
Chapter �

Quantum Error Correction

��� A Quantum Error�Correcting Code

In our study of quantum algorithms� we have found persuasive evidence that
a quantum computer would have extraordinary power� But will quantum
computers really work� Will we ever be able to build and operate them�

To do so� we must rise to the challenge of protecting quantum information
from errors� As we have already noted in Chapter �� there are several as�
pects to this challenge� A quantum computer will inevitably interact with its
surroundings� resulting in decoherence and hence in the decay of the quan�
tum information stored in the device� Unless we can successfully combat
decoherence� our computer is sure to fail� And even if we were able to pre�
vent decoherence by perfectly isolating the computer from the environment�
errors would still pose grave di�culties� Quantum gates �in contrast to clas�
sical gates� are unitary transformations chosen from a continuum of possible
values� Thus quantum gates cannot be implemented with perfect accuracy�
the e	ects of small imperfections in the gates will accumulate� eventually
leading to a serious failure in the computation� Any e	ective strategem to
prevent errors in a quantum computer must protect against small unitary
errors in a quantum circuit� as well as against decoherence�

In this and the next chapter we will see how clever encoding of quan�
tum information can protect against errors �in principle�� This chapter will
present the theory of quantum error�correcting codes� We will learn that
quantum information� suitably encoded� can be deposited in a quantummem�
ory� exposed to the ravages of a noisy environment� and recovered without

�




 CHAPTER �� QUANTUM ERROR CORRECTION

damage �if the noise is not too severe�� Then in Chapter �� we will extend the
theory in two important ways� We will see that the recovery procedure can
work e	ectively even if occasional errors occur during recovery� And we will
learn how to process encoded information� so that a quantum computation

can be executed successfully despite the debilitating e	ects of decoherence
and faulty quantum gates�
A quantum error�correcting code �QECC� can be viewed as a mapping

of k qubits �a Hilbert space of dimension 
k� into n qubits �a Hilbert space
of dimension 
n�� where n � k� The k qubits are the �logical qubits or
�encoded qubits that we wish to protect from error� The additional n � k
qubits allow us to store the k logical qubits in a redundant fashion� so that
the encoded information is not easily damaged�
We can better understand the concept of a QECC by revisiting an ex�

ample that was introduced in Chapter �� Shor�s code with n � � and k � ��
We can characterize the code by specifying two basis states for the code sub�
space� we will refer to these basis states as j��i� the �logical zero and j��i� the
�logical one� They are

j��i � � �p


�j���i � j���i�����

j��i � � �p


�j���i � j���i����� �����

each basis state is a ��qubit cat state� repeated three times� As you will
recall from the discussion of cat states in Chapter �� the two basis states
can be distinguished by the ��qubit observable ����

x � ����
x � ����

x �where
��i�
x denotes the Pauli matrix �x acting on the ith qubit�� we will use the
notation X�X�X� for this operator� �There is an implicit I � I � � � � � I
acting on the remaining qubits that is suppressed in this notation�� The
states j��i and j��i are eigenstates of X�X�X� with eigenvalues �� and ��
respectively� But there is no way to distinguish j��i from j��i �to gather any
information about the value of the logical qubit� by observing any one or two
of the qubits in the block of nine� In this sense� the logical qubit is encoded
nonlocally� it is written in the nature of the entanglement among the qubits
in the block� This nonlocal property of the encoded information provides
protection against noise� if we assume that the noise is local �that it acts
independently� or nearly so� on the di	erent qubits in the block��
Suppose that an unknown quantum state has been prepared and encoded

as aj��i� bj��i� Now an error occurs� we are to diagnose the error and reverse
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it� How do we proceed� Let us suppose� to begin with� that a single bit �ip
occurs acting on one of the �rst three qubits� Then� as discussed in Chapter
�� the location of the bit �ip can be determined by measuring the two�qubit
operators

Z�Z� � Z�Z�� ���
�

The logical basis states j��i and j��i are eigenstates of these operators with
eigenvalue �� But �ipping any of the three qubits changes these eigenvalues�
For example� if Z�Z� � �� and Z�Z� � �� then we infer that the �rst
qubit has �ipped relative to the other two� We may recover from the error
by �ipping that qubit back�
It is crucial that our measurement to diagnose the bit �ip is a collective

measurement on two qubits at once � we learn the value of Z�Z�� but we
must not �nd out about the separate values of Z� and Z�� for to do so
would damage the encoded state� How can such a collective measurement
be performed� In fact we can carry out collective measurements if we have
a quantum computer that can execute controlled�NOT gates� We �rst intro�
duce an additional �ancilla qubit prepared in the state j�i� then execute the
quantum circuit

� Figure �

and �nally measure the ancilla qubit� If the qubits � and 
 are in a state
with Z�Z� � �� �either j�i�j�i� or j�i�j�i��� then the ancilla qubit will �ip
once and the measurement outcome will be j�i� But if qubits � and 
 are
in a state with Z�Z� � � �either j�i�j�i� or j�i�j�i��� then the ancilla qubit
will �ip either twice or not at all� and the measurement outcome will be j�i�
Similarly� the two�qubit operators

Z�Z�� Z�Z��

Z�Z	� Z�Z
� �����

can be measured to diagnose bit �ip errors in the other two clusters of three
qubits�
A three�qubit code would su�ce to protect against a single bit �ip� The

reason the ��qubit clusters are repeated three times is to protect against
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phase errors as well� Suppose now that a phase error

j�i � Zj�i �����

occurs acting on one of the nine qubits� We can diagnose in which cluster
the phase error occurred by measuring the two six�qubit observables

X�X�X�X�X�X	�

X�X�X	X�X�X
� �����

The logical basis states j��i and j��i are both eigenstates with eigenvalue one
of these observables� A phase error acting on any one of the qubits in a
particular cluster will change the value of XXX in that cluster relative to
the other two� the location of the change can be identi�ed by measuring the
observables in eq� ������ Once the a	ected cluster is identi�ed� we can reverse
the error by applying Z to one of the qubits in that cluster�
How do we measure the six�qubit observableX�X�X�X�X�X	� Notice

that if its control qubit is initially in the state �p
�
�j�i� j�i�� and its target is

an eigenstate of X �that is� NOT� then a controlled�NOT acts according to

CNOT �
�p


�j�i � j�i�� jxi � �p



�j�i � ����xj�i� � jxi�

�����

it acts trivially if the target is the X � � �x � �� state� and it �ips the
control if the target is the X � �� �x � �� state� To measure a product of
X�s� then� we execute the circuit

� Figure �

and then measure the ancilla in the �p
�
�j�i � j�i� basis�

We see that a single error acting on any one of the nine qubits in the block
will cause no irrevocable damage� But if two bit �ips occur in a single cluster
of three qubits� then the encoded information will be damaged� For example�
if the �rst two qubits in a cluster both �ip� we will misdiagnose the error and
attempt to recover by �ipping the third� In all� the errors� together with our
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mistaken recovery attempt� apply the operator X�X�X� to the code block�
Since j��i and j��i are eigenstates of X�X�X� with distinct eigenvalues� the
e	ect of two bit �ips in a single cluster is a phase error in the encoded qubit�

X�X�X� � aj��i� bj��i � aj��i � bj��i � �����

The encoded information will also be damaged if phase errors occur in two
di	erent clusters� Then we will introduce a phase error into the third cluster
in our misguided attempt at recovery� so that altogether Z�Z�Z� will have
been applied� which �ips the encoded qubit�

Z�Z�Z� � aj��i� bj��i � aj��i� bj��i � �����

If the likelihood of an error is small enough� and if the errors acting on
distinct qubits are not strongly correlated� then using the nine�qubit code
will allow us to preserve our unknown qubit more reliably than if we had not
bothered to encode it at all� Suppose� for example� that the environment
acts on each of the nine qubits� independently subjecting it to the depolar�
izing channel described in Chapter �� with error probability p� Then a bit
�ip occurs with probability �

�p� and a phase �ip with probability
�
�p� �The

probability that both occur is �
�
p�� We can see that the probability of a phase

error a	ecting the logical qubit is bounded above by �p�� and the probability
of a bit �ip error is bounded above by �
p�� The total error probability is no
worse than ��p�� this is an improvement over the error probability p for an
unprotected qubit� provided that p � �����
Of course� in this analysis we have implicitly assumed that encoding�

decoding� error syndrome measurement� and recovery are all performed �aw�
lessly� In Chapter � we will examine the more realistic case in which errors
occur during these operations�

��� Criteria for Quantum Error Correction

In our discussion of error recovery using the nine�qubit code� we have assumed
that each qubit undergoes either a bit��ip error or a phase��ip error �or both��
This is not a realistic model for the errors� and we must understand how to
implement quantum error correction under more general conditions�
To begin with� consider a single qubit� initially in a pure state� that in�

teracts with its environment in an arbitrary manner� We know from Chapter
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� that there is no loss or generality �we may still represent the most gen�
eral superoperator acting on our qubit� if we assume that the initial state
of the environment is a pure state� which we will denote as j�iE� Then the
evolution of the qubit and its environment can be described by a unitary
transformation

U � j�i � j�iE � j�i � je��iE � j�i � je��iE �

j�i � j�iE � j�i � je��iE � j�i � je��iE � �����

here the four jeijiE are states of the environment that need not be normalized
or mutually orthogonal �though they do satisfy some constraints that follow
from the unitarity of U�� Under U � an arbitrary state j�i � aj�i � bj�i of
the qubit evolves as

U � �aj�i� bj�i�j�iE � a�j�ije��iE � j�ije��iE�
� b�j�ije��iE � j�ije��iE�

� �aj�i � bj�i�� �


�je��iE � je��iE�

� �aj�i � bj�i�� �


�je��iE � je��iE�

� �aj�i� bj�i�� �


�je��iE � je��iE�

� �aj�i � bj�i�� �


�je��iE � je��iE�

� I j�i � jeIiE �Xj�i � jeXiE � Y j�i � jeY iE
�Zj�i � jeZiE� ������

The action of U can be expanded in terms of the �unitary� Pauli operators
fI �X�Y �Zg� simply because these are a basis for the vector space of 
 � 

matrices� Heuristically� we might interpret this expansion by saying that one
of four possible things happens to the qubit� nothing �I�� a bit �ip �X�� a
phase �ip �Z�� or both �Y � iXZ�� However� this classi�cation should not
be taken literally� because unless the states fjeIi� jeXi� jeY i� jeZig of the en�
vironment are all mutually orthogonal� there is no conceivable measurement
that could perfectly distinguish among the four alternatives�
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Similarly� an arbitrary 
n � 
n matrix acting on an n�qubit Hilbert space
can be expanded in terms of the 
�n operators

fI�X�Y �Zg�n� ������

that is� each such operator can be expressed as a tensor�product �string of
single�qubit operators� with each operator in the string chosen from among
the identity and the three Pauli matrices X�Y � and Z� Thus� the action
of an arbitrary unitary operator on n qubits plus their environment can be
expanded as

j�i � j�iE �
X
a

Eaj�i � jeaiE � ����
�

here the index a ranges over 
�n values� The fEag are the linearly inde�
pendent Pauli operators acting on the n qubits� and the fjeaiEg are the
corresponding states of the environment �which are not assumed to be nor�
malized or mutually orthogonal�� A crucial feature of this expansion for what
follows is that each Ea is a unitary operator�
Eq� ����
� provides the conceptual foundation of quantum error correc�

tion� In devising a quantum error�correcting code� we identify a subset E of
all the Pauli operators�

E � fEag � fI �X�Y �Zg�n � ������

these are the errors that we wish to be able to correct� Our aim will be
to perform a collective measurement of the n qubits in the code block that
will enable us to diagnose which error Ea � E occurred� If j�i is a state
in the code subspace� then for some �but not all� codes this measurement
will prepare a state Eaj�i � jeaiE� where the value of a is known from the
measurement outcome� Since Ea is unitary� we may proceed to apply E

y
a��

Ea� to the code block� thus recovering the undamaged state j�i�
Each Pauli operator can be assigned a weight� an integer t with � 	 t 	 n�

the weight is the number of qubits acted on by a nontrivial Pauli matrix
�X�Y � or Z�� Heuristically� then� we can interpret a term in the expansion
eq� ����
� where Ea has weight t as an event in which errors occur on t
qubits �but again we cannot take this interpretation too literally if the states
fjeaiEg are not mutually orthogonal�� Typically� we will take E to be the set
of all Pauli operators of weight up to and including t� then if we can recover
from any error superoperator with support on the set E� we will say that the
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code can correct t errors� In adopting such an error set� we are implicitly
assuming that the errors a icting di	erent qubits are only weakly correlated
with one another� so that the amplitude for more than t errors on the n
qubits is relatively small�
Given the set E of errors that are to be corrected� what are the necessary

and su�cient conditions to be satis�ed by the code subspace in order that
recovery is possible� Let us denote by f j�ii g an orthonormal basis for the
code subspace� �We will refer to these basis elements as �codewords�� It
will clearly be necessary that

h�jjEy
bEaj�ii � �� i 
� j� ������

where Ea�b � E� If this condition were not satis�ed for some i 
� j� then
errors would be able to destroy the perfect distinguishability of orthogonal
codewords� and encoded quantum information could surely be damaged� �A
more explicit derivation of this necessary condition will be presented below��
We can also easily see that a su�cient condition is

h�jjEy
bEaj�ii � �ab�ij� ������

In this case the Ea�s take the code subspace to a set of mutually orthogonal
�error subspaces

Ha � EaHcode� ������

Suppose� then that an arbitrary state j�i in the code subspace is prepared�
and subjected to an error� The resulting state of code block and environment
is

X
Ea�E

Eaj�i � jeaiE � ������

where the sum is restricted to the errors in the set E� We may then perform
an orthogonal measurement that projects the code block onto one of the
spaces Ha� so that the state becomes

Eaj�i � jeaiE� ������

We �nally apply the unitary operator Ey
a to the code block to complete the

recovery procedure�
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A code that satis�es the condition eq� ������ is called a nondegenerate

code� This terminology signi�es that there is a measurement that can unam�
biguously diagnose the error Ea � E that occurred� But the example of the
nine�qubit code has already taught us that more general codes are possible�
The nine�qubit code is degenerate� because phase errors acting on di	erent
qubits in the same cluster of three a	ect the code subspace in precisely the
same way �e�g�� Z�j�i � Z�j�i�� Though no measurement can determine
which qubit su	ered the error� this need not pose an obstacle to successful
recovery�

The necessary and su�cient condition for recovery to be possible is easily
stated�

h�jjEy
bEaj�ii � Cba�ij� ������

where Ea�b � E� and Cba � h�ijEy
bEaj�ii is an arbitrary Hermitian matrix� The

nontrivial content of this condition that goes beyond the weaker necessary
condition eq� ������ is that h�ijEy

bEaj�ii does not depend on i� The origin of
this condition is readily understood � were it otherwise� in identifying an
error subspace Ha we would acquire some information about the encoded
state� and so would inevitably disturb that state�

To prove that the condition eq� ������ is necessary and su�cient� we
invoke the theory of superoperators developed in Chapter �� Errors acting
on the code block are described by a superoperator� and the issue is whether
another superoperator �the recovery procedure� can be constructed that will
reverse the e	ect of the error� In fact� we learned in Chapter � that the only
superoperators that can be inverted are unitary operators� But now we are
demanding a bit less� We are not required to be able to reverse the action of
the error superoperator on any state in the n�qubit code block� rather� it is
enough to be able to reverse the errors when the initial state resides in the
k�qubit encoded subspace�

An alternative way to express the action of an error on one of the code
basis states j�ii �and the environment� is

j�ii � j�iE �
X
�

M�j�ii � j�iE � ���
��

where now the states j�iE are elements of an orthonormal basis for the envi�
ronment� and the matricesM� are linear combinations of the Pauli operators



�� CHAPTER �� QUANTUM ERROR CORRECTION

Ea contained in E� satisfying the operator�sum normalization conditionX
�

My
�M� � I � ���
��

The error can be reversed by a recovery superoperator if there exist operators
R� such that X

�

Ry
�R� � I� ���

�

and X
���

R�M�j�ii � j�iE � j�iA

� j�ii � jstu	iEA� ���
��

here the j�iA�s are elements of an orthonormal basis for the Hilbert space of
the ancilla that is employed to implement the recovery operation� and the
state jstu	iEA of environment and ancilla must not depend on i� It follows
that

R�M�j�ii � 	��j�ii� ���
��

for each � and �� the productR�M� acting on the code subspace is a multiple
of the identity� Using the normalization condition satis�ed by the R��s� we
infer that

M
y
�M�j�ii �M y

�

�X
�

Ry
�R�

�
M�j�ii �

X
�

	���	��j�ii� ���
��

so that My
�M� is likewise a multiple of the identity acting on the code

subspace� In other words

h�jjM y
�M�j�ii � C���ij� ���
��

since each Ea in E is a linear combination ofM��s� eq� ������ then follows�
Another instructive way to understand why eq� ���
�� is a necessary con�

dition for error recovery is to note that if the code block is prepared in the
state j�i� and an error acts according to eq� ���
��� then the density matrix
for the environment that we obtain by tracing over the code block is


E �
X
���

j�iEh�jMy
�M�j�iEh�j� ���
��
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Error recovery can proceed successfully only if there is no way to acquire
any information about the state j�i by performing a measurement on the
environment� Therefore� we require that 
E be independent of j�i� if j�i is
any state in the code subspace� eq� ���
�� then follows�
To see that eq� ���
�� is su�cient for recovery as well as necessary� we

can explicitly construct the superoperator that reverses the error� For this
purpose it is convenient to choose our basis fj�iEg for the environment so
that the matrix C�� in eq� ���
�� is diagonalized�

h�jjMy
�M�j�ii � C�����ij � ���
��

where
P

� C� � � follows from the operator�sum normalization condition�
For each � with C� 
� �� let

R� �
�p
C�

X
i

j�iih�ijMy
� � ���
��

so that R� acts according to

R� �M�j�ii �
q
C����j�ii� ������

Then we easily see that

X
���

R�M�j�ii � j�iE � j�iA

� j�ii � �X
�

q
C� j�iE � j�iA�� ������

the superoperator de�ned by the R� �s does indeed reverse the error� It only
remains to check that the R��s satisfy the normalization condition� We have

X
�

Ry
�R� �

X
��i

�

C�

X
�

M �j�iih�ijMy
� � ����
�

which is the orthogonal projection onto the space of states that can be reached
by errors acting on codewords� Thus we can complete the speci�cation of
the recovery superoperator by adding one more element to the operator sum
� the projection onto the complementary subspace�
In brief� eq� ������ is a su�cient condition for error recovery because it is

possible to choose a basis for the error operators �not necessarily the Pauli
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operator basis� that diagonalizes the matrix Cab� and in this basis we can
unambiguously diagnose the error by performing a suitable orthogonal mea�
surement� �The eigenmodes of Cab with eigenvalue zero� like Z� �Z� in the
case of the ��qubit code� correspond to errors that occur with probability
zero�� We see that� once the set E of possible errors is speci�ed� the recov�
ery operation is determined� In particular� no information is needed about
the states jeaiE of the environment that are associated with the errors Ea�
Therefore� the code works equally e	ectively to control unitary errors or de�
coherence errors �as long as the amplitude for errors outside of the set E is
negligible�� Of course� in the case of a nondegenerate code� Cab is already
diagonal in the Pauli basis� and we can express the recovery basis as

Ra �
X
i

j�iih�ijEy
a � ������

there is an Ra corresponding to each Ea in E�
We have described error correction as a two step procedure� �rst a col�

lective measurement is conducted to diagnose the error� and secondly� based
on the measurement outcome� a unitary transformation is applied to reverse
the error� This point of view has many virtues� In particular� it is the quan�
tum measurement procedure that seems to enable us to tame a continuum of
possible errors� as the measurement projects the damaged state into one of a
discrete set of outcomes� for each of which there is a prescription for recov�
ery� But in fact measurement is not an essential ingredient of quantum error
correction� The recovery superoperator of eq� ������ may of course be viewed
as a unitary transformation acting on the code block and an ancilla� This
superoperator can describe a measurement followed by a unitary operator if
we imagine that the ancilla is subjected to an orthogonal measurement� but
the measurement is not necessary�
If there is no measurement� we are led to a di	erent perspective on the

reversal of decoherence achieved in the recovery step� When the code block
interacts with its environment� it becomes entangled with the environment�
and the Von Neumann entropy of the environment increases �as does the
entropy of the code block�� If we are unable to control the environment� that
increase in its entropy can never be reversed� how then� is quantum error
correction possible� The answer provided by eq� ������ is that we may apply
a unitary transformation to the data and to an ancilla that we do control�
If the criteria for quantum error correction are satis�ed� this unitary can be
chosen to transform the entanglement of the data with the environment into
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entanglement of ancilla with environment� restoring the purity of the data in
the process� as in�

� Figure �

While measurement is not a necessary part of error correction� the ancilla
is absolutely essential� The ancilla serves as a depository for the entropy in�
serted into the code block by the errors � it �heats as the data �cools� If
we are to continue to protect quantum information stored in quantum mem�
ory for a long time� a continuous supply of ancilla qubits should be provided
that can be discarded after use� Alternatively� if the ancilla is to be recycled�
it must �rst be erased� As discussed in Chapter �� the erasure is dissipative
and requires the expenditure of power� Thus principles of thermodynamics
dictate that we cannot implement �quantum� error correction for free� Errors
cause entropy to seep into the data� This entropy can be transferred to the
ancilla by means of a reversible process� but work is needed to pump entropy
from the ancilla back to the environment�

��� Some General Properties of QECC�s

����� Distance

A quantum code is said to be binary if it can be represented in terms of
qubits� In a binary code� a code subspace of dimension 
k is embedded in a
space of dimension 
n� where k and n � k are integers� There is actually no
need to require that the dimensions of these spaces be powers of two �see the
exercises�� nevertheless we will mostly con�ne our attention here to binary
coding� which is the simplest case�
In addition to the block size n and the number of encoded qubits k�

another important parameter characterizing a code is its distance d� The
distance d is the minimum weight of a Pauli operator E such that

h�ijEaj�ji 
� Ca�ij� ������

We will describe a quantum code with block size n� k encoded qubits� and
distance d as an ���n� k� d�� quantum code� We use the double�bracket no�
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tation for quantum codes� to distinguish from the �n� k� d� notation used for
classical codes�

We say that an QECC can correct t errors if the set E of Ea�s that allow
recovery includes all Pauli operators of weigh t or less� Our de�nition of
distance implies that the criterion for error correction

h�ijEy
aEbj�ji � Cab�ij� ������

will be satis�ed by all Pauli operators Ea�b of weight t or less� provided that
d � 
t��� Therefore� a QECC with distance d � 
t�� can correct t errors�

����� Located errors

A distance d � 
t�� code can correct t errors� irrespective of the location of
the errors in the code block� But in some cases we may know that particular
qubits are especially likely to have su	ered errors� Perhaps we saw a hammer
strike those qubits� Or perhaps you sent a block of n qubits to me� but t � n
of the qubits were lost and never received� I am con�dent that the n � t
qubits that did arrive were well packaged and were received undamaged� But
I replace the t missing qubits with the �arbitrarily chosen� state j�� � � � �i�
realizing full well that these qubits are likely to be in error�

A given code can protect against more errors if the errors occur at known
locations instead of unknown locations� In fact� a QECC with distance d �
t�� can correct t errors at known locations� In this case� the set E of errors
to be corrected is the set of all Pauli operators with support at the t speci�ed
locations �each Ea acts trivially on the other n�t qubits�� But then� for each
Ea and Eb in E� the product Ey

aEb also has weight at most t� Therefore�
the error correction criterion is satis�ed for all Ea�b � E� provided the code
has distance at least t� ��

In particular� a QECC that corrects t errors in arbitrary locations can
correct 
t errors in known locations�

����� Error detection

In some cases we may be satis�ed to detect whether an error has occurred�
even if we are unable to fully diagnose or reverse the error� A measurement
designed for error detection has two possible outcomes� �good and �bad�
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If the good outcome occurs� we are assured that the quantum state is un�
damaged� If the bad outcome occurs� damage has been sustained� and the
state should be discarded�
If the error superoperator has its support on the set E of all Pauli op�

erators of weight up to t� and it is possible to make a measurement that
correctly diagnoses whether an error has occurred� then it is said that we can
detect t errors� Error detection is easier than error correction� so a given code
can detect more errors than it can correct� In fact� a QECC with distance
d � t� � can detect t errors�
Such a code has the property that

h�ijEaj�ji � Ca�ij ������

for every Pauli operator Ea of weight t or less� or

Eaj�ii � Caj�ii � j��aii � ������

where j��aii is an unnormalized vector orthogonal to the code subspace�
Therefore� the action on a state j�i in the code subspace of an error su�
peroperator with support on E is

j�i � j�iE �
X
Ea�E

Eaj�i � jeaiE � j�i �
�
� X
Ea�E

CajeaiE
�
A � jorthogi �

������

where jorthogi denotes a vector orthogonal to the code subspace�
Now we can perform a �fuzzy orthogonal measurement on the data� with

two outcomes� the state is projected onto either the code subspace or the
complementary subspace� If the �rst outcome is obtained� the undamaged
state j�i is recovered� If the second outcome is found� an error has been
detected� We conclude that our QECC with distance d can detect d � �
errors� In particular� then� a QECC that can correct t errors can detect 
t
errors�

����� Quantum codes and entanglement

A QECC protects quantum information from error by encoding it nonlo�

cally� that is� by sharing it among many qubits in a block� Thus a quantum
codeword is a highly entangled state�
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In fact� a distance d � t�� nondegenerate code has the following property�
Choose any state j�i in the code subspace and any t qubits in the block�
Trace over the remaining n � t qubits to obtain

��t� � tr�n�t�j�ih�j � ������

the density matrix of the t qubits� Then this density matrix is totally random�

��t� �
�


t
I� ������

�In any distance��t� �� code� we cannot acquire any information about the
encoded data by observing any t qubits in the block� that is� ��t� is a constant�
independent of the codeword� But only if the code is nondegenerate will the
density matrix of the t qubits be a multiple of the identity��

To verify the property eq� ������� we note that for a nondegenerate distance�
�t� �� code�

h�ijEaj�ji � � ������

for any Ea of nonzero weight up to t� so that

tr���t�Ea� � �� ����
�

for any t�qubit Pauli operator Ea other than the identity� Now ��t�� like any
Hermitian 
t � 
t matrix� can be expanded in terms of Pauli operators�

��t� �
�
�


t

�
I �

X
Ea ��I


aEa � ������

Since the Ea�s satisfy

�
�


t

�
tr�EaEb� � �ab � ������

we �nd that each 
a � �� and we conclude that ��t� is a multiple of the
identity�
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��� Probability of Failure

����� Fidelity bound

If the support of the error superoperator contains only the Pauli operators
in the set E that we know how to correct� then we can recover the encoded
quantum information with perfect �delity� But in a realistic error model�
there will be a small but nonzero amplitude for errors that are not in E� so
that the recovered state will not be perfect� What can we say about the
�delity of the recovered state�
The Pauli operator expansion of the error superoperator can be divided

into a sum over the �good operators �those in E�� and the �bad ones �those
not in E�� so that it acts on a state j�i in the code subspace according to

j�i � j�iE �
X
a

Eaj�i � jeaiE
� X
Ea�E

Eaj�i � jeaiE �
X
Eb ��E

Ebj�i � jebiE

� jGOODi � jBADi � ������

The recovery operation �a unitary acting on the data and the ancilla� then
maps jGOODi to a state jGOOD�i of data� environment� and ancilla� and
jBADi to a state jBAD�i� so that after recovery we obtain the state

jGOOD�i � jBAD�i � ������

here �since recovery works perfectly acting on the good state�

jGOOD�i � j�i � jsiEA � ������

where jsiEA is some state of the environment and ancilla�
Suppose that the states jGOODi and jBADi are orthogonal� This would

hold if� in particular� all of the �good states of the environment are orthog�
onal to all of the �bad states� that is� if

heajebi � � for Ea � E� Eb 
� E� ������

Let �rec denote the density matrix of the recovered state� obtained by tracing
out the environment and ancilla� and let

F � h�j�recj�i ������
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be its �delity� Now� since jBAD�i is orthogonal to jGOOD�i �that is� jBAD�i
has no component along j�ijsiEA�� the �delity will be

F � h�j�GOOD� j�i� h�j�BAD�j�i � ������

where

�GOOD� � trEA �jGOOD�ihGOOD�j� � �BAD� � trEA �jBAD�ihBAD�j� �
������

The �delity of the recovered state therefore satis�es

F � h�j�GOOD� j�i �k jsiEA k��k jGOOD�i k� � ����
�

Furthermore� since the recovery operation is unitary� we have k jGOOD�i k�
k jGOODi k� and hence

F � k jGOODi k��k X
Ea�E

Eaj�i � jeaiE k� � ������

In general� though� jBADi need not be orthogonal to jGOODi� so that
jBAD�i need not be orthogonal to jGOOD�i� Then jBAD�i might have a
component along jGOOD�i that interferes destructively with jGOOD�i and
so reduces the �delity� We can still obtain a lower bound on the �delity in
this more general case by resolving jBAD�i into a component along jGOOD�i
and an orthogonal component� as

jBAD�i � jBAD�ki� jBAD�
�i ������

Then reasoning just as above we obtain

F � k jGOOD�i� jBAD�ki k� ������

Of course� since both the error operation and the recovery operation are uni�
tary acting on data� environment� and ancilla� the complete state jGOOD�i�
jBAD�i is normalized� or

k jGOOD�i � jBAD�ki k� � k jBAD��i k�� � � ������

and eq� ������ becomes

F � �� k jBAD��i k� � ������
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Finally� the norm of jBAD��i cannot exceed the norm of jBAD�i� and we
conclude that

� � F 	 k jBAD�i k��k jBADi k��k X
Eb ��E

Ebj�i � jebiE k� �
������

This is our general bound on the �failure probability of the recovery oper�
ation� The result eq� ������ then follows in the special case where jGOODi
and jBADi are orthogonal states�

����� Uncorrelated errors

Let�s now consider some implications of these results for the case where errors
acting on distinct qubits are completely uncorrelated� In that case� the error
superoperator is a tensor product of single�qubit superoperators� If in fact
the errors act on all the qubits in the same way� we can express the n�qubit
superoperator as

!�n�error �
h
!���error

i�n
� ������

where !���error is a one�qubit superoperator whose action �in its unitary repre�
sentation� has the form

j�i � j�iE � j�i � jeIiE �X j�i� jeXiE � Y j�i � jeY iE
�Zj�i � jeZiE � ������

The e	ect of the errors on encoded information is especially easy to analyze
if we suppose further that each of the three states of the environment jeX�Y�Zi
is orthogonal to the state jeIi� In that case� a record of whether or not an
error occurred for each qubit is permanently imprinted on the environment�
and it is sensible to speak of a probability of error perror for each qubit� where

heI jeIi � �� perror � ������

If our quantum code can correct t errors� then the �good Pauli operators
have weight up to t� and the �bad Pauli operators have weight greater than
t� recovery is certain to succeed unless at least t� � qubits are subjected to
errors� It follows that the �delity obeys the bound

� � F 	
nX

s�t�

�
n

s

�
pserror ��� perror�

n�s 	
�

n

t� �

�
pt�error �

����
�
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�For each of the
�

n

t�

�
ways of choosing t� � locations� the probability that

errors occurs at every one of those locations is pt�error� where we disregard
whether additional errors occur at the remaining n� t� � locations� There�
fore� the �nal expression in eq� ����
� is an upper bound on the probability
that at least t�� errors occur in the block of n qubits�� For perror small and t
large� the �delity of the encoded data is a substantial improvement over the
�delity F � ��O�p� maintained by an unprotected qubit�
For a general error superoperator acting on a single qubit� there is no clear

notion of an �error probability� the state of the qubit and its environment
obtained when the Pauli operator I acts is not orthogonal to �and so cannot
be perfectly distinguished from� the state obtained when the Pauli operators
X� Y � and Z act� In the extreme case there is no decoherence at all � the
�errors arise because unknown unitary transformations act on the qubits�
�If the unitary transformation U acting on a qubit were known� we could
recover from the �error simply by applying U y��
Consider uncorrelated unitary errors acting on the n qubits in the code

block� each of the form �up to an irrelevant phase�

U ��� �
q
� � p� i

p
p W � ������

where W is a �traceless� Hermitian� linear combination of X� Y � and Z�
satisfying W � � I � If the state j�i of the qubit is prepared� and then the
unitary error eq� ������ occurs� the �delity of the resulting state is

F �
			h�jU ���j�i

			� � �� p
�
�� �h�jW j�i��

�
� � � p �

������

If a unitary error of the form eq� ������ acts on each of the n qubits in the
code block� and the resulting state is expanded in terms of Pauli operators
as in eq� ������� then the state jBADi �which arises from terms in whichW
acts on at least t � � qubits� has a norm of order �

p
p�t�� and eq� ������

becomes

�� F � O�pt�� � ������

We see that coding provides an improvement in �delity of the same order
irrespective of whether the uncorrelated errors are due to decoherence or due
to unknown unitary transformations�
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To avoid confusion� let us emphasize the meaning of �uncorrelated for
the purpose of the above discussion� We consider a unitary error acting on
n qubits to be �uncorrelated if it is a tensor product of single�qubit unitary
transformations� irrespective of how the unitaries acting on distinct qubits
might be related to one another� For example� an �error whereby all qubits
rotate by an angle � about a common axis is e	ectively dealt with by quantum
error correction� after recovery the �delity will be F � � �O����t���� if the
code can protect against t uncorrelated errors� In contrast� a unitary error
that would cause more trouble is one of the form U �n� � �� i�E

�n�
bad� where

E
�n�
bad is an n�qubit Pauli operator whose weight is greater than t� Then

jBADi has a norm of order �� and the typical �delity after recovery will be
F � ��O�����

��� Classical Linear Codes

Quantum error�correcting codes were �rst invented less than four years ago�
but classical error�correcting codes have a much longer history� Over the past
�fty years� a remarkably beautiful and powerful theory of classical coding has
been erected� Much of this theory can be exploited in the construction of
QECC�s� Here we will quickly review just a few elements of the classical
theory� con�ning our attention to binary linear codes�

In a binary code� k bits are encoded in a binary string of length n� That
is� from among the 
n strings of length n� we designate a subset containing

k strings � the codewords� A k�bit message is encoded by selecting one of
these 
k codewords�

In the special case of a binary linear code� the codewords form a k�
dimensional closed linear subspace C of the binary vector space F n

� � That is�
the bitwise XOR of two codewords is another codeword� The space C of the
code is spanned by a basis of k vectors v�� v�� � � � � vk� an arbitrary codeword
may be expressed as a linear combination of these basis vectors�

v��� � � � � k� �
X
i

ivi � ������

where each i � f�� �g� and addition is modulo 
� We may say that the
length�n vector v�� � � � k� encodes the k�bit message  � ��� � � � � k��
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The k basis vectors v�� � � � vk may be assembled into a k � n matrix

G �

�
BB�

v�
���
vk

�
CCA � ������

called the generator matrix of the code� Then in matrix notation� eq� ������
can be rewritten as

v�� � G � ������

the matrix G� acting to the left� encodes the message �
An alternative way to characterize the k�dimensional code subspace of

F n
� is to specify n � k linear constraints� There is an �n � k�� n matrix H
such that

Hv � � ������

for all those and only those vectors v in the code C� This matrix H is called
the parity check matrix of the code C� The rows of H are n � k linearly
independent vectors� and the code space is the space of vectors that are
orthogonal to all of these vectors� Orthogonality is de�ned with respect to
the mod 
 bitwise inner product� two length�n binary strings are orthogonal
is they �collide �both take the value �� at an even number of locations� Note
that

HGT � � � ������

where GT is the transpose of G� the rows of G are orthogonal to the rows of
H�
For a classical bit� the only kind of error is a bit �ip� An error occurring

in an n�bit string can be characterized by an n�component vector e� where
the ��s in e mark the locations where errors occur� When a icted by the
error e� the string v becomes

v � v � e � ������

Errors can be detected by applying the parity check matrix� If v is a code�
word� then

H�v � e� � Hv �He � He � ����
�
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He is called the syndrome of the error e� Denote by E the set of errors
feig that we wish to be able to correct� Error recovery will be possible if
and only if all errors ei have distinct syndromes� If this is the case� we can
unambiguously diagnose the error given the syndrome He� and we may then
recover by �ipping the bits speci�ed by e as in

v � e� �v � e� � e � v � ������

On the other hand� if He� � He� for e� 
� e� then we may misinterpret an
e� error as an e� error� our attempt at recovery then has the e	ect

v � e� � v � �e� � e�� 
� v� ������

The recovered message v � e� � e� lies in the code� but it di	ers from the
intended message v� the encoded information has been damaged�

The distance d of a code C is the minimum weight of any vector v � C�
where the weight is the number of ��s in the string v� A linear code with
distance d � 
t�� can correct t errors� the code assigns a distinct syndrome
to each e � E� where E contains all vectors of weight t or less� This is so
because� if He� � He�� then

� � He� �He� � H�e� � e�� � ������

and therefore e� � e� � C� But if e� and e� are unequal and each has weight
no larger than t� then the weight of e�� e� is greater than zero and no larger
than 
t� Since d � 
t� �� there is no such vector in C� Hence He� and He�
cannot be equal�

A useful concept in classical coding theory is that of the dual code� We
have seen that the k�n generator matrix G and the �n�k��n parity check
matrix H of a code C are related by HGT � �� Taking the transpose� it
follows that GHT � �� Thus we may regard HT as the generator and G as
the parity check of an �n � k��dimensional code� which is denoted C� and
called the dual of C� In other words� C� is the orthogonal complement of
C in F n

� � A vector is self�orthogonal if it has even weight� so it is possible
for C and C� to intersect� A code contains its dual if all of its codewords
have even weight and are mutually orthogonal� If n � 
k it is possible that
C � C�� in which case C is said to be self�dual�
An identity relating the code C and its dual C� will prove useful in the
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following section�

X
v�C
����v�u �


��
�

k u � C�

� u 
� C�
� ������

The nontrivial content of the identity is the statement that the sum vanishes
for u 
� C�� This readily follows from the familiar identity

X
v�f���gk

����v�w � �� w 
� �� ������

where v and w are strings of length k� We can express v � G as

v � G� ������

where  is a k�vector� Then

X
v�C
����v�u � X

��f���gk
������Gu � �� ������

for Gu 
� �� Since G� the generator matrix of C� is the parity check matrix
for C�� we conclude that the sum vanishes for u 
� C��

��	 CSS Codes

Principles from the theory of classical linear codes can be adapted to the
construction of quantum error�correcting codes� We will describe here a
family of QECC�s� the Calderbank�Shor�Steane �or CSS� codes� that exploit
the concept of a dual code�

Let C� be a classical linear code with �n�k���n parity check matrix H��
and letC� be a subcode of C�� with �n�k���n parity checkH�� where k� � k��
The �rst n� k� rows of H� coincide with those of H�� but there are k� � k�
additional linearly independent rows� thus each word in C� is contained in
C�� but the words in C� also obey some additional linear constraints�

The subcode C� de�nes an equivalence relation in C�� we say that u� v �
C� are equivalent �u � v� if and only if there is a w in C� such that u � v�w�
The equivalence classes are the cosets of C� in C��



��	� CSS CODES 
�

A CSS code is a k � k� � k� quantum code that associates a codeword
with each equivalence class� Each element of a basis for the code subspace
can be expressed as

j �wi � �p

k�

X
v�C�

jv � wi � ������

an equally weighted superposition of all the words in the coset represented by
w� There are 
k��k� cosets� and hence 
k��k� linearly independent codewords�
The states j �wi are evidently normalized and mutually orthogonal� that is�
h �wj �w�i � � if w and w� belong to di	erent cosets�
Now consider what happens to the codeword j �wi if we apply the bitwise

Hadamard transform H�n��

H�n� � j �wiF � �p

k�

X
v�C�

jv � wi

� j �wiP � �p

n

X
u

�p

k�

X
v�C�

����u�v����u�wjui

�
�p

n�k�

X
u�C��

����u�wjui � ������

we obtain a coherent superposition� weighted by phases� of words in the dual
code C�

� �in the last step we have used the identity eq� �������� It is again
manifest in this last expression that the codeword depends only on the C�

coset that w represents � shifting w by an element of C� has no e	ect on
����u�w if u is in the code dual to C��
Now suppose that the code C� has distance d� and the code C�

� has
distance d�� � such that

d� � 
tF � � �
d�� � 
tP � � � ����
�

Then we can see that the corresponding CSS code can correct tF bit �ips
and tP phase �ips� If e is a binary string of length n� let E

��ip�
e denote the

Pauli operator with an X acting at each location i where ei � �� it acts on
the state jvi according to

E��ip�
e � jvi � jv � ei � ������
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And let E�phase�
e denote the Pauli operator with a Z acting where ei � �� its

action is

E�phase�
e � jvi � ����v�ejvi � ������

which in the Hadamard rotated basis becomes

E�phase�
e � jui � ju� ei � ������

Now� in the original basis �the F or ��ip basis�� each basis state j �wiF of
the CSS code is a superposition of words in the code C�� To diagnose bit �ip
error� we perform on data and ancilla the unitary transformation

jvi � j�iA � jvi � jH�viA � ������

and then measure the ancilla� The measurement result H�eF is the bit �ip

syndrome� If the number of �ips is tF or fewer� we may correctly infer from
this syndrome that bit �ips have occurred at the locations labeled by eF � We
recover by applying X to the qubits at those locations�
To correct phase errors� we �rst perform the bitwise Hadamard transfor�

mation to rotate from the F basis to the P ��phase� basis� In the P basis�
each basis state j �wiP of the CSS code is a superposition of words in the code
C�
� � To diagnose phase errors� we perform a unitary transformation

jvi � j�iA � jvi � jG�viA � ������

and measure the ancilla �G�� the generator matrix of C�� is also the parity
check matrix of C�

� �� The measurement result G�eP is the phase error syn�

drome� If the number of phase errors is tP or fewer� we may correctly infer
from this syndrome that phase errors have occurred at locations labeled by
eP � We recover by applying X �in the P basis� to the qubits at those lo�
cations� Finally� we apply the bitwise Hadamard transformation once more
to rotate the codewords back to the original basis� �Equivalently� we may
recover from the phase errors by applying Z to the a	ected qubits after the
rotation back to the F basis��
If eF has weight less than d� and eP has weight less than d�� � then

h �wjE�phase�
eP

E��ip�
eF

j �w�i � � ������

�unless eF � eP � ��� Any Pauli operator can be expressed as a product of
a phase operator and a �ip operator � a Y error is merely a bit �ip and
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phase error both a icting the same qubit� So the distance d of a CSS code
satis�es

d � min�d�� d
�
� � � ������

CSS codes have the special property �not shared by more general QECC�s�
that the recovery procedure can be divided into two separate operations� one
to correct the bit �ips and the other to correct the phase errors�

The unitary transformation eq� ������ �or eq� ������� can be implemented
by executing a simple quantum circuit� Associated with each of the n � k�
rows of the parity check matrix H� is a bit of the syndrome to be extracted�
To �nd the ath bit of the syndrome� we prepare an ancilla bit in the state
j�iA�a� and for each value of 	 with �H��a� � �� we execute a controlled�NOT
gate with the ancilla bit as the target and qubit 	 in the data block as the
control� When measured� the ancilla qubit reveals the value of the parity
check bit

P
��H��a�v��

Schematically� the full error correction circuit for a CSS code has the
form�

� Figure �

Separate syndromes are measured to diagnose the bit �ip errors and the phase
errors� An important special case of the CSS construction arises when a code
C contains its dual C�� Then we may choose C� � C and C� � C� � C� the
C parity check is computed in both the F basis and the P basis to determine
the two syndromes�

��� The ��Qubit Code

The simplest of the CSS codes is the ��n� k� d�� � ��� �� �� quantum code �rst
formulated by Andrew Steane� It is constructed from the classical ��bit
Hamming code�

The Hamming code is an �n� k� d� � ��� �� �� classical code with the � � �
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parity check matrix

H �

�
B� � � � � � � �
� � � � � � �
� � � � � � �

�
CA � ������

To see that the distance of the code is d � �� �rst note that the weight��
string ��������� passes the parity check and is� therefore� in the code� Now
we need to show that there are no vectors of weight � or 
 in the code� If e�
has weight �� then He� is one of the columns of H� But no column of H is
trivial �all zeros�� so e� cannot be in the code� Any vector of weight 
 can be
expressed as e� � e�� where e� and e� are distinct vectors of weight �� But

H�e� � e�� � He� �He� 
� �� ������

because all columns of H are distinct� Therefore e� � e� cannot be in the
code�

The rows of H themselves pass the parity check� and so are also in the
code� �Contrary to one�s usual linear algebra intuition� a nonzero vector over
the �nite �eld F� can be orthogonal to itself�� The generator matrix G of
the Hamming code can be written as

G �

�
BBB�
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

�
CCCA � ����
�

the �rst three rows coincide with the rows of H� and the weight�� codeword
��������� is appended as the fourth row�

The dual of the Hamming code is the ��� �� �� code generated by H� In
this case the dual of the code is actually contained in the code � in fact� it
is the even subcode of the Hamming code� containing all those and only those
Hamming codewords that have even weight� The odd codeword ���������
is a representative of the nontrivial coset of the even subcode� For the CSS
construction� we will choose C� to be the Hamming code� and C� to be its
dual� the even subcode�� Therefore� C�

� � C� is again the Hamming code�
we will use the Hamming parity check both to detect bit �ips in the F basis
and to detect phase �ips in the P basis�
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In the F basis� the two orthonormal codewords of this CSS code� each
associated with a distinct coset of the even subcode� can be expressed as

j��iF � �p
�

X
even v

� Hamming

jvi �

j��iF � �p
�

X
odd v

� Hamming

jvi � ������

Since both j��i and j��i are superpositions of Hamming codewords� bit �ips
can be diagnosed in this basis by performing an H parity check� In the
Hadamard rotated basis� these codewords become

H��� � j��iF � j��iP �
�
�

�

� X
v� Hamming

jvi � �p


�j��iF � j��iF �

j��iF � j��iP �
�
�

�

� X
v� Hamming

����wt�v�jvi � �p


�j��iF � j��iF ��

������

In this basis as well� the states are superpositions of Hamming codewords�
so that bit �ips in the P basis �phase �ips in the original basis� can again
be diagnosed with an H parity check� �We note in passing that for this
code� performing the bitwise Hadamard transformation also implements a
Hadamard rotation on the encoded data� a point that will be relevant to our
discussion of fault�tolerant quantum computation in the next chapter��
Steane�s quantum code can correct a single bit �ip and a single phase

�ip on any one of the seven qubits in the block� But recovery will fail if
two di	erent qubits both undergo either bit �ips or phase �ips� If e� and e�
are two distinct weight�one strings then He� �He� is a sum of two distinct
columns of H� and hence a third column of H �all seven of the nontrivial
strings of length � appear as columns of H�� Therefore� there is another
weight�one string e� such that He� �He� � He�� or

H�e� � e� � e�� � � � ������

thus e�� e�� e� is a weight�� word in the Hamming code� We will interpret
the syndrome He� as an indication that the error v� v� e� has arisen� and
we will attempt to recover by applying the operation v� v� e�� Altogether
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then� the e	ect of the two bit �ip errors and our faulty attempt at recovery
will be to add e� � e� � e� �an odd�weight Hamming codeword� to the data�
which will induce a �ip of the encoded qubit

j��iF  j��iF � ������

Similarly� two phase �ips in the F basis are two bit �ips in the P basis� which
�after the botched recovery� induce on the encoded qubit

j��iP  j��iP � ������

or equivalently

j��iF � j��iF
j��iF ��j��iF � ������

a phase �ip of the encoded qubit in the F basis� If there is one bit �ip and
one phase �ip �either on the same qubit or di	erent qubits� then recovery
will be successful�

��
 Some Constraints on Code Parameters

Shor�s code protects one encoded qubit from an error in any single one of
nine qubits in a block� and Steane�s code reduces the block size from nine to
seven� Can we do better still�

����� The Quantum Hamming bound

To understand how much better we might do� let�s see if we can derive any
bounds on the distance d � 
t � � of an ��n� k� d�� quantum code� for given
n and k� At �rst� suppose we limit our attention to nondegenerate codes�
which assign a distinct syndrome to each possible error� On a given qubit�
there are three possible linearly independent errors X�Y � or Z� In a block
of n qubits� there are

�
n

j

�
ways to choose j qubits that are a	ected by errors�

and three possible errors for each of these qubits� therefore the total number
of possible errors of weight up to t is

N�t� �
tX

j��

�j
�
n

j

�
� ������
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If there are k encoded qubits� then there are 
k linearly independent
codewords� If all Eaj�ji�s are linearly independent� where Ea is any error
of weight up to t and j�ii is any element of a basis for the codewords� then
the dimension 
n of the Hilbert space of n qubits must be large enough to
accommodate N�t� � 
k independent vectors� hence

N�t� �
tX

j��

�j
�
n

j

�
	 
n�k� �������

This result is called the quantum Hamming bound� An analogous bound
applies to classical block codes� but without the factor of �j� since there is
only one type of error �a �ip� that can a	ect a classical bit� We also emphasize
that the quantum Hamming bound applies only in the case of nondegenerate
coding� while the classical Hamming bound applies in general� However� no
degenerate quantum codes that violate the quantum Hamming code have yet
been constructed �as of January� ������
In the special case of a code with one encoded qubit �k � �� that corrects

one error �t � ��� the quantum Hamming bound becomes

� � �n 	 
n��� �������

which is satis�ed for n � �� In fact� the case n � � saturates the inequality
�� � �� � ���� A nondegenerate ���� �� ��� quantum code� if it exists� is
perfect� The entire �
�dimensional Hilbert space of the �ve qubits is needed
to accommodate all possible one�qubit errors acting on all codewords � there
is no wasted space�

����� The no�cloning bound

We could still wonder� though� if there is a degenerate n � � code that can
correct one error� In fact� it is easy to see that no such code can exist� We
already know that a code that corrects t errors at arbitrary locations can
also be used to correct 
t errors at known locations� Suppose that we have
a ���� �� ��� quantum code� Then we could encode a single qubit in the four�
qubit block� and split the block into two sub�blocks� each containing two
qubits�

� Figure �



�
 CHAPTER �� QUANTUM ERROR CORRECTION

If we append j��i to each of those two sub�blocks� then the original block
has spawned two o	spring� each with two located errors� If we were able to
correct the two located errors in each of the o	spring� we would obtain two
identical copies of the parent block � we would have cloned an unknown
quantum state� which is impossible� Therefore� no ���� �� ��� quantum code
can exist� We conclude that n � � is the minimal block size of a quantum
code that corrects one error� whether the code is degenerate or not�
The same reasoning shows that an ��n� k � �� d�� code can exist only for

n � 
�d � �� � �����
�

����� The quantum Singleton bound

We will now see that this result eq� �����
� can be strengthened to

n� k � 
�d � ��� �������

Eq� ������� resembles the Singleton bound on classical code parameters�

n� k � d � �� �������

and so has been called the �quantum Singleton bound� For a classical linear
code� the Singleton bound is a near triviality� the code can have distance d
only if any d�� columns of the parity check matrix are linearly independent�
Since the columns have length n� k� at most n� k columns can be linearly
independent� therefore d� � cannot exceed n� k� The Singleton bound also
applies to nonlinear codes�
An elegant proof of the quantum Singleton bound can be found that

exploits the subadditivity of the Von Neumann entropy discussed in x��
�
We begin by introducing a k�qubit ancilla� and constructing a pure state
that maximally entangles the ancilla with the 
k codewords of the QECC�

j"iAQ � �p

k

X jxiAj�xiQ � �������

where fjxiAg denotes an orthonormal basis for the 
k�dimensional Hilbert
space of the ancilla� and fj�xiQg denotes an orthonormal basis for the 
k�
dimensional code subspace� If we trace over the length�n code block Q� the
density matrix 
A of the ancilla is

�
�k
�� which has entropy

S�A� � k � S�Q�� �������
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Now� if the code has distance d� then d � � located errors can be corrected�
or� as we have seen� no observable acting on d� � of the n qubits can reveal
any information about the encoded state� Equivalently� the observable can
reveal nothing about the state of the ancilla in the entangled state j"i�
Now� since we already know that n � 
�d � �� �if k � ��� let us imagine

dividing the code block Q into three disjoint parts� a set of d�� qubits Q���
d���

another disjoint set of d�� qubits Q���
d��� and the remaining qubits Q

���
n���d����

If we trace out Q��� and Q���� the density matrix we obtain must contain no
correlations between Q��� and the ancilla A� This means that the entropy of
system AQ��� is additive�

S�Q���Q���� � S�AQ���� � S�A� � S�Q����� �������

Similarly�

S�Q���Q���� � S�AQ���� � S�A� � S�Q����� �������

Furthermore� in general� Von Neumann entropy is subadditive� so that

S�Q���Q���� 	 S�Q���� � S�Q����

S�Q���Q���� 	 S�Q���� � S�Q���� �������

Combining these inequalities with the equalities above� we �nd

S�A� � S�Q���� 	 S�Q���� � S�Q����

S�A� � S�Q���� 	 S�Q���� � S�Q����� �������

Both of these inequalities can be simultaneously satis�ed only if

S�A� 	 S�Q���� �������

Now Q��� has dimension n � 
�d � ��� and its entropy is bounded above by
its dimension so that

S�A� � k 	 n� 
�d � ��� �����
�

which is the quantum Singleton bound�
The ���� �� ��� code saturates this bound� but for most values of n and

k the bound is not tight� Rains has obtained the stronger result that an
��n� k� 
t� ��� code with k � � must satisfy

t 	
�
n � �

�

�
� �������
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�where �x� � ��oor x is the greatest integer greater than or equal to x�
Thus� the minimal length of a k � � code that can correct t � �� 
� �� �� �
errors is n � �� ��� ��� 
�� 
� respectively� Codes with all of these parameters
have actually been constructed� except for the ��
�� �� ��� code�

��� Stabilizer Codes

����� General formulation

We will be able to construct a �nondegenerate� ���� �� ��� quantum code� but
to do so� we will need a more powerful procedure for constructing quantum
codes than the CSS procedure�
Recall that to establish a criterion for when error recovery is possible� we

found it quite useful to expand an error superoperator in terms of the n�qubit
Pauli operators� But up until now we have not exploited the group structure
of these operators �a product of Pauli operators is a Pauli operator�� In fact�
we will see that group theory is a powerful tool for constructing QECC�s�
For a single qubit� we will �nd it more convenient now to choose all of

the Pauli operators to be represented by real matrices� so I will now use a
notation in which Y denotes the anti�hermitian matrix

Y � ZX � i�y �

�
� �
�� �

�
� �������

satisfying Y � � �I� Then the operators
f�I��X��Y ��Zg � �fI�X�Y �Zg� �������

are the elements of a group of order ��� The n�fold tensor products of single�
qubit Pauli operators also form a group

Gn � �fI�X�Y �Zg�n� �������

of order jGnj � 
�n� �since there are �n possible tensor products� and another
factor of 
 for the � sign� we will refer to Gn as the n�qubit Pauli group�
�In fact� we will use the term �Pauli group both to refer to the abstract

�It is not the quaternionic group but the other non�abelian group of order � � the
symmetry group of the square� The element Y � of order �� can be regarded as the ���

rotation of the plane� while X and Z are re�ections about two orthogonal axes�
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group Gn� and to its dimension�
n faithful unitary representation by tensor
products of 
 � 
 matrices� its only irreducible representation of dimension
greater than ��� Note that Gn has the two element center Z� � f�I�ng� If
we quotient out its center� we obtain the group �Gn � Gn�Z�� this group can
also be regarded as a binary vector space of dimension 
�n� a property that
we will exploit below�
The �
n�dimensional representation of the� Pauli group Gn evidently has

these properties�

�i� EachM � Gn is unitary�M
�� �M y�

�ii� For each elementM � Gn�M
� � �I � �I�n� Furthermore�M � � I

if the number of Y �s in the tensor product is even� and M � � �I if
the number of Y �s is odd�

�iii� IfM� � I� thenM is hermitian �M �M y�� ifM� � �I � thenM is
anti�hermitian �M � �My��

�iv� Any two elementsM �N � Gn either commute or anti�commute�MN �
�NM �

We will use the Pauli group to characterize a QECC in the following way�
Let S denote an abelian subgroup of the n�qubit Pauli group Gn� Thus all
elements of S acting on H�n can be simultaneously diagonalized� Then the
stabilizer code HS � H�n associated with S is the simultaneous eigenspace
with eigenvalue � of all elements of S� That is�

j�i � HS i	 M j�i � j�i for allM � S� �������

The group S is called the stabilizer of the code� since it preserves all of the
codewords�
The group S can be characterized by its generators� These are elements

fM ig that are independent �no one can be expressed as a product of others�
and such that each element of S can be expressed as a product of elements
of fM ig� If S has n�k generators� we can show that the code space HS has
dimension 
k � there are k encoded qubits�
To verify this� �rst note that each M � S must satisfy M � � I� if

M� � �I� then M cannot have the eigenvalue ��� Furthermore� for each
M 
� �I in Gn that squares to one� the eigenvalues �� and �� have equal
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degeneracy� This is because for each M 
� �I� there is an N � Gn that
anti�commutes withM �

NM � �MN � �������

therefore� M j�i � j�i if and only if M �N j�i� � �N j�i� and the action
of the unitary N establishes a � � � correspondence between the �� eigen�
states ofM and the �� eigenstates� Hence there are �

��

n� � 
n�� mutually

orthogonal states that satisfy

M �j�i � j�i � �������

whereM � is one of the generators of S�
Now letM � be another element of Gn that commutes withM � such that

M � 
� �I��M�� We can �nd an N � Gn that commutes with M� but
anti�commutes with M�� therefore N preserves the �� eigenspace of M ��
but within this space� it interchanges the �� and �� eigenstates of M�� It
follows that the space satisfying

M �j�i �M�j�i � j�i� ����
��

has dimension 
n���
Continuing in this way� we note that ifM j is independent of fM��M�� � � �M j��g�

then there is an N that commutes withM �� � � � �M j��� but anti�commutes
withM j �we�ll discuss in more detail below how such an N can be found��
Therefore� restricted to the space with M � � M� � � � � � M j�� � ��M j

has as many �� eigenvectors as �� eigenvectors� So adding another genera�
tor always cuts the dimension of the simultaneous eigenspace in half� With
n � k generators� the dimension of the remaining space is 
n ���
�n�k � 
k�
The stabilizer language is useful because it provides a simple way to

characterize the errors that the code can detect and correct� We may think
of the n � k stabilizer generators M�� � � � �Mn�k� as the check operators of
the code� the collective observables that we measure to diagnose the errors�
If the encoded information is undamaged� then we will �ndM i � � for each
of the generators� but ifM i � �� for some i� then the data is orthogonal to
the code subspace and an error has been detected�
Recall that the error superoperator can be expanded in terms of elements

Ea of the Pauli group� A particular Ea either commutes or anti�commutes
with a particular stabilizer generatorM � If Ea andM commute� then

MEaj�i � EaM j�i � Eaj�i� ����
��
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for j�i � HS� so the error preserves the value M � �� But if Ea and M
anti�commute� then

MEaj�i � �EaM j�i � �Eaj�i� ����

�

so that the error �ips the value of M � and the error can be detected by
measuringM �

For stabilizer generatorsM i and errors Ea� we may write

M iEa � ����siaEaM i� ����
��

The sia�s� i � �� � � � � n� k constitute a syndrome for the error Ea� as ����sia
will be the result of measuring M i if the error Ea occurs� In the case
of a nondegenerate code� the sia�s will be distinct for all Ea � E� so that
measuring the n� k stabilizer generators will diagnose the error completely�

More generally� let us �nd a condition to be satis�ed by the stabilizer
that is su�cient to ensure that error recovery is possible� Recall that it is
su�cient that� for each Ea�Eb � E� and normalized j�i in the code subspace�
we have

h�jEy
aEbj�i � Cab� ����
��

where Cab is independent of j�i� We can see that this condition is satis�ed
provided that� for each Ea�Eb � E� one of the following holds�

�� Ey
aEb � S �

�� There is anM � S that anti�commutes with Ey
aEb�

Proof� In case ��� h�jEy
aEbj�i � h�j�i � �� for j�i � HS� In case �
��

supposeM � S andMEy
aEb � �Ey

aEbM � Then

h�jEy
aEbj�i � h�jEy

aEbM j�i

� �h�jMEy
aEbj�i � �h�jEy

aEbj�i� ����
��

and therefore h�jEy
aEbj�i � ��
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Thus� a stabilizer code that corrects fEg is a space HS �xed by an abelian
subgroup S of the Pauli group� where either ��� or �
� is satis�ed by each
E

y
aEb with Ea�b � E� The code is nondegenerate if condition ��� is not

satis�ed for any Ey
aEb�

Evidently we could also just as well choose the code subspace to be any
one of the 
n�k simultaneous eigenspaces of n � k independent commuting
elements of Gn� But in fact all of these codes are equivalent� We may regard
two stabilizer codes as equivalent if they di	er only according to how the
qubits are labeled� and how the basis for each single�qubit Hilbert space is
chosen � that is the stabilizer of one code is transformed to the stabilizer
of the other by a permutation of the qubits together with a tensor prod�
uct of single�qubit transformations� If we partition the stabilizer generators
into two sets fM �� � � � �M jg and fM j�� � � � �Mn�kg� then there exists an
N � Gn that commutes with each member of the �rst set and anti�commutes
with each member of the second set� Applying N to j�i � Hs preserves the
eigenvalues of the �rst set while �ipping the eigenvalues of the second set�
Since N is just a tensor product of single�qubit unitary transformations�
there is no loss of generality �up to equivalence� in choosing all of the eigen�
values to be one� Furthermore� since minus signs don�t really matter when
the stabilizer is speci�ed� we may just as well say that two codes are equiva�
lent if� up to phases� the stabilizers di	er by a permutation of the n qubits�
and permutations on each individual qubits of the operators X�Y �Z�

Recovery may fail if there is an Ey
aEb that commutes with the stabilizer

but does not lie in the stabilizer� This is an operator that preserves the
code subspace HS but may act nontrivially in that space� thus it can modify
encoded information� Since Eaj�i and Ebj�i have the same syndrome� we
might mistakenly interpret an Ea error as an Eb error� the e	ect of the error
together with the attempt at recovery is that Ey

bEa gets applied to the data�
which can cause damage�

A stabilizer code with distance d has the property that each E � Gn of
weight less than d either lies in the stabilizer or anti�commutes with some
element of the stabilizer� The code is nondegenerate if the stabilizer contains
no elements of weight less than d� A distance d � 
t � � code can correct
t errors� and a distance s � � code can detect s errors or correct s errors at
known locations�
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����� Symplectic Notation

Properties of stabilizer codes are often best explained and expressed using the
language of linear algebra� The stabilizer S of the code� an order 
n�k abelian
subgroup of the Pauli group with all elements squaring to the identity� can
equivalently be regarded as a dimension n� k closed linear subspace of F �n

� �
self orthogonal with respect to a certain �symplectic� inner product�
The group �Gn � Gn�Z� is isomorphic to the binary vector space F �n

� � We
establish this by observing that� since Y � ZX� any elementM of the Pauli
group �up to the � sign� can be expressed as a product of Z�s and X�s� we
may write

M � ZM �XM ����
��

where ZM is a tensor product of Z�s and XM is a tensor product of X�s�
More explicitly� a Pauli operator may be written as

�j�� � Z��X��� �
nO
i��

Z�i �
nO
i��

X�i� ����
��

where  and � are binary strings of length n� �Then Y acts at the locations
where  and � �collide�� Multiplication in �Gn maps to addition in F �n

� �

�j����j��� � ���������� �j� � ��� � ����
��

the phase arises because � �� counts the number of times a Z is interchanged
with a X as the product is rearranged into the standard form of eq� ����
���
It follows from eq� ����
�� that the commutation properties of the Pauli

operators can be expressed in the form

�j����j� �� � ��������������j� ���j�� ����
��

Thus two Pauli operators commute if and only if the corresponding vectors
are orthogonal with respect to the �symplectic inner product

 � �� � � � � � �������

We also note that the square of a Pauli operator is

�j��� � �������I � �������
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since �� counts the number of Y �s in the operator� it squares to the identity
if and only if

 � � � � � �����
�

Note that a closed subspace� where each element has this property� is auto�
matically self�orthogonal� since

 � �� � � � � � �� �� � �� � ����  � � � � � �� � � �
�������

in the group language� that is� a subgroup of Gn with each element squaring
to I is automatically abelian�
Using the linear algebra language� some of the statements made earlier

about the Pauli group can be easily veri�ed by counting linear constraints�
Elements are independent if the corresponding vectors are linearly indepen�
dent over F �n

� � so we may think of the n � k generators of the stabilizer
as a basis for a linear subspace of dimension n � k� We will use the nota�
tion S to denote both the linear space and the corresponding abelian group�
Then S� denotes the dimension�n� k space of vectors that are orthogonal
to each vector in S �with respect to the symplectic inner product�� Note
that S� contains S� since all vectors in S are mutually orthogonal� In the
group language� corresponding to S� is the normalizer �or centralizer� group
N�S� �� S�� of S in Gn � the subgroup of Gn containing all elements that
commute with each element of S� Since S is abelian� it is contained in its
own normalizer� which also contains other elements �to be further discussed
below�� The stabilizer of a distance d code has the property that each �j��
whose weight

P
i�i � �i� is less than d either lies in the stabilizer subspace

S or lies outside the orthogonal space S��
A code can be characterized by its stabilizer� a stabilizer by its generators�

and the n� k generators can be represented by an �n� k�� 
n matrix

H � �HZjHX�� �������

Here each row is a Pauli operator� expressed in the �j�� notation� The syn�
drome of an error Ea � �aj�a� is determined by its commutation properties
with the generatorsM i � ��ij��i�� that is

sia � �aj�a� � ��ij��i� � a � ��i � �i � �a� �������
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In the case of a nondegenerate code� each error has a distinct syndrome� If
the code is degenerate� there may be several errors with the same syndrome�
but we may apply any one of the Ey

a corresponding to the observed syndrome
in order to recover�

����� Some examples of stabilizer codes

�a� The nine�qubit code� This ���� �� ��� code has eight stabilizer genera�
tors that can be expressed as

Z�Z�� Z�Z� Z�Z� Z�Z	� Z�Z� Z�Z


X�X�X�X�X�X	� X�X�X	X�X�X
�
�������

In the notation of eq� ������� these become

�
BBBBBBBBBBBBB�

� � �
� � �

� �

�
� � �
� � �

�

� �
� � �
� � �

�

�
� � � � � � � � �
� � � � � � � � �

�
CCCCCCCCCCCCCA

�b� The seven�qubit code� This ���� �� ��� code has six stabilizer genera�
tors� which can be expressed as

#H �

�
Hham �
� Hham

�
� �������

where Hham is the � � � parity�check matrix of the classical �������
Hamming code� The three check operators

M � � Z�Z�Z�Z�

M � � Z�Z�Z	Z�

M � � Z�Z�Z	Z�� �������
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detect the bit �ips� and the three check operators

M� � X�X�X�X�

M� � X�X�X	X�

M	 � X�X�X	X�� �������

detect the phase errors� The space with M� � M� � M � � � is
spanned by the codewords that satisfy the Hamming parity check� Re�
calling that a Hadamard change of basis interchanges Z and X� we
see that the space with M � � M � � M	 is spanned by codewords
that satisfy the Hamming parity check in the Hadamard�rotated ba�
sis� Indeed� we constructed the seven�qubit code by demanding that
the Hamming parity check be satis�ed in both bases� The generators
commute because the Hamming code contains its dual code� i�e�� each
row of Hham satis�es the Hamming parity check�

�c� CSS codes� Recall whenever an �n� k� d� classical code C contains its
dual code C�� we can perform the CSS construction to obtain an
��n� 
k�n� d�� quantum code� The stabilizer of this code can be written
as

#H �

�
H �
� H

�
�������

where H is the �n� k��n parity check matrix of C� As for the seven�
qubit code� the stabilizers commute because C contains C�� and the
code subspace is spanned by states that satisfy the H parity check in
both the F �basis and the P �basis� Equivalently� codewords obey the H
parity check and are invariant under

jvi � jv � wi� �������

where w � C��

�d� More general CSS codes� Consider� more generally� a stabilizer
whose generators can each be chosen to be either a product of Z�s
�j�� or a product of X�s ��j��� Then the generators have the form

#H �

�
HZ �
� HX

�
� �����
�
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Now� what condition must HX and HZ satisfy if the Z�generators and
X�generators are to commute� Since Z�s must collide with X�s an
even number of times� we have

HXH
T
Z � HZH

T
X � � � �������

But this is just the requirement that the dual C�
X of the code whose

parity check is HX be contained in the code CZ whose parity check is
HZ� In other words� this QECC �ts into the CSS framework� with

C� � C�
X � C� � CZ � �������

So we may characterize CSS codes as those and only those for which
the stabilizer has generators of the form eq� �����
��

However there is a caveat� The code de�ned by eq� �����
� will be non�
degenerate if errors are restricted to weight less than d � min�dZ � dX�
�where dZ is the distance of CZ� and dX the distance of CX�� But the
true distance of the QECC could exceed d� For example� the ��qubit
code is in this generalized sense a CSS code� But in that case the
classical code CX is distance �� re�ecting that� e�g�� Z�Z� is contained
in the stabilizer� Nevertheless� the distance of the CSS code is d � ��
since no weight�
 Pauli operator lies in S� n S�

����� Encoded qubits

We have seen that the troublesome errors are those in S� n S � those that
commute with the stabilizer� but lie outside of it� These Pauli operators are
also of interest for another reason� they can be regarded as the �logical
operations that act on the encoded data that is protected by the code�
Appealing to the �linear algebra viewpoint� we can see that the nor�

malizer S� of the stabilizer contains n � k independent generators � in the

n�dimensional space of the �j���s� the subspace containing the vectors that
are orthogonal to each of n � k linearly independent vectors has dimension

n � �n � k� � n � k� Of the n � k vectors that span this space� n � k
can be chosen to be the generators of the stabilizer itself� The remaining

k generators preserve the code subspace because they commute with the
stabilizer� but act nontrivially on the k encoded qubits�
In fact� these 
k operations can be chosen to be the single�qubit operators

�Z i� �X i� i � �� 
� � � � � k� where �Z i� �X i are the Pauli operators Z andX acting



�� CHAPTER �� QUANTUM ERROR CORRECTION

on the encoded qubit labeled by i� First� note that we can extend the n� k
stabilizer generators to a maximal set of n commuting operators� The k
operators that we add to the set may be denoted �Z�� � � � �Zk� We can then
regard the simultaneous eigenstates of �Z� � � � �Zk �in the code subspace HS�
as the logical basis states j�z�� � � � � �zki� with �zj � � corresponding to �Zj � �
and �zj � � corresponding to �Zj � ���
The remaining k generators of the normalizer may be chosen to be mutu�

ally commuting and to commute with the stabilizer� but then they will not
commute with any of the �Zi�s� By invoking a Gram�Schmidt orthonormaliza�
tion procedure� we can choose these generators� denoted �X i� to diagonalize
the symplectic form� so that

�Z i
�Xj � �����ij �Xj

�Z i� �������

Thus� each �Xj �ips the eigenvalue of the corresponding �Zj� and it can so be
regarded as the Pauli operator X acting on encoded qubit i

�a� The ��qubit Code� As we have discussed previously� the logical oper�
ators can be chosen to be

�Z � X�X�X� �
�X � Z�Z�Z� � �������

These anti�commutewith one another �anX and aZ collide at position
��� commute with the stabilizer generators� and are independent of the
generators �no element of the stabilizer contains three X�s or three
Z�s��

�b� The ��qubit code� We have seen that

�X � X�X�X� �
�Z � Z�Z�Z� � �������

then �X adds an odd Hamming codeword and �Z �ips the phase of an
odd Hamming codeword� These operations implement a bit �ip and
phase �ip respectively in the basis fj�iF � j�iF g de�ned in eq� �������
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���� The ��Qubit Code

All of the QECC�s that we have considered so far are of the CSS type � each
stabilizer generator is either a product of Z�s or a product of X�s� But not
all stabilizer codes have this property� An example of a non�CSS stabilizer
code is the perfect nondegenerate ��������� code�
Its four stabilizer generators can be expressed

M� � XZZXI�

M� � IXZZX�

M� � XIXZZ�

M� � ZXIXZ� �������

M����� are obtained from M� by performing a cyclic permutation of the
qubits� �The �fth operator obtained by a cyclic permutation of the qubits�
M� � ZZXIX � M �M �M�M� is not independent of the other four��
Since a cyclic permutation of a generator is another generator� the code itself
is cyclic � a cyclic permutation of a codeword is a codeword�
Clearly each M i contains no Y �s and so squares to I� For each pair

of generators� there are two collisions between an X and a Z� so that the
generators commute� One can quickly check that each Pauli operator of
weight � or weight 
 anti�commutes with at least one generator� so that the
distance of the code is ��
Consider� for example� whether there are error operators with support

on the �rst two qubits that commute with all four generators� The weight�

operator� to commute with the IX in M � and the XI in M�� must be
XX� But XX anti�commutes with the XZ inM� and the ZX inM ��
In the symplectic notation� the stabilizer may be represented as

#H �

�
BBB�
����� �����
����� �����
����� �����
����� �����

�
CCCA �������

This matrix has a nice interpretation� as each of its columns can be regarded
as the syndrome of a single�qubit error� For example� the single�qubit bit �ip
operator Xj � commutes with M i if M i has an I or X in position j� and
anti�commutes ifM i has a Z in position j� Thus the table
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X� X� X� X� X�

M � � � � � �
M � � � � � �
M � � � � � �
M � � � � � �

lists the outcome of measuringM������� in the event of a bit �ip� �For example�
if the �rst bit �ips� the measurement outcomesM � �M � �M � � ��M � �
��� diagnose the error�� Similarly� the right half of #H can be regarded as the
syndrome table for the phase errors�

Z� Z� Z� Z� Z�

M � � � � � �
M � � � � � �
M � � � � � �
M � � � � � �

Since Y anti�commutes with both X and Z� we obtain the syndrome for the
error Y i by summing the ith columns of the X and Z tables�

Y � Y � Y � Y � Y �

M � � � � � �
M � � � � � �
M � � � � � �
M � � � � � �

We �nd by inspection that the �� columns of the X�Y � and Z syndrome
tables are all distinct� and so we verify again that our code is a nondegenerate
code that corrects one error� Indeed� the code is perfect � each of the ��
nontrivial binary strings of length � appears as a column in one of the tables�
Because of the cyclic property of the code� we can easily characterize all

�� nontrivial elements of its stabilizer� Aside from M� � XZZXI and
the four operators obtained from it by cyclic permutations of the qubit� the
stabilizer also contains

M�M� � �YXXY I � �������

plus its cyclic permutations� and

M�M� � �ZY Y ZI� �������
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and its cyclic permutations� Evidently� all elements of the stabilizer are
weight�� Pauli operators�

For our logical operators� we may choose

�Z � ZZZZZ�
�X � XXXXX� �����
�

these commute with M�������� square to I� and anti�commute with one an�
other� Being weight �� they are not themselves contained in the stabilizer�
Therefore if we don�t mind destroying the encoded state� we can determine
the value of �Z for the encoded qubit by measuring Z of each qubit and eval�
uating the parity of the outcomes� In fact� since the code is distance three�
there are elements of S� nS of weight�three� alternate expressions for �Z and
�X can be obtained by multiplying by elements of the stabilizer� For example
we can choose

�Z � �ZZZZZ� � ��ZY Y ZI� � �IXXIZ� �������

�or one of its cyclic permutations�� and

�X � �XXXXX� � ��YXXY I� � �ZIIZX�
�������

�or one of its cyclic permutations�� So it is possible to ascertain the value of
�X or �Z by measuring X or Z of only three of the �ve qubits in the block�
and evaluating the parity of the outcomes�

If we wish� we can construct an orthonormal basis for the code subspace�
as follows� Starting from any state j��i� we can obtain

j"�i �
X
M�S

M j��i� �������

This �unnormalized� state obeys M �j"�i � j"�i for each M � � S� since
multiplication by an element of the stabilizer merely permutes the terms in
the sum� To obtain the �Z � � encoded state j��i� we may start with the state
j�����i� which is also a �Z � � eigenstate� but not in the stabilizer� we �nd
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�up to normalization�

j��i �
X
M�S

j�����i

� j�����i � �M� � cyclic perms� j�����i
� �M �M� � cyclic perms� j�����i � �M�M� � cyclic perms� j�����i
� j�����i � �������i � cyclic perms�

� �j�����i � cyclic perms�

� �j�����i � cyclic perms�� �������

We may then �nd j��i by applying �X to j��i� that is by �ipping all � qubits�
j��i � �Xj��i � j�����i � �j�����i � cyclic perms�

� �j�����i � cyclic perms�

� �j�����i � cyclic perms� � �������

How is the syndrome measured� A circuit that can be executed to mea�
sureM� �XZZXI is�

� Figure �

The Hadamard rotations on the �rst and fourth qubits rotate M � to the
tensor product of Z�s ZZZZI� and the CNOT�s then imprint the value
of this operator on the ancilla� The �nal Hadamard rotations return the
encoded block to the standard code subspace� Circuits for measuringM �����

are obtained from the above by cyclically permuting the �ve qubits in the
code block�
What about encoding� We want to construct a unitary transformation

U encode � j����i � �aj�i � bj�i�� aj��i � bj��i� �������

We have already seen that j�����i is a �Z � � eigenstate� and that j�����i is
a �Z � �� eigenstate� Therefore �up to normalization�

aj��i � bj��i �
�
� X
M�S

M

�
A j����i � �aj�i � bj�i�� �������



����� THE ��QUBIT CODE ��

So we need to �gure out how to construct a circuit that applies �
P
M� to

an initial state�
Since the generators are independent� each element of the stabilizer can be

expressed as a product of generators as a unique way� and we may therefore
rewrite the sum as

X
M�S

M � �I �M ���I �M���I �M ���I �M �� �
�������

Now to proceed further it is convenient to express the stabilizer in an alter�
native form� Note that we have the freedom to replace the generatorM i by
M iM j without changing the stabilizer� This replacement is equivalent to
adding the jth row to the ith row in the matrix #H� With such row opera�
tions� we can perform a Gaussian elimination on the � � � matrix HX � and
so obtain the new presentation for the stabilizer

#H � �

�
BBB�
����� �����
����� �����
����� �����
����� �����

�
CCCA � �������

or

M� � Y ZIZY

M� � IXZZX

M� � ZZXIX

M� � ZIZY Y �����
�

In this formM i applies an X ��ip� only to qubits i and � in the block�
Adopting this form for the stabilizer� we can apply �p

�
�I�M�� to a state

j�� z�� z�� z�� z�i by executing the circuit

� Figure �

The Hadamard prepares �p
�
�j�i � j�i� If the �rst qubit is j�i� the other

operations don�t do anything� so I is applied� But if the �rst qubit is j�i�
thenX has been applied to this qubit� and the other gates in the circuit apply
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ZZIZY � conditioned on the �rst qubit being j�i� Hence� Y ZIZY �M �

has been applied� Similar circuits can be constructed that apply �p
�
�I�M ��

to jz�� �� z�� z�� z�i� and so forth� Apart from the Hadamard gates each of these
circuits applies only Z�s and conditional Z�s to qubits � through �� these
qubits never �ip� �It was to ensure thus that we performed the Gaussian
elimination on HX �� Therefore� we can construct our encoding circuit as

� Figure �

Furthermore� each Z gate acting on j�i can be replaced by the identity� so
we may simplify the circuit by eliminating all such gates� obtaining

� Figure �

This procedure can be generalized to construct an encoding circuit for any
stabilizer code�
Since the encoding transformation is unitary� we can use its adjoint to

decode� And since each gate squares to �I � the decoding circuit is just the
encoding circuit run in reverse�

���� Quantum secret sharing

The ���� �� ��� code provides a nice illustration of a possible application of
QECC�s��

Suppose that some top secret information is to be entrusted to n parties�
Because none is entirely trusted� the secret is divided into n shares� so that
each party� with access to his share alone� can learn nothing at all about the
secret� But if enough parties get together and pool their shares� they can
decipher the secret or some part of it�
In particular� an �m�n� threshold scheme has the property that m shares

are su�cient to reconstruct all of the secret information� But from m � �
�R� Cleve� D� Gottesman� and H��K� Lo� 	How to Share a Quantum Secret�
 quant�

ph��������
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shares� no information at all can be extracted� �This is called a threshold

scheme because as shares �� 
� � � � � �m� � are collected one by one� nothing
is learned� but the next share crosses the threshold and reveals everything��
We should distinguish too kinds of secrets� a classical secret is an a priori

unknown bit string� while a quantum secret is an a priori unknown quantum
state� Either type of secret can be shared� In particular� we can distribute
a classical secret among several parties by selecting one from an ensemble
of mutually orthogonal �entangled� quantum states� and dividing the state
among the parties�
We can see� for example� that the ���� �� ��� code may be employed in

a ��� �� threshold scheme� where the shared information is classical� One
classical bit is encoded by preparing one of the two orthogonal states j��i or
j��i and then the �ve qubits are distributed to �ve parties� We have seen that
�since the code is nondegenerate� if any two parties get together� then the
density matrix � their two qubits is

���� �
�

�
� � �������

Hence� they learn nothing about the quantum state from any measurement
of their two qubits� But we have also seen that the code can correct two
located errors or two erasures� When any three parties get together� they
may correct the two errors �the two missing qubits� and perfectly reconstruct
the encoded state j��i or j��i�
It is also clear that by a similar procedure a single qubit of quantum infor�

mation can be shared � the ���� �� ��� code is also the basis of a ���� ��� quan�
tum threshold scheme �we use the ��m�n�� notation if the shared information
is quantum information� and the �m�n� notation if the shared information
is classical�� How does this quantum�secret�sharing scenario generalize to
more qubits� Suppose we prepare a pure state j�i of n qubits � can it be
employed in an ��m�n�� threshold scheme�
We know that m qubits must be su�cient to reconstruct the state� hence

n�m erasures can be corrected� It follows from our general error correction
criterion that the expectation value of any weight��n�m� observable must
be independent of the state j�i

h�jEj�i independent of j�i� wt�E� 	 n �m� �������

Thus� if m parties have all the information� the other n�m parties have no
information at all� That makes sense� since quantum information cannot be
cloned�
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On the other hand� we know that m� � shares reveal nothing� or that

h�jEj�i independent of j�i� wt�E� 	 m� �� �������

It then follows thatm�� erasures can be corrected� or that the other n�m��
parties have all the information�
From these two observations we obtain the two inequalities

n �m � m � n � 
m �

m� � � n�m� � � n � 
m� 
 � �������

It follows that

n � 
m� � � �������

in an ��m�n�� pure state quantum threshold scheme� where each party has
a single qubit� In other words� the threshold is reached as the number of
qubits in hand crosses over from the minority to the majority of all n qubits�
We see that if each share is a qubit� a quantum pure state threshold

scheme is a ��
m��� k�m�� quantum code with k � �� But in fact the ���� �� 
��
and ���� �� ��� codes do not exist� and it follows from the Rains bound that the
m � � codes do not exist� In a sense� then� the ���� �� ��� code is the unique
quantum threshold scheme�
There are a number of caveats � the restriction n � 
m� � continues to

apply if each share is a q�dimensional system rather than a qubit� but various

��
m� �� �� k��q �������

codes can be constructed for q � 
� �See the exercises for an example��
Also� we might allow the shared information to be a mixed state �that

encodes a pure state�� For example� if we discard one qubit of the �ve qubit
block� we have a ���� ��� scheme� Again� once we have three qubits� we can
correct two erasures� one arising because the fourth share is in the hands of
another party� the other arising because a qubit has been thrown away�
Finally� we have assumed that the shared information is quantum infor�

mation� But if we are only sharing classical information instead� then the
conditions for correcting erasures are less stringent� For example� a Bell pair
may be regarded as a kind of �
� 
� threshold scheme for two bits of classical
information� where the classical information is encoded by choosing one of
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the four mutually orthogonal states j�	i� j�	i� A party in possession of one
of the two qubits is unable to access any of this classical information� But
this is not a scheme for sharing a quantum secret� since linear combinations
of these Bell states do not have the property that 
 � �

�� if we trace out one
of the two qubits�

���� Some Other Stabilizer Codes

������ The ���� �� ��� code

A k � � quantum code has a one�dimensional code subspace� that is� there is
only one encoded state� The code cannot be used to store unknown quantum
information� but even so� k � � codes can have interesting properties� Since
they can detect and diagnose errors� they might be useful for a study of the
correlations in decoherence induced by interactions with the environment�

If k � �� then S and S� coincide � a Pauli operator that commutes
with all elements of the stabilizer must lie in the stabilizer� In this case�
the distance d is de�ned as the minimum weight of any Pauli operator in
the stabilizer� Thus a distance�d code can �detect d � � errors� that is� if
any Pauli operator of weight less than d acts on the code state� the result is
orthogonal to that state�

Associated with the ���� �� ��� code is a ���� �� ��� code� whose encoded state
can be expressed as

j�i � j��i� j�i � j��i� �������

where j��i and j��i are the �Z eigenstates of the ���� �� ��� code� You can verify
that this code has distance d � � �an exercise��

The ���� �� ��� code is interesting because its code state is maximally en�
tangled� We may choose any three qubits from among the six� The density
matrix ���� of those three� obtained by tracing over the other three� is totally
random� ���� � �

�I� In this sense� the ���� �� ��� state is a natural multiparti�
cle analog of the two�qubit Bell states� It is far �more entangled than the
six�qubit cat state �p

�
�j������i� j������i�� If we measure any one of the six

qubits in the cat state� in the fj�i� j�ig basis� we know everything about the
state we have prepared of the remaining �ve qubits� But we may measure
any observable we please acting on any three qubits in the ���� �� ��� state� and
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we learn nothing about the remaining three qubits� which are still described
by ���� � �

�
I�

Our ���� �� ��� state is all the more interesting in that it turns out �but is not
so simple to prove� that its generalizations to more qubits do not exist� That
is� there are no ��
n� �� n� ��� binary quantum codes for n � �� You�ll see in
the exercises� though� that there are other� nonbinary� maximally entangled
states that can be constructed�

������ The ���m� �m � �� ��� error�detecting codes

The Bell state j�i � �p
�
�j��i � j��i� is a ��
� �� 
�� code with stabilizer gen�

erators

ZZ �
XX �

�������

The code has distance two because no weight�one Pauli operator commutes
with both generators �none ofX �Y �Z commute with both X and Z�� Cor�
respondingly� a bit �ip �X� or a phase �ip �Z�� or both �Y � acting on either
qubit in j�i� takes it to an orthogonal state �one of the other Bell states
j��i� j�i� j��i��
One way to generalize the Bell states to more qubits is to consider the

n � �� k � 
 code with stabilizer generators

ZZZZ �
XXXX �

�������

This is a distance d � 
 code for the same reason as before� The code
subspace is spanned by states of even parity �ZZZZ� that are invariant
under a simultaneous �ip of all four qubits �XXX�� A basis is�

j����i � j����i �
j����i � j����i �
j����i � j����i �
j����i � j����i �

�����
�

Evidently� an X or a Z acting on any qubit takes each of these states to
a state orthogonal to the code subspace� thus any single�qubit error can be
detected�
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A further generalization is the ��
m� 
m� 
� 
�� code with stabilizer gen�
erators

ZZ � � � Z �
XX � � � X �

�������

�the length is required to be even so that the generators will commute� The
code subspace is spanned by our familiar friends the 
n�� cat states

�p


�jxi� j�xi�� �������

where x is an even�weight string of length n � 
m�

������ The ���� �� ��� code

As already noted in our discussion of the ���� �� ��� code� a stabilizer code with
generators

#H � �HZ jHX�� �������

can correct one error if� ��� the columns of #H are distinct �a distinct syndrome
for each X and Z error� and �
� each sum of a column of HZ with the
corresponding column of HX is distinct from each column of #H and distinct
from all other such sums �each Y error can be distinguished from all other
one�qubit errors��
We can readily construct a � � �� matrix #H with this property� and so

derive the stabilizer of an ���� �� ��� code� we choose

#H �

�
B� H H�

�������� ��������
�������� ��������

�
CA � �������

Here H is the � � � matrix

H �

�
B� � � � � � � � �
� � � � � � � �
� � � � � � � �

�
CA �������

whose columns are all the distinct binary strings of length �� and H� is ob�
tained from H by performing a suitable permutation of the columns� This
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permutation is chosen so that the eight sums of columns of H with corre�
sponding columns of H� are all distinct� We may see by inspection that a
suitable choice is

H� �

�
B� � � � � � � � �
� � � � � � � �
� � � � � � � �

�
CA �������

as the column sums are then

�
B� � � � � � � � �
� � � � � � � �
� � � � � � � �

�
CA � �������

The last two rows of #H serve to distinguish each X syndrome from each Y
syndrome or Z syndrome� and the above mentioned property of H� ensures
that all Y syndromes are distinct� Therefore� we have constructed a length��
code with k � ��� � � that can correct one error� It is actually the simplest
in an in�nite class of ��
m� 
m �m� 
� ��� codes constructed by Gottesman�
with m � ��
The ���� �� ��� quantum code that we have just described is a close cousin

of the �extended Hamming code� the self�dual ������� classical code that
is obtained from the ������� dual of the Hamming code by adding an extra
parity bit� Its parity check matrix �which is also its generator matrix� is

HEH �

�
BBB�
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

�
CCCA �������

This matrix HEH has the property that� not only are its eight columns dis�
tinct� but also each sum of two columns is distinct from all columns� since
the sum of two columns has �� not �� as its fourth bit�

���� Codes Over GF ���

We constructed the ���� �� ��� code by guessing the stabilizer generators� and
checking that d � �� Is there a more systematic method�
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In fact� there is� Our suspicion that the ���� �� ��� code might exist was
aroused by the observation that its parameters saturate the quantum sphere�
packing inequality for t � � codes�

� � �n � 
n�k� �������

��� � �� for n � � and k � ��� To a coding theorist� this equation might
look familiar�
Aside from the binary codes we have focused on up to now� classical codes

can also be constructed from length�n strings of symbols that take values�
not in f�� �g� but in the �nite �eld with q elements GF �q�� Such �nite �elds
exist for any q � pm� where p is prime� �GF is short for �Galois Field� in
honor of their discoverer��
For such nonbinary codes� we may model error as addition by an element

of the �eld� a cyclic shift of the q symbols� Then there are q � � nontrivial
errors� The weight of a vector in GF �q�n is the number of its nonzero ele�
ments� and the distance between two vectors is the weight of their di	erence
�the number of elements that disagree�� An �n� k� d�q classical code consists
of qk codewords in GF �q�n� where the minimal distance between a pair is
d� The sphere packing bound that must be satis�ed for an �n� k� d�q code to
exist becomes� for d � ��

� � �q � ��n 	 qn�k� �����
�

In fact� the perfect binary Hamming codes that saturate this bound for q � 

with parameters

n � 
m � �� k � n�m� �������

admit a generalization to any GF �q�� perfect Hamming codes over GF �q�
can be constructed with

n �
qm � �
q � � � k � n�m � �������

The ���� �� ��� quantum code is descended from the classical ��� �� ��� Hamming
code �the case q � � and m � 
��
What do the classical GF ��� codes have to do with binary quantum sta�

bilizer codes� The connection arises because the stabilizer can be associated
with a set of vectors over GF ��� closed under addition�
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The �eld GF ��� has four elements that may be denoted �� �� �� ��� where

� � � � � � � � �� � �� � ��

� � � � ��� �������

and �� � ��� ��� � �� Thus� the additive structure of GF ��� echos the
multiplicative structure of the Pauli operators X�Y �Z� Indeed� the length�

n binary string �j�� that we have used to denote an element of the Pauli
group can equivalently be regarded as a length�n vector in GF ���n

�j�� � ��� �������

The stabilizer� with 
n�k elements� can be regarded as a subcode of GF ����
closed under addition and containing 
n�k codewords�
Note that the code need not be a vector space over GF ���� as it is not

required to be closed under multiplication by a scalar � GF ���� In the special
case where the code is a vector space� it is called a linear code�
Much is known about codes over GF ���� so this connection opened the

door for the �classical� coding theorists to construct many QECC�s�� How�
ever� not every subcode of GF ���n is associated with a quantum code� we
have not yet imposed the requirement that the stabilizer is abelian � the
�j���s that span the code must be mutually orthogonal in the symplectic
inner product

 � �� � � � � � �������

This orthogonality condition might look strange to a coding theorist� who is
more accustomed to de�ning the inner product of two vectors in GF ���n as
an element of GF ��� given by

v � u � �v�u� � � � �� �vnun � �������

where conjugation� denoted by a bar� interchanges � and ��� If this �hermi�
tian inner product � of two vectors v and u is

v � u � a� b� � GF ��� � �������

�Calderbank� Rains� Shor� and Sloane� 	Quantum error correction via codes over
GF ����
 quant�ph���������
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then our symplectic inner product is

v � u � b � �������

Therefore� vanishing of the symplectic inner product is a weaker condition
than vanishing of the hermitian inner product� In fact� though� in the special
case of a linear code� self�orthogonality with respect to the hermitian inner
product is actually equivalent to self�orthogonality with respect to the sym�
plectic inner product� We observe that if v �u � a� b�� orthogonality in the
symplectic inner product requires b � �� But if u is in a linear code� then so
is ��u where

v � ���u� � b� a�� �������

so that

v � ���u� � a � �����
�

We see that if v and u belong to a linear GF ��� code and are orthogonal
with respect to the symplectic inner product� then they are also orthogonal
with respect to the hermitian inner product� We conclude then� that a lin�
ear GF��� code de�nes a quantum stabilizer code if and only if the code is
self�orthogonal in the hermitian inner product� Classical codes with these
properties have been much studied�
In particular� consider again the ��� �� ��� Hamming code� Its parity check

matrix �in an unconventional presentation� can be expressed as

H �

�
� � � � �
� � � � �

�
� �������

which is also the generator matrix of its dual� a linear self�orthogonal ��� 
� ���
code� In fact� this ��� 
� ��� code� with �

� � �� codewords� is precisely the
stabilizer of the ���� �� ��� quantum code� By identifying � � X� � � Z� we
recognize the two rows of H as the stabilizer generatorsM ��M�� The dual
of the Hamming code is a linear code� so linear combinations of the rows are
contained in the code� Adding the rows and multiplying by � we obtain

���� ��� �� ��� �� � ��� �� �� �� ��� �������

which isM �� And if we addM � toM � and multiply by ��� we �nd

����� �� �� ��� ��� � ��� �� �� �� ��� �������
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which isM ��
The ���� �� ��� code is just one example of a quite general construction�

Consider a subcode C of GF ���n that is additive �closed under addition��
and self�orthogonal �contained in its dual� with respect to the symplectic
inner product� This GF ��� code can be identi�ed with the stabilizer of a
binary QECC with length n� If the GF ��� code contains 
n�k codewords�
then the QECC has k encoded qubits� The distance d of the QECC is the
minimum weight of a vector in C� n C�
Another example of a self�orthogonal linear GF ��� code is the dual of the

m � � Hamming code with

n �
�

�
��� � �� � 
�� �������

The Hamming code has �n�m codewords� and its dual has �m � 
	 codewords�
We immediately obtain a QECC with parameters

��
�� ��� ���� �������

that can correct one error�

���� Good Quantum Codes

A family of ��n� k� d�� codes is good if it contains codes whose �rate R � k�n
and �error probability p � t�n �where �t � �d � ���
� both approach a
nonzero limit as n � �� We can use the stabilizer formalism to prove
a �quantum Gilbert�Varshamov bound that demonstrates the existence of
good quantum codes� In fact� good codes can be chosen to be nondegenerate�
We will only sketch the argument� without carrying out the requisite

counting precisely� Let E � fEag be a set of errors to be corrected� and
denote by E��� � fEy

aEbg� the products of pairs of elements of E� Then to
construct a nondegenerate code that can correct the errors in E� we must
�nd a set of stabilizer generators such that some generator anti�commutes
with each element of E����
To see if a code with length n and k qubits can do the job� begin with the

set S�n�k� of all abelian subgroups of the Pauli group with n� k generators�
We will gradually pare away the subgroups that are unsuitable stabilizers for
correcting the errors in E� and then see if any are left�
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Each nontrivial error Ea commutes with a fraction � ��
n�k of all groups
contained in S�n�k�� since it is required to commute with each of the n � k
generators of the group� �There is a small correction to this fraction that we
may ignore for large n�� Each time we add another element to E���� a fraction

k�n of all stabilizer candidates must be rejected� When E��� has been fully
assembled� we have rejected at worst a fraction

jE���j � 
k�n� �������

of all the subgroups contained in S�n�k� �where jE���j is the number of ele�
ments of E����� As long as this fraction is less than one� a stabilizer that does
the job will exist for large n�
If we want to correct t � pn errors� then E��� contains operators of weight

at most 
t and we may estimate

log� jE���j �� log�
��

n


pn

�
��pn

�
� n �H��
p� � 
p log� �� �

�������

Therefore� nondegenerate quantum stabilizer codes that correct pn errors
exist� with asymptotic vote R � k�n given by

log� jE���j� k � n � �� or R � � �H��
p� � 
p log� ��
���
���

Thus is the �asymptotic form of the� quantum Gilbert�Varshamov bound�
We conclude that codes with a nonzero rate must exist that protect

against errors that occur with any error probability p � pGV � ������ The
maximum error probability allowed by the Rains bound is p � ���� for a
code that can protect against every error operator of weight 	 pn�
Though good quantum codes exist� the explicit construction of families

of good codes is quite another matter� Indeed� no such constructions are
known�

���� Some Codes that Correct Multiple Er�

rors

���	�� Concatenated codes

Up until now� all of the QECC�s that we have explicitly constructed have
d � � �or d � 
�� and so can correct one error �at best�� Now we will
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describe some examples of codes that have higher distance�
A particularly simple way to construct codes that can correct more errors

is to concatenate codes that can correct one error� A concatenated code is
a code within a code� Suppose we have two k � � QECC�s� an ��n�� �� d���
code C� code and an ��n�� �� d��� code C�� Imagine constructing a length n�
codeword of C�� and expanding the codeword as a coherent superposition of
product states� in which each qubit is in one of the states j�i or j�i� Now
replace each qubit by a length�n� encoded state using the code C�� that is
replace j�i by j��i and j�i by j��i of C�� The result is a code with length
n � n�n�� k � �� and distance no less than d � d�d�� We will call C� the
�outer code and C� the �inner code�
In fact� we have already discussed one example of this construction� Shor�s

��qubit code� In that case� the inner code is the three�qubit repetition code
with stabilizer generators

ZZI � IZZ � ���
���

and the outer code is the three�qubit �phase code with stabilizer generators

XXI � IXX ���
�
�

�the Hadamard rotated repetition code�� We construct the stabilizer of the
concatenated code as follows� Acting on each of the three qubits contained
in the block of the outer code� we include the two generators Z�Z��Z�Z� of
the inner code �six generators altogether�� Then we add the two generators
of the outer code� but with X�Z replaced by the encoded operations of the
inner code� in this case� these are the two generators

�X �X�I� �I �X �X� ���
���

where �I � III and �X � XXX� You will recognize these as the eight
stabilizer generators of Shor�s code that we have described earlier� In this
case� the inner and outer codes both have distance � �e�g�� ZII commutes
with the stabilizer of the inner code�� yet the concatenated code has distance
� � d�d� � �� This happens because the code has been cleverly constructed
so that the weight � and 
 encoded operations of the inner code do not
commute with the stabilizer of the outer code� �It would have been di	erent
if we had concatenated the repetition code with itself rather than with the
phase code$�
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We can obtain a distance � code �capable of correcting four errors� by
concatenating the ���� �� ��� code with itself� The length n � 
� is the smallest
for any known code with k � � and d � �� �An ��n� �� ��� code with n � 
�� 
�
would be consistent with the Rains bound� but it is unknown whether such
a code really exists��
The stabilizer of the ��
�� �� ��� concatenated code has 
� generators� Of

these� 
� are obtained as the four generators M ������� acting on each of the
�ve subblocks of the outer code� and the remaining four are the encoded

operators �M ������� of the outer code� Notice that the stabilizer contains
elements of weight � �the stabilizer elements acting on each of the �ve inner
codes�� therefore� the code is degenerate� This is typical of concatenated
codes�
There is no need to stop at two levels of concatenation� from L QECC�s

with parameters ��n�� �� d���� � � � � ��nL� �� dL��� we can construct a hierarchical
code with altogether L levels of codes within codes� it has length

n � n�n� � � � nL� ���
���

and distance

d � d�d� � � � dL� ���
���

In particular� by concatenating the ���� �� ��� code L times� we may construct
a code with parameters

���L� �� �L��� ���
���

Strictly speaking� this family of codes cannot protect against a number of
errors that scales linearly with the length� Rather the ratio of the number t
of errors that can be corrected to the length n is

t

n
� �



�
�

�

�L
� ���
���

which tends to zero for large L� But the distance d may be a deceptive
measure of how well the code performs � it is all right if recovery fails for
some ways of choosing t � pn errors� so long as recovery will be successful
for the typical ways of choosing pn faulty qubits� In fact� concatenated codes
can correct pn typical errors� for n large and p � ��
Actually� the way concatenated codes are usually used does not fully

exploit their power to correct errors� To be concrete� consider the ���� �� ���
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code in the case where each of the �ve qubits is independently subjected to
the depolarizing channel with error probability p �that isX�Y �Z errors each
occur with probability p���� Recovery is sure to succeed if fewer than two
errors occur in the block� Therefore� as in x����
� we can bound the failure
probability by

pfail � p��� 	
�
�




�
p� � ��p�� ���
���

Now consider the performance of the concatenated ��
�� �� ��� code� To
keep life easy� we will perform recovery in a simple �but nonoptimal� way�
First we perform recovery on each of the �ve subblocks� measuringM�������

to obtain an error syndrome for each subblock� After correcting the sub�
blocks� we then measure the stabilizer generators �M ������� of the outer code�
to obtains its syndrome� and apply an encoded �X� �Y � or �Z to one of the
subblocks if the syndrome reveals an error�
For the outer code� recovery will succeed if at most one of the subblocks

is damaged� and the probability p��� of damage to a subblock is bounded as
in eq� ���
���� we conclude that the probability of a botched recovery for the
��
�� �� ��� code is bounded above by

p��� 	 ���p����� 	 �����p��� � ����p�� ���
���

Our recovery procedure is clearly not the best possible� because four errors
can induce failure if there are two each in two di	erent subblocks� Since the
code has distance nine� there is a better procedure that would always recover
successfully from four errors� so that p��� would be of order p� rather than
p�� Still� the suboptimal procedure has the advantage that it is very easily
generalized� �and analyzed� if there are many levels of concatenation�
Indeed� if there are L levels of concatenation� we begin recovery at the

innermost level and work our way up� Solving the recursion

p�	� 	 C�p�	������ ���
���

starting with p��� � p� we conclude that

p�L� 	 �

C
�Cp��

L

� ���
���

�where here C � ���� We see that as long as p � ����� we can make the
failure probability as small as we please by adding enough levels to the code�
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We may write

p�L� 	 po

�
p

po

��L
� ���
�
�

where po �
�
�� is an estimate of the threshold error probability that can be

tolerated �we will obtain better codes and better estimates of this threshold
below�� Note that to obtain

p�L� � �� ���
���

we may choose the block size n � �L so that

n 	
�
log�po���

log�po�p�

�log� �
� ���
���

In principle� the concatenated code at a high level could fail with many
fewer than n��� errors� but these would have to be distributed in a highly
conspiratorial fashion that is quite unlikely for n large�
The concatenated encoding of an unknown quantum state can be carried

out level by level� For example to encode aj�i � bj�i in the ��
�� �� ��� block�
we could �rst prepare the state aj��i � bj��i in the �ve qubit block� using the
encoding circuit described earlier� and also prepare four �ve�qubit blocks in
the state j��i� The aj��i�j��i can be encoded at the next level by executing the
encoded circuit yet again� but this time with all gates replaced by encoded
gates acting on �ve�qubit blocks� We will see in the next chapter how these
encoded gates are constructed�

���	�� Toric codes

The toric codes are another family of codes that� like concatenated codes�
o	er much better performance than would be expected on the basis of their
distance� They�ll be described by Professor Kitaev �who discovered them��

���	�� Reed
Muller codes

Another way to construct codes that can correct many errors is to invoke the
CSS construction� Recall� in particular� the special case of that construction
that applies to a classical code C that is contained in its dual code �we
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then say that C is �weakly self�dual�� In the CSS construction� there is a
codeword associated with each coset of C in C�� Thus we obtain an ��n� k� d��
quantum code� where n is the length of C� d is �at least� the distance of C��
and k � dimC� � dimC� Therefore� for the construction of CSS codes that
correct many errors� we seek weakly self�dual classical codes with a large
minimum distance�

One class of weakly self�dual classical codes are the Reed�Muller codes�
Though these are not especially e�cient� they are very convenient� because
they are easy to encode� recovery is simple� and it is not di�cult to explain
their mathematical structure��

To prepare for the construction of Reed�Muller codes� consider Boolean
functions on m bits�

f � f�� �gm � f�� �g � ���
���

There are 
�
m

such functions forming what we may regard as a binary vector
space of dimension 
m� It will be useful to have a basis for this space� Recall
�x����� that any Boolean function has a disjunctive normal form� Since the
NOT of a bit x is �� x� and the OR of two bits x and y can be expressed as

x � y �� x� y � xy � ���
���

any of the Boolean functions can be expanded as a polynomial in them binary
variables xm��� xm��� � � � � x�� x� � A basis for the vector space of polynomials
consists of the 
m functions

�� xi� xixj� xixjxk� � � � � ���
���

�where� since x� � x� we may choose the factors of each monomial to be
distinct�� Each such function f can be represented by a binary string of length

m� whose value in the position labeled by the binary string xm��xm�� � � � x�x�

�See� e�g�� MacWilliams and Sloane� Chapter ���
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is f�xm��� xm��� � � � x�� x��� For example� for m � ��

� � ����������

x� � ����������

x� � ����������

x� � ����������

x�x� � ����������

x�x� � ����������

x�x� � ����������

x�x�x� � ���������� � ���
���

A subspace of this vector space is obtained if we restrict the degree of
the polynomial to r or less� This subspace is the Reed�Muller �or RM� code�
denoted R�r�m�� Its length is n � 
m and its dimension is

k � � �

�
m

�

�
�

�
m




�
� � � ��

�
m

r

�
� ���
���

Some special cases of interest are�

� R���m� is the length�
m repetition code�

� R�m���m� is the dual of the repetition code� the space on all length�
m
even�weight strings�

� R��� �� is the n � �� k � � code spanned by �� x�� x�� x�� it is in fact
the ��� �� �� extended Hamming code that we have already discussed�

� More generally� R�m � 
�m� is a d � � extended Hamming code for
each m � �� If we puncture this code �remove the last bit from all
codewords� we obtain the �n � 
m � �� k � n � m�d � �� perfect
Hamming code�

� R���m� has d � 
m�� � �
�n and k � m� It is the dual of the extended

Hamming code� and is known as a ��rst�order Reed�Muller code� It
is of considerable practical interest in its own right� both because of its
large distance and because it is especially easy to decode�
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We can compute the distance of the code R�r�m� by invoking induction
on m� First we must determine how R�m � �� r� is related to R�m� r�� A
function of xm� � � � � x� can be expressed as

f�xm� � � � � x�� � g�xm��� � � � � x�� � xmh�xm��� � � � � x�� �
���

��

and if f has degree r� then g must be of degree r and h of degree r � ��
Regarding f as a vector of length 
m�� we have

f � �gjg� � �hj�� ���

��

where g� h are vectors of length 
m� Consider the distance between f and

f � � �g�jg�� � �h�j�� � ���


�

For h � h� and f 
� f � this distance is wt�f � f �� �
 � wt�g � g�� � 
 �
dist �R�r�m��� for h 
� h� it is at least wt�h � h�� � dist �R�r � ��m��� If
d�r�m� denotes the distance of R�r�m�� then we see that

d�r�m� �� � min�
 d�r�m�� d�r � ��m�� � ���

��

Now we can show that d�r�m� � 
m�r by induction on m� To start with�
we check that d�r�m � �� � 
��r for r � �� �� R��� �� is the space of all
length 
 strings� and R��� �� is the length�
 repetition code� Next suppose
that d � 
m�r for all m 	M and � 	 r 	 m� Then we infer that

d�r�m� �� � min�
m�r�� 
m�r�� � 
m�r�� ���

��

for each � 	 r 	 m� It is also clear that d�m � ��m � �� � �� since
R�m � ��m � �� is the space of all binary strings of length 
m�� and that
d���m � �� � 
m�� since R���m � �� is the length�
m� repetition code�
This completes the inductive step� and proves d�r�m� � 
m�r�
It follows� in particular� that R�m � ��m� has distance 
� and therefore

that the dual of R�r�m� is R�m�r���m�� First we notice that the binomial
coe�cients

�
m

j

�
sum to 
m� so that R�m � r � �� has the right dimension

to be R�r�m��� It su�ces� then� to show that R�m� r � �� is contained in
R�r�m�� But if f � R�r�m� and g � R�m � r � ��m�� their product is a
polynomial of degree at most m� �� and is therefore in R�m� ��m�� Each
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vector in R�m � ��m� has even weight� so the inner product f � g vanishes�
hence g is in the dual R�v�m��� This shows that

R�r�m�� � R�m� r � ��m�� ���

��

It is because of this nice duality property that Reed�Muller codes are well�
suited for the CSS construction of quantum codes�
In particular� the Reed�Muller code is weakly self�dual for r 	 m� r���

or 
r ��m � �� and self�dual for 
r � m � �� In the self�dual case� the
distance is

d � 
m�r � 

�
�
�m�� �

p

n � ���

��

and the number of encoded bits is

k �
�



n � 
m�� � ���

��

These self�dual codes� for m � �� �� �� have parameters

��� �� ��� ��
� ��� ��� ��
�� ��� ��� � ���

��

�The ��� �� �� code is the extended Hamming code as we have already noted��
Associated with these self�dual codes are the k � � quantum codes with
parameters

���� �� ���� ���
� �� ���� ���
�� �� ���� � ���

��

and so forth�
One way to obtain a k � � quantum code is to puncture the self�dual

Reed�Muller code� that is� to delete one of the n � 
m bits from the code�
�It turns out not to matter which bit we delete�� The classical punctured

code has parameters n � 
m � �� d � 
 �� �m��� � � �
q

�n� �� � �� and

k � �
�
�n � ��� Furthermore� the dual of the punctured code is its even

subcode� �The even subcode consists of those RM codewords for which the
bit removed by the puncture is zero� and it follows from the self�duality of
the RM code that these are orthogonal to all the words �both odd and even
weight� of the punctured code�� From these punctured codes� we obtain� via
the CSS construction� k � � quantum codes with parameters

���� �� ���� ����� �� ���� ���
�� �� ���� � ���
���
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and so forth� The ��� �� �� Hamming code is obtained by puncturing the
��� �� �� RM code� and the corresponding ��� �� �� QECC is of course Steane�s
code� These QECC�s have a distance that increases like the square root of
their length�
These k � � codes are not among the most e�cient of the known QECC�s�

Nevertheless they are of special interest� since their properties are especially
conducive to implementing fault�tolerant quantum gates on the encoded data�
as we will see in Chapter �� In particular� one useful property of the self�dual
RM codes is that they are �doubly even � all codewords have a weight that
is an integral multiple of four�
Of course� we can also construct quantum codes with k � � by applying

the CSS construction to the RM codes� For exampleR��� ��� with parameters

n � 
m � ��

d � 
m�r � �

k � � � � �

�
�




�
�

�
�

�

�
� � � � � �� � 
� � �
 � ���
���

is dual to R�
� ��� with parameters

n � 
m � ��

d � 
m�r � ��

k � � � � �

�
�




�
� � � � � �� � 

 � ���
�
�

and so the CSS construction yields a QECC with parameters

����� 
�� ��� � ���
���

Many other weakly self�dual codes are known and can likewise be employed�

���	�� The Golay Code

From the perspective of pure mathematics� the most important error�correcting
code �classical or quantum� ever discovered is also one of the �rst ever de�
scribed in a published article � the Golay code� Here we will brie�y describe
the Golay code� as it too can be transformed into a nice QECC via the CSS
construction� �Perhaps this QECC is not really important enough to deserve
a section of this chapter� still� I have included it just for fun��
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The �extended� Golay code is a self�dual �
�� �
� �� classical code� If we
puncture it �remove any one of its 
� bits�� we obtain the �
�� �
� �� Golay
code� which can correct three errors� This code is actually perfect� as it
saturates the sphere�packing bound�

� �

�

�

�

�
�

�

�




�
�

�

�

�

�
� 
�� � 
������ ���
���

In fact� perfect codes that correct more than one error are extremely rare�
It can be shown� that the only perfect codes �linear or nonlinear� over any
�nite �eld that can correct more than one error are the �
�� �
� �� code and
one other binary code discovered by Golay� with parameters ���� �� ���
The �
�� �
� �� Golay code has a very intricate symmetry� The symmetry

is characterized by its automorphism group � the group of permutations of
the 
� bits that take codewords to codewords� This is the Mathieu group
M��� a sporadic simple group of order 
����
����� that was discovered in the
��th century�
The 
�� � ���� codewords have the weight distribution �in an obvious

notation�

�����
�
���	����

�� � ���
���

Note in particular that each weight is a multiple of � �the code is doubly
even�� What is the signi�cance of the number ��� �� �����
��� In fact it is

�

�

�

���
�

�

�
� ���� ���
���

and it arises for this combination reason� with each weight�� codeword we
associate the eight�element set ��octad� where the codeword has its support�
Each ��element subset of the 
� bits is contained in exactly one octad �a
re�ection of the code�s large symmetry��
What makes the Golay code important in mathematics� Its discovery

in ���� set in motion a sequence of events that led� by around ����� to a
complete classi�cation of the �nite simple groups� This classi�cation is one
of the greatest achievements of 
�th century mathematics�
�A group is simple if it contains no nontrivial normal subgroup� The �nite

simple groups may be regarded as the building blocks of all �nite groups in

�MacWilliams and Sloane x�����



�
 CHAPTER �� QUANTUM ERROR CORRECTION

the sense that for any �nite group G there is a unique decomposition of the
form

G � G� � G� � G� � � � � � Gn� ���
���

where each Gj� is a normal subgroup of Gj � and each quotient group
Gj�Gj� is simple� The �nite simple groups can be classi�ed into various
in�nite families� plus 
� additional �sporadic simple groups that resist clas�
si�cation��
The Golay code led Leech� in ����� to discover an extraordinarily close

packing of spheres in 
� dimensions� known as the Leech Lattice%� The lattice
points �the centers of the spheres� are 
��component integer�valued vectors
with these properties� to determine if �x � �x�� x� � � � � x��� is contained in %�
write each component xj in binary notation�

xj � � � � xj�xj�xj�xj� � ���
���

Then �x � % if
�i� The xj��s are either all ��s or all ��s�

�ii� The xj��s are an even parity 
��bit string if the xj��s are �� and an odd
parity 
��bit string if the xj��s are ��

�iii� The xj��s are a 
��bit string contained in the Golay code�

When these rules are applied� a negative number is represented by its binary
complement� e�g�

�� � � � ������ �

�
 � � � ������ �

�� � � � ������ �

etc� ���
���

We can easily check that % is a lattice� that is� it is closed under addition�
�Bits other than the last three in the binary expansion of the xj�s are unre�
stricted��
We can now count the number of nearest neighbors to the origin �or

the number of spheres that touch any given sphere�� These points are all
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�distance�� � �
 away from the origin�

��
�� � 
� � ���
���������� � 
�� � 
�

����� � 
� �
�

�




�
� ���
���

That is� there are ��� � 
� neighbors that have eight components with the
values �
 � their support is on one of the ��� weight�� Golay codewords�
and the number of � signs must be even� There are 
�� � 
� neighbors that
have one component with value �� �this component can be chosen in 
�
ways� and the remaining 
� components have the value ����� If� say� �� is
chosen� then the position of the ��� together with the position of the ���s�
can be any of the 
�� Golay codewords with value � at the position of the
��� There are 
� �

�
��
�

�
neighbors with two components each taking the value

�� �the signs are unrestricted�� Altogether� the coordination number of the
lattice is ���� ����
The Leech lattice has an extraordinary automorphism group discovered

by Conway in ����� This is the �nite subgroup of the 
��dimensional rotation
group SO�
�� that preserves the lattice� The order of this �nite group �known
as ��� or �dot oh� is


�� � �
 � �� � �� � �� � �� � 
� � �� ���� ���� ���� ���� �
�� ��� � ���� �����
���
���

If its two element center is modded out� the sporadic simple group �� is
obtained� At the time of its discovery� �� was the largest of the sporadic
simple groups that had been constructed�
The Leech lattice and its automorphism group eventually �by a route

that won�t be explained here� led Griess in ���
 to the construction of the
most amazing sporadic simple group of all �whose existence had been inferred
earlier by Fischer and Griess�� It is a �nite subgroup of the rotation group in
������� dimensions� whose order is approximately ���������� This behemoth
known as F� has earned the nickname �the monster �though Griess prefers
to call it �the friendly giant�� It is the largest of the sporadic simple groups�
and the last to be discovered�
Thus the classi�cation of the �nite simple groups owes much to �classical�

coding theory� and to the Golay code in particular� Perhaps the theory of
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QECC�s can also bequeath to mathematics something of value and broad
interest$
Anyway� since the �extended� �
�� �
� �� Golay code is self�dual� the �
�� �
� ��

code obtained by puncturing it is weakly self dual� its �
�� ��� �� dual is its
even subcode� From it� a �
�� �� �� QECC can be constructed by the CSS
method� This code is not the most e�cient quantum code that can correct
three errors �there is a ���� �� �� code that saturates the Rains bound�� but it
has especially nice properties that are conducive to fault�tolerant quantum
computation� as we will see in Chapter ��

���	 The Quantum Channel Capacity

As we have formulated it up until now� our goal in constructing quantum
error correcting codes has been to maximize the distance d of the code�
given its length n and the number k of encoded qubits� Larger distance
provides better protection against errors� as a distance d code can correct
d � � erasures� or �d � ���
 errors at unknown locations� We have observed
that �good codes can be constructed� that maintain a �nite rate k�n for n
large� and correct a number of errors pn that scales linearly with n�
Now we will address a related but rather di	erent question about the

asymptotic performance of QECC�s� Consider a superoperator ! that acts on
density operators in a Hilbert space H� Now consider ! acting independently
each copy of H contained in the n�fold tensor product

H�n� � H� � � ��H� ���
�
�

We would like to select a code subspace H�n�
code of H�n� such that quantum

information residing in H�n�
code can be subjected to the superoperator

!�n� � !� � � �� !� ���
���

and yet can still be decoded with high �delity�
The rate of a code is de�ned as

R �
logH�n�

code

logH�n�
� ���
���

this is the number of qubits employed to carry one qubit of encoded infor�
mation� The quantum channel capacity Q�!� of the superoperator ! is the
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maximum asymptotic rate at which quantum information can be sent over
the channel with arbitrarily good �delity� That is� Q�!� is the largest number

such that for any R � Q�!� and any � � �� there is a code H�n�
code with rate at

least R� such that for any j�i � H�n�
code� the state � recovered after j�i passes

through !�n� has �delity

F � h�j�j�i � �� �� ���
���

Thus� Q�!� is a quantum version of the capacity de�ned by Shannon
for a classical noisy channel� As we have already seen in Chapter �� this
Q�!� is not the only sort of capacity that can be associated with a quantum
channel� It is also of considerable interest to ask about C�!�� the maximum
rate at which classical information can be transmitted through a quantum
channel with arbitrarily small probability of error� A formal answer to this
question was formulated in x���� but only for a restricted class of possible
encoding schemes� the general answer is still unknown� The quantum channel
capacity Q�!� is even less well understood than the classical capacity C�!� of
a quantum channel� Note that Q�!� is not the same thing as the maximum
asymptotic rate k�n that can be achieved by �good ��n� k� d�� QECC�s with
positive d�n� In the case of the quantum channel capacity we need not insist
that the code correct any possible distribution of pn errors� as long as the
errors that cannot be corrected become highly atypical for n large�
Here we will mostly limit the discussion to two interesting examples of

quantum channels acting on a single qubit � the quantum erasure channel
�for which Q is exactly known�� and the depolarizing channel �for which Q
is still unknown� but useful upper and lower bounds can be derived��
What are these channels� In the case of the quantum erasure chan�

nel� a qubit transmitted through the channel either arrives intact� or �with
probability p� becomes lost and is never received� We can �nd a unitary rep�
resentation of this channel by embedding the qubit in the three�dimensional
Hilbert space of a qubit with orthonormal basis fj�i� j�i� j
ig� The channel
acts according to

j�i � j�iE �
q
� � pj�i � j�iE �ppj
i � j�iE�

j�i � j�iE �
q
� � pj�i � j�iE �ppj
i � j
iE� ���
���

where fj�iE� j�iE� j
iEg are mutually orthogonal states of the environment�
The receiver can measure the observable j
ih
j to determined whether the
qubit is undamaged or has been �erased�
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The depolarizing channel �with error probability p� was discussed at
length in x������ We see that� for p 	 ���� we may describe the fate of
a qubit transmitted through the channel this way� with probability � � q
�where q � ���p�� the qubit arrives undamaged� and with probability q it is
destroyed� in which case it is described by the random density matrix �

�
��

Both the erasure channel and the depolarizing channel destroy a qubit
with a speci�ed probability� The crucial di	erence between the two channels
is that in the case of the erasure channel� the receiver knows which qubits
have been destroyed� in the case of the depolarizing channel� the damaged
qubits carry no identifying marks� which makes recovery more challenging�
Of course� for both channels� the sender has no way to know ahead of time
which qubits will be obliterated�

������ Erasure channel

The quantum channel capacity of the erasure channel can be precisely de�
termined� First we will derive an upper bound on Q� and then we will show
that codes exist that achieve high �delity and attain a rate arbitrarily close
to the upper bound�
As the �rst step in the derivation of an upper bound on the capacity� we

show that Q � � for p � �
�
�

� Figure �

We observe that the erasure channel can be realized if Alice sends a qubit
to Bob� and a third party Charlie decides at random to either steal the
qubit �with probability p� or allow the qubit to pass unscathed to Bob �with
probability �� p��
If Alice sends a large number n of qubits� then about ��� p�n reach Bob�

and pn are intercepted by Charlie� Hence for p � �
�� Charlie winds up in

possession of more qubits than Bob� and if Bob can recover the quantum
information encoded by Alice� then certainly Charlie can as well� Therefore�
if Q�p� � � for p � �

� � Bob and Charlie can clone the unknown encoded
quantum states sent by Alice� which is impossible� �Strictly speaking� they
can clone with �delity F � �� �� for any � � ��� We conclude that Q�p� � �
for p � �

� �
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To obtain a bound on Q�p� in the case p � �
�
� we will appeal to the

following lemma� Suppose that Alice and Bob are connected by both a
perfect noiseless channel and a noisy channel with capacity Q � �� And
suppose that Alice sends m qubits over the perfect channel and n qubits
over the noisy channel� Then the number r of encoded qubits that Bob may
recover with arbitrarily high �delity must satisfy

r 	 m�Qn� ���
���

We derive this inequality by noting that Alice and Bob can simulate the m
qubits sent over the perfect channel by sending m�Q over the noisy channel
and so achieve a rate

R �
r

m�Q� n
�

�
r

m�Qn

�
Q� ���
���

over the noisy channel� Were r to exceed m�Qn� this rate R would exceed
the capacity� a contradiction� Therefore eq� ���
��� is satis�ed�
How consider the erasure channel with error probability p�� and suppose

Q�p�� � �� Then we can bound Q�p�� for p� 	 p� by

Q�p�� 	 �� p�
p�
�
p�
p�
Q�p��� ���
���

�In other words� if we plotQ�p� in the �p�Q� plane� and we draw a straight line
segment from any point �p�� Q�� on the plot to the point �p � �� Q � ��� then
the curve Q�p� must lie on or below the segment in the interval � 	 p 	 p�� if
Q�p� is twice di	erentiable� then its second derivative cannot be positive�� To
obtain this bound� imagine that Alice sends n qubits to Bob� knowing ahead
of time that n�� � p��p�� speci�ed qubits will arrive safely� The remaining
n�p��p�� qubits are erased with probability p�� Therefore� Alice and Bob are
using both a perfect channel and an erasure channel with erasure probability
p�� eq� ���
��� holds� and the rate R they can attain is bounded by

R 	 �� p�
p�
�
p�
p�
Q�p��� ���
���

On the other hand� for n large� altogether about np� qubits are erased� and
�� � p��n arrive safely� Thus Alice and Bob have an erasure channel with
erasure probability p�� except that they have the additional advantage of
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knowing ahead of time that some of the qubits that Alice sends are invul�
nerable to erasure� With this information� they can be no worse o	 than
without it� eq� ���
��� then follows� The same bound applies to the depolar�
izing channel as well�
Now� the result Q�p� � � for p � ��
 can be combined with eq� ���
����

We conclude that the curve Q�p� must be on or below the straight line
connecting the points �p � �� Q � �� and �p � ��
� Q � ��� or

Q�p� 	 � � 
p� � 	 p 	 �


� ���
���

In fact� there are stabilizer codes that actually attain the rate �� 
p for
� 	 p 	 ��
� We can see this by borrowing an idea from Claude Shannon�
and averaging over random stabilizer codes� Imagine choosing� in succession�
altogether n � k stabilizer generators� Each is selected from among the
�n Pauli operators� where all have equal a priori probability� except that
each generator is required to commute with all generators chosen in previous
rounds�
Now Alice uses this stabilizer code to encode an arbitrary quantum state

in the 
k�dimensional code subspace� and sends the n qubits to Bob over an
erasure channel with erasure probability p� Will Bob be able to recover the
state sent by Alice�
Bob replaces each erased qubit by a qubit in the state j�i� and then

proceeds to measure all n � k stabilizer generators� From this syndrome
measurement� he hopes to infer the Pauli operator E acting on the replaced
qubits� Once E is known� we can apply Ey to recover a perfect duplicate
of the state sent by Alice� For n large� the number of qubits that Bob must
replace is about pn� and he will recover successfully if there is a unique Pauli
operator E that can produce the syndrome that he �nds� If more than one
Pauli operator acting on the replaced qubits has this same syndrome� then
recovery may fail�
How likely is failure� Since there are about pn replaced qubits� there are

about �pn Pauli operators with support on these qubits� Furthermore� for any
particular Pauli operator E� a random stabilizer code generates a random
syndrome � each stabilizer generator has probability ��
 of commuting with
E� and probability ��
 of anti�commuting withE� Therefore� the probability
that two Pauli operators have the same syndrome is ���
�n�k �
There is at least one particular Pauli operator acting on the replaced

qubits that has the syndrome found by Bob� But the probability that an�
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other Pauli operator has this same syndrome �and hence the probability of
a recovery failure� is no worse than

Pfail 	 �pn
�
�




�n�k
� 
�n����p�R�� ���
�
�

where R � k�n is the rate� Eq� ���
�
� bounds the failure probability if
we average over all stabilizer codes with rate R� it follows that at least one
particular stabilizer code must exist whose failure probability also satis�es
the bound�
For that particular code� Pfail gets arbitrarily small as n��� for any rate

R � ��
p�� strictly less than ��
p� Therefore R � ��
p is asymptotically
attainable� combining this result with the inequality eq� ���
��� we obtain
the capacity of the quantum erasure channel�

Q�p� � � � 
p� � 	 p 	 �


� ���
���

If we wanted assurance that a distinct syndrome could be assigned to
all ways of damaging pn erased qubits� then we would require an ��n� k� d��
quantum code with distance d � pn� Our Gilbert�Varshamov bound of x����
guarantees the existence of such a code for

R � � �H��p�� p log� �� ���
���

This rate can be achieved by a code that recovers from any of the possible
ways of erasing up to pn qubits� It lies strictly below the capacity for p � ��
because to achieve high average �delity� it su�ces to be able to correct the
typical erasures� rather than all possible erasures�

������ Depolarizing channel

The capacity of the depolarizing channel is still not precisely known� but we
can obtain some interesting upper and lower bounds�
As for the erasure channel� we can �nd an upper bound on the capacity

by invoking the no�cloning theorem� Recall that for the depolarizing channel
with error probability p � ���� each qubit either passes safely with prob�
ability � � ���p� or is randomized �replaced by the maximally mixed state
� � �

��� with probability q � ���p� An eavesdropper Charlie� then� can
simulate the channel by intercepting qubits with probability q� and replacing
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each stolen qubit with a maximally mixed qubit� For q � ��
� Charlie steals
more than half the qubits and is in a better position than Bob to decode the
state sent by Alice� Therefore� to disallow cloning� the rate at which quan�
tum information is sent from Alice to Bob must be strictly zero for q � ��

or p � ����

Q�p� � �� p �
�

�
� ���
���

In fact we can obtain a stronger bound by noting that Charlie can choose
a better eavesdropping strategy � he can employ the optimal approximate

cloner that you studied in a homework problem� This device� applied to
each qubit sent by Alice� replaces it by two qubits that each approximate the
original with �delity F � ���� or

j�ih�j �
�
��� q�j�ih�j� q

�



�
���

� ���
���

where F � ��� � � � ��
q� By operating the cloner� both Charlie and
Bob can receive Alice�s state transmitted through the q � ��� depolarizing
channel� Therefore� the attainable rate must vanish� otherwise� by combin�
ing the approximate cloner with quantum error correction� Bob and Charlie
would be able to clone Alice�s unknown state exactly� We conclude that the
capacity vanishes for q � ��� or p � ����

Q�p� � �� p �
�

�
� ���
���

Invoking the bound eq� ���
��� we infer that

Q�p� 	 � � �p� � 	 p 	 �
�
� ���
���

This result actually coincides with our bound on the rate of ��n� k� d�� codes
with k � � and d � 
pn � � found in x���� A bound on the capacity is not
the same thing as a bound on the allowable error probability for an ��n� k� d��
code �and in the latter case the Rains bound is tighter�� Still� the similarity
of the two results bound may not be a complete surprise� as both bounds are
derived from the no�cloning theorem�
We can obtain a lower bound on the capacity by estimating the rate that

can be attained through random stabilizer coding� as we did for the erasure
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channel� Now� when Bob measures the n�k �randomly chosen� commuting�
stabilizer generators� he hopes to obtain a syndrome that points to a unique
one among the typical Pauli error operators that can arise with nonnegligible
probability when the depolarizing channel acts on the n qubits sent by Alice�
The number Ntyp of typical Pauli operators with total probability �� � can
be bounded by

Ntyp 	 
n�H��p�p log� ���� ���
���

for any �� � � � and n su�ciently large� Bob�s attempt at recovery can fail if
another among these typical Pauli operators has the same syndrome as the
actual error operator� Since a random code assigns a random �n � k��bit
syndrome to each Pauli operator� the failure probability can be bounded as

Pfail 	 
n�H��p�p log� ���
k�n � � � ���
���

Here the second term bounds the probability of an atypical error� and the
�rst bounds the probability of an ambiguous syndrome in the case of a typical
error� We see that the failure probability� averaged over random stabilizer
codes� becomes arbitrarily small for large n� for any �� � � and rate R such
that

R � k

n
� � �H��p�� p log� �� ��� ���
���

If the failure probability� averaged over codes� is small� there is a particu�
lar code with small failure probability� and we conclude that the rate R is
attainable� the capacity of the depolarizing channel is bounded below as

Q�p� � ��H��p� � p log� � � ���
�
�

Not coincidentally� the rate attainable by random coding agrees with the
asymptotic form of the quantumHamming upper bound on the rate of nonde�
generate ��n� k� d�� codes with d � 
pn� we arrive at both results by assigning
a distinct syndrome to each of the typical errors� Of course� the Gilbert�
Varshamov lower bound on the rate of ��n� k� d�� codes lies below Q�p�� as it
is obtained by demanding that the code can correct all the errors of weight
pn or less� not just the typical ones�
This random coding argument can also be applied to a somewhat more

general channel� in whichX�Y � and Z errors occur at di	erent rates� �We�ll
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call this a �Pauli channel�� If an X error occurs with probability pX � a Y
error with probability pY � a Z error with probability pZ � and no error with
probability pI � � � pX � pY � pZ � then the number of typical errors on n
qubits is

n$

�pXn�$�pY n�$�pZn�$�pIn�$
� 
nH�pI�pX �pY �pZ�� ���
���

where

H � H�pI � pX � pY � pZ� � �pI log� pI � pX log� pX � pY log� pY � pZ log� pZ �
���
���

is the Shannon entropy of the probability distribution fpI � pX � pY � pZg� Now
we �nd

Q�pI � pX � pY � pZ� � ��H�pI � pX � pY � pZ� � ���
���

if the rate R satis�es R � ��H� then again it is highly unlikely that a single
syndrome of a random stabilizer code will point to more than one typical
error operator�

������ Degeneracy and capacity

Our derivation of a lower bound on the capacity of the depolarizing channel
closely resembles the argument in x����� for a lower bound on the capacity
of the classical binary symmetric channel� In the classical case� there was
a matching upper bound� If the rate were larger� then there would not be
enough syndromes to attach to all of the typical errors�
In the quantum case� the derivation of the matching upper bound does

not carry through� because a quantum code can be degenerate� We may
not need a distinct syndrome for each typical error� as some of the possible
errors could act trivially on the code subspace� Indeed� not only does the
derivation fail� the matching upper bound is actually false � rates exceeding
� �H��p�� p log� � actually can be attained�	

Shor and Smolin investigated the rate that can be achieved by concate�
nated codes� where the outer code is a random stabilizer code� and the inner

�P�W� Shor and J�A� Smolin� 	Quantum Error�Correcting Codes Need Not Completely
Reveal the Error Syndrome
 quant�ph��������� D�P� DiVincen� P�W� Shor� and J�A�
Smolin� 	Quantum Channel Capacity of Very Noisy Channels�
 quant�ph���������
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code is a degenerate code with a relatively small block size� Their idea is
that the degeneracy of the inner code will allow enough typical errors to act
trivially in the code space that a higher rate can be attained than through
random coding alone�
To investigate this scheme� imagine that encoding and decoding are each

performed in two stages� In the �rst stage� using the �random� outer code
that she and Bob have agreed on� Alice encodes the state that she has selected
in a large n�qubit block� In the second stage� Alice encodes each of these
n�qubits in a block of m qubits� using the inner code� Similarly� when Bob
receives the nm qubits� he �rst decodes each inner block of m� and then
subsequently decodes the block of n�
We can evidently describe this procedure in an alternative language �

Alice and Bob are using just the outer code� but the qubits are being trans�
mitted through a composite channel�

� Figure �

This modi�ed channel consists �as shown� of� �rst the inner encoder� then
propagation through the original noisy channel� and �nally inner decoding
and inner recovery� The rate that can be attained through the original chan�
nel� via concatenated coding� is the same as the rate that can be attained
through the modi�ed channel� via random coding�
Speci�cally� suppose that the inner code is an m�qubit repetition code�

with stabilizer

Z�Z�� Z�Z�� Z�Z�� � � � �Z�Zm� ���
���

This is not much of a quantum code� it has distance �� since it is insensi�
tive to phase errors � each Zj commutes with the stabilizer� But in the
present context its important feature is it high degeneracy� all Z i errors are
equivalent�
The encoding �and decoding� circuit for the repetition code consists of

just m� � CNOT�s� so our composite channel looks like �in the case m � ��

� Figure �
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where ! denotes the original noisy channel� �We have also suppressed the
�nal recovery step of the decoding� e�g�� if the measured qubits both read
�� we should �ip the data qubit� In fact� to simplify the analysis of the
composite channel� we will dispense with this step��
Since we recall that a CNOT propagates bit �ips forward �from control

to target� and phase �ips backward �from target to control�� we see that for
each possible measurement outcome of the auxiliary qubits� the composite
channel is a Pauli channel� If we imagine that this measurement of the m��
inner block qubits is performed for each of the n qubits of the outer block�
then Pauli channels act independently on each of the n qubits� but the chan�
nels acting on di	erent qubits have di	erent parameters �error probabilities

p
�i�
I � p

�i�
X � p

�i�
Y � p

�i�
Z for the ith qubit�� Now the number of typical error operators

acting on the n qubits is



Pn

i��
Hi ���
���

where

Hi � H�p
�i�
I � p

�i�
X � p

�i�
Y � p

�i�
Z �� ���
���

is the Shannon entropy of the Pauli channel acting on the ith qubit� By the
law of large numbers� we will have

nX
i��

Hi � nhHi� ���
���

for large n� where hHi is the Shannon entropy� averaged over the 
m�� pos�
sible classical outcomes of the measurement of the extra qubits of the inner
code� Therefore� the rate that can be attained by the random outer code is

R �
� � hHi

m
� ���
���

�we divide by m� because the concatenated code has a length m times longer
than the random code��
Shor and Smolin discovered that there are repetition codes �values of m�

for which� in a suitable range of p� ��hHi is positive while ��H��p��p log� �
is negative� In this range� then� the capacity Q�p� is nonzero� showing that
the lower bound eq� ���
�
� is not tight�
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A nonvanishing asymptotic rate is attainable through random coding for
� �H��p� � p log� � � �� or p � pmax � ����
�� If a random outer code is
concatenated with a ��qubit inner repetition code �m � � turns out to be the
optimal choice�� then ��hHi � � for p � p�max � ������� the maximum error
probability for which a nonzero rate is attainable increases by about ���&�
It is not obvious that the concatenated code should outperform the random
code in this range of error probability� though as we have indicated� it might
have been expected because of the �phase� degeneracy of the repetition code�
Nor is it obvious that m � � should be the best choice� but this can be
veri�ed by an explicit calculation of hHi��
The depolarizing channel is one of the very simplest of quantum chan�

nels� Yet even for this case� the problem of characterizing and calculating
the capacity is largely unsolved� This example illustrates that� due to the
possibility of degenerate coding� the capacity problem is considerably more
subtle for quantum channels than for classical channels�

We have seen that �if the errors are well described by the depolarizing
channel�� quantum information can be recovered from a quantum memory
with arbitrarily high �delity� as long as the probability of error per qubit is
less than ��&� This is an improvement relative to the ��& error rate that
we found could be handled by concatenation of the ���� �� ��� code� In fact
��n� k� d�� codes that can recover from any distribution of up to pn errors do
not exist for p � ���� according to the Rains bound� Nonzero capacity is
possible for error rates between ����& and ��& because it is su�cient for the
QECC to be able to correct the typical errors rather than all possible errors�

However� the claim that recovery is possible even if ��& of the qubits
sustain damage is highly misleading in an important respect� This result
applies if encoding� decoding� and recovery can be executed �awlessly� But
these operations are actually very intricate quantum computations that in
practice will certainly be susceptible to error� We will not fully understand
how well coding can protect quantum information from harm until we have
learned to design an error recovery protocol that is robust even if the execu�
tion of the protocol is �awed� Such fault�tolerant protocols will be developed
in Chapter ��

�In fact a very slight further improvement can be achieved by concatenating a random
code with the ��qubit generalized Shor code described in the exercises � then a nonzero
rate is attainable for p � p��

max
� ������ �another ���� better than the maximum tolerable

error probability with repetition coding��
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���� Summary

Quantum error�correcting codes� Quantum error correction can protect
quantum information from both decoherence and �unitary errors due to
imperfect implementations of quantum gates� In a �binary� quantum error�

correcting code �QECC�� the 
k�dimensional Hilbert space Hcode of k encoded
qubits is embedded in the 
n�dimensional Hilbert space of n qubits� Errors
acting on the n qubits are reversible provided that h�jMy

�M�j�i�h�j�i is
independent of j�i for any j�i � Hcode and any two Kraus operators M���

occuring in the expansion of the error superoperator� The recovery superop�
erator transforms entanglement of the environment with the code block into
entanglement of the environment with an ancilla that can then be discarded�

Quantum stabilizer codes� Most QECC�s that have been constructed
are stabilizer codes� A binary stabilizer code is characterized by its stabilizer
S� an abelian subgroup of the n�qubit Pauli group Gn � fI �X�Y �Zg�n
�where X�Y �Z are the single�qubit Pauli operators�� The code subspace is
the simultaneous eigenspace with eigenvalue one of all elements of S� if S has
n� k independent generators� then there are k encoded qubits� A stabilizer
code can correct each error in a subset E of Gn if for each Ea�Eb � E�
Ey

aEb either lies in the stabilizer S or outside of the normalizer S� of the
stabilizer� If someEy

aEb is in S forEa�b � E the code is degenerate� otherwise
it is nondegenerate� Operators in S� n S are �logical operators that act on
encoded quantum information� The stabilizer S can be associated with an
additive code over the �nite �eld GF ��� that is self�orthogonal with respect
to a symplectic inner product� The weight of a Pauli operator is the number
of qubits on which its action is nontrivial� and the distance d of a stabilizer
code is the minimum weight of an element of S� n S� A code with length n�
k encoded qubits� and distance d is called an ��n� k� d�� quantum code� If the
code enables recovery from any error superoperator with support on Pauli
operators of weight t or less� we say that the code �can correct t errors� A
code with distance d can correct ��d����
� in unknown locations or d�� errors
in known locations� �Good families of stabilizer codes can be constructed
in which d�n and k�n remain bounded away from zero as n���

Examples� The code of minimal length that can correct one error is a
���� �� �� �� quantum code associated with a classical GF ��� Hamming code�
Given a classical linear code C� and subcode C� � C�� a Calderbank�Shor�
Steane �CSS� quantum code can be constructed with k � dim�C���dim�C��
encoded qubits� The distance d of the CSS code satis�es d � min�d�� d�� ��
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where d� is the distance of C� and d�� is the distance of C
�
� � the dual of

C�� The simplest CSS code is a ���� �� ��� quantum code constructed from the
��� �� �� classical Hamming code and its even subcode� An ��n�� �� d��� quantum
code can be concatenated with an ��n�� �� d��� code to obtain a degenerate
��n�n�� �� d�� code with d � d�d��

Quantum channel capacity� The quantum channel capacity of a su�
peroperator �noisy quantum channel� is the maximumrate at which quantum
information can be transmitted over the channel and decoded with arbitrar�
ily good �delity� The capacity of the binary quantum erasure channel with
erasure probability p is Q�p� � �� 
p� for � 	 p 	 ��
� The capacity of the
binary depolarizing channel is no yet known� The problem of calculating the
capacity is subtle because the optimal code may be degenerate� in particular�
random codes do not attain an asymptotically optimal rate over a quantum
channel�

���
 Exercises

��� Phase error�correcting code

a� Construct stabilizer generators for an n � �� k � � code that can
correct a single bit �ip� that is� ensure that recovery is possible for
any of the errors in the set E � fIII�XII� IXI � IIXg� Find
an orthonormal basis for the two�dimensional code subspace�

b� Construct stabilizer generators for an n � �� k � � code that can
correct a single phase error� that is� ensure that recovery is possible
for any of the errors in the set E � fIII �ZII� IZI � IIZg� Find
an orthonormal basis for the two�dimensional code subspace�

��� Error�detecting codes

a� Construct stabilizer generators for an ��n� k� d�� � ���� �� 
�� quantum
code� With this code� we can detect any single�qubit error� Find
the encoded state� �Does it look familiar��

b� Two QECC�s C� and C� �with the same length n� are equivalent

if a permutation of qubits� combined with single�qubit unitary
transformations� transforms the code subspace of C� to that of
C�� Are all ���� �� 
�� stabilizer codes equivalent�
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c� Does a ���� �� 
�� stabilizer code exist�

��	 Maximal entanglement

Consider the ���� �� ��� quantum code� whose stabilizer generators are
M� � XZZXI � and M����� obtained by cyclic permutations of M��
and choose the encoded operation �Z to be �Z � ZZZZZ� From the
encoded states j��i with �Zj��i � j��i and j��i with �Zj��i � �j��i� construct
the n � �� k � � code whose encoded state is

�p


�j�i � j��i � j�i � j��i� � ���
���

a� Construct a set of stabilizer generators for this n � �� k � � code�

b� Find the distance of this code� �Recall that for a k � � code� the
distance is de�ned as the minimum weight of any element of the
stabilizer��

c� Find ����� the density matrix that is obtained if three qubits are
selected and the remaining three are traced out�

��
 Codewords and nonlocality

For the ��������� code with stabilizer generators and logical operators as
in the preceding problem�

a� Express �Z as a weight�� Pauli operator� a tensor product of I�s�
X�s� and Z�s �no Y �s�� Note that because the code is cyclic�
all cyclic permutations of your expression are equivalent ways to
represent �Z�

b� Use the Einstein locality assumption �local hidden variables� to pre�
dict a relation between the �ve �cyclically related� observables
found in �a� and the observable ZZZZZ� Is this relation among
observables satis�ed for the state j��i�

c� What would Einstein say�

��� Generalized Shor code

For integer m � 
� consider the n � m�� k � � generalization of Shor�s
nine�qubit code� with code subspace spanned by the two states�

j��i � �j��� � � � �i � j��� � � � �i��m �

j��i � �j��� � � � �i � j��� � � � �i��m � ���
�
�
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a� Construct stabilizer generators for this code� and construct the log�
ical operations �Z and �X such that

�Zj��i � j��i � �Xj��i � j��i �
�Zj��i � �j��i � �Xj��i � j��i � ���
���

b� What is the distance of this code�

c� Suppose that m is odd� and suppose that each of the n � m� qubits
is subjected to the depolarizing channel with error probability p�
How well does this code protect the encoded qubit� Speci�cally�
�i� estimate the probability� to leading nontrivial order in p� of a
logical bit��ip error j��i  j��i� and �ii� estimate the probability�
to leading nontrivial order in p� of a logical phase error j��i � j��i�
j��i � �j��i�

d� Consider the asymptotic behavior of your answer to �c� for m large�
What condition on p should be satis�ed for the code to provide
good protection against �i� bit �ips and �ii� phase errors� in the
n�� limit�

��� Encoding circuits

For an ��n�k�d�� quantum code� an encoding transformation is a unitary
U that acts as

U � j�i � j�i��n�k� � j ��i � ���
���

where j�i is an arbitrary k�qubit state� and j ��i is the corresponding
encoded state� Design a quantum circuit that implements the encoding
transformation for

a� Shor�s ��������� code�

b� Steane�s ��������� code�

��� Shortening a quantum code

a� Consider a binary ��n� k� d�� stabilizer code� Show that it is possible
to choose the n � k stabilizer generators so that at most two act
nontrivially on the last qubit� �That is� the remaining n � k � 

generators apply I to the last qubit��
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b� These n�k�
 stabilizer generators that apply I to the last qubit will
still commute and are still independent if we drop the last qubit�
Hence they are the generators for a code with length n�� and k��
encoded qubits� Show that if the original code is nondegenerate�
then the distance of the shortened code is at least d � �� �Hint�
First show that if there is a weight�t element of the �n� ���qubit
Pauli group that commutes with the stabilizer of the shortened
code� then there is an element of the n�qubit Pauli group of weight
at most t � � that commutes with the stabilizer of the original
code��

c� Apply the code�shortening procedure of �a� and �b� to the ���� �� ���
QECC� Do you recognize the code that results� �Hint� It may
be helpful to exploit the freedom to perform a change of basis on
some of the qubits��

�� Codes for qudits

A qudit is a d�dimensional quantum system� The Pauli operators
I �X�Y �Z acting on qubits can be generalized to qudits as follows�
Let fj�i� j�i� � � � � jd � �ig denote an orthonormal basis for the Hilbert
space of a single qudit� De�ne the operators�

X � jji � jj � � �mod d�i �
Z � jji � �j jji � ���
���

where � � exp�
�i�d�� Then the d � d Pauli operators Er�s are

Er�s �XrZs � r� s � �� �� � � � � d� � ���
���

a� Are the Er�s�s a basis for the space of operators acting on a qudit�
Are they unitary� Evaluate tr�Ey

r�sEt�u��

b� The Pauli operators obey

Er�sEt�u � ��r�s�t�u�Et�uEr�s � ���
���

where �r�s�t�u is a phase� Evaluate this phase�

The n�fold tensor products of these qudit Pauli operators form a group
G�d�
n of order d�n� �and if we mod out its d�element center� we obtain
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the group �G�d�
n of order d�n�� To construct a stabilizer code for qudits�

we choose an abelian subgroup of G�d�
n with n� k generators� the code

is the simultaneous eigenstate with eigenvalue one of these generators�
If d is prime� then the code subspace has dimension dk� k logical qudits
are encoded in a block of n qudits�

c� Explain how the dimension might be di	erent if d is not prime�
Hint� Consider the case d � � and n � ���

��� Syndrome measurement for qudits

Errors on qudits are diagnosed by measuring the stabilizer generators�
For this purpose� we may invoke the two�qudit gate SUM �which gen�
eralizes the controlled�NOT�� acting as

SUM � jji � jki � jji � jk � j �mod d�i � ���
���

a� Describe a quantum circuit containing SUM gates that can be exe�
cuted to measure an n�qudit observable of the form

O
a

Zsa
a � ���
���

If d is prime� then for each r� s � �� �� 
� � � � � d��� there is a single�qudit
unitary operator U r�s such that

U r�sEr�sU
y
r�s � Z � ���
���

b� Describe a quantum circuit containing SUM gates and U r�s gates
that can be executed to measure an arbitrary element of G�d�

n of
the form

O
a

Era�sa � ���
���

���� Error�detecting codes for qudits

A qudit with d � � is called a qutrit� Consider a qutrit stabilizer
code with length n � � and k � � encoded qutrit de�ned by the two
stabilizer generators

ZZZ � XXX � ���
�
�
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a� Do the generators commute�

b� Find the distance of this code�

c� In terms of the orthonormal basis fj�i� j�i� j
ig for the qutrit� write
out explicitly an orthonormal basis for the three�dimensional code
subspace�

d� Construct the stabilizer generators for an n � �m qutrit code �where
m is any positive integer�� with k � n � 
� that can detect one
error�

e� Construct the stabilizer generators for a qudit code that detects one
error� with parameters n � d� k � d � 
�

���� Error�correcting code for qudits

Consider an n � �� k � � qudit stabilizer code with stabilizer generators

X Z Z�� X�� I

I X Z Z�� X��

X�� I X Z Z��

Z�� X�� I X Z

���
���

�the second� third� and fourth generators are obtained from the �rst by
a cyclic permutation of the qudits��

a� Find the order of each generator� Are the generators really in�
dependent� Do they commute� Is the �fth cyclic permutation
Z Z�� X�� I X independent of the rest�

b� Find the distance of this code� Is the code nondegenerate�

c� Construct the encoded operations �X and �Z� each expressed as an
operator of weight �� �Be sure to check that these operators obey
the right commutation relations for any value of d��


