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1. HISTORICAL BACKGROUND

1.1. Introduction

Quantum mechanics as we know it, essentially in the form in which it is now
taught as a standard subject to physics undergraduates, came into being in the
course of a few years, more or less in the period from 1925 to 1928. Its main
creators were Schrodinger, Heisenberg, Max Born |, Jordan, Pauli and Paul. Tt
explained the structure of atoms, providing a theoretical basis for the model that
had been suggested by the experiments of Rutherford, solving the problem of the
discreteness of atomic spectra and predicting in fact the numerical values of such
spectra with great accuracy. Because of this it was immediately accepted by
the physics community even though it was long considered to be an extremely
difficult and abstruse theory. This was due to its new and unusual physical
features and to its use - often in an implicit way - of new mathematical methods.

1.2 Atomic spectra

Maxwell’s theory of electromagnetic phenomena predicts electromagnetic ra-
diation , i.e. electromagnetic waves propagating through empty space with a
constant velocity ¢ = 2.99 x 10® m/s. An electromagnetic wave has a frequency
v and a wave length A; one has of course the relation ¢ = vA. Radiation with
frequencies v roughly between the values 40 x 1013 and 75 x 103 Hertz (number
of oscillations per second) has been known for a long time as visible light. The
particular mix of frequencies emitted by the sun in this frequency regime is seen
by our eyes as ‘white’ light. Using refraction by a glass prisma Newton showed
that it can be broken up into a band of coloured light, varying continuously from
red (the lowest visible frequency) to violet (the highest visible frequency). Be-
yond these limits there is on one side first the ulta-violet regime with after this
in the very high frequencies X-rays, and on the other side the infra-red region,
first pure heat radiation and then in the lower frequencies the electromagnetic
waves used for radio and television.

In certain circumstances, for instance by external stimulation, electric sparks
passing through a gas, etc., atoms emit electromagnetic radiation. This radi-
ation consists of a great number of sharply defined frequencies, some in the
visible, some in the infra-red or ultra-violet region. Each element has its own
very characteristic system of frequencies, its spectrum. The simplest is that of
hydrogen. Its spectrum can be described by a simple general formula

V:CR(%—%),
nZ nj

with ¢ the velocity of light, R the so-called Rydberg constant equal to 1.097 x
10" m~! and the n, and np running through the positive integers, with the
restriction ng < np. For fixed n, = 1 (and variable np) this gives what is called
the Lyman series, lying in the ultra-violet; for n, = 2 one has the Balmer series,
in the visible region, and for n, = 3 the Paschen series in the infra-red. Note



that this formula was found in the late nineteenth century, not from theoretical
arguments, but deduced from the results of spectroscopic measurents, which
gave also the precise data of the spectra of many other types of atoms, much
more complicated than the hydrogen spectrum.

A description of an atom in terms of the interaction of Newtonian mechanics
and Maxwellian electromagnetism will indeed predict atomic radiation, but only
radiation with a continuously varying frequency spectrum. The experimentally
established systems of discrete atomic spectra, different and characteristic for
different types of atoms, cannot be understood from classical physic, i.e. from
a combination of classical mechanics and classical electromagnetism. This was
a major fundamental problem in physics at the end of the nineteenth century
physics, a problem quantum mechanics was able to solve.

1.3. Earlier ideas
The roots of quantum mechanics can be found in various earlier ideas:

a. In 1900 Planck gave a formula for the frequency distribution of radiation
which correctly described the experimentally observed distribution. For the
derivation of this formula he assumed that radiation with frequency v could
only be emitted or absorbed in discrete quantities, ‘energy quanta’ hv, with h a
universal constant. He made this discreteness assumption with great reluctance,
because it did not fit in with classical notions of electromagnetic radiation. The
only justification for it was that 1t led to a formula which was experimentally
correct. The constant h, Planck’s constant as it is now called, is in MKS (meter
- kilogram - second) units equal to 6.626 x 1073* k.m?/s, and in CGS (centimeter
- gram - second) units 6.626 x 10727 g.cm?/s, so it is extremely small. Because
inconvenient factors 2w appear in many formulas, one often uses h = % instead
of h. This h is in MKS units equal to 1.054 x 1073* kg.m?/s. The appearance

of h or h is typical for the formulas in quantum mechanics.

b. Certain metals, when irradiated with light, emit a stream of electrons, very
light electrically charged particles, which had been discovered in 1897. Einstein
gave in 1905 a theoretical explanation of this photo-electric effect, by further
developing Planck’s idea, assuming that light of frequency v consisted in fact of
a particular kind of particles, with energy E = hv, and moving with the velocity
of light. These particles he called photons .

c. Arthur Compton, an American Physicist, found in 1924 that the results
of experiments in which X-rays - electromagnetic radiation with much shorter
wave length than visible light - were scattered by matter, could be explained by
making the same assumption about the corpuscular nature of radiation. This
particle character came out even stronger than in the photo-electric effect: the
photons had not only energy but also momentum.

d. Rutherford, a physicist from New-Zealand working in England, concluded
in 1911 from his scattering experiments, that an atom should be thought of as
a very small planetary system, consisting of a heavy nucleus, surrounded by a



cloud of electrons, compensating with their electrical charges the opposite charge
of the nucleus. For this a theoretical model with very unusual and nonclassical
features was postulated by his assistant Niels Bohr, a young Danish theoretical
physicist. Bohr assumed that the electrons could only move in discrete station-
ary orbits, circles or ellipses, once in a while jumping suddenly between two
such orbits and emitting in the process a quantum of radiation £ = hv, with E
the difference in the energies of the two orbits. With this model he was able to
obtain good numerical values for many atomic spectra.

1.4. The emergence of quantum mechanics proper

The great achievement of quantum mechanics, as it finally appeared in 1925 in
the fundamental papers of Heisenberg, Born, Schrodinger and others, was that
it gave a fundamental and general theoretical framework in which all these ideas
found their natural place and in which in particular the ad-hoc atomic model
of Rutherford and Bohr could be understood and derived from first principles.

1.5. Quantum theory in 20" century physics

Quantum theory is one the two great revolutions that have changed the face
of physics in the 20'* century, the other being Einstein’s theory of relativity.
Combining the two in a consistent way remains an open problem and is the
most important challenge facing present-day theoretical physics.

2. THE BEGINNING OF QUANTUM MECHANICS

2.1. Two different forms

Quantum mechanics began in two seemingly different forms: Heisenberg’s ma-
triz mechanics and Schrodinger’s wave mechanics.

In Heisenberg’s approach the basic classical physical variables of position z;
and momentum p; of a particle were replaced by somewhat mysterious algebraic
quantities Z; and p;, which no longer commuted with each other, but satisfied
instead the commutation relation
[Pj, k] = PjEx — ExPj = Ok,

with j, k = 1,2,3 and with A Planck’s constant. Other physical quantities, of
which the energy F was the most important, were expressed in the basic vari-
ables, using as much as possible the classical expressions. It was soon realized
that these algebraic quantum variables were in fact infinite matrices, and that
the basic problem that had to be solved for each physical system in this ap-
proach was to find eigenvalues and eigenvectors of the matrix corresponding
with the energy.

Schrodinger had been influenced by the ideas of the French physicist Louis de
Broglie, who had suggested a few years earlier that a possible way to understand
the discrete orbits in Bohr’s model of an atom was to associate with a moving



particle of momentum p a wave with wave lenght A\ = h/p, with A Planck’s
(original) constant. Orbits were as a consequence restricted by the requirement
that they had to consist of a certain number of wave lenghts fitted together.
Schrodinger made this rather vague but intuitively appealing idea more precise
by his proposal to describe the motion of an electron by a complex-valued func-
tion 1 depending on the position variables z; and the time variable ¢. This ‘wave
function’ had to satisfy a partial differential equation, which for an electron of
mass m moving in a potential V(z1, 22, £3) was

h O h?
———=——A Vv
i Ot 2m vV,
with A the Laplace operator % + % + %. Schrodinger originally thought

that the wave function described the electron ‘smeared out’ in space, but it
was soon pointed out by others that it had a statistical interpretation, with the
square of the absolute value of 4 at each point in space describing the probability
of finding the electron - still a point particle - there.

2.2. Unification

Schrodinger discovered that solving his differential equation amounted to solv-
ing the eigenvalue - eigenvector problem of the energy matrix in Heisenberg’s
approach; some time after this the full mathematical and physical equivalence
of both approaches was established. The mathematician John von Neumann de-
veloped around 1930 a unified and rigorous framework for quantum mechanics
in which this became completely clear. His framework is now generally accepted
as the standard mathematical formulation of quantum mechanics. It will be the
basis for the discussion of quantum mechanics in this course.

3. MODERN QUANTUM THEORY: GENERAL REMARKS

3.1. A non-historic presentation

In the preceding two chapters the historical background of quantum mechanics
was sketched and a few remarks about its beginning were made. This historical
path will not be followed further in this course. In this and subsequent chap-
ters, quantum theory will be discussed as it is now. The presentation will be
‘axiomatic’; a small number of principles will be postulated in a precise math-
ematical manner, on the basis of which the full theory, with various explicit
examples, can be developed. The mathematics needed for this is separately
reviewed in Appendices B (Hilbert space) and C (Probability theory).

3.2. Von Neumann’s formulation

The mathematical basis of quantum theory, and in particular quantum mechan-
ics, von Neumann’s Hilbert space frame work, 1s well-understood. Hilbert space
theory, like functional analysis in general, is linear algebra in infinite dimensional
vector spaces, to which nontrivial topological and measure theoretical notions



have been added to cope with limits, with infinite sums and integrals, needed
to make it interesting and fruitful. The standard physics text books ignore this
to a large extent; they can be said to follow in principle von Neumann’s scheme
- often without mentioning his name, or the term Hilbert space, reducing it to
a heuristic level where problems of convergence and divergence in infinite sums
are ignored and where it is considered to be sufficient to substitute integrals
for discrete sums, when continuous eigenvalues make this necessary. It has to
be admitted that this attitude can be justified on the practical ground that it
does not cause great harm in most standard day-to-day applications of quantum
theory to physical problems. The aim of this course is however not to teach
quantum theory to future practitioners of the subject, but to present it as one
of the great intellectual achievements of the natural sciences in the twentieth
century. For this a satisfactory treatment of its mathematical foundations is re-
quired. This has the added advantage that many notions and arguments become
clearer or seem less arbitrary when the underlying mathematical framework of
quantum mechanics is kept in sight.

3.3. Quantum theory and quantum mechanics

A distinction will be made between the terms ‘quantum mechanics’ and ‘quan-
tum theory’.

a. Quantum mechanics is the theory invented by Heisenberg, Schrodinger and
others for the description of atomic structure, as was sketched in the preceding
chapters. It 1s called quantum mechanics because most of its observable quan-
tities, in particular position, linear momentum and the expression of the energy,
come from the classical mechanics of point particles. It is an important part
of modern physics and is used is for a wide range of submicroscopic phenom-
ena; 1t 1s particularly important for its applications in many areas of modern
technology. Its mathematical basis - essentially von Neumann’s Hilbert space
formalism - is completely understood.

b. In the course of the past seventy-five years quantum mechanics has been
generalized to cover other physical phenomena. We now have quantum statistics
for collective phenomena such as in solids and fluids, relativistic quantum field
theory for the description of subnuclear particles, various attempts at quantum
gravitation, etc.. Not all of this is at present completely successful or well-
understood.

By quantum theory 1 will mean the general theory which encompasses all these
developments, and which is believed to describe in principle all known physical
phenomena. It is mathematically formulated in a general manner in terms of
states, as vectors in Hilbert space, observables, as selfadjoint operators, and
time evolution and symmetries, as groups of unitary operators, even though
much of this has not been made expicit in all cases. This means that there
are challenging fundamental problems that remain to be solved. This is true in
particular for relativistic quantum field theory and its derivatives.

In this course the formalism of quantum theory, in terms of Hilbert space vectors
and operators, will be presented in its general form, together with its physical



interpretation, but the explicit examples by which all this will be illustrated
come from quantum mechanics. In this sense quantum theory will be restricted
in this course to the special case of quantum mechanics.

3.4. The main elements

The main elements of the description of a physical system in quantum theory are
states, observables , time evolution and symmetries. In Chapter 4 mathematical
definitions of the notions of state and observable will be given, together with
their physical interpretation. Chapter 5 will discuss time evolution; symmetries
will be briefly touched upon in Chapter 6.

4. STATES AND OBSERVABLES

4.1. Two basic principles

In classical mechanics the state of a system of N point particles, can be de-
scribed completely at each moment in time by 6 N numbers, the values of 3N
coordinates and 3N momenta. Observables are functions of these variables.
This is typical for all situations in classical physics. In quantum mechanics,
and in quantum theory in general, the characterization of the state of a sys-
tem and the description of observables is radically different; it includes a notion
of indeterminacy described in probabilistic terms. We formulate the first two
principles on which quantum theory is built:

1. The state of a physical system, at each moment in time, s represented by a
unit vector in a Hilbert space, the space of state vectors of the system.

I1. Observable quantities are represented by selfadjoint operators in the Hilbert
space of state vectors.

Remark: Hilbert spaces in quantum theory are always over the complex numbers
and separable. The selfadjoint operators that represent observables in quantum
theory are usually unbounded.

FEzample from quantum mechanics: The Hilbert space H for a point particle in
quantum mechanics is L?(R3, d¥), the space of square integrable complex-valued
functions in the real variables & = (21,22, 23). The functions that represent
states have unit norm and are usually called wave functions. The selfadjoint
operators representing the basic observables are the operators Q; for the position
of the particle, acting on functions ¢ in H as

(Q¥)(Z) = z;94(2),
and P; for the momentum, acting as

P = 2 Ly,

it Ox;



for j = 1,2,3. In classical mechanics the energy for a free particle with mass
mis F = % and F = % + V if the particle moves under the influence of
a potential V(Z). The energy operator in quantum mechanics is the classical
expression in the position and momentum operators P; and @;, i.e. it acts as

2 32
(BY)( - Z dz:2
i

j=1

for a free particle and

(B¢)(F) = _hzzax z) + V(@)y(7)

for a particle in a potential V. In this simple physical situation the quantum
theory, in particular the system of quantum observables, is suggested by the
elements of the classical description of the model in the picture of Hamilto-
nian mechanics. This is an example of a general procedure called canonical
quantization , which will be discussed later in a more systematic manner.

The state space of a system of a quantum mechanical system of N particles
consists of square integrable functions in 3NV variables, as will be discussed in
some detail later. A classical field, such as an electromagnetic or gravitational
field, is a system with an infinite number of ‘degrees of freedom’. This is the
reason why quantum field theory requires a mathematically much more sophis-
ticated approach, in which, for instance, the Hilbert spaces of states of quantum
field theory are no longer function spaces, but have to be constructed as fairly
complicated algebraic objects.

4.2. The third principle: interpretation of I and 11

The interpretation of I and II is based on the spectral theorem for selfadjoint
operators in Hilbert space; we formulate 1t as a third basic principle, first in a
provisional and more elementary form, sufficient for the case of discrete spec-
trum:

IIly. The possible outcomes of measurements of an observable A in a state i
are given by a probability distribution concentrated on the spectrum of A, such
that the expectation is given by

= (¢, Ay),
and more generally the nt* moments by
An = (3, A™).

Our definitive, more sophisticated version applies to general spectra:

II1. A pair (¥, A), consisting of a unit vector ¥ and a selfadjoint operator A,
representing respectively a state of the system and an observable, determine a



stochastic variable in the sense of standard probability theory. The distribution
function of this variable is given by Fy(a) = (¢, Exy), with the projection
operators F, belonging to the spectral resolution of A. This implies that it is
concentrated on the spectrum of A and that it is such that its mean or expected
value - or expectation value as it is called in physics - s equal to

+o00
A=av)= [ adw.Ea)

— 00
with more generally the n*® moments equal to

+ oo

T=wa= [ an @ Ew).

— 00

Remark: The expectation, or more generally the n*® moment, of a probability
distribution may not be finite. Here A” is finite whenever 1 is in the domain of
the operator A™.

4.3. The case of discrete spectrum

Let us consider first the technically simple case of a selfadjoint operator A with
a purely discrete spectrum, consisting of eigenvalues a1, as,... which for the
sake of further simplicity are supposed to be nondegenerate. The spectral theo-
rem in its simplest form tells us that there is an orthogonal basis of eigenvectors

@1, @3, ..., uniquely determined up to phase factors. The vector i can be ex-
panded as
o0
= cidj,
j=1

with the complex coefficients ¢; satisfying the normalization condition

Do leil = (w,0) = 1.
j=1

This means that the real numbers p; = |c;|* form a discrete probability distri-
bution. The expression for the expectation becomes

(v, Ay) = E cick (o5, o) = EO‘J|CJ| Zajpj-
i k=1 j=1

and for the nt? moment

(v, A™) = Za pi-

An example of this simple situation, which will be discussed later, is the energy
of a one-dimensional harmonic oscillator. Its energy operator has nondegenerate



eigenvalues E, = hw(n+ %), forn =0,1,... and with w the basic oscillator fre-
quency . The generalization to the situation in which (some of ) the eigenvalues
a; are degenerate is simple and can be left to the reader.

If ¢ happens to be one of the eigenvectors of the operator A, then the prob-
ablity distibution will be concentrated on the corresponding eigenvalue, 1.e. a
measurement will give with certainty this eigenvalue.

4.4. The case of continuous spectrum

For the case of an operator with continuous spectrum we need the more so-
phisticated version of 111, based on the general version of the spectral theorem.
Eigenvectors no longer exists, at least not as proper normalized vectors in #;
instead of a sequence of projection operators on eigenspaces one has to use a
continuous system of spectral projections, the spectral resolution of the general
form of the spectral theorem, involving an operator valued Stieltjes integral, as
discussed in Appendix B.

FEzample: Let us consider for the sake of simplicity a particle in 1-dimensional
space. Its quantum mechanical state space is the Hilbert space # = L?(R!,dxz).
There 1s a single position operator ). It has the spectral projections operators

FE) defined as
(Exy)(z) = ¢(z),
for z < X and
(Exy)(z) =0,
for x > 0. For a particular choice of state vector ¢ one has as distribution
function Fy in this case

A
FoO) = (0 Bsv) = [ [ota)Pds
— 00
which means that the probability distribution determined by the position oper-
ator ) and the normalized state vector i is absolutely continuous with respect
to the Lebeésgue measure on R!, i.e. can be given by the probablity density
p(z) = |[¢(z)]?. The expectation value for @ in the state v is

w.qu = [ :O sole)de = [ :O ol (@)d.

Note that this is consistent with the fact that a function ¢ (z) is in the domain
of the operator @ if and only if ¥(z) and zy(z) are square integrable.

We have found in this way the well-known physical interpretation of the ‘wave
function’ in quantum mechanics:

The square of the absolute value of the wave function of a quantum mechanical
particle s the probability density for the measurement of the position of that
particle.

10



In general a selfadjoint operator may have both discrete and continuous spec-
trum. An example i1s the operator that represents the energy of a hydrogen
atom. It has an infinite system of discrete values, starting at a lowest nonde-
generate ‘ground state energy’ and then converging to a point where a continous
spectrum begins which goes all the way to +00. A hydrogen atom is thought
of as a system consisting of an electron moving in the electrostatic field of a
nucleus. The discrete spectrum represents the bound states of this system, the
continuous spectrum corresponds to the situation where the atom is ionized, 1.e.
with the electron separated from the nucleus. All this will be discussed later.

4.5. Systems of observables

So far we have only discussed single observables. In the case of systems of
observables, there are new and interesting phenomena, that follow from the
basic assumptions and which are typical for quantum theory. Let us consider
two observables represented by selfadjoint operators A and B. Two different
cases should be distinguished:

a. The operators A and B commute. Note that the correct definition for this
is that the spectral projections of A commute with those of B; the relation
[A, B] = 0 would in general involve domain problems.

Suppose first that A and B have only discrete eigenvalues, say a1 < as < ...
and /7 < P2 < .... A generalization of the spectral theorem to systems of
commuting operators would mean for this case that there exist an orthonormal
basis of common eigenvectors of A and B. For general spectrum there is a 2-
parameter spectral resolution { E,g}. An arbitrary unit vector ¢ in H gives then
a joint distribution function Fy, in the sense of probability theory, according
to Fy(a,B) = (¥, Eapp). The obvious physical interpretation of this is that
it is the joint probability for finding the values a and 8 in a simultaneous
measurement of the two observables in the state represented by .

For a system of n observables, represented by n commuting selfadjoint operators
Aq, ..., A, we formulate a generalization of I1I:

IV. A unit vector ¢ together with n commuting selfadjoint operators Ay, ..., Ay,
representing a state and n observable quantities of a quantum system, determine
a system of stochastic variables in the sense of ordinary probability theory. The
joint distribution function of these variables s given by

Fw (al, ceey ozn) = (1/), Eal...an"/));

with {Eq, .o, } the spectral resolution associated with Ay, ..., A,, according to
the general spectral theorem for systems of selfadjoint operators.

DEFINITION: A system of observables represented by commuting selfadjoint
operators will be called a system of commensurable observables.

Principle TV means that the physical interpretation of a system of commensu-
rable observables is part of standard probability theory. An illustration of this

11



is the expression for the covariance of two commensurable observables A and B
in a state 1, which 1s equal to

(AB)y = (¢, ABY) :/_+°O /_+°° af dFy(a, ),

and which in case of absolute continuity can be written as an integral over a
probability density py as

(B = | zo / :,o a8 py (a, B) dadg.

FErample: Consider a point particle in 3-dimensional space. Its quantum state
space H is L*(R3 d¥). The three components of the position are represented
by the commuting selfadjoint operators @);, defined as

(Qi¥)(Z) = 20 (F),

for 5 = 1,2,3. The spectral resolution of this system consists of projection
operators F x,x, given by

(Exiaans¥) (21, 22, 23) = ¢(21, 29, 23),
for \; <z;,j=1,2,3 and
(EAMer,i/))(CUl,sz, IS) =0,

for the other values of z1, 2y, 5. For a state vector ¢ with |[¢|| = 1 this gives
a joint distibution function

A pha pAs
Fy (A1, A2, A3) = (¥, Exyanna ) 2/ / / |¢(21, 22, 23)||* de1dzodes

Because of absolute continuity everything can be written in terms of the joint
probablity density p(z1, 22, z3) = |[1(21, 22, 3)||?>. All this means that as far
as the position of the particle 1s concerned, the quantum mechanical description
remains conceptually within the framework of standard probability theory.

b. The operators A and B do not commute. The occurrence of such systems of
mcommensurable observables is a typical quantum phenomenon. After a choice
of a state vector ¢ the A and B give separate stochastistic variables; together
these do not form a system of stochastic variables in the sense of standard
probability theory: 1.e. there does not exist a common probability measure on
which these variables are measurable functions and there is no joint distibution
function or probability density. There are nevertheless relations between the
results of measurements of the two observables, relations which again are typical
for quantum theory.

FEzample: The operators for position and momentum of a 1-dimensional particle,
P and @, do not commute, are incommensurable. The same is true for ); and

12



P; for a 3-dimensional particle. There are no common probability densities in
these cases. There is however an interesting and important relation between the
measurement of (the corresponding components of) of position and moment. Tt
is called the Heisenberg uncertainty relation and will be discussed later.

4.6. The measurement process

The prediction of results of measurements in quantum theory in terms of prob-
ability theory, as described in the preceding sections, is uncontroversial and
generally accepted. This is less so for the description of the actual measurement
process. According to the orthodox ‘Copenhague’ interpretation of quantum
mechanics, of which Bohr was the main advocate, a distinction must be made
between the (microscopic) system that is the subject of the measuring operation,
and the (macroscopic) measurement apparatus which is seen as classical. As a
consequence of the measurement the wave function which describes the system
is supposed to ondergo an instantaneous discontinous change. If, for instance,
the measurement of an observable represented by the operator A gives as result
the value a, neccessarily an eigenvalue of A, then the wave function is projected
onto the corresponding eigenvector. (A more precise formulation is necessary
in the case of continuous spectrum). This idea of the ‘reduction of the wave
packet’ has led to much discussion of a philosophical kind. Questions whether
objective and subject aspects of reality can be truly distinguished, whether an
object exists when it is not observed, etc., etc.. In recent years the Copenhague
interpretation has been criticized and alternatives have been put forward. These
matters cannot be discussed here.

5. TIME EVOLUTION

5.1. Time evolution as a 1-parameter group of operators

The evolution of a quantum system from an initial time to a later time is de-
scribed by an evolution operator acting on the state vectors in the Hilbert space.
It should be invertible and should map unit vectors to unit vectors; this together
means that we require it to be a unitary operator. We assume furthermore that
the systems that we consider are autonomous i.e. that their dynamics is not
explicitly time-dependent. This means that the unitary evolution operator de-
pends only on the difference of initial and later times. We think therefore of
a system of unitary operators {U(¢)}, carrying the system from a state at an
initial time ¢g to a later time ¢y + ¢, satisfying the following natural conditions:

a. U(0) =1,

b. U(t1)U(t2) = U(t1 + tq), for all real ¢; and t.

Note that these two conditions together imply a third property, n.l.

c. U(t)~t =U(=t), for all t in R.

The operators U (t) obviously form an abelian group. We assume that the U (#)

depend continuously on %, in the sense of strong operator convergence. The
system {U(t)} is what is called a 1-parameter group of unitary operators. See
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Appendix B, Chapter 7. Tt is a general property of such a 1-parameter group
that it has a selfadjoint generator by which it is uniquely determined.

All this together gives us the general principle describing time evolution in
quantum theory:

V. Time evolution in quantum theory is described by a continuous 1-parameter
group of unitary operators {U(t)}, acting in the Hilbert space of states H. It
can be written as U(t) = e~ "*  with H a selfadjoint operator which is called

the Hamitonian of the system.

5.2. The Schrodinger equation

To describe the dynamics of a concrete physical situation it is the Hamilto-
nian operator that is explicitly given, not the 1-parameter group of evolution
operators. Note that it is called ‘Hamiltonian’ because — at least in quantum
mechanics — 1t is usually obtained by taking the Hamiltonian function which
determines the time evolution of the corresponding classical system and substi-
tuting operators for the classical variables of position and momentum. Note also
that the Hamiltonian — both in the classical and the quantum case — determines
the time evolution and represents usually also the energy as observable. State
vectors evolving in time can be generally written as 1(t) = e~ #*¢(0). Starting
from the Hamiltonian one obtains such time (t) as solutions of the first order
equation

d
Ei/)(t) = Hi(t).

This equation, which is valid for all ¥(¢) in the domain of H, may be called the
‘abstract’ or ‘vector-valued’ Schrodinger equation .

Ezample: For a 1-dimensional point particle with mass m, moving in a potential
2
V(gq), the classical Hamiltonian is Hejass(p, ) = 32—+ V(¢). The Hamiltonian

of the corresponding quantum system is therefore H = % +V(Q), an operator
acting on the state vectors, i.e. ‘wave functions’ ¥(z), as

2

(H)(z) = —h?~

dz?

ba) + V(2)b(a).

A time-dependent wave function 9 (z,t) therefore has to satisfy the equation

2

Qw(;p,t) = —h? d

- (@) + V(@)(),

This is, for this situation, the ‘concrete’ Schrodinger equation | the central partial
differential equation of standard quantum mechanics.

Solving the Schrodinger equation for all state vectors 1(0) is in principle equiv-
alent to solving the generalized eigenvalue - eigenvector problem for the Hamil-
tonian operator H, i.e. finding its spectral resolution. To understand the idea
behind this statement, consider the simple case of an operator H with a purely
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discreet nondegenerate spectrum. Suppose that its eigenvalues ag, a1, ... are

known, together with an orthonormal system of eigenvectors ¢g, ¢1,.... An ar-
bitrary vector ¥ can be expanded as ¥ = fo:o Cn®n, With the coefficients ¢,
determined by the inverse formula ¢, = (¥, ¢,), for j = 0,1,.... For a time-

dependent t(t) this expansion is () = 5.7, ca(t)¢n, with time-dependent
coefficients ¢, (1) = (¥(t), ¢n). Application of the ‘vector-valued’ Schrédinger
equation gives, for each n separately, %cn(t) = —%Encn (), with solution
cn(t) = e~ #tEnc, (0). This allows us to express 1 (t) in the initial state v(0)
as Y(t) = >0 e"#Fn(1(0), ¢,). For the case of a general Hamiltonian the
result 1s essentially the same, although more sophistication is needed to for-
mulate 1t properly. It explains in any case the relation between Schrodinger’s
wave mechanics, in which a wave equation had to be solved, and Heisenberg’s
matrix quantum mechanics, which involved solving the eigenvalue - eigenvector
problem of an infinite dimensional matrix, the two versions of early quantum
mechanics, which looked quite different at first sight.

5.3. The Heisenberg picture

All observable effects can be expressed in probabilities of measuring certain
observables A in certain states 1. Time evolution is no exception; we do not
observe the time-dependence of states directly, but only its consequences for
the time-dependence of probabilities. One has for instance for the expectation
value of the observable A in of a state i the formula

(A)y (1) = (), AB(t)) = (e~ *7(0), Ae™ ¥ (0)).

This can be written as

A)y(t) = (¥(0), ex A e 77 (0)) = (1(0), A(t)¥(0)).

Similar formulas hold for the time-dependence of general moments and the dis-
tribution function it self. This means that instead of putting the time time-
dependence in the state vectors as

p(t) = em (0,

with the observables remaing constant, one may as well let the 1-parameter
group {U(t) = e~ #H act on the operators as

At) = ehltHA(O) e wtH

with the state vectors kept constant. The first procedure, which is the usual one
in most of elementary quantum mechanics, is called the Schrodinger picture.
The second way of looking at time evolution, with constant states and time-
dependent observables, is known as the Heisenberg picture; it is used in some
of the more advanced parts of quantum theory. Both pictures are physically
completely equivalent; the choice between them is purely a matter of conve-
nience. In the Heisenberg picture the basic dynamical equation is a differential
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equation for operators. By differentiating ex*A(0) e~ #*# with respect to time
one obtains J )
i

ZA() = —

dt ®) h

the Hewsenberg equation, which in the Heisenberg picture plays the role of the
Schrodinger equation in the Schrodinger picture.

[H, At)],

5.4. Stationary states and constants of the motion

DEFINITION: A stationary state of a quantum system is a state vector ¢ for
which the probabilities of measurements of all observables are constant in time.

THEOREM: A unit vector in H is a stationary state if and only if it is an
eigenvector of the Hamiltonian.

Proof: The action of U(t) = e~ %' on an eigenvector ¢, multipliesit by a phase
factor e~ #tF= Such a phase factor does not show up in any of the formulas used
to calculate probabilities. From this it follows easily that ¢, is a stationary state.
Suppose on the other hand that ¢ is a stationary state. Denote e~ #H ¢ as ¢(t).
Then one has for an arbitrary selfadjoint operator A with spectral resolution
{E,} that the distribution function F&A’t(a) = (&(t), Ea¢(t)) is independent
of time, for all & in R. Because A is arbitrary, we can choose as projection
E, the 1-dimensional projection Ey on ¢. This gives that (¢(t), ¢)(¢, é(t)) =
|(¢(t), ¢)|? is independent of ¢ which implies |(¢(t), #)|* = |(¢, ¢)|?, or because
1601l = lI61l, 1(6(2), 6)] = [1(6(1) 1 /16)]]. The equality part of the statement of
the inequality of Schwarz then gives that ¢(¢) is a scalar multiple of ¢, for every
real £. See Appendix B, Section 2.4. Some further simple arguments give finally
that ¢ 1s an eigenvector of H. This was to be proved.

Remark: A freely moving point particle has a Hamiltonian with purely contin-
uous spectrum, so this system has no stationary states. The Hamiltonian of a
harmonic oscillator, has a a purely discrete spectrum, and has therefor an or-
thonormal basis consisting of stationary states. The Hamiltonian of a hydrogen
atom has both discrete and continuous spectrum, corresponding with stationary
states, the ‘Bohr orbits’, and nonstationary ‘ionized states’ respectively.

DEFINITION: A constant of the motion or conserved quantity is an observable
for which the probabilities of measuring it in all states are constant in time.

THEOREM: An observable is a constant of the motion if and only if it commutes
with the Hamiltonian.

Proof: Let A be an observable, i.e. a selfadjoint operator, with spectral res-
olution {E,}. Define for each ¢ the selfadjoint operator A(t) = en!fAe=#tH

with a spectral resolution consisting of the projections F,(t) = ex'E, e~ w1

Let 9 be an arbitrary state vector, with v (t) = e~ %4, We have distribution
functions Flﬁt(a) = (¥(t), Fatb(t)) = (¢, Eo(t)¥). The operator A is a constant
of the motion if and only if (v, Fo(t)¢) = (¢, Eot), for all states vectors ¢ and
all real ¢ and «. This is equivalent to the operator identity Fq(t) = F,, for all
LtH

a and t, or B, e~ = e~ #tHE, for all a and ¢, which is in turn equivalent
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to the statement that all spectral projections of A commute with all spectral
projections of H. This is the definition of A commuting with H, which proves
the theorem.

An example of a constant of the motion is the momentum of a free particle. An-
other important example is formed by the three components of a 3-dimensional
particle moving in a rotationally invariant potential. Constants of the motion
usually are connected with symmetries.

6. SYMMETRIES

6.1. Groups of symmetries

Symmetry is a an important notion in physics. It simplifies the solution of
concrete problems and 1s often a guide in finding new models for physical phe-
nomena.

The symmetries of a mathematical object are its automorphisms, i.e. the in-
vertible maps from the object onto itself, which leave its characteristic structure
invariant. For a Hilbert space these are the unitary operators. A quantum the-
ory, as a mathematical object a pair (H,{U(t)}tcr), consisting of a Hilbert
space of states H and a 1-parameter group {U(t) }:er of unitary time-evolution
operators, has as its automorphisms the unitary operators in A that commute
with all the unitary operators U (t) of the time-evolution group, or equivalently
with the selfadjoint generator H of this group. We state therefore as basic
principle:

VI. Symmetries in quantum theory are unitary operators which commute with
the 1-parameter group of time involution, or equivalently, with its generator, the
Hamiltonian.

Examples of symmetries in quantum mechanics are space reflection in the case
of a 1-dimensional point particle, when the particle is moving in a potential V'
with V(z) = V(—z), space translation for a free particle, and spatial rotation
for a 3-dimensional particle moving in a rotation invariant potential.

Of particular importance are groups of symmetries:

DEFINITION: The group G is a symmetry group of a quantum system if there
is a unitary representation 7 of G in ‘H with the property that, for all g in G,
the operators m(g) commute with the time evolution operators U (t), for all ¢ in
R, or equivalently, with the Hamiltonian H.

6.2. Infinitesimal symmetries

Many of the symmetry groups in physics are ‘continuous’ groups, i.e. Lie groups.
A Tie group G has a Lie algebra £(G). Elements of £(G) can be obtained —
roughly — by differentiating 1-parameter groups in G at the identity element.
(See Appendix D for a brief review of the properties of Lie groups, Lie algebras,
etc.) A representation m of G gives a (linear) representation # of £(G). If
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G 1s simply connected then 7 can — in principle — be recovered from 7 by
exponentiation

ﬂ_(e—z"rh) — 6—7‘7?(,1)’
for all A in £(G) and all real 7. If G, together with the representation =, is a
symmetry, all operators #(h) will commute with time evolution. This suggests

the following definition:

DEFINITION: A Lie algebra £ is an infinitesimal symmetry of a quantum
system if there is a representation « of £ in H such that, for all A in £, the
operators 7(h) commute with the time evolution operators U(t), for all ¢ in R,
or equivalently, with the Hamiltonian H.

Lie groups are manifolds. The great advantage of Lie algebras over Lie groups
is that Lie algebras are linear spaces. An n-dimensional Lie group G has an n-
dimensional Lie algebra £(G), in which a basis can be chosen, say e1,...e,. This
simplifies the condition for infinitesimal symmetry, and for ‘noninfinitesimal’
symmetry in the case of a simply connected group Lie group, to a finite set of
relations, the equations

[7(e;), H] =0,

for j =1,...,n. The 7(e;) are usually called the generators of the symmetry.
Working with Lie algebra generators instead of with the full group is very pop-
ular in concrete physical applications of symmetry in quantum theory. Note
that the generators are usually unbounded operators, and that therefore some
of the above statements should be made more precise by taking into account
domain questions. We will not worry about this, as it does not do much harm
in practice, at least not in elementary quantum mechanics.

It should finally be remarked that symmetry generators are constants of the
motion. This in another reason why symmetries are important. Some of the
best-known constants of motion are connected with symmetry in this way: con-
servation of linear momentum and angular momentum is a consequence of sym-
metry under spatial translations and spatial rotatations, respectively. This will
be discussed later.
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