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1 Introduction

In this thesis we study electrical and optical transport properties of systems in
which the dynamics of the electrons or photons is chaotic. We concentrate on
two types of geometries, waveguides and cavities. In waveguides, the chaotic dy-
namics arises due to the scattering on randomly placed impurities, whereas in
cavities it can be due to the irregular shape of the boundaries. The behaviour of
such systems in quantum mechanics or wave optics can be quite different from
what is known in classical mechanics or geometrical optics, due to the inter-
play of multiple scattering and wave interference. In electrical conductors this
interplay affects the conductance and other transport properties like the shot
noise and the thermopower. In optical systems the speckle pattern of transmit-
ted radiation reveals the chaotic dynamics of the photons. In this first chapter
we introduce the techniques we will use to describe disordered waveguides and
chaotic cavities, as well as the physical quantities that we will study.

1.1 Scattering theory

1.1.1 Landauer formula

The Landauer formula [1] relates the zero-temperature conductance G to the
quantum-mechanical transmission matrix t,

G = 2e2

h
Tr tt†. (1.1.1)

It provides the link between optics and electronics, because the transmission
matrix — unlike the conductance — can also be defined for classical waves. It
can also be generalized to other transport properties, such as the shot noise [2]
and the thermopower [3]. Before discussing these generalizations, we give an
elementary derivation of Eq. (1.1.1).

Consider a metal sample connected to two electron reservoirs as in Fig. 1-1.
In the leads between the sample and the reservoirs, the eigenstates are of the
form

ψ±n(r) =
1√
kn

e±iknxχn(y, z), (1.1.2)

where the plus (minus) sign is for the right (left) moving state. The transverse
wave functions χn(y, z) are solutions of the wave equation in a confining poten-
tial V(y, z), [

− �
2

2m

(
d2

dy2
+ d2

dz2

)
+ V(y, z)− En

]
χn(y, z) = 0. (1.1.3)
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Figure 1-1. Conductor (shaded) coupled to two electron reservoirs by leads. A current I is

passed through the leads for a voltage difference V between the reservoirs. The conductance

of the system is G = I/V .

The longitudinal wave-number kn at the Fermi energy EF is given by

�kn =
√

2m(EF − En). (1.1.4)

For long enough leads only the N modes with real kn can carry current.
A general incoming state is a superposition of all incoming modes from the

left and from the right, the 2N coefficients forming vectors c+L and c−R . Similarly,
the outgoing state is described by a 2N vector (c−L , c+R ). The scattering matrix S
relates the amplitudes of the incoming and outgoing modes,

(
c−L
c+R

)
= S

(
c+L
c−R

)
, S =

(
r t′
t r ′

)
, (1.1.5)

where r and t (r ′ and t′) are the N ×N reflection and transmission matrices for
scattering from the left (right). Flux conservation requires that S is a unitary ma-
trix, SS† = 1. In the absence of a magnetic field the matrix S is also symmetric,
S = ST.

Consider now the situation that a voltage difference V is applied between
the reservoirs at zero temperature. In the left (right) reservoir all states below
EF + eV (EF) are occupied, while the other states are empty. Only states in the
interval EF < E < EF + eV contribute therefore to the current. If the leads are
connected ideally to the reservoirs, the current carried by the right-moving state
n in this energy interval is

∫ EF+eV
EF

evnρn dE, where vn and ρn are the group ve-
locity and density of states of the one-dimensional subband. It follows from
vn = dEn/�dk and ρn = 2 (2πdEn/dk)−1 that the injected current equals the
universal amount 2e/h per channel, per unit of energy. The factor of 2 accounts
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Figure 1-2. Left: schematic view of a quantum point contact. The width is adjustable by

the voltage on a gate electrode. Right: conductance as a function of gate voltage, showing

conductance quantization. (From Ref. [5].)

for spin degeneracy. A fraction
∑
m |tmn|2 is transmitted to the right lead, there-

fore the total current is

I = 2e
h

N∑
m,n=1

∫ EF+eV

EF

dE |tmn|2. (1.1.6)

The conductance G is the ratio I/V in the limit V → 0, hence we obtain the
Landauer formula

G = 2e2

h

N∑
m,n=1

|tmn|2 = 2e2

h
Tr tt†. (1.1.7)

The Landauer formula has been successfully applied to a great variety of
mesoscopic systems [4]. We illustrate its application to what is perhaps the
most basic system, the quantum point contact (QPC). A QPC is a constriction in
a two-dimensional electron gas of variable width W , comparable to the Fermi
wavelength λF. For ballistic motion through the QPC the eigenvalues of tt† are
equal to zero or one with good accuracy. According to the Landauer formula the
conductance is quantized,

G = 2e2

h
NQPC, (1.1.8)

where NQPC ' 2W/λF is the number of unit eigenvalues of tt†. The stepwise
increase of G with increasing width of the QPC is shown in Fig. 1-2.

1.1.2 Thermopower

Electrical conduction at zero temperature is determined by quantum mechanical
scattering at the Fermi energy. Thermo-electrical properties probe the energy
dependence of these scattering processes. In this thesis we will consider the
thermopower.
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I=0

V

T 
T+ ∆T 

Ih

Figure 1-3. Schematic view of an experiment to measure the thermopower. A heating current

Ih is passed on the left side of the conductor, to create a temperature difference ∆T . A voltage

V is applied to compensate the resulting electrical current I.

When a temperature difference ∆T = T1 − T2 is maintained between the two
reservoirs an electrical current will flow. This current can be compensated by ap-
plying a voltage V yielding a current in the opposite direction. The thermopower
S is defined as the (negative) ratio of V and ∆T such that the net current van-
ishes, in the limit ∆T → 0,

S = − lim
∆T→0

V
∆T

∣∣∣∣
I=0
. (1.1.9)

Thermo-electric transport can be described in terms of the transmission ma-
trix [3] by generalizing Eq. (1.1.6) to finite temperatures,

I = 2e
h

N∑
m,n=1

∫
dE

[
f(E − eV , T +∆T)|tmn|2 − f(E, T)|t′mn|2

]
, (1.1.10)

where f(E, T) is the Fermi-Dirac distribution,

f(E, T) = 1
1+ exp [(E − EF)/kBT]

. (1.1.11)

Expansion in V and ∆T yields

I = 2e
h

∫
dE

(E − EF

T
∆T − eV

)
Tr
(
tt†

) d
dE
f(E). (1.1.12)

Thus the thermopower is given by the Cutler-Mott formula

S = − 1
eT

∫
dE (E − EF)Tr

(
tt†

)
df/dE∫

dE Tr (tt†)df/dE
. (1.1.13)
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Figure 1-4. Thermopower and conductance of a quantum point contact as a function of gate

voltage. The peaks in the thermopower line up with the steps in the conductance. (From

Ref. [6].)

If kBT is smaller than the energy scale at which Tr tt† varies, the energy integrals
can be done using partial integration and the Sommerfeld expansion, yielding

S = −π
2

3
k2

BT
e

d
dETr

(
tt†

)
Tr (tt†)

∣∣∣∣∣∣
E=EF

. (1.1.14)

Fig. 1-4 shows the measured thermopower of a quantum point contact, plot-
ted together with the conductance. As expected from Eq. (1.1.14), the ther-
mopower peaks at the transitions between conductance plateaux.

In Chapter 5 we consider the thermopower of a chaotic electron cavity. Fig.
1-5 shows an experimental result on such a system. Plotted is the distribution
of the thermopower, sampled over different values of the magnetic field and a
gate voltage changing the shape of the cavity. The result compares well with a
random matrix simulation, and is clearly non-Gaussian.

1.1.3 Shot noise

The conductance describes the time-averaged current. Two fundamental sources
for time-dependent fluctuations in the current are thermal noise and shot noise
[2, 8]. Thermal noise arises because at finite temperatures the occupation of
states around the Fermi level fluctuates. Shot noise is still present at zero tem-
perature, and arises due to discreteness of the charge.
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Figure 1-5. Distribution of the thermopower (arbitrary units) of a ballistic quantum dot. Data-

points represent the measured distribution; full curve is the result of a random matrix simu-

lation. Dotted curve is an attempt to fit the measured distribution with a Gaussian. (From

Ref. [7].)

The correlator of the current fluctuations ∆I(t) = I(t) − I has the spectral
density

P(ω) = 2
∫∞
−∞
dt eiωt∆I(t0)∆I(t0 + t), (1.1.15)

where the bar · · · indicates an average over the initial time t0. The spectral
density (1.1.15) can be related to the scattering matrix. In the zero-temperature,
zero-frequency limit, the result is [2]

P(0) = 2e2

h
2eV Tr

[
tt†

(
1− tt†)] . (1.1.16)

If all the eigenvalues of tt† are � 1 (for example in a tunnel barrier) then the
factor 1 − tt† can be omitted, and the noise power is proportional to the con-
ductance. In this case the noise power is given by the Poisson formula,

PPoisson = 2eVG = 2eI, (1.1.17)

corresponding to uncorrelated transmission events. If one of the eigenvalues of
tt† becomes of order unity, the shot noise is suppressed below PPoisson, due to
correlations between transmission events. One speaks of sub-Poissonian shot
noise.

In Fig. 1-6 the measured noise power of a quantum point contact is plotted.
The shot noise is strongly suppressed below the Poisson value on the conduc-
tance plateaux.
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Figure 1-6. Shot noise power of a quantum point contact as a function of gate voltage. The

current-driving voltage is 0.5, 1, 1.5, 2, and 3 mV, starting from the bottom curve. The upper

curve shows the conductance. (From Ref. [9].)

1.1.4 Optical speckle

Laser light reflected by a rough surface produces a speckle pattern on a screen,
a random pattern of dark and bright spots. The spatial distribution of the inten-
sity I on the screen has the exponential form,

P(I) = 1
〈I〉 exp

(
− I
〈I〉

)
, (1.1.18)

where 〈I〉 is the spatial average of the intensity. This so-called Rayleigh distribu-
tion arises because the local field amplitude ψ is the sum of many uncorrelated
contributions from light scattered in different ways. Thus its real and imaginary
parts are independent Gaussian random numbers of zero average, yielding Eq.
(1.1.18) for the intensity I = |ψ|2.

Speckle also occurs if light is transmitted through a disordered medium.
Consider for instance the transmission of a laser beam through the disordered
waveguide of Fig. 1-7 (top panel). The fraction of the light transmitted to mode
m is given by Tmn = |tmn|2, where n labels the mode in which the light is in-
jected. When the transmitted light is collected on a screen, the spatial intensity
distribution corresponds to the distribution of Tmn over outgoing modes m. By
collecting all the outgoing modes (as in Fig. 1-7, bottom panel) one measures the
total transmitted intensity. It is a fraction Tn =

∑
m Tmn of the incident intensity

in mode n. This fraction fluctuates as a function of n and also for fixed n from
one sample to another. For short waveguides in which the propagation of light
is diffusive, Tmn has a Rayleigh distribution for moderate values, and the distri-
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Figure 1-7. Schematic picture of a measurement of the optical transmittances Tmn and Tn.

Only mode n is incident; the photodetector measures either the light transmitted in mode m
(top diagram) or the light transmitted in all modes (bottom diagram).

bution of Tn is approximately Gaussian with a variance much smaller than the
mean. Deviations are found in the tails of the distributions. This is due to the
effects of (weak) localization, discussed in the next section.

1.2 Disordered waveguides

So far we discussed the scattering formalism and its application to electrical
and optical systems in general. The theory was illustrated for a simple ballistic
geometry, the quantum point contact. This thesis is about two types of systems
with more complicated, chaotic scattering. First we discuss scattering caused by
randomly placed impurities, which make the motion diffusive. In Sec. 1.3 chaotic
ballistic systems are introduced. In such systems chaotic scattering arises not
due to impurities, but due to a complicated geometry.

Disorder can turn propagating waves into localized states which fall off ex-
ponentially. This phenomenon, known as Anderson localization, is the result of
interference between multiply scattered waves. The effect on electrical conduc-
tion is drastic: it turns a conductor into an insulator. Below we discuss three
techniques used to describe disordered systems.

1.2.1 Semiclassical theory of weak localization

The conductance of a diffusive metal is given by Ohm’s law, with a small nega-
tive correction. This correction is a precursor of Anderson localization, which
goes under the name of weak localization. Whereas the theory of Anderson
localization is complicated, weak localization can be understood in a simple
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B

e

Figure 1-8. Observation of weak localization in a hollow metal cylinder. The resistance os-

cillates as a function of the flux due the Aharonov-Bohm effect. A cylinder is effectively an

ensemble of rings, and therefore one measures the weak-localization correction to the conduc-

tivity. Weak localization is due to the interference of paths with their time-reversed partners,

like the two shown. (From Ref. [10].)

semiclassical picture, based on the constructive interference of paths with their
time-reversed partners. A magnetic field breaks the symmetry between these
pairs of paths, and therefore destroys the weak-localization correction. Thus
the experimental signature of weak localization is a negative magnetoresistance.

A similar phenomenon occurs in multiply-connected samples threaded by a
magnetic flux. In that case the ensemble-averaged conductance shows oscilla-
tions on top of the classical value as a function of the flux, with period h/2e (Fig.
1-8). This is the realization of the Aharonov-Bohm effect for electrons in a solid.

Weak localization is understood in a simple way by combining the notion of
Feynman paths with random walks [11, 12]. In the Feynman picture, the proba-
bility P(r, r′, t) of a particle to propagate from r to r′ in a time t is the squared
modulus of the sum of the amplitudes Ai of all paths i connecting the two
points,

P(r, r′, t) =
∣∣∣∣∣∣
∑
i

Ai

∣∣∣∣∣∣
2

=
∑
i

|Ai|2 +
∑
i≠j

AiA∗j . (1.2.1)

The first term is the classical probability, which does not depend on the phases
of Ai. The second term is due to quantum-mechanical interference. It oscillates
as a function of the phases, which depend sensitively on the precise geometry of
the paths. Therefore, the second term vanishes on averaging over all impurity
configurations, but not completely. What remains is a particular set of terms
when r = r′, consisting of all pairs of paths i and j which are time-reversed
partners. These terms yield a contribution doubling the classical result. Thus,
the probability of the particle to return to its starting point is enhanced by a
factor of two.
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It was shown by Chakravarty and Schmid [13] that the weak-localization cor-
rection ∆σ to the conductivity σ is given by

∆σ
σ

= −2�
m

∫∞
0
dt P(r, r, t)e−t/τφ , (1.2.2)

(for dimension d = 2) where τφ is the time after which a particle looses its
phase coherence, for instance by electron-electron scattering. In the absence
of a magnetic field one can compute the return probability classically from the
diffusion equation [

∂
∂t
−D ∂

2

∂r2

]
P(r, r′, t) = δ(t)δ(r − r′). (1.2.3)

The influence of a magnetic field on ∆σ can be found by generalizing P to a
“quasi-probability” P̃ , where each classical return path is weighted with the com-
plex factor

exp
[

2ie
�c

∮
A(r) · dr

]
. (1.2.4)

In the diffusion equation (1.2.3), this phase factor is taken into account by mak-
ing the substitution

∂
∂r
→ ∂
∂r
− 2ie
�c

A(r). (1.2.5)

This accounts for the coupling of a magnetic field to the charge of the particle.
The Zeeman coupling of a non-uniform field to the spin has a similar effect on
weak localization, which we discuss next.

The adiabatic theorem of quantum mechanics implies that the final state of
a spin moving slowly along a closed path in a non-uniform field B(r) is identical
to the initial eigenstate — up to a phase factor. The Berry phase is a time-
independent contribution to this phase. Like the Aharonov-Bohm phase, it de-
pends on the geometry of the path [14]. For a spin-1/2 particle, the Berry phase

B(r)

I

Figure 1-9. Schematic view of an experiment proposed to observe the Berry phase of a spin

via the conductance of a metal ring. If the non-uniform magnetic field is strong enough, the

particle picks up a path-independent geometric phase (or Berry phase) which is different for

both arms, yielding interference oscillations in the average conductance.
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equals half the solid angle traced out by B along the path. It was proposed to
observe the Berry phase in the conductance of a solid ring with a non-uniform
magnetic field applied in the sample (Fig. 1-9), such that paths along the left
or right arm pick up different phases before interfering [15, 16]. A difference
between the Berry and Aharonov-Bohm phases is that the former requires a suf-
ficiently strong field in order to have slow, “adiabatic” dynamics, whereas the
latter is present for arbitrary field strength.

1.2.2 Herbert-Jones-Thouless formula

In one-dimensional disordered systems all eigenstates are localized. The local-
ization length ξ(E) is defined as the spatial scale on which an eigenstate at
energy E falls off exponentially. If E is not precisely equal to an eigenvalue, one
can still define ξ(E) for an open sample as the rate at which the transmission
probability T(E) falls off,

lim
L→∞

L−1 lnT(E) = −2/ξ(E). (1.2.6)

The Herbert-Jones-Thouless formula [17,18] relates ξ to the density of states ρ,
both evaluated at the energy E,

L
ξ(E)

=
∫
dE′ρ(E′) ln |E − E′| + constant. (1.2.7)

The additive constant is energy-independent on the scale of the level spacing.
Eq. (1.2.7) has been derived formally for different models in Refs. [17] and

[18]. We repeat here the general argument of Thouless [18]. Consider a wave
function at energy E, ψ(x) ∼ eikx with a complex wave number k(E). The real
part of k gives rise to oscillations inψ. It is a basic theorem of quantum mechan-
ics that the number of nodes, RekL/π , equals the integrated density of states
N(E) = ∫ E dE′ρ(E′). On the other hand, the imaginary part of k gives rise to the
exponential decay of the wave function, and 1/ξ(E) = Imk. The Kramers-Kronig
relation for the analytic function k(E) reads

L
ξ(E)

= P
∫
dE′

N(E′)
E − E′ (1.2.8)

Partial integration of the right hand side yields Eq. (1.2.7).

1.2.3 Dorokhov-Mello-Pereyra-Kumar equation

The Herbert-Jones-Thouless formula applies to single-mode waveguides. We
now discuss a technique to study localization in multi-mode waveguides. Con-
sider an N-channel waveguide of length L. The transmission eigenvalues τ1, . . . ,
τN are numbers between 0 and 1, defined as the eigenvalues of the matrix
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tt†. The Dorokhov-Mello-Pereyra-Kumar (DMPK) equation [19] is a Fokker-Planck
equation for the evolution as a function of L of the probability density P(x1, x2,
. . . , xN, L), where xk is defined by τk = cosh−2xk,

`
∂P
∂L

= 1
2(βN + 2− β)

N∑
k=1

∂
∂xk

( ∂P
∂xk

+ βP ∂Ω
∂xk

)
, (1.2.9)

Ω = −
N∑
i=1

N∑
j=i+1

ln | sinh2xj − sinh2xi| − 1
β

N∑
i=1

ln | sinh 2xi|. (1.2.10)

The integer β equals 1 (2) when time-reversal symmetry is present (broken).
Eq. (1.2.9) is derived by computing the change in the scattering matrix S if the
length of the wire is increased from L to L + δL, under the condition that the
mean free path ` exceeds the wavelength λ. Another essential assumption in
the derivation is the statistical equivalence of scattering from any channel to
any other channel. This isotropy assumption is correct if the waveguide is much
longer than wide, such that the time for transverse diffusion can be neglected.

Eq. (1.2.9) was solved exactly for β = 2 [20]. As an illustration of the solution
we show the result for the eigenvalue density ρ, obtained by integrating the joint
distribution P over all but one arguments,

ρ(x, L) = N
∫∞

0
dx2 · · ·

∫∞
0
dxNP(x,x2, . . . , xN, L). (1.2.11)

It determines the average of a transport quantity A = ∑N
k=1 a(τk), where a(τ)

is an arbitrary function of the transmission eigenvalues. Like the exact joint
distribution, the density is a complicated expression in terms of Legendre func-
tions [21]. The result is plotted in Fig. 1-10, for N = 5 and values of L/` in the
diffusive, localized, and crossover regime. In the diffusive regime L � N`, the
density of xk’s is uniform,

ρ(x, L) = N`
L
θ(L/` − x). (1.2.12)

This result holds for β = 1 as well, and describes the regime of classical dif-
fusion. For the average of the conductance G = (2e2/h)

∑
k τk one recovers

from Eq. (1.2.12) Ohm’s law, 〈G〉 = (2e2/h)N`/L. In the transition towards the
localized regime L ∼ N`, the density starts to develop peaks, indicating a “crys-
tallization” of the eigenvalues. In the localized regime L� N`, the xk’s are fixed
at positions spaced by L/N`. All transmittances T , Tn, and Tmn are then domi-
nated by the largest transmission eigenvalue τ1 = cosh−2x1. Its distribution is
log-normal, with

Var (lnτ1) = −2〈lnτ1〉 = 4L
βN`

. (1.2.13)
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Figure 1-10. Exact eigenvalue density for N = 5 and s = L/` = 100, 10 and 2, respectively,

for curves a, b, and c. The xk’s are uniformly distributed in the metallic regime (the wiggles

in curve c are due to the relatively small channel number N), and form a “crystal” with lattice

spacing L/N` in the localized regime. (From Ref. [21].)

1.3 Chaotic cavities

In disordered systems the motion is chaotic as a result of multiple scattering
by impurities. Disorder is not required for chaoticity, as is illustrated in Fig.
1-11. It shows a particle bouncing in a circular and a stadium billiard. These are
examples of systems whose classical dynamics is integrable respectively non-
integrable. Integrable systems are characterized by conserved quantities other
than the energy. Non-integrable systems, in contrast, have only the energy as a
conserved quantity. Chaotic systems form a subset of non-integrable systems.
Two main characteristics of a chaotic system are the exponential separation of
initially nearby trajectories and their ergodic exploration of phase space.

The integrability determines also in quantum mechanics whether an explicit
solution for the dynamics can be written down or not. The quantum-mechanical
description of a classically chaotic system is central in the field of “quantum
chaos” [22, 23]. Exponential separation of trajectories is a purely classical con-
cept, and can not be used as a signature of chaotic quantum mechanics. The ob-
vious quantities to study for a quantum system are the energy levels and wave-
functions if the system is closed, or scattering states if the system is open. The
basic theoretical tool that we use to describe these quantities is random-matrix
theory (RMT) [24]. We introduce it separately for closed and open cavities.
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Figure 1-11. Billiards in the form of a circle (left) and a stadium (right). The lines inside the

billiard are trajectories followed by a particle or light ray. Motion in the circle is integrable,

while in the stadium it is non-integrable and chaotic.

1.3.1 Random-matrix theory of a closed cavity

In 1980 it was conjectured [25] that the spectrum of a classically chaotic system
is statistically described by RMT. RMT was originally developed to describe res-
onances in nuclear scattering, with the underlying idea that a system of strongly
interacting nucleons is so complex that a statistical description works well. The
realization of chaos in mesoscopic systems has stimulated many applications of
RMT to quantum transport problems [26,27].

The basic assumption of RMT is that the distribution of the Hamiltonian H
is of the simple form

P(H )∝ exp

[
−
∑
n
V(En)

]
. (1.3.1)

The function V(E) of the eigenvalues is usually taken quadratic, V(E) = cE2.
Eq. (1.3.1) then defines the Gaussian Ensemble. The parameter c determines the
average spacing ∆ between the levels. Depending on the absence or presence
of time-reversal symmetry we speak of the Gaussian Unitary Ensemble (GUE) or
the Gaussian Orthogonal Ensemble (GOE), respectively. In the first case H is a
complex Hermitian matrix, in the second case a real symmetric matrix. There
exists also a third symmetry class, the symplectic ensemble, describing systems
with strong spin-orbit coupling in zero magnetic field.

Eq. (1.3.1) implies for the distribution of the eigenvalues

P({Ek})∝
∏
i>j

|Ei − Ej|β exp

[
−
∑
n
V(En)

]
. (1.3.2)

The term multiplying the exponent is the Jacobian due to the change of variables
from matrix elements to eigenvalues. The Jacobian yields an effective repulsion
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Figure 1-12. Highly excited levels of a rectangular and a stadium billiard, compared with a set

of independently chosen random energy levels (Poisson) and a part of a spectrum of a random

matrix choosen from the GOE (Wigner). All spectra are normalized to the same average level

spacing. Spectra (a) and (b) have identical statistical properties, as well as (c) and (d). This is

expressed e. g. in the distribution of spacings s between neighbouring levels (normalized to

unit mean spacing). This is an exponential or Poisson distribution P(s) = e−s for (a) and (b),

and a Wigner-Dyson distribution P(s) = π
2 se

−π4 s2
for (c) and (d).

between neighbouring levels. Such level repulsion was found in numerical stu-
dies of quantum chaotic systems, in clear contrast with the uncorrelated spectra
of integrable systems (see Fig. 1-12). This observation led to the conjecture
that RMT applies to quantum chaotic systems [25]. Recently, the conjecture has
found analytical support as well [28].

Signatures of chaotic motion can also be found in the eigenstates (Fig. 1-13).
The statistical properties follow from the fact that Eq. (1.3.1) depends only on
the eigenvalues and not on the eigenvectors. The matrix of eigenvectors is uni-
formly distributed on the orthogonal (unitary) group. For orthogonal matrices
O with dimension M � 1, the matrix elements Oij are independent Gaussian
variables, with average zero, and variance 1/M . Thus, wave-function intensities
V |ψj(ri)|2 = M|Uij|2 at different sites are uncorrelated, and have the distribu-
tion

P
(
x = V |ψj(ri)|2

)
= 1√

2πx
e−x/2 (1.3.3)

(V is the volume of the system). Eq. (1.3.3) is called the Porter-Thomas distribu-
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Figure 1-13. Highly excited eigenstate of a chaotic quartered stadium billiard and an integrable,

rectangular billiard. Plotted are the nodal lines of the wavefunctions. (From Ref. [29].)

tion [30]. Similarly, for the unitary ensemble, the real and imaginary parts of Uij
are independent and Gaussian, yielding again vanishing spatial correlations and
an exponential intensity distribution,

P(x) = e−x. (1.3.4)

These wave-function distributions from RMT are consistent with a study by
Berry [31] of chaotic systems in the semiclassical limit � → 0. He conjectured
that a high-energy eigenfunction is effectively an infinite sum of plane waves
with random phases and amplitudes, and with wavevectors isotropically dis-
tributed on a sphere. (The waves are taken real or complex, depending on the
presence or absence of time-reversal symmetry.) Spatial correlations decay to
zero algebraically at the scale of the wavelength. This conjecture has been veri-
fied theoretically [32] and experimentally [33].

So far we discussed systems where discrete symmetries are either present
or fully broken. A symmetry can also be partially broken, for instance time-
reversal symmetry by a weak magnetic field. A random matrix ensemble that
interpolates between the GOE and the GUE is given by [34]

H = S + iγA, (1.3.5)

where S is real symmetric, A is real and antisymmetric, and both matrices have
the same distribution Eq. (1.3.1). For γ = 0 one has the GOE; for γ = 1 the GUE.
We will study the wavefunction statistics of this ensemble later on.

1.3.2 Random-matrix theory of an open cavity

In order to study transport through a cavity, one has to couple it to the outside
world via leads. The Hamiltonian Hopen of the open system (cavity plus leads) is

Hopen =
∑
α
|α〉E〈α| +

∑
ij

|i〉Hij〈j| +
∑
αi

[|i〉Wiα〈α| + |α〉W∗
iα〈i|

]
, (1.3.6)

where H is the Hamiltonian of the (closed) cavity as studied in Sec. 1.3.1, and a
rectangular matrix W describes the coupling of the M states |i〉 in the cavity to
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N scattering states |α〉 at energy E. The scattering matrix is expressed in terms
of H and W as [35]

S(E) = 1− 2πiW † (E −H + iπWW †)−1W. (1.3.7)

The choice W =
√
M∆
π δiα corresponds to ideal, non-reflective coupling. In that

case the distribution of the scattering matrix is Dyson’s Circular Ensemble [36],

P(S) = constant. (1.3.8)

One can again distinguish between a unitary and orthogonal ensemble, consis-
ting of unitary, respectively unitary symmetric matrices. As a simple application,
one finds that, in the many-channel limit N � 1, the distribution of a transmit-
tance Tmn = |Smn|2 is given by the Rayleigh distribution (1.1.18), with average
〈Tmn〉 = 1/N.

In Eq. (1.3.8) we have lost all information about the energy dependence, which
is still contained in Eq. (1.3.7). If we are interested in the thermopower for
instance, we need the energy derivative of S, as shown in Sec. 1.1.2. Recently the
distribution of

Q = −i�S−1/2∂S
∂E
S−1/2 (1.3.9)

has been computed for a chaotic cavity [37]. The matrix Q is called the Wigner-
Smith time-delay matrix. It determines also the density of states of the open
system at the Fermi level, ρ = h−1TrQ. The reciprocal eigenvalues of Q are dis-
tributed according to the Laguerre ensemble, defined by Eq. (1.3.2) with V(E) ∝
E.

1.4 This thesis

Non-perturbative calculation of the probability distribution of plane-wave
transmission through a disordered waveguide

In Sec. 1.1.4 we mentioned that weak localization influences the distribution of
the speckle intensity I transmitted through a disordered medium. The distribu-
tions of the transmittances Tmn and Tn were computed in Refs. [38] and [39],
using perturbation theory in

〈∑
n Tn

〉−1. These theories apply to the diffusive
regime of large total transmittance

∑
n Tn = Tr tt†. The results for P(Tmn) show

a Rayleigh distribution with a non-exponential asymptote, in agreement with
experiments in the diffusive regime.

In the mean time, experimentalists have entered the localized regime (Fig.
1-14). In Chapter 2, we present non-perturbative results for P(Tmn) and P(Tn)
for a waveguide, which were obtained from the solution of the DMPK-equation
described in Sec. 1.2.3. The distribution shows the crossover from exponential
respectively Gaussian statistics in the diffusive regime to lognormal statistics
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in the localized regime. Our calculation is for broken time-reversal symmetry.
We also present perturbative results which indicate that the difference between
broken and unbroken time-reversal symmetry is quantitative rather than quali-
tative.

A qualitatively different crossover occurs if the disordered region is replaced
by a chaotic cavity. The transmittance distributions follow then from the circular
ensemble (1.3.8) for the scattering matrix.

Figure 1-14. Left: Distribution of the transmittance Tn, measured for a copper tube filled

with random pieces of dielectric material. Plotted are the results for three different lengths,

corresponding to N`/L = 15.0 (a), 9.0 (b), and 2.25 (c). The distribution becomes markedly

non-Gaussian as one approaches the localized regime. Right: similar for Tmn with N`/L = 1.1.

The dashed curve is the Rayleigh distribution. [From Ref. [40].]

Fluctuating phase rigidity for a quantum chaotic system with partially broken
time-reversal symmetry

In Chapter 3 we consider two anomalous properties of a closed chaotic system
which were found in the crossover regime between unbroken and fully broken
time-reversal symmetry [41, 42]. We show that both anomalies are due to the
fluctuations of what we call the phase rigidity ρ of an eigenstate ψ(r), defined
by

ρ =
∣∣∣∣
∫
drψ(r)2

∣∣∣∣2

. (1.4.1)

When going from the orthogonal to the unitary symmetry class following Eq.
(1.3.5), the distribution of ρ crosses over from a delta peak at one to a delta
peak at zero. The distribution is broadened in between.

The first property explained by the fluctuations in ρ is the existence of long-
range spatial correlations in eigenstates. As we mentioned in Sec. (1.3.1), the
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eigenstate amplitudes at different points in a closed chaotic cavity are uncorre-
lated, except for correlations on the scale of the wavelength. Therefore, it came
as a surprise that spatial correlations do exist in the crossover regime between
the orthogonal and unitary ensemble [41]. These correlations are of order unity,
and do not decay with distance (as long as there is no localization).

Although in electronic systems a direct measurement of wave-functions is
difficult, several quantities can be used as an indirect probe. As an example we
mention the conductance peak heights in the Coulomb-blockade regime. The
conductance of a quantum dot closed by tunnel barriers shows sharp peaks as
a function of the gate voltage, spaced by the electrostatic charging energy. For
temperatures T larger than the level broadening the peak heights are given by

Gmax = 2e2

h
1

4πT
ΓLΓR
ΓL + ΓR

. (1.4.2)

The contribution ΓL (ΓR) to the level width due to tunneling through the left (right)
lead is proportional to the squared modulus of the resonant wave function at
the point rL (rR) where the lead is attached, ΓL ∝ |ψ(rL)|2. In optical experiments
one can directly measure wave intensities. Several experiments were done for
instance on microwave cavities (Fig. 1-15). Here breaking of time-reversal sym-
metry is not as easy as in electronic systems.

The second property that we consider in this chapter concerns the response
of the energy levels En to an external perturbation of the system. In particular
we study the “level velocities”, defined as vn = dEn/dX. Here X is a parame-
ter that governs the perturbation, which is for instance an applied field or the
shape of the system. In the orthogonal and unitary ensemble, the level veloci-
ties have Gaussian distributions, but not in the crossover between the symmetry
classes [42]. We show that this is due to the fluctuations of the phase rigidity ρ.
We finally demonstrate that the responses of a single level to different, indepen-
dent perturbations are correlated in the regime of partially broken time-reversal
symmetry.

Figure 1-15. Experimentally obtained wavefunction. Plotted is a two-dimensional scan of the

intensity in a microwave cavity shaped like a quarter stadium. (From Ref. [43].)
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Quantum-statistical current correlations in multi-lead chaotic cavities

In Sec. 1.1.3 we discussed fluctuations in the current due to the discreteness of
the charge, and the suppression of this shot noise due to correlated transmis-
sion events. In chapter 4 we will consider a conductor coupled to four reservoirs
instead of two. The currents in such multi-terminal conductors do not only fluc-
tuate, but are also mutually correlated. The shot noise power (1.1.15) is easily
generalized to the power spectrum of the current correlations,

Pab(ω) = 2
∫∞
−∞
dt eiωt∆Ia(t)∆Ib(t0 + t), (1.4.3)

where ∆Ik(t) = Ik(t) − Ik is the fluctuation of the current through lead k. Eq.
(1.4.3) can be related to the scattering matrix [2]. Recently the current correlators
Pab have been measured for an “electronic beam splitter”, formed by four quan-
tum points contacts and a thin barrier in a two-dimensional electron gas [44];
see Fig. 1-16.

We computed the average zero-frequency power Pab(0) for a chaotic quan-
tum dot with open, many-channel leads, using the circular ensemble (1.3.8) for
the scattering matrix. Like the two-terminal shot noise, the current correlations
are of the order of the channel number, and are insensitive to dephasing. We
also consider the situation where the leads are closed by tunnel barriers with
transmission probability Γ . Finally, we compare the results with a classical re-
sistor network, were the currents are correlated due to charge conservation.

Figure 1-16. Left: Mesoscopic conductor with four contacts. A thin barrier in the middle serves

as an electronic analogue of a half-silvered mirror. Right: noise power versus average current,

both measured at the right-hand output contact. The transport noise is the part proportional

to the current. Results are given for three experiments: either current is incident in the left or

right input channel only (downward and upward triangles), or in both input channels (squares).

In the last case the noise power is reduced due to Pauli repulsion. [From Ref. [44].]
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Thermopower of single-channel disordered and chaotic conductors

In Sec. (1.1.2) we showed that the thermopower at low temperatures T is propor-
tional to the logarithmic energy derivative at the Fermi level of the transmission
probability T(E) = Tr tt†. For few-channel quantum-mechanical scattering, the
fluctuations in T(E) can be of the order of its average. As an illustration we
show in Fig. 1-17 typical plots of the transmission versus E for simulations of
a one-dimensional disordered wire much longer than the mean free path, and
a chaotic cavity coupled to single-channel leads. The transmittance of the wire
shows well separated resonances (note the logarithmic scale) due to tunneling
through localized states, with peak positions reflecting the Poisson statistics of
the energy spectrum. In the cavity, the typical width of the resonances is of the
order of the average spacing ∆, and the overlap leads to strong correlations in
T(E).

In Chapter 5 we compute the distribution of the thermopower S for these two
types of systems. For the wire, we show that P(S) in the zero-temperature limit
is a Lorentzian with a disorder-independent width 4π3k2

BT/3e∆. This follows
from the Herbert-Jones-Thouless formula (1.2.7). Upon raising the temperature
one finds a crossover to an exponential form∝ exp (−2|S|eT/∆). For the chaotic
quantum dot we find a distribution with a cusp at S = 0 and a tail∝ |S|−1−β ln |S|
for large |S| (with β = 1,2 depending on the presence or absence of time-reversal
symmetry). This result is obtained from the distribution of the Wigner-Smith
time-delay matrix Eq. (1.3.9).

Figure 1-17. Transmission T(E) versus energy E for a one-dimensional wire in the localized

regime (left) and a chaotic cavity with single-mode point contacts (right). The thermopower is

proportional to d lnT(E)/dE.
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Berry phase and adiabaticity of a spin diffusing in a non-uniform magnetic
field

In Sec. 1.2.1 we discussed the Aharonov-Bohm oscillations in the conductance of
a metal ring, and the proposed variation on this experiment based on the Berry
phase of a spin. In order to observe the Berry phase, one needs a sufficiently
large non-uniform magnetic field, such that the spin remains parallel to the field
during its motion. To estimate the minimal necessary field strength, one should
compare the spin-precession time τs = �/gµBB (g = Landé factor; µB = Bohr
magneton) with the typical timescale at which the field changes direction. For
ballistic motion of the electron, this timescale is unambiguously LB/vF, where
LB is the length scale at which the direction varies and vF the Fermi velocity, and
thus the criterion for adiabatic dynamics is

τs � LB/vF. (1.4.4)

If the electron motion is diffusive, it is not a priori clear which timescale of the
motion is the relevant one. In the literature, two widely different criteria are
presented, based on either the elastic scattering time τ or the diffusive transit
time τ(L/`)2, where L is the system size and ` = vFτ the mean free path.

Stern [16] proposed that
τs � τLB/L (1.4.5)

is necessary for adiabatic dynamics. For typical parameter values one finds a
required field strength which is out of reach experimentally. Moreover, in the
regime defined by Eq. (1.4.5), the picture of diffusing electrons breaks down due
to quantization of the orbital motion. For these reasons we call Eq. (1.4.5) the
“pessimistic criterion”.

Loss, Schoeller, and Goldbart [45] argued that a much weaker magnetic field
is sufficient for adiabatic motion. Their calculation gives

τs � τLBL/`2. (1.4.6)

The right hand side differs from Eq. (1.4.5) by a large factor (L/`)2, and mag-
netic fields satisfying Eq. (1.4.6) for typical parameters are in the experimentally
accessible regime. We call Eq. (1.4.6) the “optimistic” criterion.

In Chapter 6 we resolve this controversy by computing the spin polariza-
tion of transmitted particles from the Boltzmann equation. In a similar way we
solve the Boltzmann equation for the “quasi-probability” of return, to obtain
the weak-localization correction in the presence of a non-uniform field. Both
results confirm the pessimistic criterion Eq. (1.4.5), which severely complicates
the observation of the Berry phase in a disordered system.
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2 Nonperturbative calculation of the
probability distribution of plane-wave
transmission through a disordered waveguide

The statistical properties of transmission through a disordered waveguide have
been extensively studied since 1959, when Gertsenshtein and Vasil’ev [1] com-
puted the probability distribution P(T) of the transmittance T of a single-mode
waveguide. It turned out to be remarkably difficult to extend this result to the
N-mode case. Instead of a single transmission amplitude t and transmittance
T = |t|2, one then has an N × N transmission matrix tmn and three types of
transmittances

Tmn = |tmn|2, Tn =
N∑
m=1

|tmn|2, T =
N∑

n,m=1

|tmn|2. (2.1)

All three transmittances have different probability distributions, which can be
measured in different types of experiments: If the waveguide is illuminated
through a diffusor, the ratio of transmitted and incident power equals T/N,
because the incident power is equally distributed among all N modes. (For elec-
trons, T is the conductance in units of 2e2/h.) If the incident power is entirely in
mode n, then the ratio of transmitted and incident power equals Tn. For N � 1
this corresponds to illumination by a plane wave. Finally, Tmn measures the
speckle pattern (the fraction of the power incident in mode n which is transmit-
ted into mode m).

The complexity of the multi-mode case is due to the strong coupling of the
modes by multiple scattering. While in the single-mode case the localization
length ξ is of the same order of magnitude as the mean free path l, the mode
coupling increases ξ by a factor ofN. IfN � 1, a waveguide of length L can be in
two distinct regimes: the diffusive regime l� L� Nl and the localized regime
L� Nl. The average of each of the three transmittances decays linearly with L
in the diffusive regime and exponentially in the localized regime. In an impor-
tant development, Nieuwenhuizen and Van Rossum [2] (and more recently Ko-
gan and Kaveh [3]) succeeded in computing the probability distributions P(Tmn)
and P(Tn) for plane-wave illumination in the diffusive regime. The former is
exponential (Rayleigh’s law) with non-exponential tails, while the latter is Gaus-
sian with non-Gaussian tails. The existence of such anomalous tails has been
observed in optical experiments [4, 5] and in numerical simulations [6]. From
the simulations, one expects a crossover to a lognormal distribution on entering
the localized regime. Since the theory of Refs. [2, 3] is based on a perturbation
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expansion in the small parameter L/Nl, it cannot describe this crossover which
occurs when L/Nl ' 1.

It is the purpose of the present paper to provide a non-perturbative calcu-
lation of P(Tmn) and P(Tn), which is valid all the way from the diffusive into
the localized regime, and which shows how the Rayleigh and Gaussian distri-
butions of Tmn and Tn evolve into the same lognormal distribution as L in-
creases beyond the localization length ξ ' Nl. We expect that P(T) also evolves
from a Gaussian to a lognormal distribution, but our calculation applies only
to the plane-wave transmittances Tmn and Tn, and not to the transmittance T
for diffuse illumination. For technical reasons, we need to assume that time-
reversal symmetry is broken by some magneto-optical effect. Similar results are
expected in the presence of time-reversal symmetry, but then a non-perturbative
calculation becomes much more involved. We make essential use of the quasi-
one-dimensionality of the waveguide (length L much greater than width W ) and
assume weak disorder (mean free path l much greater than wavelength λ). The
localization which occurs in unbounded media when l <∼ λ requires a very dif-
ferent non-perturbative approach [7].

A related problem of experimental interest is the transmittance of a cavity
coupled to two N-mode waveguides without disorder. If the cavity has an irregu-
lar shape, it has a complicated “chaotic” spectrum of eigenmodes. At the end of
the paper we compute P(Tmn) and P(Tn) for such a chaotic cavity and contrast
the results with the disordered waveguide, which we consider first.

Our calculation applies results from random-matrix theory for the statistics
of the transmission matrix. This matrix t = u√τv is the product of two unitary
matrices u and v , and a matrix τ = diag(τ1, τ2, . . . τN) containing the transmis-
sion eigenvalues. It describes the transmission of electrons or electromagnetic
radiation, to the extent that the effects of electron-electron interaction or po-
larization can be disregarded. The two plane-wave transmittances which we
consider are

Tmn =
∑
k,l

umku
∗
mlvknv

∗
ln

√
τkτl, Tn =

∑
k

|vkn|2τk. (2.2)

We seek the probability distributions

P(Tmn) = 〈δ(Tmn −N2Tmn)〉, (2.3)

P(Tn) = 〈δ(Tn −NTn)〉, (2.4)

of the normalized transmittances Tmn = N2Tmn and Tn = NTn. (These con-
ventions differ by a factor l/L with Refs. [2, 3].) The brackets 〈· · ·〉 denote an
average over the disorder. In the quasi-one-dimensional limit of a waveguide
which is much longer than wide, the matrices u and v are uniformly distributed
in the unitary group [8]. The joint probability distribution of the transmission
eigenvalues evolves with increasing L according to the Dorokhov-Mello-Pereyra-
Kumar (DMPK) equation [9]. The average can be performed in two steps, first
over u and v , and then over the transmission eigenvalues τk.
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The first step was done by Kogan and Kaveh [3]. The result is an expression
for the Laplace transform of P(Tn),

F(s) =
∫∞

0
dTn exp (−sTn) P(Tn), (2.5)

which in the thick-waveguide limit (N →∞, L/l→∞, fixed Nl/L) is exactly given
by

F(s) =
〈∏

k(1+ sτk)−1
〉
. (2.6)

The same function F(s) also determines P(Tmn), which in the same limit is
related to P(Tn) by [3]

P(Tmn) =
∫∞

0
dTnT −1

n exp
(
−Tmn/Tn

)
P(Tn). (2.7)

The next step, which is the most difficult one, is to average over the transmis-
sion eigenvalues in Eq. (2.6). The result depends on whether time-reversal sym-
metry is present or not (indicated by β = 1 or 2, respectively). In Refs. [2,3], lnF
was evaluated to leading order in L/Nl, under the assumption that the waveg-
uide length L is much less than the localization length ξ ' Nl. Here we relax
this assumption.

We consider the case of broken time-reversal symmetry (β = 2). Then the
probability distribution of the τk’s is known exactly, in the form of a determi-
nant of Legendre functions Pν [10]. Still, to compute expectation values with
this distribution is in general a formidable problem. It is a lucky coincidence
that the average (2.6) which we need can be evaluated exactly. This was shown
by Rejaei [11], using a field-theoretic approach which leads to a supersymmetric
non-linear σ model [12]. It was recently proven [13] that this supersymmet-
ric theory is equivalent to the DMPK-equation used in Ref. [10]. From Rejaei’s
general expressions we find

F(s) = 1−2s
∞∑
p=0

∫∞
0
dk fp(k) tanh(1

2πk)P 1
2 (ik−1)(1+2s), (2.8)

fp(k) = (2p + 1)k
(2p + 1)2 + k2

exp

(
−L

[
(2p + 1)2 + k2

]
4Nl

)
. (2.9)

Inversion of the Laplace transform (2.5) yields P(Tn),

P(Tn) =
∞∑
p=0

∫∞
0
dkfp(k) sinh(1

2πk)
∂
∂Tn

2K 1
2 ik(

1
2Tn)

(π3TneTn)1/2
, (2.10)

where Kν is the Macdonald function. One further integration gives P(Tmn), in
view of Eq. (2.7). Results are plotted in Fig. 2-1. The large Tn and Tmn tails are

P(Tmn) ∝ T −3/4
mn e−2

√
Tmn, Tmn� 1, (Nl/L)2, (2.11)

P(Tn)∝ T −1
n e−Tn, Tn� 1, Nl/L. (2.12)
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Figure 2-1. Distributions of (a) Tn ≡ NTn for L/Nl = 0.05, 0.1, 0.5, 1.5, 2.0, and 2.5, and (b)

Tmn ≡ N2Tmn for L/Nl = 0.05, 0.5, 2.5, 5, and 10. Computed from the exact β = 2 expressions

(2.7) and (2.10). The dotted curves are the limits L/Nl→ 0 of an infinitely narrow Gaussian in

(a) and an exponential distribution in (b) (note the logarithmic scale). The inset in (b) shows

the waveguide geometry considered (disordered region is shaded).

It is worth noting that Fyodorov and Mirlin [14] found the same tail as Eq. (2.11)
for the distribution of the local density of electronic states in a closed disordered
wire. It is not clear to us whether this coincidence is accidental.

The diffusive and localized limits can be computed from Eq. (2.6) by using
the known asymptotic form of the distribution of the τk’s. In contrast to the full
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Figure 2-2. Distribution of Tn calculated from the perturbation expansion (2.13), (2.14), and

(2.15), for β = 1,2 and L/Nl = 0.1,0.5.

result (2.10), which holds for β = 2 only, the following asymptotic expressions
hold for any β. In the diffusive regime, for L � Nl, we may expand lnF in
cumulants of the linear statistic A = ∑k ln(1+ sτk):

lnF(s) ≡ ln
〈

e−A
〉
= −〈A〉 + 1

2Var A+O(L/Nl). (2.13)

The mean and variance of A can be computed from the general formulas of
Refs. [10,15,16]:

〈A〉 = Nl
L

asinh2√s + 2− β
4β

ln

[
asinh2√s
s(1+ s)

]
, (2.14)

Var A = −1
β

[
ln(1+ s)+ 6 ln

(
asinh

√
s√

s

)]
, (2.15)

valid up to corrections of order L/Nl. To leading order in L/Nl one has the
β-independent result of Refs. [2, 3], yielding Gaussian and Rayleigh statistics
for L/Nl → 0. The β-dependent terms in Eqs. (2.14) and (2.15) are the first
corrections due to localization effects. In Fig. 2-2 we plot P(Tn) resulting from
Eqs. (2.13), (2.14), and (2.15). The β-independent result of Refs. [2,3] (not shown)
is very close to the β = 2 curve. This figure indicates that the β-dependence is
essentially quantitative rather than qualitative.

In the opposite, localized regime (L� Nl), only a single transmission eigen-
value contributes significantly to Eq. (2.6). This largest eigenvalue τ has the
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Figure 2-3. Distributions of Tn and Tmn for β = 2 and L/Nl = 5,10,20, computed from Eqs.

(2.7) and (2.10). The dotted curve is the lognormal distribution (2.16) which is approached as

L/Nl→∞.

lognormal distribution [17]

P(lnτ) =
(
βNl
8πL

)1/2
exp

[
−βNl8L

(
2L
βNl + lnτ

)2
]
. (2.16)

It follows that lnTmn and lnTn are also distributed according to Eq. (2.16) in the
localized regime. The approach to a common lognormal distribution as L/Nl
increases is illustrated in Fig. 2-3, using the exact β = 2 result of Eq. (2.10).

We contrast these results for a disordered waveguide with those for a chaotic
cavity, attached to two N-mode leads without disorder. Following Ref. [18] we
assume that the 2N×2N scattering matrix of the cavity is distributed uniformly
in the unitary group if β = 2 or in the subset of unitary and symmetric matrices
if β = 1. Then P(Tmn) and P(Tn) follow from general formulas [19] for the
distribution of matrix elements in these socalled “circular” ensembles. For β = 2
the result is

P(Tmn) = (2N − 1) (1− Tmn)2N−2 , (2.17)

P(Tn) = 1
2N
(

2N
N

)
[Tn(1− Tn)]N−1 . (2.18)

For β = 1 Eq. (2.17) should be multiplied by 1
2F(N− 1

2 ,1; 2N−1; 1−Tmn) and Eq.
(2.18) by 1

2F(N − 1
2 ,1;N; 1− Tn), where F is the hypergeometric function. These
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Figure 2-4. Distribution of Tn for a chaotic cavity attached to two N-mode leads (inset). The

curves are computed from Eq. (2.18), for β = 1, 2 and N = 1, 2, 20.

are exact results for any N. If N →∞, P(Tmn) is an exponential distribution with
mean 1/2N, and P(Tn) is a Gaussian with mean 1/2 and variance 1/8N. This is
similar to the disordered waveguide, with N playing the role of Nl/L. As shown
in Fig. 2-4, the distributions for N of order unity are quite different from those
in a disordered waveguide with Nl/L of order unity. For N = 1 the distinction
between Tmn, Tn, and T disappears and we recover the results of Ref. [18].

In conclusion, we have presented a non-perturbative calculation of the dis-
tributions of the plane-wave transmittances Tmn and Tn through a disordered
waveguide without time-reversal symmetry, which shows how the distributions
cross over from Rayleigh and Gaussian statistics in the diffusive regime, to a
common lognormal distribution in the localized regime. Qualitatively differ-
ent distributions are obtained if the disordered region is replaced by a chaotic
cavity. Existing experiments have been mainly in the regime L � Nl where
the perturbation theory of Refs. [2, 3] applies. If the absorption of light in the
waveguide can be reduced sufficiently, it should be possible to enter the regime
L ' Nl where perturbation theory breaks down and the crossover to lognormal
statistics is expected.
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3 Fluctuating phase rigidity for a quantum
chaotic system with partially broken
time-reversal symmetry

Wave functions of billiards with a chaotic classical dynamics have been mea-
sured both for classical [1, 2] and quantum mechanical waves [3, 4]. The exper-
iments are consistent with a χ2

β distribution of the squared modulus |ψ(~r)|2
of a wave function at point ~r , the index β = 1 or 2 depending on whether
time-reversal symmetry is present or completely broken. These two symmetry
classes are the orthogonal and unitary ensembles of random-matrix theory [5].
For a complete description of the experiments one also needs to know what spa-
tial correlations exist between |ψ(~r1)|2 and |ψ(~r2)|2 at two different points and
how these correlations are affected by breaking of time-reversal symmetry. In
the orthogonal and unitary ensembles it is known that the correlations decay to
zero if the distance |~r2 − ~r1| greatly exceeds the wavelength λ [6].

Recently, Fal’ko and Efetov [7] managed to compute the two-point distribu-
tion P2(p1, p2) in the crossover regime between the orthogonal and unitary en-
sembles. (We abbreviate pi ≡ V |ψ(~ri)|2, with V the volume of the system.) They
found that the two-point distribution does not factorize into one-point distri-
butions, P2(p1, p2) ≠ P1(p1)P1(p2), even if |~r2 − ~r1| � λ. The existence of
long-range correlations in a chaotic wave function came as a surprise.

Two years earlier, in an apparently unrelated paper, Taniguchi, Hashimoto,
Simons, and Altshuler [8] had studied the response of an energy level E(X) to a
small perturbation of the Hamiltonian (parameterized by the variable X). They
discovered a non-Gaussian distribution of the level “velocity” dE/dX in the or-
thogonal to unitary crossover. This was remarkable, since the distribution is
Gaussian in the orthogonal and unitary ensembles.

It is the purpose of the present paper to show that these two crossover ef-
fects are two different manifestations of one fundamental phenomenon, which
we identify as phase-rigidity fluctuations. The phase rigidity is the real number
ρ = |

∫
d~r ψ2|2 in the interval [0,1], which equals 1 (0) in the orthogonal (uni-

tary) ensemble. The possibility of fluctuations in ρ was first noticed by French,
Kota, Pandey, and Tomsovic [9], but the distribution P(ρ) was not known. We
have computed P(ρ) in the crossover regime, building on work by Sommers
and Iida [10], and find a broad distribution. Previous theories for the crossover
by Życzkowski and Lenz [11], by Kogan and Kaveh [12], and most recently by
Kanzieper and Freilikher [13] amount to a neglect of fluctuations in ρ, and thus
imply the absence of long-range correlations inψ(~r) and a Gaussian distribution
of dE/dX. Conversely, once the fluctuations of the phase rigidity are properly
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accounted for, we recover the distant correlations and non-Gaussian distribution
of Refs. [7, 8], and find a novel correlation between level velocities for indepen-
dent perturbations of the Hamiltonian.

We start from the Pandey-Mehta Hamiltonian [5, 14] for a system with par-
tially broken time-reversal symmetry,

H = S + iα (2N)−1/2A, (3.1)

where α is a positive number, and S (A) is a symmetric (anti-symmetric) real
N ×N matrix. The matrix S has the Gaussian distribution

P(S)∝ exp
(
−1

4Nc
−2Tr SS†

)
, (3.2)

and the distribution of A is the same. The real parameter c determines the
mean level spacing ∆ at the center of the spectrum for N � 1, by c = N∆/π .
The distribution of H crosses over from the orthogonal to the unitary ensemble
at α ' 1. The wave function ψk of the k-th energy level at widely separated
points (|~ri− ~rj| � λ) is represented by the unitary matrix U that diagonalizes H:

V 1/2ψk(~ri) → N1/2Uik. (3.3)

Consider now an eigenvector |u〉 = (U1k,U2k, . . . , UNk). (Since we deal with a
single eigenstate, we suppress the level index k.) Following Ref. [9] we decom-
pose |u〉 in the form

|u〉 = eiφ
(
t|R〉 + i

√
1− t2|I〉

)
, (3.4)

where |R〉 and |I〉 are real orthonormal N-component vectors, and φ ∈ [0, π/2)
and t ∈ [0,1] are real numbers. This decomposition exists for any normalized
vector |u〉 and is unique for t ≠ 0,1. The phase rigidity ρ is related to the
parameter t by

ρ =
∣∣∣∣
∫
d~r ψ2

k

∣∣∣∣
2

→
∣∣∣∣∣∣
∑
i

U2
ik

∣∣∣∣∣∣
2

= (2t2 − 1)2. (3.5)

In the orthogonal ensemble t = 0 or 1, hence ρ = 1, while in the unitary ensem-
ble t = √

1/2 hence ρ = 0. In the crossover between these two ensembles the
parameter ρ does not take on a single value but fluctuates.

To compute the distribution P(ρ) we use a result of Sommers and Iida [10],
for the joint probability distribution of an eigenvalue E and the corresponding
eigenvector |u〉 of the Hamiltonian (3.1). Substitution of the decomposition (3.4),
and inclusion of the Jacobian for the change of variables from |u〉 to ρ, gives the
expression
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P(ρ) ∝ (1− ρ)N/2−3/2

DN/2−1
√
Λ

[
c2

NΛ

+ρ
(

2b−
D

)2 ∂
∂b−

+
(

2b+
D

)2
(

1
2
∂2

∂E2
+ ∂
∂b+

)]
ZN−2(E)

∣∣∣∣∣
E=0

, (3.6)

b± = c2

N

(
1± α

2

2N

)
, D = 4+ 2N

α2
(1− ρ)

(
1− α

2

2N

)2

, (3.7)

Λ = 2+ (1− ρ)
(

2N
α2

− 1
)
, (3.8)

ZN(E) = 1
N!

(
b+

∂
∂ω

)N

× (1−ωb−/b+)−1 (1−ω)−
3
2 (1+ω)−

1
2 exp

(
−ωE2

(1+ω)b+

)∣∣∣∣∣
ω=0

(3.9)

We have set E = 0, corresponding to the center of the spectrum. We still have to
take the limit N →∞. Expansion of ZN(0) in a series,

ZN(0) = bN+
N∑
k=0

ak
(b−
b+

)N−k
, (3.10)

ak = 1
k!

∂k

∂ωk
(1−ω)−

3
2 (1+ω)−

1
2

∣∣∣∣∣
ω=0

k�1
-→

√
2k
π
, (3.11)

and replacement of the summation by an integration, yields

ZN(0) = c2N
√

2/π
α2NN−3/2

(
eα2/2 + ie

−α2/2√π
2α

erf(iα)
)

(3.12)

for N � 1. Here erf(iα) ≡ 2iπ−1/2
∫ α
0 ey

2dy . The double energy derivative of
ZN(E) is computed similarly, but turns out to be smaller by a factor N and can
thus be neglected. The derivatives with respect to b± can be found by differen-
tiation of Eq. (3.12). Collecting all terms, we find

P(ρ) = (1− ρ)−2 exp

(
α2

ρ − 1

)

×
[
α2 − 1+ ρ

1− ρ

(
eα

2 + iπ
1
2

2α
erf(iα)

)
− iαπ

1
2

2
erf(iα)

]
. (3.13)

In Fig. 3-1 the distribution of ρ is plotted for three values of the crossover pa-
rameter α. It is very broad for α = 1, and narrows to a delta function at 1 (0) for
α → 0 (α →∞).

It remains to show that the long-range wave-function correlations and non-
Gaussian level-velocity distributions of Refs. [7, 8] follow from the distribution
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Figure 3-1. Distribution of the phase rigidity ρ for α = 1/4, 1, and 4, computed from Eq. (3.13).

The crossover from the orthogonal to unitary ensemble occurs when α ≈ 1, and is associated

with large fluctuations in ρ around its ensemble average.

P(ρ) which we have computed. We begin with the wave-function correlations,
and consider the n-point distribution function

Pn(p1, p2, . . . , pn) =
〈 n∏
i=1

δ(pi −N|Uik|2)
〉
. (3.14)

We substitute the decomposition (3.4) and do the average in two steps: First over
|R〉 and |I〉, and then over t. Due to the invariance of P(H) under orthogonal
transformations of H, the vectors |R〉 and |I〉 can be integrated out immediately.
In the limit N → ∞, the components of the two vectors are 2N independent
real Gaussian variables with zero mean and variance 1/N. Doing the Gaussian
integrals we find a generalization of results in Refs. [9,11] to n > 1:

Pn(p1, p2, . . . , pn) =
∫ 1

0
dρ P(ρ)

n∏
i=1

F(pi, ρ), (3.15)

F(p,ρ) = (1− ρ)−
1
2 exp

(
p

ρ − 1

)
I0

(
p√ρ
1− ρ

)
. (3.16)

Here I0 is a Bessel function. We see that long-range spatial correlations exist
only if the distribution P(ρ) of ρ has a finite width. For example, the two-point
correlator 〈p2

1p2
2〉 − 〈p2

1〉〈p2
2〉 equals the variance of ρ. The approximation of

Ref. [11] (implicit in Refs. [12, 13]) was to take ρ fixed at each α. If ρ is fixed,
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Pn(p1, . . . , pn) → P1(p1) · · ·P1(pn) factorizes, and hence spatial correlations are
absent. If instead we substitute for P(ρ) our result (3.13), we recover exactly the
results of Fal’ko and Efetov [7,15].

We now turn to the level-velocity distributions. We consider perturbations of
the Hamiltonian (3.1) by a real symmetric (anti-symmetric) matrix S′ (A′),

H′ = H + xoS′ + xuiA′. (3.17)

Here xu, xo are real infinitesimals, which parameterize, respectively, a perturba-
tion that breaks or does not break time-reversal symmetry. The corresponding
level velocities

vo = ∂Ek∂xo
, vu = ∂Ek∂xu

, (3.18)

have distributions

P(vo) =
〈
δ(vo −

∑
i,j

UikU
∗
jkS

′
ji)
〉
, (3.19)

P(vu) =
〈
δ(vu −

∑
i,j

UikU
∗
jkiA

′
ji)
〉
. (3.20)

We substitute the decomposition (3.4) for the eigenvector Uik of H and average
first over S′ and A′, assuming a Gaussian distribution for these perturbation
matrices. After averaging over S′ and A′, the eigenvector enters only via the
parameter ρ. One finds

P(vo) =
∫ 1

0
dρ P(ρ)G1+ρ(vo), (3.21)

P(vu) =
∫ 1

0
dρ P(ρ)G1−ρ(vu), (3.22)

where G1±ρ is a Gaussian distribution with zero mean and variance 1 ± ρ. We
have normalized the velocities such that v2

o = v2
u = 1 in the unitary ensemble.

Substitution of Eq. (3.13) for P(ρ) shows that the distribution of vo coincides
with the result of Ref. [8]. However, our P(vu) is different. This is because we
have chosen A and A′ to be independent random matrices, whereas they are
identical in Ref. [8]. Independent matrices A and A′ are appropriate for a sys-
tem with a perturbing magnetic field in a random direction; Identical A and A′
correspond to a system in which only the magnitude but not the direction of the
field is varied. Eq. (3.21-3.22) demonstrates that P(vo) and P(vu) are Gaussians
in the orthogonal and unitary ensembles, since then P(ρ) is a delta function. In
the crossover regime the distributions are non-Gaussian, because of the finite
width of P(ρ). The relation (3.21-3.22) between the distributions of v and ρ
for the GOE–GUE transition is reminiscent of a relation obtained by Fyodorov
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and Mirlin for the metal–insulator transition [16]. The role of the parameter ρ
is then played by the so-called inverse participation ratio I =

∫
d~r |ψ|4. In our

system NI → ρ + 2 for N → ∞. A difference with Ref. [16] is that our perturba-
tion matrices are drawn from orthogonally invariant ensembles, whereas their
perturbation is band-diagonal.

As a final example of the importance of the phase-rigidity fluctuations in
the crossover regime, we consider the response of the system to two or more
independent perturbations,

H′ = H +
m∑
i=1

xoiS′i +
n∑
j=1

xujiA′j. (3.23)

For example, one may think of the displacement of m different scatterers, or
the application of a localized magnetic field at n different sites. Proceeding as
before, we obtain the joint probability distribution of the level velocities voi =
∂Ek/∂xoi and vuj = ∂Ek/∂xuj,

P(vo1, vo2, . . . , vom,vu1, vu2, . . . , vun)

=
∫ 1

0
dρ P(ρ)

m∏
i=1

G1+ρ(voi)
n∏
j=1

G1−ρ(vuj). (3.24)

We see that as a result of the finite width of P(ρ), the joint distribution of
level velocities does not factorize into the individual distributions (3.21-3.22),
implying that the response of an energy level to independent perturbations of
the Hamiltonian is correlated.

To summarize, we have introduced the phase rigidity, defined as the squared
modulus of the spatial average of the wave function squared, and computed its
distribution for a chaotic system with partially broken time-reversal symmetry.
Fluctuations of the phase rigidity from one wave function to another exist if
time-reversal symmetry is partially broken. We have shown that these fluctua-
tions imply long-range wave-function correlations and non-Gaussian eigenvalue
perturbations, thereby unifying two previously unrelated discoveries [7, 8]. A
novel manifestation of the phase-rigidity fluctuations is the existence of level-
velocity correlations for independent perturbations of the system.
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4 Quantum-statistical current correlations in
multi-lead chaotic cavities

Quantum theory requires that identical particles are treated as indistinguish-
able. In particular, the wave function has to remain invariant up to a sign un-
der the exchange of any pair of particles. A well known consequence of this
symmetry is the exchange hole in the equal time density-density correlation of
an electron gas [1]. It is the purpose of this paper to investigate exchange ef-
fects in current-current correlations of a mesoscopic chaotic cavity connected
to four leads. A four-lead geometry is the simplest structure which allows an
unambiguous identification of exchange effects. While a similar experiment has
already been proposed and analyzed under conditions where electron motion
is along one-dimensional edge channels [2], the investigation presented here is
the first for a non-trivial many-channel conductor. One might expect from the
former analysis that exchange effects are washed out in an ensemble of chaotic
conductors, and can thus be observed at best in the fluctuations away from the
average. The most important result of our discussion is that this is not the case:
exchange effects survive ensemble averaging and are even of the same order of
magnitude as the direct terms.

The general existence of exchange effects in a scattering process with two
detectors and two mutually incoherent sources has been pointed out already by
Goldberger et al. [3], following the seminal experiments of Hanbury-Brown and
Twiss [4] with a stellar interferometer based on this principle. A clear account of
two-particle interference of bosons and fermions has been given by Loudon [5].
In electronic conductors we deal with a Fermi sea, instead of only two parti-
cles. Nevertheless, for electrons moving in a fixed Hartree potential the current-
current correlations can be expressed via two-particle exchange amplitudes in
terms of the single-particle scattering matrix [2]. The resulting correlations are
negative, except in the case of normal-superconductor hybrid structures [6]. Our
work is closely related to recent theoretical [7,8] and experimental [9] efforts to
understand shot noise in mesoscopic conductors. Most of this effort has con-
centrated on conductors which are effectively two-terminal, and has focused on
the suppression of the shot-noise power below the uncorrelated Poisson limit
2e|I|. The situation is potentially richer in multi-lead conductors, where there
is the possibility of investigating correlations between current fluctuations at
different leads.

We compute the current correlations for a chaotic quantum dot [10]. During
the last few years, there has been an increasing activity of experimentalists in
tailoring electronic confinement potentials, and characterizing the conductive
properties of such cavities [11, 12]. If the classical dynamics of the dot is fully
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chaotic, the quantum transport properties are well described by a relatively sim-
ple statistical ensemble for the scattering matrix [13–15]. Using this approach,
we find that both the direct and exchange contributions to the correlations are of
the order of the channel number N, and that they are insensitive to dephasing.
This is remarkable, since in single-channel scattering geometries the exchange
terms depend sensitively on phases, in contrast with the direct terms [2,5]. Fur-
thermore, we find that the sign of the averaged exchange contribution reverses
if the cavity is closed up by tunnel barriers. The particular dependence of our
results on the barrier transparency offers a possibility to distinguish these corre-
lations from other effects. In the end we compare with a purely classical resistor
network.

The quantity that we study, is the zero-frequency spectral density of current
correlations,

Pαβ = 2
∫∞
−∞
dt∆Iα(t + t0)∆Iβ(t0), (4.1)

where ∆Iα = Iα − Iα is the fluctuation of the current in lead α away from the
time-average. It is shown in Ref. [2] that

Pαβ = 2
e2

h

∑
γ,δ

∫
dE fγ(1− fδ)Tr

[
Aγδ(α)Aδγ(β)

]
(4.2)

where fα(E) is the distribution of reservoir α, and

Aβγ(α) = 1αδαβδαγ − s†αβ(E)sαγ(E). (4.3)

Here sαβ(E) is the sub-block of the scattering matrix S for scattering from lead β
(Nβ channels) to lead α at energy E, and 1α is the Nα×Nα-unit matrix. If all reser-
voirs are at zero-temperature equilibrium, fα(E) = θ(E − eVα), the summation
in Eq. (4.2) is over γ 6= δ, and the trace becomes a noise conductance

Cγδ(αβ) = Tr(s†αγsαδs
†
βδsβγ). (4.4)

To be specific we introduce the correlator P34 for three experiments [2] A, B, and
C: In experiment A (B) a small voltage V is applied only to lead 1 (2), whereas
in experiment C a voltage V is applied to both reservoir 1 and 2. It follows
from Eq. (4.2) that the result of experiment C is not identical to the sum of the
results from experiments A and B. We identify the difference as the exchange
correlation:

P ex
34 ≡ PC

34 − PA
34 − PB

34 = −2P0ReC12(34), (4.5)

where P0 = 2e|V |e2/h. Although Pαβ ≤ 0 in every experiment for α ≠ β, the
difference can still have both signs.

We first consider ideal coupling of the four N-channel leads to the cavity (Fig.
4-1). If time-reversal symmetry is (un)broken, the 4N × 4N-scattering matrix
S is uniformly distributed on the set of unitary (unitary symmetric) matrices
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Figure 4-1. Chaotic cavity connected to four reservoirs via N-channel leads. Tunnel barriers of

transparency Γ model non-ideal coupling of the leads to the cavity.

[13, 14]. This is the circular unitary (orthogonal) ensemble of random matrix
theory. Since our results for both ensembles differ only to order N−2, we will
focus on the simpler unitary ensemble, thus assuming that there is a sufficiently
large magnetic field in the cavity. From the general formula of Ref. [16] one finds
the exact ensemble average 〈· · ·〉 of the noise conductances:

〈Cγδ(αβ)〉 = (δαβ + δγδ − 1/4)×N3/(16N2 − 1). (4.6)

Fluctuations are of order one. Thus we find

〈Pαβ〉 = e
3

h
(δαβ − 1/4)

N3

16N2 − 1

4∑
i,j=1

|Vi − Vj|. (4.7)

The average exchange correlation 〈P ex
34〉 = 1

2P0 N3/(16N2 − 1) is positive and,
just as the direct terms, of order N. This is remarkable, given the fact that the
sign of the noise conductance C12(34) = Tr(s†31s32s

†
42s41) can vary from sample

to sample. The large average is essentially due to correlations between scattering
matrix elements imposed by unitarity.

The size of the exchange effect, and the important role played by unitarity,
makes it more robust than a normal wave-interference effect. We next show
that the current correlations are the same even under conditions where phase-
coherent transfer through the sample is completely destroyed, but energy is
conserved in the dephasing process. We model dephasing by connecting the
sample to an additional fictitious reservoir. Attaching an equilibrium reservoir,
like a voltage probe, causes inelastic scattering [17], which reduces shot noise
far below the value in phase-coherent transport [18]. Following De Jong and
Beenakker [7,19], we rather consider dephasing by a reservoir with a fluctuating
non-equilibrium distribution fφ(E, t) such that no current is drawn at every
energy and instant of time. Such quasi-elastic scattering does not change the



52 Chapter 4: Current correlations in chaotic cavities

shot noise of a chaotic cavity with wide leads [7]. Below we generalize this result
to the current correlations in a multi-terminal geometry.

The total current through lead α at time t and energy E is [2]

Iα(E, t) = eh
∑
β

(Nαδαβ −Gαβ)fβ + δIα(E, t), (4.8)

where Gαβ = Tr s†αβsαβ and the indices run over all five leads. Apart from the
intrinsic fluctuations defined by δIα(E, t), there is now also a time-dependence
due to the fluctuating fφ(E, t). The requirement Iφ(E, t) = 0 determines fφ(E, t)
which, by substitution back into Eq. (4.8) yields the total fluctuation ∆Ik at a real
lead k,

∆Ik = δIk +GkφδIφ/
4∑

m=1

Gφm. (4.9)

The correlations of the intrinsic fluctuations δIα =
∫
dE δIα(E, t) satisfy Eq. (4.2)

with the time-averaged distribution

fφ(E) =
4∑
k=1

Gφkf(E − eVk)/
4∑
k=1

Gφk. (4.10)

We assume homogeneous and complete dephasing, which implies that the extra
lead has Nφ � N channels, and is coupled ideally to the dot [20]. In this limit,
the only non-vanishing transport coefficients are

Gkφ = Gφk = N, Gφφ = Nφ − 4N, (4.11)

Ckk(φφ) = N, Cφφ(φφ) = Nφ − 4N, (4.12)

independent of the magnetic field, for all N, and without fluctuations. Thus

Pkl = 2
e2

h
(δkl − 1/4)N

∫
dE fφ(E)(1 − fφ(E)). (4.13)

For N � 1 Eq. (4.13) coincides exactly with Eq. (4.7). It shows a striking sim-
ilarity with a semi-classical expression for the shot-noise power first obtained
by Nagaev [21]. However, it should be noted that for geometries with non-ideal
leads, discussed below, the correlations are not determined by the distribution
function of the dephasing reservoir only.

We have now shown that exchange effects do survive changes in the elastic
scattering potential as well as phase-breaking scattering. This finding sheds new
light on the actual issue of shot-noise suppression in two-terminal many-channel
geometries [22]. Universal suppression factors were found in both quantum
mechanical [18, 23] and semi-classical [19, 21, 24] approaches. In fact, the two-
terminal shot noise contains direct and exchange terms corresponding to pairs
of particles coming from different channels. The reduction below the Poisson
noise is partly due to such channel-exchange terms.



53

The analysis of the cavity connected to open leads is not sufficient for an
unambigious identification of exchange correlations in practice. Current corre-
lations could be established by any other process, and there is no general reason
why the results of experiments A, B, and C should be additive. Indeed, in the end
we will briefly discuss a classical network where currents are correlated by fluc-
tuations of the self-consistent electrostatic potential inside the “dot”, and where
experiment C is not the sum of experiment A and B. To facilitate identification
of the exchange effect, we now make specific predictions for the correlations
in the case of non-ideal leads, as a function of the probability Γ of transmis-
sion through the contact region. We focus on the many-channel limit N � 1,
where one cannot distinguish isolated resonances of the system, except if the
coupling is so weak that Γ � 1/N. Below, we discuss this weak coupling limit
before turning to the main result of the paper: the correlations in the regime
1/N � Γ ≤ 1.

We first assume that the contacts are so poorly transmitting that transport
is dominated by a single state at the Fermi energy EF . The scattering amplitude
from a point b to a point a takes the form

Sab = δab − iα∆π
ψ∗ν (a)ψν(b)
EF − Eν + iγν/2

. (4.14)

where ψν is the resonant eigenstate with energy Eν , ∆ is the mean level spacing,
α � 1 is a dimensionless coupling parameter, and γν = α∆/π

∑
r |ψν(r)|2 is

the width of the resonant level. The sum is over positions in the four coupling
regions. We assume that each lead contributes equally to the width, which is
automatically satisfied for a chaotic cavity with leads of the same width, due to
self-averaging of the overlaps with the eigenstate. Then, at small bias V � γν ,
the current correlations are

PA,B
αβ = P0(4δαβ − 1)/16, (4.15)

PC
αα = −PC

34 = −PC
12 = P0/4, (4.16)

PC
13 = PC

14 = PC
23 = PC

24 = 0. (4.17)

The result of experiment C is easily understood. For resonant tunneling through
a two-terminal symmetric barrier, the shot noise vanishes. Indeed, in experi-
ment C the total current from lead 1 and 2 to lead 3 and 4 is noiseless. All
fluctuations and correlations are due to ‘unification’ of the currents from 1 and
2, and ‘partition’ of the total current into 3 and 4. The vanishing of the correla-
tions between incoming and outgoing currents shows that these two choices are
made independently. The exchange correlation P ex

34 = −P0/8 has a sign opposite
to that of the ideally coupled cavity.

We now compute the ensemble averaged correlations for the cavity with tun-
nel barriers in the regimeN � 1, NΓ � 1. The scattering matrix of the combined
system is [25]

S = R + T ′(1−UR′)−1UT, (4.18)
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where we assume without loss of generality that the reflection and transmis-
sion matrices of the barriers are proportional to the 4N × 4N unit matrix I:
R = R′ = (1 − Γ)1/2I, T = −T ′ = Γ 1/2I. The distribution of the scattering matrix
U of the cavity is the circular unitary ensemble, as before. The average noise con-
ductances are computed by series expansion of the four fractions (1 − UR′)−1,
collecting the order N contributions to each term with the diagrammatic tech-
nique of Ref. [25], and resumming. Thus one finds

〈Cγδ(αβ)〉 =
[
Γ(2− 3Γ)+ 4Γ 2(δαβ + δγδ)

−4Γ(1− Γ)(δαγ + δαδ + δβγ + δβδ)
+16Γ(1− Γ)(δαβδβγ + δαβδβδ + δαγδγδ + δβγδγδ)
+64(1− Γ)2δαβδβγδγδ

]
×N/64+O(1), (4.19)

which for Γ = 1 reduces to the large-N limit of Eq. (4.6). The correlators for the
experiments A and C are

〈PC
αβ〉 = P0NΓ(2− Γ)(4δαβ − 1)/16, (4.20)

〈PA
α1〉 = P0NΓ(10− 7Γ)(4δα1 − 1)/64, (4.21)

〈PA
αα〉 = P0NΓ(14− 5Γ)/64 (α ≠ 1), (4.22)

〈PA
αβ〉 = −P0NΓ(Γ + 2)/64 (α, β ≠ 1, α ≠ β). (4.23)

Experiment B is identical to experiment A with all indices 1 replaced by indices
2. The functional dependence of these results provides a fingerprint for an
experimental identification of the correlations. The exchange correlation 〈P ex

34〉 =
P0NΓ(3Γ − 2)/32 reverses sign at Γ = 2/3. An observation of this sign change
would be a clear indication that measured correlations are due to exchange. One
easily checks that in experiment C the shot noise of the total current from lead
1 and 2 to lead 3 and 4 crosses over from one quarter times the Poisson noise at
Γ = 1 to one half of the Poisson noise if Γ is small, both in correspondence with
the literature [14,23,24].

We now compare these results with a classical circuit, where current conser-
vation induces correlations, which are also non-additive for the experiments A,
B, and C. Four resistors R are connected to four voltage sources as in Fig. 4-2.
Parallel to the resistors there are independent sources of Poisson noise. Tem-
poral fluctuations of the central potential around U = ∑k Vk/4 are necessary to
conserve the instantaneous total current. These voltage fluctuations yield the
following current correlations:

Pkl = e
4∑

m=1

[1+ 4(2δkl − 1)(δmk + δml)] |Vm −U|8R
. (4.24)

For experiment A, B and C, Eq. (4.24) gives the same result as Eqs. (4.20-4.23) with
Γ � 1 and NΓ e2/h = 1/R. For other values of the voltages and Γ the correlations
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Figure 4-2. Classical network consisting of resistors and noise sources. The outgoing currents

are correlated, due to fluctuations of the “dot” potential preventing temporal accumulations

of charge.

differ. This example demonstrates the need to investigate the correlations as a
function of a parameter like the barrier strength Γ in order to understand the
source of the correlations.

In conclusion, we have evaluated the exchange contributions to current-cur-
rent correlations in a multilead chaotic cavity. We found that these correlations,
instead of being a small interference effect, are of the order of the channel num-
ber N, and that they persist in the presence of dephasing. We have made specific
predictions for the dependence of the correlations on the transparency of non-
ideal leads. Finding such a direct signature of exchange in experiments is likely
a challenging task, but would clearly be a fundamental contribution to our un-
derstanding of noise in electrical conductors.
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5 Thermopower of single-channel
disordered and chaotic conductors

5.1 Introduction

Thermo-electric transport properties of conductors probe the energy depen-
dence of the scattering processes limiting conduction. At low temperatures and
in small (mesoscopic) systems, elastic impurity scattering is the dominant scat-
tering process. The energy dependence of the conductance is then a quantum
interference effect [1]. The derivative dG/dE of the conductance with respect
to the Fermi energy is measured by the thermopower S, defined as the ratio
−∆V/∆T of a (small) voltage and temperature difference applied over the sam-
ple at zero electrical current. Experimental and theoretical studies of the ther-
mopower exist for several mesoscopic devices. One finds a series of sharp peaks
in the thermopower of quantum point contacts [2], aperiodic fluctuations in dif-
fusive conductors [3], sawtooth oscillations in quantum dots in the Coulomb
blockade regime [4], and Aharonov-Bohm oscillations in metal rings [5].

Here we study the statistical distribution of the thermopower in two different
systems, not considered previously: A disordered wire in the localized regime
and a chaotic quantum dot with ballistic point contacts. A single transmitted
mode is assumed in both cases. In the disordered wire, conduction takes place
by resonant tunneling through localized states. The resonances are very narrow
and appear at uncorrelated energies. The distributions of the thermopower and
the conductance are both broad, but otherwise quite different: Instead of the
log-normal distribution of the conductance [1] we find a Lorentzian distribution
for the thermopower. In the quantum dot, the resonances are correlated and the
widths are of the same order as the spacings. The correlations are described by
random-matrix theory [6, 7], under the assumption that the classical dynamics
in the dot is chaotic. The thermopower distribution in this case follows from the
distribution of the time-delay matrix found recently [8].

The thermopower (at temperature T and Fermi energy EF) is given by the
Cutler-Mott formula [9,10]

S = − 1
eT

∫
dE (E − EF)G(E)df/dE∫

dEG(E)df/dE
, (5.1.1)

where G is the zero-temperature conductance and f is the Fermi-Dirac distribu-
tion function. In the limit T → 0 Eq. (5.1.1) simplifies to

S = −π
2

3
k2

BT
eG

dG
dE
, (5.1.2)
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where G and dG/dE are to be evaluated at E = EF. We consider mainly the zero-
temperature limit of the thermopower, by studying the dimensionless quantity

σ = ∆
2πG

dG
dE
. (5.1.3)

Here ∆ is the mean level spacing near the Fermi energy. Since we are dealing
with single-channel conduction, the conductance is related to the transmission
probability T(E) by the Landauer formula [1,11]

G(E) = 2e2

h
T(E). (5.1.4)

The problem of the distribution of the thermopower is therefore a problem of
the distribution of the logarithmic derivative of the transmission probability.

5.2 Disordered wire

In this section we study a disordered single-mode wire of length L much greater
than the mean free path l. This is the localized regime. We compute the ther-
mopower distribution in the zero-temperature limit. The analytical theory is
tested by comparing with a numerical simulation. The effect of a finite temper-
ature is considered at the end of the section. Electron-electron interactions play
an important role in one-dimensional conduction, but we do not take these into
account here.

5.2.1 Analytical theory

The localization length ξ(E) [which is of order l and is defined by limL→∞ L−1

lnT(E) = −2/ξ(E)] and the density of states ρ(E) [per unit of length in the limit
L→∞] are related by the Herbert-Jones-Thouless formula [12]

1
ξ(E)

=
∫
dE′ρ(E′) ln |E − E′| + constant. (5.2.1)

The additive constant is energy-independent on the scale of the level spacing.
Eq. (5.2.1) follows from the Kramers-Kronig relation between the real and imag-
inary parts of the wave number (the real part determining ρ, the imaginary part
ξ). Neglecting the width of the resonances in the large-L limit, the density of
states ρ(E) = L−1

∑
i δ(E − Ei) is a sum of delta functions, and thus

σ = −L∆
π
d
dE

1
ξ(E)

= ∆
π

∑
i

1
Ei − EF

. (5.2.2)



Section 5.2: Disordered wire 61

In the localized regime the energy levels Ei are uncorrelated, and we assume
that they are uniformly distributed in a band of width B around EF. To obtain
the distribution of σ ,

P(σ) =
∏
i

∫ B/2
−B/2

dEi
B
δ


σ − ∆

π

∑
j

1
Ej


 , (5.2.3)

we first compute the Fourier transform

P(k) =
∫∞
−∞
dσ eikσP(σ) =

[
1
B

∫ B/2
−B/2

dE eik∆/πE

]B/∆
= e−|k|, (5.2.4)

where the limit B/∆ → ∞ is taken in the last step. Inverting the Fourier trans-
form, we find that the thermopower distribution is a Lorentzian,

P(σ) = 1/π
1+ σ 2

. (5.2.5)

The “full width at half maximum” of P(σ) is equal to 2, hence it is equal to
4π3k2

BT/3e∆ for P(S). This width depends on the length L of the system (through
∆ ∝ 1/L), but it does not depend on the mean free path l (as long as l � L, so
that the system remains in the localized regime).

5.2.2 Numerical simulation

In order to check the analytical theory, we performed a numerical simulation
using the tight-binding Hamiltonian

H = −w
2

∑
j

(
c†j+1cj + c†j cj+1

)
+
∑
j

Vjc
†
j cj. (5.2.6)

The disordered wire was modeled by a chain of lattice constant a, with a ran-
dom impurity potential Vj at each site drawn from a Gaussian distribution of
mean zero and variance u2. The localization length of the wire is given by [13]
ξ = 2(a/u2)(w2 − E2

F). We have chosen u = 0.075w, EF = −0.55w, such
that ξ = 248a, much smaller than L = 8000a. From the scattering matrix we
obtained the conductance via the Landauer formula (5.1.4), and then the (dimen-
sionless) thermopower via Eq. (5.1.3) (with ∆ = 3.3 · 10−4w). The differentiation
with respect to energy was done numerically, by repeating the calculation at
two closely spaced values of EF. As shown in Fig. 5-1, the agreement with the
analytical result is good without any adjustable parameters.

5.2.3 Finite temperatures

Our derivation of the Lorentzian distribution of the thermopower holds if the
temperature is so low that kBT is small compared to the typical width γ of the
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Figure 5-1. Distribution of the dimensionless thermopower σ = (∆/2π)d lnT(E)/dE for a

one-dimensional wire in the localized regime. The histogram is obtained from a numerical

simulation, for a sample length L = 32.3ξ. The dashed curve is the Lorentzian (5.2.5), being

the analytical result for L � ξ. The inset shows the algebraic tail of the distribution on

a logarithmic scale. The thermopower S, in the zero-temperature limit, is related to σ by

S = −(2π3/3)(k2
BT/e∆)σ .

transmission resonances. What if kBT > γ, but still kBT � ∆ (so that the dis-
creteness of the spectrum remains resolved)? We will show that the distribution
crosses over to an exponential, but in a highly non-uniform way.

Consider arbitrary γ and kBT , both � ∆. The Cutler-Mott formula (5.1.1) is
dominated by two contributions, one from a peak in df/dE of width kBT around
EF and one from a peak in G(E) of width γ0 around E0. Here γ0 and E0 are the
width and position of the level closest to EF. If |EF − E0| � max (kBT, γ0), the
two peaks do not overlap and one can estimate the thermopower as

S = 1
eT

[
πγ0(kBT)2

3(EF − E0)3
+ EF − E0

kBT
e−|EF−E0|/kBT

]

×
[ γ0

2π(EF − E0)2
+ 1
kBT

e−|EF−E0|/kBT
]−1

. (5.2.7)

If kBT � γ0, the first terms in numerator and denominator dominate over the
second terms. This is the regime that the Lorentzian distribution (5.2.5) holds
for all S.

We now turn to the regime kBT > γ0. The first terms dominate if |EF −
E0| � kBT lnkBT/γ0 Hence P(S) is a Lorentzian for |S| � (kB/e) (lnkBT/γ0)−1.
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Figure 5-2. Thermopower distribution of a one-dimensional wire in the localized regime at

finite temperature. The histogram is obtained from Eqs. (5.1.1) and (5.2.10), by numerical

integration for a set of randomly chosen energy levels Ei, all having the same width γi = γ =
10−6∆. The temperature is kBT/∆ = 0.01, such that γ � kBT � ∆. The distribution follows

the Lorentzian (5.2.5) (solid curve) for small and large S, but it follows the exponential (5.2.8)

(dashed curve) in an intermediate region.

The logarithm of kBT/γ0 can be quite large, because the width of the levels is
exponentially small in the system size, γ ∼ e−L/ξ. The Lorentzian persists in
an interval larger than its width, provided kBT < ∆ (lnkBT/γ0)−1. The second
terms in Eq. (5.2.7) dominate if kBT � |EF − E0| � kBT lnkBT/γ0. In this case
the thermopower is simply S = (EF − E0)/eT , with exponential distribution

P(S) = eT
∆

e−2|S|eT/∆. (5.2.8)

The distribution (5.2.8) follows because the energy levels are uncorrelated, so
that the spacing |EF − E0| has an exponential distribution with a mean of ∆/2.

We conclude that the thermopower distribution for γ < kBT � ∆ con-
tains both Lorentzian and exponential contributions. The peak region |S| �
(kB/e) (lnkBT/γ)−1 is the Lorentzian (5.2.5). The intermediate region (kB/e)
(lnkBT/γ)−1 � |S| � (kB/e) lnkBT/γ is the exponential (5.2.8). The far tails
|S| � (kB/e) lnkBT/γ can not be explained by Eq. (5.2.7). With increasing tem-
perature, the Lorentzian peak region shrinks, and ultimately the exponential re-
gion starts right at S = 0. This applies to the temperature range∆ (lnkBT/γ)−1 <
kBT � ∆.

To illustrate these various regimes, we computed P(S) numerically from Eq.
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(5.1.1). We took the density of states

ρ(E) = L−1
∑
i

γi/2π
(E − Ei)2 + γ2

i /4
, (5.2.9)

so that the conductance according to Eq. (5.2.1) has the energy dependence

G(E) ∝
∏
i

[
(E − Ei)2 + γ2

i /4
]−1
. (5.2.10)

The levels Ei were chosen uniformly and independently (mean spacing ∆), but
the fluctuations of the widths γi were ignored (γi ≡ γ for all i). Such fluctuations
are irrelevant in the low-temperature limit kBT � γ, but not for γ < kBT � ∆.
We believe that ignoring fluctuations in γi should still be a reasonable approx-
imation, because γ0 appears only in logarithms. The resulting P(S) is plotted
in Fig. 5-2. We see the expected crossover from a Lorentzian to an exponential.
The exponential region appears as a plateau. Beyond the exponential region, the
distribution appears to return to the Lorentzian form. We have no explanation
for this far tail.

5.3 Chaotic quantum dot

In this section we consider a chaotic quantum dot with single-channel ballistic
point contacts (see Fig. 5-3, inset). Because there are no tunnel barriers in the
point contacts, the effects of the Coulomb blockade are small and here we ignore
them altogether. For this system, the distribution of dT/dE was computed re-
cently from random-matrix theory [8]. The energy derivative of the transmission
probability has the parametrization

dT
dE

= c
�
(τ1 − τ2)

√
T(1− T), (5.3.1)

with independent distributions

P(c)∝ (1− c2)−1+β/2, |c| < 1, (5.3.2)

P(τ1, τ2)∝ |τ1 − τ2|β(τ1τ2)−2(β+1)e−(1/τ1+1/τ2)πβ�/∆, τ1, τ2 > 0, (5.3.3)

P(T)∝ T−1+β/2, 0 < T < 1. (5.3.4)

The integer β equals 1 or 2, depending on whether time-reversal symmetry is
present or not. The times τ1, τ2 are the eigenvalues of the Wigner-Smith time-
delay matrix (see Refs. [8] and [14]). Their sum τ1 + τ2 is the density of states
(multiplied by 2π�). The thermopower distribution follows from

P(σ) ∝
∫ 1

−1
dc P(c)

∫∞
0
dτ1

∫∞
0
dτ2 P(τ1, τ2)

∫ 1

0
dT P(T)

× (τ1 + τ2)δ
(
σ − (∆/2π�)c(τ1 − τ2)

√
1/T − 1

)
. (5.3.5)
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Figure 5-3. Distribution of the dimensionless thermopower of a chaotic cavity with two single-

channel ballistic point contacts (inset), computed from Eq. (5.3.5) for the case of broken (β = 2)

and unbroken (β = 1) time-reversal symmetry.

As in Refs. [8] and [15], the density of states appears as a weight factor τ1 + τ2

in the ensemble average (5.3.5), because the ensemble is generated by uniformly
varying the charge on the quantum dot rather than its Fermi energy. This is the
correct thing to do in the Hartree (self-consistent potential) approximation. A
more sophisticated treatment of the electron-electron interactions (as advocated
in Ref. [16]) does not yet exist for this problem. The resulting distributions are
plotted in Fig. 5-3. The curves have a cusp at σ = 0, and asymptotes P(σ) ∝
|σ |−1−β ln |σ | for |σ | � 1.

5.4 Conclusion

The results we have reported hold for single-channel conductors. The general-
ization to multi-channel conductors is of interest. Multi-channel diffusive con-
ductors were studied in Ref. [3]. For a chaotic cavity with ballistic point contacts
having a large number of modes (N modes per point contact), the distribution
of the thermopower is Gaussian. The mean is zero and the variance is

VarS = k4
BT 2π6

9e2N4∆2β
. (5.4.1)

(We have used the results of Ref. [17].) Analogously to universal conductance
fluctuations, the variance of the thermopower is reduced by a factor of 2 upon



66 Chapter 5: Thermopower of disordered and chaotic conductors

breaking time-reversal symmetry (β = 1 → β = 2).
For an N-mode wire in the localized regime, our derivation of the exponen-

tial distribution of the thermopower remains valid. This is not true for the
Lorentzian distribution. The reason is that the Herbert-Jones-Thouless formula
for N > 1 relates the density of states to the sum of the inverse localiza-
tion lengths [18], and there is no simple relation between this sum and the
thermopower. We expect that the tail of the distribution remains quadratic,
P(S) ∝ S−2 — because of the argument of Sec. 5.2.3, which is still valid for
N > 1. It remains a challenge to determine analytically the entire thermopower
distribution of a multi-channel disordered wire.
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6 Berry phase and adiabaticity of a spin
diffusing in a non-uniform magnetic field

6.1 Introduction

The adiabatic theorem of quantum mechanics implies that the final state of a
particle that moves slowly along a closed path is identical to the initial eigenstate
— up to a phase factor. The Berry phase is a time-independent contribution to
this phase, depending only on the geometry of the path [1]. A simple example is
a spin-1/2 in a rotating magnetic field B, where the Berry phase equals half the
solid angle swept by B. It was proposed by Stern [2] to measure the Berry phase
in the conductance G of a mesoscopic ring in a spatially rotating magnetic field.
Oscillations of G as a function of the swept solid angle were predicted, similar
to the Aharonov-Bohm oscillations as a function of the enclosed flux [3].

An important practical difference between the two effects is that the Aha-
ronov-Bohm oscillations exist at arbitrarily small magnetic fields, whereas for
the oscillations due to the Berry phase the magnetic field should be sufficiently
strong to allow the spin to adiabatically follow the changing direction. Generally
speaking, adiabaticity requires that the precession frequency ωB is large com-
pared to the reciprocal of the characteristic timescale tc on which B changes
direction. We know thatωB = gµBB/2�, with g the Landé-factor and µB the Bohr
magneton. The question is, what is tc? In a ballistic ring there is only one candi-
date, the circumference L of the ring divided by the Fermi velocity v . (For sim-
plicity we assume that L is also the scale on which the field direction changes.)
In a diffusive ring there are two candidates: the elastic scattering time τ and the
diffusion time τd around the ring. They differ by a factor τd/τ ' (L/`)2, where
` = vτ is the mean free path. Since, by definition, L� ` in a diffusive system,
the two time scales are far apart. Which of the two time scales is the relevant
one is still under debate [4].

Stern’s original proposal [2] was that

ωB � 1
τ

(6.1.1)

is necessary to observe the Berry-phase oscillations. For realistic values of g this
requires magnetic fields in the quantum Hall regime, outside the range of valid-
ity of the semiclassical theory. We call Eq. (6.1.1) the “pessimistic criterion”. In
a later work [5], Loss, Schoeller, and Goldbart (LSG) concluded that adiabaticity
is reached already at much weaker magnetic fields, when

ωB � 1
τd
' 1
τ

(
`
L

)2

. (6.1.2)
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This “optimistic criterion” has motivated experimentalists to search for the Berry-
phase oscillations in disordered conductors [6], and was invoked in a recent
study of the conductivity of mesoscopic ferromagnets [7]. In this paper, we
re-examine the semiclassical theory of LSG to resolve the controversy.

The Berry-phase oscillations in the conductance result from a periodic modu-
lation of the weak-localization correction, and require the solution of a diffusion
equation for the Cooperon propagator. To solve this problem we need to con-
sider the coupled dynamics of four spin-degrees of freedom. (The Cooperon has
four spin indices.) To gain insight we first examine in Sec. 6.2 the simpler prob-
lem of the dynamics of a single spin variable, by studying the randomization of
a spin-polarized electron gas by a non-uniform magnetic field. We start at the
level of the Boltzmann equation and then make the diffusion approximation.
We show how the diffusion equation can be solved exactly for the first two mo-
ments of the polarization. The same procedure is used in Sec. 6.3 to arrive at a
diffusion equation for the Cooperon. This equation coincides with the equation
derived by LSG in the weak-field regime ωBτ � 1, but is different in the strong-
field regime ωBτ >∼ 1. We present an exact solution for the weak-localization
correction and compare with the findings of LSG.

Our conclusion both for the polarization and for the weak-localization cor-
rection is that adiabaticity requires ωBτ � 1. Regrettably, the pessimistic cri-
terion (6.1.1) is correct, in agreement with Stern’s original conclusion. The op-
timistic criterion (6.1.2) advocated by LSG turns out to be the criterion for max-
imal randomization of the spin by the magnetic field, and not the criterion for
adiabaticity.

6.2 Spin-resolved transmission

6.2.1 Formulation of the problem

Consider a conductor in a magnetic field B, containing a disordered segment
(length L, mean free path ` at Fermi velocity v) in which the magnetic field
changes its direction. An electron at the Fermi level with spin up (relative to the
local magnetic field) is injected at one end and reaches the other end. What is
the probability that its spin is up?

For simplicity we take for the conductor a two-dimensional electron gas (in
the x-y plane, with the disordered region between x = 0 and x = L), and we
ignore the curvature of the electron trajectories by the Lorentz force. The prob-
lem becomes effectively one-dimensional by assuming that B depends on x only.
We choose a rotation of B in the x-y-plane, according to

B(x,y, z = 0) =
(
B sinη cos 2πfx

L , B sinη sin 2πfx
L , B cosη

)
, (6.2.1)

with η and f arbitrary parameters. The geometry is sketched in Fig. 6-1. We
treat the orbital motion semiclassically, within the framework of the Boltzmann
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L

B

x
y

η

Figure 6-1. Schematic drawing of a two-dimensional electron gas in the spatially rotating

magnetic field of Eq. (6.2.1), with f = 1.

equation. (This is justified if the Fermi wavelength is much smaller than `.) The
spin dynamics requires a fully quantum mechanical treatment. We assume that
the Zeeman energy gµBB is much smaller than the Fermi energy 1

2mv
2, so that

the orbital motion is independent of the spin.
We introduce the probability density P(x,φ, ξ, t) for the electron to be at

time t at position x with velocity v = (v cosφ,v sinφ,0), in the spin state with
spinor ξ = (ξ1, ξ2). The dynamics of ξ depends on the local magnetic field
according to

dξ
dt

= igµB

2�
B ·σξ, (6.2.2)

where σ = (σx,σy,σz) is the vector of Pauli matrices. It is convenient to decom-
pose ξ = χ1ξ↑ + χ2ξ↓ into the local eigenstates ξ↑, ξ↓ of B ·σ,

ξ↑ =
(

cos η2 e−iπfx/L

sin η
2 eiπfx/L

)
, ξ↓ =

(− sin η
2 e−iπfx/L

cos η2 eiπfx/L

)
, (6.2.3)

B ·σξ↑ = Bξ↑, B ·σξ↓ = −Bξ↓, (6.2.4)

and use the real and imaginary parts of the coefficients χ1, χ2 as variables in
the Boltzmann equation. The dynamics of the vector of coefficients c = (c1, c2,
c3, c4) = (Reχ1, Imχ1,Reχ2, Imχ2) is given by

dc
dt

= 1
τ
Mc, M =M0 +M1 cosφ, (6.2.5)

M0 =ωBτ




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


 , (6.2.6)
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M1 = πf`L




0 − cosη 0 sinη
cosη 0 − sinη 0

0 sinη 0 cosη
− sinη 0 − cosη 0


 , (6.2.7)

where ωB = gµBB/2� is the precession frequency of the spin. The Boltzmann
equation takes the form

τ
∂
∂t
P(x,φ, c, t) = −` cosφ

∂P
∂x

−
∑
i,j

∂
∂ci

(
MijcjP

)− P +
∫ 2π

0

dφ′

2π
P(x,φ′, c, t),

(6.2.8)
where we have assumed isotropic scattering (rate 1/τ = v/`).

We look for a stationary solution to the Boltzmann equation, so the left-hand-
side of Eq. (6.2.8) is zero and we omit the argument t of P . A stationary flux of
particles with an isotropic velocity distribution is injected at x = 0, their spins
all aligned with the local magnetic field (so χ2 = 0 at x = 0). Without loss of
generality we may assume that χ1 = 1 at x = 0. No particles are incident from
the other end, at x = L. Thus the boundary conditions are

P(x = 0,φ, c) = δ(c1 − 1)δ(c2)δ(c3)δ(c4) if cosφ > 0, (6.2.9)

P(x = L,φ, c) = 0 if cosφ < 0. (6.2.10)

This completes the formulation of the problem. We compare two methods
of solution. The first is an exact numerical solution of the Boltzmann equation
using the Monte Carlo method. The second is an approximate analytical solution
using the diffusion approximation, valid for L� `. We begin with the latter.

6.2.2 Diffusion approximation

The diffusion approximation amounts to the assumption that P has a simple
cosine-dependence on φ,

P(x,φ, c) = N(x, c)+ J(x, c) cosφ. (6.2.11)

To determine the density N and current J we substitute Eq. (6.2.11) into Eq.
(6.2.8) and integrate over φ. This gives

`
∂J
∂x

= − ∂
∂c
(2M0cN +M1cJ) . (6.2.12)

Similarly, multiplication with cosφ before integration gives

`
∂N
∂x

= − ∂
∂c
(M0cJ +M1cN)− J. (6.2.13)

Thus we have a closed set of partial differential equations for the unknown
functions N(x, c) and J(x, c). Boundary conditions are obtained by multiplying
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Eq. (6.2.9-6.2.10) with cosφ and integrating over φ:

N(x = 0, c)+ π
4
J(x = 0, c) = δ(c1 − 1)δ(c2)δ(c3)δ(c4), (6.2.14)

N(x = L, c)− π
4
J(x = L, c) = 0. (6.2.15)

We seek the spin polarization p = c2
1+c2

2−c2
3−c2

4 of the transmitted electrons,
characterized by the distribution

P(p) =
∫
dc J(x = L, c)δ(c2

1 + c2
2 − c2

3 − c2
4 − p)∫

dc J(x = L, c) . (6.2.16)

(The notation
∫
dc ≡

∫
dc1

∫
dc2

∫
dc3

∫
dc4 indicates an integration over the spin

variables.) We compute the first two moments of P(p). The first moment p is
the fraction of transmitted electrons with spin up minus the fraction with spin
down, averaged quantum mechanically over the spin state and statistically over
the disorder. The variance Var p = p2−p2 gives an indication of the magnitude
of the statistical fluctuations.

Integration of Eqs. (6.2.12)–(6.2.15) over the spin variables yields the equa-
tions and boundary conditions for the functions N(x) =

∫
dc N(x, c) and J(x) =∫

dc J(x, c):

`
dN
dx

= −J, dJ
dx

= 0, (6.2.17)

N(0)+ π
4
J(0) = 1, N(L)− π

4
J(L) = 0. (6.2.18)

The solution

J(x) =
(π

2
+ L
`

)−1

(6.2.19)

determines the denominator of Eq. (6.2.16).
To determine p we multiply Eqs. (6.2.12) and (6.2.13) with χαχ∗β and integrate

over c. (Recall that χ1 = c1+ic2, χ2 = c3+ic4.) It follows upon partial integration
that

∫
dc χαχ∗β

∂
∂c
(M0cf ) = −

∑
ρ,σ

(
Sαρδβσ − δαρSβσ

) ∫
dc χρχ∗σf , (6.2.20)

∫
dc χαχ∗β

∂
∂c
(M1cf ) = −

∑
ρ,σ

(
Tαρδβσ − δαρTβσ

) ∫
dc χρχ∗σf , (6.2.21)

for arbitrary functions f(x, c). The 2× 2 matrices S, T are defined by

S = iωBτσz, T = iπf`L (σz cosη− σx sinη) . (6.2.22)
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In this way we find that the moments

Nαβ(x) =
∫
dc χαχ∗βN(x, c), (6.2.23)

Jαβ(x) =
∫
dc χαχ∗β J(x, c), (6.2.24)

satisfy the ordinary differential equations

`
dNαβ
dx

=
∑
ρ,σ

(
Tαρδβσ − δαρTβσ

)
Nρσ

+
∑
ρ,σ

(
Sαρδβσ − δαρSβσ

)
Jρσ − Jαβ, (6.2.25)

`
dJαβ
dx

= 2
∑
ρ,σ

(
Sαρδβσ − δαρSβσ

)
Nρσ

+
∑
ρ,σ

(
Tαρδβσ − δαρTβσ

)
Jρσ , (6.2.26)

with boundary conditions

Nαβ(x = 0)+ π
4
Jαβ(x = 0) = δα1δβ1, (6.2.27)

Nαβ(x = L)− π4 Jαβ(x = L) = 0. (6.2.28)

The mean polarization p is determined by Jαβ according to

p = J11(L)− J22(L)
J(L)

=
(π

2
+ L
`

)
[J11(L)− J22(L)] . (6.2.29)

Since Eq. (6.2.25-6.2.26) is linear in the 8 functions Nαβ(x), Jαβ(x) (α,β =
1,2), a solution requires the eigenvalues and right eigenvectors of the 8 × 8
matrix of coefficients. These can be readily computed numerically for any values
of L/` and ωBτ. We have found an analytic asymptotic solution for L/` � 1
and ωBτ � (f`/L)2, given by

p = k
sinhk

, k = 2πf sinη√
1+ (2ωBτ)2

. (6.2.30)

In Fig. 6-2 we compare the numerical solution (solid curve) with Eq. (6.2.30)
(dashed curve) for L/` = 25 and η = π/3, f = 1. The two curves are almost
indistinguishable, except for the smallest values of ωBτ.

In a similar way, we compute the second moment of P(p) by multiplying Eqs.
(6.2.12) and (6.2.13) with χαχ∗βχγχ

∗
δ and integrating over c. The result is a closed

set of equations

`
d
dx
Nαβγδ =

∑
µ,ν,ρ,σ

(
LµνρσαβγδNµνρσ +Kµνρσαβγδ Jµνρσ

)
− Jαβγδ, (6.2.31)

`
d
dx
Jαβγδ =

∑
µ,ν,ρ,σ

(
2Kµνρσαβγδ Nµνρσ + LµνρσαβγδJµνρσ

)
, (6.2.32)
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Figure 6-2. Average and variance of the spin polarization p of the current transmitted through

a two-dimensional region of length L = 25`, as a function of ωBτ, for a magnetic field given

by Eq. (6.2.1) with η = π/3 and f = 1. The data points result from Monte Carlo simulations

of the Boltzmann equation (6.2.8), the solid curves result from the diffusion approximation

(6.2.11), and the dashed curves are the asymptotic formulas (6.2.30) and (6.2.40). Notice the

transient regime (A), the randomized regime (B), and the adiabatic regime (C).

where we have defined

Kµνρσαβγδ = Sαµδβνδγρδδσ − δαµSβνδγρδδσ
+δαµδβνSγρδδσ − δαµδβνδγρSδσ , (6.2.33)

Lµνρσαβγδ = Tαµδβνδγρδδσ − δαµTβνδγρδδσ
+δαµδβνTγρδδσ − δαµδβνδγρTδσ , (6.2.34)

Nαβγδ(x) =
∫
dc χαχ∗βχγχ

∗
δN(x, c), (6.2.35)

Jαβγδ(x) =
∫
dc χαχ∗βχγχ

∗
δ J(x, c). (6.2.36)

The boundary conditions on the functions Nαβγδ and Jαβγδ are

Nαβγδ(x = 0)+ π
4
Jαβγδ(x = 0) = δα1δβ1δγ1δδ1, (6.2.37)

Nαβγδ(x = L)− π4 Jαβγδ(x = L) = 0. (6.2.38)
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The second moment p2 is determined by

p2 =
(π

2
+ L
`

)
[J1111(x = L)− J1122(x = L)− J2211(x = L)+ J2222(x = L)] .

(6.2.39)
The numerical solution is plotted also in Fig. 6-2, together with the asymptotic
expression

Varp = 1
3
+ 2k

√
3

3 sinh
(
k
√

3
) − k2

sinh2 k
. (6.2.40)

It is evident from Eqs. (6.2.30) and (6.2.40), and from Fig. 6-2, that the regime
with p = 1, Varp = 0 is entered for ωBτ >∼ f [for sinη = O(1)], in agreement
with Stern’s criterion (6.1.1) for adiabaticity. For smallerωBτ adiabaticity is lost.
There is a transient regime ωBτ � (f`/L)2, in which the precession frequency
is so low that the spin remains in the same state during the entire diffusion
process. For (f`/L)2 � ωBτ � f the average polarization reaches a plateau
value close to zero with a finite variance. For a sufficiently non-uniform field,
f sinη � 1, we find in this regime p = 0 and Varp = 1/3, which means that
the spin state is completely randomized. The transient regime, the randomized
regime, and the adiabatic regime are indicated in Fig. 6-2 by the letters A, B, and
C.

6.2.3 Comparison with Monte Carlo simulations

In order to check the diffusion approximation we solved the full Boltzmann
equation by means of a Monte Carlo simulation. A particle is moved from x = 0
over a distance `1 in the direction φ1, then over a distance `2 in the direction φ2,
and so on, until it is reflected back to x = 0 or transmitted to x = L. The step
lengths `i are chosen randomly from a Poisson distribution with mean `. The
directions φi are chosen uniformly from [0,2π], except for the initial direction
φ1, which is distributed ∝ cosφ1. The spin components are given by(

χ1

χ2

)
=
∏
i

e(S+T cosφi)`i/`
(

1
0

)
. (6.2.41)

To find pn, one has to average
(|χ1|2 − |χ2|2

)n
over the transmitted particles.

The results for L/` = 25 are shown in Fig. 6-2 (data points). They agree very
well with the results of the previous subsection, thus confirming the validity of
the diffusion approximation for L/`� 1.

6.3 Weak localization

6.3.1 Formulation of the problem

We turn to the effect of the non-uniform magnetic field on the weak-localization
correction of a multiply-connected system. We consider the same geometry as
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in Fig. 6-1, but now with periodic boundary conditions — to model a ring of
circumference L. Only the effects of the magnetic field on the spin are included,
to isolate the Berry phase from the conventional Aharonov-Bohm phase. As
in the previous subsection, we assume that the orbital motion is independent
of the spin dynamics. We follow LSG in applying the semiclassical theory of
Chakravarty and Schmidt [8] to the problem, however, we start at the level of
the Boltzmann equation — rather than at the level of the diffusion equation —
and make the diffusion approximation at a later stage of the calculation.

The weak-localization correction ∆G to the conductance is given by

∆G = − e
2D
π�L

∫∞
0
dt e−t/τϕC(t), (6.3.1)

where τϕ is the phase coherence time and the diffusion coefficient D = vl/d in
d dimensions. (In our geometry d = 2.) The “return quasi-probability” C(t) is
expressed as a sum over “Boltzmannian walks” R(t) with R(0) = R(t),

C(t) =
∑
{R(t)}

W Tr (U+U−). (6.3.2)

HereW[R(t)] is the weight of the Boltzmannian walk for a spinless particle. The
2× 2 matrices U±[R(t)] are defined by

U± = T exp

{
±igµB

2�

∫ t
0
dt′ B(((R(t′)))) ·σ

}
, (6.3.3)

where T denotes a time ordering. The factor Tr (U+U−) in Eq. (6.3.2) accounts
for the phase difference of time-reversed paths.

The Cooperon can be written in terms of a propagator χ,

C(t) = 1
2π

∫ 2π

0
dφ

∫ 2π

0
dφi

∑
α,β

χαββα(xi, xi;φ,φi; t), (6.3.4)

that satisfies the kinetic equation

( ∂
∂t
+B

)
χαβγδ(x, xi;φ,φi; t)

−igµB

2�

∑
α′,γ′

[
(((B(x) ·σ)))αα′δγγ′ − δαα′(((B(x) ·σ)))γγ′

]
χα′βγ′δ

= δ(t)δ(x − xi)δ(φ−φi)δαβδγδ. (6.3.5)

The Boltzmann operator B is given by

B = v cosφ
∂
∂x

+ 1
τ
− 1
τ

∫ 2π

0

dφ
2π
. (6.3.6)
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The propagator χ is a moment of the probability distribution P(x,φ,U+,
U−, t),

χαβγδ =
∫
dU+

∫
dU−U+αβU

−
γδP , (6.3.7)

that satisfies the Boltzmann equation

[
∂
∂t
+B+ ∂

∂U+

(
dU+

dt

)
+ ∂
∂U−

(
dU−

dt

)]
P(x,φ,U+, U−, t) = 0, (6.3.8)

with initial condition

P(x,φ,U+, U−,0) = δ(x − xi)δ(φ−φi)δ(U+ − )δ(U− − ). (6.3.9)

The notation dU+ or dU− indicates the differential of the real and imaginary
parts of the elements of the 2× 2 matrix U+ or U−. We will write this in a more
explicit way in the next subsection.

The Boltzmann equation (6.3.8) has the same form as that which we studied
in Sec. 6.2. The difference is that we have four times as many internal degrees
of freedom. Instead of a single spinor ξ we now have two spinor matrices U+
and U−. A first doubling of the number of degrees of freedom occurs because
we have to follow the evolution of both spin up and spin down. A second dou-
bling occurs because we have to follow both the normal and the time-reversed
evolution.

6.3.2 Diffusion approximation

We make the diffusion approximation to the Boltzmann equation (6.3.8), by fol-
lowing the steps outlined in Sec. 6.2. The 4×2 matrix u± containing the real and
imaginary parts of U±,

u± =




ReU±11 ReU±12

ImU±11 ImU±12

ReU±21 ReU±22

ImU±21 ImU±22


 , (6.3.10)

has a time evolution governed by

τ
du±

dt
= ±Z(x)u±, (6.3.11)

Z(x)
ωBτ

=




0 − cosη sinη sinψ − sinη cosψ
cosη 0 sinη cosψ sinη sinψ

− sinη sinψ − sinη cosψ 0 cosη
sinη cosψ − sinη sinψ − cosη 0


 , (6.3.12)

ψ = 2πfx/L. (6.3.13)
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The Boltzmann equation (6.3.8) becomes, in a more explicit notation,

τ
∂
∂t
P(x,φ,u+, u−, t) = −` cosφ

∂P
∂x

−
∑
i,j,k

∂
∂u+ij

Zik(x)u+kjP +
∑
i,j,k

∂
∂u−ij

Zik(x)u−kjP

−P +
∫ 2π

0

dφ′

2π
P(x,φ′, u+, u−, t). (6.3.14)

We now make the diffusion ansatz in the form
∫∞

0
dt e−t/τϕ

∫ 2π

0
dφi P = N + J cosφ. (6.3.15)

By integrating the Boltzmann equation overφ, once with weight 1 and once with
weight cosφ, we obtain two coupled equations for the functions N(x,u+, u−)
and J(x, u+, u−). Next we multiply both equations with U+αβU

−
γδ and integrate

over the real and imaginary parts of the matrix elements. The moments Nαβγδ
and Jαβγδ defined by

Nαβγδ(x) =
∫
dU+

∫
dU−U+αβU

−
γδN, (6.3.16)

Jαβγδ(x) =
∫
dU+

∫
dU−U+αβU

−
γδJ, (6.3.17)

are found to obey the ordinary differential equations

`
dNαβγδ
dx

= igµBτ
2�

∑
α′,γ′

[
(((B(x) ·σ)))αα′δγγ′ − δαα′(((B(x) ·σ)))γγ′

]
Jα′βγ′δ

− (1+ τ/τϕ) Jαβγδ, (6.3.18)

`
dJαβγδ
dx

= igµBτ
�

∑
α′,γ′

[
(((B(x) ·σ)))αα′δγγ′ − δαα′(((B(x) ·σ)))γγ′

]
Nα′βγ′δ

−(2τ/τϕ)Nαβγδ + 2τδαβδγδδ(x − xi). (6.3.19)

The periodic boundary conditions are

Nαβγδ(0) = Nαβγδ(L), Jαβγδ(0) = Jαβγδ(L). (6.3.20)

The Cooperon C and the propagator χ of Eqs. (6.3.4) and (6.3.7) are related to
the density N by

Nαβγδ(x) =
∫∞

0
dt e−t/τϕ

1
2π

∫ 2π

0
dφ

∫ 2π

0
dφi χαβγδ(x, xi;φ,φi; t), (6.3.21)

∑
α,β

Nαββα(xi) =
∫∞

0
dt e−t/τϕC(t). (6.3.22)
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Hence the weak-localization correction (6.3.1) is obtained from N by

∆G = − e
2D
π�L

∑
α,β

Nαββα(xi). (6.3.23)

The transformation to the local basis of spin states (6.2.3) takes the form of
a unitary transformation of the moments N and J,

Ñαβγδ =
∑

α′,β′,γ′,δ′
Qαα′Qγγ′Nα′β′γ′δ′Q

†
β′βQ

†
δ′δ, (6.3.24)

J̃αβγδ =
∑

α′,β′,γ′,δ′
Qαα′Qγγ′Jα′β′γ′δ′Q

†
β′βQ

†
δ′δ, (6.3.25)

Q(x) =
(

eiπfx/L cos η2 e−iπfx/L sin η
2

−eiπfx/L sin η
2 e−iπfx/L cos η2

)
. (6.3.26)

The transformed moments obey

`
dÑαβγδ
dx

=
∑
α′,γ′

(
Tαα′δγγ′ + δαα′Tγγ′

)
Ñα′βγ′δ

+
∑
α′,γ′

(
Sαα′δγγ′ − δαα′Sγγ′

)
J̃α′βγ′δ

− (1+ τ/τϕ) J̃αβγδ, (6.3.27)

`
dJ̃αβγδ
dx

= 2
∑
α′,γ′

(
Sαα′δγγ′ − δαα′Sγγ′

)
Ñα′βγ′δ

+
∑
α′,γ′

(
Tαα′δγγ′ + δαα′Tγγ′

)
J̃α′βγ′δ

−(2τ/τϕ)Ñαβγδ + 2τδαβδγδδ(x − xi), (6.3.28)

with the same 2× 2 matrices S and T as in Sec. 6.2. Because the transformation
from N to Ñ is unitary, the weak-localization correction is still given by ∆G =
−(e2D/π�L)

∑
α,β Ñαββα(xi), as in Eq. (6.3.23).

We have solved Eq. (6.3.27-6.3.28) with periodic boundary conditions by nu-
merically computing the eigenvalues and (right) eigenvectors of the 8×8 matrix
of coefficients. The resulting ∆G is plotted in Figs. 6-3,6-4 as a function of the tilt
angle η. In the adiabatic regime ωBτ � f we find the conductance oscillations
due to the Berry phase. These are given by [5]

∆G = − e
2

π�
Lϕ
L

sinh(L/Lϕ)
cosh(L/Lϕ)− cos (2πf cosη)

(6.3.29)

analogously to the Aharonov-Bohm oscillations [3]. (The length Lϕ =
√
Dτϕ is

the phase-coherence length.) In the randomized regime
(
f`/L

)2 � ωBτ � f
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Figure 6-3. Weak-localization correction ∆G of a ring in a spatially rotating magnetic field, as a

function of the tilt angle η. Plotted is the result of Eq. (6.3.27-6.3.28) for f = 5, L = 500`, and

Lϕ = 125`. The upper panel is forωBτ � 1. From top to bottom: ωBτ = 10−5, 10−4, 2 ·10−4,

3 ·10−4, 5 ·10−4, 10−3, 10−2. AtωBτ ' (f`/L)2, the weak-localization correction crosses over

from the transient regime A of Eq. (6.3.30) to the randomized regime B of Eq. (6.3.39-6.3.41).

The lower panel is for ωBτ >∼ 1. From bottom to top: ωBτ = 0.1, 1, 2, 5, 10, 100. Here the

weak-localization correction reaches the adiabatic regime C of Eq. (6.3.29).

there are no conductance oscillations. Instead we find a reduction of the weak-
localization correction, due to dephasing by spin scattering. In the transient
regimeωBτ �

(
f`/L

)2 the effect of the field on the spin can be ignored [9], and
the weak-localization correction remains at its zero-field value

∆G = − e
2

π�
Lϕ
L

cotanh

(
L

2Lϕ

)
. (6.3.30)

6.3.3 Comparison with Loss, Schoeller, and Goldbart

If we replace the Boltzmann operator B in Eq. (6.3.5) by the diffusion operator
−D∂2/∂x2 and integrate over φ and φi, we end up with the diffusion equation
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Figure 6-4. Same as Fig. 6-3, but now for f = 1,2, . . . ,5 with a fixed field strength in the

randomized regime (upper panel) respectively adiabatic regime (lower panel).

studied by LSG,(
∂
∂t
−H

)
χαβγδ(x, xi; t) = δ(t)δ(x − xi)δαβδγδ, (6.3.31)

H = D ∂2

∂x2
+ igµB

2�
[B(x) ·σ1 − B(x) ·σ2] , (6.3.32)

χαβγδ(x, xi; t) = 1
2π

∫ 2π

0
dφ

∫ 2π

0
dφi χαβγδ(x, xi;φ,φi; t). (6.3.33)

Here σ1 and σ2 act, respectively, on the first and third indices of χαβγδ.
The difference between the diffusion equation (6.3.31) and the diffusion equa-

tion (6.3.18-6.3.19) is that the former holds only if ωBτ � 1, while the latter
holds for any value of ωBτ. LSG used Eq. (6.3.31) to argue that there exists an
adiabatic region within the regime ωBτ � 1. In contrast, our analysis of Eq.
(6.3.18-6.3.19) shows that adiabaticity is not possible if ωBτ � 1. The argu-
ment of LSG is based on a mapping of the diffusion equation (6.3.31) onto the
Schrödinger equation studied in Ref. [10]. However, the mapping is not carried
out explicitly. In this subsection we will solve Eq. (6.3.31) exactly using this
mapping, to demonstrate that the adiabatic regime of LSG is in fact the random-
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ized regime B. This mis-identification perhaps occurred because both regimes
are stationary with respect to the magnetic field strength (cf. Fig. 6-2). However,
Berry-phase oscillations of the conductance are only supported in the adiabatic
regime C, not in the randomized regime B (cf. Figs. 6-3,6-4).

We solve Eq. (6.3.31) for the weak-localization correction

∆G = − e
2D
π�L

∑
α,β

〈
x,α,β

∣∣∣∣(τ−1
ϕ −H

)−1
∣∣∣∣x,β,α

�
, (6.3.34)

where we introduced the basis of eigenstates |x,α,β〉 (with α,β = ±1) of the
position operator x and the spin operators σ1z and σ2z. The operator H com-
mutes with

J = L
2πi

∂
∂x

+ 1
2f (σ1z + σ2z) . (6.3.35)

It is therefore convenient to use as a basis, instead of the eigenstates |x,α,β〉,
the eigenstates |j, α,β〉 of J, σ1z, and σ2z. The eigenvalue j of J is an integer
because of the periodic boundary conditions. The eigenfunctions are given by

〈
x,α′, β′|j,α,β〉 = 1√

L
δα′αδβ′β exp

[
2πix
L (j −

1
2fα−

1
2fβ)

]
. (6.3.36)

In the basis {|j,1,1〉, |j,1,−1〉, |j,−1,1〉, |j,−1,−1〉} the operator H has matrix
elements

〈j′, α′, β′|H|j,α,β〉 = −D
(

2π
L

)2

δj′j



(j − f)2 0 0 0

0 j2 0 0
0 0 j2 0
0 0 0 (j + f)2




−iωBδj′j




0 sinη − sinη 0
sinη −2 cosη 0 − sinη

− sinη 0 2 cosη sinη
0 − sinη sinη 0


 . (6.3.37)

Substitution into Eq. (6.3.34) yields

∆G = −e
2D
π�

1
L2

∑
α,β

∞∑
j=−∞

〈
j, α,β

∣∣∣∣(τ−1
ϕ −H

)−1
∣∣∣∣ j, β,α

�

= − e2

2π3�

∞∑
j=−∞

[
(γ + j2)2(f 2 + γ + j2)+ κ2(3f 2 + 4γ + 4j2 + f 2 cos 2η)

]

×
[
(γ + j2)2(f 4 + 2f 2γ + γ2 − 2f 2j2 + 2γj2 + j4)+ 2κ2(((f 4 + 3f 2γ

+2γ2 − f 2j2 + 4γj2 + 2j4 + f 2(f 2 + γ − 3j2) cos 2η)))
]−1
.

(6.3.38)
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We abbreviated κ = 2ωBτ(L/2π`)2 and γ = (L/2πLϕ)2. The sum over j can be
done analytically for κ � 1, with the result

∆G = − e
2

π�
1

4πQ

[
4a− + 4γ + (3+ cos 2η)f 2

√
a− tanπ

√
a−

−4a+ + 4γ + (3+ cos 2η)f 2

√a+ tanπ√a+

]
, (6.3.39)

Q =
[
f 4(9 cos2 2η− 2 cos 2η− 7)− 32γf 2(1+ cos 2η)

]1/2
, (6.3.40)

a± = −γ + 1
4(1+ 3 cos 2η)f 2 ± 1

4Q. (6.3.41)

We have checked that our solution (6.3.38) of Eq. (6.3.31) coincides with the
solution of Eq. (6.3.18-6.3.19) in the regime ωBτ � 1. (The two sets of curves
are indistinguishable on the scale of the figures.) In particular, Eq. (6.3.39-6.3.41)
coincides with the curves labeled B in Figs. 6-3 and 6-4, demonstrating that it
represents the randomized regime — without Berry phase-oscillations.

6.4 Conclusions

In conclusion, we have computed the effect of a non-uniform magnetic field
on the spin polarization (Sec. 6.2) and weak-localization correction (Sec. 6.3)
in a disordered conductor. We have identified three regimes of magnetic field
strength: the transient regime given byωBτ � (f`/L)2, the randomized regime
(f`/L)2 � ωBτ � f , and the adiabatic regime ωBτ � f . In the transient
regime (labeled A in Figs. 6-2 and 6-3), the effect of the magnetic field can be
neglected. In the randomized regime (labeled B), the depolarization and the
suppression of the weak-localization correction are maximal. In the adiabatic
regime (labeled C), the polarization is restored and the weak-localization correc-
tion exhibits oscillations due to the Berry phase.

The criterion for adiabaticity is ωBtc � 1, with ωB the spin-precession fre-
quency and tc a characteristic timescale of the orbital motion. We find tc = τ,
in agreement with Stern [2], but in contradiction with the result tc = τ(L/`)2 of
Loss, Schoeller, and Goldbart [5]. By solving exactly the diffusion equation for
the Cooperon derived in Ref. [5], we have demonstrated unambiguously that the
regime which in that paper was identified as the adiabatic regime, is in fact the
randomized regime B — without Berry-phase oscillations.

We have focused on transport properties, such as conductance and spin-
resolved transmission. Thermodynamic properties, such as the persistent cur-
rent, in a non-uniform magnetic field have been studied by Loss, Goldbart, and
Balatsky [10, 11] in connection with Berry-phase oscillations. These papers as-
sumed ballistic systems. We believe that the adiabaticity criterion ωBτ � 1 for
disordered systems should apply to thermodynamic properties as well as trans-
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port properties. This strong-field criterion presents a pessimistic outlook for
the prospect of experiments on the Berry phase in disordered systems.

In a recent preprint (cond-mat/9805128), Loss, Schoeller and Goldbart have
reconsidered the condition for adiabaticity. We agree on the equations (our exact
solution (3.2a) is their starting point), but differ in the interpretations. They
interpret our randomized regime B as being the adiabatic regime and explain the
absence of Berry-phase oscillations as being due to the effects of field-induced
dephasing. We reserve the name “adiabatic” for regime C, because if the spin
would follow the magnetic field adiabatically in regime B, it should not suffer
dephasing.
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Samenvatting

Thermische en elektrische verschijnselen
in chaotische geleiders

Dit proefschrift gaat over de chaotische beweging van elektronen. In wanorde-
lijke metalen botsen de elektronen op onzuiverheden en maken daardoor een
chaotische “dronkemanswandeling” door het metaal. Er zijn ook systemen zon-
der onzuiverheden waarin de elektronen toch een chaotische beweging uitvoe-
ren door botsingen met de wanden. Een voorbeeld van zo’n chaotisch systeem is
een “elektronenbiljart” in de vorm van een stadion (twee halve cirkels verbonden
door lijnstukken). De beweging in zo’n stadion is chaotisch in tegenstelling tot
de beweging in een rechthoekig of rond biljart. We onderzoeken de invloed van
de chaotische beweging op de warmtegeleiding en de elektrische geleiding.

In hoofdstuk 1 wordt een algemene inleiding gegeven en worden de gebruikte
technieken nader toegelicht. Uitgangspunt is de relatie tussen transportgroot-
heden bij lage temperaturen en quantummechanische verstrooiingsparameters.
Het elektrische geleidingsvermogen, bijvoorbeeld, is evenredig met de transmis-
siekans door het metaal. Alle informatie over hoe een object invallende golven
doorlaat of terugkaatst, is bevat in de verstrooiingsmatrix. De verstrooiings-
matrix van één enkel chaotisch systeem valt niet te voorspellen, zonder een
ingewikkelde berekening te doen. Maar de statistische eigenschappen van een
ensemble van chaotische systemen zijn wel eenvoudig te voorspellen. Voor een
chaotisch biljart bijvoorbeeld is de verstrooiingsmatrix een willekeurig gekozen
unitaire matrix. Deze aanpak heet de toevalsmatrixtheorie.

De theorie ontwikkeld voor de chaotische beweging van elektronen is ook
van toepassing op de chaotische verstrooiing van licht. In hoofdstuk 2 van dit
proefschrift onderzoeken we de statistiek van optische spikkelpatronen. Een
spikkelpatroon is een schakering van lichte en donkere vlekjes op een scherm
dat ontstaat na verstrooiing van laserlicht aan een ruw object. Wij bestuderen de
transmissie van licht door een buis gevuld met verstrooiers. Voor korte buizen
is de gemiddelde intensiteit van de spikkels omgekeerd evenredig met de buis-
lengte. Dit is het optische equivalent van de wet van Ohm en beschrijft “diffuus
licht”. Voor langere buizen neemt de gemiddelde intensiteit van de spikkels ex-
ponentieel af met de lengte. Dit heet “lokalisatie” van licht. Door destructieve
interferentie van veelvoudig verstrooide lichtstralen raakt het licht “verstrikt”
in de wanorde. Wij berekenen de kansverdeling van de intensiteit van de spik-
kels, als functie van de lengte van de buis. Het resultaat beschrijft de volledige
overgang van diffuus licht naar gelokaliseerd licht. Recentelijk is deze overgang
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waargenomen door een groep uit New York.

In hoofdstuk 3 bestuderen we een elektronisch spikkelpatroon in een chao-
tisch biljart. De statistiek van de intensiteit hangt ervan af of tijdsomkeersym-
metrie al dan niet aanwezig is. Tijdsomkeersymmetrie wordt gebroken door een
magnetisch veld. Dit is een geleidelijk proces. We onderzoeken de invloed van
het magnetisch veld op de ruimtelijke correlaties van de intensiteit. Is het veld
afwezig of juist heel groot, dan zijn de intensiteiten op verschillende plaatsen
ongecorreleerd. Voor een niet al te groot magnetisch veld zijn er opmerkelijk
genoeg wel ruimtelijke correlaties, van lange dracht. Deze werden recentelijk
ontdekt met behulp van een microscopische theorie. In dit hoofdstuk laten wij
zien dat de correlaties ook volgen uit de toevalsmatrixtheorie. We tonen tevens
het verband aan van deze ruimtelijke correlaties met een ander verschijnsel,
namelijk de niet-Gaussische kansverdeling van de snelheid waarmee een ener-
gieniveau reageert op een verstoring van het systeem.

In de volgende twee hoofstukken beschouwen we twee andere transportver-
schijnselen, hagelruis en thermokracht.

De elektrische stroom door een geleider fluctueert in de tijd, zelfs bij zeer
lage temperaturen en een constante aangelegde spanning. Deze tijdsafhanke-
lijkheid is het gevolg van de discreetheid van elektrische lading en staat bekend
als hagelruis. (De naam verwijst naar het geluid veroorzaakt door hagel op het
dak.) Bij een geleider met meer dan twee stroomcontacten zijn om dezelfde re-
den de stromen door verschillende contacten gecorreleerd. Recentelijk zijn deze
correlaties in Stanford gemeten, voor een tunnelbarrière met twee ingaande en
twee uitgaande stroomcontacten — het elektrische analogon van een optische
bundelsplitser. Terwijl optische correlaties vergroot worden door het bosoni-
sche karakter van de fotonen, veroorzaakt het uitsluitingsprincipe van Pauli een
onderdrukking van de elektrische correlaties. In hoofdstuk 4 berekenen wij de
correlaties en fluctuaties van stromen door een chaotische geleider met vier con-
tacten. De mate van onderdrukking ten gevolge van het principe van Pauli hangt
onder andere af van de kwaliteit van de contacten.

Als twee uiteinden van een geleider op verschillende temperaturen worden
gebracht, zal er een elektrische stroom gaan lopen van het warme naar het koude
gedeelte. Deze stroom kan worden gecompenseerd door een spanning aan te leg-
gen die een even grote stroom opwekt in de tegenovergestelde richting. De ver-
houding van temperatuurverschil en spanningverschil heet thermokracht. Deze
grootheid hangt af van de energie-gevoeligheid van de verstrooiingsprocessen
die de elektrische geleiding beperken. In hoofstuk 5 berekenen wij de verdeling
van de thermokracht voor een één-dimensionale wanordelijke draad en voor
een chaotisch biljart. In het eerste geval vertoont de transmissie scherpe en
ongecorreleerde pieken als functie van de energie; in het tweede geval zijn de
transmissiepieken gecorreleerd doordat ze elkaar overlappen. De respectieve-
lijke kansverdelingen van de thermokracht zijn dan ook verschillend en in beide
gevallen niet-Gaussisch. Voor het chaotische biljart is deze verdeling recentelijk
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gemeten door een groep uit Aken.
Het laatste hoofdstuk behandelt een actuele controverse uit de literatuur:

hoe sterk moet een magneetveld zijn om de fase van Berry waar te nemen in
een wanordelijk metaal? De fase van Berry is een gevolg van de adiabatische
rotatie van de elektronspin in een ruimtelijk roterend magneetveld. In de li-
teratuur staan twee sterk uiteenlopende schattingen voor de minimaal vereiste
veldsterkte. Als de hoogste schatting correct is, is een experiment praktisch on-
mogelijk; de lagere schatting daarentegen geeft een veel optimistischer perspek-
tief. Onze berekening bevestigt de eerstgenoemde schatting. Door een exacte
oplossing te geven van de kinetische vergelijking hopen we de controverse uit
de wereld geholpen te hebben.
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STELLINGEN

1. De adiabatische evolutie van een elektronspin in een niet-uniform mag-
neetveld is onverenigbaar met verstrooiing door wanorde.

2. Indien H een hermitische matrix is en H′ een matrix verkregen uit H door
weglating van de j-de rij en kolom, dan bevindt zich tussen elke twee ei-
genwaarden van H een eigenwaarde van H′.

3. De verdeling van het warmte-vermogen S van een chaotisch biljart met
enkel-kanaals stroomcontacten, gemiddelde toestandsdichtheid ρ en in-
elastische verstrooiingstijd τφ � �ρ is bij gebroken tijdsomkeersymme-
trie gegeven door

P(σ) = 1
96

(
|σ |3 + 6σ 2 + 15|σ | + 15

)
e−|σ |, σ ≡ 3eρ

πk2
BT

(
�
τφ

)2

S.

4. De lading gepompt door een chaotisch biljart tijdens een adiabatische cy-
clische verandering van parameters is alleen statistisch onafhankelijk van
het geleidingsvermogen in de afwezigheid van tijdsomkeersymmetrie.

5. De DMPK-vergelijking was reeds bekend in 1972.

R. Burridge and G. Papanicolaou,
Comm. Pure Appl. Math. 25, 715 (1972).

6. De zogenaamd universele onderdrukking van de hagelruis met een factor
1/3 in een niet-ontaard wanordelijk elektronengas is in werkelijkheid mo-
delafhankelijk.

T. González, C. González, J. Mateos, D. Pardo, L. Reggiani,
O. M. Bulashenko, and J. M. Rub́ı, Phys. Rev. Lett. 80, 2901 (1998).

7. De intensiteit van thermische straling uitgezonden door een niet-ideaal
zwart lichaam is gecorreleerd over afstanden langer dan de transversale
optische coherentielengte.

8. Reproduceerbare fluctuaties in de coda van een aardbeving zijn het seis-
mische analogon van universele geleidingsfluctuaties.

9. Een houten klarinet klinkt niet beter dan een van kunststof.

Stijn van Langen
Leiden, 3 september 1998


