Semicond. Sci. Technol. 7 (1992) B215-B221.

Printed in the UK

Thermo-electric properties of
quantum point contacts

H van Houtent, L W Molenkampt, C W J Beenakkerf and

C T Foxont

tPhilips Research Laboratories, 5600 JA Eindhoven, The Netherlands

tPhilips Research Laboratories, Redhill, Surrey RH1 6HA, UK

Abstract. The conductance, the thermal conductance, the thermopower and the
Peltier coefficient of a quantum point contact all exhibit quantum size effects. We
review and extend the theory of these effects. In addition, we review our
experimental work on the quantum osgcillations in the thermopower, observed
using a current heating technique. New data are presented showing evidence for
quantum steps in the thermal conductance, and (less unequivocally) for quantum
oscillations in the Peltier coefficient. For these new experiments we have used a

guantum point contact as a miniature thermometer.

1. Introduction

A quantum point contact is a short constriction of
variable width, comparable to the Fermi wavelength,
defined using a split-gate technique in a high-mobility
two-dimensional electron gas (2DEG). Quantum point
contacts [1,2] are best known for their quantized con-
ductance at integer multiples of 2¢?/h. For a general
review of quantum transport in semiconductor nanos-
tructures see [3]. The thermo-electric properties of
quantum point contacts have recently begun to be
explored as well.

The Landauer—Biittiker formalism [4,5], which
treats electrical transport as a transmission problem
between reservoirs, has been generalized to thermal
transport and to thermo-electric cross-effects by Sivan
and Imry [6] and by Butcher [7]. Streda [8] has
considered the specific problem of the thermopower S of
a quantum point contact. He found that S vanishes
whenever the conductance of the point contact is
quantized, and that it exhibits peaks between quantized
conductance plateaux. The magnitude of the peaks de-
pends on the energy dependence of the transmission
probability ¢(E) through the point contact. To the extent
that a quantum point contact behaves like an ideal
electron waveguide, t{E) has a unit step-function energy
dependence. A somewhat more realistic model of a
quantum point contact—introduced by Buttiker [9]—is
to assume that the electrostatic potential has a saddle
shape. This particular model has also been used to
calculate the thermopower [10]. The same theoretical
framework can be used to evaluate the thermal con-
ductance x and the Peitier coefficient I, which exhibit
quantum size effects similar to those in the conductance
and the thermopower, respectively. We review the theory
in section 2. For a discussion of thermo-electric effects in
different transport regimes, we refer to a recent article by
Ben-Jacob et al [11].
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We have used a current heating techniquet to ob-
serve the characteristic quantum size effects in the
thermo-electric properties of a quantum point contact,
Qur previous work on the quantum oscillations in the
thermopower § [13, 14] is reviewed in subsection 3.1.
Because of the sizable thermopower, a quantum point
contact can be used as a miniature ‘thermometer’, to
probe the local temperature of the electron gas. We have
exploited this in our design of novel devices with multiple
quantum point contacts, with which we demonstrate
quantum steps in the thermal conductance x as well as
quantum oscillations in the Peltier coefficient of a
guantum point contact. The first results of these experi-
ments are presented in subsections 3.2 and 3.3. Conclud-
ing remarks are given in section 4.

2. Theoretical background

2.1. Landauer—Biittiker formalism of thermo-electricity

The Landauer—Biittiker formalism [4,5] relates the
transport properties of a conductor to the transmission
probabilities between reservoirs that are in local equilib-
rium. Let us assume that only two such reservoirs are
present. In equilibrium, the reservoirs are at chemical
potential E and temperature 7. In the regime of linear
response, the current [ and heat flow Q are related to the
chemical potential difference Ap and the temperature
difference AT by the constitutive equations [15]

I\ (G L\[Aufe ;
0/ \M KJ\ AT}’ ()
The thermo-electric coefficients L and M are related by

t Current heating has also been used by Gallagher et a/ [12] to study
fluctuations in the thermopower in the phase coherent diffusive
transport regime.
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an Onsager relation, which in the absence of a magnetic
field is
M=—-LT 2)

Equation (1) is often re-expressed with the current I
rather than the electrochemical potential Ay as an
independent variable [15],

(8)-( )6 o

The resistance R is the reciprocal of the isothermal
conductance G. The thermopower § is defined as

_ {Aufe _
S =(AT )1=0~ L/G. {4)
The Peltier coefficient IT, defined as
_{@ _ _
n=(= = M/G=8T (5
I'/ar=0

is proportional to the thermopower § in view of the
Onsager relation (2). Finally, the thermal conductance k
is defined as

_ Q 3 S’GT
= _(ﬁ)ho_ —K(1+ % ) (6)

The thermo-electric coefficients are given in the
Landauer—Biittiker formalism by [6, 7]

2e% [ gf
= —HE
G P J.O dE 3E KE) (7
20t kg [ . O
. — — Ep)kgT
L e s dE 3E HEXE — Eg)/ks (8)
K 2

A ,
L2 (8| L wne - BT O

These integrals are convolutions of #(E), which character-
izes the conductor, and a kernel of the form c™df/de,
m=0,1,2, with ¢=(E — Eg)/kgT, and f the Fermi
function

f(e) = Lexple) + 1171 (10)

Plots of these kernals are given in figure 1.

Both df/de and £2df /de are symmetric functions of e,
which is why the conductance, G, and the thermal
conductances K and « arc determined to first order by
t{Eg). (The term within brackets in equation (6) is usually
small.) In contrast, edf/de is an anti-symmetric function
of ¢, so that the thermo-electric cross-coefficients L, S, M,
and IT are determined mainly by the derivative d«(E)/dE
at E = Ej. This is substantiated by a Sommerfeld expan-
sion of the integrals (7)—(9), valid for a smooth function
t(E) to lowest order in kg T/E; [7]

2
Gz%dmﬂ 1
2e? dyE)
&2 ant) 12
L p LOeT( iE )E=EF (12)
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Figure 1. From top to bottom: Fermi-Dirac distribution
function £, and :™df/de, for m=0,1, 2, as a functian of

e =(E —E¢)/kg T. These functions appear in expressions
(7)-(9) for the thermo-electric coefficients.

22
K~ = L, TUE) (13)
with L, = (kg/e)®n*/3 the Lorentz number. In this
approximation K = — L,TG, so that for §* « L, one
finds from (6) the Wiedemann—Franz relation
k% LyTG. (14)

As discussed below, the thermo-electric coefficients of a
quantum point contact may exhibit significant deviations
from equations (11)—(14). The inadequacy of the
Sommerfeld expansion is a consequence of the strong
energy dependence of t(E) near Eg. In addition, 5% « L,
does not hold for a quantum point contact close to
pinch-off,

2.2. Quantum point contacts as ideal electron waveguides

In this subsection we discuss the thermo-electric pro-
perties of a quantum point contact modelled as an ideal
electron waveguide, matched perfectly to the reservoirs at
entrance and exit. Such a waveguide has a transmission
probability with step-function energy dependence

(E)= ¥ O — E,). (15)

The steps in 1{E) coincide with the threshold energies E,
of the one-dimensional subbands or modes in the
quantum point contact. The integrals over the energy (7)
and (8) determining the conductance and the thermo-



powet can be evaluated analytically. By substitution of
(15) into (7), one finds for the conductance

2e* =
G=—1 fle) (16)

n=1

with ¢, = (E, — Eg)/kg T. This reduces to G = (2¢/h)N at,
low temperatures (N is the number of occupied sub-
bands). Similarly, using the identity

J " FAE = ky TIn[1 + exp(Eg/kyT)] an
1]

we find the exact result

_¥ ks i [In(l 4 =) + 5,(1 + )~ 1]. (18)

L h e,

The thermopower § = — L/G and the Peltier coefficient
I = TS follow immediately from (16) and (18). At low
temperatures the thermopower vanishes, unless the
Fermi energy is within ky T from a subband bottom. In
the limit T = 0 one finds from (16), (18) that the maxima
are given by

S = »—%A:“_z% fE.—E;;N>1  (19)
(Note that at E; = Ey one also has G = 2e*/h)(N — 1).)
Equation (19) was first obtained by Streda [&8]. For the
step-function model the width of the peaks in the thermo-
power as a function of E is of order kg T, at least in the
linear transport regime of small applied temperature
differences across the point contact (AT « T).

The thermopower of a quantum point contact with a
step-function t(E) does not exhibit a peak near Ep = E;.
Instead, it follows from (16) and (18) that —S increases
monotonically as Eg is reduced below E,

S~ — f‘eﬂ(l +gy). (20)

Note also that for g, > 1, § increases as 1/T as the
temperature is reduced. This result is probably not very
realistic. Indeed, for a saddle-shaped potential model of a
guantum point contact we find instead in this regime a
constant value which is proportional to T (see subsection
2.3).

Plots of the thermo-electric coefficients as a function
of Fermi energy, calculated from (7)-(9) and (15), are
given in figures 2{a) and 2(b), for T=1K and T = 4K
respectively. The values for E, are those for a parabolic
lateral confinement potential V(y) = ¥, + tmw? 2, with
hw, = 2.0meV. We draw the following conclusions from
these calculations.

1. The temperature T affects primarily the width of the
steps in G, and of the peaks in 8, leaving the value of G on
the plateaux, and the height of the peaks in § essentially
unaffected.

2. The thermal conductance « (divided by L,T) exhibits
secondary plateaux near the steps in G, in violation of the
Wiedemann—Franz law. At 4K the secondary plateaux
in x are even more pronounced than those in phase with
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Figure 2. Calculated conductance G (full curve), thermal
conductance x/L,T (broken curve}, and the thermopower
S and Peltier coefficient I1/7=38 (same dotted curve) for a
quantum point contact with step function ¢(£) as 2
function of Fermi energy at (a) 1K and (#) 4K. The
parameter used in the calculation is Ao, =2 meV.

the plateaux in the conductance. These plateaux, which
apparently have not been noted previously, are due to the
bimodal shape of the kernel &2df/de (see figure 1).

3. The coefficients ¥ and K differ from each other
whenever the thermopower S does not vanish (cf (6)). We
have verified that this correction is usually negligible,
except in the vicinity of the first step in G.

2.3. Saddle-shaped potential

A more realistic model of a quantum point contact
should account for the rounding of the steps in t(E). One
way to do this is to model the electrostatic potential
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V(x, y)in the quantum point contact by a saddle-shaped
function [9]

V(x,y) = Vo — tmowix? + tmwl y? (21

where ¥, is the height of the saddle, w, characterizes the
curvature of the potential barrier in the constriction, and
w, the lateral confinement. The energies E, are given by

E, =V, + (n — Hho,. (22)
The transmission probability is {16]

HE) = i[l +exp(M):|ﬂ. (23)

ho,

Note that the step-function t(E) is recovered in the limit
(J)x/(uy -0

To allow a comparison with the results in figure 2 for
the step-function transmission probability, we have cal-
culated the thermo-electric coefficients as a function of
Fermi energy from (7)—(9) and (23), using the same value
of 2meV for the subband separation Aw,, and taking
ke, ~ 0.8meV in order to reproduce the typically ob-
served conductance step-widths at low temperatures. The
results at T = 4 K {not shown) were found to be identical
to those given in figure 2(b) for the step-function t{(E). At
T = 1K there are some differences, however, as seen in
figure 3:

1. The peak heights of the oscillations in the thermo-
power S (or in the Peltier coefficient IT) are reduced by
about a factor of two.

2. The deviations from the Wiedemann-Franz law
Kk = L, TG are much smaller. In particular, the secondary
plateau-like features (coinciding with the steps in G) are
absent.

The behaviour of § for Ef « E, at low temperatures
is qualitatively different from that discussed in subsection
22 for a step-function «E). Approximating
t(E) = [1 + exp(2n(E, — E)/hew,)]”!, and using the
Sommerfeld expansion results {11) and (12), we find that
S reaches an Ep-independent value (not visible in figure 3)

kg 27 ko T

S =03 ha,

Erx E, (24)

which is proportional to T.

3. Experiments

3.1. Thermopower

We have previously reported [13, 14] the observation of
quantum oscillations int the thermopower S of a quantum
point contact using a current heating technique. We
review the main results here, The experimental arrange-
ment is shown schematically in figure 4(ag). By means of
negatively biased split gates, a channel is defined in the
2DEG in a GaAs—AlGaAs heterostructure. A quantum
point contact is incorporated in each channel boundary.
The point contacts 1 and 2 face each other, so that the
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Figure 3. Calculated conductance G (full curve), thermal
conductance x/L,T (broken curve), and the thermopower
S and Peltier coefficient [1/7=5 (same dotted curve)} for a
quantum point contact with a saddle shaped potential, as
a function of Fermi energy at 1 K. Parameters used in the
calcufation are Aw,=2meV, hw,=0.8 meV.

voltage difference V] — V, (measured using ohmic con-
tacts attached to the 2DEG regions behind the point
contacts) does not contain a contribution from the
voltage drop along the channel.

On passing a current [ through the channel, the
average kinetic energy of the electrons increases, because
of the dissipated power (equal to (f/W,,)?p per unit area,
for a channel of width W,, and resistivity p). We ignore
the net drift velocity acquired by the eleciron gas, and
assume that we can describe the non-equilibrium energy
distribution in the channel by a heated Fermi function at
temperature T + AT Since the point contacts are
operated as voltage probes, drawing no net current, the
temperature difference AT gives rise to a net
thermovoltage

V, — V, =(S; — S;)AT, (25)

As dictated by the symmetry of the channel (see figure
4(a)), this voltage difference vanishes unless the point
contacts arc adjusted differently, so that they have
unequal thermopowers S, # .

A typical experimental result {13] is shown in figure
4(h). The gate voltage defining point contact 1 is scanned,
while that of point contact 2 is kept constant. In this way,
any change in the voltage difference ¥V, — V; is due to
variations in §,. (5, is not entirely negligible, which is
why the trace for — (¥, — V,) drops below zero in figure
4(h).) Also shown is the conductance G of point contact 1,
obtained from a separatc measurement. For more
negative gate voltages, where the point contact resistance
exhibits quantized plateaux, we observe strong oscilla-
tions in ¥, — V,. The peaks occur at gate voltages where
G changes stepwise because of a change in the number of
occupied 1D subbands in point contact 1. These ob-
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Figure 4. (a} Schematic representation of the device
used to demonstrate quantum oscillations in the
thermopower of a quantum point contact by means of a
current heating technique. The channel has a width of

4 zm, and the two opposite guantum point contacts at its
boundaries are adjusted differently. (b) Measured
conductance and voltage — (V, —V,) as a function of the
gate voltage defining peint contact 1, at a lattice
temperature of 1.65K and a current of b A, The gates
defining point contact 2 were kept at —2.0V.

servations are a manifestation of the quantum oscilla-
tions in S described in section 2.

A detailed comparison of the oscillations in figure 4(b)
with the ideal electron waveguide model (extended to
the regime of finite thermovoltages and temperature
differences) has been presented elsewhere [13]. The de-
crease in amplitude of consecutive peaks is in agreement
with equation (19). We therefore only discuss the
amplitude of the strong peak near G = 1.5(2¢*/h). The
stepfunction transmission probability result (19) predicts
S~ —40uVK™' for this peak, but a value
S~ —204 VK ™! is probably more realistic (cf figure 3).
The measured value of about 50 4V for the amplitude of
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that peak thus indicates that the temperature of the
electron gas in the channel is AT ~ 2K above the lattice
temperature T = 1.65K.

The increase in temperature AT is expected to be
related to the current in the channel by the heat balance
equation

CVAT = (I/mh)sza (26)

with ¢, = (n%/3)(kg T/Eg)n kg the heat capacity per unit
area, n, the electron density, and 7, an energy relaxation
time associated with energy transfer from the electron gas
to the lattice. The symmetry of the geometry implies that
¥V, — V, should be even in the current, and equation (26)
predicts more specifically that the thermovoltage dif-
ference ¥, — V3 oc AT should be proportional to [ —at
least for small current densities. This is born out by
experiment [13, 14] (not shown). Equation (26) allows us
to determine the time t, from the experimental value
AT ~ 2K. Under the experimental conditions of figure
M)ywehave T = 1.65K, I = 5puA, W, = dum, p = 200
We thus find 1, ~ 107!%s, which is not an unreasonable
value for the 2DEG in GaAs—AlGaAs heterostructures at
helium temperatures [17].

The sudden decrease in ¥, — ¥, beyond the last peak
(strong negative gate voltages) is not quite understood.
As discussed in section 2, the behaviour of § in this
regime depends crucially on the details of the energy
dependence of HE).

3.2. Thermal conductance

The sizable thermopower of a quantum point contact (up
to —40 VK 1) suggests its possible use as a miniature
thermometer, suitable for local measurements of the
electron gas temperature. We have used this idea in an
experiment designed to demonstrate the quantum steps
in the thermal conductance of a second quantum point
contact.

The geometry of the device is shown schematically in
figure 5{a). The main channel has a boundary containing
a quantum point contact. Using current heating, the
electron gas temperature in the channel is increased by
AT, giving rise to a heat flow @ through the point contact.
This causes a steady state temperature rise 87 of the
2DEG region behind the point contact (neglected in the
previous subsection), which we detect by a measurement
of the thermovoltage across a second point contact
situated in that region.

To increase the sensitivity of our experiment, we have
used a low-frequency Ac current to heat the electron gas
in the channel, and a lock-in detector tuned to the second
harmonic to measure the root-mean-square amplitude of
the thermovoltage V, — V. The voltages on the gates
defining the second quantum point contact were adjusted
so that its conductance was G = 1.5{2e*/h). Finally, we
applied a very weak magnetic field (13mT) to avoid
detection of hot electrons on ballistic trajectories from
the first to the second point contact.

Figure 5(b) shows a plot of the measured thermovol-
tage as a function of the voltage on the gates defining the
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Figure 5. (a) Schematic representation of the device
used to demonstrate quantum steps in the thermat
conductance of a quantum point contact, using another
point contact as a miniature thermometer. The main
channel is 0.4 um wide. () Measured conductance and
RMS value of the second harmonic component of the
voltage V, —V, as a function of the gate voltage defining
the point contact in the main channel boundary, at a
lattice temperature of 1.4 K and an alternating current of
RMs amplitude 0.6 pA. The gates defining the other point
contact were kept at — 1.4V, so that its conductance is
G=1.5(2e2/h).

point contact in the channel boundary, for a channel
current of 0.6 uA (RMs value). A sequence of platcaux is
clearly visible, lining up with the quantized conductance
plateaux of the point contact. Since the measured ther-
movoltage is directly proportional to 6T, which in turn is
proportional to the heat flow @ through the point
contact, this result is a demonstration of the expected
guantum plateaux in the thermal conductance
K = —Q/AT at zero net current [cf (6)]. We have verified
that the second-harmonic thermovoltage signal at fixed
gate voltages is proportional to I%, as expected. Let us
now see whether the magnitude of the efiect can be
accounted for as well,
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To estimate the temperature increase 6T in the region
behind the point contact, we write the heat balance for
that region of area A (valid if 6T « AT)

kAT = ¢, AdT/z,. (27

We assume that 4 equals the square of the diffusion
length (D7,)'? ~ 10 um, so that t, drops out of (27).
On inserting the Wiedemann—Franz approximation
x & LyTG, with G = N(2¢?/h), and using the expression
for the heat capacity per unit area given in the previous
subsection (with n, = Ezm/nh?), we find

AT~ " mD’

In the experiment D = 1.4m?s ™!, so that at the N = |
plateau in the conductance, we have ST/AT
A 1.2x107 %, The experimental curve in figure 5(b) was
obtained at a current density in the main channel of
I/W,, =12Am™", nearly equal to that used in the
thermopower experiment shown in figure 4b). The ana-
lysis of the latter data indicated that AT = 2K at this
current density. Consequently, 67 ~ 2mK. The point
contact used as a thermometer (adjusted to
G = 1.5(2¢%/h)) has S = —20 uV K " ! (sce subsection 2.3),
so that we finally obtain ¥V, — V, & —0.05uV, The
measured vailue is larger (cf the first plateau in figure 5(b)),
but only by a factor of two. All approximations con-
sidered, this is quite satisfactory.

(28)

3.3. Peltier effect

In this subsection we present preliminary results of an
experiment designed to observe the quantum oscillations
in the Peltier coefficient IT of a quantum point contact.
The geometry of the experiment is shown schematically
in figure 6(a). A main channel, defined by split gates, is
separated in two parts by a barrier containing a point
contact. A positive current I passed through this point
contact is accompanied by a negative Peltier heat flux
Q = Ii, giving rise to a (steady state) temperature rise T
in the upper part of the channel, and to a temperature
drop &7 in the lower half. These temperature changes of
the electron gas can be detected by measuring the
thermovoltages across additional point contacts in the
channel boundaries—at least in principle.

One complication is that a total power I%/G is
dissipated due to the finite conductance G of the
quantum point contact in the channel. This gives rise to a
temperature rise on both sides of the point contact, The
dissipated power is not equally distributed among the
2DEG regions on either side, and it is precisely this
imbalance which corresponds to the Peltier heat flow I11.
We wish to detect only the temperature changes + 46T
assoctated with the Peltier heat flow. This is accom-
plished by using an acC current, and a lock-in detector
tuned to the fundamental frequency to measure the
components linear in I of the thermovoltages (V;, — V2)
and (¥; — ¥,). The output voltage of the lock-in detector
is divided by the current, to obtain a signal linearly
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Figure 6. (a) Schematic representation of the device
used to demonstrate quantum oscillations in the Peltier
coefficient of a quantum point contact. Arrows indicate
direction of positive flow. The main channel is 4 ym wide,
and the distance between the pairs of point contacts in its
boundaries is 20 pm. (b) Measured conductance and
thermovoltage —(V, — V) divided by the current / as a
function of the voltage on gate B, defining the point
contact in the channel. The lattice temperature is 1.6 K
and the current is about 0.7 uA near G=2¢2/h. Gates
defining point contacts 1 and 3 were adjusted so that
their conductance was G=1.5(2e2/h). Gates A and C
were unconnected.

proportional to the Peltier coefficient IT of the point
contact in the channel. This signal, measured as a
function of the voltage on the gates defining that point
contact, should exhibit quantum oscillations, similar to
those seen in the thermopower §.

Unfortunately, our present sample design does not
allow us to do this without also affecting the thermo-
power of the point contacts used as thermometers. In
order 10 minimize this parasitic effect, we have scanned
only one of the gates (labelled B in figure 6(a)), and have
left the adjacent gates (A and C), which define the
reference point contacts, unconnected. The effect of gate
A on the remaining two thermometer point contacts is
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negligible. A result obtained in this way (at 7 ~ 0.1 pA
and at T= 1.6K) is plotted in figure 6(b), together with a
trace of conductance versus gate voltage for the point
contact in the channel.

Oscillations in —(V, — V;)/I are clearly visible, of
amplitude up to *4VA~! and with maxima aligned
with the steps between conductance plateaux. We inter-
pret this signal as evidence for the oscillations in the
Peltier coefficient IT (see below). However, the oscilla-
tions appear to be superimposed on a much larger
negative background signal. This signal (which we veri-
fied to be ohmic) is attributed to a series resistance
associated with the fact that gates A and C had to be
left unconnected, as mentioned above. The sum of the
contact resistance at the channel exit (estimated
at (h/2e*qn/2kp W) = 30Q) and the spreading resist-
ance associated with current flowing to the wide 2DEG
regions of width W, ~500um (estimated at
7o In(W,0./Won) = 30QY) is about 60Q, which is of
about the correct magnitude to be able to account for the
background in figure 6(b). A new set of samples, designed
to avoid this background signal, are currently being
fabricated. (Note added in proof. Using these samples we
have indeed been able to observe the quantum oscillation
in IT without such a background signal [19].)

Let us now discuss the amplitude of the oscillations in
figure 6(b). To estimate &7, we use again the heat balance
equation, and find

5T~HI

& . 29
) 29)

Using the Onsager relation IT = ST, the estimated value
S~ —20uVK™! for a quantum point contact adjusted
to G=152e*h), and T=165K, we deduce
8T/1 ~ 10* K A~1, The resulting thermovoltage across
one of the thermometer point contacts (adjusted to
G = 1.5(2¢*/h) as well), normalized by I, is about
0.3 V A~ L. This is ten times smaller than the experiment-
ally observed amplitude of the corresponding oscillation
in figure 6(b). The origin of this discrepancy is not
understood.

4. Conclusions

In conclusion, we have reviewed the theory of the
thermo-electric effects in a quantum point contact, and
our experiments on the quantum oscillations in the
thermopower. New data have been presented that—for
the first time—show evidence for the quantum steps in
the thermal conductance, and the quantum oscillations
in the Peltier coefficient. Our new experiments exploit
additional quantum point contacts as miniature thermo-
meters. We have used this technique as well in an
experimental study of the effect of electron-electron
scattering on the ballistic mean free path [18]. The
results for the thermo-electric transport coefficients pre-
sented here compare reasonably well with the theoretical
predictions. Further experiments as well as a more
reliable quantitative analysis would be desirable.
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