2lµ

N(µ)R(µ) e−z/lµ, (2.8b)

M3(z) =
∫ 1

0

dµ
2lµ

N(µ)R2(µ)e−(2L+z)/lµ. (2.8c)

The factor N is given by

N(µ) =
(

1− R2(µ)e−2L/lµ
)−1

. (2.9)

The kernels M1, M2, and M3 describe propagation from z′ to z with zero,
an odd number, and an even number of reflections, respectively. The
source term M0 is given by

M0(z) = 1
2

∫ 1

0
dµN(µ)I0(µ)

[
e−z/lµ + R(µ)e−(2L−z)/lµ

]
. (2.10)
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Once Ī(z) is known, the intensities I(z,µ) and I(z,−µ) with µ > 0 follow
from

I(z,µ) = I0(µ)N(µ)e−z/lµ +
∫ z

0

dz′

lµ
e(z′−z)/lµ Ī(z′) + N(µ)R(µ)e−z/lµ

×
∫ L

0

dz′

lµ

(
e−z′/lµ + R(µ)e−(2L−z′)/lµ

)
Ī(z′), (2.11a)

I(z,−µ) = I0(µ)N(µ)R(µ)e−(2L−z)/lµ +
∫ L

z

dz′

lµ
e(z−z′)/lµ Ī(z′)

+ N(µ)R(µ)e−(2L−z)/lµ

×
∫ L

0

dz′

lµ

(
ez′/lµ + R(µ)e−z′/lµ

)
Ī(z′). (2.11b)

This is a solution of the Boltzmann equation (2.5) with boundary condi-
tions (2.6), as can be checked by substitution. Integration over all µ then
yields the Schwarzschild-Milne equation (2.7). We solve the integral equa-
tion (2.7) numerically, by discretizing the interval (0, L), so that it reduces
to a matrix equation [13].

The quantity of interest is the transmittance T, defined as the ratio of
the flux F that is transmitted through the slab and the flux F0 incident from
the source,

T = F/F0. (2.12)

The transmitted flux is given by

F = 2π
∫ 1

−1
dµµ I(z,µ), (2.13)

where c is the speed of light in the medium. The flux is independent of z,
because there is no absorption. The total incident flux (including the flux
which is reflected at the slab boundary before entering the medium) is
given by

F0 = 2π
∫ 1

µc

dµ
µI0(µ)

1− R(µ)
. (2.14)

We assume that the medium in the slab has a refractive index n > 1 (rel-
ative to the refractive index outside the slab). The lower bound µc in the
integral, defined by µc ≡ (1− 1/n2)1/2, is the cosine of the angle at which
total internal reflection occurs [R(µ)≡ 1 for µ < µc]. For 0 < µ < µc the re-
flection probability is given by the Fresnel formula for unpolarized light,

R(µ) = 1
2

∣∣∣∣µvac− nµ
µvac + nµ

∣∣∣∣
2

+ 1
2

∣∣∣∣nµvac− µ
nµvac + µ

∣∣∣∣
2

, (2.15a)
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Figure 2.2: Transmittance as a function of the incident angle θ0,vac for two
different values of L and n. The thick curves are computed from the Boltz-
mann equation, the thin curves are the diffusion approximation (2.20).

µvac ≡ [1− n2(1− µ2)]1/2. (2.15b)

The relation between µvac = cos θvac and µ = cos θ is Snell’s law, such that
the angle of incidence θvac outside the medium (in “vacuum”) is refracted
to an angle θ in the medium (see Fig. 2.1).

We have calculated the transmittance for the case of plane-wave illu-
mination, I0(µ) = I0δ(µ− µ0). The results are shown in Fig. 2.2, where T
is plotted as a function of the angle of incidence θ0,vac outside the medium
[µ0,vac = cos θ0,vac is related to µ0 by Eq. (2.15b)]. We show results for two
different ratios L/l and two values of n (thick curves). For n = 1 the trans-
mittance is non-zero for all incident angles, but numerical difficulties pre-
vent us from going beyond θ0,vac � 87◦. The thin curves in Fig. 2.2 are the
results of the diffusion approximation, which we discuss in the following
section.

2.2 Comparison with the diffusion approximation

The diffusion approximation for the transmittance has been studied by
several authors [9–12]. Here we briefly describe this approach, and then
compare the result with the numerical solution of the Boltzmann equation.

In a slab geometry the diffusion equation with extrapolated-boundary



28 BOUNDARY CONDITION FOR THE DIFFUSION EQUATION

condition takes the form [cf. Eqs. (2.3) and (2.4)]

d2

dz2 Ī(z) = 0, 0 < z < L, (2.16)

with boundary conditions

Ī(0) = ξ Ī ′(0), Ī(L) = −ξ Ī ′(L). (2.17)

We assume plane-wave illumination of the boundary z = 0, at an angle
θ0,vac with the positive z-axis. A fraction 1− R(µ0) of the incident flux F0
enters the medium, and is first scattered on average at z = µ0l. [We re-
call that µ0 = cos θ0, where θ0 corresponds to θ0,vac after refraction, cf.
Eq. (2.15b).] This plane-wave illumination is incorporated into the dif-
fusion equation (2.16) as a source term,

d2

dz2 Ī(z) +
3

4πl
[1− R(µ0)]F0δ(z− µ0l) = 0. (2.18)

The solution of Eq. (2.18) with boundary condition (2.17) is

Ī(z) =




3
4πl

(ξ + z)(L + ξ − µ0l)
L + 2ξ

[1− R(µ0)]F0, if 0 < z < µ0l,

3
4πl

(ξ + µ0l)(L + ξ − z)
L + 2ξ

[1− R(µ0)]F0, if µ0l < z < L.
(2.19)

The transmitted flux F = − 4
3π Ī ′(L) divided by the incident flux F0 leads to

the transmittance in the diffusion approximation,

Tdiff = [1− R(µ0)]
ξ + µ0l
L + 2ξ

. (2.20)

This simple analytical formula combines results in the literature by Ka-
plan et al. [9] (who considered normal incidence) and by Nieuwenhuizen
and Luck [7] (who considered the Schwarzschild-Milne equation in the
diffusive limit L	 l).

We still need to specify the value of the extrapolation length ξ. We will
use an expression due to Zhu, Pine, and Weitz [14],

ξ = 2
3 l

1 + C2

1− C1
, (2.21)

where the coefficients C1 and C2 are the first two moments of R(µ),

C1 = 2
∫ 1

0
dµµ R(µ), (2.22a)

C2 = 3
∫ 1

0
dµµ2 R(µ), (2.22b)
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Figure 2.3: Ratio of the transmittance Tdiff according to the diffusion ap-
proximation and the exact result T according to the Boltzmann equation,
for normal incidence θ0,vac = θ0 = 0. The inset shows T as a function of
L/l, for the same values of n as the main plot.

normalized such that C1 = C2 = R for an angle-independent reflection
probability R(µ) = R. Comparison of Eq. (2.21) with a numerical solu-
tion of the Boltzmann equation in a semi-infinite medium by Aronson [8]
shows that it accurately describes the length over which the linear den-
sity profile extrapolates to zero. The difference is largest for n = 1, when
Eq. (2.21) gives ξ = 2

3 l while the Boltzmann equation gives an extrapo-
lation length of 0.7104 l which is somewhat larger [1, 7]. The transmit-
tance Tdiff is compared in Figs. 2.2 and 2.3 with the exact T from the Boltz-
mann equation.

Once the transmittance T for plane-wave illumination as a function
of µ0,vac = cos θ0,vac is known, one can compute the transmittance Ttot for
diffusive illumination by integrating over the angles of incidence,

Ttot = 2
∫ 1

0
dµ0,vac µ0,vac T(µ0,vac). (2.23)

The diffusion approximation (2.20) and (2.21) yields the analytical formula

Tdiff,tot = n2
(

3L
4l

+
1 + C2

1− C1

)−1

. (2.24)

In the absence of a refractive-index mismatch (n = 1, C1 = C2 = 0) this for-
mula has been found [13] to agree with the Boltzmann equation within 3%
for all L/l. For n > 1 the relative error in Eq. (2.24) is comparable to that
shown in Fig. 2.3 for the transmittance at normal incidence.
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In conclusion, we have computed the transmittance of a turbid me-
dium of mean free path l and length L from the Boltzmann equation as
a function of the angle of incidence. We compared the results from the
diffusion equation to this exact solution. The difference between the two
transmittances stays below 6% for L > 3l and 1 < n < 2. The diffusion ap-
proximation overestimates the transmittance for n = 1 and underestimates
it in the presence of a significant refractive index mismatch. The relative
error is largest for large refractive index mismatch.
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3 Exact solution of the time-dependent
Boltzmann equation

The spreading of a pulse of particles or radiation through a random me-
dium has attracted considerable attention in several fields of physics, such
as astrophysics, optics, and solid-state physics [1–3]. In each of these sys-
tems it is possible to generate a pulse of energy, consisting of electromag-
netic or acoustic waves, or electrons. The pulse then propagates through
the medium, with a certain intensity Ī(r, t) at point r and time t. In the long
time limit it is accurately given by the diffusion expression

Īdiff(r, t) =
1

(4πDt)d/2
exp

(
− r2

4Dt

)
. (3.1)

Here r = |r| is the distance to the source, assumed to be isotropic, t is the
time, d is the dimension of the system, D = cl/d is the diffusion coeffi-
cient, and l is the mean free path for elastic and isotropic scattering. We
disregard here any interference effects, effects of inelastic scattering, or ab-
sorption.

The diffusion result is very useful, but has certain shortcomings. First
of all, it has a non-zero value at every position even though the energy
needs some time to propagate from source to detector. Hence for r > ct
the correct Ī should be identically zero. Furthermore, large deviations
from the diffusion approximation can be expected at any r, for short times
t < l/c. More accurate expressions for the probability density as function
of position and time have been proposed [4–8], based on the Boltzmann
equation (also known as the equation of radiative transfer [9,10]), of which
the diffusion equation is the long-time limit.

In this chapter we will present exact solutions of the equation of ra-
diative transfer, and compare with approximate expression in the litera-
ture [4, 6, 8]. The solution in 1 dimension has been given a long time ago
by Hemmer [11];

Ī(r, t) = 1
2 e−ct/2l

[
δ(r− ct) +

1
2l

Θ(ct− r)

×
(

I0(
√

c2t2− r2 /2l) + ct
I1(
√

c2t2− r2 /2l)√
c2t2 − r2

)]
, d = 1, (3.2)
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Source

r
arccosθ = µ

s

Figure 3.1: Schematic drawing of scattering in a random medium. Shown
is a single path involving N = 5 scattering events.

where I0 and I1 are Bessel functions, and the step function Θ(x) is zero for
x < 0 and 1 for x > 0. We will generalize this solution to higher dimen-
sions, using a path integral method [12, 13]. In 2 and 4 dimensions we are
able to give explicit expressions. In 3 dimensions the solution is given in
terms of its Fourier transform. Using the results for d = 2 and 4 we con-
struct an interpolation for d = 3, which is correct within a few percent. A
qualitative difference with existing results is that in 2 and 3 dimensions
the ballistic peak at r = ct is accompanied by a tail resulting from single-
scattering events. The analytical shape of this tail is ∝ (ct − r)−1/2 and
∝ − ln(ct− r) for d = 2 and 3, respectively.

Our presentation is organized as follows. In section 3.1 we derive the
Fourier transform Ī(k,ω) of the intensity Ī(r, t) for any dimension. In sec-
tion 3.2 we invert the Fourier transform to get the time and position depen-
dent intensity. We give analytical results for d = 2 and 4, and numerical re-
sults plus an interpolation formula for d = 3. We compare our results with
the literature, and discuss the ballistic peak in some detail. In section 3.3
we calculate the decay length and use the result to give a diffusion-like
equation for the intensity which does not include the angular degree of
freedom. This equation might be useful in other geometries as well. We
conclude in section 3.4.

3.1 Calculation of the Fourier-transformed intensity

The theory of radiative transfer describes the place r and time t depen-
dence of the intensity I(r, t, ŝ) of radiation, propagating in the direction ŝ
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(see Fig. 3.1). It is based on the Boltzmann equation [9, 10]

∂

c∂t
I(r, t, ŝ) + ŝ · ∇I(r, t, ŝ) = −(l−1 + l−1

a )I(r, t, ŝ) + l−1 Ī(r, t)

+ c−1S(r, t, ŝ), (3.3a)

Ī(r, t) =
∫ dŝ′

Ωd
I(r, t, ŝ′). (3.3b)

Here S is the source term, l is the mean free path, and la is the absorption
length. The integration is performed over all directions ŝ′ in d dimensions,
normalized by the surface area Ωd = 2πd/2/Γ(d/2) of the unit sphere. We
have assumed isotropic scattering.

The dependence of the intensity on the absorption is through a r and
ŝ independent factor exp(−ct/la). Without loss of generality we can there-
fore leave the absorption out of our considerations in the following, taking
effectively la→∞. We take the isotropic point source

S(r, t, ŝ) = δ(r)δ(t), (3.4)

and seek for a solution to Eq. (3.3) for t > 0. (We may set I ≡ 0 for t < 0.)
Due to the spherical symmetry, I(r, t, ŝ) and Ī(r, t) only depend on r = |r|,
t, and µ = ŝ · r/r. The Boltzmann equation (3.3) simplifies to

l
(
∂

c∂t
+ µ

∂

∂r
+

1− µ2

r
∂

∂µ

)
I(r, t,µ)

= −I(r, t,µ) + Ī(r, t) +
lδ(r)δ(t)
Ωdrd−1c

, (3.5a)

Ī(r, t) =
∫ 1

−1
dµ ρd(µ)I(r, t,µ). (3.5b)

The weight function ρd(µ) is defined by

ρd(µ) =
Γ(d/2)√

π Γ[(d− 1)/2]
(1− µ2)d/2−3/2, d > 1. (3.6)

In 1 dimension we find ρ1(µ) = 1
2δ(µ− 1) + 1

2δ(µ+ 1).
To solve the Boltzmann equation it is useful not to make use of the

spherical symmetry initially. We consider separately the contributions to
the intensity from N = 0, 1, 2, . . . scattering events,

I(r, t, ŝ) =
∞
∑

N=0
IN(r, t, ŝ), Ī(r, t) =

∞
∑

N=0
ĪN(r, t). (3.7)
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Such a decomposition is customary in the theory of random walks [13,
14] It is also at the basis of the path-integral method for the theory of the
Boltzmann equation [12]. The partial intensities IN satisfy

(
∂

c∂t
+ ŝ · ∇ + l−1

)
IN(r, t, ŝ) = l−1 ĪN−1(r, t), N > 0, (3.8a)(

∂

c∂t
+ ŝ · ∇ + l−1

)
I0(r, t, ŝ) = c−1S(r, t). (3.8b)

The differential operators on the left-hand-side can be integrated, to yield

IN(r, t, ŝ) = l−1
∫ ∞

0
dr0 e−r0/l ĪN−1(r− r0ŝ, t− r0/c), (3.9a)

I0(r, t, ŝ) = c−1
∫ ∞

0
dr0 e−r0/lS(r− r0ŝ, t− r0/c). (3.9b)

Similarly, we find for the angular average of the intensity

ĪN(r, t) =
∫

dr0 p0(r0) ĪN−1(r− r0, t− r0/c), (3.10a)

Ī0(r, t) = lc−1
∫

dr0 p0(r0) S(r− r0, t− r0/c), (3.10b)

where we defined

p0(r) =
e−r/l

Ωdlrd−1 . (3.11)

Using the source (3.4) we can give the explicit expression for the ballistic
intensities (N = 0)

I0(r, t, ŝ) = e−ct/lδ(r− ctŝ)Θ(t) = e−ct/l δ(r− ct)δ(µ− 1−)
Ωdrd−1ρd(µ)

, (3.12a)

Ī0(r, t) =
e−ct/l

Ωdrd−1 δ(r− ct). (3.12b)

The 1− in the delta function denotes that it is a single-sided delta function
having all its weight in the region µ ≤ 1. The solution of the recursion
relations (3.10) and consequently of Eq. (3.9) then is

ĪN(r, t) = l

[
N

∏
i=0

∫
dri p0(ri)

]
δ(ct−

N

∑
i=0

ri)δ(r−
N

∑
i=0

ri), (3.13a)
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IN(r, t, ŝ) = Ωdl

[
N

∏
i=0

∫
dri p0(ri)

]

× δ(ct−
N

∑
i=0

ri)δ(r−
N

∑
i=0

ri)δ(r̂0− ŝ), (3.13b)

where r̂0 = r0/|r0|.
Summation over all N of Eq. (3.9) results in

I(r, t, ŝ) = I0(r, t, ŝ) + l−1
∫ ∞

0
dr0 e−r0/l Ī(r− r0ŝ, t− r0/c), (3.14)

and leads to the spherical analogue of the Schwarzschild-Milne equation
[9]:

Ī(r, t) = Ī0(r, t) +
∫

dr0p(r0) Ī(r− r0, t− r0/c). (3.15)

At this point, we introduce the Fourier transform

Ī(k,ω) =
∫

dr
∫ ∞

0
dt ei(ωt−k·r) Ī(r, t), (3.16)

which depends only on ω and k = |k|. We first compute the partial inten-
sities ĪN(k,ω), by taking the Fourier transform of ĪN(r, t). The expression
factorizes into N + 1 equivalent integrals over ri, which can be performed.
The result is

ĪN(k,ω) = c−1l
(∫ 1

−1

dµρd(µ)
1− iωl/c + iklµ

)N+1

(3.17a)

= c−1l

[
2F1
( 1

2 , 1; 1
2 d;−k2l2 (1− iωl/c)−2)

1− iωl/c

]N+1

, (3.17b)

IN(k,ω, ŝ) = ĪN−1(k,ω)
1

1− iωl/c + ilk · ŝ
, (3.17c)

where 2F1 is a hypergeometric function. This expression is the frequency
and direction dependent analogue of the result for a random walk [13].

3.2 Inversion of the Fourier transform

In the previous section we have computed the Fourier transformed inten-
sity for arbitrary dimension d. In this section we invert the Fourier trans-
form, which can be done analytically for d = 2 and d = 4, and numerically
for d = 3.
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3.2.1 Two dimensions

In two dimensions Eq. (3.17) simplifies to

ĪN(k,ω) = c−1l
[
(1− iωl/c)2 + k2l2

]−(N+1)/2
. (3.18)

The ballistic N = 0 term consists of a delta function in real space and is
given in Eq. (3.12), (where Ω2 = 2π). After inverse Fourier transformation
with respect to k we find for N ≥ 1:

ĪN(r,ω) =
1

cl2

(
r

2l(1− iωl/c)

)(N−1)/2 K(N−1)/2[(1− iωl/c)r/l]
Γ[(N + 1)/2]

. (3.19)

Using the representation

Kν(z) =
√
π (z/2)ν

Γ(ν + 1
2 )

∫ ∞
0

dξ (sinh ξ)2ν e−z cosh ξ , (3.20)

and the substitution cosh ξ = ct/r, one can see that Eq. (3.19) is the Fourier
transform of

ĪN(r, t) =
e−ct/l

2πl2
1

(N− 1)!

(
ct
l

)N−2(
1− r2

c2t2

)(N−2)/2

Θ(ct− r), N ≥ 1.

(3.21)
Summing over N, and adding the ballistic N = 0 term from Eq. (3.12),

we find the total intensity

Ī(r, t) =
e−ct/l

2πr
δ(ct− r)

+
Θ(ct− r)

2πlct

(
1− r2

c2t2

)−1/2

exp
[
l−1(

√
c2t2 − r2− ct)

]
. (3.22)

The diffusion result (3.1), with D = cl/2, is recovered for t 	 r/c. It is
remarkable that the diffusion approximation does not require that ct	 l,
but only that ct	 r. We will see that this is special for two dimensions.

To obtain the angular resolved intensity IN(r, t, ŝ) we perform the in-
tegral over r0 in Eq. (3.14). The integrand vanishes for r0 > rmax, defined
by

|r− rmaxŝ| = ct− rmax ⇐⇒ rmax =
(ct)2 − r2

2(ct− rµ)
. (3.23)
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We thus find for the intensity the result (N ≥ 1)

IN(r, t,µ) =
1

2πlN (N− 2)!

∫ rmax

0
dr0 e−ct/l

[
(ct− r0)2− (r− r0ŝ)2

](N−3)/2

=
e−ct/l

2πlN (N− 1)!
1

ct− rµ

(
c2t2− r2

)(N−1)/2
Θ(ct− r). (3.24)

Summing over N and including the ballistic contribution (3.12) for N = 0,
we find

I(r, t, ŝ) = e−ct/lδ(r− ctŝ)

+
e−ct/l

2πl(ct− r · ŝ)
exp

(
l−1
√

c2t2− r2
)

Θ(ct− r). (3.25)

It is easy to check that this expression obeys the Boltzmann equation (3.5).

3.2.2 Four dimensions

In four dimensions the Fourier transformed intensity is given by

ĪN(k,ω) = 2N+1c−1l
(√

(1− iωl/c)2 + k2l2 + 1− iωl/c
)−(N+1)

. (3.26)

To invert the Fourier transform we use
∫ dk

(2π)4 eik·r f (|k|) =
1

4π2r

∫ ∞
0

dk k2 J1(kr) f (k), (3.27)

so that

ĪN(r, t) =
2Ne−ct/l

4π3i lNrN+3

∫ ∞
0

dk J1(kr)k−2N

×
∫ r/l+i∞

r/l−i∞
dz ezct/r[

√
x2 + z2− z]N+1. (3.28)

The integral over z yields i(N + 1)(kr)N+1 JN+1(kct)Θ(t). After integration
over k we find, for N ≥ 1,

ĪN(r, t) =
1
π2 e−ct/l 1

ctl3

(
ct
l

)N−3 N + 1
(N− 1)!

[
1− r2

c2t2

]N−1

Θ(ct− r). (3.29)
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Again we sum over all N, and include the ballistic term N = 0, to find the
total intensity

Ī(r, t) =
e−ct/l

2π2r3 δ(r− ct) +
1

(πlct)2

(
1− r2

c2t2 +
2l
ct

)
exp(−r2/lct)Θ(ct− r).

(3.30)
If both r and l are � ct we find the diffusion result (3.1), with diffusion
constant D = 1

4 cl.
In the same way as we did for d = 2 we can calculate the angular re-

solved intensity I(r, t,µ) from Eqs. (3.14) and (3.29). We find (N ≥ 1)

I(r, t,µ) =
πe−ct/l

2r3 δ(r− ct)δ(µ− 1−)(1− µ2)−1/2 +
Θ(ct− r)
(πlct)2

× e−r2/lct (1− y2)(1 + y2 − 2µy) + 2(1− µy) l/ct
(1 + y2− 2µy)2 , (3.31)

where we have abbreviated y = r/ct. Again it can be checked that this
expression obeys the Boltzmann equation (3.5).

3.2.3 Three dimensions

In three dimensions the Fourier transformed intensity reads

ĪN(k,ω) = c−1l
[

1
kl

arctan
(

kl
1− iωl/c

)]N+1

. (3.32)

The inverse can be evaluated analytically for N = 0 and N = 1, but not
for arbitrary N. An interpolation between the results (3.21) and (3.29) for
d = 2 and 4 suggests the approximation ĪN ∝ [1 − r2/(ct)2]3N/4−1. The
coefficient 3/4 in the exponent ensures that the diffusion limit is obtained
when r and l are both much smaller than ct. The solution (3.13) implies
the normalization

∫
dr ĪN(r, t) =

1
N!

(
ct
l

)N

e−ct/l. (3.33)

Taking this normalization into account, we find for N ≥ 1 the approxima-
tion

ĪN(r, t) � e−ct/l

πl3

Γ( 3
4 N + 3

2 )√
πN! Γ( 3

4 N)

(
ct
l

)N−3(
1− r2

c2t2

) 3
4 N−1

Θ(ct− r). (3.34)
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Figure 3.2: Angular average of the intensity as a function of time for r =
2.0 l, 2.8 l and 4.0 l, from left to right. The solid lines are the exact result
(3.55), which is very close to the interpolation formula (3.35) (dashed
lines). The dotted lines are the diffusion result (3.1). The intensity has a
minimum for r greater than some rc.

Because of its construction as an interpolation between two exact results,
we expect Eq. (3.34) to be rather accurate.

The total intensity including the ballistic peak, becomes

Ī(r, t) � e−ct/l

4πr2 δ(r− ct) + Θ(ct− r)

× (1− r2/c2t2)1/8

(4πlct/3)3/2
e−ct/lG

(
ct
l

[
1− r2

c2t2

]3/4
)

, (3.35a)

G(x) = 8(3x)−3/2
∞
∑

N=1

Γ( 3
4 N + 3

2 )
Γ( 3

4 N)
xN

N!
. (3.35b)

In numerical calculations the function G(a) can be approximated within
1.6% by G(x) � ex

√
1 + 2.026/x. For l, r� ct the diffusion result (3.1) is

regained, with D = cl/3.
To check the accuracy of this interpolation we have compared Eq. (3.35)

with a numerical inversion of the Fourier transform (see appendix 3.A). In
Fig. 3.2 we have plotted the intensity as a function of ct/l for three values
of r/l. The dashed curves are the approximation (3.35). The difference is
barely visible on this scale.

In Fig. 3.3 we compare our result with the literature. Perelman et al. [6]
have improved upon the diffusion result by taking into account the finite
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Figure 3.3: Average intensity as a function of time for r = 2.8 l. The solid
line is the exact result (3.55). The dotted line is the diffusion result (3.1),
the short-dashed line is the result (3.36) from Perelman et al., the dashed-
dotted line is the result (3.37) from Kaltenbach and Kaschke, and the
long-dashed line is the result (3.38) from Durian and Rudnick.

velocity of light, such that the intensity vanishes for ct < r. Their result

Ī(r, t) =
Γ(3ct/4l + 5/2)

π
√
πt3 Γ(3ct/4l + 1)

(
1− r2

c2t2

)3ct/4l

Θ(ct− r) (3.36)

is shown short-dashed in Fig. (3.3). It does not contain the ballistic peak
and overestimates the diffusion maximum. Another extension of the dif-
fusion result is due to Kaltenbach and Kaschke [4],

Ī(r, t) =
3
√

3
8πl2 exp(−ct/2l)

[
2
√

3δ(ct− r
√

3)l/r

+
Θ(ct− r

√
3)√

c2t2− 3r2
I1(
√

c2t2 − 3r2/2l)

]
, (3.37)

and is also plotted in Fig. 3.3 (dash-dotted). The difference with the exact
solution is clear. Recently also Durian and Rudnick [8] gave an extension
to the diffusion result

Ī(r, t) =
e−3ct/2l

4πl2

{
l2

r
δ′(ct− r) +

(
3l
2ct

+
9
8

)
δ(ct− r) +

9
4l

×
[

I1(3
√

c2t2− r2 /2) +
ct I2(3

√
c2t2 − r2 /2)√

c2t2− r2

]
Θ(ct− r)

}
, (3.38)
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which is also plotted in Fig. 3.3 (long-dashed). Again, the difference with
the exact solution is clear. Furthermore this expression introduces the
derivative of the delta function, which is not positive everywhere.

3.2.4 Ballistic peak

The main qualitative new feature of our result is the tail of the ballistic
peak at t = r/c (see Fig. 3.2). The ballistic peak itself consists of a delta
function Ī0 ∼ δ(t − r/c) due to unscattered radiation. The tail towards
larger t is due to radiation which has undergone a single forward scat-
tering event. The shape of the tail is given by Ī1, which can be computed
analytically for any dimension. The single-scattering intensity is given by
Eq. (3.13) with N = 1. Since the integration is over a single delta function,
we readily find

I1(r, t,µ) =
e−ct/l

lΩd

1
ct− rµ

1
(ct− rmax)d−2 , (3.39)

where rmax is given in Eq. (3.23). Integration over µ with the weight func-
tion ρd(µ) given in Eq. (3.6), yields

Ī1(r, t) =
2d−2e−ct/l

Ωdl(ct)2d−4 (c2t2− r2)(d−3)/2
2F1(1

2 , d− 2; 1
2 d;

r2

c2t2 ). (3.40)

For dimensions greater than 3 the hypergeometric function 2F1 has a
singularity for r→ ct which is canceled by the factor (c2t2− r2)(d−3)/2. The
term Ī1 therefore is finite at r = ct and contributes no tail to the ballistic
peak for d > 3. In contrast, for d ≤ 3, the term Ī1 has an integrable singu-
larity at r = ct, which adds a tail to the ballistic peak. The singularity is
logarithmic in three dimensions,

Ī1(r, t) =
e−ct/l

4πlctr
ln

ct + r
ct− r

, d = 3, (3.41)

and algebraic in two dimensions

Ī1(r, t) =
e−ct/l

2πl
(c2t2− r2)−1/2, d = 2. (3.42)

In one dimension the ballistic peak has no tail, but is enhanced itself by a
factor ect/2l [cf. Eq. (3.2)].

The tail of the ballistic peak in 2 and in 3 dimensions leads to a mini-
mum in the intensity as function of time, provided r is large enough. For
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this minimum to occur we need r > [(11 + 5
√

5)/2]1/2 l � 3.330 l for d = 2
and r >∼ 2.4 l for d = 3. Note that also for anisotropic scattering the tail
exists, but it will have different properties, depending on the phase func-
tions.

3.3 Decay length and dispersion relation

We have calculated the time-dependence of the intensity for an infinite ge-
ometry. These have the remarkable property that they obey diffusion-like
equations, which are equations for the angle-averaged intensity only, and
therefore have a degree of freedom less than the Boltzmann equation (3.3).
This result is interesting in itself. But it might also give an improvement
of the diffusion equation which can be used in more general geometries
than the unbounded geometry considered here, without need to take the
angular degree of freedom into account. This can be useful in numerical
calculations.

We need first to consider the decay length. Far from sources and bound-
aries the light intensity decays exponentially with decay length κ. In a
spherical geometry we can write Ī ∝ e−κr/r (3 dimensions), while in a slab
geometry Ī ∝ e−κz. This decay length depends on the mean free path, on
the absorption length and for a time-dependent source, S ∼ e−iωt, also on
the frequency ω. Based on the diffusion equation different expressions
have been presented for κ [8, 10, 15, 16]. Here we will calculate it exactly.

We consider again only isotropic scattering. We Fourier transform the
Boltzmann equation (3.3) with respect to time:

(1 + γ)I(r,γ, ŝ) + lŝ · ∇I(r,γ, ŝ) = Ī(r,γ) + c−1lS(r,ω), (3.43)

where we defined
γ = l/la− iωl/c. (3.44)

Note that we need to take the absorption length explicitly into account
here, in contrast to section 3.1. When the source is distant, we can start
with neglecting its contribution and search for a self-consistent solution.
This can be most easily done in a slab geometry where the intensity only
depends on z, µ ≡ ŝ · ẑ and on γ. We look for a solution of the form:
I ∝ e−κz and find

I(z,γ,µ) =
Ī(z,γ)

1 + γ − µκl
. (3.45)
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Integrating over all angles µ, taking the density ρd(µ) from Eq. (3.6) into
account, we find

1 =
1

1 + γ
fd[κl/(1 + γ)], (3.46a)

fd(x) =
∫ 1

0
dµρd(µ)

2
1− x2µ2 = 2F1(1

2 , 1; 1
2 d; x2). (3.46b)

The hypergeometric function can be expressed in terms of elementary
functions for any integer dimension. When fd can be inverted one can
find κl as function of γ. Otherwise one has only an implicit equation. The
result is

κ2l2 = γ(1 + γ), d = 1, (3.47a)
κ2l2 = γ(2 + γ), d = 2, (3.47b)
κl

tanhκl
= 1 + γ, d = 3, (3.47c)

κ2l2 =
{

4γ, d = 4, γ < 1,
(1 + γ)2, d = 4, γ > 1.

(3.47d)

The relation for d = 3 has already been found for pure absorption (ω =
0) [16].

We can interpret the relation between decay length and frequency as
a dispersion relation. From this dispersion relation one can pose a corre-
sponding equation for the angular average of the intensity itself, of which
the diffusion equation is the small frequency and small absorption limit.
Hence from the Boltzmann equation, which is an equation for the angle-
resolved intensity, we can now find an equation for the angular average
itself.

To find an equation in the space-time domain, we rewrite the disper-
sion relations (3.47) using the substitutions

κ2→∇2; γ→ l/la + c−1l∂/∂t. (3.48)

This leads to the following equations for d = 1, 2 and 4

l2∇2 Ī =
(

l2

l2
a

+
l
la

+
l2

c2
∂2

∂t2 +
l
c
∂

∂t

)
Ī + Source, d = 1, (3.49a)

l2∇2 Ī =
(

l2

l2
a

+
2l
la

+
l2

c2
∂2

∂t2 +
2l
c
∂

∂t

)
Ī + Source, d = 2, (3.49b)

l2∇2 Ī =
(

4l
la

+
4l
c
∂

∂t

)
Ī + Source, d = 4. (3.49c)
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Now we can check whether the time-resolved solutions we found in-
deed obey these equations. For 1 dimension, we know that the diffusion
ansatz (1.14) is exact. When taking all derivatives with respect to time into
account while deriving the diffusion equation, we find again Eq. (3.49a).
Hence this equation is exact for one dimension. Indeed the solution given
by Hemmer [11] [Eq. (3.2)] obeys the equation above. For 2 dimensions,
the time-resolved intensity is given by Ī(r, t) = Ī0(r, t) + Īs(r, t). The scat-
tered part Īs(r, t) obeys equation (3.49b) with the ballistic part Ī0 as source.
Hence for arbitrary sources in an infinite medium, Eq. (3.49b) can be used,
taking as source term the distribution of the unscattered light. For d = 4
we find that the time-resolved solution obeys the equation above (which
is the normal diffusion equation), as long as t > r/c.

The case of 3 dimensions is more difficult, due to the more complex
dispersion relation. To find an approximate diffusion-like equation, that
can be used for instance in numerical simulations, one can do two things:
One can expand γ as function of κ2l2 or one can expand κ2l2 as a function
of γ. Using the substitutions (3.48) one then finds either(

l
la

+
l
c
∂

∂t

)
Ī = 1

3 l2∇2 Ī− 1
45 (l2∇2)2 Ī + · · · , (3.50a)

or

l2∇2 Ī = 3
(

l
la

+
l
c
∂

∂t

)
Ī +

3
5

(
l
la

+
l
c
∂

∂t

)2

Ī + · · · . (3.50b)

The latter equation, without the higher order terms, has already been given
in Ref. [15]. A disadvantage of taking only a finite number of terms into
account, is that the position of the ballistic peak is predicted incorrectly.

3.4 Conclusion

We have presented exact solutions to the time-dependent Boltzmann equa-
tion (or equation of radiative transfer). The method used is based on a
summation over the paths, that brings a particle from source to some posi-
tion r, after N scattering events. This method has been used before, both in
connection with the Boltzmann equation [12] and in the theory of random
walks [13,14,17]. However as far as we know the exact solution presented
here was not known. We have shown that, at least in the unbounded ge-
ometry considered here, the exact solution obeys a diffusion-like equa-
tion which does not have an angular degree of freedom, and which might
therefore be easier to use in other geometries.
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An important feature of the exact solution is the tail to the ballistic
peak, which has not been noticed in the literature, either in analytical stud-
ies [4, 6, 8], in experimental results [18], or in numerical simulations based
on the Monte Carlo method [14, 16, 19] (the tail is barely noticeable in the
numerical simulations of Ref. [8]). The tail requires a continuum descrip-
tion; it is not present in lattice models [14] for a random walk. Experimen-
tally the observation of the tail is challenging, since the time resolution
needed is below the scattering mean free time.

3.A Numerical inversion of the Fourier transform in
3 dimensions

In Eq. (3.32) we gave an analytical expression for ĪN(k,ω) in 3 dimensions.
To find the real space intensity Ī(r, t) we have to sum over all the number
N of scattering events and invert the Fourier Transform. In this Appendix
we show how this can be done numerically. This is not straightforward,
because of the singularity at r = ct. For notational simplicity we take l =
c = 1 in what follows.

The sum of the contributions for N ≥ 4 is has no singularity and is
smooth at t = r. It is given by

∞
∑

N=4
ĪN(r, t) =

1
4π3r

∫ ∞
0

dk k−3 sin(kr)
∫ ∞
−∞

dω e−iωt

× arctan5
(

k
1− iω

)[
k− arctan

(
k

1− iω

)]−1

. (3.51)

The integral over ω can be done by contour integration, closing the con-
tour in the lower half of the complex plane. The contribution from the pole
k = arctan[k/(1− iω)] is given by

Īpole(k, t) = 2π exp(tk/ tan k− t)
k2

sin2 k
Θ(π/2− k). (3.52)

To calculate the contribution from the branch cut between ω = −i− k and
ω = −i + k we parametrize ω = −i + ξk. We find

Īcut(k, t) =
πe−t

4k2

∫ 1

−1
dξ (3.53)[

cos(ktξ)
4k2(5Λ4 − 10Λ2π2 + π4) + (Λ2 + π2)2(3Λ2 − π2)

(4k2 −Λ2 − π2)2 + 16k2Λ2
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2 sin(ktξ) Λ
2k2(3Λ2 − π2)(Λ2− 3π2) + (Λ2− π2)(Λ2 + π2)2

(4k2 −Λ2− π2)2 + 16k2Λ2

]
,

where we have abbreviated Λ(ξ) = 2 artanh ξ. Next we calculate the con-
tributions for N ≤ 3. The ballistic term Ī0 is already given in Eq. (3.12) and
the single scattering term Ī1 in Eq. (3.41). For N = 2, 3 we use the same
parametrization as above, but interchange the integrals over k and ξ. We
find

Ī2(r, t) =
e−t

16πr

∫ 1

r/t
dξ
(

3Λ2− π2
)

, (3.54a)

Ī3(r, t) =
e−t

8πr

∫ 1

r/t
dξ Λ

(
Λ2 − π2

)
(tξ − r). (3.54b)

The total intensity is then given by

Ī(r, t) =
3

∑
N=0

ĪN(r, t) +
1

4π3r

∫ ∞
0

dk k sin(kr)
[
Īpole(k, t) + Īcut(k, t)

]
. (3.55)

These integrals can be calculated numerically without problems.

3.B Anisotropic scattering

Up till now, we have only considered the case of isotropic scattering, where
the phase function is constant. In this appendix we will summarize some
results from literature about the time-dependence of the intensity when
the scattering is not isotropic, which can serve as a background for the
reader. We will extend the results to the calculation of the decay length.
For anisotropic scattering the phase-function introduces many extra de-
grees of freedom, which makes it much more difficult to find exact expres-
sions.

Parts of the theory presented here are a result from the study of flex-
ible polymer chains. A polymer consists in general of a large molecule
consisting of a chain of repeating units. These units have a more or less
fixed length. At the bonds between two units the angle between them can
vary. The structure of such a polymer can be seen as a random walk with a
fixed step length. In this sense it is similar to a photon path in a disordered
medium. Hence the calculation of the intensity Ī(r, t) is similar to the cal-
culation of the distance between begin and end point of the polymer, given
the number of units, or the total chain length. We refer to Refs. [20, 21] for
a review about this problem in polymer theory, and to Refs. [22, 23] for
recent developments.
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3.B.1 Formal exact solution

The Boltzmann equation for anisotropic scattering is given by

1
c
∂ I(r, t, ŝ)

∂t
+ ŝ · ∇I(r, t, ŝ) = l−1Q(r, t, ŝ)− (l−1 + l−1

a )I(r, t, ŝ), (3.56a)

Q(r, t, ŝ) =
∫ dŝ′

Ωd
F(ŝ · ŝ′)I(r, t, ŝ′). (3.56b)

The quantity Q consists of all the light scattered from directions ŝ′ to ŝ.
This scattering is no longer isotropic but given by the phase function F(ŝ ·
ŝ′). The first moment of the normalized phase function is a measure of the
anisotropy

g =
∫ dŝ′

Ωd
F(ŝ · ŝ′) ŝ · ŝ′. (3.57)

The transport mean free path is given by ltr = l/(1− g). It is this length
that determines the diffusion constant D = cltr/d [10].

Jernigan [24] has described a method to find systematic approxima-
tions for the intensity, which we will repeat here in short (see also Ref. [20]).
We consider only d = 3. Again we assume spherical geometry such that
the intensity depends only on r, t, and µ. We can then write the phase
function as

F(µ,µ′) = ∑
m

gm Pm(µ)Pm(µ′), (3.58)

where Im(µ) are the Legendre Polynomials. From the normalization we
have g0 = 1. The anisotropy factor is given by g = g1/3.

Consider now the moments of the intensity [25]

um,q = 〈Pm(µ)(r/ltr)2q−m〉 ≡ 1
2

∫ 1

−1
dµ
∫ ct

0
dr r2 I(r, t,µ)Pm(µ)(r/ltr)2q−m.

(3.59)
Instead of Fourier-transforming we now Laplace transform with respect
to time:

I(r, p,µ) =
∫ ∞

0
dt e−pt I(r, t,µ). (3.60)

After this Laplace transform we arrive at the following equation for the
moments

[pltr/c +
1− am

1− g
]um,q =

m(2q + 1)
2m + 1

um−1,q−1 +
2(q−m)(m + 1)

2m + 1
um+1,q.

(3.61)
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Due to normalization one has u0,0 = 1/p. This equation generates the
Laplace transforms of various moments. Furthermore the inverse Laplace
transform is easily performed since all expression will give rational func-
tions in p with the roots of the denominator given. Hence, for any phase-
function one can find exact expressions for the moments um,q(t). For in-
stance, we have independent of dimension and of phase function:

〈r2〉 = 2ct ltr− 2l2
tr(1− e−ct/ltr); 〈µr〉 = ltr(1− e−ct/ltr). (3.62)

Next we define the auxiliary variable

ρ2 = 3r2/2u0,1(t), (3.63)

which depends both on r and on t, and the parameters

h2n(t) = 〈ρ−1H2n+1(ρ)〉/22n+2(2n + 1)!. (3.64)

The H are the Hermite polynomials. The averages defined in Eq. (3.64) can
be easily calculated using the known moments. The first two are given by
h0 = 1

2 and h2 = 0. The intensity is now given by [20]

Ī(r, t) =
(

3
2πu0,1(t)

)3/2

ρ−1e−ρ
2
∞
∑
n=0

h2n(t)H2n+1(ρ). (3.65)

Note that, since for n > 1 and t →∞ the parameters h2n(t) vanish, one
regains the diffusion result (3.1).

Equation (3.65) is an exact expression for all possible phase functions.
Although each step in the calculation is straightforward, the final expres-
sion becomes more complicated with increasing n. Hence this approxima-
tion is limited in its use. Since it is an approximation which gives system-
atic deviations from the diffusion result, one can expect it to be accurate for
large r and t. The intensity around r = ct can not be calculated accurately
with Eq. (3.65).

3.B.2 Kratky-Porod theory

As mentioned before, the intensity for anisotropic scattering depends on
the phase function, and hence on all the parameters gm. To reduce the
number of free parameters, one can consider the limit of completely an-
isotropic scattering, where g→ 1. The important length scale is then ltr =
l/(1− g), while l itself vanishes. In this limit, a single scattering changes
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the propagation direction ŝ only slightly. Hence many scattering events
are necessary to change ŝ appreciable. This means that ŝ performs a ran-
dom walk over the surface of the sphere. This random walk can be de-
scribed by a diffusion equation on the unit sphere. The Boltzmann equa-
tion then assumes the form [7, 21, 26]

(d− 1)ltr

[
∂

c∂t
+ µ

∂

∂r
+

1− µ2

r
∂

∂µ

]
I(r, t,µ) =∇2

µ I(r, t,µ). (3.66)

Here ∇2
µ is the Laplacian on a unit-sphere (for d = 3 this is the Legendre

operator), and describes the diffusion of µ. The general form of∇2
µ is

∇2
µ = (1− µ2)

∂2

∂µ2 − (d− 1)
∂

∂µ
. (3.67)

In the study of polymers this limit is described by the Kratky-Porod theory
[20]. One can find this limit also by using a phase-function with gm =
(2m + 1)gm(m+1)/2 in 3 dimensions. This corresponds to a phase function
F(1,µ)� 1

2 exp[(µ− 1)/(1− g)]/(1− g) for g∼ 1, which is almost Gaussian
in the scattering angle θ. Several exact results have been found, mainly
giving moments.

Equation (3.66) for finding the intensity is equivalent to a path inte-
gral [7, 21] formalism. In this formalism one makes a summation over all
possible paths r′(t′), as in section 3.1, with a constant velocity: |dr′/dt′|= c.
The weight factor of each path depends on its curvature, given by the in-
verse of the radius of curvature, κ(t) = |d2r′/dt′2|/c2:

Ī(r, t) ∝
∫

Dr′(t′) δ[r′(t)− r] exp[− 1
2 cltr

∫ t

0
κ2(t′′)dt′′]. (3.68)

Let us discretize the path. Its total length is ct, and contains N straight
parts, of length l = ct/N. The positions of scattering are given by ri. Define
Ri = ri− ri−1. For the velocity we then have vi = cRi/l ≡ cŝi, where ŝi are
unit vectors. This leads to the expression in Fourier space

Ī(k, t) ∝
[

N

∏
i=1

∫ dsi

Ωd

]
exp[

Nltr
ct

N

∑
i=2

ŝi · ŝi−1 + ictk · 1
N

N

∑
i=1

si]. (3.69)

The normalization is given by Ī(k = 0, t) = 1. This path integral is similar
to the partition function of a 1-dimensional classical Heisenberg model
in an (imaginary) magnetic field. The spins are then given by the ŝi. A
possible simplification might be found by demanding ŝi · ŝi−1 = g.
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For the path integral (3.68) or the differential equation (3.66) Daniels
[27] gave an exact solution in the form of a continued fraction in terms of
k and the Laplace variable p (here given for d = 3):

Ī(k, p) =
1

p +
12 (1 · 3)−1k2c2

p + (1 · 2)c/2ltr +
22 (3 · 5)−1k2c2

p + (2 · 3)c/2ltr +
32 (5 · 7)−1k2c2

p + (3 · 4)c/2ltr + · · · ,
(3.70)

Amic et al. [26] have found some exact results for the time-independent
semi-infinite medium. Many other authors have given approximations for
the intensity (or the equivalent quantity in polymer physics) [7, 20, 21, 23].

3.B.3 Decay length

Also for anisotropic scattering we can calculate the decay lengths. We use
again the slab geometry, where the intensity is a function of z, µ and the
parameter γ. Here we need a more general approach than that which we
took for isotropic scattering. This more general approach leads to the same
results as before in the case of isotropic scattering, but is more tedious. We
expand the phase function and the intensity in ultraspherical polynomials,
defined as polynomials of degree m, and orthogonal with respect to ρd(µ):

∫ 1

−1
dµρd(µ)Pm(µ)Pn(µ) = Smδmn. (3.71)

For three dimensions, the Pm are the Legendre polynomials with Sm =
(2m + 1)−1, while for two dimensions the Pm are the Chebyshev polyno-
mials, with S0 = 1 and Sn = 1

2 for n > 1. Let us write

I(z,µ) = ∑
m

am(z)Pm(µ), (3.72)

Amn =
∫

dµ Pm(µ)Pn(µ)µρd(µ). (3.73)

The matrix A has only non-zero components when m = n± 1. Using these
expression in the Boltzmann equation we find

Amn

Sm(1 + γ)− S2
mgm

l∂zan(z) = am. (3.74)

The smallest decay length in the system corresponds to the largest eigen-
value of the matrix on the left-hand-side. We note that the spectrum of this
matrix is symmetric around 0.
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For any dimension and phase function we can analytically find the
small γ expansion of κl. The first term is given by the diffusion result

κ2l2 = d(1− g)γ. (3.75)

Every next term needs an extra term in the expansion of the phase func-
tion. It is therefore possible to find the term∝ γ2, which will depend, apart
from κl and d, only on g1 and g2. We present a single example for d = 2
and the non-trivial phase function F(µ) = 1 + 2gµ. The decay length κ is
again given in terms of l, γ and g = g1/2 as

κl = (1 + γ)
√

1− z2, (3.76a)

z =
−γ(1 + γ − 2g) +

√
(1 + γ)2(2 + γ)2 + 4gγ2(g− γ − 1)

2(1 + γ)2 , (3.76b)

which gives Eq. (3.47b) for g = 0.
The numerical calculation of the decay length is straightforward (the

largest eigenvalue of a band matrix can be found numerically in a time
proportional to the linear dimension of the matrix). Hence for almost any
phase function, even for g close to 1, one can compute κ efficiently.



54 TIME-DEPENDENT BOLTZMANN EQUATION



BIBLIOGRAPHY 55

Bibliography

[1] L. C. Lee and J. R. Jokipii, Astrophys. J. 201, 532 (1975).

[2] A. Ishimaru, J. Opt. Soc. Am. 68, 1045 (1978).

[3] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon,
Oxford, 1959).

[4] J. Kaltenbach and M. Kaschke, in Medical Optical Tomography: Func-
tional Imaging and Monitoring, edited by G. Müller (SPIE, Washington
DC, 1993).

[5] L. T. Perelman, J. Wu, I. Itzkan, and M. S. Feld, Phys. Rev. Lett. 71,
1341 (1994).

[6] L. T. Perelman, J. Wu, Y. Wang, I. Itzkan, R. R. Dasari, and M. S. Feld,
Phys. Rev. B 51, 6134 (1995).

[7] A. Ya. Polishchuk, M. Zevallos, F. Liu, and R. R. Alfano, Phys. Rev. E
53, 5523 (1996).

[8] D. J. Durian and J. Rudnick, J. Opt. Soc. Am. A 14, 235 (1997); 14, 940
(1997).

[9] S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

[10] A. Ishimaru, Wave Propagation and Scattering in Random Media (Aca-
demic, New York, 1978).

[11] P. Chr. Hemmer, Physica 27, 79 (1961).

[12] J. M. Ziman, Electrons and Phonons (Clarendon, Oxford, 1960).

[13] G. H. Weiss and R. J. Rubin, in Advances in Chemical Physics, edited by
I. Prigogine and S. A. Rice, Vol. LII (Wiley, New York, 1983).

[14] A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, and R. Nossal, Phys.
Rev. E 48 810 (1993).

[15] A. Ya. Polishchuk, S. Gutman, M. Lax, and R. R. Alfano, J. Opt. Soc.
Am. A 14, 230 (1997).

[16] S. L. Jacques, L. Wang, and A. M. Hielscher, in Optical-Thermal Re-
sponse of Laser-Irradiated Tissue, edited by A. J. Welch and M. J. C. van
Gemert (Plenum, New York, 1995).



56 TIME-DEPENDENT BOLTZMANN EQUATION

[17] G. H. Weiss, A. H. Gandjbakhche, and J. Masoliver. J. Mod. Opt. 42,
1567 (1995).

[18] K. M. Yoo, F. Liu, and R. R. Alfano, Phys. Rev. Lett. 64, 2647 (1990);
65, 2210 (1990).

[19] Y. Yamada, Y. Hasegawa, and Y. Yamashita, Appl. Opt. 32, 4808
(1993).

[20] P. J. Flory, Statistical Mechanics of Chain Molecules (Wiley, New York,
1969).

[21] K. F. Freed, in Advances in Chemical Physics, edited by I. Prigogine, and
S. A. Rice, Vol. XXII (Wiley, New York, 1972).

[22] J. Wilhelm and E. Frey, Phys. Rev. Lett. 77, 2581 (1996).

[23] D. Thirumalai and B.-Y. Ha, preprint (cond-mat/9705200).

[24] R. L. Jernigan, Ph. D. Thesis (Stanford University, 1967); see also ap-
pendix E of Ref. [20].

[25] J.J. Hermans and R. Ullman, Physica 18, 951 (1952).

[26] E. Amic, J. M. Luck, and Th. M. Nieuwenhuizen, J. Phys. A 29, 4915
(1996).

[27] H. E. Daniels, Proc. Roy. Soc. Edinburgh 63A, 290 (1952).



4 Influence of boundaries on the imaging of
objects in turbid media

For imaging the interior of a turbid medium several methods have been
developed in the recent past. The imaging consists of two parts. First
one has to define a geometry and a measurement. Next one has to recon-
struct the interior of the medium with the data. For detection one has at
ones disposal apart from continuous wave measurements also the time-
resolved measurements and the photon density wave approach. For re-
construction one uses, amongst others, back-projection and algebraic re-
construction techniques. Both detection and reconstruction depend on the
geometry of the medium, the positions of sources and detectors, and the
character of the objects one wants to image.

Two factors are of experimental importance in detecting the object. The
first is the accuracy of the measurements. In practice this depends on the
strength of the signal: the larger the signal, the less the relative noise and
therefore the larger the accuracy. The second is the sensitivity to inhomo-
geneities. This depends on the measurement method as well as on the
position of the object with respect to the source and detector. For a given
accuracy one can ask the question what kind of objects can still be detected
and possibly reconstructed. Which measurement method is the best? Fur-
thermore, since the boundaries are of influence on the measured signal,
one can ask which kind of boundary is best for imaging.

To address these questions we will start with the calculation of the in-
fluence of an object on the measured signal. We are mainly interested in
the order of magnitude of the effect, such that we can give a reasonable
estimate of the accuracy needed to detect an object. We will generalize the
methods given by Den Outer et al. [1] and Zhu et al. [2] to be able to split
the effect of an object on a measurement into a geometry dependent part
— including the boundaries, sources and detectors — and a pure object
dependent part. Both parts depend furthermore on the optical parameters
of the medium and possibly on the frequency of the amplitude modula-
tion of the source. Time-dependent sources are related to the latter by a
Fourier transform.

The treatment will lead to general formulas to estimate the effect of
objects on measurements, for general geometries. We can then include the
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influence of the boundaries of the medium, and compare these to mea-
surements in an infinite medium. We will consider basically two kinds of
boundaries. The first are those which reflect the major part of the light.
This reflection can be due, for instance, to a mirror. The second bound-
ary to be considered is that consisting of a transparent medium surround-
ing the turbid medium, with possible refractive index mismatch. When
this mismatch vanishes, none of the light leaving the turbid medium will
be reflected back and the boundary is equivalent to a completely black
boundary.

To discuss the effects of boundaries we will consider the two basic
classes of measurements, those in reflection and those in transmission.
In the first case we will consider a semi-infinite medium, in the second
a slab geometry. In both cases the source and detector are located at the
surface. We argue that our results are qualitatively the same for other pos-
sibly more complex geometries.

The outline of this study is as follows. In section 4.1 we will calculate
the influence of an object on a measurement. We will find a general for-
mula which can be used in any geometry. The object dependent parame-
ters are calculated for objects which have slightly different optical param-
eters compared to those of the background, as well as for a completely
black object. We will calculate the sensitivity to both absorption and scat-
tering. In section 4.2 we will address the question of optimal boundaries.
To do this we need to describe the effects of boundaries and sources on
the propagation of light. Subsequently we can estimate the difference in
sensitivities between the different kinds of boundaries. The theoretical re-
sults are compared with experiments. Finally, in section 4.3 we present
our conclusions.

4.1 Perturbation theory for general objects

Before we consider the influence of different boundaries, we first need to
consider the sensitivity of a measurement for given perturbation of the
absorption and scattering parameters. Hence we need to determine what
the difference in a measurement is between a homogeneous medium and
a medium with some perturbation. The precise quantity one measures de-
pends on a lot of factors concerning the detector, amongst them being its
shape, surface area and acceptance angle. In general however the mea-
surement itself is proportional to the photon density at the detector posi-
tion [3]. The photon density Φ(r, t) at position r and at time t is described
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by the diffusion equation [4]

∂

∂t
Φ(r, t)−∇ · D(r)∇Φ(r, t) + vµa(r)Φ(r, t) = S(r, t). (4.1)

The absorption coefficient µa = l−1
a and the transport scattering coefficient

µs = l−1
tr can depend on the position in the medium. The diffusion constant

D = v/3µs (v is the velocity of the light) then also depends on position.
We do not take any absorption dependence of the diffusion constant into
account, as many other authors do [2–6], since corrections to D are of the
same order as corrections to the diffusion equation itself [7–9]. For the
diffusion equation to be valid one needs [4, 5]

µa� µs. (4.2)

The source term S(r, t) describes the density of photons generated per sec-
ond. The diffusion equation (4.1) has to be supplemented with boundary
conditions, which we will consider later on.

Since the diffusion theory can only handle photon densities, without
being able to distinguish different directions of propagation, the source S
has to be isotropic. For simplicity we will only consider point sources.
A short discussion on non-isotropic light sources will be given in sec-
tion 4.2, following Haskell et al. [3]. When the source is amplitude mod-
ulated, the photon density will be time dependent, although always non-
negative. Taking only one Fourier component with frequency ω into ac-
count, a source at position rs is then given by

S(r, t) = Sωe−iωtδ(r− rs). (4.3)

Unless ω = 0 the corresponding photon density will be complex and have
the same harmonic time-dependence.

We will formulate the theory in terms of Green functions. A Green
function describes the propagation of light in a homogenous medium (no
objects present), having only one source at an arbitrary position r′ (not nec-
essarily the position rs of the physical source). From now on we will use
µa and µs to characterize the homogenous background medium, and use
extra subscripts to denoted inhomogeneities. The Green function obeys
the diffusion equation

−∇2G(r, r′) + κ2G(r, r′) = δ(r− r′) (4.4)

with the same the boundary conditions as Φ. Here κ = [(µav− iω)/D]1/2

is the inverse decay length of the background medium. For later use we
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also define κ0 = κ(ω = 0) =
√

3µaµs, which is real. We suppose that the so-
lution to equation (4.4) is known. The photon density for the homogenous
medium is then given by

Φ0(r) =
Sω
D

G(r, rs). (4.5)

The Green function obeys the symmetry of reciprocity [10],

G(r, r′) = G(r′, r), (4.6)

which can be useful in calculations.
An important Green function in our calculations is that of the infinite

medium given by

G∞(r− rs) =
1

4πr
e−κr, (4.7)

where r = |r − rs| is the distance to the source. When r and r′ are close
together and far from boundaries all Green functions tend to G∞. We will
use this when we consider the influence of small objects.

4.1.1 Born series

For any source term S(r) the solution to the homogenous diffusion equa-
tion can be found as

Φ(r) = D−1
∫

dr′G(r, r′)S(r′). (4.8)

Consider now the diffusion equation (4.1), at frequency ω. Rewrite it such
that the left-hand-side corresponds to the homogenous medium, and all
terms due to perturbations of the optical parameters, as well as the physi-
cal source, are on the right-hand-side:

−∇2Φ(r) + κ2Φ(r) =
Sω
D
δ(r− rs) +

∆D(r)
D
∇2Φ(r)

+ D−1[∇Dobj(r)] · [∇Φ(r)]− 3µs∆µa(r)Φ(r). (4.9)

Here we introduced the perturbation in the absorption and in the diffusion
constant

∆µa(r) = µa,obj(r)− µa, (4.10a)
∆D(r) = Dobj(r)− D. (4.10b)
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For the scattering parameter ∆µs(r) a similar relations holds. The complete
right-hand-side of Eq. (4.9) then acts as a source in Eq. (4.8). In general
one can therefore write the solution of the diffusion equation (after partial
integration) as [11, 12]

∆Φ(r) ≡ Φ(r)−Φ0(r)

= −3µs

∫
dr′G(r, r′)∆µa(r′)Φ(r′)

−
∫

dr′[∇r′G(r, r′)]
∆D(r′)

D
∇r′Φ(r′). (4.11)

By substituting the expression for Φ itself in the right-hand-side, and
repeating this for every new expression, one generates a series. Each term
in this Born series contains only Φ0 and G (which are proportional) or
derivatives thereof, but no longer the complete photon density Φ. This
(infinite) Born series is a solution of the diffusion equation for any spatial
variation of the optical parameters.

For systems where the perturbation of µs and µa is small, one can use
the first order Born approximation, which implies that one replaces Φ on
the right-hand-side of Eq. (4.11) by the most important contribution Φ0.
This is the basis of the forward calculation in many reconstruction tech-
niques [11,13–17], since it assumes that the measurements depend linearly
on the perturbations.

4.1.2 Small objects

Let us now consider a single small object. For an object at position ro to be
small, its characteristic size a must obey

a� |ro− rs|, |ro− r|, |κ|−1. (4.12)

Outside the object the perturbations of the optical parameters vanish (∆µa
= ∆D = 0).Let us first consider only a perturbation in µa, i.e. ∆D = 0. Since
the object is small the Green function G(r, r′) in the integral of Eq. (4.11) is
nearly constant and we find

Φ(r) = Φ0(r)− 3µsG(r, ro)
∫

Ω
dr′∆µa(r′)Φ(r′), (4.13)

where Ω denotes the volume of the object. This still leads to a Born se-
ries. Every term of this series contains in the integral the photon density
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Φ0(r′) = SωD−1G(r′, rs). Again, this Green function varies only little over
the volume of the object. Therefore the photon density can be written as

Φ(r) = Φ0(r)[1 + qQ(ro; r, rs)], (4.14)

where Q is the sensitivity for absorption [2, 18, 19] defined by

Q(ro; r, rs) =
4π
κ0

G(r, ro)G(ro, rs)
G(r, rs)

. (4.15)

The dependence of Q on r has a “banana” shape [20]. The (real) factor
4π/κ0 is conventional and has been chosen to make Q unit-less and void
of factors 4π for the infinite medium. The rest of the Born series gives the
strength q of the object

q = −κ0
3µs

4π

∫
Ω

dr′∆µa(r′)
(

1− 3µs

4π

∫
Ω

dr′′
∆µa(r′′)
|r′ − r′′| (1− · · ·)

)
. (4.16)

The usefulness of Eq. (4.14) (and similarly of Eqs. (4.17) and (4.21) be-
low) lies in the fact that the sensitivity for absorption Q does not depend
on the object, only on its position, and that the strength of the object q
does not depend on geometrical factors of the surrounding medium. The
strength does depend on the spatial distribution of the perturbation of the
absorption coefficient, i.e. on the shape of the object and its absorption
contrast with respect to the background. Since any measurement depends
only on the position of the object and its strength, the shape of the object
and the precise distribution of the absorption inside the object is however
not important for the measurement. This means for instance that a very
small and completely black object can give the same result as a larger ob-
ject with only moderate absorption, as long as both fulfill condition (4.12).
This has consequences for reconstruction, in the sense that not all char-
acteristics of objects can be reconstructed. We will give the strength q of
several objects later on.

We can give the same analysis for an object which has no extra ab-
sorption (∆µa = 0) but which has a different diffusion constant than the
background. The description of scattering objects introduces the gradient
of the Green functions [cf. Eq. (4.11)]. Since we have two of them, one for
light going from source to object and one for light going from object to
detector, we need a matrix pi j with two indices to describe the object. In
the same way as above, we find

Φ(r) = Φ0(r)[1 + ∑
i, j

pi jPi j(ro; r, rs)]. (4.17)
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Here Pi j is the sensitivity for scattering,

Pi j(ro; r, rs) = −4π
κ3

0

∇ro,iG(r′, ro)∇ro, jG(ro, rs)
G(r, rs)

. (4.18)

Again the factor −4π/κ3
0 is conventional. The object is characterized by

the symmetric matrix

pi j =
κ3

0
4πD

∫
Ω

dr′ ∆D(r′)
(
δi j− 1

4πD ∑
k

∫
Ω

dr′′ ∆D(r′′)

×∇r′,i∇r′′,k
1

|r′ − r′′| (δk j− . . .)
)
. (4.19)

For spherical symmetric objects the dipole term is a scalar pi j = pδi j. Then
one does not need all elements of Pi j, but only the trace

P(ro; r, rs) = ∑
i

Pii(ro; r, rs) = −4π
κ3

0

∇ro G(r′, ro) · ∇ro G(ro, rs)
G(r, rs)

, (4.20)

which is the vector product of the gradients of two Green functions [2].
For objects with less symmetry all components of pi j can in principle be
non-zero. But the deviation from the contribution pδi j is generally small.
Hence in all the examples we will use the simplified form (4.20).

A difference between absorbing objects described by Eq. (4.14) and
scattering objects described by Eq. (4.17) is that the former actually take
light away, while the latter mainly redistribute the light, such that the to-
tal amount of light detected does not necessarily change. The description
of objects that include both scattering and absorption is somewhat more
complex than above. We will not address this problem here. We only note
that strengths describing the combination of absorption and scattering are
negligible when the object is also small with respect to the absorption and
scattering lengths of the object itself, since such a combination is always a
higher order effect.

The next question to be asked is, what is the result for multiple objects.
In first order all the different objects contribute linearly to the measure-
ment. That is, for multiple objects, we can write

Φ(r) � Φ0(r)[1 + ∑
o

qoQ(ro; rs, rd) + ∑
o

poP(ro; rs, rd)], (4.21)

where the index o identifies the objects. Equations (4.14), (4.17) and (4.21)
generalize the expressions given in Refs. [1,2,21]. We will see that the first
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order approximation (4.21) is good, even when the difference between Φ
and Φ0 is of the order of tens of percents. Note that Eq. (4.21) is basically
the first order Born approximation discussed in section 4.1.1, but now with
a more realistic description of single objects.

4.1.3 Strength of specific objects

Now we will give the explicit form of the strengths q and p for different
objects. Not many of them can be calculated analytically however. For
small objects and perturbations which are not too large we again only need
to take into account the first term of the series in Eqs. (4.16) and (4.19). We
find for an object with volume Ω and only a small constant perturbation
in absorption ∆µa:

q = −κ
3
0Ω ∆µa

4πµa
, p = 0, (4.22)

and for an object with only a small constant perturbation in scattering ∆D:

p =
κ3

0Ω ∆D
4πD

, q = 0. (4.23)

For spherical objects of radius a one can find the results in Refs. [1, 2]
for general values of the optical parameters of the background and the
object. For the specific case of ∆µa = 0, ∆D = Dobj − D is constant inside
the spherical object and for κa� 1, these reduce to

psphere = (κ0a)3 Dobj− D
Dobj + 2D

. (4.24)

One can show that the series of Eq. (4.19) gives the same result. Con-
sequently, even for small radius a one needs to take the full series into
account, when ∆D itself is not small. When the scattering in the object
increases, Dobj decreases, until p reaches a maximum value of − 1

2(κ0a)3.
That p has a maximum is due to the fact that large scattering of the object
implies that all the light will be reflected, almost at the point of entering.
If this is so, the absolute amount of scattering given by the value of Dobj is
no longer important. Also the opposite case of a very transparent object,
with large Dobj, leads to a saturation value, p = (κ0a)3. We see that as long
as Dobj and D differ enough, their precise values are not important for the
determination of p.
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We observe that for weak objects the strengths p and q scale with the
volume of the object. One can use this to rewrite Eq. (4.21) into its integral
equivalent [12]

Φ(r) = Φ0(r)

[
1− 3µs

4π

∫
dro ∆µa(ro)Q(ro; rs, r)

+
3κ3

0
4π

∫
dro

Dobj(ro)− D
Dobj(ro) + 2D

P(ro; rs, r)

]
. (4.25)

For the case of ∆D = 0 and a large but constant ∆µa in the object, κobja>∼
1, one finds [1, 2]

qsphere = −κ0a[1− tanh(κobja)/κobja], p = 0. (4.26)

In the limit of large absorption κobja 	 1 this leads to the strength of a
black sphere

qblack = −κ0a. (4.27)

Note that again in the limit of large perturbations the precise value of the
optical parameters of the object is no longer important. The strength (4.27)
can also be found by solving the diffusion equation directly for a spherical
object [20] assuming that the photon density vanishes on the boundary of
the object:

Φ(|r− ro|=a) = 0. (4.28)

That this boundary condition is not exact is well known [3, 4]. This is
due to the approximate nature of the diffusion equation, which requires
µa � µs [cf. Eq. (4.2)]. This is not the case inside a strongly absorbing
object. Equation (4.28) works rather well, however, when corrections to
length scales of the order of the scattering length µ−1

s are negligible. For a
small absorbing sphere, this is no longer the case, since a can be of the same
order as µ−1

s . Therefore Eq. (4.27) no longer holds. In the neighborhood
of an absorbing boundary the photon density does not vanish. Instead it
has an offset. A boundary condition which incorporates this effect [4] and
hence generally gives more accurate results [3] is (see also section 4.2)

Φ + ξext n̂ · ∇Φ
∣∣∣
at the surface

= 0. (4.29)

Here n̂ is a unit vector perpendicular to the surface of the scattering me-
dium and pointing outward. The extrapolation length ξext is of the or-
der of µ−1

s . Its precise value depends on the the ratio of refractive in-
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dices [4, 22–24], cf. Eq. (4.40), and on the geometry. Solving the diffu-
sion equation (4.1) with a spherical object but using the boundary con-
dition (4.29) instead of Eq. (4.28) one finds

qblack = − κ0a2

a + ξext
. (4.30)

The length ξext itself depends only weakly on a. For large a it takes the
value of the semi-infinite medium [4] ξext = 2/3µs. In the limit of vanish-
ing a its value is ξa and will be calculated in the following.

Consider a virtual sphere of radius a� µ−1
s . We know that for a give

source strength Sω (in photons per second) the photon density at the po-
sition ro of this sphere is given by Φ0(ro). The number of photons in the
sphere is then given by 4πΦ0a3/3. We can assume that none of the pho-
tons will be scattered in the volume. The distribution of their directions
is uniform, as is their distribution over space. The frequency at which
photons enter the object depends on the inverse time spent in the object,
which itself depends on the position at the surface of the sphere at which
the photon enters, and its direction. The average over all possible entry
points and directions of the inverse dwell time is v/a. Would the sphere
be completely black, a number of So = (4πΦ0a3/3)× (v/a) = 4πΦ0a2v/3
photons would be absorbed per unit of time. Hence, the sphere acts as a
negative source with strength So. The photon density can now be written
as

Φ(r) = Φ0(r)− So

D
G(r; ro). (4.31)

Combining this with Eq. (4.14) we get qblack = −µsκ0a2 and consequently
ξa = µ−1

s , which is 3/2 times as large as ξext for large a.
We see from Eq. (4.30) that a cross-over exists in the dependence of qblack

on the radius a, between small black spheres, aµs < 1 and larger spheres
aµs > 1. It is fair to ask if such a cross-over exists for spheres that have
only a small extra absorption, compared to the background (∆µaa � 1).
We know that for spheres which obey the diffusion equation (and there-
fore have relatively small µa) Eq. (4.22) holds and hence q ∼ a3. For a
very small sphere we can use the same arguments as above. The number
of photons present is again 4πΦ0(ro)a3/3. The frequency at which these
photons get absorbed more than in the background is ∆µav. Using again
Eq. (4.31) we find q =−a3∆µaµsκ0 conform Eq. (4.22). We see that no cross-
over exists.

We can explain the cubic dependence on the radius a qualitatively as
follows. For any a the number of photons entering the object is propor-
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tional to the number of photons absorbed when the object would be per-
fectly black, i.e.∝ qblack from Eq. (4.30). When a is small this number scales
with a2. The average path length is linear in a. Consequently the extra ab-
sorption which determines q is cubic in a. When a gets larger, the number
of photons entering the sphere scales with a. The average length a photon
travels inside the sphere is then no longer linear in a: the photon will have
a diffusive motion inside the sphere. Its average time in the sphere will be
∼ a2/D, and hence the average path length in the sphere will be ∼ a2µs.
Again we find that q is cubic in a.

4.1.4 Example

Let us consider a simple situation to obtain some insight in the formu-
las, deriving the main dependencies on the parameters, as well as getting
some feeling for the sensitivity to scattering and absorption. We take both
the source and the detector at a distance r of the object, all three of them
on a line. The sensitivities are then given by

Q =
2
κ0r

, (4.32a)

P =
2

(κ0r)3 (1 + κr)2. (4.32b)

(Note the difference between the real κ0, acting as a length scale, and the
complex and frequency dependent κ.) In many cases of practical inter-
est for medical imaging, the distance r between source and object is of
the same order as |κ|−1. This means that both sensitivities are of equal
order. For large r and zero frequency they are even identical in this geom-
etry. When taking a realistic spherical object, where q and p are given by
Eqs. (4.22) and (4.24) we find for the perturbation in photon densities

∆Φq

Φ0
= −∆µa

3µa
(κ0a)3 2

κ0r
, (4.33a)

∆Φp

Φ0
=

∆D
3D + ∆D

(κ0a)3 2
κ3

0r3
(1 + κr)2, (4.33b)

where the index q (p) denotes a perturbation in absorption (scattering). We
see that in general the perturbation due to scattering can be as large as that
due to absorption. For medical imaging purposes we expect however that
absorption is more important than scattering since in practice ∆µa/µa 	
∆D/D.
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4.1.5 Amplitude modulated sources

All formula’s given above can be applied as well to the case of an ampli-
tude modulated source. We will, as in the experiments, use the amplitude
A and the phase ϕ,

Φ = A eiϕ, (4.34)

and write Φ0 = A0 eiϕ0 for the homogenous background medium. (For
zero frequency Φ itself is real and hence ϕ = 0.) Consider a perturbation
in the photon density, which we can write as

∆Φ = |∆Φ| eiϑ. (4.35)

From this perturbation one needs to calculate the perturbation in A and ϕ.
For small perturbations we can write

∆A
A0

= |∆Φ| cos(ϑ−ϕ0)/A0 = Re
(

∆Φ
Φ0

)
, (4.36a)

∆ϕ = |∆Φ| sin(ϑ− ϕ0)/A0 = Im
(

∆Φ
Φ0

)
. (4.36b)

We give explicit formulas for the same example as above, where the object
is exactly in the middle between source and detector, both distances being
equal to r. We get

∆A
A0

=
2
3

(a
r

)3
[
−∆µa

µa
(κ0r)2 +

∆D
3D + ∆D

Re(1 + κr)2
]

, (4.37a)

∆ϕ =
2
3

(a
r

)3 ∆D
3D + ∆D

Im(1 + κr)2. (4.37b)

In general we see that the amplitude difference ∆A/A0 is mainly sensitive
to absorption inside the object, while the phase ∆ϕ is mainly sensitive to
the extra scattering of the object. When the object is not on the line between
source and detector the sensitivity has an extra exponential factor. Due to
this factor both amplitude and phase can vary for a single object, even if it
is purely extra absorbing or purely extra scattering.

4.2 Optimal boundaries

4.2.1 Sources and boundaries

The purpose of our research is to image an object inside some medium.
This medium will in general be a finite one. It is well known that the
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boundary of this medium affects the measurements. One boundary of
interest is the open boundary, where only air or a transparent fluid is sur-
rounding the medium. For the description of the scattering of light inside
the medium this is almost equivalent to a complete black boundary, since
no light that leaves the turbid medium will re-enter it. An open boundary
can also be accompanied by a mismatch in the refractive index between
the turbid medium and the medium outside. An opposite kind of bound-
ary is also possible, i.e. a boundary with as much reflection as possible,
such that only a little amount of light gets lost. This can be done by sur-
rounding the medium with mirrors. Surrounding the medium by another
diffusive medium gives a similar result, since also a diffusive medium re-
flects much of the light entering it. The question arises which of these
two possibilities is best for imaging objects. In answering this question we
have to take into account both the sensitivity to the object, as discussed in
the previous section, and the possible accuracy of the measurement, which
benefits from large photon densities having less noise. Both change with
boundary conditions. Also the algorithm of reconstruction can favor a
choice of boundaries. To study this problem we will start with describing
the boundaries and the way we will treat them. Then we will look both at
sensitivity and accuracy.

Typically the source consists of a fiber placed in the medium, or — in
the case of an outer boundary — at the edge of the medium. Therefore the
incoming light will be a directed beam of light, with some aperture. The
diffusion theory assumes point sources. It is possible to model a directed
beam by a point source [3]. One has to determine where the model point-
source is located, given the physical source. Due to symmetry reasons
this point source will be at some distance from the end of the fiber, but
on its axis n̂. This distance, which we will call ξin will depend on the
aperture. It has been shown [25] that for a collimated beam, having a
small aperture, ξin = µ−1

s is a reasonable choice. We will take this value in
the following. Larger apertures will have smaller ξin. For the use of the
diffusion theory one needs a (model) source as deep into the medium a
possible. This means that when the system is to be described by a diffusion
equation, a small aperture of a source at the boundary would be best.

When modeling a physical detector, the same arguments as above hold.
The physical detector also consists of a fiber. We assume that it has also a
small aperture. Due to the symmetry with respect to the source fiber, the
intensity detected in this way will be proportional to the photon density
a length ξin away from this detector. This symmetry between source and
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detector is a result of reciprocity [10], cf. Eq. (4.6). There is another way
of looking at this. The approximation one makes in deriving the diffusion
equation from the theory of radiative transfer is to write the photon flux
I(r, ŝ) at position r in the direction ŝ as [4] [cf. Eq. (1.14)]

I(r, ŝ) =
v

4π
[Φ(r)− µ−1

s ŝ · ∇Φ] � v
4π

Φ(r− µ−1
s ŝ). (4.38)

The flux at the detector position, and pointing into the fiber is then

I(rd,−n̂) � v
4π

Φ(rd + ξinn̂), (4.39)

which is proportional to the photon density a length ξin = µ−1
s in front of

the physical detector.
Apart from the sources, we need to model boundaries as well. This can

be done by the boundary condition (4.29) [3, 4, 22, 26] (see also chapter 2).
This boundary condition can be derived using conservation of light flux at
the boundary in combination with the requirement that no light is enter-
ing the medium. (Note that sources at physical boundaries are modeled
as point sources in the medium and do therefore not interfere with these
boundary conditions.) The value of ξext is given by [5, 22]

ξext =
2

3µs

1 + 3
∫ π/2

0 dθ R(θ) sin θ cos(θ)2

1 + 2
∫ π/2

0 dθ R(θ) sinθ cos(θ)
, (4.40)

where R(θ) is the reflectivity of the boundary for light incident under an
angle θ. The boundary condition (4.29) is however not always easy to
handle. For small ξext one can expand Φ around its value at the bound-
ary rb. Using the boundary condition (4.29) this results in Φ(r) � (r− rb −
ξextn̂) ·∇Φ(rb). Hence the photon density vanishes for r = rb + ξextn̂, i.e. at
a distant ξext outside the medium. This is basically the requirement of the
so-called extrapolated boundary [4, 23, 24]: The density is extrapolated by
a distance ξext beyond the boundaries, at which point the photon density
vanishes,

Φ[(r− rb) · n̂ = ξext] = 0. (4.41)

This simplification of the boundary condition can only be done when the
photon density is approximately linear over a distant ξext, consequently
the extrapolated-boundary condition can only be used for κξext� 1. This
puts a restriction on the use of Eq. (4.41). It is however much more sim-
ple to handle than Eq. (4.29) in calculating the photon density and it has
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therefore been used extensively in literature. Haskell et al. [3] showed that
the difference between both boundary conditions is indeed small for rea-
sonable optical parameters. We prefer to use the latter boundary condi-
tion (4.41) whenever possible.

The extrapolation length ξext used in Eqs. (4.29) and (4.41) depends
on the refractive index mismatch between the scattering medium and its
surroundings [22]. It is of the order of a mean free path. It has a minimum
of 2/3µs for the semi-infinite geometry [4] (its value when considering the
theory of radiative transfer [27] is 0.71µ−1

s ). It increases with refractive
index mismatch, and can become several mean free paths long [23, 24].
Hence we can model the amount of Fresnel reflection at the boundary,
which is due to this mismatch, by the value of ξext.

The introduction of ξext enlarges the system effectively with a distance
of the order of the mean free path. One would therefore expect only a
small correction to the results, of the order of ξext/L, where L is a measure
of the system size. This is however not true in the case where either source
or detector is close to a boundary. The less deep the source is located, the
larger the losses at the boundary will be, and consequently the smaller for
example the transmission. As we will see, for small ξext, the photon den-
sity scales with the distance between the (model) source and the boundary
of the effective medium ξ ≡ ξext + ξin. When calculating the absolute value
of the photon density, the value of ξext is important. The source strength
Sω is of equal importance. Fresnel reflection at the boundary has its influ-
ence both on the source term and on the value of ξext. Since it is in practice
difficult to determine the source term, we will seek quantities that only
depend on relative measurements. For these cases, the exact value of ξext
is not very important, as long as κξext is small. For reflecting boundaries
however κξext can be large, in which case the value of ξext is important.

We want to study the influence of the boundary extrapolation. Two
limits are evident. First of all the limit ξext → ∞. In this limit the two
boundary conditions (4.29) and (4.41) give different results. The former
corresponds to having perfect mirrors at the boundaries, reflecting all the
light. The latter corresponds to an infinite medium. Both are similar but
not equivalent. The second limit is that of small ξext. This is almost equiva-
lent to completely absorbing boundaries, or a surrounding medium which
does not scatter the light and which has (almost) matching refractive in-
dex. Both will be considered. When considering good reflecting mirrors,
we assume that measurements are made using small fibers, that penetrate
the mirrors, instead of measuring the small amount of light that is trans-
mitted through the mirrors.
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4.2.2 Green functions

To determine the sensitivities Q and P and their dependence on the bound-
ary, we first need to calculate the Green functions [28]. We will start with
a semi-infinite medium since this is the most simple case, and it already
gives some insight. The medium occupies the half space z > 0. The source
is as before located at rs. The difference in the xy-plane between r and rs
is the lateral distance ρ. The system is cylindrically symmetric, so that the
Green function and other resulting quantities only depend on ρ= |ρ|, and
not on the direction of ρ. It is useful to perform a Fourier transform in the
xy-plane, writing

Gs(ρ, z, zs) =
∫ d2q

(2π)2 eiq·ρGs(q, z, zs)

=
∫ ∞
κ

dα
2π

J0(ρ
√
α2− κ2)αGs(α; z, zs). (4.42)

The subscript s refers to “semi-infinite”, and J0 is a Bessel function. The
change to the variable α2 = κ2 + q2 is introduced for later convenience.
For amplitude modulated sources κ, and therefore α, will be complex.
However, for notational simplicity we will write the integral over α as
being from κ to∞. To find the Green function we need to solve Eq. (4.4).
After Fourier transformation we get

(− ∂2

∂z2 + α2)Gs(α; z, zs) = δ(z− zs). (4.43)

Since we do not want to restrict the value of ξext yet, we will use the bound-
ary condition (4.29). The solution for the Green function at fixed α is then
given by

Gs(α; z, zs) =
1

2α

(
eαzmin − 1− αξext

1 + αξext
e−αzmin

)
e−αzmax, (4.44)

as can be checked by substitution. We defined zmin = min(z, zs) and zmax =
max(z, zs). The Green function in real space is then given by

Gs(ρ, z, zs) =
∫ ∞
κ

dα
4π

J0(ρ
√
α2− κ2)

(
eαzmin − 1− αξext

1 + αξext
e−αzmin

)
e−αzmax .

(4.45)
Equation (4.7) for the Green function G∞ in the infinite medium can be

found from Eq. (4.45), by considering a source and a final position far into
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the medium, κzmin 	 1. Then the boundary will not have any influence
and we find

G∞(ρ, z, zs) =
∫ ∞
κ

dα
4π

J0(ρ
√
α2− κ2)e−α(zmax−zmin) =

1
4πr

e−κr, (4.46)

where r2 = ρ2 + (z− zs)2. Using this equality one can rewrite the Green
function (4.45) for the semi-infinite medium as [3]

Gs(ρ, z, zs) =
1

4πr
e−κr +

1
4πr+

e−κr+ − 2
ξext

∫ −zs

−∞
dz′

1
4πr′

e−κr′e(z′+zs)/ξext,

(4.47)
where r2

+ = ρ2 + (z + zs)2 and r′2 = ρ2 + (z− z′)2. This expression can be
interpreted as follows. The first term is the result from the original source,
when no boundaries are present. The second term describes the propaga-
tion of light from a source just on the other side of the physical boundary
at z = 0, which we call the mirror source. The last term describes the
propagation of light from a distribution of sources on the z-axis between
z′ = −∞ and z′ = −zs. The density of this distribution is a Poisson distri-
bution ξ−1

ext e(z′+zs)/ξext and has a total strength of−2.
We can now model the different boundaries by taking the limiting val-

ues of ξext. For perfectly reflecting boundaries, ξext →∞, the distribution
of sources at z′ has a vanishing contribution for any position. Hence the
Green function has only two terms, that of the original and that of the
mirror source.

Taking the other limit, ξext → 0, the distribution term is limited to the
one point z′ = −zs. The Green function then exists of a term describing
the propagation from the original source and a term describing the prop-
agation from the mirror source, but with total strength −1. For ξext = 0
the Green function itself vanishes at the boundary whereas for ξext →∞
its derivative with respect to z vanishes. This can also be seen directly
from the boundary condition (4.29). For a realistic absorbing boundary
the value of ξext does not vanish completely. For small values we can write
Eq. (4.44) as

Gs(α; z, zs) =
1

2α

(
eαzmin − e−α(zmin+2ξext)

)
e−αzmax, κξext� 1. (4.48)

This expression and the resulting Green function G(ρ, z, zs) describe again
two sources, one at the original source position, and one (with strength
−1) at−zs− 2ξext. The Green function then indeed vanishes at the extrap-
olated boundary z = −ξext, according to the boundary condition (4.41). In
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real space the resulting Green function is given by [29]

Gs(ρ, z, zs) = G∞(
√

(z− zs)2 + ρ2)−G∞(
√

(z− zs− 2ξext)2 + ρ2), z > zs.
(4.49)

For large but finite ξext it is not possible to find an expression such
that the Green function or its derivative vanishes at the same position for
every α. Therefore no extrapolated boundary in any sense can be used for
good but not perfect mirrors. Qualitatively a mirror which is not perfectly
reflecting can be described by using a mirror source of a somewhat smaller
strength. For quantitative calculations however one needs to use the full
expression (4.47).

The next geometry we consider is that of the slab. The slab geometry
consists of a medium of infinite extent in both the x and y-direction, but
limited between two boundaries in the z-direction: 0 < z < L. In a slab ge-
ometry two qualitatively different measurements are possible. The first is
a reflection measurement, which is similar to a reflection measurement at
a semi-infinite medium. The second is a transmission measurement where
source and detector are on two opposite boundaries. For every finite con-
vex medium, any measurement is either like a reflection measurement or
like a transmission measurement. For our discussion it suffices to consider
these two possibilities as general prototypes.

As we did for the semi-infinite medium, we take the physical source at
z = 0, pointing into the medium. We then need to solve Eq. (4.44) to find
the Green function. The boundary condition (4.29) takes the explicit form

GL(0, zs) = ξext∂zG(z, zs)|z=0, (4.50a)
GL(L, zs) = −ξext∂zG(z, zs)|z=L, (4.50b)

for the slab geometry considered here. We find

GL(α; z, zs) =

(
eαzmin − Fe−αzmin

)(
eα(L−zmax)− Fe−α(L−zmax)

)
2α
(

eαL− F2e−αL
) , (4.51a)

F =
1− αξext

1 + αξext
. (4.51b)

The Green function in real space is then given by

GL(ρ, z, zs) =
∫ ∞
κ

dα
4π

J0(
√
α2− κ2ρ) 2αGL(α; z, zs). (4.52)
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Expression (4.52) can be simplified when we can make use of the bound-
ary condition (4.41) instead of (4.29). This results again in the use of mirror
sources [30]. In the slab geometry the system consists of two extrapolated
boundaries, where the photon density has to vanish. To find the Green
function one needs a mirror source for each of this two boundaries. Each
mirror source also needs its own image in both boundary planes, which
in turn need their own images. This leads to an infinite number of mirror
sources, all regularly spaced. The formula for the Green function GL of the
slab then reads [30]

GL(r, rs) =
∞
∑

m=−∞

(
G∞(r, rs + 2m(L + 2ξext)ẑ)

−G∞(r,σzrs + 2m(L + 2ξext)ẑ)
)
. (4.53)

Here σz is a mirror operation in the xy-plane: σzr = σz(x, y, z) ≡ (x, y,−z).

4.2.3 Reflecting boundaries

We now consider the differences between an infinite medium and a me-
dium bounded by mirrors. Suppose that the source is at a boundary, which
we model with zs = ξin = µ−1

s . Then the source and its mirror image are
separated by a distance of 2µ−1

s . For positions not too close to the source
the mirror source will appear as strong as the original source (the differ-
ence being a factor of the order of κ/µs or 1/µsr smaller). Hence

Gs(ρ, z, ξin) � 2G∞(ρ, z, ξin), ξ→∞. (4.54)

This enhancement appears for every position r, and therefore the Green
function from source to a detector at the same boundary, is enhanced by
a factor of 2. The Green function from source to object, well away from
a boundary is also enhanced. For symmetry reasons the Green function
from object to detector is enhanced by the same factor. Bearing the def-
inition (4.15) of the sensitivity for absorption in mind, we see that this
sensitivity itself gets also enhanced by a factor of 2, for the measurement
in reflection described here:

Qmirror � 2Q∞, reflection experiment. (4.55)

Next we consider a transmission experiment. The Green functions
from source to object and from object to detector get enhanced by a factor
of 2 with respect to the Green function of the infinite medium, as before.
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The Green function from source to detector gets an enhancement factor of
2 due to the mirror close to the source. The mirror at the detector how-
ever is not the same mirror. Hence for symmetry reasons alone also at
the detector we get an enhancement of two. The total enhancement for
the Green function from source to detector is then 4. For the sensitivity to
absorption Q we then find

Qmirror � Q∞, transmission experiment. (4.56)

Another way of looking at this is using a mirror object instead of mir-
ror sources and detectors. One can then easily see that in reflection one
actually measures two objects, one on each side of the boundary, one of
them a mirror-object. In transmission, the mirror objects will be be either
too far away from source or from the detector to be measured. Corrections
to this simple picture have to be made when the system size L is such
that exp(−κL) � 1, or when the object is close to boundary. In the former
case one needs the full expression for the Green function in a slab geome-
try (4.52). When the object is close to a boundary, but far from both source
and detector, the ratio between Qmirror and Q∞ is again 2.

A mirror that is almost perfectly reflecting can be described qualita-
tively by a mirror source of a somewhat smaller strength than 1. The en-
hancement factors discussed above get smaller than 2, but are still present.
For mirrors reflecting only a part of the light the value of ξext decreases
even more. In those cases there is even less difference between an infinite
medium and a bounded medium. The Green function in the infinite me-
dium is such that Φ � κ−1Φ′. Therefore the boundary condition (4.29) is
almost fulfilled by G∞ when κξext � 1. For boundaries that are even less
reflecting — we will show experimental examples of this — the sensitivity
is somewhere between that of an infinite medium and that of a medium
with absorbing boundaries. These different boundaries will be compared
in specific geometries later on. We can conclude that the influence of mir-
rors on the Green function is only a factor of the order 1, with respect to
the infinite system.

The arguments presented above hold also for the sensitivity to scatter-
ing P. Since the difference between an infinite system and a system with
good mirrors is only a factor between 1 and 2, we can conclude that a
boundary with good mirrors is qualitatively equivalent to an infinite sys-
tem:

Qmirror � Q∞, Pmirror � P∞, (4.57)

the difference being only a factor of order 1.
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For black boundaries the situation is entirely different. For small ξext
the source and its mirror have different sign. Hence the difference of these
two sources determines the Green function. Instead of G∞ itself, its deriva-
tive becomes important. In this case there will be also differences between
sensitivity for absorption and for scattering. It is difficult to compare the
sensitivities for absorbing boundaries with those of an infinite medium us-
ing only general principles, as above. For the case of absorbing boundaries
we will do some explicit calculations below. Before we do this however,
we first describe the experimental results.

4.2.4 Experimental results

The experimental setup to measure the influence of various kinds of bound-
aries on the detectability of objects is as follows: As a turbid medium
a fish tank filled with 1% intralipid R© is used. Intralipid is an emulsion
of soybean oil in water, commercially available in concentrations of 10%
and 20%. We diluted the 10% solution ten times to obtain a transport
scattering coefficient of µs = 0.85 mm−1 and an absorption coefficient of
µa = 7 ·10−4 mm−1, resulting in κ0 = 0.042 mm−1. The light from a temper-
ature stabilized semiconductor laser operating at 670 nm is administered
via a multi-mode fiber with a diameter of 1 mm. The light intensity at the
fiber end in the fish tank is approximately 1.2 mW. The detector position
is determined by one end of a second multi-mode fiber which is connected
at the other end to a Hamamatsu H5783-01 photomultiplier, having a max-
imum sensitivity of 3 · 103 A/W at 670 nm. An electrometer measures di-
rectly the current output of the photomultiplier, and after A/D conversion
the data is archived in a computer. The source and detector fibers are posi-
tioned in the fish tank, either with small white delrin holders to resemble
an infinite medium, in the 1 mm holes of black perspex plates, or in the
holes of polished aluminum plates acting as reflecting boundaries.

Both absorbing as well as scattering objects are studied. The absorbing
object is a 5 mm diameter cylinder made of black delrin with a height of
5 mm. A computer controlled stepper motor holding a 2 mm diameter
white delrin rod attached to the cylinder makes it possible to move the
object freely through the fish tank. The rod has a negligible influence in
comparison to the black cylinder. The scattering object is a hollow white
cylinder with an internal diameter of 8.4 mm and an effective height of
55 mm filled with 20% intralipid. In order to correct for any absorbing
effects of the delrin container each measurement is followed by a second
one in which the container is filled with the same concentration as the
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Figure 4.1: Schematic view of the geometry used for experiments and
theory. (a) For measurements in reflection the source-detector distance
in the xy-plane is denoted by ρd. The position of the object is given by
its lateral coordinate ρo and its depth d. The dashed line shows the posi-
tion of the physical boundary, when present. The object is moved along
the horizontal dotted line for the measurements of Figs. 4.2 and 4.4, and
along the vertical dotted line for the measurements of Figs. 4.3 and 4.5.
The scale of the object corresponds to the black cylinder. (b) For mea-
surements in transmission L is the thickness of the slab in the z-direction.
The position of the object is again given by ρo and d. The dashed lines
show the position of the physical boundaries, when present. The object
is moved along the vertical dotted line for the measurements of Figs. 4.6
and 4.7.

surrounding medium i.e. 1% intralipid. Only the differences of two of
such scans are displayed in the figures.

In Fig. 4.1(a) we show the geometry for the measurements in reflection
(we discuss the experiments in transmission later on). We performed two
measurements. For both we have taken a fixed source-detector distance
ρd = 30 mm. The object is then either scanned parallel to the line source-
detector, with constant d, or over the symmetry line, ρo = ρd/2, with vary-
ing d. For all situations we have measured the signal with and without an
object. The difference is then normalized by the measured signal without
the object, which equals the ratio of photon densities ∆Φ/Φ0.

To compare the experimental results with theory we used Eqs. (4.15)
and (4.20) to calculate the sensitivities Q and P. The Green functions we
used are Eq. (4.7) for the infinite medium, Eq. (4.49) for the semi-infinite
medium with absorbing boundaries, Eq. (4.47) for the semi-infinite me-
dium with reflecting boundaries, and Eq. (4.52) for the slab. For the ab-
sorbing cylinder we took the value of Q at the center-point of the object
and multiplied it with q to find ∆Φq/Φ0. Since the scattering object is
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Figure 4.2: Sensitivity to absorption ∆Φq/Φ0 = qQ in a reflection mea-
surement as a function of the lateral position ρo. The source detector
distance ρd is 30 mm. The depth d of the object is 10 mm. The data
points are for an infinite medium (squares), a semi-infinite medium with
reflecting aluminum boundaries (crosses), and a semi-infinite medium
with absorbing boundaries (dots). The solid curves are the corresponding
theoretical lines. The dashed curve is for a reflecting gold mirror.

large, we cannot use the value of P at only one point. Instead we use
Eq. (4.25) to find ∆Φp, with D/Dobj = 20. For later comparison we calcu-
late the strength as if it were a small object and find p = −0.025.

To determine q we use Eq. (4.30) for qblack, with an effective radius a.
We determine a by assuming that it is such that the surface of the effective
sphere 4πa2 equals the surface of the cylinder πd(h + d/2). The reason
for taking the surface is that q scales approximately with a2. We find a =
3.06 mm. Since this is already larger than a mean free path, we choose for
ξext its value for large a, which is 0.67µ−1

s = 0.79 mm. We find q = −0.10.
The different boundaries are characterized by the value of the extrap-

olation length ξext, as defined in Eq. (4.40). For the black boundaries we
find µsξext = 0.67. For the aluminum plates, having a refractive index of
1.4− 6.28 i, we use µsξext,Al = 7.34. For a theoretical comparison we also
calculated the results for a gold-coated mirror, with a refractive index of
0.134− 3.65 i and hence µsξext,Au = 28.0.

In Fig. 4.2 we show the results for the sensitivity to the absorbing ob-
ject. The scan is parallel to the line joining the source and the detector.
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Figure 4.3: Sensitivity to absorption ∆Φq/Φ0 = qQ in a reflection mea-
surement. The parameters are the same as in Fig. 4.2, but now the
lateral distance ρo is fixed at ρd/2 = 15 mm and the depth d is varied.

The three sets of data show the measurements for an infinite medium
and for a semi-infinite medium with either absorbing or reflecting (alu-
minum) boundary. The corresponding theoretical results are shown with
solid lines. The two maxima are at positions ρo such that the object is in
front of either source or detector. The correspondence between experiment
and theory is good, even though up to 45% of the light is already absorbed
by the object. Remember that the theory is based on the assumption of
small objects. This does however not mean that only small ∆Φ/Φ0 can be
described, as long as the strength q is calculated from the full expression in
Eq. (4.16). No adjustable parameters have been used. The dashed theoreti-
cal line is for a semi-infinite reflecting (gold) boundary, which has a higher
reflectivity than the aluminum boundary. For the same source-detector
distance we also scanned the object over the symmetry line, ρo = ρd/2.
The results are plotted in Fig. 4.3. Again the correspondence is quite good.

We note that the sensitivity Q is proportional to the data in the fig-
ures. One can see in Figs. 4.2 and 4.3 that in general the sensitivity for
the semi-infinite medium with absorbing boundaries will be larger than
that with reflecting boundaries or than that of the infinite medium. This
is not true for objects close to absorbing boundaries, where the amount of
light is small. The sensitivity Q of the semi-infinite medium with reflect-
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Figure 4.4: Sensitivity to scattering ∆Φp/Φ0 in a reflection measurement
as a function of the lateral position ρo, with ρd = 30 mm, as in Fig. 4.2.
The data points are for an infinite medium (squares, d = 15 mm) and a
semi-infinite medium with absorbing boundaries (dots, d = 17 mm). The
solid curves are the corresponding theoretical lines. The dashed-dotted
line is the theoretical curve for the aluminum mirror, the dashed curve for
a gold mirror (d = 15 mm for both).

ing boundaries seems to be in the middle between the two other cases.
As mentioned before this results from the fact that the aluminum mirrors
reflect an amount of light which is in between that of the absorbing bound-
ary and of that part of the infinite medium which is on the other side of
the dashed line in Fig. 4.1. The dashed curve shows a sensitivity which
is proportional to the sensitivity in the infinite medium, as described by
Eq. (4.55). For d >∼ 10 mm the difference between a good mirror (dashed
curve) and a not so good mirror (crosses, solid curve) is minimal. (The ex-
act curves depend on the values of ξext.) Although the Green function in
general increases when the reflection of the boundary increases, the sen-
sitivity, involving 3 Green functions, has a behaviour which is different.
When the object is close to the boundary the sensitivity for an aluminum
mirror drops, since the amount of light near the boundary is low. For the
gold mirror the sensitivity keeps rising and will be maximal at the bound-
ary itself. Therefore the difference between a good mirror and a not so
good mirror is mainly visible close to boundaries, at least for reflection
experiments.
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Figure 4.5: Sensitivity to scattering ∆Φp/Φ0 in a reflection measurement
as a function of the depth d, with ρo = ρd/2 = 15 mm, as in Fig. 4.3.
The solid theoretical curves correspond to the data points. The dashed-
dotted curve is the curve for an aluminum mirror, the dashed curve for a
gold mirror.

We also measured the sensitivity for scattering P. The results are shown
in Figs. 4.4 and 4.5 for the same geometries as in Figs. 4.2 and 4.3, respec-
tively. The data points are for an infinite medium and a medium with ab-
sorbing boundaries. The theoretical curves again correspond to the data
points. Systematic errors include the determination of the position of the
scattering object and the drift of the detector during the measurement.
Due to the substraction of two measurements these small errors lead to
larger errors in the determination of ∆Φp. The final error is equivalent to
an error of the order of 1 mm, which is already large enough to explain the
discrepancies between theory and experiment. Note that the form of the
curves agrees quite well with the theory.

We also calculated the theoretical curves for an aluminum boundary,
which is shown in Figs. 4.4 and 4.5, dash-dotted to signify that no exper-
imental results were available, and for a gold mirror (shown dotted). We
observe again that the semi-infinite medium with reflecting boundaries is
similar to the infinite medium.

The expression (4.20) for P may take on negative values. This happens
when the scattering of a photon density wave from the object is effectively
backwards. Such a negative sensitivity means that the detected signal will
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Figure 4.6: Sensitivity to absorption ∆Φq/Φ0 = qQ in a transmission mea-
surement as a function of the depth d, with ρo = 15 mm. The solid curves
are the theoretical values, the dashed line shows again the curve for a
gold mirror. The thickness of the slab is L = 50 mm.

increase when the object scatters more strongly. For absorbing objects a
change of sign is not possible. For Fig. 4.4 we observe this effect when ρo
is large enough. This implies a faster decrease in P than we observed for Q.
In the geometry of Fig. 4.5 the sensitivity to scattering P becomes negative
when either d is large, or when d is small and the boundary is absorb-
ing. In the latter case the photon density wave will travel from the source
into the medium, turn back to the object, which is close to the boundary.
There it will reflect effectively backwards and propagate to the detector,
again avoiding the absorbing boundary. This effectively backward reflec-
tion implies a negative sensitivity P.

To give a full comparison between infinite systems and finite systems
with different kind of boundaries, it is not enough to consider only reflec-
tion measurements. As we discussed before, for a finite medium all mea-
surements are either like reflection or like transmission measurements.
The geometry we chose for transmission experiments is one where the
source and detector are opposite to each other (head on) as in Fig. 4.1(b).
The thickness of the slab is L = 50 mm. The object is scanned along a line
parallel to the source-detector line, at a distance ρo. The depth of the object
d is again varied. Results are shown in Figs. 4.6 and 4.7 for the absorbing
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Figure 4.7: Sensitivity to scattering ∆Φp/Φ0 in a transmission measure-
ment as a function of the depth d. The thickness of the slab is L = 50 mm,
as in Fig. 4.6. For the infinite medium (squares) ρo = 19 mm, for the
semi-infinite medium (dots) ρo = 15 mm. Note that the domain of d for
the infinite medium is larger than in the previous figure. The solid the-
oretical curve correspond to the data points. The dashed-dotted curve
is the curve for an aluminum mirror, the dashed curve for a gold mirror
(ρo = 15 mm for both).

and the scattering object, respectively. We have theoretically investigated
also a geometry which is finite in two directions instead of one, and found
no qualitative difference with the slab.

As is shown in Eq. (4.56) the sensitivity in a transmission experiment
when the object is not close to a boundary is the same for an infinite me-
dium and for a medium with mirrors. The amount of reflection is not very
important in this case, as can be observed in Fig. 4.6. When the object is
closer to the boundary, one can again observe differences between good
and not so good mirrors.

The results shown in Fig. 4.7 are noisy, due to the smallness of ∆Φp/Φ0.
A systematic shift can be observed between the data points of the absorb-
ing medium and the theory. Again this is either due to a drift in the detec-
tor, or a small error in determining the position of the object, which result
in larger errors after the substraction of two measurements. Qualitatively
there is only a slight difference between the different boundaries in this
case.
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4.2.5 Absorbing boundaries

Using the experimental results we could already qualitatively compare the
absorbing boundary with the infinite medium. Here we will give some
quantitative results to compare the infinite medium with media having
absorbing boundaries. To find simple expressions in the case of absorb-
ing boundaries we will take ξ = ξin + ξext small. This results in approx-
imate expressions that can be used for qualitative discussions. Since the
model point source is very close to the boundary, we can take the terms in
Eq. (4.53) pairwise together

G∞(r, rs)−G∞(r, rs − 2ξ ẑ) � 2ξ ẑ · ∇rs G∞(rd, rs − ξ ẑ). (4.58)

We note that the argument rs − ξ ẑ ≡ r̃s is a point at the (extrapolated)
boundary. Using Eq. (4.58) we can write for the total Green function for
the slab

GL(r, rs) = 2ξ ẑ · ∇r̃s ∑
m

G∞(r, r̃s + 2mLẑ). (4.59)

Since the Green function for the infinite medium depends only on the dif-
ference between the two points r and r′, i.e. G∞(r, r′) = G∞(r− r′), we can
write the Green function for light going to the detector at position rd as

GL(rd, r) = ±2ξ ẑ · ∇r̃d ∑
m

G∞(r̃d + 2mLẑ, r). (4.60)

Here r̃d = rd ∓ ξ ẑ is also a point at the (extrapolated) boundary. The up-
per signs belong to a reflection measurement, where the detected light
propagates in the negative z-direction. The lower signs corresponds to a
transmission measurement. There can however be no doubt which sign to
take, since the Green function is always positive.

For calculating GL(rd, rs) we can use Eq. (4.59) and evaluate it at rd =
r̃d ± ξ ẑ. We again use the derivative with respect to r̃d to find GL(rd, rs) =
±ξ ẑ · ∇r̃d GL(r̃d, rs). The photon density can now easily be found. When
only one absorbing object is present with strength q we find

ΦL(rd) =
Sω
D

(
GL(rd, rs) +

4πq
κ0

GL(rd, ro)GL(ro, rs)
)

= ±2ξ2 Sω
D

(ẑ · ∇r̃s ) (ẑ · ∇r̃d ) ∑
m

[
G∞(r̃d, r̃s + 2mLẑ)

+ 2
4πq
κ0

∑
m′

G∞(r̃d + 2m′Lẑ, ro)G∞(ro, r̃s + 2mLẑ)
]
. (4.61)
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In general the sums over m and m′ will only have a few terms that are
important, due to the exponential decay of G∞.

Let us first consider the semi-infinite medium. Since L→∞ we only
have to take m = m′ = 0 in the sums. Furthermore, only measurements in
reflection are possible. We find from Eq. (4.61) that

Φs(rd) =
2ξ2Sω

D
(ẑ · ∇r̃s)(ẑ · ∇r̃d )

[
G∞(r̃d, r̃s) +

8πq
κ0

G∞(r̃d, ro)G∞(ro, r̃s)
]
.

(4.62)
We can compare this to the equation we would have found in the infinite
medium,

Φ∞(rd) =
Sω
D

[
G∞(rd, rs) +

4πq
κ0

G∞(rd; ro)G∞(ro; rs)
]
. (4.63)

So basically the photon density at the detector for the semi-infinite me-
dium is given by that for the infinite medium, differentiated to both source
and detector position. Furthermore we see that an extra factor 2 appeared
in front of q. This enhancement is similar to that of Eq. (4.55). The sensi-
tivity to absorption Q = (Φ−Φ0)/qΦ0 can be found rather easily from the
expressions above.

As an example let us consider the case where source, object and detec-
tor are all in the same plane (see Fig.4.1). Only the depth d of the object
into the medium, and the lateral distances ρd and ρo are of importance.
Define ds = zo − zs and dd = zo − zd. Of course, dd and ds have the same
value d, but the functional dependence of Φ on both differs. Hence we
have to consider them separately when taking derivatives. The two differ-
ential operators become

(ẑ · ∇r̃s,d )→− ∂

∂ds,d
. (4.64)

Three distances are needed: r1 from source to object, r2 from object to de-
tector, and r12 from source to detector. They are given by

r1 =
√
ρ2

o + d2
s ; r2 =

√
(ρo − ρd)2 + d2

d ; r12 =
√
ρ2

d + (dd − ds)2. (4.65)

We calculate the photon density Φ∞ for the infinite geometry and Φs for
the semi-infinite geometry, both at the detector position rd. The results are

Φ∞,0 =
Sω

4πD
1

r12
e−κr12, (4.66a)
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∆Φ∞ =
Sω

4πD

(
q

κ0r1r2
e−κ(r1+r2)

)
, (4.66b)

Φs,0 =
Sω

4πD
2ξ2 1 + κr12

r3
12

e−κr12, (4.66c)

∆Φs =
Sω

4πD

(
4qξ2d2 (1 + κr1)(1 + κr2)

κ0r3
1r3

2
e−κ(r1+r2)

)
. (4.66d)

From these results we calculate the sensitivities

Q∞ =
r12

κr1r2
e−κ0(r1+r2−r12), (4.67a)

Qs = 2
(1 + κr1)(1 + κr2)

1 + κr12

d2r2
12

r2
1r2

2
Q∞. (4.67b)

We note that these do no longer depend on the value of ξ. The expressions
for the sensitivity for scattering can be calculated readily, but are rather
lengthy, and will not be presented here.

In many practical cases the ratio dr12/r1r2 will be of the order of unity.
Only when the source-detector distance remains fixed and the objects are
far away from both, this ratio decreases. But then the influence of the ob-
ject on the measurement is negligible, due to the exponential decay of Q.
Hence, in practice, Qs/Q∞ is of the same order as (1 +κr12) (which means
order 1 if κr12 � 1 and order κr12 when κr12 	 1). The black boundary
can therefore increase sensitivity. A price has to be paid however. The to-
tal intensity detected in the semi-infinite system will be largely decreased
with respect to the infinite medium. This can be seen from the ratio

Φ∞,0
Φs,0

= 2
(
ξ

r12

)2

(1 + κr12), (4.68)

which is always small (ξ � µ−1
s ). (We always assume source-detector dis-

tances to be larger than a few scattering lengths.) The decrease in intensity
due to the finiteness of the medium is mainly due to a loss of intensity at
the boundary close to the source and close to the detector.

For the quantitative discussion in the slab geometry we consider only
the situation where source, detector and object are on the same line, ρo =
ρd = 0. Furthermore we assume that the object is not too close to the
boundary. Then the result [taking only the most important terms in the
sum of Eq. (4.61)] is

Q∞ =
L

κ0r1r2
, (4.69a)
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Qslab =
L2

r1r2

(1 + κr1)(1 + κr2)
2 + 2κL + κ2L2 Q∞, (4.69b)

P∞ =
(1 + κr1)(1 + κr2)L

κ3
0r2

1r2
2

, (4.69c)

Pslab =
(2 + 2κr1 + κ2r2

1)(2 + 2κr2 + κ2r2
2)L3

(2 + 2κL + κ2L2)κ3
0r3

1r3
2

. (4.69d)

Note that r1 + r2 = L. From this we find that for large κ there is no dif-
ference in the sensitivities between the slab and the infinite system. This
is basically due to the fact that for large absorption a boundary has only a
local effect. At the position of the object the difference between a source at
a boundary and a source in an infinite medium is no longer visible, apart
from an overall prefactor. The same holds for the boundary at the position
of the detector. Therefore the sensitivity is the same in both cases. In a
reflection measurement this is not true since the propagation of light from
source to detector is everywhere influenced by the boundary. For small κ
the sensitivity Qslab will be a factor L2/2r1r2 > 2 larger than Q∞ and Pslab
will be even a factor 2L2/r1r2 > 8 larger than P∞. From the expressions we
also see that the sensitivities can be large for small r1 or r2, increasing the
sensitivity when the object is close to the source or detector, even more so
when the boundaries are absorbing. The expressions (4.69) are however
are no longer correct close to the boundary.

Again we note that the enhancement is relatively small, compared to
the loss in detected signal. The ratio between the detected signals in this
geometry is given by

Φslab

Φ∞
=
(
ξ

L

)2

(2 + 2κL + κ2L2). (4.70)

As was the case in the semi-infinite geometry, this ratio is small, mainly
due to the ξ2 term, which is a result from the boundary. Hence again a
large price has to be paid to increase sensitivity.

In comparing the infinite medium with the semi-infinite medium with
absorbing boundaries we comment on some other features. Consider anew
Fig. 4.3. All curves show a maximum at some depth d and a decrease in the
sensitivity for larger depths. The difference between the different bound-
aries seems to be only in the position of this maximum, giving the posi-
tion of the maximal sensitivity. The sensitivities for an infinite medium are
centered around the line between source and detector. One can say that
the photon density wave propagates along this line, although of course
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SourceDetector

Figure 4.8: Schematic view of the propagation of photon density waves
in a reflection measurement, as schematically shown in Fig. 4.1. The
arrows show the average direction of the photon density flow. The two
thick arrows show the propagation if light in and just outside the source
and detector fiber. The dotted arrows are for an infinite medium, where
propagation is direct. The dashed arrows are for a semi-infinite medium
with absorbing boundaries, where the propagation avoids the boundary.

single light paths can be much more complex. For absorbing boundaries
the Green functions and therefore the sensitivities (almost) vanish at the
boundaries. This implies that when the line between source and detec-
tor lies close to a boundary, the centerline of the sensitivity — the line
where for different ρo the maximum value of Q can be found — will curve
away from this boundary. Consequently the propagation direction will be
curved (see Fig. 4.8). The maximum shown in Fig. 4.3 lies away from the
boundary, at larger depths than that of the infinite medium (or medium
with reflecting boundaries). This means that the semi-infinite medium is
not really more sensitive to absorbing objects, but rather the spatial loca-
tion of this sensitivity is changed.

As a next point, we note that the strength p of the scattering object, [cal-
culated using Eq. (4.23)] is about 4 times as small as that of the absorbing
object we used. Furthermore, the scattering object is large and therefore
it has some parts in regions with low sensitivity for scattering. Nonethe-
less the measured effects are almost as big as those of absorbing objects, at
least in reflection measurements. Therefore the sensitivity for scattering P
is in general larger than the sensitivity for absorption Q. The difference
of about a factor 5 appears mainly close to the boundary, and for absorb-
ing boundaries almost everywhere. The latter is due to two reasons. First
of all scattering objects have an influence which scales with the gradient
of the Green function, rather than with the Green function itself. Since
the decrease of G is larger for an absorbing boundary, the sensitivity will
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increase. Secondly, consider the position at ρo = 15 mm and d = 10 mm,
which can be found in both Fig. 4.2 and 4.3. For the infinite medium, an ex-
tra term cos θ appears, where θ is the angle between the source-object and
the object-detector line. This term enters due to the inner product. In the
semi-infinite medium however, the angle θ, which is the angle between the
two gradients of the Green function, will be smaller. This reflects a photon
density wave that does not propagate straight form source to object. As
discussed before and shown schematically in Fig. 4.8, the propagation will
rather be curve-linear due to the absorbing boundary. Upon arriving at the
object, it will propagate more parallel to the boundary than in the infinite
medium. Also the propagation from object to detector will be such that
its direction at the object is almost parallel to the boundary. The effective
cos θ will therefore be larger than in the infinite medium.

The difference between the sensitivities for absorption and scattering
implies that |∆Φ/Φ0| for an object with a given ∆D/D is larger than for an
object with the same ∆µa/µa. In practice however the variation in absorp-
tion can be an order of magnitude larger than the variation in scattering.
Therefore measurements will in general be more sensitive to absorption
than to scattering.

4.3 Conclusions

We have studied the influence of different boundaries on the detection of
objects. To do this we started with a derivation of the expressions that give
the values of the photon density — which are proportional to measure-
ments — when the optical parameters are not constant, but rather vary
in space. We have shown a clear distinction between geometrical factors,
given by the sensitivities Q and P, and the strength of (small) objects q
and p. These can be calculated independently. We have shown how to cal-
culate the strengths even when the scattering or absorption in the object
is not small and have improved the expressions from the literature for a
completely black spherical object.

The experiments we performed are done with a cylindrical object, while
the theoretical value of q was derived only for a spherical object. From this
we note two things. First, experimentally it is nearly impossible to see the
difference between different shapes of objects, in our case a sphere and
a cylinder. As mentioned before, this means that for small objects only
the value q (or p) can be measured, and that nearly nothing about precise
shape can be found. Secondly, even though we did not calculate the ex-
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act value of q for a cylindrical object, we are able to give a rather good
estimate using the theory for a sphere.

Next we have compared the different boundaries. For a boundary of
a good mirror, such as gold, the sensitivity is merely a constant times the
sensitivity of an infinite medium. This constant is nearly two for a mea-
surement in reflection and approximately one for a measurement in trans-
mission. For a medium with absorbing boundaries the sensitivity in re-
flection can become rather large, when the decay constant κ is large, com-
pared to the inverse source-detector distance. For moderate κ however,
the difference with an infinite medium lies mainly in the spatial position
of the sensitivity, rather than in a difference between the values them-
selves. Close to absorbing boundaries the sensitivity vanishes. For a sys-
tem bounded by a not so good mirror, like the aluminum mirror we used
in the experiments, the sensitivity is in between that of an infinite medium
and that with absorbing boundaries.

Considering the effects of sensitivity to the object and total intensity
detected, we see that there is a trade-off between the two. Since the effect
of loss of intensity when using black boundaries is much larger than the
loss of sensitivity, we argue that for detecting objects an infinite system,
or one with good mirrors, is better than a finite one, or one with not so
good mirrors. Furthermore the infinite medium has another advantage:
formulas, like those for the photon density and sensitivities, will be more
simpler. This simplifies the reconstruction. Since in practice an infinite
medium is difficult to achieve in the circumstances needed for medical
imaging, a finite system with a rather good reflecting boundary resembles
the infinite medium enough to be a useful for both forward calculations
and for reconstruction techniques.
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5 Probability of reflection by a random laser

Recent experiments on turbid laser dyes [1–4] have drawn attention to the
remarkable properties of amplifying disordered media. The basic issue is
to understand the interplay of phase-coherent multiple scattering and am-
plification (or absorption) of radiation. A quantity which measures this
interplay is the albedo a, which is the power reflected by the medium di-
vided by the incident power. A thick disordered slab which is optically
passive has a = 1. Absorption leads to a < 1 and amplification to a > 1.
As the amplification increases the laser threshold is reached, at which the
average albedo becomes infinitely large [5]. Such a generator was referred
to by its inventor V. S. Letokhov as a “laser with incoherent feedback” [6],
because the feedback of radiation is provided by random scattering and
not by mirrors — as in a conventional laser.

The current renewed interest in random lasers owes much to the ap-
preciation that randomness is not the same as incoherence. Early theo-
retical work on this problem was based on the equation of radiative trans-
fer [7], which ignores phase coherence. Zyuzin [8] and Feng and Zhang [9]
considered interference effects on the average albedo ā, averaged over dif-
ferent configurations of the scattering centra. Their prediction of a sharp-
ening of the backscattering peak in the angular distribution of the average
reflected intensity has now been observed [3]. The other basic interference
effect is the appearance of large, sample-specific fluctuations of the albedo
around its average. These diverge faster than the average on approaching
the laser threshold [10], so that ā is no longer characteristic for the albedo
of a given sample. In this chapter we will show that, while all moments
of the distribution function P(a) of the albedo diverge at the laser thresh-
old, its modal value amax remains finite. The modal value is the value of
a at which P(a) is maximal, and hence it is the most probable value mea-
sured in a single experiment. The diagrammatic perturbation theory of
Refs. [8–10] can only give the first few moments of a, and hence can not
determine amax. Here we develop a non-perturbative random-matrix the-
ory for the entire distribution of the reflection matrix, from which P(a) can
be computed directly.

We contrast the two cases of absorption and amplification. In the case
of absorption, P(a) is a Gaussian with a width δa smaller than the average ā
by an order 1/N, where N � S/λ2	 1 is the number of modes associated
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with an illuminated area S and wavelength λ. In the case of amplification,
both δa and ā increase strongly on approaching the laser threshold — in
a manner which we compute precisely. Below threshold, the mean and
modal value of a coincide. Above threshold, the mean is infinite while the
modal value is found to be

amax = 1 + 0.8γN. (5.1)

Here γ denotes the amplification per mean free path, assumed to be in the
range N−2� γ � 1. The existence of a finite amax is due to the finiteness
of the number of modes N in a surface area S (ignored in radiative transfer
theory). Since amax scales with N and hence with S, and the incident power
scales with S, it follows that the reflected power scales quadratically rather
than linearly with the illuminated area. We suggest the name “superreflec-
tion” for this phenomenon. To measure the albedo in the unstable regime
above the laser threshold we propose a time-resolved experiment, consist-
ing of illumination by a short intense pulse to pump the medium beyond
threshold, rapidly followed by a weak pulse to measure the reflected in-
tensity before spontaneous emission has caused substantial relaxation.

Our work on this problem was motivated by a recent paper by Prad-
han and Kumar [11] on the case N = 1 of a single-mode waveguide. We
discovered the anomalous scaling with area in an attempt to incorporate
the effects of mode-coupling into their approach.

5.1 Calculation of the albedo

We consider the reflection of a monochromatic plane wave (frequency ω,
wavelength λ) by a slab (thickness L, area S) consisting of a disordered
medium (mean free path l) which either amplifies or absorbs the radia-
tion. We denote by σ the amplification per unit length, a negative value
of σ indicating absorption. The parameter γ = σl is the amplification (or
absorption) per mean free path. We treat the case of a scalar wave ampli-
tude, and leave polarization effects for future study. A discrete number N
of scattering channels is defined by imbedding the slab in an optically pas-
sive waveguide without disorder (see Fig. 5.1, inset). The number N is the
number of modes which can propagate in the wave guide at frequency ω.
The N × N reflection matrix r contains the amplitudes rmn of waves re-
flected into mode m from an incident mode n. (The basis states of r are
normalized such that each carries unit power.) The reflection eigenval-
ues Rn (n = 1, 2, . . .N) are the eigenvalues of the matrix product rr†. The
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matrix r is determined by the Rn’s and by a unitary matrix U,

rmn = ∑kUmkUnk
√

Rk. (5.2)

Note that rmn = rnm because of time-reversal symmetry. From r one can
compute the albedo a of the slab, which is the ratio of the reflected and
incident power:

a = ∑m|rmn|2 = ∑kUnkU
∗
nkRk. (5.3)

For a statistical description we consider an ensemble of slabs with dif-
ferent configurations of scatterers. As in earlier work on optically passive
media [12], we make the isotropy assumption that the matrix U is uni-
formly distributed in the unitary group. This assumption breaks down
if the transverse dimension W of the slab is much greater than its thick-
ness L, but is expected to be reasonable if W <∼ L. As a consequence of
isotropy, a becomes statistically independent of the index n of the incident
mode. We further assume that the wavelength λ is much smaller than both
the mean free path l and the amplification length 1/σ. The evolution of the
reflection eigenvalues with increasing thickness L of the slab can then be
described by a Brownian motion process. To describe this evolution it is
convenient to use the parametrization

Rn = 1 + µ−1
n , µn ∈ (−∞,−1)∪ (0,∞). (5.4)

The L-dependence of the distribution P(µ1,µ2, . . . µN) of the µ’s is gov-
erned by the Fokker-Planck equation

l
∂P
∂L

=
2

N + 1

N

∑
i=1

∂

∂µi
µi(1 + µi)

[ ∂P
∂µi

+ P ∑
j �=i

1
µ j− µi

γ(N + 1)P
]
, (5.5)

with initial condition limL→0 P = N ∏i δ(µi + 1). In the single-channel case
(N = 1), the term ∑ j �=i is absent and Eq. (5.5) reduces to the differen-
tial equation studied by Pradhan and Kumar [11, 13]. The multi-channel
case is essentially different due to the coupling of the eigenvalues by the
term ∑ j �=i(µ j − µi)−1. This term induces a repulsion of closely separated
eigenvalues. Equation (5.5) with γ = 0 is known as the Dorokhov-Mello-
Pereyra-Kumar (DMPK) equation [14, 15], and has been studied exten-
sively in the context of electronic conduction [16]. We have generalized
the derivation to γ �= 0, by adapting the approach of Ref. [15] to a non-
unitary scattering matrix. Details of this derivation are given in chapter 7.

The average ā ≡ 〈a〉 and the variance Var a ≡ 〈(a− ā)2〉 of the albedo
(5.3) can be computed by first averaging U over the unitary group and
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then evaluating moments of the Rk’s by means of Eq. (5.5) [17]. In the
limit N→∞ we obtain the differential equations

l
d

dL
ā = (ā− 1)2 + 2γ ā, (5.6a)

l
d

dL
Var a = 4(ā− 1 + γ) Var a + 2N−1 ā(ā− 1)2. (5.6b)

Corrections are smaller by a factor |γN2|−1/2, which we assume to be� 1.
Equation (5.6a) for the average albedo is a known result of radiative trans-
fer theory [18]. Equation (5.6b) for the variance is new. It describes the
sample-specific fluctuations of the albedo due to interference of multiply
scattered waves. Integration of Eq. (5.6) yields

ā = 1− γ + (2γ − γ2)1/2 tan t, (5.7a)

Var a = (8N cos4 t)−1
(

4γ(1− 2γ)L/l + 2γ(1 + γ)− 4γ2 cos 2t

+ 2γ(1− γ) cos 4t + (2− γ)−1(2γ − γ2)1/2

× [4γ(1− γ) sin 2t− (1− 4γ + 2γ2) sin 4t
])
. (5.7b)

We have abbreviated t = (2γ − γ2)1/2 L/l− arcsin(1− γ).
Plots of Eq. (5.7) as a function of γ are shown in Fig. 5.1, for two values

of L/l. (The data points are numerical simulations, discussed later.) In the
case of absorption (γ < 0), the large-L limits

ā∞ = 1− γ − (γ2− 2γ)1/2, (5.8a)

Var a∞ =
1

2N
ā∞(1− ā∞)2

1− γ − ā∞
, (5.8b)

can be obtained directly from Eq. (5.6) by equating the right-hand-side to
zero. The limit (5.8) is reached when L/l 	 (γ2 − 2γ)−1/2. In the case of
amplification (γ > 0), Eq. (5.7) holds for L smaller than the critical length

Lc = l(2γ − γ2)−1/2 arccos(γ − 1) (5.9)

at which ā and Var a diverge. This is the laser threshold [5, 18]. For γ < 0
the large-L limit of the probability distribution P(a) of the albedo is well
described by a Gaussian, with mean and variance given by Eq. (5.8a). (The
tails are non-Gaussian, but carry negligible weight.) The modal value amax
of the albedo equals ā. For γ > 0 the large-L limit of P(a) can not be recon-
structed from its moments, but needs to be determined directly. We will
see that while ā diverges, amax remains finite.
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Figure 5.1: Comparison between theory and simulation of the average
albedo ā (upper curves, squares) and the variance Var a (lower curves,
triangles) for L/l = 1.92 (dashed curves, open markers) and L/l = 9.58
(solid curves, filled markers). Negative γ corresponds to absorption,
positive γ to amplification. The curves are the theoretical result (5.7).
The data points are a numerical simulation of a two-dimensional lattice
(L = 50 d and 250 d; W = 51 d, N = 21), averaged over 100 realizations of
the disorder. The inset shows schematically the system under consider-
ation.

5.2 Probability distribution of the albedo

The large-L limit P∞(µ1,µ2, . . . µN) of the distribution of the µ’s is obtained
by equating to zero the expression between square brackets in Eq. (5.5).
The result is

P∞ = C∏
i

exp
(
−γ(N + 1)µi

)
∏
i< j
|µ j− µi|, (5.10)

with C a normalization constant. Equation (5.10) holds for both positive
and negative γ, but the support of P∞ depends on the sign of γ: All µ’s
have to be > 0 for γ > 0 (amplification) and < −1 for γ < 0 (absorption).
In what follows we take γ > 0. The function (5.10) is known in random-
matrix theory as the distribution of the Laguerre ensemble [19]. The density
ρ(µ) = 〈∑i δ(µ− µi)〉 of the µ’s is a series of Laguerre polynomials, hence
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Figure 5.2: Comparison between theory and simulation of the cumulative
density of the variables µn (related to the reflection eigenvalues by Rn =
1 + µ−1

n ). Curves are computed from the density (5.11) of the Laguerre
ensemble; data points are from the simulation (L = 500 d = 19.2 l, W =
151 d, N = 63), for a single realization of the disorder. (This is sufficient,
since fluctuations in the µn’s are small, of the order of their spacing.)

the name. For γN2	 1 one has asymptotically

ρ(µ) = (N/π)
(

2γ/µ− γ2
)1/2

, 0 < µ < 2/γ. (5.11)

The square-root singularity at µ = 0 in Eq. (5.11) is cut off in the exact
density [20], such that ρ = γN2 if µ <∼ 1/γN2. The cumulative density
is plotted in Fig. 5.2, together with the numerical simulations (discussed
below).

We seek the distribution function of the albedo

P(a) =
〈
δ
(
a− 1−∑kUnkU∗nkµ

−1
k

)〉
. (5.12)

The average 〈· · ·〉 consists of the average of U over the unitary group fol-
lowed by the average of the µk’s over the Laguerre ensemble. The averages
can be done analytically for N−2� γ � 1 (in the continuum approxima-
tion [21], i.e. by ignoring the discreteness of the eigenvalues), and numer-
ically for any N,γ (by Monte Carlo integration, i.e. by randomly sampling
the Laguerre ensemble).

The analytical result is an inverse Laplace transform,

P(a) =
1

2γN

∫ i∞

−i∞
ds
2πi

exp
[ 1

2 s(a− 1)/γN − 2 f (s)
]
[1 + 1

4 f (s)]2, (5.13a)
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Figure 5.3: Comparison between theory and simulation of the cumu-
lative probability distribution of the albedo beyond the laser threshold
(L = 500d = 19.2 l, γ = 0.07). Solid curves are obtained by numerically
averaging over the Laguerre ensemble; data points are the results of the
simulation, averaged over 100 realizations of the disorder. The three sets
of data are for W = 25d, N = 10 (plusses), W = 51d, N = 21 (triangles),
and W = 101d, N = 42 (diamonds). The inset compares the continuum
approximation (5.13) for P(a) (dashed) with the exact large-N limit of the
Laguerre ensemble (solid).

where f is an implicit function of the Laplace variable s:

(s− 1
2 f + 1

2

√
4 f + f 2)−1/2 + 2( f −

√
4 f + f 2)−1 + 1 = 0. (5.13b)

The continuum approximation (5.13) is plotted in Fig. 5.3 (inset, dashed
curve). It is close to the exact numerical large-N result (solid curve). The
modal value amax is given by Eq. (5.1). The distribution P(a) drops off
∝ exp[−2γN/(a − 1)] for smaller a and ∝ a−5/3 for larger a, so that all
moments diverge.

5.3 Numerical simulations and conclusions

To test these predictions of random-matrix theory on a model system, we
have carried out numerical simulations of the analogous electronic Ander-
son model with a complex scattering potential, using the recursive Green
function technique [22]. The disordered medium is modeled by a two-
dimensional square lattice (lattice constant d, length L, width W). The
dielectric constant ε = ε′ + iε′′ has a real part ε′ which fluctuates from
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site to site between 1± δε, and a non-fluctuating imaginary part ε′′. The
multiple scattering of a scalar wave Ψ (wave number k = 2π/λ) is de-
scribed by discretizing the Helmholtz equation (∇2 + k2ε)Ψ = 0. The mean
free path l which enters in Eq. (5.5) is obtained from the average albedo
ā = (1 + l/L)−1 without amplification (ε′′ = 0). We choose k2 = 1.5 d−2,
δε = 1, leading to l = 26.1 d. The parameter σ (and hence γ = σl) is ob-
tained from the analytical solution of the discretized Helmholtz equation
in the absence of disorder (δε = 0). The complex longitudinal wavenum-
ber kn of transverse mode n then satisfies the dispersion relation

cos knd + cos nπd/W = 2− 1
2 (kd)2(1 + iε′′), (5.14)

and leads to σ = −2N−1 Im ∑n kn. The albedo (5.3) was computed for
normal incidence. Data points in Figs. 1–3 are the numerical results. The
agreement with the analytical predictions is quite satisfactory, given that
there are no adjustable parameters.

In conclusion, we have presented a random-matrix theory for the re-
flection matrix of a disordered medium with absorption or amplification.
In the limit L→∞ of a semi-infinite medium, the distribution of the re-
flection eigenvalues is that of the Laguerre ensemble. The corresponding
distribution of the albedo is a Gaussian in the case of absorption, with
mean and variance given by Eq. (5.8). In the case of amplification, the dis-
tribution is given by Eq. (5.13), with diverging moments and a finite modal
value (5.1) proportional to the number of transverse modes. We have also
considered finite L, and have computed precisely how the mean and vari-
ance of the albedo diverge on approaching the laser threshold [Eq. (5.7)].
We have considered a model with stimulated but without spontaneous
emission of radiation. This allowed us to examine the light reflected in
response to an incident wave, separately from spontaneously generated
light. We have restricted ourselves here to sample-to-sample fluctuations
in the albedo at a single frequency. Large fluctuations in the albedo as a
function of frequency for a single sample are to be expected as well, and
might be more accessible experimentally. Finally, we mention the exten-
sion to diffusive, rather than plane-wave illumination. The average albedo
is the same, but the fluctuations are different [23].
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6 Duality between absorption and amplifi-
cation

Localization of electromagnetic waves in a random medium has attracted
much interest [1], since the original proposals of John [2] and Anderson [3].
An essential difference with localization of electrons is the absence of a
conservation law for photons. Light is absorbed or amplified — while
retaining the phase coherence — if the dielectric constant has a non-zero
imaginary part. The intensity of the radiation which has propagated with-
out reflection over a distance L is then multiplied by a factor eσL, with
σ negative (positive) for absorption (amplification). The interplay of ab-
sorption and localization has been studied extensively [2–8]. For the one-
dimensional problem of a disordered single-mode waveguide (length L,
mean free path l), the result for the transmittance T (being the ratio of
transmitted and incident flux) is [6, 7]:

〈ln T〉 = (σ− l−1) L, (6.1)

where 〈· · ·〉 denotes an average over disorder. Equation (6.1) was derived
for σ < 0, corresponding to absorption.

In this chapter we address the question: What happens for amplifica-
tion? Since T = eσL in the absence of reflection for both positive and nega-
tive σ, one might surmise that Eq. (6.1) holds both for absorption and am-
plification. This is correct for short waveguides. However, as first noted
by Zhang [9], the asymptotic result for L→∞ is

〈ln T〉 = (−|σ| − l−1) L + O(1). (6.2)

We will show that exponential decay of the transmittance in the case of
amplification, 〈ln T〉 � −L/ξ, is in fact implied by its exponential decay in
the case of absorption, with a duality relation between decay lengths:

ξ(σ) = ξ(−σ). (6.3)

This duality relation extends beyond the strictly one-dimensional case of
Eq. (6.2), the only essential ingredient being an exponentially decaying
transmittance in an absorbing system. Contrary to intuition, amplification
suppresses the transmittance in the large-L limit just as much as absorp-
tion does.
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Experimentally, a random amplifying medium can be realized in a tur-
bid laser dye or a powdered laser crystal [10–12]. Stimulated emission of
radiation leads to a dielectric constant with a negative imaginary part, cor-
responding to σ > 0. We do not present a complete theory for such a “ran-
dom laser”, because we ignore spontaneous emission [13]. Still, because
of the different time scales for stimulated and spontaneous emissions, we
believe that a time-resolved experiment in a waveguide geometry might
give evidence for the localization of stimulated emission, before sponta-
neous emission sets in.

6.1 Proof of duality

To prove the duality relation (6.3) we consider the propagation of mono-
chromatic radiation (scalar amplitude E, wavenumber k), described by the
Helmholtz equation

H E(r) = 0, H =∇2 + k2ε(r). (6.4)

(We suppose that all polarization-sensitive phenomena are absent.) Disor-
der leads to spatial fluctuations of the real part ε′ of the dielectric constant.
In the absence of disorder ε′ = 1. A non-zero imaginary part ε′′ makes the
system non-conservative. For the general duality relation it is irrelevant
whether ε′′ depends on r or not. The sign of ε′′ determines whether the
system is locally absorbing (ε′′ > 0) or amplifying (ε′′ < 0). For a constant
ε′′ the parameter σ introduced above is given by

σ = −2k Im
√

1 + iε′′, (6.5)

where the argument of the square root is chosen in the interval (− 1
2π, 1

2π).
The dual symmetry underlying Eq. (6.3) is formulated in its general

form in terms of scattering matrices. We assume that the system consists
of a scattering region of length L, in which ε = ε′ + iε′′, embedded in an
N-mode waveguide with ε = 1 (see Fig. 6.2, inset). The scattering matrix
S is a 2N × 2N matrix relating incoming and outgoing modes. It has the
block structure

S =
(

r′ t′
t r

)
, (6.6)

where r, r′ are the reflection matrices and t, t′ the transmission matrices.
The transmittances and reflectances are defined as
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T = N−1 Tr tt†, R = N−1 Tr rr†,
T′ = N−1 Tr t′t′†, R′ = N−1 Tr r′r′†.

(6.7)

Here T and R are the transmitted and reflected flux divided by the incident
flux from the left. Similarly, T′ and R′ correspond to incident flux from
the right. (Note that in the previous chapter we used a instead of R.) By
taking the trace in Eq. (6.7) we are assuming diffuse illumination, i.e. that
the incident flux is equally distributed over the N modes. In the absence of
gain or loss (ε′′ = 0) the scattering matrix is unitary, SS† = 1. This relation
expresses flux conservation and relies upon Hermiticity of the Helmholtz
operator, H = H † at ε′′ = 0. For non-zero ε′′ we have H (−ε′′) = H †(ε′′),
which implies the duality relation

S(−ε′′)S†(ε′′) = 1. (6.8)

[If ε′′ depends on r the duality relation refers to a change of sign for the
complete function ε′′(r)→−ε′′(r).]

Let us now examine the consequences of the duality relation (6.8) for
the reflection and transmission matrices of two systems which differ only
in the sign of ε′′. (We call these systems “dual”.) We assume that one of
the two dual systems (indicated by a subscript −) is globally absorbing,
so that all elements of t− and t′− tend to zero in the limit L→∞, while
r− and r′− remain finite. Expanding the inverse of S− to first order in the
transmission matrices and equating the result to S†+, we find

r†+ = r−1− + O(t2), r′†+ = r′−1− + O(t2), (6.9)

t†+ = −r′−1− t′−r−1− + O(t2). (6.10)

We introduce the transmission and reflection eigenvalues T n, T ′n, R n, R ′n,
being the eigenvalues of, respectively, T = tt†, T′ = t′t′†, R = rr†, R′ = r′r′†.
Because of time-reversal symmetry S−S∗+ = 1. Together with Eq. (6.8) this
implies that S is a symmetric matrix. It follows that t′ = tT, hence T n = T ′n
and T = T′. The reflectances R and R′ may differ. Equation (6.9) directly
yields a duality relation for the reflection eigenvalues in the limit L→∞,

R n(ε′′) = R −1
n (−ε′′). (6.11)

Equations (6.9) and (6.10) together imply that the matrices T′−R′−1
− and

T+R−1
+ have the same eigenvalues. The duality relation for the transmis-

sion eigenvalues follows from the following lemma:
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Let A(L) be a matrix function of L with exponentially decreasing eigen-
values an(L). The eigenvalue localization lengths ξn are defined by ξ−1

n =
− limL→∞ L−1 ln an(L). Let B(L) be another non-singular matrix function
whose elements remain finite as L→∞. Then the matrix AB has the same
eigenvalue localization lengths as A.

It follows that the matrices T+, T+R−1
+ , T′−R′−1− , T′−, and hence T− all

have the same eigenvalue localization lengths. Explicitly,

− lim
L→∞

L−1 ln T n(ε′′) = − lim
L→∞

L−1 ln T n(−ε′′). (6.12)

The transmittance T = N−1 ∑n T n is dominated by the largest transmis-
sion eigenvalue, which is the T n with the largest localization length: ξ =
max(ξ1, ξ2, . . . , ξN). This completes the proof of Eq. (6.3), since we have
shown that all, and in particular the largest, transmission eigenvalues of
dual systems have the same localization length.

6.2 Single mode example

The case N = 1 of a single-mode waveguide can be analyzed in more de-
tail. The joint probability distribution P(R, T, L) of reflectance and trans-
mittance evolves with increasing L according to a Fokker-Planck equation
(which we will derive in chapter 7),

l
∂P
∂L

=− ∂

∂R
[(1− R)2 + 2σlR]P +

∂2

∂R2 R(1− R)2P

− ∂

∂T
T(σl− 1 + R)P +

∂2

∂T2 T2RP

− 2
∂2

∂R ∂T
TR(1− R)P. (6.13)

The two parameters l and σ are spatial averages over length scales much
smaller than the total length L of the waveguide. Equation (6.13) holds
if the wavelength λ is much smaller than both l and 1/|σ|. (This is not a
restrictive assumption for an optical system.) For σ < 0 (absorption), this
equation is equivalent to the moment equation of Freilikher, Pustilnik, and
Yurkevich [7]. For σ > 0 (amplification) their method of moments can-
not be used, because all moments of R diverge when L exceeds the laser
threshold Lc, as has been shown in the previous chapter. The derivation
of Eq. (6.13) proceeds along the lines of Ref. [14], where the case σ = 0
was considered. On integration over T it reduces to a well known [15–17]
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Figure 6.1: Probability distribution of the logarithm of the transmittance of
a single-mode waveguide, for L/l = 15.4 and γ = 0.2 (triangles, dashed
curve), γ = −0.2 (squares, solid curve). The data points are provided by
a numerical simulation (same parameters as in Fig. 6.2), the curves are a
Gaussian distribution of ln T with mean and variance given by Eqs. (6.15)
and (6.16). There is a slight offset between the distributions for absorption
and amplification because the system is not fully in the large-L limit.

Fokker-Planck equation for P(R, L) =
∫

dT P(R, T, L). The limit L→∞ of
P(R, L) was studied in chapter 5 and in Refs. [16, 17]. In terms of the vari-
able µ = 1/(R−1) it reads

P(µ) =
{

2γ e−2γµ θ(µ) for γ > 0,
−2γ e−2γ(1+µ) θ(−1− µ) for γ < 0,

(6.14)

where we have defined γ = σl. The function θ(x) = 1 for x > 0 and 0
otherwise.

Using this asymptotic distribution we have computed from Eq. (6.13)
the first two moments of ln T in the large-L limit. The result for the average
is

〈ln T〉 = −(1 + |γ|) L/l + 2c(γ), (6.15a)

c(γ) =
{

0 for γ < 0,
C + ln 2γ − e2γ Ei(−2γ) for γ > 0,

(6.15b)

where C is Euler’s constant and Ei(x) =
∫ x
−∞ dt et/t is the exponential in-

tegral [c(γ) ≈ −2γ lnγ if 0 < γ � 1]. Equation (6.15) agrees with Refs.
[6, 7, 9], and demonstrates that the inverse localization length ξ−1(σ) =
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Figure 6.2: Numerical simulation of the transmittance of a single-mode
waveguide (W = d, k2 = 0.5 d−2, δε = 0.2, l = 521 d, N = 1), averaged
over 104 realizations of the disorder. The right half of the figure is for
amplification (circles: γ = 0.1; triangles: γ = 0.2), the left half is for ab-
sorption (crosses: γ = −0.1; squares: γ = −0.2). The solid lines are the
analytical asymptotes from Eq. (6.15). Their slope is independent of the
sign of γ, in agreement with the duality relation (6.3). The inset shows
the geometry considered.

(1 + |γ|) l−1 = l−1 + |σ| is independent of the sign of σ — in accordance
with the general duality relation (6.3). In Fig. 6.2 we compare the theoreti-
cal result (6.15) with numerical simulations (to be discussed later). For the
variance we find

Var ln T = 2
[
1 + 2|γ|e2|γ| Ei(−2|γ|)

]
L/l + O(1), (6.16)

in agreement with Ref. [7] for γ < 0. Note that
√

Var ln T � 〈ln T〉 for
L/l	 1. Evaluation of higher moments shows that the distribution of ln T
tends to a Gaussian for L→∞. (The tails are non-Gaussian, but contain
negligible weight.) We have plotted two examples in Fig. 6.1.

These results hold in the large-L limit. For short waveguides instead of
Eq. (6.15) one has 〈ln T〉=−(1− γ) L/l. The cross-over length is the lasing
threshold Lc� l c(γ)/|γ|, at which 〈T〉 diverges for γ > 0. Below this length
stimulated emission enhances transmission through the waveguide. On
larger length scales stimulated emission reduces transmission. In contrast,
the reflectance is enhanced on every length scale [16, 17], as discussed in
chapter 5.
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Figure 6.3: Numerical simulation of the transmittance of a multi-mode
waveguide (W = 25 d, k2 = 2.0 d−2, δε = 0.375, l = 29.6 d, N = 12), aver-
aged over 50 realizations of the disorder. The parameter ξ0 = (N + 1)l/2
is the localization length of the system in the absence of absorption or
amplification. The right half of the figure is for amplification (circles:
σ = 0.0035 d−1; triangles: σ = 0.0071 d−1), the left half is for absorption
(crosses: σ = −0.0035 d−1; squares: σ = −0.0071 d−1). The inset shows
the eigenvalue localization lengths, ξ−1

n ≡ − limL→∞ L−1 ln T n. These
lengths ξn were computed from the L-dependence of Tn for L up to 40 l
and a single realization of the disorder. The duality between absorption
and amplification is verified with good accuracy.

6.3 Numerical simulations and conclusions

To test these analytical predictions for N = 1, and to investigate also the
multi-mode case, we have numerically solved a discretized version of the
Helmholtz equation (6.4), on a two-dimensional square lattice (lattice con-
stant d, length L, width W). The real part ε′ of the dielectric constant was
chosen randomly from site to site with a uniform distribution between
1 ± δε. The imaginary part ε′′ of the dielectric constant had the same
value at each site. The scattering matrix for the multi-mode case was com-
puted using the recursive Green function technique, originally developed
for the electronic Anderson model [18]. (For the case N = 1 a transfer-
matrix method [8, 9] turned out to be more convenient.) Simulations with
ε′′ = 0 were used to obtain l, from the relation [19]

− lim
L→∞

L−1〈ln T〉 = [ 1
2 (N + 1)l]−1. (6.17)
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The parameter σ was determined from Eq. (6.5). Results for the single-
mode case are shown in Figs. 6.2 and 6.1, and for the multi-mode case in
Fig. 6.3. The duality relation between the localization lengths for absorp-
tion and amplification is verified with good accuracy, both for the single-
and for the multi-mode case. Furthermore, for N = 1 we find good agree-
ment with the results (6.15) and (6.16) of the Fokker-Planck equation.

In conclusion, we have demonstrated that stimulated emission of radi-
ation in a disordered waveguide reduces the decay length, in the same way
as absorption does. This paradoxical result is an immediate consequence
of the exact duality relation (6.8) between the scattering matrices of two
systems with complex conjugated dielectric constants. The dual symmetry
between absorption and amplification has been supported by an explicit
computation of the decay lengths, both analytically (for the single-mode
case) and numerically (for the single- and multi-mode cases).
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7 Localization in a non-conservative disor-
dered multi-mode waveguide

Localization of waves in one-dimensional random media has been studied
extensively, both for optical and for electronic systems [1, 2]. An analyti-
cal solution for the case of weak disorder (mean free path l much greater
than the wavelength λ) was obtained as early as 1959 by Gertsenshtein
and Vasil’ev [3]. The transmittance T (being the ratio of transmitted and
incident flux) has a log-normal distribution for large lengths L of the sys-
tem, with a mean 〈ln T〉 = −L/ξ characterized by a localization length ξ
equal to the mean free path.

This early work was concerned with the propagation of classical waves,
and hence included also the effect of absorption. In the presence of absorp-
tion the transmittance decays faster, according to [4,5] 〈ln T〉= (σ− l−1)L,
where σ < 0 and |σ| is the inverse absorption length. Absorption is the
result of a positive imaginary part ε′′ of the (relative) dielectric constant
ε = ε′+ iε′′. For a homogeneous ε′′ one has

σ = −2k Im
√

1 + iε′′ ≈ −kε′a,′ if |ε′′| � 1, (7.1)

where k is the wavenumber. A negative ε′′ corresponds to amplification by
stimulated emission of radiation, with inverse amplification length σ > 0.
Propagation of waves through amplifying one-dimensional random me-
dia has been studied in Refs. [6–9], and already in chapter 6 of this thesis.
In the limit L→∞ amplification also leads to a faster decay of the trans-
mittance, according to 〈ln T〉 = (−|σ| − l−1)L [cf. Eq. (6.2)] [8].

A natural extension of these studies is to waveguides which contain
more than a single propagating mode. Localization in such “quasi-one-
dimensional” systems has been studied on the basis of a scaling theory
[10], a supersymmetric field theory [11], or a Fokker-Planck equation [12,
13]. It is found that the localization length for N modes is enhanced by a
factor of N relative to the single-mode case. These investigations were con-
cerned with quantum mechanical, rather than classical waves, and there-
fore did not include absorption. It is the purpose of the present study
to extend the Fokker-Planck approach of Dorokhov, Mello, Pereyra, and
Kumar [12, 13] (DMPK) to include the effects on the transmittance of a
non-zero imaginary part of the dielectric constant.
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According to the general duality relation discussed in chapter 6, the
localization length is an even function of σ for any N,

ξ(σ) = ξ(−σ). (7.2)

It follows that both absorption and amplification lead to a faster decay of
the transmittance for large L. For N	 1 we find that, in good approxima-
tion,

1
ξ

=
2

(N + 1)l
+ (σ2 + 2|σ|/l)1/2. (7.3)

This result becomes exact in the two limits |σ| 	 1/N2l and |σ| � 1/N2l.
We compare with numerical simulations of the Helmholtz equation, and
find reasonably good agreement over the whole range of σ.

The outline of this chapter is as follows. In section 7.1 we formulate the
scattering problem and summarize the duality relation from chapter 6. In
section 7.2 we derive a Fokker-Planck equation for the transmission and
reflection eigenvalues T n, R n, n = 1, 2, . . .N. These are eigenvalues of the
matrix products tt† and rr†, respectively, where t and r are the transmission
and reflection matrices of the waveguide. For σ = 0 the Fokker-Planck
equation is the DMPK equation [12, 13]. A reduced Fokker-Planck equa-
tion, containing only the R n’s, was previously obtained and studied in
chapter 5. To obtain the localization length one needs to include also the
T n’s, which are no longer related to the R n’s when σ �= 0. We find that
a closed Fokker-Planck equation containing R n’s and T n’s exists only for
N = 1. If N > 1 there appears an additional set of “slow variables,” con-
sisting of eigenvectors of rr† in a basis where tt† is diagonal. (These new
variables do not appear when σ = 0, because then rr† and tt† commute.)
Because of these additional relevant variables we have not been able to
make as much progress in the solution of the Fokker-Planck equation for
σ �= 0 as one can for σ = 0 [14]. In section 7.3 we show that a closed evo-
lution equation for 〈ln T〉 can be obtained if |σ| 	 1/N2l, which leads to
the second term in Eq. (7.3). (This term could also have been obtained
from the incoherent radiative transfer theory for σ < 0, but not for σ > 0.)
To contrast the multi-mode and single-mode cases, we also briefly discuss
in section 7.3 the derivation of the localization length for N = 1, which we
have postponed in the previous chapter. Finally, in section 7.4 we compare
the analytical results for the multi-mode case with numerical simulations.
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7.1 Formulation of the scattering problem

We consider a random medium of length L with a spatially fluctuating
dielectric constant ε = ε′+ iε′′, embedded in an N-mode waveguide with
ε = 1. The scattering matrix S is a 2N × 2N matrix relating incoming and
outgoing modes at frequency ω. It has the block structure

S =
(

r′ t′
t r

)
, (7.4)

where r, r′ are the reflection matrices and t, t′ the transmission matrices.
We introduce the sets of transmission and reflection eigenvalues {T n},
{T ′n}, {R n}, {R ′n}, being the eigenvalues of, respectively, tt†, t′t′†, rr†,
r′r′†. Total transmittances and reflectances are defined as

T = N−1 Tr tt†, R = N−1 Tr rr†,
T′ = N−1 Tr t′t′†, R′ = N−1 Tr r′r′†.

(7.5)

Here T and R′ are the transmitted and reflected flux divided by the in-
cident flux from the left. Similarly, T′ and R correspond to incident flux
from the right. By taking the trace in Eq. (7.5) we are assuming diffuse
illumination, i.e. that the incident flux is equally distributed over the N
modes. Two systems which differ only in the sign of ε′′(r) are called dual.
Scattering matrices of dual systems are related by

S(ε′′)S†(−ε′′) = 1, (7.6)

[cf. Eq. (6.8)]. This duality relation takes the place of the unitarity con-
straint when ε′′ �= 0.

An optical system usually possesses time-reversal symmetry, as a re-
sult of which S(ε′′)S∗(−ε′′) = 1. Combining this relation with Eq. (7.6), we
find that S = ST is a symmetric matrix. Hence T n = T ′n and T = T′. (The
reflectances R and R′ may differ.) The case of broken time-reversal sym-
metry, might also be physically relevant [15] and will be included here for
completeness. In the absence of time-reversal symmetry S is an arbitrary
complex matrix.

The duality relation (7.6) has consequences for the reflection and trans-
mission eigenvalues of two dual systems. If N = 1 the relation

T(ε′′)/R(ε′′) = T′(−ε′′)/R′(−ε′′) (7.7)
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holds for all L. If N ≥ 1 we have two relations for L→∞,

lim
L→∞

R n(ε′′) = lim
L→∞

R −1
n (−ε′′), (7.8)

lim
L→∞

L−1 ln T n(ε′′) = lim
L→∞

L−1 ln T n(−ε′′). (7.9)

The transmittance T = N−1 ∑n T n is dominated by the largest transmission
eigenvalue, hence

lim
L→∞

L−1 ln T(ε′′) = lim
L→∞

L−1 ln T(−ε′′). (7.10)

In other words, two dual systems have the same localization length, as
stated in Eq. (7.2).

7.2 Fokker-Planck equation

We derive a Fokker-Planck equation for the evolution of the distribution
of scattering matrices with increasing length L of the waveguide. In the
absence of gain or loss (σ = 0), the evolution equation is known as the
Dorokhov-Mello-Pereyra-Kumar (DMPK) equation [12, 13]. Original de-
rivations of this equation relied on the unitarity of the scattering matrix,
making use of the invariant measure on the unitary group and the po-
lar decomposition of a unitary matrix. These derivations cannot readily
be generalized to the case σ �= 0, in particular because the scattering ma-
trix no longer admits a polar decomposition. (This means that the matrix
products rr† and tt† do not commute.) The alternative derivation of the
DMPK equation of Ref. [14] does not use the polar decomposition and is
suitable for our purpose.

Without loss of generality we can write the transmission and reflection
submatrices of the scattering matrix as follows,

S =
(

r′ t′
t r

)
=
(

U
√

R′W U′
√

T′Z
V
√

T W′ −V′
√

R Z′

)
. (7.11)

Here U, U′, V, V′, W, W′, Z, Z′ are N × N unitary matrices, while R, R′,
T, T′ are diagonal matrices whose elements are the reflection and trans-
mission eigenvalues {R n}, {R ′n}, {T n}, {T ′n}. For σ = 0, the unitarity
constraint SS† = 1 implies U = U′, V = V′, W = W′, Z = Z′, and R = R′ =
1− T = 1− T′. Equation (7.11) then constitutes the polar decomposition
of the scattering matrix. In this case one can derive a Fokker-Planck equa-
tion for the evolution of only transmission or only reflection eigenvalues.
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If σ �= 0, the Fokker-Planck equation contains both the transmission and
reflection eigenvalues, as well as elements of the matrix Q = V†V′ relating
eigenvectors of tt† and rr†. The only constraint on the scattering matrix if
σ �= 0 is imposed by time-reversal symmetry, which requires S = ST, hence
W = UT, Z = VT, W′ = U′T, Z′ = V′T, T = T′.

The Fokker-Planck equation describes the evolution of slow variables
after the elimination of fast variables. In our problem fast variables vary
on the scale of the wavelength λ, while slow variables vary on the scale
of the mean free path l or the amplification length σ−1. We assume that
both l and σ−1 are much greater than λ. The slow variables include {R n},
{T n} and elements of Q = V†V′. We denote this set of slow variables
collectively by {Φn}. Each Φi is incremented by δΦi if a thin slice of length
δL (λ� δL� l) is added to the waveguide of length L. The increments
are of order (δL/l)1/2 and can be calculated perturbatively. We specify an
appropriate statistical ensemble for the scattering matrix δS of the thin
slice and compute moments of δΦi. The first two moments are of order
δL/l,

〈δΦi〉 = ai δL/l + O(δL/l)3/2, (7.12a)

〈δΦiδΦj〉= ai j δL/l + O(δL/l)3/2. (7.12b)

Higher moments have no term of order δL/l. According to the general
theory of Brownian motion [16], the Fokker-Planck equation for the joint
probability distribution P({Φn}, L) reads

l
∂P
∂L

= −∑
i

∂

∂Φi
aiP +

1
2 ∑

i j

∂2

∂Φi∂Φj
ai jP. (7.13)

The average 〈· · ·〉 in Eq. (7.12) is defined by the statistics of δS. We
specify this statistics using simplifying features of the waveguide geome-
try (length	width), which justify the equivalent-channel or isotropy ap-
proximation [13, 17]. We assume that amplification or absorption in the
thin slice is independent of the scattering channel. This entails the relation

δSδS† = 1 + σ̄ δL. (7.14)

Here σ̄ is a modal and spatial average of the inverse amplification length σ.
If ε′′ is spatially constant, one has

σ̄ = −2k
N

N

∑
n=1

Im(1− ω2
n/ω

2 + iε′′)1/2, (7.15)
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where ωn is the cutoff frequency of mode n. For N →∞, the sum over
modes can be replaced by an integral. The result depends on the dimen-
sionality of the waveguide,

σ̄ = −2kε′′, for a 3D waveguide, (7.16a)
σ̄ = −(π/2)kε′′ , for a 2D waveguide, (7.16b)

where we have used that ε′′ � 1.
Equation (7.14) ensures the existence of a polar decomposition for δS,

δS =
(

U0
√
δR W0 U0

√
δT Z0

V0
√
δT W0 −V0

√
δR Z0

)
, (7.17)

with δT + δR = 1 + σ̄δL. Note that a polar decomposition for δS does not
imply a polar decomposition for S, because the special block structure of
Eq. (7.17) is lost upon composition of scattering matrices. We make the
isotropy assumption that the matrices U0, V0, W0, Z0 are uniformly dis-
tributed in the unitary group. In the presence of time reversal symmetry
one has W0 = UT

0 and Z0 = VT
0 . In the absence of time reversal symme-

try all four unitary matrices are independent. The diagonal matrices δR
and δT may have arbitrary distributions. We specify the first moments,

〈Tr δR〉 = N δL/l, (7.18a)
〈Tr δT〉 = N + N(γ − 1) δL/l, (7.18b)

where we have defined γ = σ̄l. The mean free path l in Eq. (7.18) is related
to the mean free path ltr of radiative transfer theory by [14]

l = (4/3)ltr, for a 3D waveguide, (7.19a)
l = (π/2)ltr, for a 2D waveguide. (7.19b)

This completes the specification of the statistical ensemble for δS.
We need the increments ∆R n, ∆T n of reflection and transmission eigen-

values to first order in δL/l,

∆R n = ∆R(1)
nn + ∆R(2)

nn + ∑
m �=n

∆R(1)
nm∆R(1)

mn

R n−R m
, (7.20a)

∆T n = ∆T(1)
nn + ∆T(2)

nn + ∑
m �=n

∆T(1)
nm∆T(1)

mn

T n− T m
. (7.20b)
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The matrices of perturbation ∆R(1), ∆R(2), ∆T(1), and ∆T(2) are expressed
through unitary matrices Q = V†V′, Ũ = Z′U0, W̃ = W0V′ and diagonal
matrices T, R, δT, δR:

∆R(1) =
[√

RŨ
√
δRW̃(1−R) + H.c.

]
, (7.21a)

∆R(2) = −
√

RŨ(1− δT)Ũ†
√

R + W̃†δRW̃

+
√

RŨ
√
δRW̃RW̃†

√
δRŨ†

√
R−

[
1
2W̃†(1− δT)W̃R

+
√

RŨ
√
δRW̃

√
RŨ
√
δRW̃(1−R) + H.c.

]
, (7.21b)

∆T(1) = −
[
Q
√

RŨ
√
δRW̃Q†T + H.c.

]
, (7.21c)

∆T(2) = Q
√

RŨ
√
δRW̃Q†TQW̃†

√
δRŨ†

√
RQ†

−
[

1
2QW̃†(1− δT)W̃Q†T

−Q
√

RŨ
√
δRW̃

√
RŨ
√
δRW̃Q†T + H.c.

]
. (7.21d)

(The abbreviation H.c. stands for Hermitian conjugate.) The moments
(7.12) are computed by first averaging over the unitary matrices U0, W0
and then averaging over δR and δT using Eq. (7.18). Averages over uni-
tary matrices follow from

〈UnkU
∗
ml〉 =

1
N
δnmδkl, (7.22a)

〈UnkUmkU
∗
plU
∗
ql〉 =

1
N(N + 1)

δkl
(
δnpδmq + δnqδmp

)
. (7.22b)

Without time-reversal symmetry averages over U0 and W0 are indepen-
dent. With time-reversal symmetry we have W0 = UT

0 so that only a single
average remains. The results are

With time-reversal symmetry

(l/δL)〈δR n〉 = 1 + 2(γ − 1)R n +
R n

N + 1

(
R n + ∑

m
R m

)

+
1

N + 1 ∑
m �=n

R n(1−R m)2 + R m(1−R n)2

R n−R m
, (7.23a)

(l/δL)〈δR nδR m〉 = 4δnm

N + 1
R n(1−R n)2, (7.23b)

(l/δL)〈δT n〉 = T n(γ − 1) +
T n

N + 1

(
Ann + ∑

m �=n

T m Ann + T n Amm

T n− T m
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+ Fnn + ∑
m �=n

Fnm
T n + T m

T n − T m

)
, (7.23c)

(l/δL)〈δT nδT m〉 = 2
N + 1

(
δnmT 2

n Ann + T nT mFnm

)
, (7.23d)

(l/δL)〈δT nδR m〉 = − 4
N + 1

T nR m(1−R m)|Qnm|2. (7.23e)

Without time-reversal symmetry

(l/δL)〈δR n〉 = 1 + 2(γ − 1)R n +
R n

N ∑
m

R m

+
1
N ∑

m �=n

R n(1−R m)2 + R m(1−R n)2

R n−R m
, (7.24a)

(l/δL)〈δR nδR m〉 = 2δnm

N
R n(1−R n)2, (7.24b)

(l/δL)〈δT n〉 = T n(γ − 1)

+
T n

N

(
Ann + ∑

m �=n

T m Ann + T n Amm

T n− T m

)
, (7.24c)

(l/δL)〈δT nδT m〉 = 2δnm

N
T 2

n Ann, (7.24d)

(l/δL)〈δT nδR m〉 = − 2
N

T nR m(1−R m)|Qnm|2. (7.24e)

We have abbreviated Anm = (QRQ†)nm and Fnm = |(Q√RQT)mn|2.
The moments of δR n contain only the set of reflection eigenvalues

{R n}, so that from Eq. (7.13) we can immediately write down a Fokker-
Planck equation for the distribution of the R n’s. In terms of variables
µn = 1/(R n−1) ∈ (−∞,−1)∪ (0,∞) it reads

l
∂

∂L
P({µn}, L) =

2
βN+2−β

N

∑
n=1

∂

∂µn
µn(1 + µn)

×
[
∂P
∂µn

+ βP ∑
m �=n

1
µm − µn

+ γ(βN+2−β)P

]
, (7.25)

as presented in chapter 5 without derivation. The symmetry index β =
1(2) corresponds to the case of unbroken (broken) time-reversal symmetry.
The evolution of the reflection eigenvalues is independent of the transmis-
sion eigenvalues — but not vice versa. The evolution of the T n’s depends
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on the R n’s, and in addition on the slow variables contained in the uni-
tary matrix Q. To obtain a closed Fokker-Planck equation we also need
to compute increments and moments of Q. The resulting expressions are
lengthy and will not be written down here.

In the single-mode case (N = 1) this complication does not arise, be-
cause Q = eiϕ drops out of the scalars A and F. The single transmission
and reflection eigenvalues T , R coincide with the transmittance and re-
flectance T, R defined by Eq. (7.5). The resulting Fokker-Planck equation
is

l
∂P
∂L

= − ∂

∂R

[
(1− R)2 + 2γR

]
P +

∂2

∂R2 R(1− R)2P

− ∂

∂T
T(γ − 1 + R)P +

∂2

∂T2 T2RP− 2
∂2

∂T∂R
TR(1− R)P. (7.26)

In the case of absorption (γ < 0), Eq. (7.26) is equivalent to the moments
equations of Ref. [5].

7.3 Localization length

The limit L→∞ of the distribution of the reflection eigenvalues follows
directly from Eq. (7.25) by equating the left-hand-side to zero. The result-
ing distribution P∞ is that of the Laguerre ensemble of random matrix
theory [cf. Eq. 5.10],

P({µn}) ∝∏
i< j
|µ j− µi|β ∏

k
exp[−γ(βN+2−β)µk]. (7.27)

The distribution looks the same for both signs of γ, but the support (and
the normalization constant) is different: µn > 0 for γ > 0, and µn < −1 for
γ < 0. To determine the localization length we need the distribution of the
transmission eigenvalues in the large-L limit. We consider the cases N = 1
and N	 1.

7.3.1 Single-mode waveguide

We compute the distribution P(T, L) of the transmittance through a single-
mode waveguide in the limit L→∞, and extent the results of chapter 6.
In the case of absorption (γ < 0) this calculation was done by Rammal and
Doucot [4], and by Freilikher, Pustilnik, and Yurkevich [5]. We generalize
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their results to the case of amplification (γ > 0). The two cases are essen-
tially different because, while the mean value of R is finite in the case of
absorption,

〈R〉∞ = 1− 2γe−2γ Ei(2γ), for γ < 0, (7.28)

it diverges in the case of amplification. The mean value of ln R is finite in
both cases,

〈ln R〉∞ =
{

C + ln 2γ − e2γ Ei(−2γ), for γ > 0,
−C− ln(−2γ) + e−2γ Ei(2γ), for γ < 0.

(7.29)

Here C is Euler’s constant and Ei(x) =
∫ x
−∞ dt et/t is the exponential inte-

gral. The relation
〈ln R(γ)〉∞ = −〈ln R(−γ)〉∞ (7.30)

holds, in accordance with the duality relation (7.8).
We now show that the asymptotic L → ∞ distribution of T is log-

normal, with mean and variance of ln T given by [cf. Eq. (6.15)]

〈ln T〉 = −(1 + |γ|) L/l + 2c(γ) + O(L/l), (7.31a)

c(γ) =
{

0, for γ < 0,
C + ln 2γ − e2γ Ei(−2γ), for γ > 0,

(7.31b)

Var ln T =
[
2 + 4|γ|e2|γ| Ei(−2|γ|)

]
L/l + O(1). (7.31c)

The constant c(γ)≈ −2γ lnγ if 0 < γ� 1. Note that Var ln T� 〈ln T〉2 for
L/l	 1. The localization length ξ = l (1 + |γ|)−1 is independent of the sign
of γ, in accordance with the duality relation (7.2).

These results are easy to establish for the case of absorption, when
Eq. (7.26) implies the evolution equations [4, 5]

l
∂

∂L
〈ln T〉 = −1 + γ, l

∂

∂L
Var ln T = 2〈R〉, for γ < 0. (7.32)

Making use of the initial condition T → 1 for L→ 0 and the asymptotic
value (7.28) of 〈R〉, one readily obtains Eq. (7.31) for γ < 0.

In the case of amplification, the evolution equations (7.32) hold only
for lengths L smaller than Lc � l c(γ)/|γ|. For L <∼ Lc stimulated emis-
sion enhances transmission through the waveguide. On larger length scales
stimulated emission reduces transmission. Technically, the evolution equa-
tions (7.32) break down for L→∞ because the integration by parts of the
Fokker-Planck equation produces a non-zero boundary term if L > Lc. To
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extend Eq. (7.31) to the case γ > 0 we use the duality relation (7.7). It im-
plies that for N = 1 the distribution of the ratio T/R is an even function
of γ. For γ > 0 Eq. (7.31a) follows directly from the equality

〈ln T(γ)/R(γ)〉 = 〈ln T(−γ)/R(−γ)〉, (7.33)

which holds for all L, plus Eq. (7.30), which holds for L→∞. The constant
c(γ) for γ > 0 equals 〈ln R(γ)〉∞ and is substituted from Eq. (7.29). The
duality of T(γ)/R(γ) also implies Eq. (7.31c) for the variance, provided the
covariance 〈〈ln T ln R〉〉 = 〈ln T ln R〉 − 〈ln T〉〈ln R〉 remains finite as L →
∞. We have checked this directly from the Fokker-Planck equation (7.26),
and found the finite large-L limit

〈〈ln T ln R〉〉∞ = −2e2γ Ei(−2γ)c(γ)

− 2γ
∫ ∞

0
dµ e−2γµ

[
ln2(1 + µ)− ln2 µ

]
, γ > 0. (7.34)

7.3.2 Multi-mode waveguide

We next consider a waveguide with N 	 1 modes. We compute the lo-
calization length ξ = − limL→∞ L−1〈ln T〉 in the case of absorption, and
include the case of amplification invoking duality. For absorption the
average reflectance 〈R〉 = N−1〈∑k(1 + 1/µk)〉 remains finite as L → ∞.
The large-L limit 〈R〉∞ follows from the distribution (7.27), using known
formulas for the eigenvalue density in the Laguerre ensemble [18]. For
|γ|N2	 1 the result is

〈R〉∞ = 1 + |γ| −
√
|γ|(2 + |γ|) + O(1/N), for γ < 0. (7.35)

The evolution of transmission eigenvalues is governed by the Fokker-
Planck equation (7.13), with coefficients given by (7.12), (7.23), and (7.24).
Each T n has its own localization length ξn =− limL→∞ L−1 ln T n. We order
the ξn’s from large to small, ξ1 > ξ2 > . . . > ξN. This implies that for L→∞
the separation of the T n’s becomes exponentially large, T 1	 T 2	 . . .	
T N . Hence we may approximate

T n + T m

T n− T m
≈
{−1, for n > m,

1, for n < m,
(7.36a)

T n Amm + T m Ann

T n− T m
≈
{−Amm, for n > m,

Ann, for n < m.
(7.36b)
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The Fokker-Plank equation (7.13) simplifies considerably and leads to the
following equation for the largest transmission eigenvalue:

l
∂

∂L
〈ln T 1〉 =

{−1− |γ|+ 〈R〉− 1
N+1〈A11 + F11〉, for β = 1,

−1− |γ|+ 〈R〉− 1
N 〈A11〉, for β = 2.

(7.37)

For |γ|N2	 1 we may substitute Eq. (7.35) for 〈R〉 and omit the terms
with 〈A11〉 and 〈F11〉. The resulting localization length is given by

l/ξ =
√
|γ|(2 + |γ|) + O(1/N). (7.38)

Because of duality, Eq. (7.38) holds regardless of the sign of γ. It agrees
with radiative transfer theory for γ < 0, but not for γ > 0. Indeed, the
exponential decay of the transmitted flux in the case of amplification is
an interference effect, which is not contained in the theory of radiative
transfer.

Equation (7.38) is asymptotically exact for |γ| 	 1/N2. For smaller |γ|
we cannot compute ξ rigorously because the distribution of the matrices
A and F is not known. An interpolative formula for all γ can be obtained
by substituting for 〈A11〉 and 〈F11〉 in Eq. (7.37) their L→∞ limits when
γ = 0, which are 〈A11〉= 〈F11〉= 1. In this way, we arrive at the localization
length

ξ = l
[

2
βN+2−β +

√
|γ|(2 + |γ|)

]−1

, (7.39)

which interpolates between the known [11,12,19] value for ξ for γ = 0 and
Eq. (7.38) for |γ| 	 1/N2 (see Fig. 7.1).

The localization length ξ is the largest of the eigenvalue-dependent lo-
calization lengths ξn. What about the other ξn’s? For γ = 0 it is known
[12,13,19] that the inverse localization lengths are equally spaced, and sat-
isfy the sum rule l ∑n ξ

−1
n = N. We have not succeeded in deriving the

spacings for γ �= 0, but we have been able to derive the sum rule from the
Fokker-Planck equation (by computing the L-dependence of 〈∑n ln T n〉.
The result is exact and reads

l
N

∑
n=1

ξ−1
n = (1 + |γ|)N. (7.40)
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Figure 7.1: Localization length ξ = − limL→∞ L−1〈ln T〉 of a disordered
waveguide (N = 10) versus the modal average σ̄ of the inverse absorption
or amplification length. Data points are a numerical solution of the dis-
cretized (lattice constant d) two-dimensional Helmholtz equation for the
case of absorption (squares) or amplification (circles). The curves are
the analytical prediction (7.39) in the case β = 1 (unbroken time-reversal
symmetry) for l = 29.6 d [solid curve, determined from Eq. (7.43)] and for
l = 26.1 d [dashed curve, determined from Eq. (7.44 )]. The inset shows
the same data on a linear, rather than logarithmic, scale.

7.4 Numerical results and conclusions

To test the analytical predictions on a model system, we have numerically
solved a discretized version of the Helmholtz equation,

[
∇2 + k2ε(r)

]
E(r) = 0, (7.41)

on a two-dimensional square lattice (lattice constant d, length L, width W).
The real part ε′ of the dielectric constant was chosen randomly from site
to site with a uniform distribution between 1± δε. The imaginary part ε′′
was the same at all sites. The scattering matrix was computed using the
recursive Green function technique [20].

The parameter σ̄ is obtained from the analytical solution of the dis-
cretized Helmholtz equation in the absence of disorder (δε = 0). The com-
plex longitudinal wavenumber kn of transverse mode n then satisfies the
dispersion relation

cos(knd) + cos(nπd/W) = 2− 1
2 (kd)2(1 + iε′′), (7.42)

which determines σ̄ according to σ̄ = −2N−1 Im∑n kn. Simulations with
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ε′′ = 0 were used to obtain l, either from the large-L relation [12]

− lim
L→∞

L−1〈ln T〉 = [ 1
2 (N + 1)l]−1, (7.43)

or from the large-N relation

lim
N→∞

〈T〉 = (1 + L/l)−1. (7.44)

The parameters chosen were W = 25 d, k = 1.22 d−1, corresponding to
N = 10, l = 29.6 d from Eq. (7.43) and l = 26.1 d from Eq. (7.44). The lo-
calization length was computed as a function of σ from the L-dependence
of ln T up to 40 l, averaged over 150 realizations of the disorder. Results are
shown in Fig. (7.1). The localization length is the same for absorption and
amplification, within the numerical accuracy. Comparison with the ana-
lytical result (7.39) for β = 1 is plotted for the two values of the mean free
path. The agreement is quite reasonable, given the approximate nature of
Eq. (7.39) in the regime |γ|N2 � 1 (corresponding to |σ̄|d � 10−4).

We can conclude that the extension of the Dorokhov-Mello-Pereyra-
Kumar equation to the case of absorbing and amplifying systems leads to
meaningful consequences both for single- and multi-mode waveguides.
Technical difficulty of the multi-mode case is due to additional degrees
of freedom contained in the matrix Q. (We have checked that a naive
assumption of the uniform distribution of Q is in poor agreement with
numerics.) How to overcome this difficulty is an unsolved problem.
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8 Brightness of a phase-conjugating mirror
behind a random medium

Phase conjugation is the reversal of the sign of the phase of a wave func-
tion. A phase-conjugated wave retraces the path of the original wave,
thereby canceling all accumulated phase shifts. Phase conjugation was
first discovered for electronic waves [1], and later for optical waves [2–4].
For electrons, phase conjugation takes place at the interface between a nor-
mal metal and a superconductor. An electron at energy E above the Fermi
energy EF is (retro-)reflected at the angle of incidence as a hole at energy E
below EF, a process known as Andreev reflection [5]. A phase-conjugating
mirror for light consists of a cell containing a liquid or crystal with a large
nonlinear susceptibility, pumped by two counter-propagating beams at
frequency ω0. A wave incident at frequency ω0 + ∆ω is then retro-reflected
at frequency ω0− ∆ω, a process known as four-wave mixing [6–9].

The interplay of multiple scattering by disorder and phase conjugation
has been studied extensively in the electronic case, both experimentally
and theoretically. (See Ref. [10] for a review.) In the optical case the em-
phasis has been on weakly disordered media, which do not strongly scat-
ter the waves [11]. Complete wave-front reconstruction is possible only
if the distorted wave front remains approximately planar, since perfect
time reversal upon reflection holds only in a narrow range of angles of
incidence for realistic systems. (For the hypothetical case of perfect time-
reversal at all angles, see Ref. [12].) McMichael, Ewbank, and Vachss [13]
measured the intensity of the reconstructed wave front for a strongly in-
homogeneous medium (small transmission probability T0), and found that
it was proportional to T2

0 — in agreement with the theoretical prediction
of Gu and Yeh [14]. If T0 � 1, the intensity of the reconstructed wave
is much smaller than the total reflected intensity. The total reflected in-
tensity was not studied previously, perhaps because it was believed that
the diffusive illumination resulting from a strongly inhomogeneous me-
dium would render the effect of phase conjugation insignificant. In this
chapter we show that a strongly disordered medium backed by a phase-
conjugating mirror has unusual optical properties, different both from the
weakly disordered case and from the electronic analogue.

We distinguish two regimes, depending on the relative magnitude of



132 BRIGHTNESS OF A PCM BEHIND A RANDOM MEDIUM

φ

ω  + ∆ω

0

0

ω  + ∆ω

0 x

PCM

cL-L

y

Figure 8.1: Schematic drawing of the disordered medium backed by a
phase-conjugating mirror (PCM). Light incident at frequency ω0 + ∆ω is
reflected at the two frequencies ω0± ∆ω.

the frequency shift 2∆ω acquired at the phase-conjugating mirror and the
inverse of the dwell time τdwell of a photon in the disordered medium.
(For a medium of length L and mean free path l, with light velocity c, one
has τdwell � L2/cl.) In the coherent regime, ∆ω � 1/τdwell, phase conjuga-
tion leads to a constructive interference of multiply scattered light in the
disordered medium. In the incoherent regime, ∆ω 	 1/τdwell, interference
effects are insignificant. In both regimes we compute the reflectances R+
and R−, defined as the reflected power at frequency ω0 ± ∆ω divided by
the incident power at frequency ω0 + ∆ω. A distinguishing feature of the
two regimes is that (in a certain parameter range) the reflectance R− de-
creases monotonically as function of L/l in the coherent regime, while in
the incoherent regime it first decreases and then increases.

Our presentation is organized as follows. After having formulated
the problem in section 8.1, we discuss in section 8.2 its solution using the
Boltzmann equation, ignoring phase coherence. This is the theory of ra-
diative transfer [15, 16]. A simple result is obtained if we neglect angular
correlations between the scattering in the disordered medium and at the
phase-conjugating mirror. We compare this approximation with an ex-
act solution of the Boltzmann equation. In section 8.3 the phase-coherent
problem is addressed, analytically using random-matrix theory, and nu-
merically using the method of recursive Green functions. Results of this
section were briefly reported in Ref. [17]. We conclude in section 8.4 with
a comparison with the electronic analogue of this problem.

8.1 Formulation of the problem

We study the system shown in Fig. 8.1. It consists of a disordered medium
(length L, mean free path l), backed at one end by a phase-conjugating
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mirror. The other end is illuminated diffusively at frequency ω+ = ω0 +
∆ω, where ω0 is the pump frequency of the mirror. We are interested in the
amount of light reflected at frequency ω+ and ω− = ω0− ∆ω.

To reduce the problem to the scattering of a scalar wave, we choose a
two-dimensional geometry. The scatterers consist of dielectric rods in the
z-direction, randomly placed in the xy-plane. The electric field points in
the z-direction and varies in the xy-plane only. Two-dimensional scatter-
ers are somewhat artificial, but can be realized experimentally [18]. We
believe that our results apply qualitatively to a three-dimensional geome-
try as well, because the randomization of the polarization by the disorder
renders the vector character of the light insignificant.

The z-component of the electric field at the frequencies ω+ and ω− is
given by

E±(x, y, t) = ReE±(x, y) exp(−iω±t). (8.1)

The phase-conjugating mirror (at x = 0) couples the two frequencies via
the wave equation [7, 8, 19, 20](

H 0 γ∗
−γ −H 0

)(
E+
E∗−

)
=

2ε∆ω
ω0

(
E+
E∗−

)
. (8.2)

The complex dimensionless coupling constant γ is zero for x < 0 and for
x > Lc, with Lc the length of the nonlinear medium forming the phase-
conjugating mirror. For 0 < x < Lc it is proportional to the electric fields
E1, E2 of the two pump beams and to the third-order nonlinear suscepti-
bility χ3:

γ = − 3
2ε0

χ3E∗1E∗2 ≡ γ0eiψ , 0 < x < Lc. (8.3)

The Helmholtz operator H 0 at frequency ω0 is given by

H 0 = −k−2
0 ∇2− ε, (8.4)

where ε(x, y) is the relative dielectric constant of the medium. We take
ε = 1 except in the disordered region −L < x < 0, where ε = 1 + δε(x, y).
The fluctuations δε lead to scattering with mean free path l. We assume
k0l	 1, where k0 = ω0/c is the wave number of the light (velocity c). The
validity of Eq. (8.2) requires ∆ω/ω0 � 1 and |γ| ≡ γ0 � 1. The ratio of
these two small parameters

δ =
2∆ω
γ0ω0

(8.5)

is a measure of the degeneracy of the incident and the reflected wave, and
can be chosen freely.
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Figure 8.2: Reflectance of the phase-conjugating mirror as a function
of the angle of incidence, computed from Eq. (8.6) for two choices of
parameters.

In the absence of disorder, an incoming plane wave in the direction
(cosϕ, sinϕ) is retro-reflected in the direction (− cosϕ,− sinϕ), with a dif-
ferent frequency and amplitude. The scattering matrix for retro-reflection
is given by [7, 8, 21](

E+
E∗−

)out

=
(

0 −ia(ϕ)e−iψ

ia(ϕ)eiψ 0

)(
E+
E∗−

)in

, (8.6a)

a(ϕ) = [
√

1 + δ2 cotan(α
√

1 + δ2/ cosϕ) + iδ]−1, (8.6b)
α = 1

2γ0k0Lc. (8.6c)

In Fig. 8.2 we have plotted the reflectance |a|2 as a function of the angle of
incidence ϕ for α = π/4 and two values of δ = 0.75 and 0.9. The absolute
value of a oscillates between 0 and δ−1 as a function of the angle ϕ and the
phase of a covers the range [−π, 0] in each oscillation. Perfect time-reversal
requires a ≈ 1, but this is achieved only in a limited range of angles of
incidence. In particular, the ϕ-dependence of the phase of a makes it in
general impossible to cancel all phase shifts. This is the crucial difference
between this work and Refs. [12,22], where an angle-independent and real
a was assumed.

The value α = π/4 is chosen such that a = 1 for normal incidence at
frequency ω0 (i.e. for ϕ = 0 , δ = 0). The two values of δ have been chosen
such that the angular average of the reflectance,

A =
∫ π/2

0
dϕ cosϕ |a(ϕ)|2, (8.7)

is > 1 for δ = 0.75 and < 1 for δ = 0.9. (The cosϕ weight factor in Eq. (8.7)
corresponds to diffusive illumination.) In most of the numerical examples
throughout this chapter we will use these values of α and δ.
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8.2 Phase-incoherent solution

8.2.1 Radiative transfer theory

Within the framework of radiative transfer theory [15, 16], the station-
ary distribution I(x, y,ϕ) ∝ |E |2 of the light intensity, at frequency ω and
wavevector (k cosϕ, k sinϕ), is governed by the Boltzmann equation

(
l cosϕ

∂

∂x
+ l sinϕ

∂

∂y

)
I(x, y,ϕ) = −I(x, y,ϕ) +

1
2π

∫ 2π

0
dϕ′ I(x, y,ϕ′).

(8.8)
We neglect absorption and assume isotropic scattering in the xy-plane,
with mean free path l. The phase-conjugating mirror couples the inten-
sities I± of light at the two frequencies ω± = ω0 ± ∆ω. We assume that
l is independent of frequency. The symmetry of the system implies that
I(x, y,ϕ) = I(x, |ϕ|). In this section we take ϕ ∈ [0,π]. For each frequency
the Boltzmann equation takes the form

l cosϕ
∂ I±(x,ϕ)

∂x
= Ī±(x)− I±(x,ϕ), (8.9a)

Ī±(x) =
1
π

∫ π

0
dϕ I±(x,ϕ). (8.9b)

Equation (8.9) has to be supplemented by boundary conditions at the
two ends x = −L and x = 0 of the disordered medium. We consider a
situation that the system is illuminated at x = −L with diffusive light at
frequency ω+, hence

I+(−L,ϕ) = I0, for cosϕ > 0, (8.10a)

I−(−L,ϕ) = 0, for cosϕ > 0. (8.10b)

At x = 0 the light is reflected by the phase-conjugating mirror. The
intensity is multiplied by

|a(ϕ)|2 =
sin2(α

√
1 + δ2/ cosϕ)

δ2 + cos2(α
√

1 + δ2/ cosϕ)
, (8.11)

according to Eq. (8.6). The reflection is accompanied by a change in fre-
quency ω± → ω∓, so that the boundary condition is

I±(0,ϕ) = |a(ϕ)|2 I∓(0,π−ϕ), for cosϕ < 0. (8.12)
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The flux F± associated with the intensity I± is defined by

F± =
∫ π

0
dϕ cosϕ I±(x,ϕ), (8.13)

and is independent of x [∂F±/∂x = 0 according to Eq. (8.9)]. The re-
flectance R− is defined as the ratio of the outgoing flux at frequency ω−
and the incoming flux at frequency ω+,

R− = −F−/I0. (8.14)

The total outgoing flux is (R−+ R+)I0, where

R+ = 1− F+/I0 (8.15)

is the ratio of the outgoing flux and the incoming flux at the same fre-
quency ω+.

8.2.2 Neglect of angular correlations

A simple analytical treatment is possible if the angular correlations be-
tween multiple reflections by the disorder and the phase-conjugating mir-
ror are neglected. Here we present this simplified treatment, and in the
next subsection we compare with an exact numerical solution of the Boltz-
mann equation.

We first consider the disordered region by itself. The plane-wave trans-
mission probability |t(ϕ)|2 is the ratio of transmitted to incident flux when
the incident light is a plane wave in the direction (cosϕ, sinϕ). The trans-
mission probability T for diffusive illumination is then given by

T =
∫ π/2

0
dϕ cosϕ |t(ϕ)|2, (8.16)

such that T is the fraction of the flux incident from a diffusive source which
is transmitted through the disordered region. This probability has been
calculated in Ref. [23] from the Boltzmann equation (8.9). The result is

T =
(
1 + 2ηL/πl

)−1 , (8.17)

where η is a numerical coefficient which depends weakly on L/l. In the
ballistic limit (L/l → 0) η has the value π2/8 and in the diffusive limit
(L/l → ∞) η equals 1. In this subsection (but not in the next) we take
η = 1 for all L/l for simplicity.
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We use Eq. (8.17) to obtain the reflectance R± for the case that the dis-
ordered medium is backed by a phase-conjugating mirror with reflectance

A =
∫ π/2

0
dϕ

cosϕ sin2(α
√

1 + δ2/ cosϕ)
δ2 + cos2(α

√
1 + δ2/ cosϕ)

. (8.18)

Since T and A are angular averages, we are neglecting angular correla-
tions. The light that comes out at frequency ω− has been reflected an odd
number of times at the mirror. The light that has been reflected once has
traversed the medium twice, which leads to a contribution T2A to R−.
Light that has been reflected three times by the mirror contributes T2A3(1−
T)2, since it has been reflected two times by the medium (each time with
probability 1− T). Summing all contributions, one finds

R− = T2A + T2A3(1− T)2 + T2A5(1− T)4 + · · ·= T2A
1− (1− T)2 A2 . (8.19a)

Light that comes out at frequency ω+ has been reflected an even number of
times at the mirror. Zero reflections by the mirror contributes 1− T to R+,
two reflections contributes T2A2(1− T), and four reflections T2A4(1− T)3.
Summing the series, one finds

R+ = 1− T +
T2(1− T)A2

1− (1− T)2 A2 . (8.19b)

The geometric series leading to Eq. (8.19) diverges if (1− T)A≥ 1. This
indicates that there is only a stationary solution to the Boltzmann equa-
tion if both the gain at the mirror and the scattering in the medium are
sufficiently weak. If A is increased at fixed α = π/4 by reducing δ, the
reflectances R± diverge when δ = δc. (This divergence is preempted by
depletion of the pump beams in the phase-conjugating mirror, which we
do not describe.) In the approximation of this subsection, δc is determined
by (1− T)A = 1, or L/l = 1

2π(A − 1)−1. In the ballistic limit, T = 1 and
A <∞ for any δ > 0. In the diffusive limit, T = 0 and A = 1 for δ = 0.78.
Hence, δc increases from 0 to 0.78 as L/l increases from 0 to∞.

8.2.3 Exact solution of the Boltzmann equation

The Boltzmann equation (8.9) can be solved exactly, without neglect of
angular correlations, by adapting the method of Ref. [23] to an angle-
dependent boundary condition. We first rewrite Eq. (8.9) as

∂

∂x
ex/l cosϕ I±(x,ϕ) =

1
l cosϕ

ex/l cosϕ Ī±(x), (8.20)



138 BRIGHTNESS OF A PCM BEHIND A RANDOM MEDIUM

and then we integrate once over x, using the boundary conditions (8.10)
and (8.12). The result is

I+(x,ϕ) =
∫ x

−L

dx′

l cosϕ
e−(x−x′)/l cosϕ Ī+(x′)

cosϕ > 0,+ I0e−(L+x)/l cosϕ, (8.21a)

I+(x,ϕ) = −
∫ 0

x

dx′

l cosϕ
e−(x−x′)/l cosϕ Ī+(x′)

cosϕ < 0,+ e−x/l cosϕ|a(ϕ)|2 I−(0,π−ϕ), (8.21b)

I−(x,ϕ) = cosϕ > 0,
∫ x

−L

dx′

l cosϕ
e−(x−x′)/l cosϕ Ī−(x′), (8.21c)

I−(x,ϕ) = −
∫ 0

x

dx′

l cosϕ
e−(x−x′)/l cosϕ Ī−(x′)

cosϕ < 0.+ e−x/l cosϕ|a(ϕ)|2 I+(0,π−ϕ), (8.21d)

Substitution of Eqs. (8.21c) and (8.21a) into, respectively, Eqs. (8.21b) and
(8.21d) yields (cosϕ < 0)

I+(x,ϕ) =
∫ 0

x

dx′

l| cosϕ| e
−(x′−x)/l|cosϕ| Ī+(x′) + ex/l|cosϕ||a(ϕ)|2

×
∫ 0

−L

dx′

l| cosϕ| e
x′/l|cosϕ| Ī−(x′), (8.22a)

I−(x,ϕ) =
∫ 0

x

dx′

l| cosϕ| e
−(x′−x)/l|cosϕ| Ī−(x′) + ex/l|cosϕ||a(ϕ)|2

×
(

I0e−L/l|cosϕ|+
∫ 0

−L

dx′

l| cosϕ| e
x′/l|cosϕ| Ī+(x′)

)
(8.22b)

Finally, integration over ϕ leads to two coupled integral equations for the
average intensities,

Ī+(x) =
∫ 0

−L
dx′M1(x, x′) Ī+(x′) +

∫ 0

−L
dx′M2(x, x′) Ī−(x′) + Q1(x)I0, (8.23a)

Ī−(x) =
∫ 0

−L
dx′M1(x, x′) Ī−(x′) +

∫ 0

−L
dx′M2(x, x′) Ī+(x′) + Q2(x)I0. (8.23b)

We have defined the following kernels and source terms:

M1(x, x′) =
1
π

∫ π/2

0

dϕ
l cosϕ

e−|x−x′|/l cosϕ =
1
πl

K0(|x− x′|/l), (8.24a)
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Figure 8.3: Intensity profiles in the disordered medium, computed from
the exact numerical solution of the Boltzmann equation, for α = π/4 and
two values of δ. (a) is for a nearly ballistic system (L/l = 1), (b) is for a
diffusive system (L/l = 15).

M2(x, x′) =
1
π

∫ π/2

0

dϕ
l cosϕ

e(x+x′)/l cosϕ |a(ϕ)|2, (8.24b)

Q1(x) =
1
π

∫ π/2

0
dϕ e−(L+x)/l cosϕ, (8.24c)

Q2(x) =
1
π

∫ π/2

0
dϕ e−(L−x)/l cosϕ |a(ϕ)|2, (8.24d)

where K0 is a Bessel function.
Equation (8.23) is the analogue for the present problem involving two

coupled frequencies of the Schwarzschild-Milne equation in the theory of
radiative transfer [15, 16]. We have solved it numerically by discretizing
with respect to x so that the integral equation becomes a matrix equation.
From the average intensities Ī±(x) one finds the intensities I±(x,ϕ) using
Eqs. (8.21) and (8.22). The reflectances R± then follow from Eqs. (8.13)–
(8.15). For numerical stability we have imposed a cut-off on the rapidly os-
cillating function a(ϕ) at grazing incidence, by setting a(ϕ) = 0 for 0.497π<
ϕ < 1

2π.
In Figs. 8.3 and 8.4 we show results for Ī±(x) and R± for α = π/4

and δ = 0.75 and 0.9. For δ = 0.75 there is an effective gain at the mir-
ror (A > 1), while for δ = 0.9 there is an effective loss (A < 1). For an
ordinary mirror one can show that Ī±(0) = 1

2 I0. Instead, we find that
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Figure 8.4: Reflectance R− as a function of L/l, computed from the exact
solution of the Boltzmann equation for α = π/4 and δ = 0.75 (dashed
curve), δ = 0.90 (solid curve). The dotted curves are the approximate
result (8.19a), in which angular correlations are neglected. The inset
shows the exact reflectances R± for δ = 0.75, over a broader range of L/l
(logarithmic scale). For δ = 0.75 the reflectances diverge at L/l = 28. No
divergence occurs for δ = 0.90.

Ī−(0)> Ī+(0)> 1
2 I0 for δ = 0.75, indicating gain, and Ī−(0)< Ī+(0)< 1

2 I0 for
δ = 0.9, indicating loss. In each case the density profiles are approximately
linear in the bulk, with some bending near the boundaries at x = −L and
x = 0. For δ = 0.75, both R− and R+ diverge when L/l = 28, while for
δ = 0.9 no such divergence occurs. As discussed earlier, the divergence
indicates that for δ = 0.75 and L/l > 28 there is no stationary solution to
the Boltzmann equation. For fixed L/l and α, the divergence of R± occurs
at a critical value δc, such that a stationary solution requires δ > δc. The
dependence of δc on L/l at fixed α = π/4 is plotted in Fig. 8.5.

In Figs. 8.4 and 8.5 we also compare the exact numerical solution of
the Boltzmann equation of this subsection with the approximate analytical
solution (8.19) of the preceding subsection. As one can see, the agreement
with the exact results is quite good.

8.3 Phase-coherent solution

8.3.1 Scattering matrices

We now turn to a phase-coherent description of the scattering problem.
To define finite-dimensional scattering matrices we embed the disordered
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Figure 8.5: A stationary solution to the Boltzmann equation requires δ >
δc. The solid curve is the exact result for δc (at fixed α= π/4, as a function
of L/l), the dotted curve follows from Eq. (8.19), obtained by neglecting
angular correlations.

medium in a waveguide (width W), containing N± = Int(ω±W/cπ)	 1
propagating modes at frequency ω±. A basis of scattering states consists
of the complex fields

E>±,n(x, y, t) = k−1/2
±,n sin

(nπy
W

)
exp(ik±,nx− iω±t), (8.25a)

E<±,n(x, y, t) = k−1/2
±,n sin

(nπy
W

)
exp(−ik±,nx− iω±t). (8.25b)

Here n = 1, 2, . . . , N± is the mode index and the superscript > (<) indi-
cates a wave moving to the right (left), with frequency ω± = ω0 ± ∆ω and
wavenumber

k±,n = (ω2±/c2− n2π2/W2)1/2. (8.26)

The normalization in Eq. (8.25) has been chosen such that each wave car-
ries the same flux.

With respect to the basis (8.25), incoming and outgoing waves are de-
composed as

Ein =
N+

∑
n=1

u+,nE>+,n +
N−
∑
n=1

u−,nE>−,n, (8.27a)

Eout =
N+

∑
n=1

v+,nE<+,n +
N−
∑
n=1

v−,nE<−,n. (8.27b)
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The complex coefficients are combined into two vectors

u = (u+,1, u+,2, . . . , u+,N+ , u∗−,1, u∗−,2, . . . , u∗−,N−), (8.28a)
v = (v+,1, v+,2, . . . , v+,N+ , v∗−,1, v∗−,2, . . . , v∗−,N−). (8.28b)

The reflection matrix r relates u to v,

v = ru, r =
(

r++ r+−
r−+ r−−

)
. (8.29)

The dimension of r is (N+ + N−)× (N+ + N−), the submatrices r±,± have
dimensions N±×N±. For ∆ω� ω0 we may neglect the difference between
N+ and N− and replace both by N = Int(k0W/π).

In the absence of disorder the reflection matrix is entirely determined
by the phase-conjugating mirror,

rPCM =
(

0 −iae−iψ

iaeiψ 0

)
, (8.30a)

amn = a(ϕn)δmn, ϕn = arcsin(nπ/k0W). (8.30b)

The elements of the N × N diagonal matrix a are obtained from Eq. (8.6)
upon substitution of ϕ by ϕn, being the angle of incidence associated with
mode n. (The difference in angle between the two frequencies ω+ and ω−
can be neglected if ∆ω� ω0.) The angular average (8.7) of the reflectance
corresponds to the modal average

A =
1
N

Tr aa†. (8.31)

In the limit N→∞ the two averages are identical.
The disordered medium in front of the phase-conjugating mirror does

not couple ω+ and ω−. Its scattering properties at frequency ω are de-
scribed by two N × N transmission matrices t21(ω) and t12(ω) (transmis-
sion from left to right and from right to left) plus two N×N reflection ma-
trices r11(ω) and r22(ω) (reflection from left to left and from right to right).
Taken together, these four matrices constitute a 2N× 2N scattering matrix

Sdisorder(ω) =
(

r11(ω) t12(ω)
t21(ω) r22(ω)

)
, (8.32)

which is unitary (because of flux conservation) and symmetric (because
of time-reversal invariance). It is simple algebra to express the scattering
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matrix r of the entire system in terms of the scattering matrices rPCM and
Sdisorder of the phase-conjugating mirror and the disordered region sepa-
rately. The result is

r++ = r11(ω+)+t12(ω+)ar∗22(ω−)a[1−r22(ω+)ar∗22(ω−)a]−1t21(ω+), (8.33a)
r−− = r∗11(ω−)+t∗12(ω−)ar22(ω+)a[1−r∗22(ω−)ar22(ω+)a]−1t∗21(ω−), (8.33b)

r−+ = ieiψt∗12(ω−)a[1− r22(ω+)ar∗22(ω−)a]−1t21(ω+), (8.33c)

r+− = −ie−iψt12(ω+)a[1− r∗22(ω−)ar22(ω+)a]−1t∗21(ω−). (8.33d)

We seek the reflectances

R− =
1

N+
Tr r−+r†−+; R+ =

1
N+

Tr r++r†++, (8.34)

averaged over the disorder. We will do this analytically, using random-
matrix theory [24], and numerically, using the recursive Green function
technique [25]. We consider two different regimes, depending on the rela-
tive magnitude of ∆ω and 1/τdwell, where τdwell � L2/cl is the mean dwell
time of a photon in the disordered medium. If τdwell∆ω� 1 the difference
between Sdisorder(ω+) and Sdisorder(ω−) is insignificant because the phase
shifts accumulated in a time τdwell are approximately the same for frequen-
cies ω+ and ω−. We call this the coherent regime. If τdwell∆ω 	 1, on the
contrary, phase shifts at ω+ and ω− are essentially uncorrelated, so that
Sdisorder(ω+) and Sdisorder(ω−) are independent. We call this the incoherent
regime.

8.3.2 Random-matrix theory

Without loss of generality the reflection and transmission matrices of the
disordered region can be decomposed as [24]

r11(ω±) = i V±
√

1−T± VT±, r22(ω±) = i U±
√

1−T± UT±,

t12(ω±) = V±
√

T± UT±, t21(ω±) = U±
√

T± VT±.
(8.35)

Here U± and V± are N×N unitary matrices (we take N+ = N− = N in this
subsection) and T± is a diagonal matrix with the transmission eigenvalues
τ±,n ∈ [0, 1] on the diagonal. The subscript ± refers to the two frequencies
ω+ and ω−. In this so-called “polar decomposition” the reflectances R±
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take the form

Ω = U†−aU+, (8.36a)

R− =
1
N

Tr T−Ω
(

1−√1−T+ ΩT
√

1−T−Ω
)−1

· T+

(
1−Ω†

√
1− T−Ω∗

√
1− T+

)−1
Ω†, (8.36b)

R+ =
1
N

Tr(1−T+)

− 1
N

Tr T+
√

1−T+

(
1−Ω†

√
1−T−Ω∗

√
1−T+

)−1
Ω†
√

1− T−Ω∗

− 1
N

Tr T+
√

1−T+ ΩT
√

1−T−Ω
(

1−√1−T+ ΩT
√

1−T−Ω
)−1

+
1
N

Tr T+ΩT
√

1−T−Ω
(

1−√1−T+ ΩT
√

1−T−Ω
)−1

· T+

(
1−Ω†

√
1−T−Ω∗

√
1−T+

)−1
Ω†
√

1−T−Ω∗. (8.36c)

To compute the averages 〈R±〉 analytically in the large-N limit we
make the isotropy approximation [24] that the matrices U± and V± are
uniformly distributed over the unitary group U(N). This approximation
corresponds to the neglect of angular correlations in the radiative-transfer
theory (section 8.2.2). For τdwell∆ω � 1 we may identify U+ = U− and
V+ = V−. For τdwell∆ω 	 1 we may assume that U+, U−, V+, and V−
are all independent. In each case the integration

∫
dU f (U) over U(N) with

N	 1 can be done using the large-N expansion of Ref. [26]. The remain-
ing average over τ±,n can be done using the known density ρ(τ ) of the
transmission eigenvalues in a disordered medium [24].

The calculation is easiest in the incoherent regime (τdwell∆ω	 1). The
integration over U(N) can be carried out using the formula [26]∫

dU
∫

dV
1
N

Tr(A1UA2VA3U · · ·Ap)(B1UB2VB3U · · ·Bq)†

= δpqN−p
p

∏
i=1

Tr AiB
†
i + O(N−p−1). (8.37)

To apply this formula we expand the inverse matrices in Eq. (8.36) in a
power series in U± and integrate term by term over the independent ma-
trices U+ and U−. The result is, to leading order in N,

∫
dU−

∫
dU+ R− =

∞
∑
p=0

T−T+A2p+1(1− T−)p(1− T+)p
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=
T−T+A

1− (1− T−)(1− T+)A2 , (8.38a)

∫
dU−

∫
dU+ R+ = 1− T+ +

T2
+(1− T−)A2

1− (1− T−)(1− T+)A2 , (8.38b)

where we have defined the modal average

T± =
1
N

Tr T± =
1
N

N

∑
n=1

τ±,n. (8.39)

The modal average A was defined in Eq. (8.31). The quantities T± still de-
pend on the configuration of the scatterers, but the fluctuations around
the average 〈T±〉 are smaller by an order 1/N than the average itself.
Moreover, the average 〈T±〉 equals the transmission probability T from
radiative-transfer theory, Eq. (8.17), again up to corrections of order 1/N.
Replacing T± in Eq. (8.38) by T we obtain

〈R−〉 = T2A
1− (1− T)2A2 , (8.40a)

〈R+〉 = 1− T +
T2(1− T)A2

1− (1− T)2A2 , (8.40b)

which is the result (8.19) of radiative transfer theory with neglect of an-
gular correlations. The conclusion is that in the incoherent regime phase
coherence has no effect on the reflectance of the system to leading order
in N. In Fig. 8.6 we have plotted the analytical results from Eq. (8.40).

The situation is entirely different in the coherent regime (τdwell∆ω� 1).
To see the difference it is instructive to first consider the simplified model
that the matrix amn = a0δmn is proportional to the unit matrix (a scalar).
Because U− = U+ for τdwell∆ω � 1, we then have Ωmn = a0δmn. There
is therefore no average over U(N) to perform. We only have to average
over one set of transmission eigenvalues τ+,n = τ−,n ≡ τn. This average
amounts to the integrals

〈R−〉 = 1
N

∫ 1

0
dτρ(τ )

|a0|2τ 2

|1− a2
0 + a2

0τ |2
, (8.41a)

〈R+〉 = 1− 1
N

∫ 1

0
dτρ(τ )

τ − |a0|4τ (1− τ )∣∣1− a2
0 + a2

0τ
∣∣2 . (8.41b)

The density ρ(τ ) for l <∼ L� Nl is given by [24]

ρ(τ ) =
N

2(s + 1)
1

τ
√

1− τ + O(s + 1)−4, s =
2L
πl
. (8.42)
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Figure 8.6: Average reflectances 〈R±〉 as a function of L/l for α = π/4
and δ = 0.6, 0.9, in the incoherent regime. The curves are the analytical
results for N	 1, computed from Eq. (8.19). Data points are results from
numerical simulations. (Statistical error bars are shown when they are
larger than the size of the marker.)

The density has a cut-off for exponentially small τ , which is irrelevant for
〈R±〉 if a2

0 �= 1. Substitution of Eq. (8.42) into Eq. (8.41) yields the average
reflectances

〈R−〉 = 2T Re
a∗0(a2

0− 1)
a2

0− a∗20
artanh a0, (8.43a)

〈R+〉 = 1− 2T Re
a∗0(a2

0− 1)
a2

0− a∗20
artanh a∗0, (8.43b)

where T is again the transmission probability (8.17) from radiative trans-
fer theory. Both quantities have a smooth L-dependence, with 〈R−〉 de-
creasing monotonically ∝ 1/L. In contrast, radiative transfer theory pre-
dicts a non-monotonic L-dependence for A > 1, leading to a divergence at
some L. For A < 1, radiative transfer theory predicts a quadratic decrease
of 〈R−〉 ∝ 1/L2, for large L. The conclusion is that, in the coherent regime,
phase coherence modifies the reflectance of the phase-conjugating mirror
to leading order in N.

The result (8.43) was obtained for the simplified model of a scalar re-
flection matrix a. The true a in Eq. (8.30) is diagonal but not a scalar. This
complicates the calculation because Ω = U†−aU+ then needs to be aver-
aged over U(N) even though U− = U+. The calculation is outlined in
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Figure 8.7: Average reflectances 〈R±〉 as a function of L/l for α = π/4
and δ = 0.6, 0.9, in the coherent regime. The full curves are the analytical
results for N	 1, computed from Eq. (8.76). The dotted curves are the
large-L/l limit given by Eqs. (8.43) and (8.45). Data points are results
from numerical simulations.

appendix 8.A. The complete result is a complicated function of L/l (plot-
ted in Fig. 8.7). For L/l	 1 the result takes the form of Eq. (8.43), where
now a0 is to be determined from the equation

1
N

Tr
a

1− a0 a
=

a0

1− a2
0
. (8.44)

In the limit N→∞ this becomes an integral equation for a0,

∫ π/2

0
dϕ

cosϕ a(ϕ)
1− a0 a(ϕ)

=
a0

1− a2
0

, (8.45)

where a(ϕ) is given by Eq. (8.6). As shown in Fig. 8.7, the large-L asymp-
tote (8.43), (8.44) is close to the complete result for L >∼ l. In the limit δ→ 0
the solution to Eq. (8.45) is given by a0 = 1.284 − 0.0133 i, for α = π/4.
The corresponding reflectances (for L >∼ l) are 〈R−〉= 61.1 l/L, and 〈R+〉=
1 + 57.7 l/L.

To make contact with the work on wave-front reconstruction [13, 14],
we consider also the case of plane wave — rather than diffusive — illumi-
nation. A plane wave incident at frequency ω+ in mode n is reflected into
modes m = 1, 2, . . .N at frequency ω± with probability 〈|(r±+)mn|2〉. The
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calculation of this probability proceeds similarly as the calculation of R−.
(See Ref. [27] for the analogous calculation in the case of Andreev reflec-
tion.) Using Eqs. (8.33)–(8.36) we can write

r−+ = ieiψV∗−OVT
+, (8.46a)

O =
√

T−Ω(1−√1−T+ΩT
√

1−T−Ω)−1
√

T+. (8.46b)

For the coherent regime, we may again identify V+ = V− = V. The inte-
gration over U(N) can be performed using [26]

∫
dV VnkVm jV

∗
niV
∗
ml =

δikδ jl + δmnδklδ ji

N2− 1
− δklδ ji + δmnδikδ jl

N3− N
. (8.47)

We then find∫
dV |(r−+)mn|2 =

1 + δmn

N + 1
R−+

Nδmn− 1
N3− N ∑

i �= j
OiiO

∗
j j. (8.48)

In the limit of large N we can write ∑i �= j OiiO
∗
j j = |Tr O|2. In the same way

as before, for L	 l, this trace can be expressed in terms of a0, where a0
can be found from Eq. (8.30): N−1 Tr O = T artanh a0. The result for the
averages is then

〈|(r−+)nn|2〉 = T2|artanh a0|2, (8.49a)
〈|(r−+)mn|2〉 = N−1〈R−〉, m �= n. (8.49b)

The incident plane wave is reconstructed with an intensity∝ T2, in agree-
ment with Refs. [13, 14]. In the coherent regime, off-diagonal (m �= n)
and diagonal (m = n) reflection probabilities differ by a large factor of or-
der NT. In fig. 8.8 we show a numerical example (to be discussed later).

In the incoherent regime, the matrices V+ and V− are independent. In-
tegration over U(N) results in integrals of the form

∫
dV VnkV∗ni = N−1δik.

Then the off-diagonal and diagonal reflection probabilities are both given
by

〈|(r−+)mn|2〉 = N−1〈R−〉, (8.50)

so there is no peak in the reflected intensity at the angle of incidence. This
holds for every N and L.

For both the incoherent and the coherent regime we find for the reflec-
tion without frequency shift (ω+→ ω+) the probability

〈|(r++)mn|2〉 = 1 + δmn

1 + N
〈R+〉. (8.51)
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Figure 8.8: Histograms for the modal distribution |(r−+)m1|2 of the reflec-
tion probability with frequency shift for normal incidence. The results are
for a single realization of the disorder at W = L = 251 d (L/l = 16.2), α =
π/4, and δ = 0.9. The arrow indicates the theoretical value 〈|(r−+)11|2〉
from Eq. (8.49), representing the ensemble average in the large-N limit.

Here we see a much smaller backscattering peak, where the diagonal re-
flection probability is only twice as large as the off-diagonal reflection
probability [28]. This factor is independent of the phase-conjugating mir-
ror, and exists entirely because of time-reversal symmetry [29].

8.3.3 Numerical simulations

To test the analytical predictions of random-matrix theory we have carried
out numerical simulations. The Helmholtz equation,

(−∇2− εω2±/c2)E = 0, (8.52)

is discretized on a square lattice (lattice constant d, length L, width W).
Disorder is introduced by letting the relative dielectric constant ε fluctu-
ate from site to site between 1± δε. Using the method of recursive Green
functions [25] we compute the scattering matrix Sdisorder(ω) of the disor-
dered medium at frequencies ω+ and ω−. The reflection matrix rPCM of
the phase-conjugating mirror is calculated by discretizing Eq. (8.2). From
Sdisorder(ω±) and rPCM we obtain the reflection matrix r of the entire sys-
tem, and hence the reflectances (8.34).

We took W = 51 d, δε = 0.5, α = π/4, and varied δ and L. For the
coherent case we took ω+ = ω− = 1.252 c/d, and for the incoherent case
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ω+ = 1.252 c/d, ω− = 1.166 c/d. These parameters correspond to N+ = 22,
l+ = 15.5 d at frequency ω+. The mean free path is determined using
Eq. (8.17), which holds up to small corrections of order N−1. In the in-
coherent case we have N− = 20, l− = 20.1 d. This leads to ∆ω = 0.043 c/d
and a dwell time for L/l � 3 of τdwell � L/cl � 150 d/c. Hence we have
τdwell∆ω � 6.5, which should be well in the incoherent regime. For com-
parison with random-matrix theory, we take the large-N limit and use the
value l+ for l.

The numerical results are shown in Figs. 8.7 (coherent regime) and 8.6
(incoherent regime), for δ = 0.6 and 0.9. As we can see, the agreement
with the analytical theory is quite satisfactory. The rapid rise of 〈R±〉 in
the incoherent regime for the smallest δ is accompanied by large statisti-
cal fluctuations, which make an accurate comparison more difficult. Still,
the striking differences between the coherent and incoherent regimes pre-
dicted by the random-matrix theory are confirmed by the simulations.

We have also studied the backscattering peak for plane-wave illumi-
nation. We considered a square sample (W = L = 251 d) with α = π/4,
δ = 0.9. We calculated the reflection probabilities |(r−+)mn|2 for normal
incidence (n = 1) in both the coherent and the incoherent regimes. The nu-
merical results for a single realization of the disorder are shown in Fig. 8.8.
The arrow denotes the analytical ensemble average (8.49) of the backscat-
tering peak in the large-N limit, which is consistent with the numerical
data. Notice the absence of a backscattering peak in the incoherent regime.

8.4 Comparison with Andreev reflection

We have studied the reflection of light by a disordered dielectric medium
in front of a phase-conjugating mirror. This problem has an electronic
analogue [19, 20]. The electronic disordered system consists of a metal,
in which electron or hole excitations are scattered elastically by randomly
placed impurities. Retro-reflection at the phase-conjugating mirror is anal-
ogous to Andreev reflection at the interface with a superconductor. The
Fermi energy EF plays the role of the pump frequency ω0, while the ex-
citation energy E corresponds to the frequency shift ∆ω. In spite of these
similarities, the optical effects found in this study have no electronic ana-
logue. It is instructive to see where the analogy breaks down.

To this end we compare the wave equation (8.2) with the Bogoliubov–
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de Gennes equation [30]

(
H ∆
∆∗ −H

)(
u
v

)
= E

(
u
v

)
, (8.53)

which determines the electron and hole wavefunctions u and v. The Hamil-
tonian

H = − h̄2

2m
∇2 + V− EF (8.54)

contains the electrostatic potential V(r), which plays the role of the dielec-
tric constant. [More precisely, k2

0(ε− 1) corresponds to −(2m/h̄2)V.] The
role of the nonlinear susceptibility is played here by the pair potential ∆(r),
which is only nonzero in the superconductor, where it equals ∆0e−iψ . Com-
paring Eqs. (8.53) and (8.54) for the electronic case with the optical equa-
tions (8.2) and (8.4) one notices many similarities, and some differences
which amount to a redefinition of quantities. There is however one essen-
tial difference: the matrix operator in Eq. (8.53) is Hermitian, while that in
Eq. (8.2) is not, because of an extra minus sign in one of the off-diagonal
elements. This minus sign is the origin of the difference between Andreev
reflection and optical phase conjugation.

In the optical case a disordered medium becomes transparent (R− = 1)
[11, 12] for unit reflectance at the phase-conjugating mirror (a = 1). This
does not happen in the electronic case, where R− is reduced by disorder
even for ideal Andreev reflection. The reflection matrix of the normal-
metal–superconductor (NS) interface, obtained from Eq. (8.53) for V ≡ 0,
E� ∆0� EF, is given by [1]

rNS =
(

0 −ie−iψ

−ieiψ 0

)
. (8.55)

Comparison with Eq. (8.30) for rPCM shows that Andreev reflection is in-
dependent of the angle of incidence; the matrix a in Eq. (8.30) is replaced
by the unit matrix in Eq. (8.55). This is a substantial simplification of the
electronic problem, compared with the optical analogue. The matrix rNS
is unitary, in contrast to rPCM, so that the appearance of gain or loss at the
phase-conjugating mirror has no electronic counterpart. The reflectance
R− = 1 − R+ is a monotonically decreasing function of L/l in the elec-
tronic case [10], both in the coherent regime,

R− = (2 + 4L/πl)−1, if E� h̄/τdwell and L >∼ l, (8.56)
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and in the incoherent regime,

R− = (1 + 4L/πl)−1, if E	 h̄/τdwell. (8.57)

The result (8.57) is what one obtains from Eq. (8.19) for the case A = 1
of unit reflectance at the interface. (The transmittance T = (1 + 2L/πl)−1

of the disordered medium is the same for electrons and photons.) The
result (8.56) however, is not what one would expect from the optical ana-
logue. Indeed, Eq. (8.41) with a0 = 1 would give R− = 1 for all L in the
case of unit reflectance at the phase-conjugating mirror. The reason that
the analogy with Andreev reflection breaks down is the difference of a
minus sign in the wave equations (8.2) and (8.53), which reappears in the
reflection matrices (8.30) and (8.55) for phase conjugation, and ultimately
in the reflectances in the coherent regime:

R− =
1
N

Tr
(

tt†

1 + rr†

)2

�= 1 for electrons, (8.58a)

R− =
1
N

Tr
(

tt†

1− rr†

)2

= 1 for photons if a ≡ 1. (8.58b)

Here t and r are the transmission and reflection matrices of the disordered
medium, which satisfy tt† + rr† = 1.

In conclusion, we have shown that the presence of a phase-conjugating
mirror behind a random medium drastically changes the total reflected
intensity, even when the medium is so disordered that wave-front recon-
struction is ineffective. On increasing the frequency difference ∆ω between
the incident radiation and the pump beams, a minimum in the disorder de-
pendence of the reflected intensity appears. In a certain parameter range,
the disordered medium reflects less radiation on reducing ∆ω. Experimen-
tal observation of this “darkening” would be a striking demonstration of
phase-shift cancellations in a random medium.

The random-matrix approach presented here is likely to have a broad
range of applicability, as in the analogous electronic problem [10, 24]. One
direction for future research is to include a second phase-conjugating mir-
ror opposite system is the optical analogue of a Josephson junction [20],
and it would be interesting to see how far the analogy goes.

8.A Calculation of reflectances in the coherent regime

In section 8.3 we computed the average reflectances 〈R±〉 for the incoher-
ent regime. For the coherent regime we presented only a derivation for
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scalar reflection matrix a. This appendix contains the calculation of 〈R±〉
for arbitrary (diagonal) matrix a. Our calculation is based on the diagram-
matic method for integration over the unitary group of Refs. [31] and [26].
Integrals over the unitary group are needed for the computation of 〈R±〉
because of the polar decomposition (8.35) of the transmission and reflec-
tion matrices. We find it convenient to use a slightly modified version of
the diagrammatic technique, in which we apply the diagrammatic rules
without making explicit use of the polar decomposition. We first outline
the calculation of 〈R±〉 in which the diagrammatic method is used for the
integration of the matrices U and V in Eq. (8.35), and then discuss the
modification of the diagrammatic method.

We start the calculation of 〈R±〉 with the elimination of the reflection
matrix r11(ω0) and the transmission matrices t12(ω0) and t21(ω0) from the
reflectances R+ and R− [cf. Eqs. (8.33) and (8.34)], in favour of the matrix
r = r22(ω0). The result is

〈R+〉 = 1
N

Tr[s′(a, a)− s(1, a)− s(a, 1) + s′(1, 1) + h(1) + h(1)∗], (8.59a)

〈R−〉 = 1
N

Tr{s(a, a)− s′(1, a)− s′(a, 1) + s(1, 1)

+ a−1a−1∗[1− h(1)− h(1)∗]}, (8.59b)

where we defined

s′(x, y) = 〈x(1− rar∗a)−1ryy∗r∗(1− a∗ra∗r∗)−1x∗〉, (8.60a)
s(x, y) = 〈x(1− rar∗a)−1a−1yy∗a−1∗(1− a∗ra∗r∗)−1x∗〉, (8.60b)

h(x) = 〈x(1− rar∗a)−1〉. (8.60c)

To perform the average over r, one may use the polar decomposition [cf.
Eq. (8.35)]

r = i U
√

1−T UT, (8.61)

where U is a unitary matrix and T is the diagonal matrix containing the N
transmission eigenvalues τ j on the diagonal. The matrix U is a member of
the circular unitary ensemble (CUE), i.e. it is uniformly distributed in the
unitary group. The transmission eigenvalues τ j have density [24]

ρ(τ ) = (2N/π) Im g(1/τ − 1− i 0, s), (8.62a)
g(ζ , s) = cotanh[ζ − sg(ζ , s)], s = 2L/πl. (8.62b)

To integrate the matrix U over the unitary group, the matrices s, s′,
and h are first expanded as a power series in U. The integration of U is
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then done using the general expression for the average of a polynomial
function of U [32],

〈
Ua1b1

· · ·Uambm
U∗α1β1

· · ·U∗αnβn

〉
= δm,n ∑

P,P′
Vc1,...,ck

n

∏
j=1
δaj,αP( j)δbj,βP′( j)

. (8.63)

Here the summation is over all permutations P and P′ of the numbers
1, . . . , n. The numbers c1, . . . , ck denote the cycle structure of the permuta-
tion P−1P′. (The permutation P−1P′ can be uniquely written as a product
of disjoint cyclic permutations of lengths c1, . . . , ck, with n = ∑k

j=1 ck.) To
compute 〈R±〉 in the limit of large N, it is sufficient to know the coeffi-
cients Vc1,...,ck to leading order in N. These are given in Refs. [31] and [26],
together with a diagrammatic method which enables one to restrict the
summation over P and P′ to those permutations P and P′ of which the
contribution to 〈R±〉 is of maximal order in N.

Although the computation of 〈R±〉 is straightforward now, the actual
calculation is rather cumbersome. We find it convenient to modify the ap-
proach of Refs. [31] and [26] so that it can be applied directly to the average
over the matrix r, without making explicit use of the polar decomposition
(8.61). This is possible because the general structure (8.63) already follows
from the invariance of the distribution of U under transformations

U→ VUV′, (8.64)

where V is an arbitrary unitary matrix. The fact that U itself is unitary
is necessary to compute the value of the coefficients Vc1,...,ck , but it is not
relevant for the general structure (8.63). Since the matrix r is both unitary
and symmetric, its distribution is invariant under transformations

r→ Vr VT (8.65)

that respect the symmetry of r. The same group of transformations leaves
invariant the circular orthogonal ensemble (COE), consisting of uniformly
distributed unitary and symmetric matrices. A diagrammatic technique
for averages over the COE is presented in Ref. [26]. As before, the general
structure of the average of a polynomial of a matrix from the COE is en-
tirely determined by the invariance under the transformations (8.65), and
therefore applies to the reflection matrix r as well. It reads [26, 33]

〈ra1a2
· · · ra2n−1a2n

r∗α1α2
· · · r∗α2m−1α2m

〉 = δn,m ∑
P

Vc1,...,ck

2n

∏
j=1
δaj,αP( j) , (8.66)
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Figure 8.9: Diagrams for the calculation of h0(z).

where now the summation is over permutations P of the numbers 1, . . . , 2n.
We may write P as

P =

(
n

∏
j=1
σ j

)
PePo

(
n

∏
j=1
σ′j

)
, (8.67)

where the permutations σ j and σ′j operate on the numbers 2 j− 1 and 2 j,
and the permutation Pe (Po) permutes even (odd) numbers only. The num-
bers c1, . . . , ck in Eq. (8.66) are the cycle structure of the permutation P−1

e Po.
The specific values of the coefficients Vc1,...,ck for an average of r are of
course different from those for the COE.

Now that we have identified the formal equivalence of an average over
the (non-unitary) symmetric reflection matrix r and a unitary symmetric
matrix from the COE, we can directly apply the diagrammatic rules of
Refs. [31] and [26] to an average over the matrix r, provided we know the
coefficients Vc1,...,ck for the ensemble of reflection matrices r of a disordered
waveguide. To find these coefficients, we use the fact that they factorize,
to leading order in N,

Vc1,...,ck =
k

∏
j=1

Vck , (8.68)

just as they do for the COE. This follows directly from the fact that, to
leading order in N, the average 〈∏ j Tr(rr†)cj〉 factorizes into ∏ j〈Tr(rr†)cj〉
[34]. It remains to find the coefficients Vc. Hereto we consider the function

h0(z) =
〈

z
1− rr∗z2

〉
. (8.69)
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We first compute h0(z) from the diagrammatic technique, with a priori
unknown coefficients Vc. We then compare our result with a calculation
of Tr h0(z) from the density of transmission eigenvalues (8.62). The rele-
vant diagrams for the diagrammatic calculation are shown in Fig. 8.9 (for
a detailed explanation of the diagrammatic notation of Fig. 8.9, we refer to
Ref. [26]). The result is a self-consistency equation for h0(z) that involves
the generating function F of the coefficients Vc,

h0(z) =
z1

1− zF[Trh0(z)]
, (8.70)

F(x) =
∞
∑
j=c

Vc x2c−1. (8.71)

Here 1 is the N × N unit matrix. Direct computation of Tr h0(z) from the
density ρ(τ ) of transmission eigenvalues gives

Tr h0(z) =
∫ 1

0
dτ

ρ(τ )z
1− z2(1− τ )

. (8.72)

Together, Eqs. (8.68)–(8.72) determine the coefficients Vc1,...,ck needed for
the diagrammatic evaluation of 〈R±〉. In the limit of L → ∞, the den-
sity of transmission eigenvalues tends to Nδ(τ ). Hence h0(z) = z/(1 −
z2) and F(x) = (

√
N2 + 4x2 − N)/2x. The corresponding coefficients Vc =

c−1N1−2c(2c−2
c−1

)
are precisely those of the COE [26]. For finite L, the den-

sity ρ(τ ) is no longer a delta function, and hence the coefficients Vc deviate
from those of the COE.

The fact that we can use the diagrammatic rules directly for the av-
erage over r simplifies the calculation considerably. A central role in the
calculation is played by the function h(x) defined in Eq. (8.60). The dia-
grams for the calculation of h(x) are similar to those of Fig. 8.9, and the
result is a self-consistency equation for h(x),

h(x) = x
(((
1− aF[Tr h(a)]

)))−1
. (8.73)

Notice the formal equivalence with Eq. (8.70). The function F was defined
in Eq. (8.71). Using the diagrammatic technique for the computation of s
and s′, we find the linear relations

s(x, y) = h(x)
[
a−1yy∗a−1∗ + K Tr s′(a, y) + L Tr s(a, y)

]
h(x)∗, (8.74a)

s′(x, y) = h(x)
[
K Tr s(a, y) + L Tr s′(a, y)

]
h(x)∗, (8.74b)
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where we have defined

h = Tr h(a), (8.75a)

K =
∞
∑

i, j=1
Vi+ j−1h2i−2(h∗)2 j−2 =

hF(h)− h∗F(h)∗

h2 − h∗2
, (8.75b)

L =
∞
∑

i, j=1
Vi+ jh2i−1(h∗)2 j−1 =

h∗F(h)− hF(h)∗

h2 − h∗2
. (8.75c)

We have shown the relevant diagrams leading to Eqs. (8.74) and (8.75)
in Fig. 8.10. They are similar to those of Ref. [31], where the case of a
chaotic cavity was considered, instead of a disordered waveguide. To-
gether, Eqs. (8.73)–(8.75) form a closed set of equations, from which h(x)
and subsequently s(x, y) and s′(x, y) can be calculated. The average re-
flectances 〈R±〉 are obtained upon substitution of s(x, y), s′(x, y), and h(x)
into Eq. (8.59). The final result is expressed as a function of h = Tr h(a),

N〈R+〉 = (I2 + J2)K− 2J(1− IL)
(1− IL)2− (KI)2 + 2 Re Tr[1− aF(h)]−1, (8.76a)

N〈R−〉 = (I + LJ2)(1− IL) + KIJ(KI− 2)
(1− IL)2− (KI)2 + J|F(h)|2, (8.76b)

where we defined

I = Tr a[1− aF(h)]−1[1− a∗F(h)∗]−1a∗, (8.77a)
J = Tr[1− aF(h)]−1[1− a∗F(h)∗]−1. (8.77b)

These expressions simplify in the large-L/l limit, when ρ(τ ) takes the
form (8.42). Substitution in Eq. (8.72) gives

Tr h0(z) =
Nz

1− z2

(
1− z artanh z

1 + s

)
+ O(1 + s)2, s = 2L/πl. (8.78)

and hence allows us to find F(z) from Eq. (8.70). Expanding the expres-
sions (8.76) for 〈R±〉 and the self-consistency equation (8.73) to lowest
order in (1 + s)−1 we find the results (8.43) and (8.44), with the effective
reflectance a0 = z.
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Samenvatting

Over de transmissie van licht
door wanordelijke media

Een wanordelijk medium in de optica is een systeem waar de brekingsin-
dex varieert als functie van de positie en wel op een wanordelijke manier.
Als er nu licht door dit medium beweegt, dan wordt het verstrooid door
die brekingsindexverschillen. In dit proefschrift beschrijven we de trans-
missie van licht door zulke systemen.

Een volledige oplossing van het probleem volgt uit de Maxwellver-
gelijkingen voor het elektromagnetische veld, met een plaatsafhankelijke
brekingsindex. In veel gevallen echter is zo’n volledige beschrijving niet
zinvol maar onnodig gecompliceerd. Dit geldt met name voor wanorde-
lijke media, waar veelvuldige verstrooiing vraagt om een statistische the-
orie. Wij zijn niet in staat om gedetailleerde analytische beschrijvingen te
geven van individuele systemen. Wel kunnen we een statistische beschrij-
ving geven van een ensemble van wanordelijke systemen, die microsco-
pisch verschillend zijn, maar macroscopisch gelijkwaardig.

De verschillende theoretische beschrijvingen die wij gebruiken heb-
ben een verschillend niveau van details die meegenomen worden. In alle
gevallen zullen we de polarisatie van het licht verwaarlozen. Voor sys-
temen waar interferentie verwaarloosd mag worden, gebruiken we een
kinetische theorie, de “stralingstransporttheorie”, oorspronkelijk ontwik-
keld voor toepassing op de voortplanting van licht door het heelal. Deze
theorie bevat slechts de energie van het elektromagnetische veld en niet de
fase. Indien de wanorde groot genoeg is, volstaan we met de diffusiebe-
nadering, waarin slechts de totale energiestroom wordt meegenomen en
niet die van individuele lichtstralen.

In sommige gevallen zijn interferentie-effecten van essentieel belang
en kan de fase van het elektromagnetische veld dus niet verwaarloosd
worden. We maken dan gebruik van een verstrooiingstheorie, die de re-
laties tussen in- en uitgaande velden beschrijft door een matrix, de “ver-
strooiingsmatrix”. Om deze matrix voor een gegeven systeem te vinden
zouden we de Maxwellvergelijkingen moeten oplossen. Dit kan nume-
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riek, door de ruimte te discretiseren op een rooster. Analytisch kunnen we
dit probleem omzeilen door gebruik te maken van bepaalde statistische
eigenschappen van grote matrices met toevallig gekozen elementen. Deze
theoretische aanpak heet “toevalsmatrixtheorie” en is oorspronkelijk ont-
wikkeld voor toepassing op verstrooiingsexperimenten in de kernfysica.

In de hoofdstukken 2 en 3 vergelijken we de diffusiebenadering met de
stralingstransporttheorie. Als eerste beschouwen we de transmissie door
een wanordelijke laag, waarbij er een brekingsindexverschil is met de om-
geving. Voor dikke lagen is bekend dat de diffusiebenadering uitstekend
is. Door nu een exacte berekening te geven van hetzelfde systeem in de
stralingstransporttheorie kunnen we nagaan onder welke omstandighe-
den de diffusiebenadering bruikbaar is. Het blijkt dat zelfs voor lagen die
slechts enkele vrije weglengtes dik zijn, dit nog best aardig gaat.

In hoofdstuk 3 beschouwen we een oneindig uitgestrekt wanordelijk
medium, waarin op een zeker moment een korte lichtpuls wordt gege-
nereerd. We bestuderen de intensiteit als functie van tijd en plaats in
het medium. De diffusiebenadering veronderstelt dat licht alle snelheden
kan hebben. Licht heeft echter een constante en eindige snelheid en dus
geeft de diffusiebenadering met name voor kleine tijden een onjuist resul-
taat. Wij hebben een exacte oplossing gevonden voor dit probleem met
behulp van de stralingstransporttheorie, waar de constante lichtsnelheid
wel wordt meegenomen. Een nieuw resultaat is dat de ballistische piek,
bestaande uit het onverstrooide licht, een staart heeft die een gevolg is van
licht dat slechts eenmaal en in de voorwaartse richting is verstrooid.

In hoofdstuk 4 wordt gekeken naar medische toepassingen, de oor-
spronkelijke motivatie voor dit onderzoeksproject. Gebruik makend van
de diffusiebenadering hebben we de invloed van inhomogeniteiten in een
wanordelijk medium op de transmissie bestudeerd. (De toepassing betreft
de detectie met licht van een tumor in een borst, hetgeen veiliger is dan de-
tectie met Röntgenstraling.) Eerst geven we een algemene beschrijving die
het ons mogelijk maakt verschillende soorten objecten te karakteriseren.
Daarna bekijken we wat de invloed is van de randen van het medium op
de gevoeligheid voor objecten, en vergelijken we met experimenten aan
modelsystemen.

In de hoofdstukken 5, 6 en 7 bestuderen we een systeem dat niet al-
leen wanorde bevat, maar ook de mogelijkheid heeft tot het versterken
van licht door gestimuleerde emissie, zoals in een laser. Zo’n systeem
wordt wel een wanordelijke laser genoemd. Interferentie is essentieel en
we gebruiken dus de verstrooiingstheorie, die we uitbreiden om ook ge-
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stimuleerde emissie te bevatten. Voor de reflectiviteit van zo’n systeem
hebben we het verschijnsel van “superreflectie” gevonden, waarbij het ge-
reflecteerde vermogen niet recht evenredig is met het beschenen opper-
vlak, maar juist met het kwadraat daarvan. We hebben ook de transmissie
onderzocht. Wanorde zorgt voor exponentiële afname van de transmis-
sie voor grote lengtes, hetgeen “localisatie” wordt genoemd. Absorptie
versterkt deze exponentiële afval. Het ligt voor de hand te veronder-
stellen dat versterkende systemen precies het tegenovergestelde zouden
doen, namelijk het verzwakken van de exponentiële afval. Hoewel dit
voor korte systemen inderdaad zo is, hebben wij verrassenderwijs gevon-
den dat voor lange systemen versterking in dezelfde mate de localisatie
vergroot als absorptie. Dit volgt uit een dualiteitsrelatie tussen verstrooi-
ingsmatrices met absorptie en met versterking.

In het laatste hoofdstuk bestuderen we het optische analogon van het
elektronische systeem bestaande uit een metaal in contact met een super-
geleider. Het systeem dat we beschouwen is een wanordelijke laag waar-
achter zich een fase-conjugerende spiegel bevindt. Het effect van fase-
conjugatie op een invallende golf lijkt op het omkeren van de tijd, zoals
een elektron aan een supergeleider gereflecteerd wordt als gat (= “tijdsom-
gekeerd elektron”). Dit kan gebruikt worden voor golffront-reconstructie,
als de wanorde niet te groot is. Wij hebben het geval van grote wanorde
onderzocht, zowel met de stralingstransporttheorie als met de verstrooi-
ingstheorie.
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