Gravitational Radiation: 1. The Physics of Gravitational Waves and their Generation

Kip S. Thorne

Lorentz Lectures, University of Leiden, September 2009

PDFs of lecture slides are available at http://www.cco.caltech.edu/~kip/LorentzLectures/ each Thursday night before the Friday lecture

Introduction

- The Gravitational-Wave window onto the universe is likely to be opened
 - in the next decade
 - in four widely different frequency bands, spanning 22 decades:

Radical New Windows Im Great Surprises

• Radio Window: 1940s & 50s

- 10⁴ x lower frequency than optical
- radio galaxies, quasars, pulsars, cosmic microwave background.

• X-Ray Window: 1960s & 70s

10³ x higher frequency than optical
black holes, accreting neutron stars, hot intergalactic gas, ...

Radical New Windows I Great Surprises

• Gravitational Waves are far more radical than Radio or X-rays

Completely new form of radiation!

Frequencies to be opened span 22 decades *f*_{HF} / *f*_{ELF} ~ 10²²

- What will we learn from Gravitational Waves?
 - "Warped side of the universe"
 - our first glimpses, then in-depth studies
 - The nonlinear dynamics of curved spacetime
 - Answers to astrophysical & cosmological puzzles:
 - How are supernovae powered?
 - How are gamma-ray bursts powered?
 - What was the energy scale of inflation? ...
 - Surprises

Growth of GW Community

- 1994: LIGO Approved for Construction: ~ 30 scientists
- Today: ~ 1500 scientists
 - influx from other fields
 - needed for success
 - drawn by expected science payoffs

These Lectures

1. The Physics of Gravitational Waves and their Generation Today

2. Astrophysical and Cosmological Sources of Gravitational Waves, and the Information they Carry Next Friday, Sept 25

3. Gravitational Wave Detection: Methods, Status, and Plans *Following Friday, Oct 2*

These Lectures

• *Prerequisites for these lectures:*

- Knowledge of physics at advanced undergraduate level
- Especially special relativity and Newtonian gravity
- Helpful to have been exposed to General Relativity; not necessary
- Goals of these lectures:
 - Overview of gravitational-wave science
 - Focus on physical insight, viewpoints that are powerful
- Pedagogical form of these lectures:
 - Present key ideas, key results, without derivations
 - Give references where derivations can be found

These Lectures

• Pedagogical references that cover this lecture's material:

- LH82: K.S. Thorne, "Gravitational Radiation: An Introductory Review" in *Gravitational Radiation*, proceedings of the 1982 Les Houches summer school, eds. N. Deruelle and T. Piran (North Holland, 1983) requires some knowledge of general relativity
- NW89: K.S. Thorne, *Gravitational Waves: A New Window onto the Universe* (unpublished book, 1989), available on Web at http://www.its.caltech.edu/~kip/stuff/Kip-NewWindow89.pdf does not require prior knowledge of general relativity, except in Chaps. 5 & 6.
- BT09: R.D. Blandford and K.S. Thorne, Applications of Classical Physics (near ready for publication, 2009), available on Web at <u>http:// www.pma.caltech.edu/Courses/ph136/yr2008/</u> - contains an introduction to general relativity.

Resources

• The best introductory textbook on general relativity:

- James B. Hartle, *Gravity an Introduction to General Relativity* (Addison Wesley, 2003)
- The best course-length introduction to gravitational-wave science:
 - Gravitational Waves, a Web-Based Course (including videos of lectures, readings, problem sets, problem solutions): http://elmer.caltech.edu/ph237/

Outline of This Lecture

- 1. Gravitational waves (GWs) in the language of tidal gravity
- 2. GWs in the linearized approximation to general relativity
- 3. GW generation
 - a. Linearized sources
 - b. Slow-motion sources
 - c. Nonlinear, highly dynamical sources: Numerical relativity
- 4. GWs in curved spacetime; geometric optics; GW energy
- 5. Interaction of GWs with matter and EM fields

1. Gravitational Waves in the Language of Tidal Gravity

Behavior of $\mathbf{h}_{jk}^{\mathbf{GW}}$ Under boosts in z direction

GW Field

$$h_{jk}^{\text{GW}}, h_+, h_{\times}$$

transform as scalar fields $h'_{jk}^{GW}(t'-z')$ $= h_{jk}^{GW}(t-z)$ $= h_{jk}^{GW}(\mathcal{D}(t'-z'))$

EM waves in Transverse Lorenz gauge A_j^{T} is transverse: $A^{T}(t-z) = A^{T}(t-z)$

 $A_x^{\mathrm{T}}(t-z), \ A_y^{\mathrm{T}}(t-z)$

transform as scalar fields

$$A_j^{T}(t' - z')$$

= $A_j^T \left(\mathcal{D}(t' - z') \right)$

Riemann amplified 1

 $R'_{jtkt} = \frac{1}{2}\ddot{h}'^{\rm GW}_{jk}$ $= \mathcal{D}^2 R_{jtkt}$

boost weight 2

Electric field amplified

 $E'_j = -\dot{A}_j^{\mathrm{T}}$ $= -\mathcal{D}E_j$

boost weight 1

GWs as Seen in Laboratory on Earth

• **Proper Reference Frame:** analog of local Lorentz frame

 $ds^{2} = -(1 + 2\mathbf{g} \cdot \mathbf{x})dt^{2} + dx^{2} + dy^{2} + dz^{2}$

- GWs unaffected by earth's gravity
 - except for a very tiny, unimportant gravitational blue shift
- Total gravitational force

2. GWs in Linearized Approximation to General Relativity

3. Gravitational Wave Generation

Example: Linearized, Point Particles in Lorenz Gauge

 k^{c}

final

initial

TT

 h_{\pm}

• Electromagnetic

 $\Box A^{\alpha} = -4\pi J^{\alpha} \Rightarrow \text{ at } \mathcal{O}, \ A^{\alpha} = \frac{q p^{\alpha}}{k_{\mu} p^{\mu}}$ in rest frame of particle, reduces to $A^{t} = \frac{q}{r}$ In wave zone $E_{j} = -(\dot{A}_{j})^{\mathrm{T}}$ (Liénard-Wiechart)

Gravitational

$$\Box \bar{h}^{\alpha\beta} = -16\pi G T^{\alpha\beta} \Rightarrow \text{ at } \mathcal{O}, \ \bar{h}^{\alpha\beta} = G \frac{p^{\alpha}p^{\beta}}{k_{\mu}p^{\mu}}$$

in rest frame of particle, reduces to $\bar{h}^{tt} = \frac{4Gm}{4}$

In wave zone
$$h_{jk}^{\text{GW}} = (\bar{h}_{jk})^{\text{TT}} = G\left(\frac{p^j p^k}{k_\mu p^\mu}\right)$$

Gravitational-Wave Memory

$$\Delta h_{jk}^{\rm GW} = G\left(\Delta \sum_{A} \frac{4 \, p_A^j p_A^k}{k_{A\,\mu} p_A^{\mu}}\right)^{\rm TT}$$

Slow-Motion GW Sources

Slow Motion: speeds $\ll c = 1$; wavelength $= \lambda \gg$ (source size) = L

examples: me waving arms; pulsar (spinning neutron star); binary made from two black holes

Weak-field, near zone: *Newtonian Potential* $\Phi = -G\frac{m}{r} \& G\frac{\text{mass dipole}}{r^2} \& G\frac{\text{mass quadrupole}}{r^3} \& \dots \qquad \text{wave zone} \begin{pmatrix} \theta \\ ne \\ zone \end{pmatrix}$ • Wave zone: $h_{jk}^{\text{GW}} \sim \frac{1}{r}$ [by energy conservation] and dimensionless \Rightarrow $h_{jk}^{\text{GW}} \sim G \frac{m}{r} \& G \frac{\partial (\text{mass dipole})/\partial t}{r} \& G \frac{\partial^2 (\text{mass quadrupole})/\partial t^2}{r} \& \dots$ momentum; cannot oscillate mass; cannot oscillate Mass canonical field theory \Rightarrow radiation field carried by quadrupole quanta with spin s has multipoles confined to $\ell \geq s$ dominates $h_{jk}^{\text{GW}} = 2G\left(\frac{\ddot{\mathcal{I}}_{jk}}{r}\right)^{+1}$ for Newtonian source $\mathcal{I}_{jk} = \int \rho(x^j x^k - \frac{1}{3}r^2) d^3x$

Common Textbook Derivation

1. Linearized Approximation to General Relativity (set G=1)

$$\Box \bar{h}^{jk} = -16\pi \bar{h}^{jk} \Rightarrow \bar{h}^{jk}(t, \mathbf{x}) = 4 \int \frac{T^{jk}(t - |\mathbf{x} - \mathbf{x}'|, \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} d^3 x'$$

slow motion $\Rightarrow \bar{h}^{jk}(t, \mathbf{x}) = \frac{4 \int T^{jk}(t - r, |\mathbf{x}') d^3 x'}{r}$

2. Conservation of 4-momentum $T^{\alpha\beta}_{,\beta} = 0 \Rightarrow$

$$2T^{jk} = (T^{tt}x^jx^k)_{,tt} - (T^{ab}x^jx^k)_{,ab} - 2(T^{aj}x^k + T^{ak}x^j)_{,ab}$$

3. Insert 2 into 1; integral of divergence vanishes

$$\bar{h}^{jk}(t, \mathbf{x}) = \frac{2I^{jk}(t-r)}{r}, \text{ where } I^{jk} = \int T^{00} x^j x^k d^3 x$$

4. Take transverse traceless part

 $\bar{h}_{jk}^{\text{GW}}(t,\mathbf{x}) = \frac{2\left(\ddot{\mathcal{I}}_{jk}(t-r)\right)^{\text{TT}^{-1}}}{\text{PROBLEM: Derivation Not valid when self gravity influences source's dynamics!!}}$

Derivation via Propagation from Weak-Field Near Zone to Wave Zone

• Weak-gravity regions: Linearized approximation to GR

$$\Box h^{\alpha\beta} = 0$$

$$\bar{h}^{\alpha\beta}_{,\beta} = 0$$
i.e. $\bar{h}^{tt}_{,t} = -\bar{h}^{tj}_{,k}$

$$\bar{h}^{tj}_{,t} = -\bar{h}^{jk}_{,k}$$
Induction r_{I}

$$Local zone for $r_{$$$

$\mathbf{h_{jk}^{GW}}\textbf{Order of Magnitude}$

• Source parameters:

mass ~ M, size ~ L, rate of quadrupolar oscillations ~ ω , distance ~ r; internal kinetic energy of quadrupolar oscillations ~ $E_{kin} \sim M(\omega L)^2$

• GW strength:

$$h_{jk}^{\text{GW}} = 2G \frac{\ddot{\mathcal{I}}_{jk}}{r} \sim G \frac{\omega^2 (ML^2)}{r} \sim G \frac{E_{\text{kin}}/c^2}{r}$$

~ Φ produced by kinetic energy of shape changes.

$$h_{jk}^{\text{GW}} \sim h_{+} \sim h_{\times} \sim 10^{-21} \left(\frac{E_{\text{kin}}}{M_{\odot}c^{2}}\right) \left(\frac{100 \text{Mpc}}{r}\right)$$

100Mpc = 300 million light years $\sim \frac{1}{30}$ (Hubble distance)

Slow-Motion Sources: Higher-Order Corrections

• Source Dynamics: Post-Newtonian Expansion

in $v/c \sim \sqrt{\Phi/c^2} \sim \sqrt{P/\rho c^2}$

- GW Field: Higher-Order Moments (octopole, ...)
 - computed in same manner as quadrupolar waves: by analyzing the transition from weak-field near zone, through induction zone, to local wave zone
 - actually Two families of moments (like electric and magnetic)
 - moments of mass distribution, moments of angular-momentum distribution
 - Use symmetric, trace-free (STF) tensors to describe the moments and the GW field ... (19th century approach; Great Computational Power)

STF Tensors [an aside]

- Multipole moments of Newtonian gravitational potential
 - Spherical-harmonic description: $\Phi \sim \sum_{m=-\ell}^{+\ell} \frac{\mathcal{M}_{\ell m} Y_{\ell m}(\theta \phi)}{r^{\ell+1}}$ $\mathcal{M}_{\ell m}$ has $2\ell + 1$ components: $m = -\ell, \ell + 1, ..., +\ell$

- STF description:
$$\Phi \sim \frac{\mathcal{I}_{a_1 a_2 \dots a_\ell} n^{a_1} n^{a_2} \dots n^{a_\ell}}{r^{\ell+1}}$$

 $\mathcal{I}_{a_1 a_2 \dots a_\ell}$ has $2\ell + 1$ independent components

 Multipolar Expansion of gravitational-wave field mass moments

 $h_{jk}^{\text{GW}} = \left\{ \sum_{\ell=2}^{\infty} \frac{4}{\ell!} \frac{\partial^{\ell}}{\partial t^{\ell}} \frac{\mathcal{I}_{jka_{1}...a_{\ell-2}}(t-r)}{r} n^{a_{1}} ... n^{a_{\ell-2}} \right\}^{\text{TT}} \text{ mass moments}$ $+ \left\{ \sum_{\ell=2}^{\infty} \frac{8\ell}{(\ell+1)!} \epsilon_{pq(j)} \frac{\partial^{\ell}}{\partial t^{\ell}} \frac{\mathcal{S}_{k)pa_{1}...a_{\ell-1}}(t-r)}{r} n^{q} n^{a_{1}} ... n^{a_{\ell-1}} \right\}^{\text{TT}} \text{ angular momentum moments} \text{ current moments}$

- Indices carry directional, multipolar and tensor information, all at once

Strong-Gravity ($GM/c^2L \sim 1$), Fast-Motion ($v \sim c$) Sources

- Most important examples [next week]
 - Black-hole binaries: late inspiral, collision, merger, ringdown
 - Black-hole / neutron-star binaries: late inspiral, tidal disruption and swallowing
 - neutron star / neutron-star binaries: late inspiral, collision and merger
 - supernovae
- These are the strongest and most interesting of all sources
- Slow-motion approximation fails
- Only way to compute waves: *Numerical Relativity*

4. Gravitational Waves in curved spacetime; geometric optics; GW energy

GWs Propagating Through Curved Spacetime (distant wave zone)

• Definition of gravitational wave: the rapidly varying part of the metric and of the curvature

 $\lambda = \lambda/2\pi \ll \mathcal{L} = (\text{lengthscale on which background metric varies}) \lesssim \mathcal{R}$

Same definition used for waves in plasmas, fluids, solids

• In local Lorentz frame of background: GW theory same as in flat spacetime (above)

 $\Box h_{\alpha\beta} = 0$ in vacuum. Same propagation equation as for EM waves: $\Box A_{\alpha} = 0$

⇒ GWs exhibit same geometric-optics behavior as EM waves

Geometric-Optics Propagation

 \vec{e}_{arphi}

distant

wave zone

 \vec{e}_{θ}

local wave zon

- GWs and EM waves propagate along the same ray (t_{ret}, θ, ϕ) rays: null geodesics in the background spacetime
 - Label each ray by its direction (θ, φ) in source's local wave zone, and the retarded time it has in the local wave zone, $t_{ret} = (t - r)$

 $t_{\rm ret} \equiv (t-r)_{\rm local wave zone}$

- Wave's amplitude dies out as 1/r in local wave zone. Along the the ray, in distant wave zone, define $A = (cross sectional area of a bundle of rays, and <math>r \equiv r_o \sqrt{A/A_o}$ where r_o and A_o are values at some location in local wave zone. Then amplitude continues to die out as 1/r in distant wave zone.
- Transport the unit basis vectors \vec{e}_{θ} and \vec{e}_{φ} parallel to themselves along the ray, from local wave zone into and through distant wave zone. Use them to define + and x
- Then in distant wave zone: $A_{\theta} = \frac{Q_{\theta}(t_{\text{ret}}, \theta, \varphi)}{r}$, $A_{\varphi} = \frac{Q_{\varphi}(t_{\text{ret}}, \theta, \varphi)}{r}$

$$h_{+} = \frac{Q_{+}(t_{\text{ret}}, \theta, \varphi)}{r}, \quad h_{\times} = \frac{Q_{\times}(t_{\text{ret}}, \theta, \varphi)}{r}$$

Energy and Momentum in GWs

- Einstein's general relativity field equations say $G_{\alpha\beta} = 8\pi \tilde{G} T_{\alpha\beta}$ Energy-momentum-stress tensor Einstein's curvature tensor
- Break metric into background plus GW: $g_{\alpha\beta} = g^B_{\alpha\beta} + h_{\alpha\beta}$
- Expand Einstein tensor in powers of $h_{\alpha\beta}$

 $G_{\alpha\beta} = G^B_{\alpha\beta} + G^{(1)}_{\alpha\beta} + G^{(2)}_{\alpha\beta}$ Background Einstein tensor linear in $h_{\mu\nu}$

 Average over a few wavelengths to get quantities that vary on background scale \mathcal{L} , not wavelength scale λ

 $\langle G_{\alpha\beta} \rangle = G^B_{\alpha\beta} + \langle G^{(2)}_{\alpha\beta} \rangle = 8\pi \langle T_{\alpha\beta} \rangle$

- **Rearrange:** $G^B_{\alpha\beta} = 8\pi(\langle T_{\alpha\beta} \rangle + T^{\rm GW}_{\alpha\beta})$ where $T^{\rm GW}_{\alpha\beta} \equiv -\frac{\langle G^{(2)}_{\alpha\beta} \rangle}{2\pi}$
- Evaluate the average: In Local Lorentz Frame $T_{\alpha\beta}^{GW} = \frac{1}{16\pi} \langle h_{+,\alpha}h_{+,\beta} + h_{\times,\alpha}h_{\times,\beta} \rangle$ $T_{GW}^{tt} = T_{GW}^{tz} = T_{GW}^{zz} = \frac{1}{16\pi} \langle \dot{h}_{+}^{2} + \dot{h}_{\times}^{2} \rangle$

Energy and Momentum Conservation

- Einstein's field equations $G^B_{\alpha\beta} = 8\pi(\langle T_{\alpha\beta} \rangle + T^{GW}_{\alpha\beta})$ guarantee energy and momentum conservation, e.g.
- Source loses mass (energy) at a rate $\frac{dM}{dt} = -\oint_{C} T_{GW}^{tr} dA = -\frac{1}{16\pi} \oint_{C} \langle \dot{h}_{+}^{2} + \dot{h}_{\times}^{2} \rangle dA$

• Source loses linear momentum at a rate

 $\frac{dp^{j}}{dt} = -\oint_{\mathcal{S}} T_{\rm GW}^{jr} dA = -\frac{1}{16\pi} \oint_{\mathcal{S}} (\vec{e}_{j} \cdot \vec{e}_{r}) \langle \dot{h}_{+}^{2} + \dot{h}_{\times}^{2} \rangle dA$

Angular momentum is a little more delicate

5. Interaction of Gravitational Waves with matter and EM fields

Plane GW Traveling Through Homogeneous Matter

- Fluid:
 - GW shears the fluid, (rate of shear) = $\sigma_{jk} = \frac{1}{2}\dot{h}_{jk}^{\rm GW}$
 - no resistance to shear, so no action back on wave
 - Viscosity $\eta \sim \rho v s = (\text{density})(\text{mean speed of particles})(\text{mean free path})$ produces stress $T_{jk} = -2\eta \sigma_{jk} = -\eta \dot{h}_{jk}^{\text{GW}}$ NOTE: s must be $< \lambda$
 - Linearized Einstein field equation: $\Box h_{jk}^{GW} = -16\pi (T_{jk})^{TT} = 16\pi \eta \dot{h}_{jk}^{GW}$
 - Wave attenuates: $h_{jk}^{\text{GW}} \sim \exp(-z/\ell_{\text{att}})$ where $\ell_{\text{att}} = \frac{1}{8\pi n} = \frac{1}{8\pi \rho vs}$
 - Fluid's density curves spacetime (background Einstein equations) $\frac{1}{R^2} \sim G_{00}^B = 8\pi\rho$
 - Therefore $\ell_{\text{att}} \sim \frac{\mathcal{R}^2}{vs} = \mathcal{R} \frac{\mathcal{R}}{s} \frac{c}{v} \gtrsim \mathcal{R} \frac{\mathcal{R}}{\lambda} \frac{c}{v} \gg \mathcal{R}$

The viscous attenuation length is always far larger than the background radius of curvature. Attenuation is never significant!

Plane GW Traveling Through Homogeneous Matter

• Elastic Medium:

- GW shears the medium, (rate of shear) = $\sigma_{jk} = \frac{1}{2}\dot{h}_{jk}^{\rm GW}$, (shear)= $\Sigma_{jk} = \frac{1}{2}h_{jk}^{\rm GW}$
- Medium resists with stress $T_{jk} = -2\mu\Sigma_{jk} 2\eta\sigma_{jk} = -\mu h_{jk}^{\rm GW} \eta \dot{h}_{jk}^{\rm GW}$
- Einstein equation becomes $\Box h_{jk}^{\text{GW}} = -16\pi (T_{jk})^{\text{TT}} = 16\pi (\mu h_{jk}^{\text{GW}} + \eta \dot{h}_{jk}^{\text{GW}})$
- Insert $h_{jk}^{\text{GW}} \propto \exp(-i\omega t + ikz)$. Obtain dispersion relation $\omega^2 - k^2 = 16\pi(\mu - i\omega\eta)$; i.e. $\omega = k(1 + 8\pi\lambda^2\mu) - i8\pi\eta$, where $\lambda = 1/k$
- Same attenuation length as for fluid: $\ell_{\text{att}} = \frac{1}{8\pi\eta} \gg \mathcal{R}$
- Phase and group velocities (dispersion):

 $v_{\text{phase}} = \frac{\omega}{k} = 1 + 8\pi\lambda^2\mu, \quad v_{\text{group}} = \frac{d\omega}{dk} = 1 - 8\pi\lambda^2\mu$

- Dispersion length (one radian phase slippage) $\ell = \frac{\lambda}{\delta v_{\text{phase}}} = \frac{1}{8\pi\lambda\mu} \gtrsim \frac{\mathcal{R}^2}{\lambda} \gg \mathcal{R}$

The dispersion length is always far larger than the background radius of curvature. Dispersion is never significant!

GW Scattering

- Strongest scattering medium is a swarm of black holes: hole mass *M*, number density of holes *n*
 - Scattering cross section $\sigma \lesssim M^2$
 - Graviton mean free path for scattering

$$\ell = \frac{1}{n\sigma} \gtrsim \frac{1}{nM^2} = \frac{1}{\rho M} \sim \frac{\mathcal{R}^2}{M} \gg \mathcal{R}$$

The scattering mean free path is always far larger than the background radius of curvature. Scattering is never significant!

Interaction with an Electric or Magnetic Field

- Consider a plane EM wave propagating through a DC magnetic field $\mathbf{B}_{wave} = B_o \sin[\omega(t-z)]\mathbf{e}_{\mathbf{y}}, \quad \mathbf{B}_{DC} = B_{DC}\mathbf{e}_{\mathbf{y}}$
- Beating produces a TT stress $T_{xx} = -T_{yy} = \frac{B_o B_{\rm DC}}{4\pi}$
- **TT stress resonantly generates a GW** $\Box h_{jk}^{\text{GW}} = -16\pi (T_{jk})^{\text{TT}}$ $h_{+} = h_{xx}^{\text{GW}} = -h_{yy}^{\text{GW}} = \frac{2B_{\text{DC}}B_{o}}{\omega} z \cos[\omega(t-z)]$ The "Gertsenshtein effect"
- Ratio of GW energy to EM wave energy:

$$\frac{T_{\rm GW}^{tt}}{T_{\rm EMwave}^{tt}} = \frac{\langle h_+^2 \rangle / 16\pi}{B_o^2 / 8\pi} = B_{DC}^2 z^2 = \frac{z^2}{\mathcal{R}^2}$$

The lengthscale for significant conversion of EM wave energy into GW energy is equal to the radius of curvature of spacetime produced by the catalyzing DC magnetic field.

• The lengthscale for the inverse process is the same

There can never be significant conversion in the astrophysical universe.

Conclusion

- Gravitational Waves propagate through the astrophysical universe without significant attenuation, scattering, dispersion, or conversion into EM waves
- Next Friday: Astrophysical and Cosmological Sources of Gravitational Waves, and the Information they Carry
 - slides will be available Thursday night at <u>http://www.cco.caltech.edu/~kip/LorentzLectures/</u>