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Chapter 1

Introduction

A random medium in optics is a medium in which the dielectric function var-
ies randomly with position. Frosted glass is a familiar example. In a laboratory
setting, one can suspend particles in a fluid to achieve strong multiple scattering
with little absorption. On a much larger scale, interstellar clouds and stellar atmo-
spheres provide a random medium for the radiation propagating through them.

For many applications, a classical description of the electromagnetic field is
sufficient. The theory of propagation of classical waves through random media
has been developped extensively in the last two decades [Ish78, She90]. Quantum
effects such as vacuum fluctuations and spontaneous emission of radiation are not
taken into account in these studies. These are the subject of quantum optics, which
however rarely goes beyond one-dimensional scattering.

The essentially three-dimensional, chaotic scattering present in random me-
dia has so far received little attention in the context of quantum optics. This
deficiency is felt particularly strongly for amplifying media (so called “random
lasers”), where the interplay of spontaneous and stimulated emission with chaotic
scattering plays a central role. It is the purpose of this thesis to make a first step
towards a bridging of the gap between random media and quantum optics. In this
introduction we present an overview of some of the concepts that will appear in
more detail in the following chapters.

1
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1.1 Classical electrodynamics

1.1.1 Classical waves

Classical waves allow a simultaneous measurement of amplitude and phase. Clas-
sical electromagnetic waves are described by the Maxwell equations. In a dielec-
tric medium the Fourier component �E(�r ,ω) of the electric field satisfies the wave
equation

� �E(�r ,ω)−graddiv �E(�r ,ω)+ ω
2

c2
ε(�r ,ω) �E(�r ,ω)= 0 , (1.1)

together with the transversality condition

divgradε(�r ,ω) �E(�r ,ω)= 0 . (1.2)

Here c is the speed of light in vacuum and ε(�r ,ω) is the position and frequency
dependent dielectric constant (relative to vacuum).

In a random medium ε(�r ,ω) fluctuates randomly from point to point. The
polarisation of the electric field is randomised and effectively we may work with
a scalar field E(�r ,ω). The scalar wave equation

�E(�r ,ω)+ ω
2

c2
ε(�r ,ω)E(�r ,ω)= 0 (1.3)

is known as the Helmholtz equation.
The dielectric constant is real in the absence of absorption. Absorption adds

a positive imaginary part. If ε = 1+ iε ′′ with ε′′ � 1, then the imaginary part
is related to the absorption rate 1/τa at frequency ω by ωε ′′ = 1/τa. A negative
imaginary part corresponds to amplification by stimulated emission. Spontaneous
emission of radiation cannot be described by a classical wave equation, it requires
a quantisation of the electromagnetic field. That is the topic of the next section,
but first we describe the scattering theory that we will use.

1.1.2 Scattering theory

To formulate a scattering theory, we embed the dielectric medium in a waveguide
(see Fig. 1.1). We assume that ε = 1 outside of the region of length L that con-
tains the dielectric medium. Far from the medium the solutions of the Helmholtz
equation (1.3) have the form

En,±(�r ,ω)= e±ikzφn(x, y) , (1.4)
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Figure 1.1: A long waveguide that is open at both ends and contains the disordered
dielectric medium over a length L (dotted region).

with wave number k = ω/c. The integer n= 1,2, . . . , N is the mode index, and
φn(x, y) is the corresponding transverse mode profile. The total number N of
propagating modes is given by N � πA/λ2 for cross-sectional area A and wave-
length λ = 2π/k. (If we would count the polarisations of the electromagnetic
field, the number N would be twice as large.) Evanescent waves (solutions with
imaginary k) do not play a role far from the dielectric medium.

A wave at frequency ω incident on the medium from the left can be represen-
ted by

E(�r ,ω)=
N∑

n=1

cin,L
n En,+(�r ,ω) , (1.5)

with complex coefficients cin,L
n . Similarly, a wave reflected from the medium at

the left has the form

E(�r ,ω)=
N∑

n=1

cout,L
n En,−(�r ,ω) . (1.6)

In the same way we can introduce coefficients cin,R
n and cout,R

n for incoming and
outgoing waves at the right of the medium (see Fig. 1.2).

The coefficients for incoming and outgoing waves are related by a linear trans-

cout,R

cin,R

cout,L

cin,L

Figure 1.2: Incoming and outgoing waves are described by four sets of complex
coefficients cn. The coefficients for incoming and outgoing waves are related by
the scattering matrix.
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t

t ′
r r ′

Figure 1.3: The scattering matrix Scan be decomposed into transmission matrices
(t and t ′) and reflection matrices (r and r ′).

formation,

(
cout,L

1 , . . . ,cout,L
N ,cout,R

1 , . . . ,cout,R
N

)T= S· (cin,L
1 , . . . ,cin,L

N ,cin,R
1 , . . . ,cin,R

N

)T
. (1.7)

The 2N×2N-matrix S is called the scattering matrix. Frequently we will adopt
the convention that modes 1, . . . , N are to the left of the sample and modes N+
1, . . . ,2N to the right. We can write Eq. (1.7) in a short-hand form,

cout = Scin . (1.8)

This is the input-output relation for classical waves.
The scattering matrix S can be decomposed into N × N submatrices (see

Fig. 1.3), the reflection matrices r and r ′, and the transmission matrices t and
t ′,

S=
(

r t ′
t r ′

)
. (1.9)

For a time-reversal invariant system, S equals its transpose ST , thus r = r T ,
r ′ = r ′T , and t = t ′T . In contrast to electronic systems, where time-reversal sym-
metry is easily broken by a magnetic field, time-reversal symmetry is very diffi-
cult to break for optical systems. In the absence of absorption or amplification,
hence for a real dielectric constant, current conservation dictates that Sis a unitary
matrix (SS† equals the unit matrix 1). This implies additional relations between
reflection and transmission matrices.

1.2 Quantisation of the electromagnetic field

1.2.1 Wave equation

In a quantum mechanical description the electric field Ê(�r , t) is an operator in
Heisenberg representation, canonically conjugate to the vector potential Â(�r , t).
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(We assume the Coulomb gauge, in which Ê = −∂ Â/∂t , and as before treat the
case of a scalar wave.) The canonical commutation relation is

[Ê(�r , t), Â(�r ′, t)]= ih̄

ε0
δ(�r −�r ′) . (1.10)

In Fourier representation,

Ê(�r , t)= 1√
2π

∫ ∞
0

dω Ê(�r ,ω)e−iωt +H. c. , (1.11)

where H. c. stands for Hermitian conjugate. The frequency dependent operators
Ê(�r ,ω) do not have any simple commutation relation.

The Helmholtz equation (1.3) for the classical fields carries over to the oper-
ators,

�Ê(�r ,ω)+ ω
2

c2
ε(�r ,ω)Ê(�r ,ω)= f̂ (�r ,ω)

ω

c2

√
h̄ε′′(�r ,ω)

π
, (1.12)

but with an additional fluctuating source on the right-hand side [Gru96a, Mat95,
Mat97]. It describes the effects of spontaneous emission, that are not included
in the classical wave equation. The operators f̂ satisfy the bosonic commutation
relations

[ f̂ (�r ,ω), f̂ †(�r ′,ω′)]= δ(�r −�r ′)δ(ω−ω′) , (1.13)

[ f̂ (�r ,ω), f̂ (�r ′,ω′)]= 0 . (1.14)

These commutation relations ensure that the solution of the wave equation (1.12),
Fourier transformed into the time domain, satisfies the original commutation re-
lations (1.10).

1.2.2 Input-output relations

The representation (1.5) of an incoming (or outgoing) classical wave in terms of
a sum over modes carries over to the operators,

Ê(�r ,ω)=
N∑

n=1

âin,L
n En,+(�r ,ω) , (1.15)

but now instead of complex coefficients cn we have operators ân. These are anni-
hilation operators, their Hermitian conjugates â†

n being creation operators. They
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satisfy the bosonic commutation relations

[âx
n(ω), âx

m
†(ω′)]= δnmδ(ω−ω′) , (1.16)

[âx
n(ω), âx

m(ω′)]= 0 , (1.17)

where x stands for “in” or “out”, and the mode indices range from 1 to 2N. Cre-
ation (or annihilation) operators for incoming states commute among themselves,
as do the operators for outgoing states, but creation operators for incoming states
do not commute with creation operators for outgoing states.

The same scattering matrix S that related the incoming and outgoing classical
waves now relates the incoming and outgoing creation or annihilation operators,

âout = S· âin+U · b̂+V · ĉ† , (1.18)

but there are two additional fluctuating source terms. These sources represent the
effects of the fluctuating source term f̂ in the wave equation (1.12). The operators
b̂ and ĉ satisfy bosonic commutation relations, just like the operators â in and âout.
This implies a relationship between the matrices U , V and the scattering matrix
S,

UU †−V V† = 1−SS† . (1.19)

Eq. (1.19) represents the fluctuation-dissipation theorem for this problem. In an
absorbing system, the matrix product SS† is sub-unitary, hence V can be set equal
to 0 and UU † = 1−SS†. In an amplifying system, SS† is super-unitary, hence U
can be set equal to 0 and V V† = SS†−1.

1.3 Photodetection

A photodetection experiment provides information on the quantum mechanical
state of the electromagnetic radiation. It plays a central role in this thesis.

1.3.1 Statistical description

A photodetector absorbs n photons within a time interval t . If this experiment is
repeated many times with the same incident light field, a sequence of fluctuating
values of the photocount n will be generated. The photocount distribution p(n)
gives the probability that n photons are detected. It has the moments

nk =
∞∑

n=0

nk p(n) . (1.20)
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We also introduce the factorial moments

n(k) = n · (n−1) · (n−2) · · · (n−k+1) . (1.21)

In particular, n(1) = n and n(2) = n2−n.
Cumulants are constructed from the moments and the factorial moments in

the usual way. For example, the second cumulant (or variance) is n2− n2 and
the second factorial cumulant is n(2)− [n(1)]2. (The first cumulant equals the first
factorial cumulant equals the mean n.) Cumulants are convenient to characterise
a Gaussian distribution, because only the first two are non-zero. Factorial cumu-
lants are convenient to characterise a Poisson distribution, because only the first
is non-zero.

It is useful to work with generating functions. The moment generating func-
tion Fm is defined by

Fm(ξ )= eξn =
∞∑

n=0

eξn p(n)=
∞∑

p=0

ξ p

p!
np . (1.22)

In a similar manner the factorial moments can be generated from the factorial
moment generating function Ff, defined by

Ff(ξ )=
∞∑

n=0

(1+ ξ )n p(n)=
∞∑

p=0

ξ p

p!
n(p) . (1.23)

Note the relation Fm(ξ )= Ff(eξ −1).
The logarithm of the moment generating function generates the cumulants,

and the same applies to the factorial moments and factorial cumulants. If we
denote by κp the pth factorial cumulant, then

ln Ff(ξ )=
∞∑

p=1

κpξ
p

p!
. (1.24)

1.3.2 Photocount distribution

In the limit t→∞ of a long counting time, we may assume a frequency resolved
measurement within an interval∆= 2π/t around some frequency ω p = p∆. We
assume that all outgoing modes at one end of the waveguide are detected with unit
efficiency by the photodetector (see Fig. 1.4). For simplicity we assume in this
introduction that there is no outgoing radiation at the other end of the waveguide,
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aout
1

aout
N

Figure 1.4: A photodetector absorbs the photons in modes k = 1, . . . , N within a
time t .

so that the scattering matrix has dimension N × N instead of 2N × 2N. The
operator of the photocount is

n̂=
N∑

n=1

âout
n

†(ωp)âout
n (ωp) . (1.25)

[Because we have discretised the frequency, the commutation relation
[â†

n(ωp), âm(ωq)] = δnmδpq now contains a Kronecker delta δpq instead of a delta
function δ(ωp−ωq).]

The moments are np = 〈n̂p〉, where 〈· · · 〉 indicates a quantum mechanical av-
erage over the state of the electromagnetic field. The moment generating function
is

Fm(ξ )= 〈eξ n̂〉 . (1.26)

We can write this as a normally ordered expectation value 〈: · · · :〉, where normal
ordering means that all creation operators are moved to the left of the annihilation
operators. We use the identity

〈eξ â†â〉 = 〈: exp
[
(eξ −1)â†â

]
:〉 , (1.27)

valid for any bosonic operator â. Hence

Fm(ξ )= 〈: exp
[
(eξ −1)n̂

]
:〉 . (1.28)

The factorial moment generating function is thus given by

Ff(ξ )= 〈: eξ n̂ :〉 . (1.29)

This is for a single frequency ωp = p∆. Since different frequencies are inde-
pendent, the generating function factorises,

Ff(ξ )=
∏

p

〈: exp
[
ξ

N∑
n=1

âout
n

†(ωp)âout
n (ωp)

]
:〉 . (1.30)
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By taking the logarithm, and converting
∑

p→
∫

dω/∆ = (t/2π)
∫

dω, we find
the factorial cumulant generating function in the long-time limit,

ln Ff(ξ )= t

2π

∫ ∞
0

dω ln〈: exp
[
ξ

N∑
n=1

âout
n

†(ω)âout
n (ω)

]
:〉 . (1.31)

There exists a more general formula due to Glauber, Kelley, and Kleiner [Gla63,
Kel64], that is valid for arbitrary counting times t , and for detection efficiencies
αn different from unity. The photocount operator becomes

n̂= 1

2π

∫ t

0
dt ′

∫ ∞
0

dω
∫ ∞

0
dω′

N∑
n=1

αneit ′(ω−ω′)âout
n

†(ω)âout
n (ω′) , (1.32)

and the factorial moment generating function Ff(ξ )= 〈: eξ n̂ :〉, just as in Eq. (1.29).
The corresponding probability to count m photons within time t is given by

p(m)= 1

m!
〈: n̂me−n̂ :〉 . (1.33)

It looks like a Poisson distribution, but it is not because n̂ is an operator and not a
c-number.

1.4 Applications

1.4.1 Black-body radiation

As a first simple application we consider the case of black-body radiation. A
black body is characterised by complete absorption, so S= 0 and U = 1, V = 0.
The operator âout

n can therefore be identified with the operator b̂n. The black body
is in thermal equilibrium at temperature T . The average of the operators b̂ is

〈b̂†
k(ω)b̂l (ω′)〉 = δklδ(ω−ω′) f (ω, T ) , (1.34)

with f (ω, T) the Bose-Einstein function,

f (ω, T)=
[

exp

(
h̄ω

kBT

)
−1

]−1

, (1.35)

also referred to as the Planck function in this context. Higher moments follow
from the factorisation rule of Gaussian averages,

〈b̂†
i1
· · · b̂†

iM
b̂j1 · · · b̂jM 〉 =

∑
σ

M∏
k=1

〈b̂†
ik

b̂iσ (k)〉 , (1.36)
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where σ is a permutation of the integers 1,2, . . . , M .
Substituting âout → b̂ in Eq. (1.31) and carrying out the Gaussian averages,

we find

ln Ff(ξ )=−t N
δω

2π
ln
[
1− ξ f (ω, T)

]
, (1.37)

where we have assumed a frequency resolved measurement in an interval δω
around ω. The corresponding probability distribution can be reconstructed from
the inversion formula

p(n)= lim
ξ→−1

1

n!

dn

dξn
Ff(ξ ) . (1.38)

The result is known as a negative binomial distribution,

p(n)=
(

n+ν−1
n

)
f n(ω, T)

[
1+ f (ω, T)

]−n−ν
. (1.39)

The quantity ν = Ntδω/2π is the number of degrees of freedom of the distribu-
tion.

The mean and variance of the photocount are given by

n= ν f (ω, T) , (1.40)

varn= ν f (ω, T)
[
1+ f (ω, T)

]= n
(
1+ n

ν

)
. (1.41)

This is Einstein’s formula of black-body radiation [Ein09]. For a Poisson pro-
cess the variance would be equal to the mean. That would apply to uncorrelated
classical particles. Because of Bose statistics the variance is bigger by a factor
1+n/ν. This is called photon bunching. The source of correlations is the indistin-
guishability of the particles. It has no classical analogue. In a typical black body
the factor 1+n/ν is close to 1, because n/ν = f � 1. For example, f ≈ 10−3

at optical frequencies and T = 3000K, and f ≈ 10−2 at infrared frequencies and
room temperatures. Much larger effects of photon bunching can be achieved in
an amplifying medium, as we will discuss shortly.

1.4.2 Grey-body radiation

This thesis is about media that are not a black body, hence for which the scattering
matrix S �= 0. If the medium is still in thermal equilibrium it is sometimes called
a “grey body”. The generalisation of Eq. (1.37) to grey-body radiation is [Bee98]

ln Ff(ξ )=−t
δω

2π
lndet

[
1− (1−SS†)ξ f (ω, T )

]
. (1.42)
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The mean photocount is given by

n= tδω

2π
f (ω, T) tr(1−SS†) . (1.43)

This is Kirchhoff’s law of thermal radiation [Kir60]. The variance can be written
in the form

varn= n̄
(
1+ n̄

νeff

)
, (1.44)

with νeff the effective number of degrees of freedom,

νeff

ν
=

[
tr(1−SS†)

]2

N tr(1−SS†)2
� 1 . (1.45)

A grey body has a smaller number of degrees of freedom (at a given value of N, t ,
and δω) than a black body. Intermode scattering is essential for this: There is no
reduction if N = 1 or if S is diagonal. This will be a recurrent theme throughout
this thesis. The interplay between absorption (or amplification) and intermode
scattering causes a qualitative change in the state of the radiation and hence in the
photodetection statistics.

1.4.3 Linear amplifier

A linear amplifier can be described as a system in thermal equilibrium at a negat-
ive temperature [Jef93, Mat97]. The effective temperature Teff < 0 is fixed by the
degree of population inversion of the pair of atomic levels (with separation h̄ω0)
responsible for the amplification by stimulated emission at frequency ω0. If the
mean number of atoms in the upper (lower) state is Nupper (Nlower), then

f ≡
[

exp

(
h̄ω0

kBTeff

)
−1

]−1

= Nupper

Nlower−Nupper
. (1.46)

A complete population inversion (Nlower = 0) corresponds to T approaching
zero from below and f →−1. The quantity f for an amplifying medium is also
referred to as the population inversion factor. Now we can understand why the
effects of photon bunching are so much more pronounced in an amplifying me-
dium than in an absorbing medium: f can be of order unity at room temperature
for amplification, while f � 1 for absorption.
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The formulas for grey-body radiation carry over to a linear amplifier, with the
above definition of f . For example, the mean photocount is still given by

n= tδω

2π
f tr(1−SS†) . (1.47)

It is positive, as it should, because f < 0 at negative temperature but also tr(1−
SS†)< 0 (because S is super-unitary in an amplifying medium). The reduction of
the number of degrees of freedom remains given by Eq. (1.45).

1.5 Random-matrix theory

To evaluate the photocount distribution of a given system we need to know its
scattering matrix. In principle, that requires a solution of the classical wave equa-
tion, which in general can only be done numerically. In a random medium the
scattering matrix depends sensitively on the location of the scattering centra. It is
therefore natural to ask not for the scattering matrix of a given system, but for the
statistical distribution of the scattering matrix in an ensemble of random media
with different locations of the scattering centra.

Random-matrix theory is the theoretical tool than can give this information
[Meh90, Bee97, Guh98]. It applies not only to random media, but more generally
to systems in which scattering is chaotic. Chaotic scattering can result from ran-
domly placed impurities, but it can also result from irregularly shaped boundaries.
In fact, even scattering from simple regular shapes can lead to chaos. An example
of a cavity with chaotic scattering is shown in Fig. 1.5.

In ray optics one can characterise chaotic scattering by the exponential diver-
gence of rays starting at the same point in space in almost the same direction. In

85mm
170mm

Figure 1.5: Cavity in which the scattering is chaotic. The dimensions are for the
microwave cavity used in Ref. [Alt97].
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Figure 1.6: Comparison of the spacing of modes in the microwave cavity of
Fig. 1.5 with Wigner’s surmise (1.48) [solid line] and the Poisson distribu-
tion (1.49) [dashed line]. The mean level spacing has been set to ∆ = 1, and
non-chaotic “bouncing-ball” modes have been eliminated from the experimental
histogram. From Ref. [Alt97].

wave optics one should look at the spacing in frequency of cavity modes. Cha-
otic scattering leads to mode repulsion, meaning that the probability P(s) to find
a spacing s much smaller than the mean spacing ∆ vanishes linearly with s. In
contrast, for non-chaotic, or regular scattering P(s) tends to a non-zero constant
for s→ 0.

Random-matrix theory represents the spectrum of a chaotic cavity by the ei-
genvalues of a real symmetric matrix H with independent, Gaussian distributed
elements [Boh84]. The distribution of the spacings is then given by Wigner’s
surmise [Wig56],

P(s)∝ se−πs2/4∆2
. (1.48)

In contrast, for regular scattering the spectrum is represented by independent ei-
genvalues (not independent matrix elements). The distribution of spacings is then
the Poisson distribution

P(s)∝ e−s/∆ . (1.49)

In Fig. 1.6 we show the experimental data [Alt97] for a chaotic microwave cavity
that confirms Wigner’s surmise.
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1.5.1 Gaussian ensemble

The ensemble of random matrices H introduced in the previous subsection to
describe a chaotic cavity is called the Gaussian ensemble. Its distribution is

P(H )∝ exp
(−a tr H 2

)
. (1.50)

The coefficient a= M(π/∆)2 is determined by the mean spacing∆ of the modes
and by the dimension M of the matrix H . (We take M →∞ at the end of the
calculation.) By integrating out the eigenvectors, one arrives at the distribution of
the eigenvalues,

P({En})∝
∏
i< j

|Ei − Ej |
∏

k

exp
(−aE2

k

)
. (1.51)

The term |Ei − Ej | is the Jacobian for the change of variables from matrix ele-
ments to eigenvalues. It is responsible for the level repulsion discussed in the
previous subsection.

The eigenvectors constitute the matrix U that diagonalises H =
U diag(E1, E2, . . . , EM )U−1. The matrix U is orthogonal, UU T = 1. (For that
reason the ensemble of H is also called the Gaussian orthogonal ensemble; if
H is complex Hermitian, instead of real symmetric, the matrix U is unitary, in-
stead of orthogonal, and one speaks of the Gaussian unitary ensemble.) In the
limit M →∞ the elements of U become approximately uncorrelated Gaussian

I

P
(I

)

1086420

1

0.1

0.01

0.001

Figure 1.7: Comparison of the Porter-Thomas distribution (1.52) [dashed line]
with the intensity distribution measured on the two-dimensional microwave cavity
shown in the inset. From Ref. [Kud95].
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distributed with zero mean and variance 1/M . The corresponding distribution of
the (normalised) intensity I = M|Unm|2 is known as the Porter-Thomas distribu-
tion [Por65],

P(I )∝ 1√
I

e−I /2 . (1.52)

Like Wigner’s surmise, it has been verified experimentally, see Fig. 1.7.

1.5.2 Circular ensemble

A cavity can be coupled to the outside via an opening connected to a waveguide
supporting N propagating modes (see Fig. 1.8). We introduce the waveguide
as a theoretical device to obtain a finite-dimensional (N× N) scattering matrix
S. Qualitatively the results should be the same as without a waveguide, if one
replaces N by the area A of the opening divided by λ2/π.

Scattering inside the cavity remains chaotic if the opening to the outside is
sufficiently small. The mean dwell time τdwell � 1/N∆ of a photon inside the
cavity should be long compared to the ergodic time τerg required for exploration
of the chaotic phase space. In practice this is satisfied if the linear dimension of
the opening is small compared to the linear dimension of the cavity.

From a random-matrix theory for H we can create a random-matrix theory
for S. The matrices Sand H are related by [Ver85]

S(ω)= 1−2πiW† 1

H − h̄ω− iπW W†
W , (1.53)

Wmn= π−1/2δmn , m= 1, . . . , M , n= 1, . . . , N . (1.54)

The resulting scattering matrix is unitary (because of flux conservation) and sym-
metric (because of time-reversal symmetry). The Gaussian ensemble for H im-

Figure 1.8: A chaotic cavity is connected to the outside by a waveguide. The
dynamics can be chaotic due to scattering at randomly placed scattering centra
(left) or due to the shape of the cacity (right).
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ImωImωImω

ReωReωReω
0 00

Figure 1.9: Poles of the scattering matrix in the complex frequency plane. In
the absence of amplification, all poles lie in the lower half of the complex plane
(left). Amplification shifts the poles upward by an amount 1/2τa (centre). The
lasing threshold is reached when the first pole hits the real axis (right).

plies that at any fixed frequency ω, the matrix S is uniformly distributed [Bro95],

P(S)= constant , (1.55)

among the unitary symmetric N×N matrices. The distribution (1.55) represents
the circular (orthogonal) ensemble.

The effects of absorption or amplification with rate 1/τa are included in
Eq. (1.53) by

S(ω)= 1−2πiW† 1

H − h̄ω− iπW W†± i/2τa
W , (1.56)

where the + sign is for amplification and the − sign for absorption. Causality
requires that all the poles of S(ω) lie in the lower half of the complex plane (i. e.,
they should have a negative imaginary part). This is guaranteed if there is no
amplification. Amplification pushes the poles upward by an amount 1/τa (see
Fig. 1.9). We have reached the laser threshold when the first pole crosses the real
axis. Then the linear theory presented here breaks down.

1.5.3 Disordered waveguide

Imagine connecting many chaotic cavities in series, via segments of N-mode
waveguides (see Fig. 1.10). Scattering in this structure is still chaotic, but the
dwell time is in general not long enough to explore the entire available phase
space. Most photons will explore only a fraction of the total length L of the
structure. This represents a theorist’s model for a waveguide geometry contain-
ing randomly placed scattering centra. In fact, one can show rigorously that the
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N

N

Figure 1.10: A series of chaotic cavities (top) is statistically equivalent to a dis-
ordered waveguide (bottom) provided the latter allows the same number N of
propagating modes as the waveguides connecting the cavities. (For the series of
cavities the mean free path is of the order of the linear dimension of the cavity.)

physics on long enough length scales (long compared to the mean free path l ) is
the same as for a true waveguide [Guh98].

The circular ensemble of the scattering matrix of one individual cavity allows
one to construct the probability distribution of the scattering matrix of the entire
structure. The result does not have a simple form (see Ref. [Bee97] for a review),
so here we will restrict ourselves to a qualitative discussion of the three transport
regimes.

• For L � l the sample is ballistic. Scattering can be neglected and the trans-
mission probability T through the waveguide is close to unity.

• For l � L � Nl the sample is diffusive. The transmission probability de-
creases linearly with length, T ∝ l/L . This regime exists only for N� 1.
(There is no diffusive regime in a single-mode waveguide.)

• For L � Nl localisation takes place. The transmission probability drops
exponentially∝ exp(−L/ξloc) where ξloc � Nl is the localisation length.

In Fig. 1.11 we show the length dependence of the transmission probability
through a disordered waveguide, computed by solving the Helmholtz equation
numerically on a two-dimensional square lattice. We see the diffusive regime of
linearly decreasing T followed by the localised regime of exponential decrease.
The plot also shows another distinguishing feature of the diffusive and localised
regimes. The relative fluctuations of T are much larger in the localised regime
than in the diffusive regime. In the diffusive regime the root-mean-squared value
of the fluctuations is smaller than the mean transmission probability by a factor
1/
√

N. In the localised regime the fluctuations are of the same order of magnitude
as the mean.



18 CHAPTER 1. INTRODUCTION

1/T ∼ 1+ L/ l
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Figure 1.11: Numerically computed transmission probability T through a dis-
ordered waveguide allowing N = 25 propagating modes. The approximation
1/T ∼ 1+ L/ l is valid in the diffusive and ballistic regimes L � Nl (top), the
approximation T ∝ exp(−L/ξloc) is valid in the localised regime L � Nl (centre).
The top two panels are averages over many realisations of the disorder. The bot-
tom panel is for a single realisation.Fluctuations are small in the diffusive regime
and increase in the localised regime.
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1.6 Random laser and Petermann factor

Although in this thesis we will not go beyond the laser threshold, our investigation
was motivated by experiments on so called “random lasers” [Wie95]. We discuss
the differences with “traditional lasers” in this section.

A traditional laser consists of a pumped, amplifying medium that is sand-
wiched between two mirrors (see Fig. 1.12, left). One of the two mirrors has a
nonvanishing transmission probability γ so that the light generated in the medium
can escape. The mirrors have two effects. Firstly, they lower the lasing threshold
by increasing the average time spent by a photon in the amplifying medium. If L
is the length of the laser, the effective length becomes L eff � 2L/γ . Lasing occurs
if the amplification rate 1/τa exceeds c/L eff, hence when L exceeds the critical
length Lc � 1

2γ cτa.
Secondly, the mirrors create narrow cavity modes that are responsible for

a narrow linewidth Γ of the laser (much smaller than the amplification band-
width). The quantum-limited linewidth is given by the Schawlow-Townes for-
mula [Sch58]

δω = Γ
2

0

2I
, (1.57)

where I is the outgoing intensity (in photons/sec) and Γ0 � c/Leff is the width of
the lasing cavity mode.

In a random laser (Fig. 1.12, right), feedback is due to multiple scattering
within the medium instead of being due to mirrors. For a medium with mean
free path l (diffusion constant D = 1

3 cl) the typical time spent by a photon in
the medium is L2/D, so that the effective length becomes L eff � 3L2/ l . The
critical length is now L c � √Dτa. Such a mirrorless laser was first proposed
by Letokhov [Let67] as a mechanism for laser action in interstellar clouds. The
first laboratory experiments were carried out very recently [Cao99], see Fig. 1.13.
An important distinction with traditional lasers is that the width Γ0 of the cavity

Figure 1.12: In a traditional laser (left) mirrors at the ends of the amplifying
medium reflect most of the intensity back into the medium. In a random laser
(right) this feedback is provided by multiple scattering with disorder inside the
medium.
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Figure 1.13: Top: Frequency dependence of the intensity I = n(Ntδω/2π)−1 of
the radiation from a random laser, as measured by Cao et al. [Cao99]. The system
consists of ZnO power film of thickness 5µm, moderately pumped by a Nd:YAG
laser. Bottom: Intensity calculated from Eqs. (1.47) and (1.56), with f = −1
(complete population inversion), N= 5, and a Lorentzian frequency profile for the
amplification rate with width 5∆ and maximum 1/τa=∆/40π. In the experiment
the medium was above the laser threshold, while in the calculation it was below so
the comparison is not complete. (A complete comparison would require inclusion
of the non-linear effects of mode competition.)
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modes in a random laser is in general much larger than their spacing ∆, because
the confinement by disorder is not as effective as the confinement by mirrors.
(The ratio Γ0/∆ is of order Nl/L , which is typically � 1.) Overlapping cavity
modes lead to an increase of the laser linewidth above the Schawlow-Townes
value (1.57), by an amount known as the Petermann factor K [Pet79, Sie89a,
Sie89b],

δω = K
Γ 2

0

2I
. (1.58)

Random-matrix theory is well suited to calculate the statistics of the Petermann
factor in a random laser.

1.7 About this thesis

We conclude the introduction with an overview of the topics treated in this thesis.

Chapter 2: Excess noise for coherent radiation propagating through
amplifying random media

Classically a signal can be amplified by an arbitrary factor without a deterioration
of the signal-to-noise ratio. This is reflected in the classical input-output rela-
tion (1.8). Quantum-mechanically amplification introduces additional noise into
the system — as demanded by the fluctuation-dissipation relation (1.19) and the
quantum input-output relation (1.18).

A coherent state is the closest quantum-optical equivalent to a classical light
beam. Its fluctuations have Poisson statistics, as for independent classical particles.
If we are interested in the quantum-optical effects of interaction between light and
an amplifying medium, a coherent state is thus the most obvious starting point.

Chapter 3: Propagation of squeezed radiation through amplifying or
absorbing random media

After having examined the propagation of “classical” coherent radiation, the lo-
gical next step is an extension to states of the radiation field that are nonclassical
by nature. Nonclassical states typically have an intensity noise that is smaller than
for independent classical particles, a phenomenon referred to as “squeezing” of
the state. The intensity fluctuations are “squeezed” (=reduced) at the expense of
the phase fluctuations — which become larger.
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In the previous chapter we have seen that a quantum-mechanical treatment in-
troduces additional noise into the radiation field. This noise does not discriminate
between intensity and phase and hence destroys the squeezing of the radiation, in
a way which we will calculate.

Chapter 4: Photon shot noise of localised waves

The previous two chapters deal with the photodetection statistics of a disordered
waveguide in the diffusive transport regime. The localised regime is addressed in
Chapter 4. We calculate the noise power, which is proportional to the variance of
the photocount distribution. For Poisson statistics the noise power P equals the
mean current Ī .

The ratio P/ Ī is known as the Fano factor. We show that, for a coherent
incident beam, the Fano factor reaches a universal limit of 1+ 3

2 f once the length
of the waveguide exceeds the absorption length. Localisation has no effect on
this limiting value. This is the optical analogue of the universal 1

3 suppression
(P/ Ī → 1

3 ) of the shot noise in electronic systems [Bee92, Nag92].

Chapter 5: Long-range correlation of thermal radiation

So far we have considered the photocounting statistics measured by a single pho-
todetector. The bosonic nature of the radiation leads to correlations in the pho-
tocount of two different photodetectors. This effect was discovered by Hanbury-
Brown and Twiss [HB56], who used it to measure the angular aperture of a star.
(The degree of correlation is sensitive to the aperture, even if the aperture cannot
be resolved directly.) The correlation of radiation from a black body disappears if
the detectors are separated by more than a coherence length. We have found that
for a grey body a residual long-range correlation remains, that is negligibly small
for the radiation from a star, but might well be observable in a laboratory setting.

Chapter 6: Quantum limit of the laser linewidth in chaotic cavities

We have introduced the notion of the Petermann factor in Sec. 1.6, as the excess
noise of a laser due to overlapping cavity modes. Another, equivalent way of
saying this is that the excess noise is due to non-orthogonality of the cavity modes.
In the final chapter of this thesis we develop a complete theory for the statistical
distribution of the Petermann factor in a chaotic cavity coupled to the outside via a
small opening. The Petermann factor is found to scale as

√
N, with N the number

of modes radiating through the opening.



Chapter 2

Excess noise for coherent radiation
propagating through amplifying
random media

2.1 Introduction

The coherent radiation emitted by a laser has a noise spectral density P equal
to the time-averaged photocurrent Ī . This noise is called photon shot noise, by
analogy with electronic shot noise in vacuum tubes. If the radiation is passed
through an amplifying medium, P increases more than Ī because of the excess
noise due to spontaneous emission [Hen96]. For an ideal linear amplifier, the
(squared) signal-to-noise ratio Ī 2/P drops by a factor of 2 as one increases the
gain. One says that the amplifier has a noise figure of 2. This is a lower bound on
the excess noise for a linear amplifier [Cav82].

Most calculations of the excess noise assume that the amplification occurs in
a single propagating mode. (Recent examples include work by Loudon and his
group [Jef93, Mat97].) The minimal noise figure of 2 refers to this case. Gen-
eralisation to amplification in a multimode waveguide is straightforward if there
is no scattering between the modes. The recent interest in amplifying random
media [Wie97] calls for an extension of the theory of excess noise to include
intermode scattering. Here we present such an extension.

Our central result is an expression for the probability distribution of the photo-
count in terms of the transmission and reflection matrices t and r of the multimode
waveguide. (The noise power P is determined by the variance of this distribution.)
Single-mode results in the literature are recovered for scalar t and r . In the ab-

23
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Figure 2.1: Coherent light (thick arrow) is incident on an amplifying medium
(shaded), embedded in a waveguide. The transmitted radiation is measured by a
photodetector.

sence of any incident radiation our expression reduces to the known photocount
distribution for amplified spontaneous emission [Bee98]. We find that intermode
scattering strongly increases the excess noise, resulting in a noise figure that is
much larger than 2.

We present explicit calculations for two types of geometries, waveguide and
cavity, distinguishing between photodetection in transmission and in reflection.
We also discuss the parallel with absorbing media. We use the method of random-
matrix theory [Bee97] to obtain the required information on the statistical proper-
ties of the transmission and reflection matrices of an ensemble of random media.
Simple analytical results follow if the number of modes N is large (i.e., for high-
dimensional matrices). Close to the laser threshold, the noise figure F exhibits
large sample-to-sample fluctuations, such that the ensemble average diverges. We
compute for arbitrary N � 2 the distribution p(F ) of F in the ensemble of dis-
ordered cavities, and show that F = N is the most probable value. This is the
generalisation to multimode random media of the single-mode result F = 2 in
the literature.

2.2 Formulation of the problem

We consider an amplifying disordered medium embedded in a waveguide that
supports N(ω) propagating modes at frequency ω (see Fig. 2.1). The amplifica-
tion could be due to stimulated emission by an inverted atomic population or to
stimulated Raman scattering [Hen96]. A negative temperature T < 0 describes
the degree of population inversion in the first case or the density of the material
excitation in the second case [Jef93]. A complete population inversion or van-
ishing density corresponds to the limit T → 0 from below. The minimal noise
figure mentioned in the introduction is reached in this limit. The amplification
rate 1/τa is obtained from the (negative) imaginary part ε ′′ of the (relative) dielec-
tric constant, 1/τa = ω|ε′′|. Disorder causes multiple scattering with rate 1/τs and
(transport) mean free path l = cτs (with c the velocity of light in the medium).
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We assume that τs and τa are both� 1/ω, so that scattering as well as amplifica-
tion occur on length scales large compared to the wavelength. The waveguide is
illuminated from one end by monochromatic radiation (frequency ω0, mean pho-
tocurrent I0) in a coherent state. For simplicity, we assume that the illumination
is in a single propagating mode (labelled m0). At the other end of the waveguide,
a photodetector detects the outcoming radiation. We assume, again for simpli-
city, that all N outgoing modes are detected with equal efficiency α. The case of
single-mode detection is considered in Appendix 2.A.

We denote by p(n) the probability to count n photons within a time τ . Its
first two moments determine the mean photocurrent Ī and the noise power P,
according to

Ī = 1

τ
n , P = lim

τ→∞
1

τ

(
n2−n2

)
. (2.1)

[The definition of P is equivalent to P = ∫∞
−∞ dt δ I (0)δ I (t), with δ I = I − Ī the

fluctuating part of the photocurrent.] It is convenient to compute the generating
function F (ξ ) for the factorial cumulants κ j , defined by

F (ξ )=
∞∑

j=1

κj ξ
j

j !
= ln

[ ∞∑
n=0

(1+ ξ )n p(n)
]

. (2.2)

One has n= κ1, n2 = κ2+κ1(1+κ1).
The outgoing radiation in mode n is described by an annihilation operator

aout
n (ω), using the convention that modes 1,2, . . . , N are on the left-hand side of

the medium and modes N+1, . . . ,2N are on the right-hand side. The vector aout

consists of the operators aout
1 ,aout

2 , . . . ,aout
2N . Similarly, we define a vector ain for

incoming radiation. These two sets of operators each satisfy the bosonic com-
mutation relations

[an(ω),a†
m(ω′)]= δnmδ(ω−ω′) , [an(ω),am(ω′)]= 0 , (2.3)

and are related by the input-output relations [Jef93, Mat95, Gru96b]

aout(ω)= S(ω)ain(ω)+V(ω)c†(ω) . (2.4)

We have introduced the 2N×2N scattering matrix S, the 2N×2N matrix V , and
the vector c of 2N bosonic operators. The scattering matrix Scan be decomposed
into four N×N reflection and transmission matrices,

S=
(

r ′ t ′
t r

)
. (2.5)
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Reciprocity imposes the conditions t ′ = tT , r = r T , and r ′ = r ′T .
The operators c account for spontaneous emission in the amplifying medium.

They satisfy the bosonic commutations relation (2.3), which implies that

V V† = SS†−1 . (2.6)

Their expectation values are

〈cn(ω)c†
m(ω′)〉 = −δnmδ(ω−ω′) f (ω, T) , (2.7)

with the Bose-Einstein function

f (ω, T)= [
exp(h̄ω/kBT)−1

]−1
(2.8)

evaluated at negative temperature T (< 0).

2.3 Calculation of the generating function

The probability p(n) that n photons are counted in a time τ is given by [Gla63,
Kel64]

p(n)= 1

n!
〈: Wne−W :〉 , (2.9)

where the colons denote normal ordering with respect to aout, and

W = α
∫ τ

0
dt

2N∑
n=N+1

aout
n

†(t)aout
n (t) , (2.10)

aout
n (t)= (2π)−1/2

∫ ∞
0

dω e−iωtaout
n (ω) . (2.11)

The generating function (2.2) becomes

F (ξ )= ln〈: eξW :〉 . (2.12)

Expectation values of a normally ordered expression are readily computed
using the optical equivalence theorem [Man95]. Application of this theorem to
our problem consists in discretising the frequency in infinitesimally small steps of
∆ (so that ωp= p∆) and then replacing the annihilation operators a in

n (ωp),cn(ωp)
by complex numbers ain

np, cnp (or their complex conjugates for the corresponding
creation operators). The coherent state of the incident radiation corresponds to a
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non-fluctuating value of ain
np with |ain

np|2 = δnm0δpp02πI0/∆ (with ω0 = p0∆). The
thermal state of the spontaneous emission corresponds to uncorrelated Gaussian
distributions of the real and imaginary parts of the numbers cnp, with zero mean
and variance 〈(Recnp)2〉 = 〈(Imcnp)2〉 = − 1

2 f (ωp, T ). (Note that f < 0 for T <
0.) To evaluate the characteristic function (2.12) we need to perform Gaussian
averages. The calculation is described in Appendix 2.B.

The result takes a simple form in the long-time regime ωcτ � 1, where ωc is
the frequency within which S(ω) does not vary appreciably. We find

F (ξ )= Fexc(ξ )− τ

2π

∫ ∞
0

lndet
[
1−αξ f (1− rr †− t t†)

]
dω , (2.13)

Fexc(ξ )= αξτ I0

(
t† [

1−αξ f (1− rr †− t t†)
]−1

t
)

m0m0

, (2.14)

where det(· · · ) denotes the determinant and (· · · )m0m0 the m0,m0 element of a mat-
rix. In Eq. (2.14) the functions f , t , and r are to be evaluated at ω = ω0. The
integral in Eq. (2.13) is the generating function for the photocount due to amp-
lified spontaneous emission obtained in Ref. [Bee98]. It is independent of the
incident radiation and can be eliminated in a measurement by filtering the output
through a narrow frequency window around ω0. The function Fexc(ξ ) describes
the excess noise due to the beating of the coherent radiation with the spontaneous
emission [Hen96]. The expression (2.14) is the central result of this chapter.

By expanding F (ξ ) in powers of ξ we obtain the factorial cumulants, in view
of Eq. (2.2). In what follows we will consider only the contribution from Fexc(ξ ),
assuming that the contribution from the integral over ω has been filtered out as
mentioned above. We find

κk = k!αkτ f k−1 I0
[
t†(1− rr †− t t†)k−1t

]
m0m0

, (2.15)

where again ω = ω0 is implied. The mean photocurrent Ī = κ1/τ and the noise
power P = (κ2+κ1)/τ become

Ī = α I0(t†t)m0m0 , P = Ī + Pexc ,

Pexc = 2α2 f I0
[
t†(1− rr †− t t†)t

]
m0m0

. (2.16)

The noise power P exceeds the shot noise Ī by the amount Pexc.
The formulas above are easily adapted to a measurement in reflection by mak-

ing the exchange r → t ′, t→ r ′. For example, the mean reflected photocurrent is
Ī = α I0(r ′†r ′)m0m0 , while the excess noise is

Pexc = 2α2 f I0
[
r ′†(1− r ′r ′†− t ′t ′†)r ′

]
m0m0

. (2.17)
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2.4 Noise figure

The noise figure F is defined as the (squared) signal-to-noise ratio at the input
I 2
0 /P0, divided by the signal-to-noise ratio at the output, Ī 2/P. Since P0 = I0 for

coherent radiation at the input, one has F = (Pexc+ Ī )I0/ Ī 2, hence

F =−2 f

(
t†rr †t + t†t t†t

)
m0m0(

t†t
)2

m0m0

+ 1+2α f

α
(
t†t

)
m0m0

. (2.18)

The noise figure is independent of I0. For large amplification the second term
on the right-hand side can be neglected relative to the first, and the noise figure
becomes also independent of the detection efficiency α. The minimal noise fig-
ure for given r and t is reached for an ideal detector (α = 1) and at complete
population inversion ( f =−1).

Since (t†rr †t+ t†t t†t)m0m0 =
∑

k|(t†r )m0k|2+∑k|(t†t)m0k|2 � (t†t)2
m0m0

, one
has F � −2 f for large amplification [when the second term on the right-hand
side of Eq. (2.18) can be neglected]. The minimal noise figure F = 2 at complete
population inversion is reached in the absence of reflection [(t †r )m0k = 0] and
in the absence of intermode scattering [(t †t)m0k = 0 if k �=m0]. This is realised
in the single-mode theories of Refs. [Jef93, Mat97]. Our result (2.18) generalises
these theories to include scattering between the modes, as is relevant for a random
medium.

These formulas apply to detection in transmission. For detection in reflection
one has instead

F =−2 f

(
r ′†t ′t ′†r ′ + r ′†r ′r ′†r ′

)
m0m0(

r ′†r ′
)2

m0m0

+ 1+2α f

α
(
r ′†r ′

)
m0m0

. (2.19)

Again, for large amplification the second term on the right-hand side may be neg-
lected relative to the first. The noise figure then becomes smallest in the absence
of transmission, when F = −2 f (r ′†r ′r ′†r ′)m0m0(r ′†r ′)−2

m0m0
� −2 f . The min-

imal noise figure of 2 at complete population inversion requires (r ′†r ′r ′†r ′)m0m0 =
(r ′†r ′)2

m0m0
, which is possible only in the absence of intermode scattering.

To make analytical progress in the evaluation of F , we will consider an en-
semble of random media, with different realisations of the disorder. For large N
and away from the laser threshold, the sample-to-sample fluctuations in numerat-
ors and denominators of Eqs. (2.18) and (2.19) are small, so we may average them
separately. Furthermore, the “equivalent channel approximation” is accurate for
random media [Mel92], which says that the ensemble averages are independent
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of the mode index m0. Summing over m0, we may therefore write F as the ratio
of traces, so the noise figure for a measurement in transmission becomes

F =−2 f N
≺ tr(t†rr †t + t†t t†t)�

≺ tr t†t�2
+N

1+2α f

α≺ tr t†t� , (2.20)

and similarly for a measurement in reflection. The brackets ≺·· ·� denote the
ensemble average.

2.5 Applications

2.5.1 Amplifying disordered waveguide

As a first example, we consider a weakly amplifying, strongly disordered wave-
guide of length L . Averages of the moments of rr † and t t† for this system have
been computed by Brouwer [Bro98] as a function of the number of propagating
modes N, the mean free path l , and the amplification length ξa = √Dτa, where
1/τa is the amplification rate and D = cl/3 is the diffusion constant. It is assumed
that 1/N � l/ξa � 1 but the ratio L/ξa ≡ s is arbitrary. In this regime, sample-
to-sample fluctuations are small, so the ensemble average is representative of a
single system.

L/ξa

F

3.02.52.01.51.00.50.0

15

10

5

0

Figure 2.2: Noise figure of an amplifying disordered waveguide (length L , ampli-
fication length ξa) measured in transmission (solid line) and in reflection (dashed
line). The curves are computed from Eqs. (2.21)–(2.24) for α = 1, f = −1, and
L/ l = 10. The laser threshold is at L/ξa = π.
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The results for a measurement in transmission are

Ī = 4αl

3L
I0

s

sins
, (2.21)

Pexc = 2α2l

3L
f I0s

(
3

sins
− 2s− cotans

sin2 s
+ scotans−1

sin3 s
− s

sin4 s

)
. (2.22)

For a measurement in reflection, one finds

Ī = α I0

(
1− 4l

3L
scotans

)
, (2.23)

Pexc = 2α2l

3L
f I0s

(
2cotans− 1

sins
+ cotans

sin2 s
+ scotans−1

sin3 s
− s

sin4 s

)
. (2.24)

The noise figure F follows from F = (Pexc+ Ī )I0/ Ī 2. It is plotted in Fig. 2.2.
One notices a strong increase in F on approaching the laser threshold at s= π.

2.5.2 Amplifying disordered cavity

Our second example is an optical cavity filled with an amplifying random me-
dium. The radiation leaves the cavity through a waveguide supporting N modes.
The formulas for a measurement in reflection apply with t = 0 because there
is no transmission. The distribution of the eigenvalues of r †r is known in the
large-N limit [Bee99] as a function of the dimensionless amplification rate γ =
2π/Nτa∆ω (with ∆ω the spacing of the cavity modes near frequency ω0). The
first two moments of this distribution are

N−1≺ trr †r�= 1

1−γ , (2.25)

N−1≺ trr †rr †r�= 2γ 2−2γ +1

(1−γ )4
. (2.26)

The resulting photocurrent has mean and variance

Ī = α I0
1

1−γ , (2.27)

Pexc = 2α2 f I0γ
γ −γ 2−1

(1−γ )4
. (2.28)

The resulting noise figure for α = 1 and f =−1,

F = 1−γ +γ 2+γ 3

(1−γ )2 , (2.29)

is plotted in Fig. 2.3. Again, we see a strong increase of F on approaching the
laser threshold at γ = 1.
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Figure 2.3: Noise figure of an amplifying disordered cavity, connected to a pho-
todetector via an N-mode waveguide. The curve is the result (2.29), as a function
of the dimensionless amplification rate γ . (Ideal detection efficiency, α = 1, and
full population inversion, f = −1, are assumed in this plot.) The laser threshold
occurs at γ = 1.

2.6 Near the laser threshold

In the preceding section we have taken the large-N limit. In that limit the noise
figure diverges on approaching the laser threshold. In this section we consider the
vicinity of the laser threshold for arbitrary N.

The scattering matrix S(ω) has poles in the lower half of the complex plane.
With increasing amplification, the poles shift upward. The laser threshold is
reached when a pole reaches the real axis, say at resonance frequency ω th. For
ω near ωth the scattering matrix has the generic form

Snm= σnσm

ω−ωth+ 1
2 iΓ − i/2τa

, (2.30)

where σn is the complex coupling constant of the resonance to the nth mode in
the waveguide, Γ is the decay rate, and 1/τa the amplification rate. The laser
threshold is at Γ τa = 1.

We assume that the incident radiation has frequency ω0 = ωth. Substitution of
Eq. (2.30) into Eq. (2.18) or (2.19) gives the simple result

F = −2 fΣ

|σm0 |2
, Σ =

2N∑
n=1

|σn|2 , (2.31)
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for the limiting value of the noise figure on approaching the laser threshold. The
limit is the same for detection in transmission and in reflection. Since the coup-
ling constant |σm0 |2 to the mode m0 of the incident radiation can be much smaller
than the total coupling constant Σ , the noise figure (2.31) has large fluctuations.
We need to consider the statistical distribution p(F ) in the ensemble of random
media. The typical (or modal) value of F is the value F typ at which p(F ) is max-
imal. We will see that this remains finite although the ensemble average ≺F� of
F diverges.

2.6.1 Waveguide geometry

We first consider the case of an amplifying disordered waveguide. The total coup-
ling constantΣ =Σl+Σr is the sum of the coupling constantΣl =∑N

n=1|σn|2 to
the left end of the waveguide and the coupling constantΣ r =∑2N

n=N+1|σn|2 to the
right. The assumption of equivalent channels implies that

≺1/F�=− 1

2 f N
≺Σl/Σ�=− 1

4 f N
. (2.32)

Since the average of 1/F is finite, it is reasonable to assume that F typ ≈
≺1/F�−1=−4 f N, or Ftyp≈ 4N for complete population inversion. The scaling
with N explains why the large-N theory of the preceding section found a divergent
noise figure at the laser threshold. We conclude that the divergency of F at L/ξ a=
π in Fig. 2.2 is cut off at a value of order N, if F is identified with the typical
value Ftyp.

2.6.2 Cavity geometry

In the case of an amplifying disordered cavity, we can make a more precise state-
ment on p(F ). Since there is only reflection, there is only one Σ =∑N

n=1|σn|2.
The assumption of equivalent channels now gives

≺1/F �=− 1

2 f N
. (2.33)

Following the same reasoning as in the case of the waveguide, we would conclude
that Ftyp ≈≺1/F�−1=−2 f N. We will see that this is correct within a factor of
2.

To compute p(F ) we need the distribution of the dimensionless coupling con-
stants un= σn/

√
Σ . The N complex numbers un form a vector �u of length 1. Ac-

cording to random-matrix theory [Bee97], the distribution p(S) of the scattering



2.6. NEAR THE LASER THRESHOLD 33

N=15

N=10

N=5

N=2

F

p(
F

)

2018161412108642

0.10

0.08

0.06

0.04

0.02

0.00

Figure 2.4: Probability distribution of the noise figure near the laser threshold for
an amplifying disordered cavity, computed from Eq. (2.36) for f =−1. The most
probable value is F = N, while the average value diverges.

matrix is invariant under unitary transformations S→ U SUT (with U an N×N
unitary matrix). It follows that the distribution p(�u) of the vector �u is invariant
under rotations �u→U �u, hence

p(u1,u2, . . . ,uN)∝ δ
(

1−
∑

n

|un|2
)

. (2.34)

In other words, the vector �u has the same distribution as a column of a matrix that
is uniformly distributed in the unitary group [Per83]. By integrating out N−1 of
the un’s we find the marginal distribution of um0 ,

p(um0)= N−1

π

(
1−|um0 |2

)N−2
, (2.35)

for N � 2 and |um0|2 � 1.
The distribution of F =−2 f |um0 |−2 becomes

p(F )=−2 f (N−1)

(
1+ 2 f

F

)N−2

F −2 , (2.36)

for N � 2 and F � −2 f . We have plotted p(F ) in Fig. 2.4 for complete popu-
lation inversion ( f = −1) and several choices of N. It is a broad distribution, all
its moments are divergent. The typical value of the noise figure is the value at
which p(F ) becomes maximal, hence

Ftyp =− f N , N � 2 . (2.37)
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In the single-mode case, in contrast, F =−2 f for every member of the ensemble
[hence p(F )= δ(F +2 f )]. We conclude that the typical value of the noise figure
near the laser threshold of a disordered cavity is larger than in the single-mode
case by a factor N/2.

2.7 Absorbing media

The general theory of Sec. 2.2 can also be applied to an absorbing medium, in
equilibrium at temperature T > 0. Eq. (2.4) then has to be replaced with

aout(ω)= S(ω)ain(ω)+Q(ω)b(ω) , (2.38)

where the bosonic operator b has the expectation value

〈b†
n(ω)bm(ω′)〉 = δnmδ(ω−ω′) f (ω, T) , (2.39)

and the matrix Q is related to Sby

QQ† = 1−SS† . (2.40)

The formulas for F (ξ ) of Sec. 2.3 remain unchanged.
Ensemble averages for absorbing systems follow from the corresponding res-

ults for amplifying systems by substitution τa→−τa. The results for an absorbing
disordered waveguide with detection in transmission are

Ī = 4αl

3L
I0

s

sinhs
, (2.41)

Pexc = 2α2l

3L
f I0s

(
3

sinhs
− 2s+ cotanhs

sinh2 s
− scotanhs−1

sinh3 s
+ s

sinh4 s

)
, (2.42)

where s= L/ξa with ξa the absorption length. Similarly, for detection in reflection
one has

Ī = α I0

(
1− 4l

3L
scotanhs

)
, (2.43)

Pexc = 2α2l

3L
f I0s

(
2cotanhs− 1

sinhs
− cotanhs

sinh2 s
− scotanhs−1

sinh3 s
+ s

sinh4 s

)
.

(2.44)

These formulas follow from Eqs. (2.21)–(2.24) upon substitution of s→ is.
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Figure 2.5: Excess noise power Pexc for an absorbing (solid line, left axis) and
amplifying disordered waveguide (dashed line, right axis), in units of α 2l | f |I0/L .
The top panel is for detection in transmission, the bottom panel for detection in
reflection.
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Figure 2.6: Excess noise power Pexc for an absorbing (solid line, left axis) and
amplifying disordered cavity (dashed line, right axis), in units of α 2| f |I0.

For an absorbing disordered cavity, we find [substituting γ → −γ in
Eqs. (2.27) and (2.28)],

Ī = α I0
1

1+γ , (2.45)

Pexc = 2α2 f I0γ
γ 2+γ +1

(1+γ )4
, (2.46)

with γ the dimensionless absorption rate.
Since typically f � 1 in absorbing systems, the noise figure F is dominated

by shot noise, F ≈ I0/ Ī . Instead of F we therefore plot the excess noise power
Pexc in Figs. 2.5 and 2.6. In contrast to the monotonic increase of Pexc with 1/τa in
amplifying systems, the absorbing systems show a maximum in Pexc for certain
geometries. The maximum occurs near L/ξa = 2 for the disordered waveguide
with detection in transmission, and near γ = 1 for the disordered cavity. For
larger absorption rates the excess noise power decreases because Ī becomes too
small for appreciable beating with the spontaneous emission.

2.8 Conclusion

In summary, we have studied the photodetection statistics of coherent radiation
that has been transmitted or reflected by an amplifying or absorbing random me-
dium. The cumulant generating function F (ξ ) is the sum of two terms. The first
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term is the contribution from spontaneous emission obtained in Ref. [Bee98]. The
second term Fexc is the excess noise due to beating of the coherent radiation with
the spontaneous emission. Equation (2.14) relates Fexc to the transmission and
reflection matrices of the medium.

In the applications of our general result for the cumulant generating function
we have concentrated on the second cumulant, which gives the spectral density
Pexc of the excess noise. We have found that Pexc increases monotonically with
increasing amplification rate, while it has a maximum as a function of absorption
rate in certain geometries.

In amplifying systems we studied how the noise figure F increases on ap-
proaching the laser threshold. Near the laser threshold the noise figure shows
large sample-to-sample fluctuations, such that its statistical distribution in an en-
semble of random media has divergent first and higher moments. The most prob-
able value of F is of the order of the number N of propagating modes in the
medium, independent of material parameters such as the mean free path. It would
be of interest to observe this universal limit in random lasers.

2.A Single-mode detection

We have assumed throughout this chapter that all N modes propagating through
the waveguide are detected at either the left or the right end. At the opposite
extreme one can consider the case of single-mode detection. This is particularly
relevant in a slab geometry, where the cross-sectional area of the photodetector
is much less than the area of the random medium (see Fig. 2.7). The number of
detected modes is then much smaller than the number of modes N propagating
through the medium. The limit of single-mode detection is reached when the

R

Figure 2.7: Schematic diagram of detection of radiation propagating through a
slab. Single-mode detection occurs when the area of the photodetector becomes
less than R2/N.
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photodetector covers an area comparable to the area of one speckle or smaller.
Single-mode detection of thermal radiation was considered in Ref. [Bee98].

Denoting the detected mode by the index n0, the mean photocurrent was found to
be

Īthermal =
∫ ∞

0

dω

2π
jthermal(ω) , (2.47)

jthermal(ω)= α f (1− rr †− t t†)n0n0 , (2.48)

and the noise power

Pthermal =
∫ ∞

0

dω

2π
j 2
thermal(ω) . (2.49)

In this case of single-mode detection the noise power contains no information
beyond what is contained in the photocurrent.

The same holds for the excess noise considered in this chapter. The mean
transmitted photocurrent in a narrow frequency interval around ω0 is given by

Ī = α I0|tn0m0 |2 , (2.50)

and the excess noise

Pexc = 2 Ī j thermal(ω0) (2.51)

is simply the product of the mean transmitted photocurrent and thermal current
density. Noise measurements in single-mode detection are thus not nearly as in-
teresting as in multi-mode detection, since the latter give information on the scat-
tering properties that is not contained in the mean photocurrent.

2.B Derivation of Eq. (2.14)

To evaluate the Gaussian averages that lead to Eq. (2.14), it is convenient to use
a matrix notation. We replace the summation in Eq. (2.10) by a multiplication of
the vector aout with the projection Paout, where the projection matrix P has zero
elements except Pnn= 1, N+1 � n � 2N. We thus write

W = α
∫ τ

0
dt aout†(t)Paout(t) . (2.52)
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Insertion of Eqs. (2.4) and (2.11) gives

W = α

2π

∫ τ

0
dt
∫ ∞

0
dω

∫ ∞
0

dω′
[
ain†

(ω)S†(ω)+c(ω)V†(ω)
]

×P
[
S(ω′)ain(ω′)+V (ω′)c†(ω′)

]
ei(ω−ω′)t . (2.53)

As explained in Sec. 2.3, we discretise the frequency as ωp= p∆, p= 1,2,3, . . . .
The integral over frequency is then replaced with a summation,

∫ ∞
0

dωg(ω)→∆

∞∑
p=1

g(ωp) . (2.54)

We write Eq. (2.53) as a matrix multiplication,

ξW = ain†
Aain+cBc†+ain†

C†c†+cCain , (2.55)

with the definitions

Anp,n′ p′ = α∆ξ
2π

∫ τ

0
dt
[
S†(ωp)P S(ωp′)

]
nn′ e

i∆(p−p′)t ,

Bnp,n′ p′ = α∆ξ2π

∫ τ

0
dt
[
V†(ωp)P V (ωp′)

]
nn′ e

i∆(p−p′)t ,

Cnp,n′ p′ = α∆ξ
2π

∫ τ

0
dt
[
V†(ωp)P S(ωp′ )

]
nn′ e

i∆(p−p′)t ,

ain
np=∆1/2ain

n (ωp) , cnp=∆1/2cn(ωp) .

(2.56)

We now apply the optical equivalence theorem [Man95], as dis-
cussed in Sec. 2.3. The operators ain

np are replaced by constant numbers
δnm0δpp0(2πI0/∆)1/2. The operators cnp are replaced by independent Gaussian
variables, such that the expectation value (2.12) takes the form of a Gaussian in-
tegral,

〈: eξW :〉 =
∫

d
{
cnp

}
exp

[
ξW+

∑
np

|cnp|2/ f (ωp, T )

]

=
∫

d
{
cnp

}
exp

[
ain∗Aain−cMc∗ +ain∗C†c∗ +cCain

]
, (2.57)

where we have defined

Mnp,n′ p′ = −Bnp,n′ p′ − δnn′δpp′

f (ωp)
. (2.58)
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We eliminate the cross-terms of ain and c in Eq. (2.57) by the substitution

c′∗ = c∗ −M−1Cain , (2.59)

leading to

〈: eξW :〉 = exp
[
ain∗(A+C† M−1C)ain

]∫
d
{
c′np

}
exp

(−c′Mc′∗
)

. (2.60)

The integral is proportional to the determinant of M−1, giving the generating
function

F (ξ )= const− lndet M+ain∗ (A+C† M−1C
)
ain

= const− lndet M+ 2πI0

∆

(
A+C† M−1C

)
m0 p0,m0 p0

. (2.61)

The additive constant follows from F (0) = 0. The term − lndet M is the con-
tribution from amplified spontaneous emission calculated in Ref. [Bee98]. The
term proportional to I0 is the excess noise of the coherent radiation, termed Fexc

in Sec. 2.3.
Eq. (2.61) can be simplified in the long-time regime, ωcτ � 1. We may then

set ∆= 2π/τ and use ∫ τ

0
ei∆(p−p′)t dt = τδpp′ . (2.62)

The matrices defined in Eq. (2.56) thus become diagonal in the frequency index,

Anp,n′ p′ = α∆τξ
2π

[
S†(ωp)P S(ωp)

]
nn′ δpp′ (2.63)

and similarly for B and C. We then find

(A+C† M−1C)np,n′ p′ = αξ∆τ2π

[
S†P (1+αξ f V V†P )−1S

]
nn′ δpp′ , (2.64)

where f , S, and V are evaluated at ω = ωp. Substitution into Eq. (2.61) gives the
result (2.14) for Fexc(ξ ).

Simplification of Eq. (2.61) is also possible in the short-time regime, when
Ωcτ � 1, with Ωc the frequency range over which SS† differs appreciably from
the unit matrix. The generating function then is

Fexc(ξ )= αξτ I0

[
t†(ω0)

(
1− αξτ

2π

∫ ∞
0

dω f (ω, T )

× [1− r (ω)r †(ω)− t(ω)t†(ω)
])−1

t(ω0)

]
m0m0

. (2.65)



Chapter 3

Propagation of squeezed radiation
through amplifying or absorbing
random media

3.1 Introduction

Squeezed radiation is in a state in which one of the quadratures of the electric field
fluctuates less than the other [Wal94, Man95]. Such a nonclassical state is useful,
because the fluctuations in the photon flux can be reduced below that of a Poisson
process — at the expense of enhanced fluctuations in the phase. Sub-Poissonian
noise is a delicate feature of the radiation, it is easily destroyed by the interaction
with an absorbing or amplifying medium [Hen96]. The noise from spontaneous
emission events is responsible for the degradation of the squeezing.

Because of the fundamental and practical importance, there exists a consid-
erable literature on the propagation of squeezed and other nonclassical states of
light through absorbing or amplifying media. We cite some of the most recent pa-
pers on this topic [Leo93, Jef94, Sch96, Bar98, Art99, Knö99, Abd99]. The main
simplification of these investigations is the restriction to systems in which the
scattering is one-dimensional, such as parallel dielectric layers. Each propagating
mode can then be treated separately from any other mode. It is the purpose of
the present paper to remove this restriction, by presenting a general theory for
three-dimensional scattering, and to apply it to a medium with randomly located
scattering centra.

This chapter builds on the previous one, in which we considered the propaga-
tion of a coherent state through such a random medium. Physically, the problem

41
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considered here is different because a coherent state has Poisson noise, so that the
specific nonclassical features of squeezed radiation do not arise in Ch. 2. Tech-
nically, the difference is that a squeezed state, as most other nonclassical states,
lacks a diagonal representation in terms of coherent states [Wal94, Man95]. We
cannot therefore directly extend the theory of the previous chapter to the propa-
gation of squeezed states. The basic idea of our approach remains the same: The
photodetection statistics of the transmitted radiation is related to that of the incid-
ent radiation by means of the scattering matrix of the medium. The method of
random-matrix theory [Bee97] is then used to evaluate the noise properties of the
transmitted radiation, averaged over an ensemble of random media with different
positions of the scatterers.

The outline of this chapter is as follows. In Sec. 3.2 we first summarise the
scattering formalism, and then show how the characteristic function of the state
of the transmitted radiation can be obtained from that of the incident state. This
allows us to compute the photocount statistics as measured in direct detection
(Sec. 3.3), and in homodyne photodetection measurements (Sec. 3.4). The ex-
pressions in Secs. 3.2–3.4 are generally valid for any incident state. In Sec. 3.5
we specialise to the case that the incident radiation is in an ideal squeezed state
(also known as a squeezed state of minimal uncertainty, or as a two-photon coher-
ent state [Wal94, Man95]). The statistics of direct and homodyne measurements
are expressed in terms of the degree of squeezing of the incident state. The Fano
factor, introduced in Sec. 3.6, quantifies the degree to which the squeezing has
been destroyed by the propagation through an amplifying or absorbing medium.
The ensemble average of the Fano factor is then computed using random-matrix
theory in Sec. 3.7. We conclude in Sec. 3.8.

3.2 Scattering formulation

We consider an amplifying or absorbing disordered medium embedded in a wave-
guide that supports N(ω) propagating modes at frequency ω. The conceptual
advantage of embedding the medium in a waveguide is that we can give a scatter-
ing formulation in terms of a finite-dimensional matrix. The outgoing radiation
in mode n is described by an annihilation operator aout

n (ω), using the conven-
tion that modes 1,2, . . . , N are on the left-hand-side of the medium and modes
N+ 1, . . . ,2N are on the right-hand-side. The vector aout consists of the operat-
ors aout

1 ,aout
2 , . . . ,aout

2N . Similarly, we define a vector ain for incoming radiation.
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These two sets of operators each satisfy the bosonic commutation relations

[an(ω),a†
m(ω′)]= δnmδ(ω−ω′) , [an(ω),am(ω′)]= 0 . (3.1)

They are related by the input-output relations [Jef93, Gru96b, Bee98]

aout(ω)= S(ω)ain(ω)+Q(ω)b(ω) , (3.2a)

aout(ω)= S(ω)ain(ω)+V(ω)c†(ω) , (3.2b)

where the first equation is for an absorbing medium and the second for an amplify-
ing medium. We have introduced the 2N×2N scattering matrix S, the 2N×2N
matrices Q and V , and the vectors b and c of 2N bosonic operators. The scat-
tering matrix can be decomposed into four N × N reflection and transmission
matrices,

S=
(

r ′ t ′
t r

)
. (3.3)

Reciprocity imposes the conditions t ′ = tT , r = r T , and r ′ = r ′T .
The operators b and c account for spontaneous emission in the medium. They

satisfy the bosonic commutation relations (3.1), hence

QQ† = 1−SS† , V V† = SS†−1 . (3.4)

Their expectation values are

〈b†
n(ω)bm(ω′)〉 = δnmδ(ω−ω′) f (ω, T) , (3.5a)

〈cn(ω)c†
m(ω′)〉 = −δnmδ(ω−ω′) f (ω, T) . (3.5b)

The Bose-Einstein function

f (ω, T)= [
exp(h̄ω/kBT)−1

]−1
(3.6)

is evaluated at positive temperature T for an absorbing medium and at negative
temperature for an amplifying medium.

It is convenient to discretise the frequency in infinitesimally small steps of
∆, so that ωp = p∆, and treat the frequency index p as a separate vector index
(in addition to the mode index n). For example, aout

np = aout
n (ωp) and Snp,n′ p′ =

Snn′(ωp)δpp′ .
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The state of the outgoing radiation is described by the characteristic function

χout(η)= 〈: exp
(
∆1/2

∑
n,p

[
aout†

n (ωp)ηn(ωp)−η∗n(ωp)aout
n (ωp)

])
:〉

= 〈: exp
[
∆1/2(aout†η−η†aout)

]
:〉 , (3.7)

where 〈: · · · :〉 indicates the expectation value of a normally ordered product of op-
erators aout and aout† (creation operators to the left of the annihilation operators).
The vector η has elements ηnp= ηn(ωp). The density operator of the outgoing ra-
diation is uniquely defined by the characteristic function χout [Wal94]. Similarly,
the incoming state has characteristic function

χin(η)= 〈: exp
[
∆1/2(ain†

η−η†ain)
]

:〉 . (3.8)

The characteristic function of the thermal radiation inside an absorbing medium
is given by

χabs(η)= 〈: exp
[
∆1/2(b†η−η†b)

]
:〉 = exp

(
−
∑
n,p

η∗np f (ωp, T )ηnp

)

≡ exp(−η† f η) . (3.9)

In the final equality f denotes the matrix with elements f np,n′ p′ = δnn′δpp′ f (ωp, T ).
For an amplifying medium, replacing b by c† and normal ordering by anti-normal
ordering, one finds instead

χamp(η)= exp(η† f η) . (3.10)

Combination of Eqs. (3.2) and (3.4) with Eqs. (3.7–3.10) yields a relationship
between the characteristic functions of the incoming and outgoing states,

χout(η)= exp
(−η†[1−SS†] f η

)
χin(S†η) . (3.11)

This relation holds both for absorbing and amplifying media, because the differ-
ence in sign in the exponent of Eqs. (3.9) and (3.10) is cancelled by the difference
in sign between QQ† = 1−SS† and V V† =−(1−SS†).

3.3 Photocount distribution

The photocount distribution is the probability p(n) that n photons are absorbed
by a photodetector within a certain time τ (see Fig. 3.1). The factorial cumulants
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Figure 3.1: Schematic illustration of direct detection: Radiation is incident on a
random medium (shaded). The transmitted radiation is absorbed by a photode-
tector.

κj of p(n) (the first two being κ1 = n and κ2 = n(n−1)− n2) are most easily
obtained from the generating function [Man95]

F (ξ )=
∞∑

j=1

κj ξ
j

j !
= ln

( ∞∑
n=0

(1+ ξ )n p(n)

)
. (3.12)

The generating function is determined by a normally ordered expectation
value [Gla63, Kel64],

eF(ξ ) = 〈: eξW :〉 , W =
∫ τ

0
dt

2N∑
n=1

dnaout
n

†(t)aout
n (t) . (3.13)

Here dn ∈ [0,1] is the detection efficiency of the nth mode and the time-dependent
operators are defined as

aout
n (t)= (2π)−1/2

∫ ∞
0

dω e−iωtaout
n (ω) . (3.14)

Discretising the frequencies as described in Sec. 3.2, one can write

W = ∆
2

2π

∫ τ

0
dt
∑

n

dn

∑
p,p′

ei∆(p−p′)taout
n

†(ωp)aout
n (ωp′) . (3.15)

This expression can be simplified in the limit τ →∞ of long counting times,
when one can set ∆= 2π/τ and use∫ τ

0
ei∆(p−p′)t dt = τδpp′ . (3.16)

Hence, in the long-time limit the generating function is given by

eF(ξ ) = 〈: exp
(
ξ∆

∑
n,p

dnaout
n

†(ωp)aout
n (ωp)

)
:〉 ≡ 〈: exp(ξ∆aout†Daout) :〉 ,

(3.17)
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where we have defined the matrix of detector efficiencies Dnp,n′ p′ = dnδnn′δpp′ .
Comparing Eqs. (3.7) and (3.17) we see that the generating function F (ξ ) can

be obtained from the characteristic function χout by convolution with a Gaussian,

eF(ξ ) = 1

det(−ξπD)

∫
dηχout(η)exp

(
1

ξ
η†D−1η

)
, (3.18)

where
∫

dη is an integration over the real and imaginary parts of η. We now
substitute the relation (3.11) between χout and χin, to arrive at a relation between
F (ξ ) and χin:

eF(ξ ) = 1

det(−ξπD)

∫
dηχin(S†η)exp

(
1

ξ
η†D−1η−η†(1−SS†) f η

)
. (3.19)

The fluctuations in the photocount are partly due entirely to thermal fluctu-
ations, which would exist even without any incident radiation. If we denote by
Fth(ξ ) the generating function of these thermal fluctuations, then Eq. (3.19) can
be written in the form

F (ξ )= Fth(ξ )+ ln
[ 1

det(πM)

∫
dηχin(η)exp

(−η†M−1η
)]

, (3.20)

Fth(ξ )=− lndet
[
1− ξD(1−SS†) f

]
. (3.21)

We have defined the Hermitian matrix

M =−ξS†[
1− ξD(1−SS†) f

]−1
DS , (3.22)

and we have performed a change of integration variables from η to S†η [with
Jacobian det(SS†)].

The expression (3.21) generalises the result of Ref. [Bee98] to arbitrary
detection-efficiency matrix D . Returning to a continuous frequency, it can be
written as (recall that ∆= 2π/τ )

Fth(ξ )=− τ

2π

∫ ∞
0

dω lndet
(
1− ξD

[
1−S(ω)S†(ω)

]
f (ω, T)

)
, (3.23)

where D is a 2N×2N diagonal matrix containing the detection efficiencies dn on
the diagonal (Dnm= dnδnm). The first two factorial cumulants are

κ th
1 = τ

∫ ∞
0

dω

2π
f (ω, T ) tr D

[
1−S(ω)S†(ω)

]
, (3.24)

κ th
2 = τ

∫ ∞
0

dω

2π
f 2(ω, T) tr

(
D[1−S(ω)S†(ω)]

)2
. (3.25)
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Note that all factorial cumulants depend linearly on the detection time τ in the
long-time limit.

If only the N modes at one side of the waveguide are detected (with equal
efficiency d), then dn = 0 for 1 � n � N and dn = d for N+1 � n � 2N, hence

Fth(ξ )=− τ

2π

∫ ∞
0

dω lndet
(
1− ξd

[
1− r (ω)r †(ω)− t(ω)t†(ω)

]
f (ω, T)

)
,

(3.26)

in agreement with Ref. [Bee99].
The difference F (ξ )−Fth(ξ ) contains the noise from the incident radiation by

itself as well as the excess noise due to beating of the incident radiation with the
vacuum fluctuations. If the incident radiation is in a coherent state, then χ in(η)=
exp(α†η−η†α) for some vector α (called the displacement vector) with elements
αnp= αn(ωp). Substitution into Eq. (3.20) gives the generating function

F (ξ )= Fth(ξ )−α† Mα ,

= Fth(ξ )+ τξ
2π

∫ ∞
0

dωα†(ω)S†(ω)
[
1− ξD

[
1−S(ω)S†(ω)

]
f (ω, T)

]−1

×DS(ω)α(ω) . (3.27)

The first two factorial cumulants are

κ1 = τ
∫ ∞

0

dω

2π
α†(ω)S†(ω)DS(ω)α(ω)+κ th

1 , (3.28)

κ2 = 2τ
∫ ∞

0

dω

2π
f (ω, T )α†(ω)S†(ω)D

[
1−S(ω)S†(ω)

]
DS(ω)α(ω)+κ th

2 .

(3.29)

If the incident coherent radiation is in a single mode m0 and monochromatic
with frequency ω0, then Eqs. (3.27–3.29) simplify for detection in transmission
to

F (ξ )= Fth(ξ )+ τξd I0
(
t†[
1− ξd(1− rr †− t t†) f (ω0, T )

]−1
t
)

m0m0

, (3.30)

κ1 = I0τd[t†t]m0m0 +κ th
1 , (3.31)

κ th
1 = τd

∫ ∞
0

dω

2π
f (ω, T) tr

[
1− r (ω)r †(ω)− t(ω)t†(ω)

]
, (3.32)

κ2 = 2I0τd2 f (ω0, T )
[
t†(1− rr †− t t†)t

]
m0m0
+κ th

2 , (3.33)

κ th
2 = τd2

∫ ∞
0

dω

2π
f 2(ω, T) tr

[
1− r (ω)r †(ω)− t(ω)t†(ω)

]2
. (3.34)
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Here I0 = (2π)−1
∫∞

0 dω |α|2 is the incident photon flux and the matrices r and t
without frequency argument are to be evaluated at frequency ω0. These are the
results of Ch. 2.

3.4 Homodyne detection

The photocount measurement described in Sec. 3.3 (known as direct detection)
cannot distinguish between the two quadratures of the electric field. Such phase
dependent information can be retrieved by homodyne detection, i.e. by superim-
posing a strong probe beam (described by operators aprobe) onto the signal beam
(see Fig. 3.2). The total radiation incident on the detector is described by the
operator

atotal = κ1/2aout+ (1−κ)1/2aprobe , (3.35)

where the factor
√
κ accounts for the attenuation of the signal beam by the beam

splitter that superimposes it onto the probe beam. (For simplicity we assume a
real scalar κ , more generally κ would be a complex coupling matrix.)

The characteristic function of atotal is the product of the characteristic func-
tions of aout and aprobe. We assume that the probe beam is in the coherent state
with displacement vector β, having elements βnp= βn(ωp). From Eq. (3.11) one
gets

χtotal(η)= exp
[−κη†(1−SS†) f η+ (1−κ)1/2(β†η−η†β)

]
χin(S†κ1/2η) .

(3.36)

The generating function Fhomo(ξ ) of the photocount distribution in homodyne de-

Figure 3.2: Schematic illustration of homodyne detection: At the left, radiation
is incident on a random medium (shaded). At the right, a strong coherent beam
is superimposed onto the transmitted radiation, and the combined radiation is ab-
sorbed by a photodetector.



3.5. SQUEEZED RADIATION 49

tection is given by [cf. Eq. (3.17)]

exp[Fhomo(ξ )]= 〈: exp(ξ∆atotal†Datotal) :〉
≈ exp

[
ξ (1−κ)β†Dβ

]〈: exp
(
∆1/2

√
κ(1−κ)ξ

[
aout†Dβ+β†Daout]) :〉 .

(3.37)

In the second approximate equality we have linearised the exponent with respect
to aout, which is justified if the probe beam is much stronger than the signal beam.
The remaining expectation value has the form of a characteristic function if we
take ξ purely imaginary, so that ξ ∗ = −ξ . The result is

Fhomo(ξ )= ξ (1−κ)β†Dβ+ lnχout(
√
κ(1−κ)ξDβ)

= ξ (1−κ)β†Dβ+κ(1−κ)ξ 2β†D(1−SS†) f Dβ

+ lnχin(
√
κ(1−κ)ξS†Dβ) . (3.38)

In the second equation we have substituted the relation (3.11) between χout and
χin.

3.5 Squeezed radiation

We consider the case that the incident radiation is in the ideal squeezed state
|ε,α〉 = CS|0〉 [Wal94, Man95], obtained from the vacuum state |0〉 by sub-
sequent action of the squeezing operator

S = exp
[

1
2∆(ainε∗ain−ain†

εain†
)
]

(3.39)

and the displacement operator

C = exp
[
∆1/2(ain†

α−α†ain)
]

. (3.40)

As in the previous sections, we have discretised the frequency, ωp = p∆, and
used the vector of operators ain

np = ain
n (ωp). The complex squeezing paramet-

ers εn(ω) = ρn(ω)eiφn(ω) are contained in the diagonal matrix ε with elements
εnp,n′ p′ = εn(ωp)δnn′δpp′ . Similarly, the vector α with elements αnp= αn(ωp) con-
tains the displacement parameters.

The characteristic function of the incident radiation is given by [Wal94, Yue76]

χin(η)= exp
[
α†η−η†α− 1

4η
T (e−iφ sinh2ρ)η− 1

4η
†(eiφ sinh2ρ)η∗

−η†(sinh2ρ)η
]

. (3.41)
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According to Eq. (3.11), we thus find for the characteristic function of the outgo-
ing radiation

χout(η)= exp

(
α†S†η−η†Sα− 1

4
ηT S∗(e−iφ sinh2ρ)S†η

−1

4
η†S(eiφ sinh2ρ)STη∗ −η†

[
f −S( f − sinh2ρ)S†

]
η

)
. (3.42)

The generating function F (ξ ) of the photocount distribution is obtained from
χin by convolution with a Gaussian, cf. Eq. (3.18). We find

F (ξ )= Fth(ξ )− 1
2 lndet X− 1

2

(
α∗
α

)T

X−1

(
Mα

M∗α∗

)
, (3.43)

where the matrix X is defined in terms of the matrix M by

X = 1+
(

M sinhρ −Meiφ coshρ
−M∗e−iφ coshρ M∗ sinhρ

)(
sinhρ 0

0 sinhρ

)
. (3.44)

If squeezing is absent, ρ = 0, hence X = 1 and Eq. (3.43) reduces to the res-
ult (3.27) for coherent radiation. For a squeezed vacuum (α = 0) one has simply
F (ξ )= Fth(ξ )− 1

2 lndet X.

If the radiation is incident only in mode m0, then we may compute the matrix
inverse and the determinant in Eq. (3.43) explicitly. The matrix M(ω) defined in
Eq. (3.22) may be replaced by its m0,m0 element,

Mm0m0 (ω)≡m=−ξ
[
S†(

1− ξD[1−SS†] f
)−1

DS
]

m0m0

. (3.45)

Note that m is real, since it is the diagonal element of a Hermitian matrix. The
resulting generating function is

F (ξ )= Fth(ξ )− 1
2τ

∫ ∞
0

dω

2π
ln(1+2msinh2ρ−m2 sinh2ρ)

− τ
∫ ∞

0

dω

2π
m|α|2 1+msinhρ[sinhρ+ coshρ cos(2argα−φ)]

1+2msinh2ρ−m2 sinh2ρ
. (3.46)
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The first two factorial cumulants, for detection in transmission, are

κ1 = κ th
1 + τd

∫ ∞
0

dω

2π
(|α|2+ sinh2ρ)[t†t]m0m0 , (3.47)

κ2 = κ th
2 +2τd2

∫ ∞
0

dω

2π
(|α|2+ sinh2ρ) f [t†(1− rr †− t t†)t]m0m0

+ τd2
∫ ∞

0

dω

2π
[t†t]2

m0m0

[|α coshρ−α∗eiφ sinhρ|2−|α|2

+ sinh2ρ(cosh2ρ+ sinh2ρ)
]

, (3.48)

where κ th
1 and κ th

2 are given by Eqs. (3.32) and (3.34).
The generating function for homodyne detection follows from Eqs. (3.38) and

(3.42),

Fhomo(ξ )= ξ (1−κ)β†Dβ+ ξ√κ(1−κ)(α†S†Dβ+β†DSα)

− 1

4
ξ 2κ(1−κ)

[
βDS∗(e−iφ sinh2ρ)S†Dβ+β†DS(eiφ sinh2ρ)STDβ∗

]
+ ξ 2κ(1−κ)β†D

[
f −S( f − sinh2ρ)S†]Dβ . (3.49)

All factorial cumulants except for the first two vanish in the strong-probe approx-
imation. We may simplify the generating function by assuming that the signal
beam is incident in a single mode m0 and that the probe beam is also in a single
mode n0. For detection in transmission one then has the factorial cumulants

κ1 = τd
∫ ∞

0

dω

2π

(
(1−κ)|β|2+2

√
κ(1−κ)Re[αβ∗tn0m0 ]

)
, (3.50)

κ2 =−τκ(1−κ)d2
∫ ∞

0

dω

2π
Re

[
β∗2eiφt2

n0m0

]
sinh2ρ

+2τκ(1−κ)d2
∫ ∞

0

dω

2π
|β|2[|tn0m0 |2 sinh2ρ+ f (1− rr †− t t†)n0n0

]
. (3.51)

3.6 Fano factor

For the application of these general formulas we focus our attention on the Fano
factor F , defined as the ratio of the noise power P = τ −1 var n and the mean
current Ī = τ−1n:

F = P/ Ī = 1+κ2/κ1 . (3.52)
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(We have assumed the limit τ →∞.) For coherent radiation F = 1, corres-
ponding to Poisson statistics. Thermal radiation has F > 1 (super-Poissonian).
Nonclassical states, such as squeezed states, can have F < 1.

We assume that the radiation is incident in a single mode m0 and is detected in
transmission (equal efficiency d per transmitted mode). We consider a frequency-
resolved measurement, covering a narrow frequency interval around the central
frequency ω0 of the incident radiation. The thermal contributions κ th

1 and κ th
2

may then be neglected, since they are spread out over a wide frequency range.
The incident radiation has Fano factor Fin, measured in direct detection with unit
efficiency. For squeezed radiation, one has

Fin = 1+ |α coshρ−α∗eiφ sinhρ|2−|α|2+ sinh2ρ(cosh2ρ+ sinh2ρ)

|α|2+ sinh2ρ
. (3.53)

We seek the Fano factor of the transmitted radiation, both for direct detection
(Fdirect) and for homodyne detection (Fhomo). Combining Eqs. (3.47) and (3.48),
we find for direct detection

Fdirect−1= d(t†t)m0m0 (Fin−1)+2d f (ω0, T )
[t†(1− rr †− t t†)t]m0m0

(t†t)m0m0

. (3.54)

The first term is due entirely to the incident radiation. It is absent for coherent
radiation (because then Fin = 0). The second term is due to the beating of the
incident radiation with the vacuum fluctuations. It is independent of the incident
radiation and was studied in detail in Ch. 2. Sub-Poissonian counting statistics,
i.e. Fdirect < 1, is in an amplifying medium ( f �−1) only possible when

2(t†t t†t)m0m0 < (t†t)2
m0m0
+2(t†t)m0m0 −2(t†rr †t)m0m0 . (3.55)

In the absence of reflection (r = 0) and inter-mode scattering (t diagonal), this
reduces to the well-known condition [Cav82, Lou84, Ste86] (t †t)m0m0 < 2. Since
(t†t t†t)m0m0 =

∑
k |(t†t)m0k|2 � (t†t)2

m0m0
, the presence of inter-mode scattering

decreases the maximally allowed amplification factor (t †t)m0m0 .
The Fano factor in the strong-probe approximation (|β| →∞) follows from

Eqs. (3.50) and (3.51), with the result

Fhomo−1= 2dκ|tn0m0 |2 sinh2ρ+2dκ f (ω0, T )(1− rr †− t t†)n0n0

−dκRe
[
ei(φ−2argβ)t2

n0m0

]
sinh2ρ . (3.56)

In the strong-probe approximation, it is independent of α and |β|. Similarly to
Eq. (3.54), the first term is entirely due to the incident radiation, vanishing for
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coherent radiation (ρ = 0), and the second term is due the beating with vacuum
fluctuations. The additional third term describes the effect of the phase of the
probe beam on the measurement. Typically, in a measurement one would vary the
phase of the probe beam until the Fano factor is minimised, which occurs when
argβ = 1

2φ+ arg tn0m0 . The resulting Fano factor F min
homo is given by

F min
homo = 1−2dκ|tn0m0 |2e−ρ sinhρ+2dκ f (ω0, T )(1− rr †− t t†)n0n0 . (3.57)

Squeezing in the outgoing radiation for an amplifying medium is only possible
when |tn0m0 |2 < 2−2(rr †)n0n0−

∑
k�=m0
|tn0k|2. The single-mode limit |tn0m0 |2 = 2

is thus decreased by both reflection and inter-mode scattering.

3.7 Ensemble averages

The expressions for the Fano factor given in the previous section contain the re-
flection and transmission matrices of the waveguide. These are N-dimensional
matrices that depend on the positions of the scatterers inside the waveguide. The
distribution of these matrices in an ensemble of disordered waveguides is de-
scribed by random-matrix theory [Bee97]. Ensemble averages of moments of rr †

and t t† for N� 1 have been computed by Brouwer [Bro98], as a function of the
mean free path l and the amplification (absorption) length ξa =√Dτa, where 1/τa

is the amplification (absorption) rate and D = cl/3 is the diffusion constant. It is
assumed that both ξa and L are small compared to the localisation length Nl but
large compared to the mean free path l . Obviously, this requires a large number
N of propagating modes. The relative size of L and ξa is arbitrary.

As sample-to-sample fluctuations are small for N � 1, we can take in
Eq. (3.54) the averages of numerator and denominator separately. The depend-
ence on the index m0 of the incident mode drops out on averaging, 〈· · · 〉m0m0 =
N−1〈tr · · · 〉. For an absorbing disordered waveguide, we find

Fdirect = 1+ 4ld

3ξa sinhs
(Fin−1)

+ d

2
f (ω0, T )

[
3− 2s+ cotanh s

sinhs
− s cotanh s−1

sinh2 s
+ s

sinh3 s

]
. (3.58)

We have abbreviated s= L/ξa. In the limit of strong absorption, s→∞, the Fano
factor approaches the universal limit Fdirect = 1+ 3

2 d f (see Sec. 4.4). The Fano
factor Fin is given by Eq. (3.53) for an incident squeezed state, but Eq. (3.58) is
more generally valid for any state of the incident radiation.
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The result for an amplifying disordered waveguide follows by the replacement
τa→−τa, hence ξa→ iξa:

Fdirect = 1+ 4ld

3ξa sins
(Fin−1)

+ d

2
f (ω0, T)

[
3− 2s− cotan s

sins
+ s cotan s−1

sin2 s
− s

sin3 s

]
. (3.59)

The Fano factor diverges at the laser threshold s= π. The function f (ω0, T) now
has to be evaluated at a negative temperature. For a complete population inversion
of the atomic states f →−1.

The minimal Fano factor in homodyne detection is given by Eq. (3.57). The
average 〈|tn0m0 |2〉 is again independent of the mode indices, hence it can be re-
placed by N−2〈tr t t†〉. For an absorbing waveguide we find

F min
homo = 1− 8ldκ

3Nξa sinhs
e−ρ sinhρ+ 8ldκ

3ξa
f (ω0, T)

[
cotanh s+ 1

sinhs

]
,

(3.60)

and for an amplifying waveguide

F min
homo = 1− 8ldκ

3Nξa sins
e−ρ sinhρ+ 8ldκ

3ξa
f (ω0, T)

[
cotan s− 1

sins

]
. (3.61)

Measurement of the ensemble average F min
homo requires that for every sample the

phase of the probe beam is re-adjusted so as to minimise the Fano factor. This is
common practice in a homodyne measurement. If the phase of the probe beam is
fixed, the random phase of tn0m0 will average to zero the third term in Eq. (3.56).
In Eqs. (3.60) and (3.61) this amounts to the substitution e−ρ→−sinhρ.

A graphical presentation of the results (3.58)–(3.61) is given in Figs. 3.3–
3.5. For the absorbing case we have taken f = 0 (appropriate for optical fre-
quencies at room temperature). For the amplifying case we have taken f =
−1 (complete population inversion). The formulas above cannot be used for
L � l . The values of Fdirect, Fhomo, and F min

homo for L = 0 can be read off from
Eqs. (3.54)–(3.57), Fdirect → 1+ d(Fin− 1), Fhomo = 1+ 2δn0m0dκ sinh2ρ, and
F min

homo = 1− 2δn0m0dκe−ρ sinhρ. An extrapolation to L = 0 is shown dashed in
Fig. 3.3.

The common feature of the Fano factors plotted in Figs. 3.3–3.5 is a conver-
gence as the length of the waveguide becomes longer and longer. For an absorbing
medium the L→∞ limit is independent of the state of the incident radiation. For
an amplifying medium complete convergence is pre-empted by the laser threshold
at L = πξa.
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Figure 3.3: Average Fano factor Fdirect for direct detection as a function of the
length of the waveguide. The left panel is for an amplifying medium [Eq. (3.59),
f = −1], the right panel for an absorbing medium [Eq. (3.58), f = 0]. In both
cases we took l/ξa = 0.1, d = 1, and values of Fin increasing from 0 to 3 in steps
of 0.5. The dotted parts of the curves are extrapolations in the range L � l that is
not covered by Eqs. (3.58) and (3.59).
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Figure 3.4: Average minimal Fano factor for homodyne detection, from
Eqs. (3.60) and (3.61). Same parameter values as in Fig. 3.3, with N = 10, κ = 1

2 ,
and ρ increasing from 0 to 1 in steps of 0.25. For L � l the curves extrapolate
either to 1 (if n0 �=m0) or to 1−e−ρ sinhρ (if n0 =m0). (This extrapolation is not
shown in the figure.)
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Figure 3.5: Average Fano factor for homodyne detection, from Eqs. (3.60)
and (3.61) after the substitution e−ρ → −sinhρ, otherwise identical to
Fig. 3.4. For L � l the curves extrapolate either to 1 (if n0 �= m0) or to
1 + sinh2ρ (if n0 = m0). (This extrapolation is not shown in the figure.)
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3.8 Conclusions

In conclusion, we have derived general expressions for the photodetection statist-
ics in terms of the scattering matrix of the medium through which the radiation
has propagated. These expressions are particularly well suited for evaluation by
means of random-matrix theory, as we have shown by an explicit example, the
propagation of squeezed radiation through an amplifying or absorbing waveguide.
The sub-Poissonian noise that can occur in a squeezed state (characterised by a
Fano factor smaller than unity) is destroyed by thermal fluctuations in an absorb-
ing medium or by spontaneous emission in an amplifying medium. The theory
presented here describes this interaction of nonclassical radiation with matter in
a quantitative way, without the restriction to one-dimensional scattering of earlier
investigations.



Chapter 4

Photon shot noise of localised waves

4.1 Introduction

Analogies in the behaviour of photons and electrons provide a continuing source
of inspiration in mesoscopic physics [Büt99]. Two familiar examples are the
analogies between weak localisation of electrons and enhanced backscattering
of light and between conductance fluctuations and optical speckle [Alt91]. The
basis for these analogies is the similarity between the single-electron Schrödinger
equation and the Helmholtz equation. The Helmholtz equation is a classical wave
equation, and indeed the study of mesoscopic phenomena for light has been lim-
ited mostly to classicaloptics. A common theme in these studies is the interplay
of interference and multiple scattering by disorder. The extension to quantum
optics adds the interplay with vacuum fluctuations as a new ingredient.

Recently a theoretical approach to the quantum optics of disordered media
was proposed [Bee98], that utilises the methods of the random-matrix theory of
quantum transport [Bee97, Guh98]. The random matrix under consideration is the
scattering matrix. The basic result of Ref. [Bee98] is a relationship between the
scattering matrix and the photocount distribution. It was applied there to the stat-
istics of blackbody radiation and amplified spontaneous emission. This work was
reviewed in Ref. [Bee99]. Chapter 2 of this thesis discussed the optical analogue
of electronic shot noise.

Shot noise is the time-dependent fluctuation of the current I (t) = Ī + δ I (t)
(measured in units of particles/s) resulting from the discreteness of the particles.
The noise power

P =
∫ ∞
−∞

dt δ I (0)δ I (t) (4.1)

59
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quantifies the size of the fluctuations. (The bar · · · indicates an average over many
measurements on the same system.) For independent particles the current fluctu-
ations form a Poisson process, with power PPoisson = Ī equal to the mean current.
The ratio P/PPoisson (called the Fano factor F [Fan47]) is a measure of the cor-
relations between the particles.

For electrons, correlations resulting from the Pauli exclusion principle reduce
P below PPoisson. (See Ref. [Jon99] for a review.) The ratio P/PPoisson is expressed
in terms of traces of the transmission matrix t at the Fermi energy by [Büt90]

F ≡ P/PPoisson = 1− tr(t t†)2

tr t t†
. (4.2)

This formula holds at zero temperature (no thermal noise). In the absence of scat-
tering all eigenvalues of the transmission-matrix product t t † are equal to unity,
hence P = 0. This absence of shot noise is realised in a ballistic point con-
tact [Khl87, Les89]. At the other extreme, in a tunnel junction all transmission
eigenvalues are � 1, hence P = PPoisson [Sch18]. A disordered metallic con-
ductor is intermediate between these two extremes, having P = 1

3 PPoisson [Bee92,
Nag92].

For the optical analogue we consider a monochromatic laser beam (frequency
ω0) incident in a single mode (labelled m0) on a waveguide containing a dis-
ordered medium (at temperature T ). The radiation from a laser is in a coherent
state. The photostatistics of coherent radiation is that of a Poisson process [Man95],
hence P = PPoisson for the incident beam. The question addressed in this work is:
How does the ratio P/PPoisson change as the radiation propagates through the ran-
dom medium? We saw that, for electrons, scattering increases this ratio. In con-
trast, in the optical analogue scattering by itself has no effect: P remains equal to
PPoisson if the incident beam is only partially transmitted — provided the scattering
matrix remains unitary. A non-unitary scattering matrix, resulting from absorp-
tion or amplification of radiation by the medium, increases the ratio P/PPoisson.
This excess noise can be understood as the beating of coherent radiation with
vacuum fluctuations of the electromagnetic field [Hen96].

Photon shot noise has been studied extensively in systems where the scattering
is one-dimensional (for example, randomly layered media) [Jef93, Mat97]. No
formula of the generality of Eq. (4.2) was needed for those investigations. In order
to go beyond the one-dimensional case, we have derived the optical analogue of
Eq. (4.2). The result is

F = 1+2 f (ω0, T )
[t†(1− rr †− t t†)t]m0m0

[t†t]m0m0

, (4.3)
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Figure 4.1: Coherent light (thick arrow) is incident on an absorbing or ampli-
fying medium (shaded), embedded in a waveguide. The transmitted radiation is
measured by a photodetector.

where f (ω, T) = [exp(h̄ω/kBT)− 1]−1 is the Bose-Einstein function. Eq. (4.3)
contains both the transmission matrix t and the reflection matrix r (evaluated at
frequency ω0). For a unitary scattering matrix, rr †+ t t† equals the unit matrix
1, hence the term proportional to f in Eq. (4.3) vanishes and P = PPoisson. Ab-
sorption and amplification both lead to an enhancement of P above PPoisson. For
an absorbing system the matrix 1− rr †− t t† is positive definite and f > 0, so
P/PPoisson > 1. In an amplifying system 1− rr †− t t† is negative definite but f is
also negative (because T < 0 in an amplifying system), so P/PPoisson is still > 1.

We will review the derivation of the optical shot-noise formula (4.3), and the
application to absorbing and amplifying disordered waveguides. The amplify-
ing case is of particular interest in view of the recent experiments on random
lasers [Wie97, Cao99], which are amplifying media in which the feedback re-
quired for a laser threshold is provided by scattering from disorder rather than by
mirrors.

4.2 Optical shot-noise formula

In this section we summarise the scattering formulation of the photodetection
problem [Bee98], and derive the formula (4.3) for the excess noise. We consider
an absorbing or amplifying disordered medium embedded in a waveguide that
supports N(ω) propagating modes at frequency ω (see Fig. 4.1). The absorb-
ing medium is in thermal equilibrium at temperature T > 0. In the amplifying
medium, the amplification could be due to stimulated emission by an inverted
atomic population or to stimulated Raman scattering [Hen96]. A negative tem-
perature T < 0 describes the degree of population inversion in the first case or the
density of the material excitation in the second case [Jef93]. A complete popu-
lation inversion or vanishing density corresponds to the limit T→ 0 from below.
The Bose-Einstein function f (ω, T ) is > 0 for T > 0 and <−1 for T < 0.1 The

1The quantity f (ω,T ) is called the “population inversion factor” in the laser literature, be-
cause if ω is close to the laser frequency Ω one can express f = (Nlower/Nupper−1)−1 in terms
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absorption or amplification rate 1/τa = ω|ε′′| is obtained from the imaginary part
ε′′ of the (relative) dielectric constant (ε ′′ > 0 for absorption, ε′′ < 0 for amplifica-
tion). Disorder causes multiple scattering with rate 1/τs and (transport) mean free
path l = cτs (with c the velocity of light in the medium). The diffusion constant
is D = 1

3cl. The absorption or amplification length is defined by ξa =√Dτa.
The waveguide is illuminated from one end by monochromatic radiation (fre-

quency ω0, mean photocurrent I0) in a coherent state. For simplicity, we as-
sume that the illumination is in a single propagating mode (labelled m0). At the
other end of the waveguide, a photodetector detects the outcoming radiation. We
assume, again for simplicity, that all N outgoing modes are detected with unit
quantum efficiency. We denote by p(n) the probability to count n photons within
a time t . Its first two moments determine the mean photocurrent Ī and the noise
power P, according to2

Ī = 1

t
n̄ , P = lim

t→∞
1

t

(
n2− n̄2

)
. (4.4)

The outgoing radiation in mode n is described by an annihilation operator
aout

n (ω), using the convention that modes 1,2, . . . , N are on the left-hand-side of
the medium and modes N+1, . . . ,2N are on the right-hand-side. The vector aout

consists of the operators aout
1 ,aout

2 , . . . ,aout
2N . Similarly, we define a vector ain for

incoming radiation. These two sets of operators each satisfy the bosonic com-
mutation relations

[an(ω),a†
m(ω′)]= δnmδ(ω−ω′) , [an(ω),am(ω′)]= 0 , (4.5)

and are related by the input-output relations [Jef93, Mat95, Gru96b]

aout = Sain+Ub+V c† . (4.6)

We have introduced the 2N×2N scattering matrix S, the 2N×2N matrices U , V ,
and the vectors b,c of 2N bosonic operators. The reflection and transmission
matrices are N×N submatrices of S,

S=
(

r ′ t ′
t r

)
. (4.7)

of the ratio Nlower/Nupper = exp(h̄Ω/kBT ) of the population of the lower and upper atomic
levels, with f =−1 corresponding to a complete population inversion.

2This definition of P is equivalent to Eq. (4.1); In some papers the noise power is defined
with an extra factor of 2.
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The operators b,c account for vacuum fluctuations. In order for these operat-
ors to satisfy the bosonic commutation relations (4.5), it is necessary that

UU †−V V† = 1−SS† . (4.8)

In an absorbing medium c≡ 0 and b has the expectation value

〈b†
n(ω)bm(ω′)〉 = δnmδ(ω−ω′) f (ω, T) , T > 0 . (4.9)

Conversely, in an amplifying medium b≡ 0 and c has the expectation value

〈cn(ω)c†
m(ω′)〉 = −δnmδ(ω−ω′) f (ω, T) , T < 0 . (4.10)

The contributions from thermal emission to Ī and P can be eliminated by
filtering the output through a narrow frequency window around ω0. Only terms
proportional to the incident current I 0 remain, and we arrive at Eq. (2.16),

Ī = I0(t†t)m0m0 , (4.11)

P = Ī +2I0 f (ω0, T )
[
t†(1− rr †− t t†)t

]
m0m0

. (4.12)

This yields the optical shot noise formula (4.3) discussed in the introduction.

4.3 Diffusive random medium

We consider an ensemble of absorbing disordered waveguides, with different real-
isations of the disorder, and evaluate the ensemble averages of Eqs. (4.11) and
(4.12). For a random medium the dependence on the index m0 of the incident
radiation is insignificant on average, so we may replace the average of a matrix
element [· · · ]m0m0 by the average of the normalised trace N−1 tr. Moments of rr †

and t t† in the presence of absorption have been computed by Brouwer [Bro98]
using the methods of random-matrix theory, in the regime that both the length L
of the waveguide and the absorption length ξa are much greater than the mean free
path l but much less than the localisation length Nl. This is the large-N regime
N� L/ l ,ξa/ l � 1. The ratio L/ξa ≡ s is arbitrary.

The result is given by Eqs. (2.41) and (2.42),

Ī = 4l

3L
I0

s

sinhs
, (4.13)

P = Ī + 2l

3L
I0 f s

(
3

sinhs
− 2s+ cotanhs

sinh2 s
− scotanhs−1

sinh3 s
+ s

sinh4 s

)
. (4.14)
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Figure 4.2: Excess noise power for an absorbing disordered waveguide, computed
from Eqs. (4.13) and (4.14). The ratio P/ Ī tends to 1+ 3

2 f for L � ξa.

The ratio P/PPoisson ≡ P/ Ī increases from 1 to 1+ 3
2 f with increasing s, see

Fig. 4.2. The limiting value P/PPoisson→ 1+ 3
2 f (ω0, T ) for L � ξa depends on

temperature and frequency through the Bose-Einstein function, but is independent
of the scattering or absorption rates. This might be seen as the optical analogue
of the universal limiting value P/PPoisson → 1

3 for L � l of the electronic shot
noise [Bee92, Nag92].

4.4 Near and above the localisation length

For L � ξa we may neglect the matrix t t † with respect to 1 in Eq. (4.12), so that
the expression for the Fano factor takes the form

F = 1+2 f (1−C1) , Cp ≡ [t†(rr †)pt]m0m0

[t†t]m0m0

. (4.15)

In the absence of localisation, for L � ξ , one can simplify the calculation of
〈F 〉 by averaging separately the numerator and denominator in the coefficient
C1, since the sample-to-sample fluctuations are small. This diffusive regime was
studied above. Such a simplification is no longer possible in the localised regime
and we should proceed differently.

We follow the general approach of Ref. [Bro98], by considering the change
in F upon attaching a short segment of length δL to one end of the waveguide.
Transmission and reflection matrices are changed to leading order in δL according



4.4. NEAR AND ABOVE THE LOCALISATION LENGTH 65

to

t→ tδL(1+ rr δL)t , r → r ′δL+ tδL(1+ rr δL)r t T
δL , (4.16)

where the superscript T indicates the transpose of a matrix. (Because of recipro-
city the transmission matrix from left to right equals the transpose of the transmis-
sion matrix from right to left.) The transmission matrix tδL of the short segment
may be chosen proportional to the unit matrix,

tδL = (1− δL/2l − δL/2la)1 , (4.17)

where la = 2ξ 2
a / l is the ballistic absorption length. Unitarity of the scattering

matrix then dictates that the reflection matrix from the left of the short segment
is related to the reflection matrix from the right by r ′δL = −r †

δL . The reflection
matrix rδL is symmetric (because of reciprocity), with zero mean and variance

〈[rδL]kl [rδL]∗mn〉 = (δkmδln+ δknδlm)δL/ξ . (4.18)

Substituting Eq. (4.16) into Eq. (4.15) and averaging we find the evolution equa-
tion

ξ
d〈C1〉

dL
=−2〈C1ρ1〉+〈ρ2〉− ξ l

ξ 2
a
〈C1〉+1+2〈C2−C1〉−〈C2

1 〉
−4Re

〈
[t†t]−2

m0m0
[t†r t ∗]m0m0 [tTr †rr †t]m0m0

〉
+2

〈
(1+C1)[t†t]−2

m0m0

∣∣[t†r t ∗]m0m0

∣∣2〉 , (4.19)

where we have defined ρp = tr(1− rr †)p.
For L � ξa we may replace the average of the product 〈C1ρ1〉 by the prod-

uct of averages 〈C1〉〈ρ1〉, because [Bro98] statistical correlations with traces that
involve reflection matrices only are of relative order ξa/ξ — which we have as-
sumed to be � 1. The moments of the reflection matrix are given for L � ξ a

by 3

〈ρp〉 = �(p−1/2)√
π�(p)

ξ

ξa
, (4.20)

hence they are � 1 and also � ξ l/ξ 2
a . We may therefore neglect the terms in

the second, third, and fourth line of Eq. (4.19). What remains is the differential
equation

ξ
d〈C1〉

dL
=−2〈C1〉〈ρ1〉+〈ρ2〉 , (4.21)

3These moments follow from the Laguerre distribution of the reflection eigenvalues, cf.
Ref. [Bee96].
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Figure 4.3: Length dependence of the average Fano factor, computed from
Eq. (4.3). The data points result from a numerical simulation for an absorbing
disordered waveguide with N = 50 propagating modes. Arrows indicate the ab-
sorption length ξa and the localisation length ξ . The average Fano factor is not
affected by localisation.

which for L � ξa has the solution

〈C1〉 = 〈ρ2〉
2〈ρ1〉 =

1

4
. (4.22)

We conclude that the average Fano factor 〈F 〉 = 1+2 f (1−〈C1〉)→ 1+ 3
2 f for

L� ξa, regardless of whether L is small or large compared to ξ .
To support this analytical calculation we have carried out numerical simu-

lations. The absorbing disordered waveguide is modelled by a two-dimensional
square lattice (lattice constant a). The dielectric constant ε has a real part that
fluctuates from site to site and a non-fluctuating imaginary part. The multiple
scattering of a scalar wave � is described by discretising the Helmholtz equation
[∇2+ (ω0/c)2ε]� = 0 and computing the transmission and reflection matrices us-
ing the recursive Green function technique [Bar91]. The mean free path l = 20a
and the absorption length ξa = 135a are determined from the average transmis-
sion probability N−1〈tr t t†〉 = l/ξa sinh(L/ξa) in the diffusive regime [Bro98]. Av-
erages were performed over the N/2 modes m0 near normal incidence and over
some 102−103 realisations of the disorder. Results are shown in Figs. 4.3 and 4.4.

The length dependence of the average Fano factor is plotted in Fig. 4.3, for
N = 50 and L ranging from 0 to 2ξ . Clearly, localisation has no effect. The lim-
iting value of f −1〈F − 1〉 resulting from this simulation is slightly smaller than
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Figure 4.4: Dependence of the average and variance of the Fano factor on the
number N of propagating modes, for fixed length L = 260 l = 38.5ξa of the wave-
guide. The length is larger than the localisation length ξ = (N+ 1)l for all data
points. The dashed lines extrapolate to the theoretical expectation for 1/N→ 0.
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Figure 4.5: Different dependence for electrons and photons of the shot-noise
power P on the length L of the waveguide. The curve for photons is the same as in
Fig. 4.2, the solid curve for electrons has been calculated in Ref. [Jon92, Jon95],
the dashed curve is a qualitative interpolation. We have assumed a factor of 10
between the mean free path l , the absorption length ξa, and the localisation length
ξloc= Nl. (For electrons, the absorption length should be ignored.) The electronic
P increases from 0 to 1

3 of the Poisson value Ī when L becomes larger than l , and
then increases further to full Poisson noise at ξ loc = Nl. The photonic P has only
a single transition, at ξa, from Ī to (1+ 3

2 ) Ī . Nothing happens at L = l or L = ξloc

to the shot noise of coherent radiation.

the value 3/2 predicted by the analytical theory for N� 1. The N-dependence of
〈F 〉 in the localized regime is shown in Fig. 4.4. A line through the data points ex-
trapolates to the theoretical expectation f −1〈F −1〉→ 3/2 for N→∞. Fig. 4.4
also shows the variance of the Fano factor. The variance extrapolates to 0 for
N→∞, indicating that F = P/ Ī becomes self-averaging for large N. This is in
contrast to P and Ī themselves, which fluctuate strongly in the localized regime.

It is interesting to compare this length dependence of the Fano factor with
the electronic analogue, where P becomes equal to the Poisson noise Ī in the
localised regime. The difference between shot noise for electrons and photons in
summarised in Fig. 4.5.
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4.5 Amplifying random medium

The results for an amplifying disordered waveguide in the large-N regime follow
from Eqs. (4.13) and (4.14) for the absorbing case by the substitution τa→−τa,
or equivalently s→ is. One then finds Eqs. (2.21) and (2.22),

Ī = 4l

3L
I0

s

sins
, (4.23)

P = Ī + 2l

3L
I0 f s

(
3

sins
− 2s− cotans

sin2 s
+ scotans−1

sin3 s
− s

sin4 s

)
. (4.24)

Recall that the Bose-Einstein function f < −1 in an amplifying medium. As
shown in Fig. 4.6, the ratio P/ Ī increases without bound as the length L→πξa or,
equivalently, the amplification rate 1/τa→ π2 D/L2. This is the laser threshold.

To understand better the behaviour close to the laser threshold, we consider
the scattering matrix S(ω) as a function of complex frequency ω. In the absence
of amplification all poles (resonances) of S are in the lower half of the com-
plex plane, as required by causality. Amplification shifts the poles upward by an
amount 1/2τa. The laser threshold is reached when the first pole hits the real axis,
say at resonance frequencyΩ . For ω nearΩ the scattering matrix has the generic
form

Snm= σnσm

ω−Ω+ 1
2 iΓ − i/2τa

, (4.25)

L/πξa

(P
−

Ī)
/
Ī|

f|
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Figure 4.6: Excess noise power for an amplifying disordered waveguide, com-
puted from Eqs. (4.23) and (4.24). The ratio P/ Ī diverges at the laser threshold
L = πξa.
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where σn is the complex coupling constant of the resonance to the nth mode in the
waveguide and Γ is the decay rate. The laser threshold is at Γ τa= 1. We will now
show that, while P and Ī diverge at the laser threshold, the signal-to-noise ratio
S = Ī 2/P has a finite limit — independent of σn, Γ , or τa. The signal-to-noise
ratioS is, up to a prefactor Ī , the inverse of the noise figure discussed in Sec. 2.6.

We assume that the incident radiation has frequency ω0 =Ω . Substitution of
Eq. (4.25) into Eqs. (4.23) and (4.24) gives the simple result

S = I0|σm0 |2
2| f |Σ , Σ =

2N∑
n=1

|σn|2 . (4.26)

The total coupling constant Σ = Σl+Σr is the sum of the coupling constant
Σl =∑N

n=1|σn|2 to the left end of the waveguide and the coupling constant Σ r =∑2N
n=N+1 |σn|2 to the right. The ensemble average 〈|σm0 |2/Σ〉 is independent of

m0 ∈ [1, N], hence

〈S〉 = I0

2| f |N 〈Σl/Σ〉 = I0

4| f |N , (4.27)

since 〈Σl/Σ〉 = 〈Σr/Σ〉⇒ 〈Σl/Σ〉 = 1/2. The signal-to-noise ratio of the incid-
ent coherent radiation (with noise power P0 = I0) is given by S0 = I 2

0 /P0 = I0.
The ratio S/S0 is the reciprocal of the noise figure of the amplifier. The signal-
to-noise ratio of the transmitted radiation is maximal for complete population
inversion, when | f | = 1 and 〈S〉 is smaller than S0 by a factor 4N. This universal
limit 〈S/S0〉 → 1/4N does not require large N, but holds for any N = 1,2, . . . .
It is the multi-mode generalisation of a theorem for the minimal noise figure of a
single-mode linear amplifier [Hen96, Cav82].

4.6 Outlook

We conclude by mentioning some directions for future research. In the elec-
tronic case it is known that the result P/ Ī = 1/3 for the Fano factor of a dif-
fusive conductor can be either computed from the scattering matrix [Bee92] (us-
ing random-matrix theory) or from a kinetic equation known as the Boltzmann-
Langevin equation [Nag92]. Here we have shown using the former approach
that the optical analogue is a Fano factor of 1+ 3

2 f for a disordered waveguide
longer than the absorption length. To obtain this result from a kinetic equation
one needs a Boltzmann-Langevin equation for bosons. Work in this direction is
in progress [Mis99].
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The effect of localisation on the Fano factor is strikingly different for electrons
and photons. In the electronic case the average 〈P/ Ī 〉 goes to 1 in the localised
regime, but we have found for the optical case that this average is unchanged
as the length of the waveguide becomes longer than the localisation length and
approaches the universal value 1+ 3

2 f .
In the case of an amplifying disordered waveguide we have restricted our-

selves to the linear regime below the laser threshold. Above threshold the fluctu-
ations in the amplitude of the electromagnetic field are strongly suppressed and
only phase fluctuations remain [Man95]. These determine the quantum-limited
linewidth of the radiation, see Ch. 6. The application to a disordered waveguide
would require a knowledge of the statistics of the poles of the scattering matrix in
such a system, which is currently lacking.4

The recent interest in the Hanbury-Brown and Twiss experiment for electrons
in a disordered metal (for a recent example see [Büt99]) suggests a study of the
optical case. The formalism presented here for auto-correlations of the photocur-
rent can be readily extended to cross-correlations (see Ch. 5), but it has not yet
been applied to a random medium.

We do not know of any experiments on photon shot noise in a random me-
dium, and hope that the theoretical predictions reviewed here will stimulate work
in this direction. The universal limits of the Fano factor in the absorbing case and
the signal-to-noise ratio in the amplifying case seem particularly promising for an
experimental study.

4Since in Sec. 4.5 the laser threshold was found to be at 1/τa = π2 D/L2 in the large-N
limit, we conclude that Γ = π2 D/L2 is the minimal decay rate in that limit. In other words,
the density of S-matrix poles for a disordered waveguide without amplification should vanish
for Imω >−π2 D/2L2 if N→∞. This density is unknown, but a similar gap in the density of
poles has been found for the scattering matrix of a chaotic cavity [Fyo97].
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Chapter 5

Long-range correlation of thermal
radiation

5.1 Introduction

The Hanbury Brown-Twiss effect is the existence of spatial correlations in the in-
tensity of thermal radiation by a distant source. It was originally proposed as an
intensity-interferometric method to measure the angular opening of a star [HB56],
far less susceptible to atmospheric distortion than amplitude-interferometric meth-
ods [Boa90]. Two photodetectors at equal distance r from a source (diameter a)
will measure a correlated current if their separation d is smaller than the trans-
verse coherence length dc � λr/a of the radiation from the source at wavelength
λ. The correlation function decays with increasing d in an oscillatory way, with
amplitude ∝ (dc/d)3 [Man95].

The textbook results assume that the source of the thermal radiation is a black
body, meaning that at each frequency any incident radiation is either fully ab-
sorbed or fully reflected. In a realistic system there will be a frequency range
where only partial absorption occurs. The purpose of this paper is to show that in
general for thermal radiation the correlation function does not decay completely to
zero, but to a non-zero d-independent background value. This long-range correl-
ation is smaller than the short-range correlation by a factor (λ/a)2, and becomes
dominant for d � r (λ/a)1/3. It contains information on deviations of the thermal
radiation from the black-body limit.

The new information contained in the long-range correlation is most eas-
ily described when the source is embedded in a waveguide (see Fig. 5.1). The
waveguide has length L , cross-sectional area A� a2, and supports N = 2πA/λ2
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r L

ad

Figure 5.1: Schematic diagram of a source (length L , diameter a) radiating into an
N-mode waveguide that is open at both ends. The radiation leaving the waveguide
at one end is detected by two photodetectors at a distance r from the source and
separated by a distance d. The photocathodes have an area below the transverse
coherence area d2

c � r 2/N. We find that the photocurrents are correlated even if
the two detectors are separated by more than dc.

propagating modes at frequency ω, counting both polarisations. In the far-field,
and near normal incidence, each mode corresponds to a transverse coherence area
(rλ)2/A ≡ d2

c . The source is in thermal equilibrium at temperature T . The ra-
diation emitted through the left end of the waveguide is incident on a pair of
photodetectors, one detecting the photocurrent I k(t) in mode k, the other detect-
ing Il (t). Each photocathode has an area equal to the coherence area or smaller.
The photocount nk = nk+ δnk (number of photons counted in a time t) and the
photocurrent Ik = dnk/dt = Īk+ δ Ik fluctuate around their time-averaged values
nk and Īk = nk/t . We seek the correlation function

Ckl =
∫ ∞
−∞
δ Ik(t + τ )δ Il (t)dτ = lim

t→∞
1

t
δnk(t)δnl (t) . (5.1)

The overline indicates an average over many measurements on the same sample.

5.2 Random-matrix formulation

The advantage of embedding the source in a waveguide is that we can characterise
it by a finite-dimensional scattering matrix S(ω), consisting of four blocks of
dimension N×N,

S=
(

r t
t ′ r ′

)
. (5.2)
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A mode l incident from the left is reflected into mode k with amplitude r kl and
transmitted with amplitude t ′kl . Similarly, r ′kl and tkl are the reflection and trans-
mission amplitudes for a mode l incident from the right. Reciprocity relates these
amplitudes by rkl = rlk , r ′kl = r ′lk , and tkl = t ′lk .

It has been shown recently [Bee98], using the method of “input-output rela-
tions” [Jef93, Mat95, Gru96b], how the photocount distribution can be expressed
in terms of the scattering matrix. The expressions in Ref. [Bee98] are for a single
multi-mode photodetector. The corresponding formulas for two single-mode pho-
todetectors are

Ckl = αkαl

∫ ∞
0
|(QQ†)kl(ω)|2 [ f (ω, T)

]2 dω

2π
+ δkl Īk ,

Ik = αk

∫ ∞
0

(QQ†)kk(ω) f (ω, T)
dω

2π
, (5.3)

where αk is the detector efficiency (the fraction of the photocurrent in mode k that
is detected) and f is the Bose-Einstein function

f (ω, T)= [
exp(h̄ω/kBT)−1

]−1
. (5.4)

The N×N matrix Q is related to the reflection and transmission matrices by

QQ† = 1− rr †− t t† . (5.5)

The integral over ω extends over a range Ωc set by the absorption line width,
centered at ω0. Typically,Ωc� ω0, so we can neglect the frequency dependence
of N and f . The matrix Q(ω) for a random medium fluctuates on a scale ωc much
smaller thanΩc. The integration over ω then averages out the fluctuations, so that
we may replace the integrand by its ensemble average, indicated by 〈. . .〉,

Ckl = αkαl f 2
∫ ∞

0
〈|(QQ†)kl (ω)|2〉dω

2π
+ δkl Īk . (5.6)

We evaluate the ensemble average using results from random-matrix the-
ory [Bee97]. For a medium with randomly placed scatterers, the “equivalent
channel approximation” [Mel92] has proven to be reliable. According to this
approximation, all N modes are statistically equivalent. As a consequence, for
any k �= l one has

〈tr(QQ†)2〉 = N
N∑

j=1

〈(QQ†)kj (QQ†)j k〉

= N(N−1)〈|(QQ†)kl |2〉+N〈(QQ†)2
kk〉 . (5.7)
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The average of (QQ†)2
kk factorises in the large-N limit [Bee97],

〈(QQ†)2
kk〉 = 〈(QQ†)kk〉2

[
1+O(N−1)

]= N−2〈tr QQ†〉2 . (5.8)

Combination of Eqs. (5.7) and (5.8) gives us

〈|(QQ†)kl |2〉 = N−2〈tr(QQ†)2〉−N−3〈tr QQ†〉2+O(N−2) . (5.9)

The eigenvalues σ1,σ2, . . . ,σN of the matrix rr † + t t† are the “scattering
strengths” of the random medium. We denote by σ p ≡ N−1 ∑

nσ
p

n the pth spec-
tral moment of the scattering strengths. According to Eqs. (5.5), (5.6) and (5.9),
the cross-correlator Ckl (k �= l ) then takes the form of a variance,

Ckl = αkαl f 2

N

∫ ∞
0

(〈
σ 2
〉−〈σ 〉2) dω

2π
. (5.10)

This is our basic result for the long-range correlation announced in the introduc-
tion. The new information contained in the cross-correlator is the variance of the
scattering strengths. The auto-correlator, in contrast, depends entirely on the first
spectral moment,

Ckk = α2
k f 2

∫ ∞
0
〈1−σ 〉2 dω

2π
+ Īk , (5.11a)

Īk = αk f
∫ ∞

0
〈1−σ 〉dω

2π
, (5.11b)

where we have used Eq. (5.8).
The long-range correlation Ckl of two photodetectors separated by more than

a coherence length is an order N smaller than the short-range correlation Ckk− Īk

of two photodetectors separated by less than a coherence length. (The full value
Ckk is measured in a single-detector experiment.) The long-range correlation van-
ishes if all N scattering strengths are the same, as they would be for an idealised
“step-function model” of a black body (σn= 0 for |ω−ω0|<Ωc and σn= 1 other-
wise). A random, partially absorbing medium, in contrast, has a broad distribution
of scattering strengths [Bee97], hence a substantial long-range correlation of the
photocurrent.

5.3 Applications

5.3.1 Disordered medium

As first example, we compute the correlation for a weakly absorbing, strongly
disordered medium. The moments of rr † and t t† appearing in Eqs. (5.10) and
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Figure 5.2: Long-range correlation Ckl (solid line), in units of Ωcl f 2αkαl/Nξ0,
and short-range correlation Ckk− Īk (dashed line), in units of Ωc(l f αk/ξ0)2, of
the radiation emitted from a disordered waveguide. A Lorentzian frequency de-
pendence is assumed for the dielectric function, with width Ωc and absorption
length ξ0 at the centre of the absorption line. The mean free path l is assumed to
be� ξ0. The short-range correlation saturates in the limit L/ξ0→∞, while the
long-range correlation keeps increasing ∝ ln L/ξ0.

(5.11) have been calculated by Brouwer [Bro98] as a function of the number of
modes N, the sample length L , the mean free path l , and the absorption length
ξa =√Dτa (τa is the absorption time and D = cl/3 the diffusion constant). It is
assumed that 1/N� l/ξa� 1, but the ratio L/ξa ≡ s is arbitrary. The result is

〈
σ 2
〉
−〈σ 〉2 = 2l

3ξa

(
coth3 s− 3

sinhs
+ s

sinh2 s
+ scoths−1

sinh3 s
− s

sinh4 s

)
,

(5.12a)

〈1−σ 〉 = 4l

3ξa
tanh

s

2
. (5.12b)

To compute the correlators (5.10) and (5.11) it remains to carry out the integ-
rations over ω. The frequency dependence is governed by the imaginary part of
the dielectric function ε ′′(ω), for which take the Lorentzian ε ′′(ω) = ε′′0 [1+ (ω−
ω0)2/Ω2

c ]−1. Since τa = 1/ω0ε
′′, the corresponding ω-dependence of ξa and s is

ξa/ξ0 = s0/s = [1+ (ω−ω0)2/Ω2
c ]1/2, with ξ0 and s0 the values of ξ and s at

ω = ω0. Results are plotted in Fig. 5.2. In the limit L/ξ0→ 0 of a thin sample,
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we have

Ckl = 1

45
Ωc

l f 2αkαl

Nξ0
(L/ξ0)3 , (5.13a)

Ckk = 4

9π
Ωc

(
l f αk

ξ0

)2

(L/ξ0)2+ Īk , (5.13b)

Īk = 1

3
Ωc

l f αk

ξ0
(L/ξ0) . (5.13c)

In the opposite limit L/ξ0 →∞ of a thick sample, the cross-correlator Ckl and
the mean current Īk both diverge logarithmically∝ ln L/ξ0. The ratio Ckl/( Īk Īl )1/2

tends to (1/2N) f
√
αkαl in the large-L limit, and the short-range correlation Ckk−

Īk to 8
9Ωc(l f αk/ξ0)2, remaining larger than the long-range correlation because the

limit N→∞ has to be taken before L→∞.

5.3.2 Chaotic cavity

Our second example is an optical cavity filled with an absorbing random me-
dium. The radiation leaves the cavity through a waveguide supporting N modes.
The general formula (5.3) applies with QQ† = 1− rr † (since there is no trans-
mission). The scattering strengths σ1,σ2, . . . ,σN in this case are eigenvalues of
rr †. Their distribution is known in the large-N limit [Bee99] as a function of
the dimensionless absorption rate γ = 2π/Nτa∆ω, with ∆ω the spacing of the
cavity modes near frequency ω0. (The quantity γ is the ratio of the mean dwell
time in the cavity without absorption and the absorption time.) The moments 〈σ 〉
and 〈σ 2〉 can then be computed by numerical integration. Results are shown in
Fig. 5.3, again for a Lorentzian frequency dependence of ε ′′(ω). Unlike in the first
example, we are now not restricted to weak absorption but can let the absorption
rate γ0 at the central frequency ω0 become arbitrarily large. For weak absorption,
γ0� 1, we have

Ckl = 1

4
Ωc

f 2αkαl

N
γ 2

0 , (5.14a)

Ckk= 1

4
Ωc( f αkγ0)2+ Īk , (5.14b)

Īk = 1

2
Ωc f αkγ0 . (5.14c)

For strong absorption, γ0� 1, all three quantities Ckl , Ckk and Īk diverge ∝ √γ0

(see Fig. 5.3, top). The ratio Ckl/( Īk Īl )1/2 tends to 0.062 f (αkαl )1/2/N, and the
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Ī l

0.6

0.5

0.4

0.3

0.2

0.1

0
10410310210110010−110−210−3

0.12

0.10

0.08

0.06

0.04

0.02

0

Figure 5.3: Correlators of the radiation emitted from a disordered optical cavity
as a function of the absorption rate γ0 at the centre of the absorption line with
Lorentzian profile. (The absorption rate is normalised to the mean dwell time.)
Top: Long-range correlation Ckl (solid line), in units ofΩc f 2αkαl/N, and short-
range correlation Ckk− Īk (dashed line), in units of Ωc f 2α2

k . Bottom: Same cor-
relators, but now normalised by the mean photocurrent. (The left axis is in units
of f
√
αkαl/N, the right axis in units of f αk.) The long-range correlation persists

in the limit γ0 →∞ because of partial absorption in the tails of the absorption
line.
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ratio (Ckk− Īk)/ Īk to 1
2 f αk (see Fig. 5.3, bottom). The long-range correlation does

not vanish as γ0→∞, because there remains a tail of frequencies with moderate
absorption and thus a wide distribution of scattering strengths, even if the system
behaves like an ideal black body for frequencies near ω0.

5.4 Conclusion

In summary, we have shown that the thermal radiation emitted by random media
contains long-range spatial correlations in the intensity. The long-range correl-
ation has information on the spectral variation of the scattering strengths that is
not accessible from the luminosity. We have analysed two types of systems in
detail, providing specific predictions that we hope will motivate an experimental
search for the long-range correlation.



Chapter 6

Quantum limit of the laser linewidth
in chaotic cavities

6.1 Introduction

Laser action selects a mode in a cavity and enhances the output intensity in this
mode by a nonlinear feedback mechanism. Vacuum fluctuations of the electro-
magnetic field ultimately limit the narrowing of the emission spectrum [Sch58].
The quantum-limited linewidth, or Schawlow-Townes linewidth,

δωST =
1

2
Γ 2/I , (6.1)

is proportional to the square of the decay rate Γ of the lasing cavity mode and
inversely proportional to the output power I (in units of photons/s). This is a
lower bound for the linewidth when Γ is much less than the linewidth of the
atomic transition and when the lower level of the transition is unoccupied. Many
years after the work of Schawlow and Townes it was realised [Pet79, Sie89a,
Sie89b] that the true fundamental limit is larger than Eq. (6.1) by a factor K that
characterises the non-orthogonality of the cavity modes. This excess noise factor,
or Petermann factor, has generated an extensive literature [Che96, Eij96, Eij97,
Bru97, Gra98, Sie98].

Apart from its importance for cavity lasers, the Petermann factor is of fun-
damental significance in the more general context of scattering theory. A las-
ing cavity mode is associated with a pole of the scattering matrix in the com-
plex frequency plane. We will show that the Petermann factor is proportional to
the squared modulus of the residue of this pole. Poles of the scattering matrix
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also determine the position and height of resonances of nuclei, atoms, and mo-
lecules [Mah69]. Powerful numerical tools that give access to poles even deep in
the complex plane have been developed recently [Man97]. They can be used to
determine the residues of the poles as well. Our work is of relevance for these
more general studies, beyond the original application to cavity lasers.

Existing theories of the Petermann factor usually deal with cavities that have
a high degree of symmetry. They factorise K = K lKr into longitudinal and trans-
verse factors, assuming that the cavity mode is separable into longitudinal and
transverse modes, each of which is basically one-dimensional. For such regular
cavities the framework of ray optics provides a simple way to solve the prob-
lem in a good approximation [Eij96, Eij97]. This approach breaks down if the
light propagation in the cavity becomes chaotic, either because of an irregular
shape of the boundaries or because of randomly placed scatterers. In the lan-
guage of dynamical systems, one crosses over from integrable to chaotic dy-
namics [Haa91]. The method of random-matrix theory is well-suited for such
chaotic cavities [Haa91, Meh90]. Instead of considering a single cavity, one stud-
ies an ensemble of cavities with small variations in shape and size, or in position
of the scatterers. The distribution of the scattering matrix in this ensemble is
known. Recent work has provided a detailed knowledge on the statistics of the
poles [Sok88, Sok89, Fyo96, Fyo97, Som99]. Much less is known about the
residues [Jan99, Cha98, Meh00]. In this chapter we fill the remaining gap to a
considerable extent.

The outline of this chapter is as follows. In Section 6.2 we derive the connec-
tion between the Petermann factor and the residue of the pole of the lasing mode.
The residue in turn is seen to be characteristic for the degree of nonorthogonality
of the modes. In this way we make contact with the existing literature on the
Petermann factor [Gra98, Sie98].

In Section 6.3 we study the single-channel case of a scalar scattering mat-
rix. This applies to a cavity that is coupled to the outside via a small opening
of area A � λ2/2π (with λ the wavelength of the lasing mode). For preserved
time-reversal symmetry (the relevant case in optics) we find that the ensemble
average of K −1 depends non-analytically∝ T ln T−1 on the transmission prob-
ability T through the opening, so that it is beyond the reach of perturbation theory
even if T � 1. We present a complete resummation of the perturbation series
that overcomes this obstacle. We derive the conditional distribution P(K ) of the
Petermann factor at a given decay rate Γ of the lasing mode, valid for any value
of T . The most probable value of K −1 is ∝ T , hence it is parametrically smaller
than the average.
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In a cavity with such a small opening the deviations of K from unity are
very small. We contrast this in Sec. 6.4 with the multi-channel case of an N×N
scattering matrix, which corresponds to an opening of area A ≈ Nλ2/2π. The
lasing mode acquires a decay rate Γ of order Γ0 = NT∆/2π (with ∆ the mean
spacing of the cavity modes), and the mean Petermann factor is K ∝ √N.

6.2 Relationship between Petermann factor and residue

Modes of a closed cavity, in the absence of absorption or amplification, are ei-
genvalues ωn of a Hermitian operator H0. This operator can be chosen real if
the system possesses time-reversal symmetry (symmetry index β = 1), otherwise
it is complex (β = 2). For a chaotic cavity, H0 can be modelled by an M ×M
Hermitian matrix with independent Gaussian distributed elements,

P(H0)∝ exp

(
−βM

4µ2
tr H 2

0

)
. (6.2)

(For β = 1 (2), this is the Gaussian orthogonal (unitary) ensemble [Meh90].) The
mean density of eigenvalues is the Wigner semicircle

�(ω)= M

2πµ2

√
4µ2−ω2 . (6.3)

The mean mode spacing at the centre ω = 0 is ∆ = πµ/M . (The limit M→∞
at fixed spacing∆ of the modes is taken at the end of the calculation.)

A small opening in the cavity is described by a real, non-random M × N
coupling matrix W, with N the number of scattering channels transmitted through
the opening. (For an opening of area A, N � 2πA/λ2 at wavelength λ.) Modes
of the open cavity are complex eigenvalues (with negative imaginary part) of the
non-Hermitian matrix

H = H0− iπW W† . (6.4)

In absence of amplification or absorption, the scattering matrix Sat frequency
ω is related to H by [Mah69, Ver85]

S= 1−2πiW†(ω−H )−1W . (6.5)

The scattering matrix is a unitary (and symmetric, for β = 1) random N × N
matrix, with poles at the eigenvalues of H . It enters the input-output relation

aout
m (ω)=

N∑
n=1

Smn(ω)ain
n (ω) , (6.6)
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which relates the annihilation operators aout
m of the scattering states that leave the

cavity to the annihilation operators ain
n of states that enter the cavity. The indices

n, m label the scattering channels.
We now assume that the cavity is filled with a homogeneous amplifying me-

dium (constant amplification rate 1/τa over a large frequency windowΩa = L∆,
L� N). This adds a term i/2τa to the eigenvalues, shifting them upward towards
the real axis. The scattering matrix

S= 1−2πiW†(ω−H − i/2τa)−1W (6.7)

is then no longer unitary, and the input-output relation changes to [Jef93, Bee98]

aout
m (ω)=

N∑
n=1

Smn(ω)ain
n (ω)+

N∑
n=1

Vmn(ω)c†
n(ω) . (6.8)

All operators fulfil the canonical bosonic commutation relations [an(ω),a†
m(ω′)]=

δnmδ(ω−ω′). As a consequence,

V(ω)V†(ω)= S(ω)S†(ω)−1 . (6.9)

The operators c describe the spontaneous emission of photons in the cavity and
have expectation value

〈c†
n(ω)cm(ω′)〉 = δnmδ(ω−ω′) f (ω, T) , (6.10)

with f (ω, T) = [exp(h̄ω/kBT )− 1]−1 the Bose-Einstein distribution function at
frequency ω and temperature T .1

In the absence of external illumination (〈ain†
ain〉 = 0), the photon current per

frequency interval,

I (ω)= 1

2π

N∑
m=1

〈aout
m

†(ω)aout
m (ω)〉 , (6.11)

is related to the scattering matrix by Kirchhoff’s law [Jef93, Bee98]

I (ω)= f (ω, T)
1

2π
tr
[
1−S†(ω)S(ω)

]
. (6.12)

Forω near the laser transition we may replace f by the population inversion factor
Nup/(Nlow− Nup), where Nup and Nlow are the mean occupation numbers of the

1The temperature T defined in this way is positive for an amplifying medium.
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upper and lower levels of the transition. In this way the photon current can be
written in the form

I (ω)= 1

2π

Nup

Nup−Nlow
tr
[
S†(ω)S(ω)−1] , (6.13)

that is suitable for an amplifying medium.
The lasing mode is the eigenvalue Ω− iΓ/2 closest to the real axis, and the

laser threshold is reached when the decay rate Γ of this mode equals the ampli-
fication rate 1/τa. Near the laser threshold we need to retain only the contribution
from the lasing mode (say mode number l ) to the scattering matrix (6.7),

Snm=−2πi
(W†U )nl(U−1W)lm

ω−Ω+ iΓ/2− i/2τa
, (6.14)

where U is the matrix of right eigenvectors of H (no summation over l is implied).
The photon current near threshold takes the form

I (ω)= 2πNup

Nup−Nlow

(U †W W†U )ll (U−1W W†U−1†)ll

(ω−Ω)2+ 1
4 (Γ −1/τa)2

. (6.15)

This is a Lorentzian with full width at half maximum δω = Γ −1/τa.
The coupling matrix W can be eliminated by writing

−π(U †W W†U )ll = Im
(
U † HU

)
ll
=−Γ

2
(U †U )ll , (6.16a)

−π(U−1W W†U−1†)ll = Im
(
U−1 HU−1†)

ll
=−Γ

2
(U−1U−1†)ll . (6.16b)

The total output current is found by integrating over frequency,

I = (U †U )ll (U−1U−1†)ll
Nup

Nup−Nlow

Γ 2

δω
. (6.17)

Comparison with the Schawlow-Townes value (6.1) shows that

δω = 2K
Nup

Nup−Nlow
δωST , (6.18)

where the Petermann factor K is identified as

K = (U †U )ll (U−1U−1†)ll � 1 . (6.19)
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For time-reversal symmetry, we can choose U −1 =U T , and find K = [(UU †)ll ]2.
The factor of 2 in the relation between δω and δωST occurs because we have
computed the laser linewidth in the linear regime just below the threshold, in-
stead of far above the threshold. The effect of the nonlinearities above threshold
is to suppress the amplitude fluctuations while leaving the phase fluctuations in-
tact [Gol91], hence the simple factor of 2 reduction of the linewidth. The factor
Nup/(Nup− Nlow) accounts for the extra noise due to an incomplete population
inversion. The remaining factor K is due to the non-orthogonality of the cavity
modes [Sie89a, Sie89b], since K = 1 if U is unitary.

6.3 Single scattering channel

The relation (6.19) serves as the starting point for a calculation of the statistics
of the Petermann factor in an ensemble of chaotic cavities. In this section we
consider the case N = 1 of a single scattering channel, for which the coupling
matrix W reduces to a vector �α = (W11, W21, . . . , WM1). The magnitude |�α|2 =
(M∆/π2)w, where w ∈ [0,1] is related to the transmission probability T of the
single scattering channel by T = 4w(1+w)−2 [Bee97]. We assume a basis in
which H0 is diagonal (eigenvalues ωq, right eigenvectors |q〉, left eigenvectors
〈q|). In this basis the entries αq remain real for β = 1, but become complex
numbers for β = 2. Since the eigenvectors |q〉 point into random directions, and
since the fixed length of �α becomes an irrelevant constraint in the limit M →
∞, each real degree of freedom in αq is an independent Gaussian distributed
number [Meh90]. The squared modulus |αq|2 has probability density

P(|αq|2)= 1

2π|αq|2
(

2π3|αq|2
w∆

)β/2
exp

(
− βπ2

2w∆
|αq|2

)
. (6.20)

Eq. (6.20) is a χ 2-distribution with β degrees of freedom and mean ∆w/π2.

We first determine the distribution of the decay rate Γ of the lasing mode,
following Ref. [Mis98]. Since the lasing mode is the mode closest to the real
axis, its decay rate is much smaller than the typical decay rate of a mode, which is
� T∆. Then we calculate the conditional distribution and mean of the Petermann
factor for given Γ . The unconditional distribution of the Petermann factor is
found by folding the conditional distribution with the distribution of Γ , but will
not be considered here.
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6.3.1 Decay rate of the lasing mode

The amplification with rate 1/τa is assumed to be effective over a window Ωa =
L∆ containing many modes. The lasing mode is the mode within this window that
has the smallest decay rate Γ . For such small decay rates we can use first-order
perturbation theory to obtain the decay rate of mode q,

Γq = 2π|αq|2 . (6.21)

The χ 2-distribution (6.20) of the squared moduli |αq|2 translates into a χ 2-
distribution of the decay rates,

P(Γ )∝ Γ (2−β)/2 exp

(
−βπΓ

4w∆

)
. (6.22)

Ignoring correlations, we may obtain the decay rate of the lasing mode by
considering the L decay rates as independent random variables drawn from the
distribution P(Γ ). The distribution of the smallest among the L decay rates is
then given by

PL(Γ )= L P(Γ )

[
1−

∫ Γ

0
P(Γ ′)dΓ ′

]L−1

. (6.23)

For small rates Γ we can insert the distribution (6.22) and obtain

PL(Γ )≈ 1√
Γ

exp

(
− LπΓ

4w∆

)[
erf

(
πΓ

4w∆

)]L−1

, β = 1 , (6.24a)

PL(Γ )≈ exp
(
− LπΓ

2w∆

)
, β = 2 . (6.24b)

Here erf(x) = 2π−1/2
∫ x

0 exp(−y2)dy is the error function. The decay rate of
the lasing mode decreases with increasing width of the amplification window as
Γ ∼ w∆(Ωa/∆)−2/β �w∆.

6.3.2 First-order perturbation theory

If the opening is much smaller than a wavelength, then a perturbation theory in �α
seems a natural starting point. We assign the index l to the lasing mode, and write
the perturbed right eigenfunction |l 〉′ =∑

q dq|q〉 and the perturbed left eigen-
function 〈l |′ =∑

q eq〈q|, in terms of the eigenfunctions of H0. The coefficients

are dq = Uql/Ull and eq = U−1
lq /U

−1
ll , i. e., we do not normalise the perturbed

eigenfunctions but rather choose dl = el = 1.
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To leading order the lasing mode remains atΩ = ω l and has width

Γ = 2π|αl |2 . (6.25)

The coefficients of the wave function are

dq = i
παqα

∗
l

ωq−ωl

, eq = i
πα∗qαl

ωq−ωl

. (6.26)

The Petermann factor of the lasing mode follows from Eq. (6.19),

K =
(

1+∑q �=l |dq|2
)(

1+∑q �=l |eq|2
)

∣∣∣1+∑q �=l dqeq

∣∣∣2 ≈ 1+
∑
q �=l

∣∣dq−e∗q
∣∣2 , (6.27)

where we linearised with respect to Γ because the lasing mode is close to the real
axis. From Eq. (6.26) one finds

K = 1+ (2π|αl |
)2∑

q �=l

|αq|2
(ωl −ωq)2

. (6.28)

We seek the distribution P(K ) and the average 〈K 〉Ω ,Γ of K for a given value of
Ω and Γ .

For β = 1, the probability to find an eigenvalue at ωq given that there is an
eigenvalue at ωl vanishes linearly for small |ωq−ωl |, as a consequence of ei-
genvalue repulsion constrained by time-reversal symmetry. Since the expression
(6.28) for K diverges quadraticallyfor small |ωq−ωl |, we conclude that 〈K 〉Ω ,Γ

does not exist in perturbation theory.2 This severely complicates the problem.

6.3.3 Summation of the perturbation series

To obtain a finite answer for the average Petermann factor we need to go beyond
perturbation theory. By a complete summation of the perturbation series we will
in this section obtain results that are valid for all values T � 1 of the transmission
probability. Our starting point are the exact relations

dqzl = ωqdq− iπαq

∑
p

α∗pdp , (6.29a)

eqzl = ωqeq− iπα∗q
∑

p

αpep , (6.29b)

2For broken time-reversal symmetry there is no divergence. We can use the known two-
point correlation function R(ωl ,ωq) of the Gaussian unitary ensemble to obtain 〈K 〉Ω ,Γ = 1+
1
3πTΓ/∆ for T � 1.
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between the complex eigenvalues zq of H and the real eigenvalues ωq of H0.
Distinguishing between q= l and q �= l , we obtain three recursion relations,

zl = ωl − iπ|αl |2− iπαl

∑
q �=l

α∗qdq , (6.30a)

idq = παq

zl −ωq

(
α∗l +

∑
p�=l

α∗pdp

)
, (6.30b)

ieq =
πα∗q

zl −ωq

(
αl +

∑
p�=l

αpep

)
. (6.30c)

We now use the fact that zl is the eigenvalue closest to the real axis. We
may therefore assume that zl is close to the unperturbed value ωl and replace
the denominator zl −ωq in Eq. (6.30c) by ωl −ωq. That decouples the recursion
relations, which may then be solved in closed form,

zl = ωl − iπ|αl |2 (1+ iπA)−1 , (6.31a)

idq = παqα
∗
l

ωl −ωq
(1+ iπA)−1 , (6.31b)

ieq =
πα∗qαl

ωl −ωq
(1+ iπA)−1 . (6.31c)

We have defined

A=
∑
q �=l

|αq|2(ωl −ωq)−1 . (6.32)

The decay rate of the lasing mode is

Γ =−2Imzl = 2π|αl |2(1+π2 A2)−1 . (6.33)

From Eq. (6.27) we find

K = 1+ 2πΓ

∆

B

1+π2 A2
, (6.34)

with

B=∆
∑
q �=l

|αq|2(ωl −ωq)−2 . (6.35)

The problem is now reduced to a calculation of the joint probability distribu-
tion P(A, B). This problem is closely related to the level curvature problem of
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random-matrix theory [Opp94, Opp95, Fyo95]. The calculation is presented in
Appendix 6.A. The result is

P(A, B)= π

24

(
8

πw

)β/2 (π2 A2+w2)β

B2+3β/2
exp

[
−βw

2B

(
π2 A2

w2
+1

)]
. (6.36)

6.3.4 Probability distribution of the Petermann factor

From Eqs. (6.20), (6.33), (6.34), and (6.36) we can compute the probability dis-
tribution

P(K )= 〈Z〉−1

〈
δ

(
K −1− 2πΓ

∆

B

1+π2 A2

)
Z

〉
, (6.37a)

Z = δ(Ω−ωl )δ

(
Γ − 2π|αl |2

1+π2 A2

)
, (6.37b)

of K at fixed Γ andΩ by averaging over |αl |2, A, and B. In principle one should
also require that the decay rates of modes q �= l are bigger than Γ , but this ex-
tra condition becomes irrelevant for Γ → 0. The average of Z over |α l |2 with
Eq. (6.20) yields a factor (1+π2 A2)β/2. (Only the behaviour of P(|αl |2) for small
|αl |2 matters, because we concentrate on the lasing mode.) After integration over
B the distribution can be expressed as a ratio of integrals over A,

P(K )= (2π)2β

3β

∆w

Γ

(
(K −1)∆

wΓ

)−2−3β/2

×
∫ ∞

0
d A

(1+π2 A2/w2)β

(1+π2 A2)1+β exp

(
−βπwΓ (1+π2 A2/w2)

(K −1)∆(1+π2 A2)

)

×
(∫ ∞

0
d A

(1+π2 A2)β/2

(1+π2 A2/w2)1+β/2

)−1

. (6.38)

We introduce the rescaled Petermann factor κ = (K − 1)∆/Γ T . A simple
result for P(κ) follows for T = 1,

P(κ)= 4βπ2β

3κ2+3β/2
exp

(
−βπ

κ

)
, (6.39)

and for T � 1,

P(κ)= π

12κ2

(
1+ π

2κ

)
exp

(
− π

4κ

)
, β = 1 , (6.40a)

P(κ)= π

8
√

2κ5

(
1+ 2π

3κ
+ π2

3κ2

)
exp

(
− π

2κ

)
, β = 2 . (6.40b)
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Figure 6.1: Probability distribution of the rescaled Petermann factor κ = (K −
1)∆/Γ T for T = 1 and T � 1, in the presence of time-reversal symmetry (top)
respectively absence of time-reversal symmetry (bottom). The solid curves follow
from Eqs. (6.39) and (6.40), the data points follow from a numerical simulation
of the random-matrix model.
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As shown in Fig. 6.1, the distributions are very broad and asymmetric, with a long
tail towards large κ .

To check our analytical results we have also done a numerical simulation of
the random-matrix model, generating a large number of random matrices H and
computing K from Eq. (6.19). As one can see from Fig. 6.1, the agreement with
the theoretical predictions is flawless.

6.3.5 Mean Petermann factor

The distribution (6.38) gives for preserved time-reversal symmetry (β = 1) the
mean Petermann factor

〈K 〉Ω ,Γ = 1− Γ
∆

2π

3

G22
22

(
w2

∣∣∣∣ 0 0
− 1

2 − 1
2

)

G22
22

(
w2

∣∣∣∣− 1
2

1
2−1 0

) , (6.41)

in terms of the ratio of two Meijer G functions. We have plotted the result in
Fig. 6.2, as a function of T = 4w(1+w)−2.

It is remarkable that the average K depends non-analyticallyon T , and hence
on the area of the opening. (The transmission probability T is related to the area

T

〈K
−1
〉∆
/
Γ

T

10.80.60.40.20

4

3

2

1

0

Figure 6.2: Average of the rescaled Petermann factor κ as a function of transmis-
sion probability T . The solid curve is the result (6.41) in the presence of time-
reversal symmetry, the dashed curve is the result (6.43) for broken time-reversal
symmetry. For small T , the solid curve diverges ∝ ln T−1 while the dashed curve
has the finite limit of π/3. For T = 1 both curves reach the value 2π/3.
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A of the opening by T � A3/λ6 for T � 1 [Bet44].) For T � 1, the average
approaches the form

〈K 〉Ω ,Γ = 1+ π

6

TΓ

∆
ln

16

T
. (6.42)

The most probable (or modal) value of K −1� TΓ/∆ is parametrically smaller
than the mean value (6.42) for T � 1. The non-analyticity results from the rel-
atively weak eigenvalue repulsion in the presence of time-reversal symmetry. If
time-reversal symmetry is broken, then the stronger quadratic repulsion is suffi-
cient to overcome the ω−2 divergence of perturbation theory (6.28) and the aver-
age K becomes an analytic function of T . For this case, we find from Eq. (6.38)
the mean Petermann factor

〈K 〉Ω ,Γ = 1+ Γ
∆

4πw

3(1+w2)
, (6.43)

shown dashed in Fig. 6.2.

6.4 Many scattering channels

For arbitrary number of scattering channels N the coupling matrix W is an M×N
rectangular matrix. The square matrix πW†W has N eigenvalues (M∆/π)wn.
The transmission coefficients of the eigenchannels are

Tn = 4wn

(1+wn)2
. (6.44)

A single hole of area A� λ2 (at wavelength λ) corresponds to N � 2πA/λ2

fully transmitted scattering channels, with all Tn = wn = 1 the same. We will
only discuss this case in the following. As in the single-channel case, we first
determine the distribution of the decay rate Γ of the lasing mode. Then we discuss
the mean Petermann factor 〈K 〉 for given Γ .
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Figure 6.3: Decay-rate distribution P(Γ ) of a chaotic cavity with an opening that
supports N = 1, 2, 4, 6, 8, 10, 12 fully transmitted scattering channels. Computed
from Eq. (6.45), for the case of broken time-reversal symmetry.

6.4.1 Decay rate of the lasing mode

The distribution of decay rates P(Γ ) has been calculated by Fyodorov and Som-
mers. For broken time-reversal symmetry the result is [Fyo96, Fyo97]

P(Γ )= π

∆
F1

(π

∆
Γ
)
F2

(π

∆
Γ
)

, (6.45a)

F1(y)= 1

(N−1)!
yN−1e−y , (6.45b)

F2(y)=
N∑

n=0

(−1)n

(
N

n

)
dn

dyn

(
sinh y

y

)
. (6.45c)

The behaviour of P(Γ ) for various numbers N of fully transmitted scattering
channels is illustrated in Fig. 6.3.

The case N = 1 is special in that only for this case P(Γ = 0) is non-zero.
For the other extreme, N � 1, there even appears a gap and the distribution
P(Γ ) becomes non-zero only for Γ > Γ0 (with Γ = N∆/2π), where it is equal
to [Haa92, Leh95]

P(Γ )= Γ0

Γ 2
, Γ > Γ0 . (6.46)

The smallest decay rate Γ0 corresponds to the inverse mean dwell time in the
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cavity. For large but finite N, the tail Γ � Γ0 of the distribution is given by

P(Γ )= π

NT2∆

[
1+ erf(u)

]+O(N−3/2) , (6.47)

where we have defined u= √N/2(Γ/Γ0−1).
The distribution PL(Γ ) of the lasing mode follows from Eq. (6.23), and is

sharply peaked around a value of Γ deviating from Γ0 only by order ∆
√

N �
Γ0 (as long as L � eN). This is in contrast to the results for N = 1, where Γ
of the lasing mode is very small. This enabled us in Sec. 6.3 to only consider
the limit Γ → 0, which proved to be essential in the derivation presented there.
In the calculation for N > 1 this limit is not applicable, making the calculation
much more difficult and disallowing to simply follow the lines of Sec. 6.3. As
result, only the average of the Petermann factor has been calculated, whereas its
distribution is not known for N > 1.

The results for preserved time-reversal symmetry are more involved [Som99].
Fortunately, we can draw all important conclusions from the results for broken
time-reversal symmetry, on which we will concentrate here. Especially, the large-
N limit (6.46) remains valid.

6.4.2 Mean Petermann factor

The mean Petermann factor is [Fra00, Sch00]

〈K 〉Ω ,Γ = 1+ 2S(πΓ/∆)

F1(πΓ/∆)F2(πΓ/∆)
, (6.48a)

S(y)=
N−1∑
n=0

(−1)n

n!
yn dn

dyn

[
e−y d

dy

(
sinh y

y

)]
, (6.48b)

with F1 and F2 given in Eq. (6.45). For N� 1 and Γ � Γ0, this can be simplified
to give

〈K 〉Ω ,Γ =
√

2N[F (u)+u]

+ F (u)
[
(3−g)u+ 4

3 u3+ 4
3 (1+u2)F (u)

]+O(N−1/2) , (6.49a)

F (u)= exp(−u2)√
π
[
1+ erf(u)

] . (6.49b)

For Γ = Γ0 (u= 0) this simplifies further to

〈K 〉Ω ,Γ=Γ0
=
√

2N

π
+ 4

3π
. (6.50)
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Figure 6.4: Average Petermann factor 〈K 〉 as a function of the decay rate Γ for
different numbers N of fully transmitted scattering channels, when time-reversal
symmetry is broken (top) respectively preserved (middle). The solid curves are
the analytical result (6.48), the data points are obtained by a numerical simulation.
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Figure 6.5: Average of the Petermann factor K at Γ = Γ0 as function of the
number N of fully transmitted scattering channels. The analytical result (6.48)
for broken time-reversal symmetry (full curve) is compared with the result of
a numerical simulation (open circles for broken time-reversal symmetry, filled
circles for preserved time-reversal symmetry). The dashed line is the large-N
result (6.50).

We now compare the analytical findings with the results of numerical simu-
lations. We generated a large number of random matrices H with dimension
M = 120 (M = 200) for N = 2,4,6,8 (N = 10,12) fully transmitted scattering
channels. Fig. 6.4 shows the mean K at given Γ . We find excellent agreement
with the analytical result (6.48). The behaviour 〈K 〉 ∼ √N at Γ = Γ0 predicted
by Eq. (6.50) is verified in Fig. 6.5.

In the absence of an analytical result, the numerical simulation can be used
to compute the distribution of K at given Γ . The result depicted in Fig. 6.7
shows that, similar to the single-channel case, the distribution is wide and highly
asymmetric with a long tail towards high K .

For preserved time-reversal symmetry (β = 1), no analytical result for the
mean of K at given Γ is known for N > 2. For larger numbers of channels we
can draw our conclusions from the numerical results that are presented in Fig. 6.4.
Interestingly enough the data points for N channels are close to the results for
broken time-reversal symmetry with N/2 channels, when the decay rate is given
in units of Γ0. This is illustrated for N = 8 in Fig. 6.6. Such a rule of thumb
(motivated by the number of real degrees of freedom that enter the non-Hermitian
part of H ) was already known for the decay rate distribution (Fig. 6.6, bottom).
Hence the Petermann factor for the lasing mode should also for β = 1 display a
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Figure 6.6: Top: Average Petermann factor 〈K 〉 for N = 4, β = 2 [open circles:
result of a numerical simulation, curve: Eq. (6.48)] and for N = 8, β = 1 (filled
circles: numerical simulation). The parameter Γ0 equals N∆/2π in both cases,
so it is twice as large for β = 2 as for β = 1. Bottom: Probability distribution of
Γ for N = 4, β = 2 [open circles: numerical simulation, curve: Eq. (6.45)] and
for N = 8, β = 1 (filled circles: numerical simulation).
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Figure 6.7: Numerically computed distribution of the scaled Petermann factor
(K − 1)/Γ for N = 10 when time-reserval symmetry is preserved (top) respect-
ively broken (bottom) as a function of Γ . The points mark the values below
which 10%,20%, . . . ,90% of all computed data points lie. The lines are the aver-
age [computed numerically for β = 1, computed analytically from Eq. (6.48) for
β = 2].
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sublinear growth with increasing channel number N. This expectation is indeed
confirmed by the numerical simulations, see the filled circles in Fig. 6.5.

6.5 Discussion

The Petermann factor K enters the fundamental lower limit of the laser linewidth
due to vacuum fluctuations and is a measure of the non-orthogonality of cav-
ity modes. We related the Petermann factor to the residue of the scattering-matrix
pole that pertains to the lasing mode and computed statistical properties of K in an
ensemble of chaotic cavities. Lasing action selects a mode which has a small de-
cay rate Γ , and hence belongs to a pole that lies anomalously close to the real axis.
For a single scattering channel this simplifies the calculation, yielding a mean
Petermann factor depending non-analytically on the transmission probability T .
On the other hand, for large number N of scattering channels non-perturbative
statistical methods have now to be employed [Fra00, Sch00], resulting in para-
metrically large Petermann factors ∝ √N.

The quantity K is also of fundamental significance in the general theory of
scattering resonances, where it enters the width-to-height relation of resonance
peaks and determines the scattering strength of a quasi-bound state with given
decay rate Γ . If we write the scattering matrix (6.7) in the form

Snm= δnm+σnσ
′
m(ω−Ω+ iΓ/2)−1 , (6.51)

then the scattering strengths σn, σ ′m are related to Γ by a sum rule. For resonances
close to the real axis (Γ �∆) the relation is∑

n,m

|σnσ
′
m|2 = Γ 2 . (6.52)

For poles deeper in the complex plane, however, the sum rule has to be replaced
by ∑

n,m

|σnσ
′
m|2 = KΓ 2 , K � 1 . (6.53)

6.A Joint distribution of A and B

We calculate the joint distribution P(A, B) [Eq. (6.36)] of the quantities A
[Eq. (6.32)] and B [Eq. (6.35)] by generalising the theory of Ref. [Fyo95]. We
give the lasing mode ωl the new index M and assume that it lies at the centre
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of the semicircle (6.3), ωM = 0. Other choices just renormalise the mean modal
spacing ∆, which we can set to ∆ = 1. The quantities A and B are then of the
form

A=
M−1∑
m=1

|αm|2
ωm

, B=
M−1∑
m=1

|αm|2
ω2

m

. (6.54)

The joint probability distribution of A and B,

P(A, B)=
〈
δ

(
A−

M−1∑
m=1

|αm|2
ωm

)
δ

(
B−

M−1∑
m=1

|αm|2
ω2

m

)〉
, (6.55)

is obtained by averaging over the variables {|αm|2,ωm}. The quantities |αm|2 are
independent numbers with probability distribution (6.20). The joint probability
distribution of the eigenfrequencies {ωm} of the closed cavity is the eigenvalue
distribution of the Gaussian ensembles (6.2) of random-matrix theory,

P({ωm})∝
∏
i< j

|ωi −ωj |β exp

(
−βM

4µ2

∑
k

ω2
k

)
. (6.56)

Our choice ∆= 1 translates into µ= M/π.
The joint probability distribution of the eigenvalues {ωm} (m= 1, . . . , M−1)

is found by setting ωM = 0 in Eq. (6.56). It factorises into the eigenvalue distri-
bution of M − 1 dimensional Gaussian matrices H ′ [again distributed according
to Eq. (6.2)], and the term

∏M−1
j=1 |ωi |β = |det H ′|β .

In the first step of our calculation, we use the Fourier representation of the
δ-functions in Eq. (6.55) and write

P(A, B)∝
〈 ∞∫
−∞

dx

∞∫
−∞

dyeix A+iy B
M−1∏
m=1

∞∫
0

d|αm|2 P(|αm|2)

× exp

(
−ix

M−1∑
m=1

|αm|2
ωm
− iy

M−1∑
m=1

|αm|2
ω2

m

)〉
, (6.57)

where the average refers to the variables {ωm}. The integrals over |αm|2 can be
performed, resulting in

P(A, B)∝
∫

dx
∫

dyeix A+iy B

〈
det H ′2β

det
[
H ′2+2iw(xH ′ + y)/π2β

]β/2
〉

, (6.58)
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where the average is now over the Gaussian ensemble of H ′-matrices. It is our
goal to relate this average to autocorrelators of the secular polynomial of Gaussian
distributed random matrices, given in Refs. [And95, Ket97].

The determinant in the denominator can be expressed as a Gaussian integral,

P(A, B)∝
∫

dx
∫

dyeix A+iy B
∫

dz
∫

d H ′ det H ′2β

×exp
[
−βπ2

4M
tr H ′2− z†

(
H ′2+ 2iw

βπ2
(xH ′ + y)

)
z
]

, (6.59)

where the M−1 dimensional vector z is real (complex) for β = 1 (2). Since our
original expression did only depend on the eigenvalues of H ′, the formulation
above is invariant under orthogonal (unitary) transformations of H ′, and we can
choose a basis in which z points into the direction of the last basis vector (index
M−1). Let us denote the Hamiltonian in the block form

H ′ =
(

V h
h† g

)
. (6.60)

Here V is a (M−2)× (M−2) matrix, g a number, and h a (M−2) dimensional
vector. In this notation,

P(A, B)∝
∫

dx
∫

dyeix A+iy B
∫

dz
∫

dg
∫

dV
∫

dh

×det
[
V 2β(g− h†V−1h)2β]exp

[
−βπ2

4M

(
g2+2|h∣∣2+ tr V 2)

]

×exp

[
−|z|2

(
g2+|h|2+ 2iw

βπ2
[xg+ y]

)]
. (6.61)

The integrals over x and y give δ-functions,

P(A, B)∝
∫

dz
∫

dg
∫

dV
∫

dh det
[
V 2β(g− h†V−1h)2β]

×exp

[
−βπ2

4M

(
g2+2|h|2+ tr V 2)−|z|2(g2+|h|2)]

× δ (A−gB)δ
(
B−2w|z|2/βπ2) . (6.62)
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We then integrate over g and z,

P(A, B)∝
∫

dV dh det

[
V 2β

(
A

B
− h†V−1h

)2β
]

B
β
2 (M−1)−2

×exp

[
−βπ2

4M

(
2|h|2+ tr V 2)− βπ2 B

2w

(
A2

B2
+|h|2

)]
. (6.63)

We already anticipated B � 1/M and omitted in the exponent a term
−βπ2 A2/4M B2.

The integral over h can be interpreted as an average over Gaussian random
variables with variance

h2 ≡ 〈|hi |2〉 = 1

π2

1

B/w+1/M
≈ w

π2 B

(
1− w

M B

)
. (6.64)

For the stochastic interpretation one also has to supply the normalisation constants
proportional to

hβ(M−2) =
( w

π2 B

)β(M−2)/2
exp

(
−βw

2B

)
. (6.65)

The integral over V is another Gaussian average, and thus

P(A, B) ∝ QβB
β
2−2 exp

[
−βw

2B

(
1+ π2 A2

w2

)]
, (6.66a)

Qβ =
〈

det

[
V 2β

(
A

B
− h†V−1h

)2β
]〉

. (6.66b)

After averaging over h, one has now to consider for β = 1

Q1 =
〈
det

(
V 2 A2

B2
+h4V 2 [(tr V−1)2+2tr V−2])〉 , (6.67)

where only the even terms in V have been kept. The ratio of coefficients in this
polynomial in A/B can be calculated from the autocorrelator [Ket97]

G1(ω,ω′)=
〈
det(V +ω)(V +ω′)〉

〈det V 2〉 = − 3

π2x

d

dx

sinπx

πx

∣∣∣∣
x=ω−ω′

(6.68)

of the secular polynomial of Gaussian distributed real matrices V . This is achieved
by expressing the products of traces and determinants through secular coefficients,
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and these then as derivatives of the secular determinant,〈
det V 2(tr V−1)2

〉
〈det V 2〉 = ∂2

∂ω∂ω′
G1(ω,ω′)

∣∣∣∣
ω=ω′=0

= − ∂2

∂ω2
G1(ω,0)

∣∣∣∣
ω=0
= π2

5
,

(6.69a)

2
〈
det V 2(tr V−2)

〉
〈det V 2〉 = − 4

∂2

∂ω2
G1(ω,0)

∣∣∣∣
ω=0

. (6.69b)

[We used the translational invariance of G(ω,ω ′).] Eqs. (6.64) and (6.68) yield

Q1 ∝ A2

B2
+ w2

π2 B2
. (6.70)

For β = 2, the average over h yields the expression

Q2 ∝ A4

B4
+q1h4 A2

B2
+q2h

8 , (6.71a)

q1 = 6
〈
det V 4[(tr V−1)2+ tr V−2]〉 , (6.71b)

q2 =
〈
det V 4[(tr V )−4+6tr V−2(tr V−1)2

+8tr V−1 tr V−3+6tr V−4+3(tr V−2)2]〉 . (6.71c)

The coefficients can now be computed from the four-point correlator of the Gaus-
sian unitary ensemble [And95],

G2(ω1,ω2,ω3,ω4)=
〈
det(V +ω1)(V +ω2)(V +ω3)(V +ω4)

〉
〈det V 4〉

= 3

2π4

[
cosπ(ω1+ω2−ω3−ω4)

(ω1−ω3)(ω1−ω4)(ω2−ω3)(ω2−ω4)

+ cosπ(ω1+ω3−ω2−ω4)

(ω1−ω2)(ω1−ω4)(ω3−ω2)(ω3−ω4)

+ cosπ(ω1+ω4−ω3−ω2)

(ω1−ω3)(ω1−ω2)(ω4−ω3)(ω4−ω2)

]
, (6.72a)

G2(ω,0,0,0)= 3

π3ω3
(sinπω−πω cosπω) , (6.72b)

G2(ω,ω,0,0)= 3

2π4ω4
(cos2πω−1+2π2ω2) . (6.72c)

In this case

q1 = ∂2

∂ω2

[
6G2(ω,ω,0,0)−18G2(ω,0,0,0)

]∣∣∣∣
ω=0
= 2π2 , (6.73a)

q2 = ∂4

∂ω4

[
10G2(ω,ω,0,0)−15G2(ω,0,0,0)

]∣∣∣∣
ω=0
= π2 , (6.73b)
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which gives

Q2 ∝ Q2
1 . (6.74)

Collecting results we obtain Eq. (6.36), where we also included the normal-
isation constant.
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Quantumoptica van wanordelijke
systemen

Doel van dit proefschrift is de ontwikkeling van een theoretisch raamwerk om
quantumoptica en wanorde te combineren. Beide onderwerpen apart zijn uitvoe-
rig bestudeerd in het verleden, maar de combinatie is nieuw. Laten we deze twee
onderwerpen apart onder de loep nemen.

Quantumoptica is op zichzelf een combinatie van twee vakgebieden, de optica
en de quantummechanica. Volgens de quantumoptica bestaat het licht uit discrete
“quanta” van energie, genaamd fotonen. De hoeveelheid energie van een foton is
zo klein dat we meestal het bestaan van fotonen kunnen vergeten en doen alsof
het licht een continue stroom van energie is. Echter, op atomaire schaal speelt de
discreetheid (of quantisatie) van de energie een essentiële rol, omdat de atomaire
energiën zelf ook heel klein zijn. Einsteins theorie van het foto-elektrische effect
(waar hij de Nobelprijs voor ontving) was de eerste quantumoptische theorie. Na
de ontdekking van de laser heeft de quantumoptica zich in de zestiger jaren snel
ontwikkeld tot een rijp vakgebied.

Op macroscopische schaal kunnen we het bestaan van fotonen afleiden uit de
fluctuaties van de energiestroom. Men spreekt van hagelruis, waarbij men de fo-
tonen vergelijkt met hagelkorrels. Een wezenlijk verschil tussen hagel en licht is
dat hagelkorrels voldoen aan de wetten van de klassieke mechanica, terwijl foto-
nen de wetten van de quantummechanica volgen. Volgens de quantummechanica
hebben identieke deeltjes een mysterieuze kracht op elkaar, hoe ver ze ook van
elkaar zijn verwijderd. Voor fotonen is die kracht aantrekkend. (Men noemt dit
soort deeltjes bosonen.) Door die aantrekkende kracht is de ruis in een stroom
licht groter dan je voor hagelruis zou verwachten. Deze toename in de ruis is ook
voor het eerst voorspeld door Einstein.

Wanordelijke systemen zijn materialen waarin het licht op een onregelma-
tige, chaotische manier wordt verstrooid. Een vertrouwd voorbeeld is matglas.
In matglas zijn opzettelijk verstoringen aangebracht, die het licht alle kanten op
verstrooien. De preciese wijze van verstrooiing door deze strooicentra is onvoor-
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spelbaar, tenzij je precies zou weten waar de verstoringen zijn aangebracht. Maar
dit is meestal ondoenlijk. Het is zinvoller om een statische beschrijving te zoeken,
die de gemiddelde eigenschappen van het matglas geeft in plaats van de specifieke
eigenschappen van één bepaald stukje glas. Chaotische verstrooiing treedt ook op
in trilholtes die een onregelmatige vorm hebben, zelfs al er zich in de trilholte
geen strooicentra bevinden.

Er bestaat een gedetailleerde statistische theorie voor de chaotische verstrooi-
ing van lichtgolven, gebaseerd op de wiskunde van toevalsmatrices. De matrix
waar het om gaat is de zogenaamde verstrooiingsmatrix. De verstrooiingsmatrix
van een stukje matglas is natuurlijk niet echt toevallig, maar in een statistische be-
schrijving is het toevallig aanwijzen van de matrixelementen een goede aanpak.
Tot op heden speelden fotonen in deze theorie geen rol, men veronderstelde dat de
energie in golven volledig continu kon variëren. Door de quantumoptica met de
toevalsmatrixtheorie te combineren hebben we een theorie kunnen ontwikkelen
voor de chaotische verstrooiing van fotonen, en zo een aantal interessante nieuwe
problemen kunnen oplossen.

De inhoud van dit proefschrift bestaat dus enerzijds uit een algemeen theore-
tisch kader en anderzijds uit een aantal toepassingen. Het belangrijkste resultaat
van de algemene theorie is een relatie tussen de correlatiefuncties van de fluctua-
ties in het licht en de verstrooiingsmatrix. Een hele eenvoudige toepassing is op
de straling van een zwart lichaam. De verstrooiingsmatrix van een zwart lichaam
is gelijk aan nul, omdat al het invallende licht door een zwart lichaam wordt geab-
sorbeerd en niets wordt teruggestrooid. Een realistisch voorwerp is grijs in plaats
van zwart, dat wil zeggen, de verstrooiingsmatrix is niet precies nul. We geven
een gedetailleerde beschrijving van hoe de fluctuaties voor een grijs lichaam af-
wijken van de ideale limiet van een zwart lichaam.

De afwijking is klein omdat de quantummechanische aantrekkingskracht tus-
sen fotonen zo klein is. Veel grotere effecten treden op in een laser, of meer
in het algemeen in een medium dat het invallende licht versterktterugkaatst, in
plaats van het te absorberen. Een laser met wanorde heet een “toevalslaser” en de
toevalsmatrixtheorie is een krachtig hulpmiddel om de statistische eigenschappen
van de versterkte straling te beschrijven.

De straling van een laser is in een zogenaamde “coherente” toestand, met
gereduceerde fluctuaties. Nog lagere fluctuaties kunnen bereikt worden in een
toestand die men “geperst” noemt (squeezedin het engels). De quantummecha-
nische aantrekking die fotonen van nature op elkaar hebben is in een geperste
toestand omgezet in een afstoting. Coherente en geperste toestanden zijn kwets-
bare toestanden van het licht; een beetje absorptie zet ze al gauw om in de meer
gewone “thermische” toestand van het licht. Hoe deze omzetting in zijn werk gaat
wordt in dit proefschrift in detail beschreven.
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behorende bij het proefschrift

“On Quantum Optics of Random Media”

1. Elastische verstrooiing heeft geen invloed op de fluctuaties van coherente stra-
ling.

Dit proefschrift, hoofdstuk 2.

2. De “squeezing” sterkte van “squeezed” straling in een wanordelijk medium neemt
af op de schaal van de absorptielengte terwijl de “squeezing” hoek vervalt op de
schaal van de vrije-weglengte.

Dit proefschrift, hoofdstuk 3.

3. Voortplanting van coherente straling door een wanordelijke absorberende golf-
pijp leidt tot een toename van de Fanofactor met anderhalf keer de Bose-Einstein
functie.

Dit proefschrift, hoofdstuk 4.

4. De Petermannfactor in de quantumoptica van lasers komt overeen met het con-
ditiegetal in de numerieke wiskunde van matrixinversie.

Dit proefschrift, hoofdstuk 6.

5. De theorie van het effect van wanorde op optische fase-conjugatie van Paas-
schens, Brouwer en Beenakker schendt causaliteit.

J. C. J. Paasschens, P. W. Brouwer en C. W. J. Beenakker,
Europhysics Letters 38, 651 (1997).

6. De Campbell-Baker-Hausdorff formule heeft het volgende analogon voor ope-
ratoren die bilineair zijn in de boson annihilatie- en creatie-operatoren a i , a†

i

(i = 1,2, . . . , N ):

exp(a† Aa)exp(a† Ba) = exp
(
a† ln(eAeB)a

)
,

waar A en B N × N complexe matrices zijn.

7. Het elektronische analogon van de Glauber-Kelley-Kleiner formule voor de tel-
verdeling van fotonen, zoals gegeven door Muzykantskii en Khmelnitskii, is on-
juist.

B. A. Muzykantskii en D. E. Khmelnitskii,
Physical Review B 50, 3982 (1994).

8. Een puls die gereflecteerd wordt door een wanordelijk medium valt twee keer
zo langzaam af in de tijd, indien zich achter het medium een fase-conjugerende
spiegel bevindt.
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