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Chapter 1

Introduction

1.1 Preface

Fundamental solid-state physics has benefitted greatly from the massive
industrial research and development effort towards the miniaturization
of semiconductor devices. This effort has produced sophisticated crystal
growth and lithographic techniques, which allow fabrication of artificial
structures, or “devices”, that exhibit new physical phenomena. These new
phenomena occur as the structure size is decreased below some relevant
physical length scale. Examples of such phenomena and the associated
length scales are quantum interference and the quantum mechanical phase
coherence length, ballistic transport and the mean free path, and quantum
confinement and the Fermi wave length. In addition, phenomena of single-
electron tunneling become important if the device capacitance is so small
that the electrostatic charging energy required to add a single electron to
the device exceeds the thermal energy.

The branch of physics devoted to the study of these effects has been
called “mesoscopic” physics [1], since on these short length scales the de-
vices acquire unusual properties, that are neither those of microscopic ob-
jects (atoms and molecules) nor those of macroscopic systems. From a
scientific point of view, mesoscopic physics is a rich and rewarding field of
research, which has grown rapidly. Although it is scarcely a decade old,
a lot has been achieved in this field already, in terms of the variety of
phenomena that have been discovered and understood [2, 3].
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In the past few years, single-electron tunneling has become one of the
foci of attention in mesoscopic physics. In this thesis we describe our con-
tribution to this field, which is a study of the interplay of quantum confine-
ment and single-electron tunneling in semiconductor nanostructures. The
nanostructures used for this work are split-gate quantum dots and wires,
defined in the two-dimensional electron gas in a GaAs–AlxGa1−xAs het-
erostructure. Both quantum confinement and single-electron tunneling can
be observed in this type of nanostructure at low temperatures (1 K and
below). In addition, a strong magnetic field (up to 8 T) is used to alter
the quantum confinement, allowing discrimination between effects due to
quantum confinement and due to single-electron tunneling. Some of the
more subtle effects resulting from the interplay between the two have an
energy scale of only 0.1 meV (which is equivalent to a temperature of ap-
proximately 100 mK). This is why the experiments are made in a dilution
refrigerator.

In this introductory chapter, we will introduce the two-dimensional elec-
tron gas, explain the split-gate technique, and give a brief overview of
single-electron tunneling. After outlining the contents of the subsequent
chapters, we close this chapter with a short discussion on the relevance of
single-electron tunneling with respect to device applications.

1.2 The two-dimensional electron gas

The two-dimensional electron gas (2DEG) in a modulation-doped GaAs–
AlxGa1−xAs heterostructure [4] provides the starting point for the devices
studied in this thesis. Such a heterostructure consists of a sequence of
thin layers grown epitaxially on a semi-insulating GaAs substrate, see
Fig. 1.1(a). The growth technique of choice is molecular-beam epitaxy
since this technique yields the highest quality structures, in terms of pu-
rity, interface sharpness and crystalline perfection. As shown in Fig. 1.1(b),
the conduction electrons supplied by the donors in the AlxGa1−xAs layer
are confined in a narrow potential well at the interface of the GaAs and
AlxGa1−xAs. This nearly triangular potential well is formed by the re-
pulsive barrier due to the conduction band offset of approximately 0.3 eV
between GaAs and AlxGa1−xAs, and by the attractive electrostatic poten-
tial due to the positively charged donors in the AlxGa1−xAs layer. Motion
of the electrons in the potential well is quantized perpendicular to the in-
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Figure 1.1: Layers of a modulation doped GaAs–AlxGa1−xAs heterostructure (a)
and the corresponding band-bending diagram (b). The numbers give typical di-
mensions.

terface, but is free parallel to the interface. This results in the formation
of two-dimensional subbands in the well. Usually the subband associated
with the lowest discrete confinement level is populated only.

A 2DEG has several desirable properties. The most important of these
may be that the mobility is much greater than is achievable in bulk GaAs.
Due to the remote doping scheme the conduction electrons are separated
from the ionized donors in the doped AlxGa1−xAs layer, so that scattering
from the latter is reduced. Scattering from the ionized donors is further
reduced by the insertion of an undoped AlxGa1−xAs spacer layer setting
the doped layer back from the heterointerface. Record low-temperature
mobilities up to µ >∼ 107 cm2/Vs have been reported [5], corresponding to
elastic mean free paths exceeding le = 0.1 mm. Another important property
of the 2DEG is its low electron density, which can be varied easily by means
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of an electric field applied perpendicular to the layers. Usually a metallic
gate electrode is deposited on top of the heterostructure for this purpose, in
which case isolation is provided automatically by a Schottky barrier. The
gate voltage is defined relative to the 2DEG. The density underneath a
gate electrode of large area changes linearly with the electrostatic potential
φgate of the gate, according to the parallel plate capacitor formula

δns =
ε

ed
δφgate , (1.1)

where ε ≈ 13ε0 is the static dielectric constant of GaAs, and d is the
distance between gate and 2DEG.

An additional advantage of the low electron density is that it leads to a
large Fermi wave length. The energy of noninteracting conduction electrons
in an unbounded 2DEG is

E(k) =
h̄2k2

2m
, (1.2)

which is isotropic as a function of momentum h̄k. The effective mass in
GaAs is m = 0.067m0. The 2D density-of-states

ρ2D =
m

πh̄2
(1.3)

is independent of energy. In equilibrium, the states are occupied according
to the Fermi-Dirac distribution

f(E − EF) =
[
1 + exp

(
E − EF
kBT

)]−1
. (1.4)

At low temperatures T such that kBT � EF, the Fermi energy (or chemical
potential) EF of a 2DEG is thus directly proportional to its sheet density
ns, according to

EF = ns/ρ2D . (1.5)

The Fermi wave number kF ≡ (2mEF/h̄
2)1/2 is related to the density by

kF = (2πns)1/2. Typically, ns ∼ 3× 1011 cm−2, so that EF ∼ 10 meV, and
the Fermi wave length λF ≡ 2π/kF ∼ 50 nm.

One of the most remarkable phenomena exhibited by a 2DEG is the
quantum Hall effect [6]. In a strong perpendicular magnetic field B the en-
ergy spectrum of the electrons becomes fully discrete, since no free transla-
tional motion parallel to B is possible (as in bulk GaAs). Highly degenerate
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Figure 1.2: Measurement configuration for the Hall resistance RH, the longitudinal
resistance RL, and the two-terminal resistance R2t. The NL edge channels at the
Fermi level are indicated, with arrows pointing in the direction of motion of edge
channels filled by the source contact at chemical potential EF + δµ. The current
is carried equally by the edge channels at the upper edge. Localized states in
the bulk do not contribute to the conductance. The resulting resistances are
R2t = RH = h/NLe

2, and RL = 0.

Landau levels are formed at energies

En = (n− 12)h̄ωc , n = 1, 2, . . . , (1.6)

where ωc = eB/m is the cyclotron frequency. Only a few of these Landau
levels, NL ∼ EF/h̄ωc, are populated in a 2DEG. For sufficiently large mo-
bility (µB � 1) and low temperature (kBT � h̄ωc) the Hall resistance RH
(see Fig. 1.2) is quantized at values

RH =
h

ie2
, i = 1, 2, . . . , (1.7)

for magnetic fields such that the Fermi level is in between two Landau levels.
Simultaneously, the longitudinal resistance RL vanishes. The distinction
between RH and RL is topological: A four-terminal resistance measurement
yields RH if current and voltage contacts alternate along the boundary of
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the conductor, and RL otherwise. Frequently, the resistance is measured us-
ing only two contacts. In the quantum Hall effect regime, the two-terminal
resistance R2t = RH+RL = RH is quantized at the same value as the Hall
resistance.

In the modern theory of the quantum Hall effect [7], the longitudinal and
Hall conductance (measured using two pairs of current contacts and voltage
contacts) are expressed in terms of transmission probabilities between the
contacts for electronic states at the Fermi level. For EF in between two
Landau levels, these states are edge states extended along the boundaries
of the sample (see Fig. 1.2). Edge states are the quantum-mechanical analog
of skipping orbits of electrons undergoing repeated specular reflections at
the boundary [2]. For a smooth confining potential V (r), the edge states
are extended along equipotentials of V at the guiding center energy EG,
defined by

EG = E − (n− 12 )h̄ωc , (1.8)

for an electron with energy E in the n-th Landau level (n = 1, 2, . . .). Since
the lowest Landau level has the largest guiding center energy, the corre-
sponding edge state at the Fermi level is located closest to the boundary of
the sample, whereas those of the higher Landau levels are situated further
towards its center.

The collection of edge states with quantum number n form a 1D sub-
band, which is referred to as an edge channel. Each of the NL edge channels
at the Fermi level contributes 2e2/h to the Hall conductance if backscat-
tering is suppressed [2]. This is the case if the Fermi level is in between
two bulk Landau levels, so that the states at EF are those extended along
the boundaries only. Backscattering then requires transitions between edge
states on opposite boundaries, which are usually far apart, and is thus sup-
pressed.

1.3 Split-gate nanostructures

A unique feature of a 2DEG is that it can be given any desired shape
using lithographic techniques. The shape is defined by etching a pattern
(resulting in permanent removal of the electron gas), or by electrostatic
depletion using a patterned gate electrode (which is reversible). A local
(partial) depletion of the 2DEG below a gate is associated with a local
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increase of the electrostatic potential, relative to the undepleted region. At
the boundaries of the gate a potential step is thus induced in the 2DEG.
The potential step is smooth, because of the large lateral depletion length
(of the order of 100 nm for a step height of 10 meV). This large depletion
length is at the basis of the split-gate technique [8], used to define narrow
channels of variable width with smooth boundaries.

The fabrication of split-gate devices proceeds in a five step process.
First, Ohmic contacts are formed by alloying Au-Ge-Ni into the 2DEG.
Second, wet etching is used to define a mesa on the heterostructure, such
that the Ohmic contacts are at its edges. Third, the coarse parts of the
Ti-Au gates are deposited on the mesa. This part of the gate pattern
extends from across the edges of the mesa to a few tens of microns from its
center, and is identical for all devices. Fourth, bonding pads are deposited
on top of the Ohmic contacts and at the far ends of the gates. These
steps can all be carried through using conventional optical lithography. In
the fifth step the fine details of the split-gate pattern are fabricated using
electron-beam lithography. This allows fabrication of devices with critical
dimensions of the order of the Fermi wave length, so that (at least at
low temperatures) the transport properties are dominated by quantum size
effects. Typically, the lithographic opening of split gates used to define
constrictions of variable width into the 2DEG is 300 nm.

One of the simplest devices that may be fabricated using this tech-
nique is the quantum point contact [9], which basically is a very short and
narrow constriction in the 2DEG, see Fig. 1.3. At low temperatures, the
conductance of such a quantum point contact is approximately quantized in
units of 2e2/h [10, 11]. Because of the lateral confinement, a series of one-
dimensional (1D) subbands is formed in the constriction, each contributing
2e2/h to the conductance [9]. This requires unit transmission probability
for all occupied 1D subbands in the constriction, so that the effect can
be observed only in the ballistic transport regime, where the length of the
constriction is much smaller than the mean free path. In longer constric-
tions, or quantum wires, it is difficult to obtain conductance quantization.
The reason is that quantum wires are much more sensitive to disorder than
quantum point contacts. Potential fluctuations due to the random distri-
bution of the remote ionized donors greatly decrease the mean free path
within the wire. Indeed, calculations [12] demonstrate that a quantum wire
close to pinch off may even break up into a number of separate segments.
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Figure 1.3: Cross section of a split-gate quantum point contact.

If the 2DEG is confined in all directions, a quantum dot is formed. The
energy spectrum then is fully discrete, and can be studied by transport
experiments if the dot is weakly coupled to wide 2DEG regions by tunnel
barriers. Such tunnel barriers may be formed by quantum point contacts,
operated close to pinch off (where the conductance G < 2e2/h). An ad-
vantage of this technique is that the transparency of the tunnel barrier is
adjustable by changing the voltage on the gates defining the point contact.
A complication is that the barrier height typically exceeds the Fermi level
by only a few meV, and that the thickness of the barrier at the Fermi level
is large (on the order of 50 nm). This may lead to a strong dependence
of the transparency on the voltage applied across the barrier, hampering a
study of nonlinear transport effects intrinsic to a quantum dot.

Measurements of the electrical transport properties of split-gate nanos-
tructures are made at low temperatures, with the devices mounted in the
mixing chamber of a dilution refrigerator. This is necessary since the tem-
perature regime for quantum transport in the present devices extends from
the millikelvin regime up to a few kelvin. In addition, access to the quan-
tum Hall effect regime is provided by means of a superconducting mag-
net, capable of generating magnetic fields up to 8 T perpendicular to the
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Figure 1.4: Schematic diagram of the measurement circuit. The only part of the
circuit at low temperature is the device.

2DEG. As shown schematically in Fig. 1.4, the measurements are made
using a double lock-in technique with an excitation voltage below kBT/e
in order to ensure linear response. In the measurement set-up used for the
experiments described in this thesis, only the device is at low temperature.
The temperature is measured by means of a calibrated germanium resistor,
which is positioned inside the mixing chamber, above the main coil of the
superconducting magnet. Additional compensation coils keep the magnetic
field near zero at that position. In order to reduce electron heating by RF
electrical noise as much as possible, low-pass RLC filters are used in the
electrical wiring connected to the device. These filters, which have a cut-off
frequency of about 1 MHz, are not shown in Fig. 1.4. Primarily, conduc-
tance measurements are made, both as a function of gate voltage and as a
function of magnetic field.

1.4 Coulomb blockade and single-electron tunneling

The concept of Coulomb blockade refers to the phenomenon that tunneling
through a metallic grain with small capacitance may be inhibited at low
temperatures and small applied voltages. The reason is that the addition of
a single electron to such a system requires an electrostatic charging energy
of order e2/C � kBT, eV , where C is its capacitance, T the temperature
and V the applied voltage. Basically, this is the explanation first given by
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Figure 1.5: (a) Schematic illustration of a confined region (dot) which is weakly
coupled to two leads by tunnel barriers. (b) The charge imbalance between dot
and lead, which can be maintained due to the Coulomb blockade, oscillates in
a sawtooth fashion as a function of the external electrostatic potential difference
φext. (c) Tunneling is possible only near the degeneracy points of the charge
imbalance, so that the conductance G exhibits periodic oscillations.

Gorter [13] of an observed [14, 15] anomalous increase of the resistance of
thin granular metallic films.

A suitable model system to investigate the Coulomb blockade in more
detail consists of a confined region (dot) weakly coupled by tunnel barriers
to two leads, see Fig. 1.5(a). An additional gate electrode can be used to
control the charge on the dot, which consists of two contributions. The
number N of conduction electrons on the dot contributes a charge Q =
−Ne, which can change by discrete amounts e only. (We assume that
the tunnel resistance is large compared to the resistance quantum h/e2, so
that the number N of electrons on the island may be treated as a sharply
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defined classical variable, see chapter 2.) Nearby external charges, e.g.,
those on the gate, induce a displacement charge Cφext on the dot, which
can be varied continuously. Here, C is the capacitance of the dot, and φext
the part of the electrostatic potential difference between dot and leads due
to the external charges. Minimization of the absolute value of the charge
imbalance Cφext−Ne (under the constraint thatN is an integer) determines
N at low temperatures. The transition from N to N+1 electrons on the dot
occurs on reaching a charge imbalance Cφext − Ne = 1

2e. The additional
electron causes the charge imbalance to reverse sign, becoming −12 . Thus,
a sawtooth like oscillation of the charge imbalance results [Fig. 1.5(b)].
Tunneling is blocked at low temperatures, except near the points where
the charge imbalance jumps from +12e to −12e. Here the electrons can
tunnel through the dot, one by one. The Coulomb blockade is lifted, and
the (zero bias) conductance exhibits a peak [Fig. 1.5(c)]. These are the
“Coulomb-blockade oscillations” [3, 16, 17, 18, 19], which is the central
phenomenon studied in this thesis.

In metals, the Coulomb-blockade oscillations are essentially a classical
phenomenon [20, 21], since the energy spectrum of the confined region may
be treated as a continuum (as was implicitly assumed above). This is not
the case in semiconductor nanostructures which have dimensions compara-
ble to the Fermi wave length. In a typical experiment, the confined region
or quantum dot contains N ∼ 100 electrons, with an average energy level
spacing ∆E ∼ 0.1 meV. At temperatures below a few Kelvin, the level
spacing ∆E exceeds the thermal energy kBT , so that transport proceeds
by tunneling through a single discrete energy level — a process referred to
as resonant tunneling in the absence of charging effects. In semiconduc-
tors, one has the opportunity to explore the interplay of resonant tunneling
and Coulomb blockade. (The charging energy e2/C ∼ 0.5 meV typically
is not much greater than the energy level spacing.) In addition, semicon-
ductor nanostructures allow one to study these effects in the quantum Hall
effect regime, where the excitation spectrum of a quantum dot is altered
completely due to the magnetic quantization (h̄ωc ∼ 1 meV at B = 1 T).

One type of semiconductor nanostructure found to exhibit regular con-
ductance oscillations as a function of gate voltage, is a disordered nar-
row channel [22, 23, 24, 25, 26, 27]. Originally, an interpretation in terms
of a pinned charge-density wave was given for the periodic conductance
oscillations in such a quantum wire [22]. As an alternative explanation,
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Van Houten and Beenakker [28] suggested that the oscillations are Coulomb-
blockade oscillations. As shown in Fig. 1.6(a), a quantum wire may break
up into disconnected segments if it is close to pinch-off. Conduction at low
temperatures proceeds by tunneling through the barriers delimiting a seg-
ment, which plays the role of the confined region in Fig. 1.5. The dominant
oscillations in a wire typically have a well-defined periodicity, indicating
that a single segment limits the conductance. In addition, some authors
have argued that resonant tunneling of noninteracting electrons can ex-
plain the periodicity of the oscillations [29, 30]. The work on this thesis
was started with the aim to resolve the mechanism of the oscillations by a
combined experimental and theoretical study [26, 27].

A second type of nanostructure exhibiting Coulomb-blockade oscilla-
tions is a small artificially confined region in a 2DEG (a quantum dot),
connected by tunnel barriers either to narrow leads [Fig. 1.6(b)] [31, 32], or
to wide electron reservoirs [Fig. 1.6(c)] [33]. In this type of nanostructure,
the Coulomb-blockade oscillations can be studied in more detail. However,
there is no fundamental distinction between a quantum dot and the disor-
dered quantum wires mentioned above, since a segment of a quantum wire
delimited by two particularly strong scattering centers can be viewed as
a naturally formed quantum dot. Both types of structure are of interest:
Whereas artificially defined quantum dots are more suited to a study of the
effect under relatively well-controlled conditions, the significance of the phe-
nomenon of periodic conductance oscillations in disordered quantum wires
lies in its bearing on the general problem of transport in disordered systems.
It contradicts the earlier presumed ubiquity of random conductance fluctu-
ations in mesoscopic systems, and directly demonstrates the predominant
role of electrostatic interactions in a disordered conductor [34].

Phenomena of single-electron tunneling are not restricted to the
Coulomb-blockade oscillations in the linear response conductance discussed
so far. For example, in the nonlinear current-voltage characteristics of a
double-junction system with very different tunnel rates through the two
barriers, steps are found in the current as a function of the source-drain
voltage [18, 35, 36]. This “Coulomb staircase” has been observed both
in metallic systems [16, 17], and in quantum dots [32]. Recently, radio-
frequency modulation of the source-drain voltage or of the tunnel rates has
been used to synchronize tunneling of single electrons through the system.
It is possible to realize “turn-stile clocking” or “pumping” of a current
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Figure 1.6: Schematic top-view of three semiconductor nanostructures exhibiting
Coulomb-blockade oscillations. Hatched regions denote gates, electron gas regions
are shaded, and dashed lines indicate tunneling paths. (a) Disordered quantum
wire with a single conductance limiting segment. (b) Quantum dot in a narrow
channel. (c) Quantum dot between wide regions with separate sets of gates to
modulate the tunnel barriers and to vary the external potential of the dot.
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I = ef , where f is the modulation frequency, through a metallic array of
junctions [37, 38] or a quantum dot [39].

In this thesis, however, we will be concerned primarily with the
Coulomb-blockade oscillations in semiconductor nanostructures in the
regime of linear response. Apart from the conductance, we will also ad-
dress the thermopower. In chapter 2, the theory of Coulomb-blockade os-
cillations is outlined following Refs. [40, 41, 42]. This theory remains within
the “orthodox” model of the Coulomb blockade [3], in which the number
of electrons on the dot is assumed to be a good quantum number. Second-
order processes such as tunneling through virtual states [43, 44] and co-
tunneling [45] are not taken into account. In chapter 3 we present results of
a study of Coulomb-blockade oscillations in disordered quantum wires [27].
It is found that the periodic oscillations observed in many of the wires can
be interpreted consistently within the frame work of Coulomb-blockade os-
cillations. Some aspects are not yet resolved fully, however, in particular
the detailed magnetic field dependence of the oscillations. In chapter 4 sev-
eral new aspects of the Coulomb-blockade oscillations in the conductance of
quantum dots are discussed. The temperature dependence is examined in
section 4.2. At low temperatures, the peak height is found to increase with
decreasing temperature, which is characteristic of the resonant tunneling
regime. The conductance minima are not suppressed exponentially, indica-
tive of the importance of second-order processes in our devices. In sections
4.3 and 4.4 the effect of a magnetic field on the Coulomb-blockade oscil-
lations is investigated. Whereas the amplitude of the Coulomb-blockade
oscillations varies irregularly in the absence of a magnetic field, a periodic
modulation of the amplitude has been discovered in the presence of a quan-
tizing magnetic field [46]. This reveals a cyclic depopulation of the Landau
levels in the dot, in contrast to the sequential depopulation from highest
to lowest in a wide 2DEG. This is the subject of section 4.3. The effect on
the Coulomb-blockade oscillations of adiabatically transmitted edge chan-
nels through the dot, i.e., a conductance of the tunnel barriers greater than
e2/h, is studied in section 4.4. It is shown that even in this regime Coulomb
charging of the Landau levels confined to the quantum dot has to be taken
into account [47]. Finally, the first observation of Coulomb-blockade oscil-
lations in the thermopower of a quantum dot is presented in section 4.5 [48].
These are found to oscillate in a sawtooth like fashion as a function of gate
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voltage, in agreement with the theory [41] discussed in chapter 2.

The study of mesoscopic physics is motivated by more than scientific
interest. With the extreme miniaturization of transistors in integrated cir-
cuits, the regime of classical diffusive transport, in which these devices
operate, will break down eventually. Then, mesoscopic effects may become
relevant. In addition, the novel transport regimes explored in mesoscopic
systems may provide options for innovation of future electronic devices.
Since the discovery of quantum ballistic transport many proposals for quan-
tum devices have appeared in the literature, varying from a novel princi-
ple of operation for a single transistor, to entire computer architectures
in which arrays of quantum devices operate phase coherently. However,
most of these proposals have not yet been analyzed critically, with respect
to performance, circuit design and technological considerations. Moreover,
in order to be commercially attractive, novel devices should offer definite
advantages over conventional transistors. In this respect, one of the most
stringent requirements is operation at room temperature. Since presently
most of mesoscopic physics is in the domain of low-temperature physics, it
is obvious that further reduction of device dimensions is required. Then, it
is no longer clear whether semiconductors will be a suitable material.

Single-electron tunneling offers the opportunity to realize digital cir-
cuits, in which each bit of information is encoded by a single electron. This
may in principle allow an unprecedented integration scale, which at the
same time remains compatible with the power dissipation requirements of
such circuits. (Estimates for circuits with junctions of 10 × 10 nm2, con-
sidered to be a practical nanolithography limit, yield a value of order 109

gates/cm2, about 100 times larger than the most optimistic projections for
conventional logic circuits [49].) A serious drawback of such circuits, how-
ever, is the very low operating temperature, required to obtain an accept-
ably low digital error rate due to thermally activated tunneling processes.
To obtain an error rate of at most 10−20 s−1 [49], kBT should be about
70 times smaller than the energy scale e2/2C of the individual junctions.
This implies a temperature limit of only 3 K for circuits with 10× 10 nm2

junctions. Therefore, operation at room temperature of such simple digital
circuits is probably not a realistic goal. Better prospects may be offered
by neural network type circuits, since these are more fault tolerant, and
thus can be operated at higher temperatures than simple digital circuits
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with junctions of equal area. Clearly, we are only at the beginning of a
challenging field of opportunities.
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Chapter 2

Theory of Coulomb-blockade oscillations

2.1 Introduction

We consider a confined region which is weakly coupled via tunnel barriers
to two electron reservoirs. The confined region, or “quantum dot”, has
single-electron energy levels at Ep (p = 1, 2, . . .), calculated by treating
the electron-electron interaction in a mean-field (Hartree) approximation
(cf. Ref. [1]). The levels are labeled in ascending order and measured rel-
ative to the bottom of the potential well. Each level contains either one
or zero electrons. Spin degeneracy can be included by counting each level
twice, and other degeneracies can be included similarly. In principle, the
position of the levels may depend on the number of electrons in the dot,
but for simplicity we will ignore such dependence in what follows. Each
reservoir is taken to be in thermal equilibrium, but between the reservoirs
there can be a temperature difference ∆T = Tl − Tr. The states in the
left (l) and right (r) reservoirs are occupied according to the Fermi-Dirac
distributions

fl(E − EF) =
[
1 + exp

(
E − EF
kBTl

)]−1
,

(2.1)

fr(E − EF) =
[
1 + exp

(
E − EF
kBTr

)]−1
,
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Figure 2.1: (a) Schematic diagram of the quantum dot, tunnel barriers (hatched),
and reservoirs. (b) Profile of the electrostatic potential energy (solid curve) along
a line through the tunnel barriers. The Fermi levels in the left and right reservoirs,
and the discrete energy levels in the quantum dot are indicated (dashed lines).

where the Fermi energy EF is measured relative to the local conduction
band bottom in the reservoirs. In Fig. 2.1 we show schematically a cross-
section of the geometry, and the profile of the electrostatic potential energy
along a line through the tunnel barriers.

A current I can be passed through the dot by applying a potential
difference V between the reservoirs. The linear response conductance G of
the dot is defined as G ≡ I/V , in the limit V → 0, given that the reservoirs
have equal temperature, i.e., ∆T = 0. Since transport through the dot
proceeds by tunneling through its discrete electronic states, it will be clear
that for small V a net current can flow for certain values of EF only (if
∆E � kBT ). In the absence of charging effects, a conductance peak due
to resonant tunneling occurs if EF in the reservoirs lines up with one of the
energy levels in the dot. This condition is modified by the charging energy.

Because the number N of electrons localized in the dot can take on
integer values only, a charge imbalance, and hence a potential difference,
can arise between the dot and reservoirs, even if V = 0. Following the
“orthodox model” of the Coulomb blockade [2], we express the electrostatic
potential difference φ(Q), with Q = −Ne, in terms of an effective N -
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independent capacitance C between dot and reservoirs,

φ(Q) =
Q

C
+ φext , (2.2)

where φext is a contribution from external charges (in particular those on
a nearby gate electrode). The electrostatic energy U(N) =

∫−Ne
0 φ(Q)dQ

then takes the form†

U(N) =
(Ne)2

2C
−Neφext . (2.3)

Recently, McEuen et al. [5] have used a semi self-consistent approach to
calculate the total ground state energy of the dot in a quantizing mag-
netic field. This proved to be necessary because the electron gas in the
dot in a quantizing magnetic field is divided into compressible (partially
filled Landau levels) and incompressible (full Landau levels) regions. The
incompressible regions can be thought of as dielectric-like regions separat-
ing the metallic-like compressible regions, so that charging effects between
the latter regions have to be taken into account. We will ignore such intra-
dot electron-electron interaction effects in this chapter, but we will discuss
some consequences in chapter 4 (section 4.4).

The tunnel rates from level p to the left and right reservoirs are denoted
by Γlp and Γrp, respectively. A possible dependence of the tunnel rates on
N is ignored. We assume that both the thermal energy kBT and the level
separation ∆E are much greater than hΓ ≡ h(Γl + Γr), so that virtual
tunnel processes [6, 7] (and the resulting finite width of the transmission
resonance through the dot) can be neglected. This assumption allows char-
acterization of the state of the dot by a set of occupation numbers, one for
each energy level. Transport through the dot can then be described by rate
equations [2]. We also assume that inelastic scattering occurs exclusively
in the reservoirs, not in the quantum dot.

†To make connection with some of the literature [3, 4] we note that Qext ≡ Cφext

plays the role of a displacement charge on the dot, which can be varied continuously by
means of an external gate voltage. In terms of Qext one can write

U(N) =
(Ne − Qext)

2

2C
+ constant ,

which is equivalent to Eq. (2.3).
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Energy conservation upon tunneling from an initial state p in the dot
(containing N electrons) to a final state in the left reservoir at energy Ef,l

(measured relative to the local conduction band bottom), requires that

Ef,l(N) = Ep + U(N)− U(N − 1) + ηeV , (2.4)

where η is the fraction of the voltage V that drops over the left barrier (see
Fig. 2.1). The energy conservation condition for tunneling from an initial
state Ei,l in the left reservoir to a final state p in the dot is

Ei,l(N) = Ep + U(N + 1)− U(N) + ηeV , (2.5)

where [as in Eq. (2.4)] N is the number of electrons in the dot before the
tunneling event. Similarly, for tunneling between the quantum dot and the
right reservoir we have the conditions

Ef,r(N) = Ep + U(N)− U(N − 1)− (1− η)eV , (2.6)
Ei,r(N) = Ep + U(N + 1)− U(N)− (1− η)eV , (2.7)

where Ei,r and Ef,r are the energies of the initial and final states in the
right reservoir.

The stationary current through the dot is given by

I = −e
∞∑

p=1

∑
{ni}

ΓlpP ({ni})
(
δnp,0fl(Ei,l(N)− EF)

− δnp,1

[
1− fl(Ef,l(N)− EF)

])

= e
∞∑

p=1

∑
{ni}

ΓrpP ({ni})
(
δnp,0fr(Ei,r(N)− EF)

− δnp,1

[
1− fr(Ef,r(N)− EF)

])
. (2.8)

The second summation is over all realizations of occupation numbers
{n1, n2, . . .} ≡ {ni} of the energy levels in the quantum dot, each with
stationary probability P ({ni}). (The numbers ni can take on only the
values 0 and 1.)

As we discuss in section 2.2, at T = 0 the position of the conductance
peaks as a function of gate voltage can be determined from a consideration
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of the equilibrium properties of the system only [8, 9]. The temperature de-
pendence of the amplitude and width of the Coulomb-blockade oscillations
requires solution of the nonequilibrium probability distribution P ({ni})
from the kinetic equation ∂P/∂t = 0. Beenakker [10] has derived an an-
alytical expression for P in the resonant tunneling regime, which general-
izes earlier results by Kulik and Shekhter [11, 12] in the classical regime.
An equivalent result has been obtained independently by Meir, Wingreen,
and Lee [13], by solving an Anderson model in the limit kBT � hΓ. In
section 2.3, we summarize the main results of Ref. [10] for the amplitude
and width of the conductance oscillations. In order to obtain an expression
for the thermopower of the dot, the theory of Ref. [10] was extended in
Ref. [14] to include single-electron tunneling in response to a temperature
difference ∆T across the dot, as well as a potential difference V . This is
discussed in section 2.4.

2.2 Periodicity of the oscillations

The probability P (N) to find N electrons in the dot in equilibrium with
the reservoirs (at T = Tl = Tr) is given by the grand canonical distribution
function

P (N) = constant × exp
{
− 1
kBT

[F (N)−NEF]
}

, (2.9)

where F (N) is the free energy of the dot. At T = 0, P (N) generally is
nonzero for a single value of N only [namely the integer which minimizes
the thermodynamic potential Ω(N) ≡ F (N) − NEF]. In that case, the
conductance is suppressed in the limit T → 0. As pointed out by Glazman
and Shekhter [15], a finite conductance is possible only if both P (N) and
P (N+1) are nonzero for some N . Then a small applied voltage is sufficient
to induce a current, such that electrons pass one by one through the dot,
via intermediate states N → N + 1 → N → N + 1 → · · · . To have both
P (N) and P (N+1) nonzero at T = 0, it is required that both N and N+1
minimize Ω. A necessary condition is Ω(N + 1) = Ω(N), or

F (N + 1)− F (N) = EF . (2.10)

This condition is also sufficient, unless Ω has more than one minimum
(which is usually not the case).
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Equation (2.10) expresses the equality of the electrochemical potential
of dot and leads. The usefulness of this result is that it maps the problem of
determining the position of the conductance peaks onto the more familiar
problem of calculating the electrochemical potential F (N+1)−F (N) of the
quantum dot, i.e., the energy cost associated with the addition of a single
electron to the dot. This enables, in principle, a study of exchange and
correlation effects on conductance oscillations in a quantum dot (e.g. along
the lines of work by Bryant [16] and by Maksym and Chakraborty [17]).

At T = 0 the free energy F (N) equals the ground-state energy of the
dot, for which we take the simplified form U(N)+

∑N
p=1Ep. In this approx-

imation, the ground-state energy consists of a separate contribution from
the electrostatic energy U(N), which accounts for the charge imbalance,
and from the occupied single-electron states in the dot, which accounts
for the internal energy. We thus find from Eq. (2.10) that a peak in the
low-temperature conductance occurs whenever

EN + U(N)− U(N − 1) = EF , (2.11)

for some integer N (where we have relabeled N by N − 1).
Substitution of Eq. (2.3) into Eq. (2.11) yields

E∗
N ≡ EN + (N − 12)

e2

C
= EF + eφext (2.12)

as the condition for a conductance peak. The left-hand-side of Eq. (2.12)
defines a renormalized energy level E∗

N . The renormalized level spacing
∆E∗ = ∆E + e2/C is enhanced above the bare level spacing by the charg-
ing energy e2/C. If e2/C � ∆E, Eq. (2.12) is the usual condition for
resonant tunneling. If e2/C � ∆E, Eq. (2.12) describes the periodicity of
the classical Coulomb-blockade oscillations in the conductance versus gate
voltage [2, 4, 11, 12, 15].

In Fig. 2.2 we have illustrated tunneling of an electron through the
dot subject to the conditions set by Eq. (2.12). Initially (left), the dot is
occupied by N−1 electrons and the condition (2.12) for a conductance peak
is satisfied, i.e., EN+e2/2C = EF+eφ(N−1) [using the shorthand notation
φ(N) for φ(−Ne)]. Here, EN refers to the lowest unoccupied level in the
dot (left). If an electron tunnels into this level, the potential difference φ
between dot and reservoirs decreases by e/C (becoming negative). One now
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Figure 2.2: Single-electron tunneling through a quantum dot subject to the con-
ditions set by Eq. (2.12), for the case that the charging energy is comparable to
the level spacing. An infinitesimally small voltage difference is assumed between
the left and right reservoirs.

has EN − e2/2C = EF + eφ(N), with EN referring to the highest occupied
level (middle). Finally, the electron tunnels out of the dot (right), and the
potentials and energies are reset to the initial state.

Let us now discuss the periodicity of the oscillations in more detail.
Theoretically, it is convenient to consider the case of a variation of the
Fermi energy of the reservoirs EF at constant φext. According to Eq. (2.12)
we find a period

∆EF = ∆E∗
N = ∆EN +

e2

C
, (2.13)

where ∆EN ≡ EN+1 − EN . In the absence of charging effects, ∆EF is
determined by the irregular spacing ∆EN of the single-electron levels in
the dot. The charging energy e2/C regulates the spacing once it is larger
than the average spacing ∆E of the levels. This is illustrated in Fig. 2.3.
In addition, the charging energy lif ts the spin degeneracy of the levels.
This leads to a doublet structure of the oscillations in a plot of G versus
EF, with a spacing that alternates between e2/C and e2/C +∆EN , where
∆EN is the spacing between two spin degenerate levels.

Experimentally, one studies the Coulomb-blockade oscillations as a
function of gate voltage. To determine the periodicity in that case, one
has to consider variations in φext. In a 2DEG, the external charges are
supplied by ionized donors and by a gate electrode (with an electrostatic
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Figure 2.3: The bare energy levels in a quantum dot (a) are spaced much less
regular than the renormalized energy levels (b). In addition, the spin degeneracy
of the bare levels is lifted by the charging energy (the black dots indicate states
occupied by a single electron).

potential difference φgate between gate and 2DEG reservoir). We write

φext = φdonors + αφgate , (2.14)

where α (as well as C) is a rational function of the capacitance matrix
elements of the system, and therefore depends on the geometry. In general,
a geometry-specific dependence of EF and of the set of energy levels Ep on
φext has to be taken into account as well.

We first discuss the case of a quantum dot with wide 2DEG leads. In this
geometry, the Fermi energy EF of the reservoirs is constant, independent
of φext. To clarify the meaning of the parameter α, we model the system of
quantum dot, gates, and 2DEG leads by the equivalent circuit of Fig. 2.4.
From simple electrostatics‡ we find α = Cgate/C, with C = Cdot + Cgate
the capacitance determining the charging energy e2/C. Thus, the period
∆φgate obtained from Eqs. (2.12) and (2.14) is

∆φgate =
e

Cgate

(
1 +

∆EN

e2/C

)
. (2.15)

‡From Eq. (2.2) we find for the charge on the dot Q = Cφ−Cφext = Cφ−αCφgate +
const. Alternatively, from the equivalent circuit in Fig. 2.4 we find Q = Qdot + Qgate +
Qdonors, where Qdot = Cdotφ is the charge on Cdot, Qgate = Cgate(φ−φgate) is the charge
on Cgate, and Qdonors is the charge on the dot due to the ionized donors. We thus find
C = Cdot + Cgate and α = Cgate/C.
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Figure 2.4: Equivalent circuit of the quantum dot, gates (hatched) and 2DEG
leads (shaded). The mutual capacitance of dot and leads is Cdot, and that of dot
and gates is Cgate.

If the charging energy dominates, e2/C � ∆E, the oscillations are nearly
periodic with period e/Cgate.

A more complicated geometry is that of a quantum dot defined within
a quantum wire. We model this system by the equivalent circuit shown in
Fig. 2.5. The mutual capacitance between gates and leads is much larger
than that of dot and gates (Cgate) and that of dot and leads (Cdot), but does
not enter the problem explicitly. However, it has an important consequence
for the variation of the Fermi energy in the leads (the reservoirs) with gate
voltage. In this geometry, it is reasonable to assume that the electron-gas
densities in the dot and leads increase, on average, equally fast with φgate.
For equidistant energy levels in the dot we may then assume that EF−EN

has the same value at each conductance peak. Since the equivalent circuit
is essentially identical to that of a quantum dot with wide 2DEG leads, the
same electrostatics apply, so that in this geometry we also have α = Cgate/C
and C = Cdot+Cgate. The period of the oscillations now follows from Eqs.
(2.12) and (2.14),

∆φgate =
e

Cgate
. (2.16)
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Figure 2.5: Equivalent circuit of a quantum wire containing a quantum dot. The
mutual capacitance of dot and leads (shaded) is Cdot, and that of dot and gates
(hatched) is Cgate.

Note that this result applies regardless of the relative magnitudes of the
(equidistant) bare level spacing ∆E and the charging energy e2/C.

In an experiment the gate voltage is the electrochemical potential dif-
ference Vgate between gate and leads, i.e., the difference in Fermi levels,
whereas so far we have discussed the period of the oscillations in terms of
the electrostatic potential difference φgate, i.e., the difference in conduction
band bottoms. This only makes a difference for a quantum dot within a
quantum wire (Fig. 2.5), since in this geometry the Fermi energy in the
leads is not constant, but increases with gate voltage. In one period, the
change in Fermi energy in the leads is approximately equal to the change
in Fermi energy in the dot. The change in Fermi energy in the (metal) gate
is negligible, because the density of states in a metal is much larger than in
a 2DEG. We thus find that the oscillation period ∆Vgate in the geometry
of Fig. 2.5 is

∆Vgate = ∆φgate +
∆EF
e

=
e

Cgate
+
∆E

e
, (2.17)

where the second equality holds for equidistantly spaced levels.
To determine the peak spacing as a function of gate voltage for

nonequidistant levels, we approximate the change in EF with Vgate by
∂EF/∂Vgate ∼ ∆E/(e/Cgate+∆E), where ∆E is the average level spacing.
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We then obtain from Eqs. (2.12) and (2.14)

∆Vgate =

(
e

Cgate
+
∆E

e

)
∆EN + e2/C

∆E + e2/C
. (2.18)

The average spacing equals e/Cgate +∆E/e, in agreement with Eq. (2.17).
For equidistant spin-degenerate levels (of spacing 2∆E) we thus find that
the peak spacing alternates between two values, corresponding to ∆EN = 0
and ∆EN = 2∆E. If the charging energy dominates (e2/C � ∆E), one has
equal spacing ∆V

(1)
gate ≈ ∆V

(2)
gate ≈ e/Cgate + ∆E/e, as for non-degenerate

levels. In the opposite limit ∆E � e2/C, one finds instead ∆V
(1)
gate ≈ 0, and

∆V
(2)
gate ≈ 2(e/Cgate +∆E/e). Thus, the period is effectively doubled, cor-

responding to the addition of two electrons to the dot instead of one. This
is characteristic for resonant tunneling of noninteracting electrons through
spin-degenerate energy levels. An external magnetic field will resolve the
spin degeneracy, leading to a splitting of the conductance peaks which in-
creases with field.

2.3 Conductance oscillations

Equation (2.12) is sufficient to determine the periodicity of the conductance
oscillations, but gives no information on their amplitude and width. This
requires a solution of a kinetic equation, which has been obtained analyt-
ically by Beenakker in Ref. [10]. The equilibrium distribution function of
electrons among the energy levels is given by the Gibbs distribution in the
grand canonical ensemble:

Peq({ni}) = 1
Z
exp

[
− 1
kBT

( ∞∑
i=1

Eini + U(N)−NEF

)]
, (2.19)

where N ≡ ∑
i ni is the number of electrons in the dot, and Z is the

partition function,

Z =
∑
{ni}

exp

[
− 1
kBT

( ∞∑
i=1

Eini + U(N)−NEF

)]
. (2.20)
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The joint probability Peq(N,np = 1) that the quantum dot contains N
electrons and that level p is occupied is

Peq(N,np = 1) =
∑
{ni}

Peq({ni})δN,
∑

i
ni
δnp,1 . (2.21)

In terms of this probability distribution, the conductance is given by [10]

G =
e2

kBT

∞∑
p=1

∞∑
N=1

ΓlpΓ
r
p

Γlp + Γrp
Peq(N,np = 1)×

× [1− f(Ep + U(N)− U(N − 1)− EF)] . (2.22)

This particular product of distribution functions expresses the fact that
tunneling of an electron from an initial state p in the dot to a final state in
the reservoir requires an occupied initial state and empty final state.

We now discuss some limiting cases of the general result (2.22). We
first consider the conductance of the individual barriers and the quantum
dot in the high temperature limit kBT � e2/C,∆E where neither the dis-
creteness of the energy levels nor the charging energy are important. The
conductance then does not exhibit oscillations as a function of gate volt-
age. The high temperature limit is of interest for comparison with the low
temperature results, and because its measurement allows a straightforward
estimate of the tunnel rates. The conductance of the quantum dot in the
high temperature limit is simply that of the two tunnel barriers in series.
We find

G =
GlGr

Gl +Gr
, if ∆E, e2/C � kBT � EF . (2.23)

The conductances Gl and Gr of the left and right tunnel barriers are given
by the thermally averaged Landauer formula

Gl,r = −e2

h

∫ ∞

0
T l,r(E)

df

dE
dE . (2.24)

The transmission probability of a barrier T (E) equals the tunnel rate Γ(E)
divided by the attempt frequency ν(E) = 1/hρ(E),

T l,r(E) = hΓl,r(E)ρ(E) . (2.25)
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If the height of the tunnel barriers is large, the energy dependence of the
tunnel rates and density-of-states ρ in the dot can be ignored (as long as
kBT � EF). The conductance of each barrier then becomes according to
Eq. (2.24)

Gl,r = (e2/h)T l,r = e2ρΓl,r (2.26)

(where T l,r, ρ, and Γl,r are evaluated at EF), and the conductance of the
dot from Eq. (2.23) is

G = e2ρ
ΓlΓr

Γl + Γr
=

e2

h

T lT r

T l + T r
≡ G∞ , if ∆E, e2/C � kBT � EF .

(2.27)
The validity of the present theory is restricted to the case of negligible

quantum fluctuations in the charge on the dot [2]. Since charge leaks out
of the dot at a rate Γl+Γr, the energy levels are sharply defined only if the
resulting uncertainty in energy h(Γl + Γr) � ∆E. In view of Eq. (2.25),
with ρ ∼ 1/∆E, this requires T l,r � 1, or Gl,r � e2/h. In the resonant
tunneling regime of comparable ∆E and kBT , this criterion is equivalent to
the criterion hΓ � kBT mentioned earlier. In the classical regime ∆E �
kBT , the criterion hΓ � ∆E dominates. The general criterion hΓ �
∆E, kBT implies that the conductance of the quantum dot G � e2/h.

As the temperature is lowered, such that kBT < e2/C, the Coulomb-
blockade oscillations become observable. This is shown in Fig. 2.6. The
classical regime ∆E � kBT was first studied by Kulik and Shekhter [11, 12].
In this regime a continuum of energy levels in the confined central region
participates in the conduction. If ∆E � kBT � e2/C, only the terms with
N = Nmin contribute to the sum in Eq. (2.22), where Nmin minimizes the
absolute value of ∆(N) ≡ U(N) − U(N − 1) + µ̄ − EF. (Here µ̄ is the
equilibrium chemical potential of the dot, measured relative to the bottom
of the potential well.) For energy-independent tunnel rates and density-of-
states ρ ≡ 1/∆E, one obtains a line shape of individual conductance peaks
given by [10]

G/Gmax =
∆min/kBT

sinh(∆min/kBT )
≈ cosh−2

(
∆min
2.5kBT

)
, (2.28)

Gmax =
e2

2∆E

ΓlΓr

Γl + Γr
, (2.29)
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Figure 2.6: Temperature dependence of the Coulomb-blockade oscillations as a
function of Fermi energy in the classical regime kBT � ∆E. Curves are calculated
from Eq. (2.22) with ∆E = 0.01 × e2/C, for kBT = 0.075 (a), 0.15 (b), 0.3 (c),
0.4 (d), 1 (e), and 2 × e2/C (f). Level-independent tunnel rates are assumed, as
well as equidistant nondegenerate energy levels.

using the definition ∆min ≡ ∆(Nmin). The second equality in Eq. (2.28) is
approximate, but holds to better than 1%. A plot of G/Gmax versus ∆min
is shown for an isolated peak in Fig. 2.7 (dashed curve).

Whereas the width of the peaks increases with T in the classical regime,
the peak height (reached at ∆min = 0) is temperature independent [com-
pare traces (a) and (b) in Fig. 2.6]. The reason is that the 1/T temperature
dependence associated with resonant tunneling through a particular energy
level is canceled by the T dependence of the number kBT/∆E of levels par-
ticipating in the conduction. This cancellation only holds if the tunnel
rates are energy independent within the interval kBT . A temperature de-
pendence of the peak height may result from a strong energy dependence
of the tunnel rates. In such a case one has to use the general result (2.22).
This is also required if peaks start to overlap as kBT approaches e2/C,
or if the dot is nearly depleted (EF <∼ kBT ). The latter regime does not
play a role in metals, but is of importance in semiconductor nanostructures
because of the much smaller EF.

Despite the fact that the Coulomb blockade of tunneling is lifted at a



2.3. CONDUCTANCE OSCILLATIONS 35

Figure 2.7: Comparison of the lineshape of a thermally broadened conductance
peak in the resonant tunneling regime hΓ � kBT � ∆E (solid curve) and in
the classical regime ∆E � kBT � e2/C (dashed curve). The conductance is
normalized by the peak height Gmax, given by Eqs. (2.29) and (2.32) in the two
regimes.

maximum of a conductance peak, the peak height Gmax in the classical
Coulomb-blockade regime ∆E � kBT � e2/C is a factor of two smaller
than the conductance G∞ in the high temperature regime kBT � e2/C of
negligible charging energy (in the case of energy-independent tunnel rates).
The reason is that the charging energy imposes a correlation between sub-
sequent tunnel events. This correlation, expressed by the series of charge
states Q = −Nmine → Q = −(Nmin − 1)e → Q = −Nmine → . . ., implies
that an electron can tunnel from a reservoir into the dot only half of the
time [namely only when Q = −(Nmin − 1)e]. The tunnel probability is
therefore reduced by a factor of two compared to the high temperature
limit, where no such correlation exists.

The temperature dependence of the maxima of the Coulomb-blockade
oscillations as obtained from Eq. (2.22) is plotted in Fig. 2.8. Also shown
in Fig. 2.8 are the minima, which are seen to merge with the maxima as
kBT approaches e2/C. In the resonant tunneling regime kBT <∼∆E the
peak height increases as the temperature is reduced, due to the diminished
thermal broadening of the resonance. The crossover from the classical to the
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Figure 2.8: Temperature dependence of the maxima (max) and the minima (min)
of the Coulomb-blockade oscillations in the conductance, in the regime hΓ � kBT .
The calculation, based on Eq. (2.22), was performed for the case of equidistant
nondegenerate energy levels (at separation ∆E = 0.01× e2/C), all with the same
tunnel rates Γl and Γr.

quantum regime is shown in Fig. 2.9 [calculated directly from Eq. (2.22)].
In the case of well-separated energy scales in the resonant tunneling

regime (hΓ � kBT � ∆E), Eq. (2.22) can again be written in a simplified
form. Now the single term with p = N = Nmin gives the dominant con-
tribution to the sum over p and N , where the integer Nmin minimizes the
absolute value of

∆(N) = EN + U(N)− U(N − 1)− EF (2.30)

[cf. Eq. [2.11)]. Using the definition ∆min ≡ ∆(Nmin), Eq. (2.22) reduces
to

G/Gmax = −4kBTf ′(∆min) = cosh−2
(
∆min
2kBT

)
, (2.31)

Gmax =
e2

4kBT
ΓlNmin

ΓrNmin

ΓlNmin
+ ΓrNmin

. (2.32)
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Figure 2.9: Lineshape for various temperatures, showing the crossover from the
resonant tunneling regime (a and b) where both the width and the peak height
depend on T , to the classical regime (c and d) where only the width of the peak
depends on T . Curves are calculated from Eq. (2.22) with ∆E = 0.01×e2/C, and
for kBT = 0.5 (a), 1 (b), 7.5 (c), and 15×∆E (d).

As shown in Fig. 2.7, the lineshape in the resonant tunneling regime (full
curve) is different from that in the classical regime (dashed curve), if they
are compared at equal temperature. Equation (2.31) can be seen as the
usual resonant tunneling formula for a thermally broadened resonance, gen-
eralized to include the effect of the charging energy on the resonance condi-
tion. Equations (2.31) and (2.32) hold regardless of the relative magnitude
of ∆E and e2/C. As illustrated in Fig. 2.8, the peak height in the resonant
tunneling regime increases monotonically as kBT/∆E → 0, as long as kBT
is larger than the resonance width hΓ.

No theory has been worked out for Coulomb-blockade oscillations in
the regime kBT <∼ hΓ (although the theory of Meir et al. [13] is sufficiently
general to be applicable in principle). For noninteracting electrons, the
transmission probability has the Breit-Wigner form [3, 18, 19]

GBW = G e2

h

ΓlΓr

Γl + Γr
Γ

(ε/h̄)2 + (Γ/2)2
, (2.33)

where G is the degeneracy of the resonant level, and ε is the energy separa-
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tion of that level from the Fermi level in the reservoirs. In the presence of
inelastic scattering with rate Γin one has to replace Γ by Γ+Γin [3, 18, 19].
This has the effect of reducing the conductance on resonance by a factor
Γ/(Γ+Γin), and of increasing the width of the peak by a factor (Γ+Γin)/Γ.
In contrast, inelastic scattering has no effect on the conductance in the
regime hΓ � kBT � ∆E [which follows from the fact that the thermal av-
erage − ∫ GBWf ′(ε)dε ≈ ∫

GBWdε/4kBT is independent of Γin]. If inelastic
scattering is negligible, and if the two tunnel barriers are equal, then the
maximum conductance following from the Breit-Wigner formula is Ge2/h,
a result that may be interpreted as the fundamental contact resistance of a
G-fold degenerate state [19, 20]. We surmise that the charging energy will
lift the level degeneracy, so that the maximum peak height of the Coulomb-
blockade oscillations is Gmax = e2/h for the case of equal tunnel barriers.

A few words on terminology, to make contact with the resonant tun-
neling literature [3, 19]. The results discussed above pertain to the regime
Γ � Γin, referred to as the “coherent resonant tunneling” regime. In the
regime Γ � Γin it is known as “coherent sequential tunneling” (results for
this regime are given in Ref. [10]). Phase coherence plays a role in both
of these regimes, by establishing the discrete energy spectrum in the quan-
tum dot. The classical, or incoherent, regime is entered when kBT or hΓin
exceed ∆E. The discreteness of the energy spectrum can then be ignored.

We close this section by a discussion of the activation energy of the
minima of the conductance oscillations. It is shown in Ref. [10] that Gmin
depends exponentially on the temperature, Gmin ∝ exp(−Eact/kBT ), with
activation energy

Eact = 1
2(∆E + e2/C) = 1

2∆E∗. (2.34)

This result holds for equal tunnel rates at two subsequent energy levels.
The renormalized level spacing ∆E∗ = ∆E + e2/C, which according to
Eq. (2.13) determines the periodicity of the Coulomb-blockade oscillations
as a function of Fermi energy, thus equals twice the activation energy of
the conductance minima. The exponential decay of the conductance at the
minima of the Coulomb-blockade oscillations results from the suppression
of tunneling processes which conserve energy in the intermediate state in
the quantum dot. Tunneling via a virtual intermediate state is not sup-
pressed at low temperatures, and may modify the temperature dependence
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of the minima if hΓ is not much smaller than kBT and ∆E [6, 7]. For
hΓ � kBT,∆E this “macroscopic quantum tunneling of the charge” can
be neglected.

2.4 Thermopower oscillations

In the previous sections we have considered a quantum dot that is weakly
coupled to two reservoirs of equal temperature. Then, a net current I is
passed through the dot in response to an applied potential difference V .
If a temperature difference ∆T exists between the reservoirs, the thermo-
electric transport coefficients of the dot become relevant, as well as the
conductance. It is only recently, that the thermo-electric transport prop-
erties of mesoscopic systems have attracted attention [21, 22, 23, 24]. The
reason is that these are more difficult to measure on small length scales
than the conductance.

A temperature difference ∆T between the reservoirs induces a potential
difference V across the dot (the Seebeck effect). The ratio S ≡ −V/∆T ,
under conditions of zero electrical current, is the thermopower of the dot.
It can be obtained from Eq. (2.8) by solving for I = 0. In linear response,
the result obtained in Ref. [14] is

S = − e

kBT 2G

∞∑
p=1

∞∑
N=1

ΓlpΓrp
Γlp + Γrp

(Ep + U(N)− U(N − 1)− EF)×

×Peq(N,np = 1)[1 − f(Ep + U(N)− U(N − 1)−EF)] , (2.35)

where G is the conductance of the dot given by Eq. (2.22).
We discuss two limiting cases of the general result (2.35). The first is

the classical limit ∆E � kBT � e2/C, in which the discreteness of the
energy spectrum in the dot may be ignored, but not the charging energy.
Due to the Coulomb-blockade, only the terms with N = Nmin where Nmin
minimizes the absolute value of ∆(N) ≡ U(N) − U(N − 1) + µ̄− EF con-
tribute to the sums in the numerator and denominator of Eq. (2.35). (Here
µ̄ is the equilibrium chemical potential of the dot, measured relative to the
bottom of the potential well.) Equation (2.35) reduces to [14]

S = − 1
2eT

∆min = − 1
2eT

[(Nmin − 12)
e2

C
+ µ̄− eφext − EF] ,

if ∆E � kBT � e2/C , (2.36)
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Figure 2.10: Thermopower oscillations as a function of Fermi energy in the classical
regime (solid curve). The Coulomb-blockade oscillations in the conductance are
shown as well (dotted), on a logarithmic scale. The curves are computed from
Eqs. (2.35) and (2.22), for a series of equidistant non-degenerate levels with ∆E =
0.005× e2/C, kBT = 0.025× e2/C, and level-independent tunnel rates.

where ∆min ≡ ∆(Nmin). According to Eq. (2.36), the thermopower as
a function of Fermi energy oscillates around zero in a sawtooth fash-
ion, jumping discontinuously between ±e/4CT each time Nmin changes by
one. The peak-to-peak amplitude of the oscillations equals (e2/2C)/kBT
in units of kB/e, and is therefore a direct measure of the relative mag-
nitude of the charging and thermal energies. The (positive) slope of the
sawtooth dS/dEF = 1/2eT depends only on the temperature, not on the
capacitance.§ The periodicity of the thermopower oscillations is the same
as that of the Coulomb-blockade oscillations in the conductance. To illus-
trate the sawtooth thermopower-oscillations, we have computed S and G
from Eqs. (2.35) and (2.22) for parameters in the classical regime. The
results are plotted in Fig. 2.10.

The sawtooth lineshape can be understood from the following quali-

§If we consider the thermopower as a function of φgate, however, the slope does depend
on the capacitance: dS/dφgate = (Cgate/C)/2T = α/2T .
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Figure 2.11: Due to the Coulomb blockade, transport through the dot is possible
only if an electron with excess energy ∆1 is created in the reservoir, and a hole
with excess energy ∆2 in the dot, such that ∆1 +∆2 = ∆min.

tative argument. Assuming that the Onsager relations hold for transport
through a quantum dot, we find for the thermopower

S =
Π
T

=
1
T

∂IQ
∂I

∣∣∣∣
∆T=0

, (2.37)

where Π ≡ (∂IQ/∂I)∆T=0 is the Peltier coefficient, which relates the heat
flow IQ through the dot to the current I. (In Ref. [14] this assumption
has been made implicitly, since the effect of the “environment”, i.e. the
impedance of the external driving or measuring circuit, was not taken into
account [24].) The Peltier coefficient may be interpreted as the energy
that is transferred between the reservoirs per transferred carrier. This en-
ergy, and thus the thermopower can be determined as follows. Due to the
Coulomb blockade, an electron can be transferred through the dot at low
temperatures only if an excitation energy ∆min is supplied to the system.
This energy may be used in part to excite an electron in the reservoir to
an energy ∆1 above the Fermi level [with probability exp(−∆1/kBT )], and
in part to excite an electron in the dot so that an empty state is created
at an energy ∆2 below the Fermi level [with probability exp(−∆2/kBT )],
see Fig. 2.11. The excited electron can then tunnel through the dot to the
other reservoir via the empty state in the dot, so that the energy ∆1 is
transferred. This process occurs with probability exp(−∆min/kBT ), inde-
pendent of ∆1. Therefore, the energy that is transferred per electron is
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on average 12∆min, so that we obtain Π = ∆min/2e. Combining this result
with Eq. (2.37) yields Eq. (2.36), which describes the sawtooth lineshape
of the thermopower oscillations.

Although the periodicity of the thermopower and conductance oscil-
lations is the same, the amplitude and lineshape of the thermopower os-
cillations (2.36) is entirely different from what would follow from a naive
application of Mott’s rule to Eq. (2.28) for the conductance:

SMott ≡ −π2

3
kB
e

kBT
d lnG
dEF

= −π2

3
kB
e

[
cotanh

(
∆min
kBT

)
− kBT

∆min

]
. (2.38)

Equation (2.38) would predict an amplitude of order kB/e of the ther-
mopower oscillations which is parametrically smaller (by a factor of order
e2/CkBT ) than the correct result (2.36). Of course, Mott’s rule is de-
rived (e.g. in Ref. [25]) for a noninteracting electron gas with a weakly
energy-dependent conductance, and is therefore clearly not applicable to
the Coulomb-blockade regime. Still, its breakdown even as “a rule of
thumb” is noteworthy.

Finally, we briefly discuss the low-temperature limit kBT � ∆E, where
the discreteness of the energy spectrum of the dot can be ignored no longer.
This is the quantum regime, in which the Coulomb blockade coexists with
resonant-tunneling phenomena. We still assume that kBT � h(Γl + Γr),
so that the levels are thermally broadened only, and Eq. (2.35) applies. In
Ref. [14] it is shown that in this limit the discreteness of the spectrum leads
to fine structure on the thermopower oscillations. As a function of Fermi
energy, the fine structure exhibits a periodicity δEF = ∆Ep determined by
the bare level spacing in the dot. Since the fine structure within a single
period of the overall thermopower oscillations occurs at a constant number
of electrons in the dot, its periodicity directly reflects the excitation spec-
trum of the dot. (In contrast, the periodicity of the overall thermopower
oscillations ∆EF = ∆E∗

N = ∆EN+e2/C is determined by the renormalized
level spacing, since the number of electrons in the dot changes by one each
period. It thus reflects the addition spectrum of the dot.) We illustrate the
development of fine structure on the thermopower oscillations in Fig. 2.12.
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Figure 2.12: Development of fine structure on the thermopower oscillations on
lowering the temperature from kBT = 0.1, 0.025, to 0.005× e2/C. The curves are
computed from Eq. (2.35), for a series of equidistant nondegenerate levels with
∆E = 0.1× e2/C, and level-independent tunnel rates.
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Chapter 3

Coulomb-blockade oscillations in

disordered quantum wires

3.1 Introduction

The phenomenon investigated experimentally in this chapter was first ob-
served by Scott-Thomas et al. [1]. They discovered that at low temperatures
a narrow disordered channel in a Si inversion layer may exhibit strikingly
regular conductance oscillations as a function of the voltage on the gates
used to define the channel. This is in contrast to the aperiodic conduc-
tance fluctuations usually observed in such structures [2]. The period of
the oscillations differed from device to device, and did not correlate with
the channel length. Based on estimates of the sample parameters, it was
concluded that each period corresponds to the addition of a single electron
to a conductance-limiting segment in the narrow channel. In order to ex-
plain their observations, Scott-Thomas et al. [1] originally suggested that
a charge-density wave or “Wigner crystal” was formed. From a model due
to Larkin and Lee [3], and Lee and Rice [4], they inferred that this would
lead to a thermally activated conductance because of pinning of the charge-
density wave by impurities in the narrow channel. The activation energy
would be determined by the most strongly pinned segment of the crystal,
and periodic oscillations in the conductance as a function of gate voltage
or electron density would reflect the condition that an integer number of
electrons is contained between the two impurities delimiting that segment.
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As an alternative explanation, it was proposed that the effect is a man-
ifestation of Coulomb-blockade oscillations in a semiconductor nanostruc-
ture [5]. In the discussion of our experimental results, we limit ourselves
to a comparison with the Coulomb-blockade model, discussed in chap-
ter 2 [6, 7, 8]. A discussion of the Wigner-crystal model has been given
in Refs. [9] and [10]. The conclusion reached in this chapter is that the
Coulomb-blockade model does provide an adequate and consistent descrip-
tion of our experiments. In a low-density quantum wire with weak disorder
(no tunnel barriers), however, a Wigner-crystal may well be an appropriate
description of the ground state [11].

The Wigner crystal is a manifestation of long-range order neglected in
the theory of Coulomb-blockade oscillations. However, both the Coulomb
blockade and the Wigner-crystal models have in common that electron-
electron interactions play a central role. In contrast, some authors have
argued that resonant tunneling of noninteracting electrons can explain the
periodicity of the observed conductance oscillations [12, 13]. One cannot
easily discriminate between these models on the basis of the periodicity
of the oscillations. Conductance oscillations due to resonant tunneling
through nondegenerate levels as well as Coulomb-blockade oscillations both
have a periodicity corresponding to the addition of a single electron to the
confined region. Other considerations are necessary to demonstrate the
inadequacy of a model based on resonant tunneling of noninteracting elec-
trons. The most important of these are the large activation energy of the
minima (exceeding the average single-electron level spacing ∆E), and the
absence of spin splitting of the peaks in a magnetic field. These considera-
tions will be discussed in detail in this chapter.

Our experimental work has consisted of a study of the conductance
of disordered quantum wires defined by a split-gate technique in the two-
dimensional electron gas (2DEG) of a GaAs–AlxGa1−xAs heterostructure.
We have investigated the effects of temperature and magnetic field on the
conductance as a function of gate voltage, as well as the magnetoconduc-
tance and the Hall resistance in a cross-shaped narrow channel geometry.
In addition, we have varied the channel length, and the degree of disorder.

This chapter is organized as follows. The split-gate quantum wires used
in our study are described in section 3.2. An overview of the experimen-
tal results is given in section 3.3. We find a rich and complex behavior,
with variations from device to device, reflecting the mesoscopic nature of
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disordered quantum wires. The most characteristic aspects of our observa-
tions, however, are representative of all devices that show the conductance
oscillations. The period of the oscillations as a function of gate voltage
is explained in section 3.4.1 in terms of the theory of Coulomb-blockade
oscillations presented in chapter 2. We can account for the temperature
dependence of the lineshape of the oscillations as well, as is discussed in
section 3.4.2. The effects of multiple segments in the wire are discussed
in section 3.4.3. Finally, we discuss in section 3.5 those aspects of the
experimental results that are less well understood.

3.2 Split-gate quantum wires

Our experimental results for the conductance of quasi one-dimensional
channels have been obtained using narrow wires, defined by a split-gate
technique in the 2DEG in a modulation doped GaAs–AlxGa1−xAs het-
erostructure. By adjusting the negative gate voltage (applied between the
gate on top of the heterostructure and an Ohmic contact to the 2DEG),
the channel width W can be controlled in a range from definition (where
W ≈ Wlith, the lithographic width) to pinch off (where W is close to zero).
In the regime of interest, which is that close to pinch off, both the electron
concentration per unit length and the channel width vary approximately
linearly with gate voltage [14].

Starting point for the fabrication of our samples is a GaAs–AlxGa1−xAs
heterostructure, which consists of a sequence of layers grown on top of a
semi-insulating GaAs substrate by molecular-beam epitaxy. The first layer
is a thick buffer layer of pure GaAs. The 2DEG is formed at the interface
of this layer with an Al0.33Ga0.67As layer grown on top of it. The latter
consists of a 20-nm-thick spacer layer of pure Al0.33Ga0.67As, and a 40-nm-
thick Al0.33Ga0.67As layer doped with Si at a concentration of 1.33 × 1018

cm−3. Finally, the heterostructure is capped by a 20-nm-thick undoped
GaAs layer.

We have used two sets of samples. In one set (designated by D in
Table 3.1), a planar doping layer of Be impurities with a sheet concentration
of 2×1010 cm−2 was incorporated in the buffer layer during growth, at 25 Å
below the heterointerface. This was done in order to introduce strongly
repulsive scattering centers in the 2DEG (Be is an acceptor in GaAs).
Such scattering centers may act as tunnel barriers in a narrow channel in
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Channel Length Period
(µm) (mV)

D1 4.4 2.7
D2 6.2 2.1
D3 6.3 2.2
U1 0.5
U2 6.2 1.0
U3 16.7 2.3

Table 3.1: Channel length and period of the conductance oscillations. The D
channels are intentionally disordered by means of a planar doping layer of Be
near the heterointerface in the GaAs layer. The U channels are unintentionally
disordered. Channel D1 is the right section and channel D3 is the middle section
of a miniature Hall-bar [see Fig. 3.1(b)]. The period of the oscillations is given
for T = 1.5 K and B = 0, except for channel U2 (T = 50 mK and B = 0) and
for channel D3 (T = 50 mk and B = 5 T). No oscillations were observed in the
shortest channel U1.

the 2DEG [5]. The other set of samples (designated by U) was undoped,
but was nevertheless disordered as well, due to random fluctuations in the
distribution of the ionized donors in the AlxGa1−xAs layer [15].

In the wide regions, the Be-doped samples had an elastic mean free
path le ≈ 0.7 µm, deduced from the conductivity at T = 4.2 K and the
electron sheet density ns = 2.9 × 1011 cm−2. For the undoped samples
these values were le = 3.9 µm and ns = 3.0 × 1011 cm−2. This mean free
path does not describe the transport in the quantum wires near pinch off,
when the conductance is limited by a small number of accidentally strong
scattering centers. These are due to negatively charged Be acceptors close
to the 2DEG, and due to statistical fluctuations in the distribution of the
remote ionized donors in the AlxGa1−xAs layer. The resulting variations
in the electrostatic potential are enhanced in a narrow channel because
of the reduced screening. Near pinch off, the channel breaks up into a
small number of segments separated by potential barriers formed by such
scattering centers. This is inferred from our experimental results, and is
supported by model calculations of Nixon and Davies [15], in which the
random positions of the remote ionized donors are taken into account.
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The fabrication of the samples proceeds as follows. First, the het-
erostructure is mesa-etched into a rectangular shape, and twelve alloyed
Au-Ge-Ni Ohmic contacts are formed along its edges. Then, a pattern of
six Ti-Au gate electrodes is defined in a two-step process, using optical
lithography for the coarse parts and electron-beam lithography for the fine
details. These gates can be controlled independently. Figure 3.1 shows
scanning electron micrographs of the two narrow-channel geometries stud-
ied. When negatively biased, the gates (light lines) subdivide the 2DEG
into six wide regions (underneath the dark areas), which are connected
by narrow channels. Two Ohmic contacts are attached to each of these
wide regions. The first geometry [Fig. 3.1(a)] consists of a set of five nar-
row channels on a single sample (each of which can be measured indepen-
dently), while the second [Fig. 3.1(b)] consists of a miniature Hall bar. At
the depletion threshold of the 2DEG directly underneath the gates (about
−0.3 V), the narrow channels have approximately the lithographic width
Wlith = 0.5 µm. Close to pinch off the channel width W is reduced to
about 0.1 µm, and the electron density ns is reduced by about a factor
of 2. (The estimate for W is based on typical lateral depletion widths of
0.2 µm/V [14, 15, 16], and that for ns on an extrapolation of the periodic-
ity of the Shubnikov-de Haas oscillations, measured at several gate voltage
values.) The length L of the channels varies (see Table 3.1).

One Be-doped sample (not included in Table 3.1) with channels of width
Wlith = 1 µm was studied as well. The results obtained with these chan-
nels were similar to those obtained with the narrower channels, except for
the pinch-off voltage, which was about twice as large. The periodicity of
the dominant oscillations was within the range of values we found in the
narrower wires.

3.3 Experimental results

Primarily, we have performed measurements of the conductance as a func-
tion of gate voltage, for a number of quantum wires of different length. The
experiments were done over a range of temperatures and magnetic fields.
In addition, we have measured the conductance and Hall resistance as a
function of magnetic field, at fixed gate voltage. A conventional ac lock-in
technique was used to measure the conductance, while the gate voltage (or
magnetic field) was swept slowly. In order to ensure linear response, the
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Figure 3.1: Scanning electron micrographs of the two split-gate geometries that we
have used. The first (a) defines five narrow channels of increasing length, L = 0.5,
2.1, 6.2, 6.2, and 16.7 µm, respectively. The second (b) defines a miniature Hall
bar, with section lengths L = 4.4, 6.3, and 2.4 µm and side probes having a width
of 0.5 µm. For both geometries, the lithographic channel width is Wlith = 0.5 µm.
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Figure 3.2: Two-terminal conductance versus gate voltage of two intentionally
disordered narrow channels (D1 and D2) at T = 1.5 K and 50 mK.

excitation voltage was kept below kBT/e. We have studied the differential
conductance also, using dc bias voltages up to a few mV, but in this chapter
we restrict ourselves to the linear response regime. Experimental data are
presented for channels D1, D2, and D3, which are intentionally disordered
by a planar doping layer of Be, and for channels U2 and U3, which are not
intentionally disordered.

3.3.1 Conductance oscillations: Zero magnetic field

In Fig. 3.2 the conductance near pinch off is shown for two Be-doped quan-
tum wires, D1 and D2. At T = 1.5 K both channels exhibit well-resolved
conductance oscillations, which are periodic in the gate voltage. The os-
cillations appear to be superimposed on a background conductance of ap-
proximately 0.1e2/h, and have a period ∆Vgate ≈ 2.7 mV (D1) and 2.1 mV
(D2). As the gate voltage is increased the oscillations disappear gradually.
Whereas the two conductance traces are relatively similar at T = 1.5 K,
this is not the case at T = 50 mK. In channel D2 the oscillations become
better resolved at this low temperature, while the period is unchanged and
the value of the conductance at the maxima remains approximately the
same. In contrast, the oscillations in channel D1 are suppressed at 50 mK,
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Figure 3.3: Two-terminal conductance versus gate voltage of two unintentionally
disordered narrow channels (U2 and U3) at T = 1.5 K and 100 mK.

and an irregular pattern of sharp conductance peaks is observed instead.
In Fig. 3.3 we show a corresponding set of results for two undoped chan-

nels, U2 and U3. At T = 1.5 K, the periodic conductance oscillations are
observed in channel U3 only (∆Vgate ≈ 2.3 mV). Channel U2 shows a slow
conductance modulation instead. Both channels show periodic conductance
oscillations as the temperature is decreased to 100 mK (∆Vgate ≈ 1.0 mV
for U2). As is the case in channel D2 in Fig. 3.2, the oscillations in chan-
nel U3 become better resolved on lowering the temperature. In addition,
a fine structure develops on these peaks, indicative of a higher-frequency
oscillation.

The conductance oscillations for channel U3 are shown in more detail
in the top panel of Fig. 3.4, for temperatures between 1 and 3 K (the
calculated curves in the bottom panel will be explained in section 3.4.2).
Note that both the minima and maxima of the oscillations increase with
temperature. At T = 2.5 K the oscillations are smeared out, but can still
be resolved.

The results shown in Figs. 3.2–3.4 are representative of all the chan-
nels we have studied, except for the shortest channel (U1, L = 0.5 µm).
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Figure 3.4: Top panel: two-terminal conductance versus gate voltage of channel U3
for T = 3.2, 2.5, 1.6, and 1 K, from top to bottom. Bottom panel: conductance
calculated from Eq. (2.22) for: e2/C = 0.6 meV, ∆E = 0.1 meV, α = 0.265,
hΓl,r

p = 0.027pEp, and twofold degeneracy.

As evidenced by the conductance, pinch off is typically reached at −1 V
<∼ Vgate <∼ − 0.8 V. Periodic conductance oscillations are observed in most
of the channels at temperatures of 1.5 K or below, with a period varying
between 1 and 3 mV for different channels. We did not find systematic
differences between the Be-doped channels and the channels which were
not intentionally disordered. The period does not correlate with the length
of the channel or the degree of disorder (see Table 3.1), and changes within
this range when the sample is thermally cycled. The number of successive
oscillations observed is between 20 and 50 for most narrow channels. At
very low temperatures (below 100 mK) it is found often that the regu-
lar oscillations are replaced by an irregular pattern of sharp conductance
peaks.
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Figure 3.5: Two-terminal conductance versus gate voltage of channel D2 at 50
mK in a perpendicular magnetic field. Insets: Fourier spectra of the data. The
vertical scale of the Fourier spectra at B = 0 and 7.47 T is multiplied by a factor
2.5.

3.3.2 Conductance oscillations: Quantum Hall effect regime

The various effects of a strong magnetic field on the conductance as a func-
tion of gate voltage are shown in Figs. 3.5–3.9 for channels D1 and D2,
and in Fig. 3.10 for channel U2. Figure 3.5 shows the conductance as a
function of gate voltage for channel D2, at four values of the magnetic field.
We find that the period of the oscillations is insensitive to the magnetic
field, which is illustrated most clearly by the insets, showing the Fourier
spectra of the conductance traces. Each of these exhibits a sharp peak at a
B-independent frequency of about 450 V−1 (at B = 7.47 T the frequency
has increased by a few percent). The amplitude of the oscillations and
the average conductance depend on the magnetic field in a nonmonotonic
fashion. As the magnetic field is increased, both the amplitude and aver-
age conductance are enhanced above the zero-field values in magnetic fields
of intermediate strength (2.62 and 5.62 T), followed by a decrease in still
stronger fields (7.47 T). The conductance peaks do not split, not even in
our strongest field of 8 T. In this particular channel, however, a second
peak emerges in the Fourier spectrum at approximately half the dominant
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frequency as the magnetic field is increased. This second peak is a result of
the amplitude modulation of the peaks in the gate-voltage scan, which is
seen most clearly in the trace at 5.62 T, where high- and low-conductance
peaks alternate in a doubletlike structure. We do not think that the elec-
tron spin is responsible for this effect. Some other channels were found to
exhibit more than two peaks in the Fourier spectrum. We attribute these
multiple periodicities to the presence of more than one segment in the wire.
Finally, we note that with increasing magnetic field pinch-off is reached at
less negative gate voltages, but that the total number of peaks remains
approximately constant.

Figure 3.6 gives the conductance of channel D1 at T = 4.2 K (a), 1.5
K (b), and 50 mK (c), at various values of the magnetic field. At 4.2
K [Fig. 3.6(a)], the oscillations are almost smeared out in the absence of a
magnetic field, and the conductance increases monotonically with gate volt-
age. Surprisingly, at B = 1.24 T the oscillations can be observed clearly at
this relatively high temperature. The periodic oscillations can be observed
best in the traces at 1.5 K [Fig. 3.6(b)]. The magnetic-field dependence is
similar to that of channel D2, including the insensitivity of the period to
the magnetic field, the absence of spin-splitting, and enhancement of the
amplitude and average conductance at intermediate field strengths (1 T
<∼ B <∼ 5T). In Fig. 3.2 we have shown that at 50 mK, and in the absence
of a magnetic field, the periodic oscillations in channel D1 are suppressed.
This is evident in the zero-field trace in Fig. 3.6(c) as well, where a pattern
of irregular conductance peaks is visible, with a typical spacing about five
times smaller than the period of the oscillations at 1.5 K. The enhancement
of the conductance in fields of intermediate strength is very pronounced at
50 mK, where the conductance near Vgate ≈ −0.8 V approaches the first
quantized Hall plateau (G = e2/h). In the trace at B = 5.03 T the step
region before the G = e2/h plateau exhibits quite pronounced oscillations
with the same periodicity as those at 1.5 K, but with an amplitude that is
almost equal to e2/h. At more negative gate voltages the regularity of the
conductance oscillations is lost. This is also the case in stronger magnetic
fields.

In Fig. 3.7 the conductance of channel D1 is shown over a wider range of
gate voltage, at B = 2.52 T and T = 50 mK and 1.5 K. At gate voltages be-
low −0.83 V the periodic conductance oscillations can be observed in both
traces. As the gate voltage is increased beyond −0.8 V, the conductance



58 CHAPTER 3. DISORDERED QUANTUM WIRES

Figure 3.6: Two-terminal conductance versus gate voltage of channel D1 in a
perpendicular magnetic field. The temperatures are (a) 4.2 K, (b) 1.5 K, and (c)
50 mK. The curves have been offset for clarity.
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Figure 3.7: Two-terminal conductance versus gate voltage of channel D1 at B =
2.52 T, for T = 50 mK and 1.5 K.

at 50 mK is seen to increase up to a value close to the second quantized
Hall plateau at G = 2e2/h. However, a large number of sharp dips in
the conductance are observed in this regime. This structure has vanished
completely at 1.5 K, and the conductance plateau at 2e2/h is no longer
visible. Instead, there is some evidence of a Hall plateau at G = e2/h.
In addition, there is a plateaulike feature near G = 1

2e
2/h, reminiscent of

that reported by Timp et al. [17] in a four-terminal measurement. Finally,
we note that in the regime where the dips occur, the conductance at 1.5
K is below the average conductance at 50 mK, while in the regime of the
periodic conductance peaks at more negative gate voltages the ordering is
reversed. As discussed in section 3.5, the dips in the conductance at 50 mK
can be explained by resonant reflection in the channel.

The left panel of Fig. 3.8 shows the temperature dependence of one of
the peaks in the conductance of channel D1 at B = 6.66 T. At the lowest
temperatures, this was one of the most pronounced peaks present in the
conductance trace as a function of gate voltage. The peak height increases
with decreasing temperature, and reaches a value of 0.6e2/h at T = 100 mK.
Note the opposite temperature dependence for channel U3 at B = 0 given
in Fig. 3.4. As discussed in section 3.4.2, the reason for this difference is
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Figure 3.8: Left panel: single conductance peak of channel D1 at B = 6.66 T.
The temperatures are 110, 190, 290, 380, 490, 590, 710, and 950 mK, from highest
to lowest peak. Right panel: lineshape calculated from Eq. (2.22) for: e2/C =
0.53 meV, ∆E = 0.044 meV, α = 0.265, and hΓl,r = 0.065 meV.

that the latter data are in the high-temperature classical regime where kBT
exceeds the average level spacing ∆E of the conductance-limiting segment,
whereas the data in Fig. 3.8 are in the low-temperature quantum regime
kBT <∼∆E. The calculated traces in Fig. 3.8, right panel, are discussed in
section 3.4.2.

We often have found fine structure developing on the conductance
peaks. An example of this behavior is shown in Fig. 3.9, for another peak
in the conductance of channel D1, at B = 6.66 T. For temperatures below
250 mK, the peak is split into a doublet. The amplitudes of both parts
increase with decreasing temperature, and become better resolved as well,
due to a reduction in width. We have found that conductance peaks which
show such fine structure typically are smaller than those that do not (note
the difference in vertical scale in Figs. 3.8 and 3.9). As discussed in sec-
tion 3.4.3, both the occurrence of fine structure, and the fact that it is
predominantly associated with the smaller peaks, may be understood from
the presence of multiple segments in the wire.

The conductance oscillations in the channels without intentional Be
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Figure 3.9: Single conductance peak of channel D1 at B = 6.66 T. The temper-
atures are 65, 140, 195, 245, 350, 485, 680, and 845 mK, from highest to lowest
peak.

doping are enhanced by a magnetic field similar, to those observed in the
Be-doped samples. We give one example, in Fig. 3.10, for channel U2 at
T = 1 K. Only the trace at B = 3.78 T shows rapid periodic oscillations.

3.3.3 Magnetoconductance

Whereas the conductance as a function of gate voltage at fixed magnetic
field shows periodic oscillations, no such behavior is observed when the mag-
netic field is varied and the gate voltage is fixed. As shown in Fig. 3.11, the
duality between variations in the gate voltage and magnetic field, applica-
ble to the quantum ballistic, adiabatic and diffusive transport regimes [16]
breaks down in our samples. We have studied the four-terminal longitudi-
nal magnetoconductance GL, using channel D3, which has the miniature
Hall-bar geometry shown in the inset of Fig. 3.11(b) [see also Fig. 3.1(b)].
As shown in Fig. 3.11(a), the four-terminal magnetoconductance at T = 50
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Figure 3.10: Two-terminal conductance versus gate voltage of channel U2 at T = 1
K, and B = 0 and 3.78 T.

mK exhibits essentially random structure, whereas in Fig. 3.11(b) it can be
seen that the conductance as a function of gate voltage for the same chan-
nel exhibits periodic oscillations. [The two-terminal magnetoconductance
does not exhibit periodic oscillations as a function of the magnetic field
either (not shown).] The extreme sensitivity of the magnetoconductance
to a small change in the gate voltage is not surprising, since the measure-
ments were made for gate voltages in the regime where the conductance
oscillates periodically as a function of Vgate [at least for the top two pan-
els in Fig. 3.11(a), cf. Fig. 3.11(b)]. Previously, we have interpreted the
absence of periodic magnetoconductance oscillations as a manifestation of
the Coulomb blockade of the Aharonov-Bohm effect [18, 19]. As we will
discuss in section 3.5, reinterpretation may be necessary.

In the bottom panel of Fig. 3.11(a) a magnetoconductance trace ob-
tained at a gate voltage just outside the regime of periodic conductance
oscillations is shown (note the difference in vertical scale). The large peaks
in the conductance near 2.5 and 6 T in this trace are resistance minima,
reminiscent of Shubnikov-de Haas oscillations in the quantum Hall effect
regime. The latter can be identified quite well as the channel width is
increased further, in which case the resistance at the minima approaches
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Figure 3.11: (a) Four-terminal longitudinal conductance GL of channel D3 at
T = 50 mK as a function of magnetic field, for three values of the gate voltage.
(b) GL as a function of gate voltage for channel D3 at T = 50 mK, for three
values of the magnetic field. Inset: schematic top view of the miniature Hall-bar
geometry. Contacts 1 and 4 were used as current contacts, and the voltage was
measured across contacts 2 and 3.
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Figure 3.12: Hall resistance of channel D3 at T=50 mK, for three values of the
gate voltage. The Hall resistance cannot be measured when the conductance of the
channel is reduced to zero, hence the interruptions in the traces around 6 T. The
small channel conductance is also responsible for the poor signal-to-noise ratio of
these experimental traces. Contacts 1 and 4 were used as current contacts, and
the Hall voltage was measured across contacts 3 and 5 [see inset Fig. 3.11(b)].

zero, and GL acquires very large values. From a set of measurements of
the Shubnikov-de Haas oscillations at several values of the gate voltage, we
obtained by extrapolation a value of ns ∼ 1.5 × 1011 cm−2 for the density
in the channel in the regime of periodic conductance oscillations.

3.3.4 Hall resistance

The Hall resistance can be measured within the narrow channel using the
miniature Hall-bar geometry of Fig. 3.1(b). The results for channel D3 are
shown in Fig. 3.12, for the same set of gate voltages as in Fig. 3.11. We find
no qualitative differences in traces of the Hall resistance versus magnetic
field in the regime of periodic conductance oscillations and traces obtained
outside this regime. The Hall resistance cannot be measured in ranges of
the magnetic field where the conductance is close to zero (cf. Fig. 3.11).
This is the reason for the missing parts in the traces at Vgate = −0.825 and
−0.835 V in Fig. 3.12.
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In all traces in Fig. 3.12, the quantum Hall plateau at 2e2/h can be rec-
ognized easily, but the plateau at 4e2/h is less pronounced. (The spin-split
plateaus at odd multiples of e2/h are not resolved in the narrow channels.)
In between the plateaus, quasiperiodic oscillations as a function of magnetic
field are found (see, for example, near 3 T in the trace at Vgate = −0.78
V). We attribute these to an Aharonov-Bohm effect involving resonant re-
flection, with a mechanism similar to that described in section 3.5 for the
dips in the conductance plateau in the trace in Fig. 3.7. Below 2 T the
Hall resistance shows random oscillations. For Vgate = −0.825 and −0.835
V, these are time dependent and not reproducible (the signal-to-noise ra-
tio in this regime is poor, because of the low conductance of the narrow
channel). To the extent that the fluctuations are reproducible, we attribute
these to quantum interference effects familiar from other studies of narrow
channels [20].

We also have tried to measure the Hall resistance (at fixed magnetic
field) as a function of gate voltage. In the regime of periodic conductance
oscillations this is very difficult for the same reason mentioned above: The
Hall resistance cannot be measured when the two-terminal conductance is
reduced to zero. It can therefore not be established experimentally whether
periodic oscillations occur in the Hall resistance. One could argue that this
question is meaningless.

3.4 Coulomb-blockade oscillations

In this section we analyze those features of our experimental results that
may be considered to be generic, rather than sample specific. The most
conspicuous are the conductance oscillations periodic in the gate voltage.
The value of the period, its insensitivity to a strong magnetic field, and the
absence of spin-splitting, can all be understood on the basis of Eq. (2.12) [6]
expressing the condition for a conductance peak at T = 0, see section 3.4.1.
The temperature dependence of the amplitude and width of the oscillations
is analyzed in terms of the results of a kinetic theory for the conductance
of a quantum dot in the regime of comparable charging energy and level
spacing, summarized in chapter 2 (section 2.3) [7]. This is the subject
of section 3.4.2. In these two subsections we assume that the Coulomb-
blockade oscillations arise from a single conductance-limiting segment. In
section 3.4.3 we briefly consider the effects of multiple segments in series.
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Figure 3.13: Schematic conductance band diagram of a disordered quantum wire
containing a conductance-limiting segment (a quantum dot with a discrete energy
spectrum). The leads are thought to have a continuous energy spectrum.

3.4.1 Periodicity

We model the conductance-limiting segment in the narrow channel as a
naturally formed quantum dot, which is weakly coupled by tunnel barriers
to two leads, see Fig. 3.13. The tunnel barriers are thought to be due to
two large fluctuations in the potential confining the 2DEG to a quantum
wire. As discussed in section 3.1, these fluctuations most likely result from
variations in the distribution of the ionized donors in the doped AlxGa1−xAs
layer, and from background impurities. This model is justified by the fact
that no correlation is found between the periodicity of the oscillations and
the channel length, and that the conductance oscillations are observed when
the width is reduced below W ∼ 0.1 µm, in which case the electron density
is 1.5× 1011 cm−2. A 3 µm long channel then contains some 450 electrons.

We analyze this system in terms of the mutual capacitance Cdot of dot
and leads, and the mutual capacitance Cgate of dot and gates, as discussed
in chapter 2 (see Fig. 2.5). To calculate Cdot and Cgate is a rather compli-
cated three-dimensional electrostatic problem, hampered further by the un-
certain dimensions of the conductance-limiting segment. Experimentally, a
typical spacing of the conductance peaks is ∆Vgate ∼ 2.3 mV, so that from
Eq. (2.16) we estimate Cgate ∼ 0.7 × 10−16 F, ignoring the contribution
of the finite level spacing to the period in gate voltage (∆E is typically
much smaller than e2/Cgate, see below). The length L of the segment may
be estimated from the gate voltage range between channel definition and
pinch-off, δVgate ∼ ensWlithL/Cgate, where ns = 2.9 × 1011 cm−2 is the
electron density in the channel at definition. From the above estimate of
Cgate and using δVgate ∼ 1 V, we find L ∼ 0.3 µm. The resulting value for
the capacitance per unit length Cgate/L is consistent with what one would
expect for the capacitance per unit length of a wire of diameter W running
in the middle of a gap of width Wlith in a metallic plane [21] (the thick-



3.4. COULOMB-BLOCKADE OSCILLATIONS 67

ness of the GaAs and AlxGa1−xAs layers between gate and 2DEG is small
compared to Wlith): Cgate/L ∼ 4πε/2arccosh(Wlith/W ) ∼ 3× 10−10 F/m.

The level spacing in the segment is estimated at ∆E ∼ 2πh̄2/mLW ∼
0.2 meV (for a twofold spin degeneracy). Since each oscillation corresponds
to the addition of a single electron to the dot, the maximum number of
oscillations following from ∆E and the Fermi energy EF ∼ 5 meV when the
dot is formed is given by 2EF/∆E ∼ 50, consistent with the observations.
From the fact that the oscillations are still observable at T = 1.5 K, albeit
with considerable thermal smearing, we deduce that in our experiments
e2/C + ∆E ∼ 1 meV. Thus, C ∼ 2 × 10−16 F, Cdot = C − Cgate ∼ 1.3 ×
10−16 F, and α ≡ Cgate/C ∼ 0.35. The mutual capacitance of dot and leads
(Cdot) may be approximated by the self capacitance of the dot, which should
be comparable to that of a two-dimensional circular disk [21] of diameter L
(which is the largest linear dimension of the elongated conductance-limiting
segment), Cdot ∼ 4εL ∼ 1.4× 10−16 F, consistent with the above estimate.

We conclude that the periodicity of the conductance oscillations in our
experiment is explained consistently by the theory for Coulomb-blockade
oscillations, in a regime where e2/C is larger than the bare level spacing ∆E
by about a factor of four. According to Eq. (2.17), the period is governed by
e/Cgate, which exceeds ∆E/e by an order of magnitude, thus providing part
of the explanation of the regularity of the oscillations. A finite temperature
kBT > ∆E further regulates the spacing of the oscillations, see section 3.4.3.

As an alternative explanation of the conductance oscillations, resonant
tunneling of noninteracting electrons has been proposed [12, 13]. As men-
tioned in section 3.1, we have two arguments for rejecting this explanation.
Firstly [18], the measured activation energy of the conductance minima
would imply a bare level spacing ∆E ∼ 1 meV if charging effects would be
absent. Since the Fermi energy EF is 5 meV or less, such a large level spac-
ing would restrict the possible total number of oscillations in a gate voltage
scan to a maximum of 2EF/∆E ∼ 10, considerably less than the number
observed experimentally [1, 18]. Secondly, one would expect a spin splitting
of the oscillations in a strong magnetic field, which is not observed [9].

3.4.2 Amplitude and lineshape

In Fig. 3.4 we compare a calculation based on Eq. (2.22) with experimental
traces for channel D1, discussed in section 3.3.1. To obtain good agree-
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ment we assume that the tunnel rates for successive spin-degenerate levels
increase linearly as Γli = Γri = 0.027i∆E/h (i = 1, 2, . . .), where ∆E = 0.1
meV is the spacing of these levels. Both the increase of the tunnel rates
with energy and the low number of electrons assumed to be present in the
dot are necessary for obtaining a good agreement with the experiment. (In
the calculation, the first conductance peak corresponds to an occupation
of the dot by zero or one electron.) The capacitances were chosen so that
e2/C = 0.6 meV and α = 0.265. These values are consistent with the esti-
mates given above. The Fermi energy in the leads was assumed to increase
with gate voltage such that it is on average equal to the energy of the high-
est occupied level in the dot at T = 0 (cf. section 2.2). The data in Fig. 3.4
are in the classical regime (kBT > ∆E), where the peak height is roughly
independent of temperature, whereas the width of the peaks increases with
T . This is reproduced by our calculations.

On lowering the temperature, we enter the resonant tunneling regime
kBT < ∆E. As long as kBT > hΓ, the width of the peaks is proportional
to T and the peak height is proportional to 1/T . The peak height thus
increases on lowering the temperature, up to a value of order e2/h, reached
when kBT is of order hΓ. A theory for the regime kBT < hΓ is not available
presently, but we surmise that the maximum peak height is e2/h, for the
case of equal tunnel barriers. This is consistent with our experimental
observations, which do not show conductance peaks exceeding this value.
[The largest conductance peaks found experimentally approach e2/h, see
Fig. 3.6(c) (channel D1, at 5 T)].

To test to what extent Eq. (2.22) can describe our experimental results
in the quantum regime kBT <∼∆E, we have calculated the peaks shown
in the right panel of Fig. 3.8. (The data in the left panel of Fig. 3.8
was obtained in the presence of a magnetic field of 6.66 T, so that we
assume no spin degeneracy in the calculation.) Equation (2.22) reproduces
the temperature dependence of the peak height and width quite well, for
temperatures between 190 and 950 mK. The parameter values used are
e2/C = 0.53 meV, ∆E = 0.088 meV, α = 0.265, and hΓl = hΓr = 0.065
meV, which are consistent with the values used for the calculations shown
in the bottom panel of Fig. 3.4. The Zeeman spin-splitting energy is not
known, due to uncertainties in the g factor, but is taken equal to 12∆E in
the calculations. The resulting set of equidistant nondegenerate levels is
spaced at 0.044 meV. We note, however, that the parameter values used
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imply that kBT < hΓ for the calculated peaks in Fig. 3.4, so that Eq. (2.22)
is strictly not valid, and instead a theory should be used which takes the
finite broadening of the levels in the quantum dot into account.

The data obtained in the absence of a magnetic field at very low temper-
atures [see Figs. 3.2 and 3.6(c)] is probably in the quantum regime as well.
An analysis of these data is hampered by the presence of multiple segments
in the wire, as discussed in section 3.4.3. A strong magnetic field reduces
the backscattering probability in the channel, which may explain why the
conductance at low T appears to be less affected by the presence of mul-
tiple segments. The qualitative agreement between theory and experiment
in Figs. 3.4 and 3.8, for a reasonably consistent set of parameter values,
and over a wide range of temperatures, supports our interpretation of the
conductance oscillations periodic in the gate voltage as Coulomb-blockade
oscillations, in the regime where kBT < e2/C and kBT = O(∆E).

3.4.3 Multiple segments

In an attempt to investigate the effects of multiple segments in the wire, we
consider the conductance of two decoupled quantum dots of different size
in series. This simple model can illustrate some aspects of the experimental
data. Among these are the observation of regular oscillations at relatively
high temperatures, which are replaced by irregularly spaced peaks at mil-
likelvin temperatures, and the splitting exhibited by some of the regular
peaks on decreasing the temperature.

The calculations proceed as follows: Using Eq. (2.22) we calculate
the conductances G1 and G2 of the two dots individually. The result-
ing conductance of the dots in series is obtained via Ohmic addition
(G−1 = G−1

1 + G−1
2 ), i.e., it is assumed that the dots are separated by a

reservoir. The parameter values for the first dot were chosen equal to those
used to model the peak in Fig. 3.8: e2/C1 = 0.53 meV and α1 = 0.265,
but with twofold-degenerate levels, randomly spaced within a bandwidth
of 25% around the average spacing ∆E1 = 0.088 meV. The tunnel rates
were chosen to vary randomly within a bandwidth of 50% around the av-
erage tunnel rates hΓl = hΓr = 0.065 meV. The parameter values for the
second dot were obtained using a scaling argument. It is assumed that the
relevant capacitances C and Cgate are approximately proportional to the
length L of the conductance-limiting segment (see section 3.4.1), while the
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Figure 3.14: Calculations of the conductance oscillations of two quantum dots in
series, separated by a reservoir. The temperatures are 1.5 K, 240 mK, and 130
mK. The parameter values are given in the text.

average level spacing ∆E ∝ 1/L and the parameter α is independent of L.
The second dot was chosen to be approximately 2.7 times as long as the
first dot, and accordingly we have used e2/C2 = 0.097 meV, α2 = 0.273,
∆E2 = 0.033 meV, and hΓl = hΓr = 0.065 meV (the energy levels and
tunnel rates were chosen randomly within the same bandwidths as for the
first dot). The results of the calculations are shown in Fig. 3.14.

Figure 3.14 illustrates several points. At the relatively high tempera-
ture of 1.5 K, the conductance oscillations are very regular. The reason is
that at this temperature the oscillations of the second dot are smeared com-
pletely, because e2/C1 > kBT > e2/C2. Additionally, since kBT > ∆E the
period is determined by an average level spacing and tunnel rate, rather
than by a particular level separation and tunnel rate for each individual
peak. As the temperature is decreased, the quantum regime kBT < ∆E is
entered (in particular for the first dot), and the oscillations of the second
dot become important since kBT < e2/C2. The resulting irregularity in
the conductance as a function of gate voltage is apparent from Fig. 3.14.
In addition, it shows that at low temperatures a splitting of the peaks can
result from differences in period and activation energy of the oscillations
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in the two dots. As in the experimental data, peaks exhibiting such a
splitting are smaller than peaks that do not split. In contrast to the exper-
imental data, however, the split peaks decrease rather than increase (see
Fig. 3.9) with decreasing temperature. This may be due to the intrinsic
broadening of the transmission resonances through the dot, which becomes
important for kBT < hΓ and which is not accounted for by the calculations
(cf. section 3.4.2).

An alternative model of a large and small quantum dot which are di-
rectly coupled (not via a reservoir, as in our calculation), has recently been
studied by Ruzin et al. [22]. They find a crossover from periodic Coulomb-
blockade oscillations to aperiodic fluctuations at low temperatures, when
kBT is smaller than the level spacing in both quantum dots. A conductance
peak then requires that the levels in both the quantum dots line up, which
occurs at random.

3.5 Discussion

In this section we discuss those aspects of the data that are not so well
understood, as well as the connection with other work. Our disordered
quantum wires exhibit periodic conductance oscillations as a function of
gate voltage. This effect has also been observed in electron and hole gases
in Si (Refs. [1], [9], and [23]) and in the electron gas in GaAs [18, 24]. In
contrast, earlier work by Fowler et al. [25] and by Kwasnick et al. [26] on
narrow inversion and accumulation layers in Si has revealed sharp but ape-
riodic conductance peaks. Structure reminiscent of their results is visible in
some of our samples at low temperature (50 mK) in zero or very strong mag-
netic fields [cf. Figs. 3.2 (lower left panel) and 3.6(c) (traces for B = 0 and
7.59 T)]. How can these observations be reconciled? We surmise that the
explanation is to be found in differences in strength and spatial scale of the
potential fluctuations in the wires. Coulomb-blockade oscillations require
two large potential spikes, which delimit a conductance-limiting segment in
the quantum wire [Fig. 3.13] containing a large number of states. The ran-
dom conductance fluctuations seen previously [25, 26] are thought instead
to be due to variable range hopping between individual localized states, dis-
tributed randomly along the length of the channel [27, 28, 29]. As proposed
by Ruzin et al. [22] the periodic Coulomb-blockade oscillations of multiple
segments in series can transform into sharp aperiodic fluctuations at low
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temperatures. This may explain our observation (Fig. 3.2) that periodic
oscillations are found at temperatures around 1 K, whereas irregular struc-
ture occurs at millikelvin temperatures. On increasing the Fermi energy,
a transition to the diffusive transport regime occurs eventually, regardless
of the type of disorder. Then both the Coulomb-blockade oscillations and
the random conductance fluctuations due to variable range hopping are
replaced by the “universal” conductance fluctuations characteristic of the
diffusive transport regime [2, 30, 31].

In very short channels (0.5 µm long and 1 µm wide) Fowler et al. [32]
have found well-isolated, temperature-independent (below 100 mK) con-
ductance peaks, which they attributed to resonant tunneling. At very low
temperatures fine structure was observed, some of which was time depen-
dent. A numerical simulation [33] of the temporal fluctuations in the dis-
tribution of electrons among the available sites also showed fine structure
if the time scale of the fluctuations is short compared to the measurement
time, but large compared to the tunnel time. It is possible that a similar
mechanism is responsible for some fine structure on the Coulomb-blockade
oscillations in disordered quantum wires as well.

A curious phenomenon that we have found is the effect of a perpendic-
ular magnetic field on the amplitude of the periodic conductance oscilla-
tions. The height of the conductance peaks is enhanced for intermediate
field strengths (1 T <∼ B <∼ 5 T), but decreases again at stronger fields.
The largest isolated peaks [found in channel D1 at 5 T, see Fig. 3.6(c)]
approach a height of e2/h, measured two terminally. We have observed
a similar enhancement of the amplitude of the Coulomb-blockade oscilla-
tions by a magnetic field in a quantum dot [34], see chapter 4. (However,
in this case the amplitude increase is predominantly due to a suppression
of the conductance in the minima of the oscillations, rather than an in-
crease of the peak height.) In the fractional quantum Hall effect regime,
Alphenaar et al. [35] have observed an anomalous enhancement of one of
the conductance peaks of a quantum wire to approximately e2/h, exceeding
the two-terminal conductance of the wide 2DEG leads at filling factor 1

3 .
One explanation for the observed enhancement of the peak height is that
the inelastic scattering rate is reduced by a magnetic field. In the low-
temperature regime kBT <∼ hΓ this presumably increases the peak height
and decreases the width (see Ref. [7]). In disordered quantum wires the
magnetic suppression of backscattering provides another mechanism for an
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enhancement of the peak height because of the resulting reduced series re-
sistance in the wire. Finally, the strong magnetic field regime in a wide
high-mobility 2DEG is the realm of the fractional quantum Hall effect and
the magnetic-field-induced transition to the Wigner crystal. It is possible
that the suppression of the Coulomb-blockade oscillations for B > 6 T is
related in some unknown way to these phenomena.

For noninteracting electrons, one would expect to observe Aharonov-
Bohm type oscillations in the conductance of a quantum dot as a function
of magnetic field in the quantum Hall effect regime. The reason is that
such a dot effectively has a ring geometry if the magnetic length lm ≡
(h̄/eB)1/2 is much smaller than the dot radius, due to the presence of
circulating edge states. The Aharonov-Bohm (AB) effect in such a dot may
be interpreted as resonant tunneling through zero-dimensional states [36,
37]. In the absence of Coulomb interaction, the period ∆B of the AB
oscillations for a hard-wall dot of area A is ∆B = h/eA (it may be larger
for a soft-wall confining potential [36]). Such oscillations have indeed been
observed in large quantum dots [36, 38, 39], but in our experiment at high
magnetic fields, no periodic oscillations with the estimated ∆B ≈ 0.1 T
are found. Previously [18, 19], we have argued that our observations are
consistent with the Coulomb blockade of the Aharonov-Bohm effect [6].
Each AB oscillation corresponds to an increase of the number of electrons
in the dot by one. One can show from Eq. (2.12) that the period of the AB
oscillations is enhanced due to the charging energy, according to [6]

∆B∗ = ∆B

(
1 +

e2

C∆E

)
, (3.1)

where ∆E is the energy level spacing of the circulating edge states. Mean-
while, it has become clear that this is true only for a single spin-resolved
Landau level occupied in the dot. In our high-field experiments, however,
it is likely that more than a single Landau level is occupied in the dot. The
electron density in the dot is approximately 1.5 × 1011 cm−2 (estimated
from an extrapolation of the periodicity of the Shubnikov–de Haas oscilla-
tions, measured at several gate voltages), so that occupation of the dot by
only one single spin-resolved Landau level requires B >∼ 6 T. Therefore, a
different explanation must be given for the irregularity of the magnetocon-
ductance at magnetic fields below this value [see Fig. 3.11(a)]. We point
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Figure 3.15: Schematic view of the edge channels (thin lines) in the quantum wire,
with a conductance-limiting segment (a), and without such a segment (b), (c).

out that such an explanation should take the magnetic-field dependence
of the Fermi energy into account, which is difficult to model reliably in a
disordered quantum wire, however.

In one of our channels (D1, see Fig. 3.7 we have observed a crossover
from resonant transmission at G < e2/h (conductance peaks), to resonant
reflection at G > e2/h (conductance dips) at T = 50 mK. To explain the
difference, we show schematically in Fig. 3.15 the boundaries of the quan-
tum wire (thick lines), with the thin lines representing the edge channels
which are formed in a strong magnetic field [16]. Electrons can tunnel
between the edge channels when they are close together, as indicated by
the dashed lines. In Fig. 3.15(a) a conductance-limiting segment is formed
because of the presence of two potential barriers or constrictions, and the
conductance exhibits periodic Coulomb-blockade oscillations (section 3.4).
The temperature scale of these conductance peaks is set by the charging
energy, which is relatively large. At less negative gate voltages, the guid-
ing center energy of the edge channels near the Fermi level may exceed
the height of the potential barriers. The edge channels are then trans-
mitted adiabatically through the wire [Fig. 3.15(b)]. Backscattering can
now occur due to tunneling between edge channels at opposite edges. This
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will happen predominantly near the potential barriers (dashed lines). The
backscattering can be enhanced resonantly due to constructive interference
among these tunneling paths, leading to dips in the conductance. Alter-
natively, resonant backscattering may occur also due to the presence of a
circulating edge state in the center of the quantum wire, associated with
a single potential spike [40]. This mechanism is illustrated in Fig. 3.15(c).
Experimentally we can not discriminate between the two mechanisms. The
strong temperature dependence of the conductance dips in Fig. 3.7 implies
a low activation energy, indicating that charging effects do not affect the
resonant backscattering strongly. [The occurrence of charging effects in
closed-loop edge channels, such as drawn schematically in Fig. 3.15(c), is
considered in chapter 4 (section 4.4).]

In summary, we have reported on an experimental study of the periodic
conductance oscillations as a function of gate voltage in split-gate disor-
dered quantum wires in the 2DEG in a GaAs–AlxGa1−xAs heterostruc-
ture. From the persistence up to a few kelvin of the dominant oscillations,
and from the insensitivity of the period to a strong magnetic field, it is
concluded that they are Coulomb-blockade oscillations. The appearance
of additional periodicities and the onset of irregular conductance fluctua-
tions at very low temperatures in some of the wires is attributed to the
presence of multiple segments in these wires. We have compared the tem-
perature dependence of the periodic conductance oscillations to a theory
for Coulomb-blockade oscillations in the classical regime kBT > ∆E and in
the quantum regime kBT < ∆E. Qualitative agreement with this theory is
obtained, using physically reasonable parameter values, although our low-
est temperature data appear to be in the intrinsically broadened resonance
regime kBT < hΓ, for which a theory has not yet been worked out. The
effect of a perpendicular magnetic field on the oscillations is to enhance
their amplitude at intermediate field strengths (between about 1 and 5 T),
but to suppress them at stronger fields. This remains to be understood
fully. In contrast to traces of the conductance as a function of gate volt-
age, magnetoconductance traces at constant gate voltage show no periodic
oscillations.
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Chapter 4

Coulomb-blockade oscillations in

quantum dots

4.1 Introduction

In semiconductor nanostructures, single-electron tunneling was first discov-
ered in the conductance of disordered quantum wires [1, 2]. As both the
width and electron density are decreased, a small number of large fluctu-
ations in the electrostatic potential may lead to the formation of tunnel
barriers in the wire. If only two such potential fluctuations are dominant, a
quantum dot coupled to two narrow leads is naturally formed. As discussed
in chapter 3, the conductance of the wire then exhibits Coulomb-blockade
oscillations. Greater experimental flexibility is offered by an artificially
defined quantum dot, since separate gates can be used to independently
control the tunnel barriers and the number of electrons confined in the
dot. Such a system is ideally suited for the study of the interplay of charge
quantization (leading to the Coulomb blockade of tunneling), size quanti-
zation (leading to a discrete energy spectrum), and magnetic quantization
(leading to the formation of Landau levels) [3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

In this chapter we describe our experiments on the Coulomb-blockade
oscillations in a quantum dot. After a brief introduction, given in the
remainder of this section, we discuss the temperature dependence of the
Coulomb-blockade oscillations in section 4.2. In sections 4.3 and 4.4 we
study the effect of a quantizing magnetic field on the Coulomb-blockade
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oscillations. We find that the Landau levels which are then formed lead to
a periodic envelope [11] (section 4.3), and to the occurrence of Coulomb-
blockade oscillations even in the presence of extended edge channels through
the dot [12] (section 4.4). Finally, in section 4.5 we report the observation
of Coulomb-blockade oscillations in the thermopower of a quantum dot [13].

In Fig. 4.1(a) a scanning-electron micrograph is shown of the first quan-
tum dot that we have studied. It is based on a GaAs–AlxGa1−xAs het-
erostructure containing a 2DEG with sheet electron density ns = 2 × 1011

cm−2 and mobility µ = 2×106 cm2/Vs, at low temperatures. The quantum
dot is defined by means of electrostatic depletion of the 2DEG using three
pairs of gates, as shown schematically in Fig. 4.1(b). Two adjustable tunnel
barriers are formed by opposite quantum point-contacts (of 0.3 µm litho-
graphic width and 0.7 µm separation) defined by gates (B,C) and (E,F).
The number of electrons confined in the quantum dot can be controlled by
two additional gates (A,D) (0.9 µm apart). The gaps between the point-
contact gates and the control gates are approximately 0.2 µm wide, so that
the quantum dot is formed well before the point contacts are pinched off.
The diagonal measurement configuration shown in Fig. 4.1(b) yields an
effective two-terminal conductance, even if a magnetic field is applied [14].

In Fig. 4.2 we show results of the Coulomb-blockade oscillations as a
function of the voltage applied to the control gates (A,D), at B = 0 and
B = 3.75 T perpendicular to the 2DEG. The point contacts were adjusted
to the tunneling regime (G ≈ 1

2e
2/h at B = 0). In the absence of a magnetic

field, no oscillations were observed if either or both of the point contacts
were set to a conductance above 2e2/h, in agreement with Ref. [15]. Both
traces show a large number of oscillations, with each conductance peak cor-
responding to the electrostatic depopulation of the dot by a single electron.
We observe a much larger number of oscillations in a quantum dot than
in a disordered quantum wire. The reason is that a quantum dot typically
contains a few hundred electrons, whereas a typical wire segment contains
only about 50 electrons (chapter 3, section 3.4.1). The period of the oscilla-
tions increases slowly with decreasing gate voltage (from 2.8 mV near −0.4
V to 3.4 mV near −0.7 V), presumably because the size of the quantum
dot is decreased (thereby decreasing the mutual capacitance of quantum
dot and control gates). Finally, the oscillations have an amplitude of about
0.2e2/h (at B = 0), and are superimposed on a background conductance,
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Figure 4.1: (a) Scanning-electron micrograph of the quantum dot. (b) Schematic
top-view of the quantum dot. Gates (B,C) and (E,F) define tunnel barriers of
adjustable transparency. Gates (A,D) control the number of electrons confined in
the dot. The current contacts are labelled I1, I2, the voltage contacts V1, V2.
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Figure 4.2: Equivalent two-terminal conductance of the quantum dot versus volt-
age on the control gates (A,D) (applied relative to one of the current contacts).
The voltages on the point-contact gates (B,C) and (E,F) were kept fixed, at a
value such that the zero-field conductance of the individual point contacts was
approximately 1

2e
2/h.

which increases slowly with gate voltage.
Whereas a magnetic field has almost no effect on the period, as is charac-

teristic of Coulomb-blockade oscillations, its effect on the amplitude is quite
pronounced. At B = 3.75 T the peak-to-valley amplitude is enhanced to
approach e2/h near a gate voltage of −0.52 V, while the background con-
ductance is reduced in such a way that the conductance remains below
e2/h in the entire trace. We note that such effects of the magnetic field on
the amplitude are not observed in metallic systems, where the Coulomb-
blockade oscillations are in the classical regime. The gate voltage at which
the oscillations disappear, and the conductance vanishes, increases with in-
creasing magnetic field [10]. We attribute this to a magnetic enhancement
of the effective tunnel-barrier height in the point contacts. In addition, an
apparent doublet structure consisting of alternating high and low peaks is
seen in a small voltage interval. Similar structure has been observed also
in disordered quantum wires, see e.g. Fig. 3.5. At lower magnetic fields a
nicely periodic modulation with larger period is found, which increases with
decreasing magnetic field [10]. We will discuss the origin of this surprising
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effect, which has been observed most of our quantum dots, in more detail
in section 4.3.

The peak-to-valley amplitude does not exceed e2/h, and in a magnetic
field typically exhibits a maximum for intermediate gate voltages. We at-
tribute the gate-voltage dependence of the amplitude to the effect of the
control gates (A,D) on the transparency of the tunnel barriers. At more
negative gate voltages, the tunnel barriers in the point contacts become less
transparent, reducing the peak height. At less negative gate voltages, the
tunnel barriers become more transparent, increasing quantum fluctuations
of the charge in the quantum dot. This leads to an increased background
conductance, and to conductance maxima exeeding e2/h in the zero-field
trace. It is likely that this is due to virtual tunneling processes [16, 17],
known to be important in metals if the conductance of the individual bar-
riers is of the order of e2/h. In semiconductor nanostructures, in which
the tunnel barriers are much lower than in metallic systems, a dynamical
treatment is probably required since the field across the barrier changes
during the tunnel process [18]. Such a treatment is not yet available.

4.2 Temperature dependence

We have studied the temperature dependence of the Coulomb-blockade
oscillations using a quantum dot of the design shown in Fig. 4.3. Four gates
are used to define the dot in the underlying 2DEG, which has an electron
density ns = 3.7 × 1011 cm−2 and a mobility µ ≈ 106 cm2/Vs. The tunnel
barriers are adjusted to a conductance of approximately 12e

2/h, since that
value yielded the best signal-to-noise ratio in our experimental set-up. In
addition, this is a regime that so far has been relatively unexplored. Two-
terminal conductance measurements (using contacts 1 and 2) are made as
a function of the voltage applied to gate C.

In Fig. 4.4 the Coulomb-blockade oscillations are shown over a wide
gate-voltage range at B = 0. At gate voltages close to zero, the electron
gas underneath gate C is not depleted fully, and the quantum dot is not
yet formed. In this regime, which extends down to approximately −0.3 V,
irregular oscillatory structure is observed in the conductance. We attribute
this structure to Fabry-Perot-type transmission resonances in the cavity
of the partially defined dot, similar to those observed by Smith et al. [19]
(see also Ref. [20]). The transition to Coulomb-blockade oscillations at
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Figure 4.3: Schematic top-view of a 0.7× 0.8 µm2 quantum dot. Gates A, B, and
D (hatched) define individually adjustable tunnel barriers, and gate C controls the
electrostatic potential of the dot; the gaps between gates B and C, and between
gates C and D, are pinched off in the experiment.

Figure 4.4: Two-terminal conductance of the quantum dot versus voltage applied
to gate C. The tunnel barriers are adjusted to a conductance of approximately
1
2e

2/h.
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Figure 4.5: Temperature dependence of the Coulomb-blockade oscillations for two
peaks and two valleys, as indicated in the inset. The solid and dashed lines guide
the eye.

more negative gate voltages is quite abrupt, and presumably occurs as the
electron gas underneath gate C (and underneath the gaps between gates B
and C, and between gates C and D) is depleted fully. This is supported by
an estimate of the depletion voltage using the capacitor formula (1.1), which
yields −0.3 V [the distance between 2DEG and gate is d = 80 nm, εr = 13
for GaAs, and assuming an electron gas density near the dot that is about
25% lower than in the wide 2DEG regions, due to fringing electric fields of
gates A, B, and D (see section 4.3)]. In the conductance trace shown, over
200 peaks are counted (and thus over 200 electrons are depopulated from
the dot), which is a sizeable fraction of the number of electrons initially
confined to the dot. (We estimate that the dot initially contains about 600
electrons, assuming a quantum dot of radius d = 0.5 µm with an electron
density that is approximately 25% lower than that of the 2DEG.)

In Fig. 4.5 the temperature dependence of the Coulomb-blockade os-
cillations is plotted for two peaks and two valleys, as indicated in the in-
set. The amplitude of the Coulomb-blockade oscillations exhibits irregular
variations as a function of gate voltage (see also Fig. 4.4, measured using
slightly different gate voltage values). The open and closed circles give
the conductance of a peak and an adjacent valley where the amplitude
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Figure 4.6: Model spectrum (a) and the associated temperature dependence of
the Coulomb-blockade oscillations for two peaks and two valleys (b), as indicated
in the inset. The calculations are made from Eq. (2.22), with 15 levels spaced at
δE = 0.075e2/C per group, gaps of ∆E = 0.3e2/C, and level-independent tunnel
rates.

is at a minimum and at a maximum of these variations. Whereas the
large-amplitude conductance peaks increase with decreasing temperature,
characteristic of resonant tunneling, the height of the small-amplitude con-
ductance peaks is approximately temperature independent, characteristic
of classical Coulomb-blockade oscillations. From the observation of oscilla-
tions up to T >∼ 1.5 K, we estimate a charging energy e2/C ≈ 0.3 meV.

A simple model that is able to explain at least part of the observed tem-
perature dependence is the following. We assume an energy spectrum in the
dot consisting of groups of closely spaced states separated by energy gaps,
see Fig. 4.6(a). Such a spectrum is not unlikely: If the dot is modelled by a
parabolic confining potential of strength ω0, the spectrum consists of n-fold
degenerate states at energies nh̄ω0 (ignoring spin-degeneracy). Deviations
from parabolic confinement will lift the degeneracy, leading to a spectrum
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as shown schematically in Fig. 4.6(a). The temperature dependence of the
Coulomb-blockade oscillations calculated from Eq. (2.22) for this spectrum
is shown in Fig. 4.6(b). For simplicity, level-independent tunnel rates were
used. Clearly, high and low conductance peaks with different temperature-
dependence result. At very low temperatures (kBT <∼ 0.04e2/C), resonant
tunneling through a single level becomes the dominant mechanism, leading
to a 1/T behavior of the individual peaks, which is not observed in our
experiment. This may be caused by the high impedance environment of
the dot (a 100 kΩ resistor is connected in series with the dot), which results
in a reduction of the peak height, as recently predicted [21]. In addition,
the conductance peaks may saturate due to the finite width of the energy
levels in the dot. Finally, electron-gas heating due to residual electrical
noise cannot be excluded completely at these low temperatures.

In contrast to the conductance peaks, the valleys have equal temper-
ature dependence. However, the conductance is not suppressed exponen-
tially, but decreases approximately linearly with temperature. This indi-
cates the importance of quantum fluctuations of the charge in the dot, due
to the relatively large conductance of the individual tunnel barriers (ap-
proximately 12e

2/h). (For tunnel-barrier conductances much smaller than
e2/h, Meirav et al. have found exponential suppression of the conductance
in the minima [22].) Averin and Nazarov theoretically discuss “macroscopic
quantum tunneling of charge” (q-mqt) [23], which is the common denom-
inator for transport through the dot due to quantum fluctuations. They
consider both inelastic- and elastic q-mqt. Inelastic q-mqt is due to co-
tunneling [23] of two electrons through the dot: While one electron enters
the dot through the first tunnel barrier, another leaves the dot through the
second one. Since the two electrons involved in this process need not nec-
essarily have equal initial and final energies, electron-hole excitations are
created in the dot and leads. It is in this sense that co-tunneling is an in-
elastic process. Elastic q-mqt is due to phase-coherent tunneling of a single
electron through the energy barrier imposed by the Coulomb blockade.

Co-tunneling, which in metals is the most important process by means of
which the Coulomb-blockade can be overcome, leads to a conductance [23]

Gcot =
e2

h

1
24π2

G1G2
(e2/h)2

(
1
E−

+
1
E+

)2 [
3(eV )2 + (2πkBT )2

]
, (4.1)

with E± ≡ U(N ± 1) − U(N) the electrostatic charging energy associ-
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ated with tunneling of a single electron into, respectively out of, the dot,
V � E−, E+ the applied voltage across the dot, and G1, G2 the two
tunnel conductances. At the minima of the Coulomb-blockade oscilla-
tions E− = E+ = e2/2C. Inserting numbers relevant for our experi-
ment, G1 ≈ G2 ≈ 1

2e
2/h, e2/C ≈ 0.3 meV, and V = 5 µV, we obtain

Gcot ≈ 5 × 10−3 e2/h at T = 0.3 K (at this temperature, e2/C ≈ 10kBT ,
so that transport through the dot is classically nearly suppressed). Ex-
perimentally, however, we find a conductance as large as 0.1e2/h. Thus,
co-tunneling cannot be the only mechanism responsible for the finite con-
ductance in the minima of the Coulomb-blockade oscillations. (We note
that Glattli et al. [24] have studied a quantum dot of similar design to
that shown in Fig. 4.1, with tunnel barrier conductances varying from 0.1
to 0.3e2/h. They found that co-tunneling can account for the tempera-
ture dependence of the conductance minima in that device.) Alternatively,
elastic q-mqt may account for the relatively large conductance, but a the-
ory relevant for the regime of our experiment is not available. Averin and
Nazarov [23] discuss elastic q-mqt for the case that the dot is much larger
than the electron elastic mean free path, so that the details of its geometry
are not very important. In that limit, elastic q-mqt is a factor ∆E/(e2/C)
smaller than the inelastic contribution (but dominates at temperatures and
voltages below the crossover values eVcr, kBTcr ≈ [∆E(e2/C)]1/2). Finally,
as already mentioned above, electron-gas heating due to residual electrical
noise cannot be excluded completely.

4.3 Periodic envelope of Coulomb-blockade oscillations in the
quantum Hall regime

In this section we address the question as to what causes the variations in
amplitude from peak to peak that we have observed. We will refer to these
variations as the envelope of the Coulomb-blockade oscillations. Recently,
Jalabert et al. have explained the occurrence of irregular envelopes in zero or
weak magnetic field in terms of chaotic fluctuations of the tunnel rates [25].
In the previous section, we have discussed how a spectrum with groups of
nearly degenerate levels can give rise to more regular variations in the am-
plitude, and to an anomalous temperature dependence. Here, we study the
envelope of the Coulomb-blockade oscillations in the quantum-Hall effect
regime. We find that it exhibits a periodic modulation, each period con-
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Figure 4.7: Schematic top-view of the 0.7×0.8 µm2 quantum dot. Gates A, B, and
D (hatched) define individually adjustable tunnel barriers, and gate C controls the
electrostatic potential of the dot; the gaps between gates B and C, and between
gates C and D, are pinched off in the experiment. The drawn lines represent edge
channels formed by a quantizing magnetic field B perpendicular to the plane of
the 2DEG, and the dashed lines indicate tunneling paths between the outermost
Landau level in the dot and in the leads.

sisting of the same number of Coulomb-blockade oscillations. We argue
that this surprising effect is due to electrostatic depopulation of each of the
Landau levels in the dot by a single electron per period, with tunneling
occurring predominantly through a single edge state of the outermost (low-
est) Landau level. A model calculation and additional magnetoconductance
data are used to support this interpretation.

Our device is shown schematically in Fig. 4.7. We used a GaAs–
AlxGa1−xAs heterostructure containing a two-dimensional electron gas
(2DEG) with electron density ns = 3.7 × 1011 cm−2 and mobility µ ≈ 106

cm2/Vs. Part of the 2DEG is confined electrostatically to a quantum dot
by patterned Ti-Au gates on top of the heterostructure. The tunnel barri-
ers defined by gates A, B, and D were adjusted to a zero-field conductance
of approximately 12e

2/h. Two-terminal conductance measurements were
made both as a function of gate voltage (applied to gate C) and magnetic
field B.
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Figure 4.8: Conductance as a function of the voltage applied to gate C at T =
45 mK and 4 values of B. The envelope is indicated by the thick lines.

In Fig. 4.8, traces of the Coulomb-blockade oscillations as a function
of gate voltage are shown at T = 45 mK and 4 values of the magnetic
field. A large number of conductance peaks is observed in the traces, each
peak corresponding to the electrostatic depopulation of the dot by a single
electron. In contrast to the period of the Coulomb-blockade oscillations,
which is rather insensitive to a magnetic field, the amplitude exhibits a
pronounced B-dependence. Whereas in the absence of a magnetic field the
envelope varies irregularly, in the quantum Hall effect regime it oscillates
periodically , in the sense that at fixed B each period contains the same
number of conductance peaks, and thus corresponds to the same number
of electrons removed from the dot. On increasing the magnetic field, the
period decreases from 9 conductance peaks per period at B = 1.27 T down
to 3 peaks at 3.71 T. As the temperature is increased to 0.5 K, the enve-
lope oscillations disappear (see lower right inset in Fig. 4.9), whereas the
Coulomb-blockade oscillations remain clearly visible (upper left inset).

The period of the envelope oscillations (in terms of the number of elec-
trons removed from the dot) corresponds to the number NL of Landau
levels occupied in the dot. This is evident from the plot in Fig. 4.9, show-
ing the number of conductance peaks (and thus electrons) per period of
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Figure 4.9: Number of conductance peaks per period of the envelope versus 1/B
(filled circles). The drawn curve indicates the number of Landau levels in the
dot. Insets: temperature dependence of the maxima and minima of the Coulomb-
blockade oscillations (upper left) and envelope oscillations (lower right), averaged
over a large number of periods. The drawn lines guide the eye.

the envelope oscillations versus 1/B. The drawn staircase curve results
from a fit of the data to the filling factor hndot/eB rounded to the nearest
integer, which is equal to the number of spin-resolved Landau levels in the
dot (treated as a 2DEG for simplicity). The value thus obtained for the
electron density, ndot = 2.7 × 1011 cm−2, is about 25% smaller than the
density of the ungated regions, which is quite reasonable.

We now argue that our experiment reveals a surprising new aspect of the
energy spectrum of the quantum dot. Our observations can be explained
if (a) the Landau levels are depopulated cyclically, by a single electron
per Landau level per period of the envelope oscillations, and (b) only the
outermost (lowest) Landau level in the dot couples to the leads. The first
assumption is not a trivial one, and is in contrast to the sequential depop-
ulation from highest to lowest Landau level in an unconfined 2DEG if the
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Fermi energy is reduced. Since the number of electrons removed from the
dot per period is equal to NL, we require that in between each two states
of the lowest Landau level a single state of each of the remaining occupied
Landau levels is present. Such a regularity of the spectrum is unexpected,
but we know of no other way to account for the periodically modulated
envelope with the particular period observed.

Cyclic depopulation of the Landau levels by itself does not explain why
the envelope of the Coulomb-blockade oscillations would be modulated.
This requires an additional argument. The simplest explanation for a small
modulation would be small differences in tunnel rates for states of different
Landau levels. However, the tunnel rates through a split-gate barrier (or
quantum point-contact) are known to decrease exponentially with increas-
ing Landau level index [26]. This motivates our second assumption given
above. Consecutive conductance peaks then result from tunneling through
the nearest state (in energy) of the lowest Landau level, with an amplitude
determined by the occupation probability of that state (which is a function
of temperature and Fermi energy in the dot). The states of the remaining
Landau levels serve to accomodate additional electrons induced electro-
statically in the dot, but do not provide a tunneling path. Their presence
affects the position of the Fermi level in the dot, and thus (indirectly) the
tunneling probability. This is what explains the existence of an envelope.

In order to verify the validity of our arguments, we have made some
calculations using the theory of chapter 2 [5] and the spectrum of non-
interacting electrons in a dot with a parabolic confining potential of
strength ω0, for which the energy levels within each single Landau level
are equally spaced (independent of the Landau level index n) [27]:

En,m = 1
2(n −m)h̄ωc + 12 h̄(ω

2
c + 4ω20)

1/2(n+m− 1) , (4.2)

with ωc = eB/m∗ the cyclotron frequency of electrons with effective mass
m∗, and m the index of consecutive states within a Landau level. [Spin
is ignored in (4.2) for simplicity]. As shown in the top panel of Fig. 4.10,
at fixed B this spectrum is periodic in E, with period ∆E = En,m −
En,m−1 = −12 h̄ωc + 12 h̄(ω

2
c + 4ω20)

1/2 equal to the spacing of states within
each single Landau level (independent of n and m). It therefore satisfies
the above regularity criterium. In the bottom panel of Fig. 4.10 results of
the calculations are given for a value of B indicated in the top panel by
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Figure 4.10: Top panel: the spectrum of non-interacting electrons in a parabolic
confining potential is periodic in E with period ∆E, and quasi periodic in B with
period ∆B. The states of the lowest Landau level are indicated by the thick lines.
Bottom panel: model calculations using the theory of Ref. [5] for a value of the
magnetic field indicated in the top panel by the dashed line (using h̄ω0 = 0.6 meV,
e2/2C = 0.4 meV, and Γ respectively 10−2Γ for the tunnel rates of the states of
the lowest Landau level respectively remaining Landau levels).

the dashed line, corresponding to a spectrum of nearly equidistant levels
with NL = 4. Clearly, the amplitude of the Coulomb-blockade oscillations
exhibits an envelope with a period that is determined by the number of
Landau levels in the dot (left part). The modulation disappears as kBT
approaches ∆E (right part). At very low temperatures, such that kBT �
δE ≈ ∆E/NL, only a single peak remains per period of the envelope,
associated with tunneling through a state of the lowest Landau level. In
this regime, which was not accessible in our experiment, the other peaks
are suppressed by orders of magnitude (not shown). We point out that the
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Figure 4.11: Coulomb-blockade oscillations (shown for the bottom trace only) and
envelope at T = 45 mK and 4 values of B. Inset: magnetoconductance oscillations
at a gate voltage of −0.725 V.

amplitude of the calculated envelope is not very sensitive to the distribution
of the energy levels in between two consecutive states of the lowest Landau
level. In our calculation we have found an increase by only about 10% if
B is chosen such that the energy levels are 4-fold degenerate. The position
of the envelope oscillations, however, shifts over a complete period if the
magnetic field is increased by ∆B, corresponding to the nearly periodic
character of the spectrum as a function of B at fixed E (see top panel of
Fig. 4.10).

Experimentally, we also observe a shift of the envelope oscillations as
the magnetic field is changed slightly. In Fig. 4.11 it is shown that the
envelope is shifted over a full period if the magnetic field is increased by
∆B ≈ 20 mT. As shown in the inset, this value is equal to the period of the
magnetoconductance oscillations observed at fixed gate voltage (adjusted
to the maximum of a zero-field conductance peak). The amplitude and
activation energy of the magnetoconductance oscillations are approximately
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equal to those of the envelope oscillations, further illustrating their common
origin. Note that the fact that ∆E, and not e2/2C, governs the activation
energy of the magnetoconductance oscillations implies that the conductance
remains at a maximum of a Coulomb-blockade conductance peak as the
magnetic field is changed. We have not attempted a direct comparison of
experimental and calculated conductance as a function of magnetic field,
because of the sensitivity to the B-dependence of the Fermi level in the
leads, which is not easy to model reliably.

The results of the calculations using the single-electron energy spec-
trum (4.2) are in qualitative agreement with our experimental observa-
tions. We have traced the origin of the agreement to the regularity of the
energy spectrum, which leads to a cyclic depopulation of the Landau levels
by one electron at a time. McEuen et al. [7] have recently shown that the
self-consistently calculated energy spectrum differs substantially from that
of non-interacting particles. Our experiment suggests that the regularity
leading to cyclic depopulation of Landau levels is a generic feature of a
strongly interacting electron gas in a quantum dot. It would be interesting
to investigate if, or to what extent, this is born out by the self-consistent
model presented in Ref. [7].

4.4 Influence of adiabatically transmitted edge channels on sin-
gle-electron tunneling through a quantum dot

In a two-dimensional electron gas (2DEG), selective reflection of edge chan-
nels in high magnetic fields is possible at a quantum point-contact, which
consists of a constriction in the 2DEG defined by a split gate electrode [28].
The conductance of a quantum point-contact in a high magnetic field is ap-
proximately given by

Gpc ≈ e2

h
(Ntrans + t) , (4.3)

with Ntrans the number of edge channels that are fully transmitted over the
barrier in the constriction, and t ≤ 1 the tunneling transmission probability
of the (Ntrans + 1)th edge channel. Edge channels corresponding to higher
index Landau levels are nearly completely reflected.

With two point contacts in series and an additional gate electrode it
is possible to form a quantum dot [see Fig. 4.12(a)] in which the states
reflected by the point contacts form a discrete energy spectrum. For a non-
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Figure 4.12: (a) Schematic drawing of the quantum dot. The dotted line indicates
the edge of the depletion region. (b)–(d) Current paths through the dot in the
presence of 2, 1, or 0 adiabatically transmitted edge channels as adjusted by VB

and VD .

interacting electron gas, a peak in the conductance of the dot due to reso-
nant tunneling should be seen when an electron state of the (Ntrans +1)th,
Landau level lines up with the Fermi energy in the leads. Periodic con-
ductance oscillations are expected both as a function of electron density
(varied by means of the voltage on gate C), and as a function of magnetic
field. Such oscillations (sometimes referred to as Aharonov-Bohm oscilla-
tions [29]) have been demonstrated experimentally both as a function of
magnetic field [30] and gate voltage [31] in the regime where one or more
edge channels are transmitted adiabatically [i.e. Ntrans = 2, 1 as shown in
Figs. 4.12(b) and (c)].
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Meanwhile, it has become clear that resonant tunneling through a quan-
tum dot can be governed by single-electron charging effects. These effects
are known to be important if the capacitance C of the dot is small so that
the charging energy e2/C � kBT , and if the conductance of each point
contact Gpc < e2/h, so that no adiabatically transmitted edge channels
are present [see Fig. 4.12(d)]. In the Coulomb blockade regime, periodic
magnetoconductance oscillations of the type seen by van Wees et al. [30]
are generally not observed [32].

Considering the extent to which Coulomb charging modifies electron
tunneling, we have decided to re-examine its influence in the regime where
it has previously been ignored: in the presence of adiabatically transmitted
edge channels. In this section, we present the first direct comparison of
the conductance versus gate voltage and magnetic field for different bar-
rier transparencies, so that 2, 1, or 0 adiabatically transmitted channels are
present in addition to the confined levels. We observe periodic conductance
oscillations as a function of gate voltage for all three barrier transparencies.
We use the oscillations observed in the full Coulomb-blockade regime (i.e.,
no adiabatically transmitted edge channels) as a novel electron counter to
calibrate the period of the oscillations observed in the presence of adia-
batically transmitted edge channels. In this way we argue that even in
the presence of the transmitted edge channels the conductance oscillations
cannot be satisfactorily described in terms of resonant tunneling without
invoking Coulomb charging. In addition, magnetoconductance oscillations
are observed to increase in period as the number of adiabatically transmit-
ted edge channels decreases from 2 to 1, while irregular fluctuations with a
larger activation energy comparable to e2/2C are seen in the full Coulomb-
blockade regime. This observation indicates that charging effects become
progressively more important as the number of transmitted edge channels
decreases, while it confirms that their influence is still significant for barrier
transparencies larger than e2/h.

A schematic drawing of our device is shown in Fig. 4.12(a). Four gates
(labelled A–D in the figure) define a square 450×450 nm2 on the surface of
a GaAs–AlxGa1−xAs heterostructure with a 2DEG of mobility 106 cm2/Vs
and density 3.0 × 1011 cm−2. When the gates are negatively biased with
respect to the 2DEG, a quantum dot with a diameter of approximately d =
400 nm is formed in the underlying 2DEG, which is connected through two
point-contacts to the two-dimensional leads. Two-terminal conductance
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Figure 4.13: Dot conductance as a function of the voltage on gate C at a series of
magnetic fields and temperatures. In the top, middle, and bottom trace of each
figure (a)–(d) point contacts are adjusted to conductances of 2.5e2/h, 1.5e2/h, and
0.5e2/h, respectively. The three cases correspond to the three possible current
paths shown in Fig. 4.12(b)–(d).

measurements are made across the dot as a function of the voltage on gate C
(VC ), which determines the electron density in the dot. In the experiments,
the voltage on gate A is left fixed at −0.7 V, and the voltages on gates
B and D (VB , VD) are adjusted to control the transmission through the
tunnel barriers between dot and leads. The data described below are from
measurements performed on a single device; however, the salient results
were accurately reproduced in several other devices.

Figures 4.13(a)–(c) show results of conductance measurements as a func-
tion of VC for three different magnetic fields (2.75, 3.20, and 3.50 T, re-
spectively) and a temperature of 50 mK. Each figure displays three traces,
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corresponding to three different adjustments of the point-contact conduc-
tances; Gpc = 2.5e2/h in the top traces, 1.5e2/h in the middle traces, and
0.5e2/h in the bottom traces. The traces all show a series of nearly periodic
oscillations in the conductance as a function of VC , however the period of
the oscillations varies from trace to trace. In Fig. 4.13(b), for example,
there are 27 peaks in the top trace, 44 peaks in the middle trace, and 67
peaks in the bottom trace, indicating that the period in the top trace is
about 2.5 times that in the bottom trace and the period in the middle trace
is about 1.5 times that in the bottom trace. A comparison of the traces
measured at the three magnetic fields shows that the number of peaks in
the top trace decreases from 31 at 2.75 T to 24 at 3.50 T while the number
of peaks in the middle trace decreases from 48 to 42. The number of peaks
in the bottom trace however, remains fixed at 67. Figure 4.13(d) shows
results of measurements taken with the same parameters as in Fig. 4.13(b)
but at a temperature of 500 mK. The oscillations observed in the top two
traces have now nearly vanished, while strong oscillations are still observed
in the bottom trace. Further measurements (not shown) indicate that the
oscillations in the bottom trace persist up to a temperature of at least 2 K.

The Coulomb charging energy e2/2C ≈ 0.4 meV of the dot, estimated
from the self capacitance C = 4ε0εd of a flat circular disk of diameter
d, is greater than kBT for temperatures up to 4 K. Thus, the very regular
oscillations observed for Gpc = 0.5e2/h (the bottom traces in Fig. 4.13) can
safely be interpreted as Coulomb-blockade oscillations. The gate voltage
separation between peaks is about e/Cgate where Cgate, the capacitance
between gate C and the dot, is assumed to be independent of Gpc. This
is reasonable since Gpc is much more sensitive to changes in voltages B
and D than are the size of the dot and the dot-gate separation, which
together determine Cgate. Since each Coulomb-blockade peak corresponds
to the removal of one electron from the dot, this allows us to use the
Coulomb-blockade oscillations in a new way: as a tool to determine the
mechanism that governs the period of the oscillations seen at higher barrier
transparencies. The number of electrons per peak for the upper traces in
Fig. 4.13 can be determined by dividing the number of Coulomb-blockade
peaks counted for Gpc = 0.5e2/h into the number of peaks counted for
Gpc = 1.5e2/h and 2.5e2/h. The results of this procedure performed on
a set of measurements of the type shown in Fig. 4.13 are plotted versus
magnetic field in Fig. 4.14. The number of electrons per peak is considerably
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Figure 4.14: Period of the conductance oscillations (in units of electrons per peak)
versus magnetic field for Gpc = 2.5e2/h (circles) and Gpc = 1.5e2/h (squares).
The solid lines are fits for Ntrans = 2 respectively 1 adiabatically transmitted edge
channel (see text).

larger for Gpc = 2.5e2/h than for Gpc = 1.5e2/h. In both cases, an increase
in magnetic field results in an increase in the number of electrons per peak.

We now consider the periodic conductance oscillations for Gpc > e2/h
[the upper two traces in Figs. 4.13(a)–(d)]. The simplest possibility is to
ignore Coulomb charging. As discussed in the introduction, then a peak
in the conductance is observed due to resonant tunneling when an electron
state of the (Ntrans + 1)th Landau level lines up with the Fermi energy in
the leads. The frequency at which this occurs corresponds to the rate at
which electrons are removed from the (Ntrans + 1)th Landau level. The
total number Ndot of spin-split Landau levels in the dot are made up of the
Nconf Landau levels of guiding center energy Eg below the barrier height
Eb, and the Ntrans additional Landau levels that are occupied in the dot
but fully transmitted over the barriers in the point contacts (Eg > Eb).
Assuming that both the Nconf and Ntrans Landau levels are depopulated
at about the same rate, the number of electrons per peak should be sim-
ply Ndot. This argument predicts that the number of electrons per peak
should decrease, rather than increase with magnetic field, in contradiction
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with the observed results (Fig. 4.14). This discrepancy could in principle
be eliminated if resonant tunneling through electron states of the confined
Landau levels with index higher than (Ntrans + 1) also contribute to the
conductance of the dot. The tunneling rate, however, decreases exponen-
tially with decreasing Eg [26], thus there should be an order of magnitude
modulation of conductance peak heights due to resonant tunneling through
states of consecutive Landau levels confined in the dot [4, 5]. This is not
observed in our experiment, however.†

We can model the results of Fig. 4.14, if we take Coulomb charging into
account for Gpc > e2/h. We extend recent arguments for the Ntrans = 0
case [7] to our problem by considering a separate Coulomb charging energy
of the Nconf Landau levels existing in the presence of the adiabatically
transmitted edge channels. This is reasonable, since a magnetically induced
tunnel barrier consisting of an incompressible electron-gas region exists
between each of the edge channels. Resonant-tunneling electrons thus face
a nonzero Coulomb-charging energy associated with a change in the electron
population of the confined Landau levels. This leads to Coulomb-blockade
oscillations as a function of gate voltage with a period corresponding to
the removal of an electron from any one of the Nconf Landau levels. The
removal of electrons from one of the Ntrans Landau levels in the dot does
not give rise to a conductance peak because charge in these levels is not
localized and can therefore be changed continuously. This implies that

electrons
peak

=
Nconf +Ntrans

Nconf
=

Ndot
Nconf

. (4.4)

Figure 4.14 shows solutions of Eq. (4.4) for Ntrans = 1 and Ntrans = 2. We
determine Ndot assuming parabolic confinement in the dot [27] of strength
h̄ω0 = 0.6 meV and Fermi energy EF = 7 meV, corresponding to an elec-
tron density of 2.2 × 1011 cm−2, and a dot diameter of 400 nm. The fit
between the calculated and experimental results is fair. In both cases, the
number of electrons per peak is seen to increase (from 2 to 3 in the upper
curve and from 1.3 to 1.5 in the lower curve) as Ndot decreases from 4 to 3.

†The more modest amplitude modulation of the conductance peaks that we observe in
the middle and bottom traces of Fig. 4.13 can be explained in terms of tunneling through
the confined states associated with only the (Ntrans + 1)th Landau level, as discussed in
section 4.3. The fact that a more dramatic amplitude modulation is not observed suggests
that we are in the near classical regime where kBT >∼ ∆E, the average spacing of states
of the (Ntrans + 1)th Landau level.
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Figure 4.15: Dot conductance as a function of magnetic field for three different bar-
rier transparencies. At B = 3.5 T, the top, middle, and bottom traces correspond
to point-contact conductances of 2.5e2/h, 1.5e2/h and 0.5e2/h, respectively.

The presence of the Ntrans Landau levels enters only in the form of
a nearby electron reservoir, coupled capacitively to both the gates and
the confined Landau levels. This enhances the effective capacitance, and
decreases the charging energy relative to that in the case of zero transmitted
edge channels through the dot. A calculation of the charging energy of
the confined Landau levels in the presence of adiabatically transmitted
edge channels [33] indicates that the increase in C with the number of
adiabatically transmitted edge channels can account for the reduction of the
activation energy with increasing barrier transparency in the conductance
traces in Fig. 4.13.

We now briefly discuss the magnetoconductance of the dot. Figure 4.15
shows the conductance as a function of magnetic field at a temperature of
50 mK. The constrictions are adjusted so that the conductance drops from
3e2/h to 2e2/h in the top trace, from 2e2/h to e2/h in the middle trace,
and from e2/h to 0 in the bottom trace. Magnetoconductance oscillations
are observed with ∆B = 13 mT in the top trace and ∆B = 26 mT in the
middle trace while more random fluctuations are observed in the bottom
trace. The oscillations disappear for T ≈ 250 mK, while the fluctuations
observed in the bottom trace survive to T > 1 K.
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We speculate that the magnetoconductance oscillations are due to res-
onant tunneling through confined states of the (Ntrans+1)th Landau level,
modified by single-electron charging effects. The increase in period observed
between the top two traces is thought to be due to the increasing influence
of Coulomb charging with decreasing number of edge channels in contact
to the 2DEG. In the bottom trace, the Coulomb-charging energy becomes
dominant, and the periodic magnetoconductance oscillations are replaced
by large scale fluctuations. We do not attempt to describe the magneto-
conductance of the dot in more detail. What is needed is a self-consistent
calculation based on precise knowledge of the full energy spectrum in the
presence of both confined and adiabatically transmitted edge channels.

Our results demonstrate that the formation of Landau levels in a high
magnetic field causes single-electron charging effects to be of importance
for barrier conductances greater than e2/h. This finding necessitates a rein-
terpretation of earlier experimental results on single [30, 31] and multiple
quantum dots [34].

4.5 Coulomb-blockade oscillations in the thermopower of a
quantum dot

Single-electron tunneling is the dominant mechanism governing the trans-
port properties of a quantum dot that is weakly coupled to leads by tunnel
barriers. Whereas the conductance has been studied quite extensively, the
thermo-electric properties of a quantum dot remain essentially unexplored.
Amman et al. have theoretically studied the role of Coulomb interactions
on thermo-electric effects in a single mesoscopic tunnel-junction, and have
used their results to interpret the thermopower of granular thin bismuth
films [35]. As discussed in chapter 2, a theory was also developed for the
thermopower of a quantum dot, taking the discrete energy spectrum of the
dot into account [36]. The thermopower as a function of the Fermi en-
ergy in the reservoirs is predicted to exhibit sawtooth-like oscillations at
low temperatures, with an amplitude that is determined by the charging
energy and temperature only [36].

Here, we present an experimental study of the thermo-electric properties
of a quantum dot, using the current-heating technique applied previously to
study the thermovoltage across a quantum point-contact [37]. At low lat-
tice temperatures and small heating currents, we observe the predicted [36]
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Figure 4.16: Schematic top-view of the 0.7× 0.8 µm2 quantum dot adjacent to a
2 µm wide, 20 µm long channel. Gates A, D, and F (hatched) define individually
adjustable tunnel barriers, and gate E controls the electrostatic potential of the
dot; the gaps between gates D and E, and between gates E and F, are pinched off
in the experiment. An ac heating current I is passed through the channel and the
thermovoltage Vth ≡ V1−V2 is measured across the quantum dot and the opposite
reference point-contact defined by gates B and C.

sawtooth-like oscillations as a function of gate voltage in the thermovolt-
age. These are compared with measured Coulomb-blockade oscillations in
the conductance, and are analyzed in terms of the theory [36] outlined in
chapter 2. We find that the generic lineshapes of the Coulomb-blockade os-
cillations in both the thermopower and the conductance are in agreement
with the theory. However, the oscillations are broadened more strongly
than is calculated from the known lattice temperature and the estimated
charging energy of the dot. In addition, we present an unexpected sign
reversal of the thermovoltage oscillations in the nonlinear regime at large
heating currents.

The devices used for the experiments have a layout as shown schemat-
ically in Fig. 4.16. Patterned Ti-Au gates are used to define a quantum
dot in the two-dimensional electron gas (2DEG) in a modulation doped
GaAs–AlxGa1−xAs heterostructure. The ungated parts of the 2DEG have
an electron density ns = 3.7 × 1011 cm−2 and a mobility µ ≈ 106 cm2/Vs.
Gates A, D, and F define two tunnel barriers with a conductance that is
adjusted to about 0.1e2/h each. Two additional gates, B and C, define a
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narrow channel. A point contact in the boundary of this channel is used as a
reference voltage-probe, opposite to the dot. The sample is mounted in the
mixing chamber of a dilution refrigerator, and measurements of the ther-
mopower and conductance of the dot are made as a function of the voltage
VE applied to gate E. To measure the thermopower, the electron gas in the
channel is heated using an ac current I. This leads to an increase ∆T ∝ I2

of the electron temperature in the channel in the low current regime [37].
Lock-in detection at twice the frequency of the current is used to measure
the resulting thermovoltage Vth ≡ V1 − V2, which is equal to the difference
in thermovoltages across the quantum dot and reference point-contact,

Vth = (Sdot − Spc)∆T , (4.5)

where Sdot is the thermopower of the dot, and Spc the thermopower of
the reference point-contact. The contribution of Spc to Vth is independent
of VE and leads to a constant offset voltage, which is minimized in our
experiment by suitably adjusting the reference point-contact [37]. Thus,
variations in Vth as a function of VE directly reflect changes in the ther-
mopower of the dot. In addition to the thermovoltage, the two-terminal
conductance is measured using a standard lock-in technique with an exci-
tation voltage across the dot below 9 µV. No heating current is used in this
latter measurement.

In Fig. 4.17(a) we compare measurements of the Coulomb-blockade os-
cillations as a function of VE in the thermovoltage (solid) and conductance
(dashed) of the dot, at a lattice temperature of T = 45 mK. As shown in the
figure, the thermovoltage Vth (and therefore Sdot) oscillates periodically as
a function of VE. The period is equal to that of the conductance oscillations,
and corresponds to depopulation of the dot by a single electron. In contrast
to the conductance oscillations, which consist of a series of symmetric peaks
separated by gate-voltage regions where the conductance is suppressed, the
thermopower oscillations have a distinct sawtooth lineshape. In addition,
we find that the conductance peaks are approximately centered on the pos-
itive slope of the thermopower oscillations, with the steeper negative slope
occurring in between two conductance peaks. These data comprise the first
experimental demonstration of the key characteristics of the thermopower
oscillations of a quantum dot, as predicted theoretically [36].

Using the linear-response formulas of chapter 2 [36], the thermopower
and conductance can be calculated as a function of Fermi energy. As shown
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Figure 4.17: (a) Thermovoltage Vth at a heating current of 58 nA (solid) and
conductance (dashed) of the dot as a function of VE at a lattice temperature of
T = 45 mK. (b) Calculated thermopower (solid) and conductance (dashed) of a
quantum dot as a function of Fermi energy using Eqs. (2.35) and (2.22). The
parameters used in the calculations are discussed in the text.
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in Fig. 4.17(b), the calculated lineshapes of the Coulomb-blockade oscilla-
tions in both the thermovoltage and the conductance reproduce the exper-
imental lineshapes in Fig. 4.17(a) quite well. In the calculations, we have
assumed an energy spectrum in the dot consisting of equidistantly spaced,
twofold degenerate levels, with spacing ∆E = 0.05e2/C; the tunnel rates
Γ to the individual states have been taken to be independent of energy,
so that they do not appear in the final result for the thermopower; and
the lattice-temperature parameter has been set to kBT = 0.065e2/C. In
spite of the similarity between the experimental and calculated lineshapes,
it becomes evident that there is some discrepancy between experiment and
theory if a reasonable value for the charging energy e2/C is inserted.

From the observation of the Coulomb-blockade oscillations up to T >∼ 1.5
K, we estimate e2/C ≈ 0.3 meV (cf. section 4.2). This implies that the tem-
perature parameter used in the calculations corresponds to approximately
0.23 K, which is about four times as high as the actual temperature in
the experiment (45 mK). If we would have used a lower temperature in
the calculations, the conductance peaks would have been too narrow and
the thermopower oscillations too skewed, as compared to the experiments.
Since in the experiment the anomalous broadening is observed in both Sdot
and G, excess heating of the electron gas by the heating current in the nar-
row channel can be excluded as a source for the broadening. It may be due
to the intrinsic broadening of the levels in the dot in the regime kBT <∼ hΓ,
which is not taken into account theoretically [36]. In addition, electron-gas
heating due to residual electrical noise cannot be excluded completely at
these low temperatures.

The lattice-temperature dependence of the thermovoltage oscillations is
shown in Fig. 4.18, where traces of Vth versus VE are given for three different
temperatures (obtained using a heating current of I = 18 nA). The poor
signal-to-noise ratio is due to the very low heating current, which we choose
to ensure that the measurements are made in the linear response regime
(see also Fig. 4.19, below). The sawtooth lineshape of the thermopower
oscillations is most pronounced at the lowest lattice temperature of T =
45 mK, and is gradually replaced by a more symmetric lineshape as T is
increased to 313 mK. If the temperature is further increased to 750 mK,
the oscillations are no longer observable using I = 18 nA, due to the large
noise level. If larger heating currents are used, however, the oscillations
can still be observed even at 1.5 K (not shown).
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Figure 4.18: Thermovoltage as a function of VE at lattice temperatures of T = 45,
200 and 313 mK, obtained using a heating current of 18 nA.

A comparison of the temperature dependence of the thermovoltage oscil-
lations with theory (Ref. [36] and chapter 2, section 2.4) requires knowledge
of the applied temperature difference ∆T across the dot. This is difficult
if ∆T is applied using a current-heating technique, however, since in that
case ∆T depends on several parameters that are not well known. The
order of magnitude of ∆T may be estimated using a heat balance argu-
ment [37], cv∆T = (I/W )2ρτε, with cv = (π2/3)(kBT/EF)nskB the heat
capacity per unit area of the 2DEG, I the heating current, W the channel
width, ρ the channel resistivity, and τε an energy relaxation time associ-
ated with energy transfer from the electron gas to the lattice. Using the
theoretical result for the peak-to-peak amplitude of the thermopower oscil-
lations ∆Vth ≈ (e/2CT )∆T , and inserting the measured ∆Vth from the 200
mK trace in Fig. 4.18 and our estimate for the charging energy, we obtain
∆T ≈ 0.5 mK. This implies for the heat balance that τε = 10−10 s, which
is not unreasonable [37].

We now turn to a discussion of an intriguing result found in experiments
beyond the regime of linear response. In Fig. 4.19 the peak-to-peak ampli-
tude ∆Vth of the thermovoltage oscillations is shown as a function of heating
current at a lattice temperature of T = 45 mK (using another device, with
tunnel barriers adjusted to a conductance of approximately 0.5e2/h). It is



4.5. THERMOPOWER OSCILLATIONS 109

Figure 4.19: Peak-to-peak amplitude of the thermovoltage oscillations as a func-
tion of the heating current, at a lattice temperature of T = 45 mK. The dashed
line indicates a quadratic increase of the amplitude with heating current. Inset:
Thermovoltage versus VE at a lattice temperature of T = 45 mK. From top to
bottom, the heating curent is 0.1, 0.2, . . ., 0.9 µA.

obtained by subtracting traces of Vth as a function of heating current at a
maximum and at an adjacent minimum of the thermovoltage oscillations.
(Note that the oscillations do not shift in gate voltage as the heating cur-
rent is increased, see inset in Fig. 4.19.‡) As shown by a comparison with
the dashed curve, which corresponds to a quadratic increase of the am-
plitude with current, the linear-response regime extends up to I <∼ 0.1 µA.
(We assume that Joule heating is the dominant mechanism for the increase
in temperature of the electron gas in the channel, so that linear response
to a temperature difference corresponds to Vth ∝ I2 [37].) As the current
is increased further, a remarkable damped oscillatory behavior of ∆Vth is
found. At approximately 0.65 µA the amplitude reverses sign (as is also
clear from the inset). Using the heat balance argument discussed above,
we estimate that the temperature of the electron gas in the channel is as
high as a few kelvin at this current level, so that ∆T � T,∆E/kB. It may

‡Vth becomes more negative with increasing current. We attribute this to the increas-
ing negative contribution of the reference point-contact to Vth [cf. Eq. (4.5)].



110 CHAPTER 4. QUANTUM DOTS

be significant that kB∆T is comparable to e2/C under these conditions. A
theoretical study of the thermovoltage of a quantum dot beyond the regime
of linear response is called for.

In conclusion, we have presented an experimental study of the ther-
mopower of a quantum dot in the Coulomb-blockade regime. The ther-
mopower is observed to oscillate in a sawtooth-like fashion as the dot is
depopulated, with a period equal to that of the Coulomb-blockade oscilla-
tions in the conductance. This is in agreement with a recent theory [36].
In the nonlinear regime at large heating currents, a remarkable change of
sign of the amplitude of the thermopower oscillations is observed, which
remains to be understood.
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Summary

Fundamental solid-state physics has benefitted greatly from the industrial
effort to increase the performance of semiconductor devices. The advances
in microfabrication technology this effort has led to, underlie major break-
throughs that have been established in the past decade in the field of meso-
scopic physics. This is a new branch of solid-state physics that is concerned
with the study of “small” systems, where small means dimensions compa-
rable to some relevant physical length scale. As a result mesoscopic systems
have interesting properties and exhibit many novel physical phenomena.

This thesis deals with the phenomenon of “Coulomb-blockade oscilla-
tions in quantum dots and wires.” In a quantum dot, the electron gas is
confined to a small volume, such that its energy spectrum consists of dis-
crete levels; in a quantum wire, it is confined in two directions only. Both
quantum dots and wires can be defined in the two-dimensional electron
gas (2DEG) in a modulation-doped GaAs–AlxGa1−xAs heterostructure by
means of an appropriate pattern of split gate-electrodes, fabricated on top
of the heterostructure using electron-beam lithography. Application of a
negative voltage (with respect to the 2DEG) replicates this pattern into the
2DEG. Coulomb blockade refers to the suppression of tunneling through a
system with ultra-small capacitance, e.g., a quantum dot or small metal
particle, at low temperatures and small applied voltages. The reason for
this suppression is that the electrostatic charging energy required to add a
single electron to such a system is not available (because it is large com-
pared to the thermal energy). The charging energy can be reduced by
means of a voltage applied to a gate electrode that is capacitively coupled
to the system. This lifts the Coulomb blockade which results in periodic
conductance oscillations as a function of the gate voltage. These are the
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Coulomb-blockade oscillations.
After an introduction in chapter 1 to the basic concepts used in this

thesis, a theory for Coulomb-blockade oscillations in quantum dots is sum-
marized in chapter 2. The periodicity of the oscillations at zero tempera-
ture is derived from equilibrium properties of the system, and a discussion
is given of limiting cases of the general result of a kinetic theory for trans-
port through the dot at finite temperatures. These consist of the classical
limit, in which the energy spectrum of the dot can be treated as a contin-
uum (as in metals), and the quantum limit, in which transport proceeds
by resonant tunneling through a single discrete energy level in the dot. In
addition, Coulomb-blockade oscillations in the thermopower of a quantum
dot are discussed. In contrast to the conductance oscillations, which consist
of a series of sharp peaks, the thermopower oscillations have a sawtooth
line shape.

Chapter 3 deals with disordered quantum wires. In spite of the disor-
dered nature of these wires, the conductance is found to exhibit periodic
oscillations as a function of gate voltage. This is the case in both inten-
tionally (Be doped) and unintentionally disordered wires. The oscillations,
which persist up to a few kelvin, have a period that does not correlate with
wire length, and that is quite insensitive to a strong magnetic field. These
observations can be interpreted consistently in the frame work of Coulomb-
blockade oscillations, if one assumes that the disorder results in the natural
formation of a quantum dot in the wire.

Chapter 4 deals with Coulomb-blockade oscillations in quantum dots.
The irregular envelope, i.e., the variation of the amplitude of the oscilla-
tions from peak to peak, is found to change into a periodic modulation in
quantizing magnetic fields. This is interpreted in terms of cyclic depopu-
lation of the Landau levels in the dot by a single electron per Landau level
per period, with tunneling occurring predominantly through a single edge
state of the outermost Landau level. In addition, it is shown that Coulomb
charging effects have to be taken into account even in the presence of adia-
batically transmitted edge channels through the dot. This is because edge
channels confined to the dot are separated from transmitted edge channels
by incompressible regions, i.e. dielectric-like regions, acting as tunnel bar-
riers. Finally, an account is given of the first observation of sawtooth like
Coulomb-blockade oscillations in the thermopower of a quantum dot, in
agreement with theory.
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Samenvatting

De fundamentele vaste-stoffysica heeft veel profijt gehad van de indus-
triële inspanning om de prestatie van halfgeleiderdevices op te voeren.
De vooruitgang in microfabricagetechnieken waartoe deze inspanning heeft
geleid, ligt ten grondslag aan belangrijke doorbraken die in het afgelopen de-
cennium tot stand zijn gebracht op het gebied van de mesoscopische fysica.
Dit is een nieuwe tak van de vaste-stoffysica die zich bezig houdt met de
studie van “kleine” systemen. Klein betekent hier afmetingen vergelijkbaar
met een relevante fysische lengteschaal, waardoor mesoscopische systemen
interessante eigenschappen bezitten en veel nieuwe fysische verschijnselen
vertonen.

Dit proefschrift behandelt het verschijnsel van “Coulomb-blokkade os-
cillaties in quantum dozen en draden”. In een quantum doos is het elek-
tronengas in een klein volume opgesloten, zodanig dat het energiespectrum
uit discrete niveaus bestaat; in een quantum draad is het in slechts twee
richtingen opgesloten. Zowel quantum dozen als draden kunnen in het twee-
dimensionale elektronengas (2DEG) in een modulatie-gedoteerde GaAs–
AlxGa1−xAs heterostruktuur worden gedefiniëerd door middel van een
geschikt patroon van split-gate elektroden, dat met behulp van elektron-
bundel lithografie boven op de heterostruktuur wordt aangebracht. Door
een negatieve gatespanning (ten opzichte van het 2DEG) aan te leggen
wordt dit patroon in het 2DEG gekopieerd. Coulomb blokkade verwijst
naar de onderdrukking van tunneling door een systeem met ultra-kleine
capaciteit, bijvoorbeeld een quantum doos of klein metaaldeeltje, bij lage
temperaturen en kleine aangelegde spanningen. De reden voor deze onder-
drukking is dat de elektrostatische ladingsenergie, die nodig is om één enkel
elektron aan het systeem toe te voegen, niet beschikbaar is (omdat die groot
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is ten opzichte van de thermische energie). De ladingsenergie kan worden
gereduceerd door middel van een spanning die wordt aangelegd op een gate
elektrode die capacitief aan het systeem is gekoppeld. Hierdoor wordt de
Coulomb blokkade opgeheven, hetgeen periodieke geleidingsoscillaties als
functie van de gatespanning tot gevolg heeft. Dit zijn de Coulomb-blokkade
oscillaties.

Na een inleiding in hoofdstuk 1 in de basisconcepten die in dit proef-
schrift worden gebruikt, wordt in hoofdstuk 2 een samenvatting gegeven
van een theorie voor Coulomb-blokkade oscillaties in een quantum doos.
De periodiciteit van de oscillaties bij temperatuur nul wordt afgeleid van
de evenwichtseigenschappen van het systeem, en limietgevallen van het al-
gemene resultaat van een kinetische theorie voor transport door de doos
bij eindige temperaturen worden besproken. Deze bestaan uit de klassieke
limiet, waarin het energiespectrum van de doos als een continuüm mag wor-
den behandeld (zoals in metalen), en de quantum limiet, waarin het trans-
port plaatsvindt door resonant tunnelen door één enkel energie niveau in de
doos. Voorts worden de Coulomb-blokkade oscillaties in de thermokracht
van een quantum doos besproken. In tegenstelling to de oscillaties in de
geleiding, die uit een serie scherpe pieken bestaan, hebben de oscillaties in
de thermokracht de vorm van een zaagtand.

Hoofdstuk 3 behandelt wanordelijke quantum draden. Ondanks het
wanordelijke karakter van deze draden vertoont de geleiding hiervan peri-
odieke oscillaties als functie van de gatespanning. Dit is het geval in draden
waarin zowel opzettelijk (Be dotering) als onopzettelijk wanorde is aan-
gebracht. De periode van de oscillaties, die tot een paar kelvin waarneem-
baar zijn, vertoont geen correlatie met de draadlengte en is vrij ongevoelig
voor een sterk magnetisch veld. Deze waarnemingen kunnen consistent wor-
den verklaard in het kader van Coulomb-blokkade oscillaties, indien men
aanneemt dat de wanorde leidt tot de natuurlijke vorming van een quantum
doos in de draad.

Hoofdstuk 4 behandelt Coulomb-blokkade oscillaties in quantum dozen.
De onregelmatige omhullende, d.w.z. de variatie van de amplitude van de
oscillaties van piek tot piek, blijkt in een quantiserend magnetisch veld
te veranderen in een periodieke modulatie. Dit wordt verklaard in ter-
men van cyclische depopulatie van de Landau niveaus in de doos, met
één enkel elektron per Landau niveau per periode, waarbij tunneling voor-
namelijk optreedt door één enkele randtoestand van het buitenste Landau
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niveau. Voorts wordt er aangetoond dat ladingseffecten zelfs in rekening
moeten worden gebracht in de aanwezigheid van adiabatisch doorgelaten
randkanalen door de doos. De reden hiervoor is dat de randkanalen die in
de doos zijn opgesloten door incompressibele gebieden, d.w.z. diëlectricum-
achtige gebieden, van de doorgelaten kanalen worden gescheiden. Tenslotte
wordt er een verslag gegeven na de eerste waarneming van zaagtandvormige
Coulomb-blokkade oscillaties in de thermokracht van een quantum doos, in
overeenstemming met de theorie.
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6. De polaire molecuul-oriëntatie in het centrum van een vloeibaar-
kristalcel wordt bepaald door de azimuthale verdeling in de eerste
moleculaire monolaag op het gewreven polymeer-glas substraat.

– M. Barmentlo, R. W. J. Hollering en N. A. J. M.
van Aerle, Phys. Rev. A 46, 15 oktober 1992

7. Het grote externe rendement waargenomen bij fotoluminescen-
tiemetingen aan poreus Si kan worden verklaard op grond van de
onderdrukking van niet-stralende processen.

– G. W. ’t Hooft, Y. A. R. R. Kessener, G. L. J. A.
Rikken en A. H. Venhuizen, Appl. Phys. Lett. 61, 9
november 1992

8. Metingen aan hagelruis leveren informatie die niet kan worden
verkregen uit geleidingsmetingen.

– C. W. J. Beenakker en M. Büttiker, Phys. Rev. B 46,
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