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ABSTRACT. A random-matrix formula is derived for the variance of an arbitrary linear
statistic on the transmission eigenvalues. The variance is independent of the eigenvalue
density and has a universal dependence on the symmetry of the matrix ensemble. The
formula generalizes the Dyson-Mehta theorem in the statistical theory of energy levels. It
demonstrates that the universality of the conductance fluctuations is generic for a whole
class of transport properties in mesoscopic systems.

1. Introduction

The theory of universal conductance fluctuations in disordered metals was
originally formulated as a diagrammatic perturbation theory in terms of
Greens functions [1, 2]. Subsequently, an alternative non-perturbative the-
ory was developed, based on the properties of random scattering (or transfer)
matrices [3, 4, 5, 6]. The universality of the sample-to-sample fluctuations
in the conductance was shown to be a manifestation of the universal eigen-
value repulsion in random-matrix ensembles, discovered long ago in nuclear
physics [7, 8]. The symmetry class of the ensemble manifests itself as a uni-
versal dependence of the variance of the conductance on the presence of
time-reversal symmetry and/or spin-orbit scattering.

Computationally, the random-matrix theory of quantum transport is not
as well developed as its counterpart in nuclear physics. In that field there
is a celebrated formula, due to Dyson and Mehta [9], which allows one to
calculate analytically the variance of any linear statistic on the energy levels
(i.e. an observable A =

∑
n a(En), with a an arbitrary function of energy).
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The Dyson-Mehta formula reads

VarA =
1
β

1
π2

∫ ∞

0
dk |a(k)|2k, (1)

where a(k) =
∫ ∞
−∞dE eikEa(E) is the Fourier transform of a(E). The pa-

rameter β characterizes the symmetry class of the random-matrix ensemble
(see below). No such formula exists for universal fluctuations in transport
properties. The crucial difference, which impedes any obvious generalization
of the Dyson-Mehta formula, is that the correlation function of transmission
eigenvalues is not translationally invariant [6]. The lack of a simple analyt-
ical technique in the random-matrix theory of quantum transport is being
felt especially now that universal fluctuations in transport properties other
than the conductance (both in conductors and in superconductors) have be-
come of interest. Examples are the critical-current fluctuations in Josephson
junctions [10], conductance fluctuations at normal-superconductor interfaces
[11], and fluctuations in the shot-noise power of metals [12].

Recently we have been able to overcome this obstacle to a generalization
of the Dyson-Mehta formula [13]. In the present contribution we discuss our
method and our main results. A more comprehensive presentation will be
published elsewhere [14].

2. Formulation of the problem

We consider a disordered conductor of length L and width W at zero tem-
perature. The elastic scattering of an electron at the Fermi level is described
by the unitary scattering matrix (s-matrix)

s =
(
r11 t12
t21 r22

)
. (2)

The reflection and transmission matrices r and t areN×N matrices,N being
the number of propagating modes at the Fermi energy. The matrix product
t12t

†
12 is hermitean, and hence has real eigenvalues Tn (n = 1, 2, . . . N).

Since t12t
†
12 = r11t

†
21t21r

−1
11 (as follows from unitarity of s), the matrices

t12t
†
12 and t21t

†
21 have the same set of eigenvalues. We refer to the Tn’s as

the transmission eigenvalues. Unitarity of s also implies that 0 ≤ Tn ≤ 1 for
all n. We will study transport properties A of the form

A =
N∑

n=1

f(Tn). (3)

A quantity of the form (3) is called a linear statistic on the transmission
eigenvalues. The word “linear” indicates that A does not contain products
of different eigenvalues, but the function f(T ) may well depend non-linearly
on T .
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Starting point of our analysis is the joint probability distribution of trans-
mission eigenvalues obtained in the random-matrix theory of quantum trans-
port [5, 6]. To make contact with that theory we adopt the parametrization

Tn ≡ 1
1 + λn

, 0 ≤ λ <∞, (4)

and work with a linear statistic on the λ’s

A =
N∑

n=1

a(λn). (5)

Since there is a simple one-to-one relationship between λ and T , we will still
refer to the λ’s as “transmission eigenvalues”. The distribution of the λ’s is
given by [5]

P ({λn}) = Z−1 exp[−βH({λn})],
H({λn}) = −

∑
i<j

ln |λi − λj|+
∑

i

V (λi), (6)

where Z is such that P is normalized to unity,

Z =
∫ ∞

0
dλ1 · · ·

∫ ∞

0
dλN exp[−βH({λn})]. (7)

The parameter β depends on the symmetry properties of the ensemble of
scattering matrices. If time-reversal symmetry is broken (by a magnetic
field), β = 2. In the presence of time-reversal symmetry, β = 1 if the scat-
tering is spin-independent, while β = 4 for strong spin–orbit scattering.
These three universality classes for the scattering matrix correspond in the
statistical theory of energy levels to the orthogonal (β = 1), unitary (β = 2),
and symplectic (β = 4) ensembles [7].

The probability distribution (6) is based on (a) an isotropy assumption,
which implies that flux incident in one scattering channel is, on average,
equally distributed among all outgoing channels; and (b) a maximum entropy
hypothesis, which yields (6) as the least restrictive distribution consistent
with a given mean eigenvalue density. The potential V in Eq. (6) then plays
the role of a Lagrange multiplier, which has to be chosen in such a way
that P yields the required eigenvalue density. Assumption (a) requires a
conductor much longer than wide, i.e. the quasi-one-dimensional limit L�
W . Assumption (b) has been justified by numerical simulations [5, 6], but
there is no rigorous proof of its validity. As we will discuss, one of the
implications of our results will be that Eq. (6) is not rigorously valid —
although the error is quite small.

The goal of our analysis is to obtain the variance VarA of the linear statis-
tic (5) from the eigenvalue distribution function (6). To this end we need
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to know how pairs of transmission eigenvalues are correlated. These corre-
lations are strong because of the logarithmic repulsion of the eigenvalues in
the “hamiltonian” (6). The logarithmic interaction has a fundamental geo-
metric origin: It is the jacobian associated with the transformation from the
space of scattering matrices to the smaller space of transmission eigenvalues
[4, 5, 6]. Our approach is to relate the correlation function to a functional
derivative of the mean eigenvalue density with respect to V , and then to
evaluate this functional derivative in the limit N → ∞. In this section we
deal with the first step of this program, which is an exercise in statistical
mechanics. A similar line of reasoning was used by Politzer [15], to show
that A has a gaussian distribution in the limit N → ∞.

The mean density of transmission eigenvalues 〈ρ(λ)〉 is defined as the
ensemble average of the microscopic density:

ρ(λ) =
N∑

n=1

δ(λ− λn), (8)

〈ρ(λ)〉 =
∫
dλ1 · · ·

∫
dλNρ(λ) exp(−βH)∫

dλ1 · · ·
∫
dλN exp(−βH)

. (9)

We define the “two-point correlation function” K2(λ, λ′) by

K2(λ, λ′) = 〈ρ(λ)〉〈ρ(λ′)〉 − 〈ρ(λ)ρ(λ′)〉. (10)

It is related to the “two-level cluster function” T2(λ, λ′) of Ref. [7] by

K2(λ, λ′) = T2(λ, λ′)− 〈ρ(λ)〉δ(λ − λ′). (11)

We include the singular self-correlation in the correlation function because
it contributes to the variance of a linear statistic (see below).

To obtain the required relationship, we take the functional derivative of
〈ρ(λ)〉 with respect to V (λ′). Since δH/δV (λ) = ρ(λ), differentiation of Eq.
(9) yields

δ〈ρ(λ)〉
δV (λ′)

= −β
∫
dλ1 · · ·

∫
dλNρ(λ)ρ(λ′) exp(−βH)∫

dλ1 · · ·
∫
dλN exp(−βH)

+ β

(∫
dλ1 · · ·

∫
dλNρ(λ) exp(−βH)∫

dλ1 · · ·
∫
dλN exp(−βH)

)

×
(∫

dλ1 · · ·
∫
dλNρ(λ′) exp(−βH)∫

dλ1 · · ·
∫
dλN exp(−βH)

)

= −β〈ρ(λ)ρ(λ′)〉+ β〈ρ(λ)〉〈ρ(λ′)〉. (12)

Hence we obtain the key relation

K2(λ, λ′) =
1
β

δ〈ρ(λ)〉
δV (λ′)

. (13)
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The linear statistic (5) can be written in terms of the microscopic eigen-
value density (8),

A =
∫ ∞

0
dλ a(λ)ρ(λ). (14)

The ensemble average 〈A〉 is

〈A〉 =
∫ ∞

0
dλ a(λ)〈ρ(λ)〉, (15)

so that the variance VarA ≡ 〈A2〉 − 〈A〉2 becomes

VarA = −
∫ ∞

0
dλ

∫ ∞

0
dλ′ a(λ)a(λ′)K2(λ, λ′)

= − 1
β

∫ ∞

0
dλ

∫ ∞

0
dλ′ a(λ)a(λ′)

δ〈ρ(λ)〉
δV (λ′)

. (16)

This relationship between the variance of a linear statistic and the functional
derivative of the density of transmission eigenvalues is an exact consequence
of the probability distribution (6).

An immediate implication of Eq. (16) is that VarA ∝ 1/β for all linear
statistics, if and only if the functional derivative δ〈ρ〉/δV is independent of
the symmetry parameter β. As we will see in the next section, this is indeed
the case for N → ∞. Furthermore, since all microscopic details of the system
enter via the “potential” V (λ), universality of the fluctuations is obtained
if 〈ρ〉 is a linear functional of V . Again, this holds for N → ∞, as we will
see next.

3. Integral equation for the eigenvalue density

To evaluate the functional derivative (13) we must know how the density of
transmission eigenvalues 〈ρ〉 depends on the potential V in the hamiltonian
(6). This problem has been addressed before in the random-matrix theory
of energy levels, which is also based on the distribution function (6), but
without the positivity constraint on λ. For that case, Dyson [16] has derived
the following equation,

∫
dλ′ 〈ρ(λ′)〉 ln |λ− λ′|+ β − 2

2β
ln〈ρ(λ)〉 = V (λ) + const, (17)

where the additive constant is to be determined from the normalization
condition∫

dλ 〈ρ(λ)〉 = N. (18)
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The second term on the l.h.s. of Eq. (17) is of order N−1 lnN relative to the
first, and terms of still higher order in 1/N are neglected. To calculate the
two-point correlation function (13) in leading order it is sufficient to retain
only the first term, so that we can work with the linear integral equation

∫
dλ′ 〈ρ(λ′)〉 ln |λ− λ′| = V (λ) + const. (19)

Eq. (19) has the intuitive “mean-field” interpretation (originally due to
Wigner), that the “charge density” 〈ρ〉 adjusts itself to the “external po-
tential” V in such a way that the total force on any charge λ vanishes [6].
The more accurate equation (17) shows that, in fact, Eq. (19) is the leading
term in a 1/N expansion.

In Dyson’s derivation of Eq. (17), essential use is made of the fact that all
integrals run from −∞ to +∞. In our case, the integration range is from 0
to ∞. We have verified that the positivity constraint on λ does not introduce
any extra terms in the integral equation, to the order considered [14].

To obtain the two-point correlation function K2(λ, λ′) in the limit N →
∞ we thus need to consider the integral equation (19). The functional deriva-
tive δ〈ρ〉/δV equals the solving kernel of

∫ ∞

0
dλ′ ψ(λ′) ln |λ− λ′| = φ(λ) + const, (20)

where the additive constant has to be chosen such that ψ has zero mean,
∫ ∞

0
dλψ(λ) = 0, (21)

since the variations in 〈ρ〉 have to occur at constant N . Because of Eq. (13),
the integral solution

ψ(λ) =
∫ ∞

0
dλ′ βK2(λ, λ′)φ(λ′) (22)

of Eq. (20) directly determines the two-point correlation function, and hence
the variance (16) of any linear statistic. Since the integral equation (20)
does not contain any microscopic parameters, and is independent of the
symmetry parameter β, the two statements of universality made at the end
of the previous section are now validated: VarA depends on β as 1/β and is
independent of microscopic parameters.

4. Formula for the variance of a linear statistic

To calculate the value of VarA we have to determine the solving kernel of
Eq. (20). This can be done by a Mellin transformation. Here we give only the
result, mathematical details of the calculation will be published elsewhere
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[14]. The two-point correlation function K2(λ, λ′) which follows from Eqs.
(20) and (22) is

K2(λ, λ′) =
1
π2β

∂

∂λ

∂

∂λ′
ln

∣∣∣∣
√
λ−√

λ′√
λ+

√
λ′

∣∣∣∣ . (23)

This function is obviously not translationally invariant. However, a trans-
lationally invariant kernel can be obtained by the transformation λ = ex,
K̃2(x, x′) = ex+x′

K2(ex, ex′
). The result is

K̃2(x, x′) = − 1
π2β

d 2

d(x− x′)2
ln | tanh x−x′

4 |. (24)

Substituting Eq. (23) into Eq. (16), and carrying out two partial integra-
tions, we find the formula

VarA = − 1
β

1
π2

∫ ∞

0
dλ

∫ ∞

0
dλ′ ln

∣∣∣∣
√
λ−√

λ′√
λ+

√
λ′

∣∣∣∣ da(λ)dλ

da(λ′)
dλ′

. (25)

In an equivalent Fourier representation, we can write

VarA =
1
β

1
π2

∫ ∞

0
dk |ã(k)|2 k tanh(πk). (26)

Here ã(k) is the Mellin transform of a(λ), i.e. the Fourier transform with
respect to x ≡ lnλ:

ã(k) =
∫ ∞

0
dλλik−1a(λ) =

∫ ∞

−∞
dx eikxa(ex). (27)

The kernel in Eq. (26) is the Fourier transform with respect to x − x′ of
K̃2(x, x′). Eq. (26) is for the quantum transport problem what the Dyson-
Mehta formula (1) was for the problem of the statistics of energy levels.

As an independent check of the validity of our key result, we have com-
pared Eq. (26) with an exactly solvable model. This is the Laguerre ensem-
ble, defined by Eq. (6) with β = 2 and V (λ) = 1

2λ− 1
2α lnλ. The parameter

α > −1 is arbitrary. The correlation function for this ensemble is known ex-
actly, in terms of generalized Laguerre polynomials [6, 17]. The variance can
then be obtained by doing the double integration in Eq. (16) numerically. In
Fig. 1 we show the comparison for the variance of the conductance. The con-
ductance G is a linear statistic on the transmission eigenvalues, according
to the Landauer formula

G/G0 =
N∑

n=1

Tn =
N∑

n=1

1
1 + λn

. (28)
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Fig. 1. Variance of the conductance G (in units of G0 = 2e2/h), as a function of the
number of channels N . The data points are obtained by integration of the exact
correlation function for the generalized Laguerre ensemble [6, 17], for various values
of the microscopic parameter α. The estimated error in the numerical integration
is ±0.001. (For α = −0.5 we could only integrate with the required accuracy for N
up to 25.) The horizontal line at 0.0625 is the α-independent value predicted in the
limit N → ∞ by the variance formula (26).

Here G0 = 2e2/h is the conductance quantum. The Mellin transform of
a(λ) = (1 + λ)−1 is

ã(k) =
∫ ∞

−∞
dx eikx 1

1 + ex
= − iπ

sinh(πk)
. (29)

Substitution into Eq. (26) yields the variance

Var (G/G0) = β−1
∫ ∞

0
dk

2k
sinh(2πk)

=
1
8
β−1. (30)

For the Laguerre ensemble (which has β = 2) we would thus expect from our
variance formula that Var (G/G0) = 0.0625 for N � 1, independent of N
and of the parameter α (which in this model plays the role of a “microscopic”
parameter). As one can see in Fig. 1, this is indeed what we find (within
numerical accuracy) from integration of the exact correlation function.
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The coefficient 1
8 in Eq. (30) is close to, but not precisely identical to

the established value 2
15 for a quasi-one-dimensional conductor [2, 18]. The

smallness of the difference explains why it was not noticed previously. From
a practical point of view, the difference is not really significant, but concep-
tually it has the important implication that the probability distribution (6)
is not exact. In other words, the interaction between the λ’s is not precisely
logarithmic.

5. Applications

The variance formula (26) can be readily applied to other transport prop-
erties which are linear statistics. As an illustration, we briefly discuss some
examples which have previously been studied by other methods [10, 11, 12].

5.1. SHOT NOISE

The shot-noise power P of a phase-coherent conductor is given by [19]

P/P0 =
N∑

n=1

Tn(1− Tn) =
N∑

n=1

λn

(1 + λn)2
, (31)

with P0 = 2e|U |G0 (U is the applied voltage). The Mellin transform of
a(λ) = λ(1 + λ)−2 is

ã(k) =
∫ ∞

−∞
dx eikx ex

(1 + ex)2
=

πk

sinh(πk)
. (32)

Hence the variance becomes

Var (P/P0) = β−1
∫ ∞

0
dk

2k3

sinh(2πk)
=

1
64
β−1. (33)

5.2. NORMAL–SUPERCONDUCTOR INTERFACE

The conductance GNS of a disordered microbridge between a normal and a
superconducting reservoir is related to the transmission eigenvalues in the
normal state by [20]

GNS/G0 = 2
N∑

n=1

(
Tn

2− Tn

)2

=
N∑

n=1

2
(1 + 2λn)2

. (34)

This expression holds only in zero magnetic field and for spin-independent
scattering, i.e. for β = 1. The Mellin transform of a(λ) = 2(1 + 2λ)−2 is

ã(k) =
∫ ∞

−∞
dx eikx 2

(1 + 2ex)2
= −2πk + 2πi

sinh(πk)
e−ik ln 2, (35)
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which leads to the variance

Var (GNS/G0) = 8
∫ ∞

0
dk

k3 + k

sinh(2πk)
=

9
16
, (36)

where we have set β equal to 1.

5.3. JOSEPHSON JUNCTION

The supercurrent–phase relationship I(φ) of a point-contact Josephson junc-
tion can be expressed as well in terms of the normal-state transmission
eigenvalues [10],

I(φ) =
e∆
2h̄

N∑
n=1

Tn sinφ
[1− Tn sin2(φ/2)]1/2

, (37)

∆ being the energy gap in the bulk superconductor. In this case it is more
convenient to evaluate the variance formula (25), rather than Eq. (26). The
quantity of most direct experimental significance is the critical current Ic ≡
max I(φ). In Ref. [21] it is shown that, for N → ∞, Var Ic = Var I(φc),
where φc = 1.97 is the phase difference at which the ensemble average 〈I(φ)〉
reaches its maximum. By numerically integrating Eq. (25) we find Var Ic =
0.085 (e∆/h̄)2.

6. Summary

In conclusion, we have derived the analogue of the Dyson-Mehta theorem
[9] for the quantum transport problem. The formula obtained [Eq. (25) or
(26)] demonstrates that the universality which was the hallmark of the phe-
nomenon of “universal conductance fluctuations” [1, 2] is generic for linear
statistics on the transmission eigenvalues. This universality was anticipated
[3] from the random-matrix theory of energy levels, but could not previously
be established because of the absence of translational invariance of the cor-
relation function of transmission coefficients (originating from the unitarity
of the scattering matrix) [6]. Finally, our analysis has revealed a small but
real numerical discrepancy between the random-matrix theory [5] and the
diagrammatic calculation [2], which implies that the interaction between the
λ eigenvalues is not precisely logarithmic.
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