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1. Violation of causality in 1 + 1 dimensions

In the lecture notes it is shown that in 3 + 1 dimensions the Hamiltonian H =√
m2c4 + ~p2c2, where ~p = −ih̄~∇, gives rise to violation of causality. In this exercise

we will conclude that this is not a special property of this dimension, by considering
the 1 + 1 dimensional case.

a. Give the exact plane wave solutions of Schrödinger’s equation for the Hamiltonian
H =

√
m2c4 + p2c4.

b. Let ψ0(x, t) be the solution of Schrödinger’s equation with initial condition ψ0(x, 0) =
δ(x). It follows that ψ(x, t) =

∫

dyf(y)ψ0(x− y, t) is also a solution (for which initial
condition?). Therefore it is sufficient to study the time evolution of ψ0.

Fourier expand ψ0(x, t) and rewrite this expression as

ψ0(x, t) =
i

cπ
∂tK0(z), with K0(z) =

∫ ∞

0
dy cos(z sinh(y)), z2 =

m2c2

h̄2 (x2 − c2t2).

(K0 is a modified Bessel function, whence the above expression can be rewritten in
terms of ordinary Bessel functions. See for example Abromowitz & Stegun’s hand-
book for details.)

c. Show that for m 6= 0 the solution violates causality.

d. Prove that Re(ψ0) = (ψ0+ψ
∗
0)/2 respects causality, but does not satisfy Schrödinger’s

equation. Show that ψ∗
0 is a solution of the time inverted Schrödinger equation, or

equivalently Schrödinger’s equation with opposite (negative) Hamiltonian.

Prove that both ψ0 and ψ∗
0 satisfy the Klein-Gordon equation, and that Re(ψ0) is

the unique solution that respects causality.

2. Casimir effect

In quantum field theory the vacuum energy depends on the spatial volume. In the
lecture notes it has been derived that a free scalar massless field which is spatially
contained between two infinite parallel planes with separation x, has an energy per
unit area

E(x) =
1

2(2πh̄c)2

∞
∑

m=1

∫

d2k

√

k2 + (
πh̄cm

x
)2.

This expression is divergent, but can be made finite in a sensible way by subtraction
of a corresponding slice in infinite volume, i.e. without boundary conditions in the x
direction. An alternative way of getting rid of the unphysical infinite part, is so-called
dimensional regularisation. The above integral (the sum will be attacked analogously
later) falls into a class of integrals that is parametrised by (a.o.) the dimension. The
method then consists of computing the convergent integrals within this class, and
redefine the divergent ones by analytic continuation (in the set of parameters) of the
convergent outcomes.

For the case at hand the following class of integrals is useful

In,λ,µ(α) ≡
∫

dnk
k2λ

(k2 + α2)µ
(n ∈ IN; λ, µ ∈ lC; α2 > 0).
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For 2Re(λ−µ)+n < 0 this is convergent (and analytic). For n = 2, λ = 0, µ = −1/2
it reduces to the integral in E(x). Assume for the time being that 2Re(λ−µ)+n < 0.

a. Change to spherical coordinates and derive

In,λ,µ(α) = πB(1,
1

2
)B(

3

2
,
1

2
) · · ·B(

n− 1

2
,
1

2
)B(λ+

n

2
, µ− λ− n

2
)αn+2λ−2µ,

where B is the so-called beta function:

B(x, y) ≡ 2
∫ ∞

0
dt t2x−1(1 + t2)−x−y.

b. Let the gamma function be defined as

Γ(x) =
∫ ∞

0
dt tx−1e−t (Re(x) > 0).

Show that Γ(x+ 1) = xΓ(x) and Γ(1/2) =
√
π. Also prove

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

c. Now write In,λ,µ(α) in terms of gamma functions. Note that Γ(x) can be continued
analytically to Re(x) ≤ 0 using Γ(x+ 1) = xΓ(x). Therefore we can also continue I
analytically to parameter values for which the original integral was divergent. Also
notice that the dimension n can now be given arbitrary complex values without
difficulties. Show that after having done these regularisations we obtain

E(x) = E2(x), En(x) =
√
πh̄c

∞
∑

m=1

(

√
πm

2x
)n+1Γ(−(n+ 1)/2)

Γ(−1/2)
.

d. Only the summation over m remains to be regularised. Define the zeta function

ζ(x) =
∞
∑

m=1

m−x (Re(x) > 1).

For x = −3 this coincides with the relevant divergent summation. Like for the
integrals, we would like to replace this expression by the analytic continuation of
ζ(x)|Re(x)>1 to Re(x) ≤ 1. This continuation satisfies

ζ(1 − n) =
(−1)n+1Bn

n
, n ∈ IN, (1)

where Bn are the Bernouilli numbers:

∞
∑

n=0

Bn
tn

n!
≡ t

et − 1
.

Derive eq. (1) by expanding t/(et − 1) in e−t, and e−t in t (be careful with the t0

term).
Hint: introduce new parameters that enable change of summation order. In the end
continue back to the relevant parameter values.

Finally compute the fully regularised energy per area E(x) and pressure F (x) =
−dE(x)/dx. Given the Bernouilli number B4 = −1/30, evaluate this pressure for
x = 1µm.
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3. Euler-Lagrange equation

Let φ(x) = φ(~x, t) be a complex scalar field with action functional S =
∫

d4xL(x). L
is the so-called Lagrange density (the Lagrangian is L(t) =

∫

d3~xL(~x, t)):

L(x) = ∂µφ
∗(x)∂µφ(x) −m2φ∗(x)φ(x),

with metric gµν = diag(1,−1,−1,−1) and units such that h̄ = 1, c = 1.

a. Prove by variational calculus the Euler-Lagrange equation (equation of motion)
δS
δφ(x)

= ∂µ
δS

δ(∂µφ(x))
and show that this gives the Klein-Gordon equation.

b. Given the energy-momentum tensor

Tµν(x) = ∂µφ
∗(x)∂νφ(x) + ∂νφ

∗(x)∂µφ(x) − gµνL(x),

show that ∂µT
µν = 0.

c. Given the current density

Jµ(x) = i(φ∗(x)∂µφ(x) − (∂µφ
∗(x))φ(x)),

show that ∂µJ
µ(x) = 0.

d. Prove that the total energy E, momentum Pi and charge Q, given by E(t) =
∫

d3~xT00(~x, t), Pi(t) =
∫

d3~xT0i(~x, t) and Q(t) =
∫

d3~xJ0(~x, t), are conserved.

4. Creation and annihilation operators

We start from operators p and q satisfying canonical commutation relations [p, q] =
−ih̄. Define

a =
1√
2h̄ω

(ωq + ip), a† =
1√
2h̄ω

(ωq − ip), N = a†a.

a. Show that [a, a†] = 1. Also calculate the commutators [a,N ], [a†, N ] and [(a†)n, N ].

b. Define |n〉 by N |n〉 = n|n〉, 〈n|n〉 = 1. Show that

a|n〉 = c−n |n− 1〉 , a†|n〉 = c+n |n+ 1〉 , |n〉 = cn(a
†)n|0〉.

Compute c−n , c+n , cn and show that they can be chosen real.

Given an algebra of operators and commutation relations, we mean by the associ-
ated Hilbert space the (smallest) Hilbert space that may be used to incorporate the
algebra. What is the associated Hilbert space in the present case?

c. Derive a matrix representation for the operators a, a† and N .

d. Now consider operators with anticommutation relations

{br, b†s} = δr,s, {br, bs} = {b†r, b†s} = 0,

where {X, Y } ≡ XY + Y X. What is the corresponding Hilbert space?

Define Nr = b†rbr. What are the possible eigenvalues of Nr? Construct a matrix
representation for the operators br, b

†
r and Nr. Why is the algebra generated by br

and b†r, with the above anticommutation relations, suitable for describing fermions?

Prove that exchanging br and b†r can be described by a unitary transformation.
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e. The BCS theory of superconductivity uses the following operators that describe an-
nihilation and creation of electron pairs.

c~k
= b

−~k↓
b~k↑

, c†
~k

= b†
~k↑
b†
−~k↓

.

Prove that [c~k
, c~k

′ ] = [c†~k
, c†
~k

′ ] = 0 and calculate [c~k
, c†
~k

′ ]. Also determine the Hilbert

space and the action of the operators on this Hilbert space. Would you call the
electron pairs fermions or rather bosons?

5. Real and complex fields

Let us consider a real scalar field ϕ(x) and a Hamiltonian

H =
∫

d3~x{1

2
π2(x) +

1

2
(∂iϕ(x))2 +

1

2
m2ϕ2(x)},

where π(x) = ∂tϕ(x) is the canonical momentum. For quantisation we postulate the
following commutators at some time t, say t = 0. (Argue briefly why these relations
are compatible with causality.)

[π(x), π(y)] |x0=y0=0= [ϕ(x), ϕ(y)] |x0=y0=0= 0; [π(x), ϕ(y)] |x0=y0=0= −iδ3(~x− ~y).

Write the Fourier decomposition of ϕ(x) as follows:

ϕ(x) =
1

(2π)3

∫

d3~k
1√
2k0

(a(~k)e−ikx + a†(~k)eikx),

where kx = k0t− ~k · ~x and k0 = +

√

~k
2
+m2.

Remark: ϕ(~x, t) is the Heisenberg representation of ϕ(~x, 0). This can be verified
explicitly at the end of part d.

a. Give the Fourier decomposition of π(x). Why can we (formally) set π(~x, x0 = 0) =
−i∂/∂ϕ(~x, x0 = 0)?

b. Derive the commutation relations for a(~k) and a†(~k).

c. What is the associated Hilbert space?

d. Write the Hamiltonian H in terms of the occupation number (density) operators

N(~k) = a†(~k)a(~k). Note that H is time independent.

It is impossible to define a total charge Q for a real field ϕ(x) (in a nontrivial way).
Basically this is because a real field describes particles that are their own antiparticles.
Therefore let us introduce a complex field ϕ 6= ϕ† with Hamiltonian

H =
∫

d3x{π†(x)π(x) + ∂iϕ
†(x)∂iϕ(x) +m2ϕ†(x)ϕ(x)},

where π(x) = ∂tϕ
†(x), π†(x) = ∂tϕ(x).
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e. Show that H =
∫

d3~x T00 (see exercise 3 for the definition of Tµν , in which classical
fields now become operator fields).

The nontrivial commutators are postulated to be

[π(x), ϕ(y)] |x0=y0=0= [π†(x), ϕ†(y)] |x0=y0=0= −iδ3(~x− ~y).

Let us write ϕ(x) = (ϕ1(x) + iϕ2(x))/
√

2 and substitute for the real fields ϕi(x) the

Fourier decompositions in terms of ai(~k) and a†i(~k).

f. Give a(~k) and b(~k) in terms of ai(~k) such that

ϕ(x) =
1

(2π)3

∫

d3~k
1√
2k0

(a(~k)e−ikx + b†(~k)eikx).

Also derive the Fourier decompositions of ϕ†(x), π(x) and π†(x).

g. Give the mutual commutation relations for the operators a(~k), a†(~k), b(~k) and b†(~k).

h. Write H in terms of Na(~k) = a†(~k)a(~k) and N b(~k) = b†(~k)b(~k).

We would like to interpret the particles created by b† as the antiparticles of the ones
created by a†. This allows us to define the total charge

Q = const.(#particles − #antiparticles) =
e

(2π)3

∫

d3~k(Na(~k) −N b(~k)).

(at t = 0).

i. Prove that Q is conserved. Also show that Q can be written as

Q =
∫

d3~xρ(x) + constant,

where ρ(x) = −ie{(∂tϕ†)(x)ϕ(x) − ϕ†(x)(∂tϕ)(x)}. Note that ρ(x) = eJ0(x) (see
exercise 3).

6. Commutation relations and causality

We reconsider the Hermitian operator field

ϕ(x) =
1

(2π)3

∫

d3~k
1√
2k0

(a(~k)e−ikx + a†(~k)eikx).

In exercise 5 commutation relations ([ϕ(x), ϕ(y)] |x0=y0=0= 0 etc.) and a Hamiltonian
have been introduced. Use these for deriving an integral representation for

∆(x− y) ≡ [ϕ(x), ϕ(y)];

x, y arbitrary.

Show that ∆(x − y) = 0 whenever x0 = y0 (x0 arbitrary). Also show that ∆(x− y)
is Lorentz invariant and use this for generalising the result to x, y with (x− y)2 < 0
(i.e. spatially separated).

Hint: Prove that
∫

d3~k =
∫

d4kδ(k2 −m2)θ(k0)2k0, where θ is the step function.
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7. Feynman rules for a classical field

Consider real fields ϕ1 and ϕ2 as described by the Lagrangian

L[ϕ1, ∂µϕ1, ϕ2, ∂µϕ2] =
1

2
∂µϕ1∂

µϕ1+
1

2
∂µϕ2∂

µϕ2−g0 log[1+
1

2
g1(ϕ1−F )2]− 1

2
g2ϕ1ϕ

2
2.

a. Determine the dimension of the fields ϕi and the constants gi, F . (Remember that for
h̄ = 1, c = 1 all dimensions are powers of [l] = [m]−1; also the action S =

∫

d4xL(x)
is dimensionless.)

b. In a perturbative calculation ϕ̃ = ϕ1 − F and ϕ2 are chosen as fundamental fields.
Explain why.

Expand L in ϕ̃ and ϕ2 (up to 4th order terms). Write the result as L = L0 + Lint,
where L0 are the quadratic terms and Lint contains the interaction terms. What are
the masses of the fields ϕ̃ and ϕ2?

c. We now introduce source terms −J̃ · ϕ̃ and −J2 ·ϕ2. Derive the Feynman rules for the
perturbative expansion using the (classical) method in the lecture notes (pp. 13–15).
Use the following notation:

×

cG2

G̃

J2

J̃

etc.

d. Which expression is associated to the diagram below?

�
�
×

c
8. Photon propagator

Gauge invariance complicates the derivation of the photon propagator (see lecture
notes p. 16). In this exercise we will fix the gauge by using the following Lagrangian:

L(x) = −1

4
Fµν(x)F

µν(x) − λ(x)∂µA
µ(x) − Jµ(x)A

µ(x).

This describes a photon field Aµ and a Lagrange multiplier λ in the presence of an
external (i.e. not dynamical) source Jµ.

a. Use partial integration to write the quadratic part of the action as

1

2
((Aµ), λ) · M̂

(

(Aν)
λ

)

,

where M̂ is a hermitian 5 × 5 matrix operator. The inner product ‘·’ includes an
integration over space-time.
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b. Show that M̂ is invertible and that the corresponding photon propagator is the same
as in the so-called Landau gauge α→ ∞ (lecture notes p. 17).
Hint: work in Fourier space.

9. Coulomb gauge and temporal gauge

The gauge freedom of the photon field can be eliminated through an extra constraint
besides the equations of motion (imposing the constraint is usually called ‘choosing
a gauge’). Examples:

(1) Lorentz gauge ∂µA
µ = 0

(2) Coulomb gauge ∂iAi ≡ ~∇ · ~A = 0
(3) temporal gauge A0 = 0.

Here we will analyze the conditions (2) and (3). These are not Lorentz invariant, but
expose the photon’s degrees of freedom nicely.

a. Show that (2) or (3) can always be realised after an appropriate gauge transformation
Aµ(x) → Aµ(x) + ∂µΛ(x). Furthermore show that (2) and (3) can be imposed
simultaneously in the absence of sources (i.e. Jµ = 0).

b. The transversal (T) and longitudinal (L) components of an arbitrary vector field ~v
are defined as follows:

~v = ~vT + ~vL, ~∇ · ~vT = 0, ~∇× ~vL = ~0

Write down the relations between ~A and ~E, ~B in terms of their T and L components.
Also express Maxwell’s equations in these components. Here ~A, ~E and ~B stand for
the vector potential, electric field and magnetic field, respectively.

c. Coulomb gauge

Show that A0(~x, t) is completely determined by ρ(~x′, t) and the spatial boundary
conditions at time t (hence the name ‘instantaneous Coulomb potential’). It follows

that the longitudinal component of the physical field ~E is not a degree of freedom in
the radiation field. (Why? What do we mean exactly by a degree of freedom in a
classical system?)

temporal gauge

Show that ~AL is completely determined by the charge distribution ρ and the spa-
tial boundary conditions, together with an initial condition ~AL(~x, t → −∞). Show

(again) that ~EL is not a degree of freedom in the radiation field.

10. Preparation for the path integral

Consider a one dimensional harmonic oscillator with the Hamiltonian H = p̂2

2m
+

1
2
mω2q̂2. Here p̂ = 1

i
∂
∂q

and q̂ is the position operator, so that < q|H|p >=
1√
2π
eipqh(p, q) with h(p, q) = p2

2m
+ 1

2
mω2q2 .
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a. Prove the following exact identity (δt ≡ T/n):

Kn(qn, qo, T ) ≡
∫ dpn

2π

n−1
∏

i=1

dqidpi
2π

exp[i
n
∑

j=1

{pj(qj − qj−1) − h(pj , qj)δt}]

= < qn|{exp(−imω
2

2
q̂2δt) exp(−i p̂

2δt

2m
)}n|q0 > .

b. Show that Kn(qn, q0, T ) =< qn| exp(−imω2

4
q̂2δt)T n exp(imω

2

4
q̂2δt)|q0 >, where T =

exp(−imω2

4
q̂2δt) exp(−i p̂2δt

2m
) exp(−imω2

4
q̂2δt). Prove that T is a unitary operator.

c. We are going to prove that T = exp(−iH̃δt), where H̃ is also a harmonic oscillator

Hamiltonian: H̃ = p̂2

2M
+ 1

2
MΩ2q̂2.

Note: until that is proven, one should of course use T as defined in part b.

1. Show that [p̂, q̂] = −i implies

[eαp̂
2

, q̂] = −2iαp̂eαp̂
2

and [eαq̂
2

, p̂] = 2iαq̂eαq̂
2

for any α ∈ lC. Now solve the ‘eigenvalue equation’

T (κ±q̂ + λ±p̂) = µ±(κ±q̂ + λ±p̂)T

(κ±, λ±, µ± ∈ lC). Show that µ± = exp(±iΩδt), with Ω defined by sin( 1
2Ωδt) =

1
2ωδt.

2. Determine the commutation relations between κ+q̂ + λ+p̂ and κ−q̂ + λ−p̂. For
which normalization are we dealing with creation and annihilation operators
â†, â? Show that the corresponding Hamiltonian is given by H̃ , with M =
m sin(Ωδt)/(Ωδt).

3. Now that (κ, λ, µ)± are known, the eigenvalue equation determines T uniquely
up to a p̂, q̂ independent factor. Prove that T = C exp(−iâ†âΩδt) satisfies the
equation (C ∈ lC). Use the definition of T to show that C = exp(− 1

2iΩδt).

Hint: Since C is independent of p̂, q̂, it can be determined by calculating 〈0|T |0〉
with |0〉 the H̃-vacuum (â|0〉 ≡ 0). First evaluate 〈p| exp(−imω2

4
q̂2δt)|0〉 =

A exp(−Bp2/2), with A and B defined appropriately.

d. Use the above result to show that limn→∞Kn(qn, q0, T ) =< qn|e−iHT |q0 > .

11. Path integral for a free particle

We start from the path integral for the evolution operator associated to Schrödinger’s
equation (lecture notes p. 21). As Lagrangian we take L(q, q̇) = 1

2mq̇
2, and prob-

lems from integrating rapidly oscillating functions are avoided by choosing so-called
Euclidean time τ = iT . The path integral then becomes (with dτ ≡ τ/n and for
n→ ∞):

〈q′|U(τ)|q〉 =
[

m

2πδτ

]n/2

(
n−1
∏

j=1

∫

dqj)e
−S(q0,q1,···,qn), (1)

where q0 ≡ q and qn ≡ q′, and with action

S(q0, q1, · · · , qn) =
n
∑

j=1

m

2

[

qj − qj−1

δτ

]2

δτ.
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The Euclidean evolution operator is U(τ) = exp(−Hτ), H being the usual quantum
mechanical Hamiltonian associated to L.

Upon defining

U(q̃, τ) ≡ 〈q̃|U(τ)|0〉 transl. inv.
= 〈q′|U(τ)|q〉, q̃ ≡ q′ − q,

U(q̃, τ) satisfies the Euclidean Schrödinger equation by construction. Due to the
Euclidean time this is a diffusion equation:

U(q̃, 0) = δ(q̃) ,
∂

∂τ
U(q̃, τ) =

1

2m

∂2

∂q̃2
U(q̃, τ) (2)

a. Determine U(q̃, τ) by solving eq. (2) (use a Fourier transform).

b. In this simple case the path integral in eq. (1) can be calculated explicitly. We will
do this by changing variables

yj = qj − qj−1, j = 1, 2, · · · , n.

Show that
∏n−1
j=1 dqj = (

∏n
j=1 dyj)δ(q̃ −

∑n
j′=1 yj′).

The δ-function can be written as

δ(q̃ −
n
∑

j=1

yj) =
1

2π

∫

dω exp
(

iω(
n
∑

j=1

yj − q̃)
)

.

These steps reduce the path integral to a product of Gaussian integrals. Perform the
integrations and verify that the outcome equals the result in a.

12. Massive vector fields

The following Lagrangian (mass m 6= 0) describes a massive vector field,

L = − 1
4FµνF

µν + 1
2m

2AµA
µ.

a. Show that this Lagrangian is not gauge invariant.

b. Determine the equations of motion for the field Aµ(x). Show that these are equivalent
to

∂µA
µ = 0 (∗) , (∂2 +m2)Aµ = 0.

Remark: the condition (∗), being a gauge choice in the massless case (see exercise 8),
is now imposed by the equations of motion!

c. Bring L to the form 1
2AµM

µνAν (more precisely, use partial integration to find an M
such that this gives the same action—and therefore the same equations of motion).
Construct the inverse of the operator M (use a Fourier transform).

d. Now add a source term: −JµAµ with ∂µJ
µ = 0. Which expression for Aµ(k) is

associated to the following Feynman diagram?

×
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Are there other diagrams in this model contributing to Aµ(k)?

(M−1)µν consists of two terms. Show that one of them drops out of (M−1)µν(k)J
ν(k),

and that limm→0(M
−1)µν(k)J

ν(k) exists. Compare this limit to the Maxwell propa-
gator (lecture notes p. 17) for α = 1, the so-called Feynman gauge.

13. Perturbative approach to the path integral

In this exercise we will treat perturbatively the generating function Z(J) for a real
scalar ϕ3 theory. The Lagrangian reads

L = L2 − Vint − Jϕ, with Vint =
g

3!
ϕ3, L2 = 1

2ϕG
−1ϕ, G−1 = −(∂µ∂

µ +m2).

In the lecture notes (p. 34) it has been shown that the path integral can be reduced
to

Z(J) = e−i
∫

d4xVint(i
δ

δJ(x)
)e−

i
2

∫

d4y
∫

d4zJ(y)G(y,z)J(z).

a. Show that

Z(J) = 1 +
(

− i

2
× ×− 1

8
× ×
× ×

)

+

(

1

2
×m − i

3! ×
""bb× ×

− i

4 ×m× ×
)

+ O(J5) + O(g2).

Here × × =
∫

d4x
∫

d4yJ(x)G(x, y)J(y) etc. (do not work in Fourier space).

N.B. In this exercise you are not supposed to work out the analytical expressions
associated to the Feynman diagrams.

b. Read the page copied from ‘Diagrammar’ carefully. Verify that the combinatorial
factors in the above expression are correctly given by the Diagrammar prescription.
Remark: In this prescription the sources J should be considered as 1-vertices.

c. Show up to first order in g and fourth order in J that Z(J) = exp(G(J)), G(J) being
the sum of connected diagrams.

d. The ‘n-point function’ can be expressed in the following way:

〈ϕn · · ·ϕ1〉 ≡ 〈0|ϕn · · ·ϕ1|0〉 =
1

Z(0)

(

i
δ

δJ1

· · · i δ
δJn

Z(J)

)

J=0

(ϕi ≡ ϕ(~xi, ti), ti+1 > ti, |0〉 = ground state in absence of J). This is why Z(J) is
called the generating function.

Substitute the result of part a. to obtain the 1,2,3 and 4-point functions up to order
g. Argue that the product rule guarantees that the Diagrammar prescriptions for
diagrams in Z(J) and 〈ϕn · · ·ϕ1〉 are consistent, and verify explicitly the correctness
of the Diagrammar prescription for the 1,2,3 and 4-point functions to the given order
in g.

e. Show non-perturbatively that
(

i
δ

δJ1

i
δ

δJ2

G(J)

)

J=0

= 〈ϕ2ϕ1〉 − 〈ϕ2〉〈ϕ1〉.

For n > 2 similar expressions hold. This means thatG(J) is the generator of quantum
fluctuations.
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14. Combinatorial factors

a. Given a real scalar field ϕ with interaction

Vint =
α

3!
ϕ3 +

β

4!
ϕ4,

determine the combinatorial factors of the following diagrams (see the discussion
on pg. 36 and 37 or the section on combinatorial factors in ”Diagrammar”, CERN
Yellow report 73-9, by G. ’t Hooft and M. Veltman, reprinted in “Under the spell of
the gauge principle” by G. ’t Hooft (World Scientific, Singapore, 1994))

m1 2 ; m1 2 ; "
""

b
bb

1

2 3
; m m1 2 ; m ; mm

b. Consider the following models:

I Scalar field A,

L = 1
2∂µA∂

µA− 1
2m

2A2 − λ

3!
A3 − JA.

II Scalar fields A and B with equal mass,

L = 1
2∂µA∂

µA+ 1
2∂µB∂

µB − 1
2m

2A2 − 1
2m

2B2 − µ

2!
A2B − JA.

We limit ourselves to diagrams with an even number of external A-lines (and no
external B’s). Let us pose the question whether we can make a distinction between
the above models from knowledge of the amplitudes for its diagrams.

1. Let us first consider tree diagrams.

• Show that λ and µ can be chosen such that the models I and II give an
identical 4-point function:

��
@@

@@
��A

A

A

A

A

=
��
@@

@@
��B

A

A

A

A

• Show that the 6-point function is different for the models I, II.

2. Proceed to show that at 1-loop level even the 2-point function, which at tree
level is trivially the same, is different for the models I, II.

15. Quantum corrections

In this exercise we set out to prove that the expansion of Feynman diagrams in the
number of loops amounts to an expansion in powers of h̄. We consider a real scalar
field theory with an arbitrary interaction potential:

Vint =
∑

n≥3

gn
n!
ϕn.

To each Feynman diagram we associate the following quantities: E, I, L and Vn
(number of external lines, internal lines, loops, and vertices with n lines, respectively).
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a. Prove that for any connected diagram the following relations hold:

{

L = I + 1 −∑

n≥3 Vn
∑

n≥3 nVn = E + 2I.

Hint: Any diagram can be reduced to a tree diagram (i.e. a diagram with no loops)
by cutting L times appropriate internal lines (this is the precise definition of L).
Determine how E, I, L,

∑

Vn and
∑

nVn have changed after one such cut. Another
operation is the amputation of an external leg. Find the change in the above quan-
tities for this operation too. Finally determine these quantities for a simple diagram
in order to obtain the ‘initial condition’.

b. Since we are looking for quantum effects, we do not take h̄ = 1 (for convenience we
keep c = 1, though). Powers of h̄ can now pop up at several places in the Lagrangian.
We can limit the number of such places by conveniently choosing the dimensions of
ϕ, J and {gn}. Show that this can be done in such a way that

LJ
h̄=1≡ L− Jϕ

h̄ 6=1
= 1

2∂µϕ∂
µϕ− 1

2

m2

h̄2 ϕ
2 −

∑

n≥3

gn
n!
ϕn − Jϕ,

but that the h̄-dependence in the quadratic part cannot be removed.
Note: for h̄ 6= 1, mass and 1/length have independent dimensions.

Remark: It is natural to require that the classical theory (i.e. the Euler-Lagrange
equations) is independent of h̄. The above result then implies that m ∼ h̄, so that
even in the classical theory the mass is an effective parameter of quantum mechanical
origin.

Show that the path integral now reads

Z(J) = C
∫

Dϕe i
h̄

∫

d4x[L(ϕ(x))−J(x)ϕ(x)]

(C independent of J).

c. We absorb the factor h̄ in exponent of Z(J) into the quadratic part of L by defining

ϕ̃ = h̄−1/2ϕ, J̃ = h̄−1/2J.

This gives

Z(J) = C̃
∫

Dϕ̃ei
∫

d4x[
˜L(ϕ̃(x))−J̃(x)ϕ̃(x)].

What is the expression for L̃(ϕ̃)? Show that the propagator for the field ϕ̃ does not
have any h̄-dependence. This means that all factors of h̄ in a diagram come from
the vertices (and external lines). Express the total power of h̄ in terms of {Vn} (and
E). Finally make use of the results in a. to prove that this power equals L, up to a
function of E alone.

d. Show that for a model with only four point interactions (gn = 0 for n 6= 4) the
expansion in the number of loops L can be interpreted as an expansion in powers of
g4.
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16. Legendre transformation and classical limit

In this exercise we will consider the connection between quantum field theory and
classical field theory once more. Therefore take h̄ 6= 1 again. As explained in the
previous exercise, we then have

Z[J ] =
∫

Dϕe i
h̄

∫

d4x(L−Jϕ) =
∫

Dϕe i
h̄
S[J,ϕ], (1)

where S[J, ϕ] is independent of h̄. Furthermore, Z[J ] = exp(G[J ]/h̄), G[J ]
h̄

being the
sum of connected diagrams. The overall factor of h̄ has been conveniently chosen 1/h̄
so that

G[J ] =
∞
∑

L=0

h̄LG(L)[J ], (L = #loops)

with h̄-independent G(L)[J ]’s. A saddle point, or stationary phase approximation
(h̄→ 0) of eq. (1) then immediately gives

G(0)[J ] = iS[J, ϕcl[J ]]. (2)

Here ϕcl[J ] is the solution of the Euler-Lagrange equations δS[J, ϕ]/δϕ = 0 (hence the
subscript ‘cl’, for ‘classical’). This saddle point ϕcl[J ] is unique under the assumption
that in eq. (1) only fields vanishing (sufficiently fast) at infinity are integrated over.

Let us inspect if eq. (2) is reproduced by perturbation theory. For convenience we
limit ourselves to ϕ3-theory, whose Lagrangian has already been introduced in exer-
cise 13.

a. 1. Substitute the expansion of ϕcl[J ], as given on p. 15 of the lecture notes, in the
action in order to obtain

−S[J, ϕcl[J ]] = 1
2
× ×+ 1

6 ×
""bb× ×

+ 1
8

��
@@

@@
��

×
×

×
×

+ O(J5).

Verify explicitly that eq. (2) holds to this order in J .

2. It follows from the path integral that (cf. exercise 13d.)

〈ϕ〉[J ](x) = i
δG[J ]

δJ(x)
. (3)

Here 〈ϕ〉[J ] stands for the expectation value of the Heisenberg operator ϕ̂(x) =
ϕ̂(~x, t) in the groundstate |0〉[J ] of the Hamiltonian Ĥ [J ], i.e. in the presence
of a source J . Note that 〈ϕ〉[J ] is an ordinary real valued field, and not an
operator field. Also note that in each point x it is a functional of J .

Show up to third order in J that

〈ϕ〉[J ] = ϕcl[J ] + O(h̄). (4)

b. Now let us see if we can generalise these results to arbitrary order in J . Brute force as
used in a. is of no use here because this method generates the combinatorial factors
for S[J, ϕcl[J ]] in an almost intractable way. The proper framework for the proof is
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the formalism of Legendre transformations (see Itzykson & Zuber for more details).

We assume that eq. (3) is invertible to J(x) = J [〈ϕ〉](x). This allows us to define a
functional Γ on 〈ϕ〉 via a Legendre transform:

iΓ[〈ϕ〉] ≡ G[J [〈ϕ〉]] + i(J [〈ϕ〉], 〈ϕ〉), (5)

with (f, g) ≡ ∫

d4xf(x)g(x). Derive from eq. (3) that

δΓ[〈ϕ〉]
δ〈ϕ〉(x) = J [〈ϕ〉](x). (6)

Hint: The chain rule for functional derivatives reads:

δf [g[h]]

δh(x)
=
∫

d4y
δf [g]

δg(y)

∣

∣

∣

∣

∣

g=g[h]

δg[h](y)

δh(x)
.

Remark: an important example of a Legendre transform is the relation between a
Lagrangian and its Hamiltonian: H(q, p) = pq̇(p) − L(q, q̇(p)) with p = ∂L(q, q̇)/∂q̇.
(The position q plays no role in this transformation.)

c. 1. It is useful to Taylor expand G[J ] around J = 0:

G[J ] =
∞
∑

n=1

(−i)n
n!

∫

d4x1 · · · d4xnG
(n)(x1, · · · , xn)J(x1) · · ·J(xn).

Why can we disregard the n = 0 contribution?

Note: G(n) is precisely the connected n-point function as defined in exercise 13.

We also expand Γ[〈ϕ〉] around 〈ϕ〉[J = 0]. For simplicity we limit ourselves to
the case 〈ϕ〉[0] = 0.

Γ[〈ϕ〉] =
∞
∑

n=2

1

n!

∫

d4x1 · · · d4xnΓ
(n)(x1, · · · , xn)〈ϕ〉(x1) · · · 〈ϕ〉(xn).

Why do the n = 0, 1 terms vanish?

2. Γ(n) can be obtained from {G(m)|m≤n} by differentiating eq. (3) n−1 times with
respect to 〈ϕ〉 and then setting 〈ϕ〉 = 0 (corresponding to J [〈ϕ〉] = 0). Show
that

Γ(2) = i(G(2))−1, Γ(3) = −iG(3) amp,

where ‘amp’ means amputation:

G(n)amp(x1, · · · , xn) ≡
∫ n
∏

i=1

(

d4yi(G
(2))−1(xi, yi)

)

G(n)(y1, · · · , yn).

Argue that G(3)amp = G(3)1PI. The latter stands for the sum of ‘1 Particle
Irreducible’ diagrams, i.e. amputated diagrams that are still connected after
cutting one arbitrary internal line. In general the following holds:

Γ(n) = −iG(n)1PI. (n ≥ 3)

You are not asked to prove this, but it might be enlightening to check it for
n = 4.
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3. Use the above to show that, to order h̄0,

Γ
(2)
(0)(x, y)=−δ4(x−y)(∂µ∂µ+m2), Γ

(3)
(0)(x1, x2, x3)=−gδ4(x1−x2)δ4(x2−x3),

whereas Γ
(n)
(0) = 0 for n ≥ 4. Also show that

Γ(0)[〈ϕ〉] = S[J = 0, 〈ϕ〉].

d. Show that, to 0th order in h̄, eq. (6) is just the Euler-Lagrange equation (for 〈ϕ〉).
Under what boundary conditions can you now prove eq. (4)? Finally prove eq. (2).

Remark: The above shows that Γ[〈ϕ〉] may be viewed as a quantum mechanical
generalisation of the classical action (without source term). The physical relevance
of this particular generalisation comes from eq. (6). Apparently the observable 〈ϕ〉[J ]
is governed by this generalised Euler-Lagrange equation. The quantum corrections
usually cause 〈ϕ〉[J ] 6= ϕcl[J ]. For J = 0 a symmetry often prohibits such a shift, but
for J → 0 the shift may still be possible. In such a case 〈ϕ〉[J → 0], and therefore
|0〉[J → 0], is less symmetric than ϕcl[J → 0]. This means that quantum fluctuations
can (spontaneously) break a symmetry.

17. Feynman rules for complex fields

If two real scalar fields, ϕ1 and ϕ2, are governed by the Lagrangian

L(ϕ1, ϕ2) = 1
2∂µϕ1∂

µϕ1 + 1
2∂µϕ2∂

µϕ2 − 1
2m

2(ϕ2
1 + ϕ2

2) − V (ϕ2
1 + ϕ2

2) − J1ϕ1 − J2ϕ2

then it is possible to give an equivalent formulation using the complex fields

ϕ = ϕ1+iϕ2√
2

; ϕ∗ = ϕ1−iϕ2√
2

; J = J1+iJ2√
2

; J∗ = J1−iJ2√
2

which transforms to the Lagrangian

L(ϕ, ϕ∗) = ∂µϕ∂
µϕ∗ −m2ϕ∗ϕ− V (2ϕ∗ϕ) − J∗ϕ− Jϕ∗

(see exercise 5 for the interpretation of ϕ and ϕ∗ in terms of particles and antiparti-
cles). Among the Feynman rules we now find oriented lines:

×× >
J J∗

a. Which two processes are described by this diagram?

b. Give all Feynman rules for the model with

V (2ϕ∗ϕ) = 1
4g(ϕ

∗ϕ)2.

c. For this potential write down all connected diagrams with at most two loops con-
tributing to

��
��

×× > >��
�

�
�

���
���@@

@
@

@
@@@

@@@ .
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18. Elementary scalar processes

Consider three real scalar fields (A, B, C) described by the Lagrangian

L = 1
2(∂µA∂

µA+ ∂µB∂
µB + ∂µC∂

µC −m2
AA

2 −m2
BB

2 −m2
CC

2 − gAA
2C − gBB

2C).

a. If mC > 2mA a C-particle can decay into two A-particles. To lowest order (in the
couplings) this process is associated to the Feynman diagram

p p p p p
p

p p p p p p
C

A

A

q
p1

p2 .

Determine the S-matrix element out〈p1p2|q〉in to this order (lecture notes p. 40). Also
give an expression for the decay width Γ(C → 2A). Work out this expression for a
C-particle at rest (~q = ~0).

Determine the behaviour of Γ(C → 2A) for mC ≫ 2mA, and for mC−2mA

mC
≪ 1.

Give the total width Γ(C) if mC > 2mB too. Also express the expected C-lifetime
〈τ〉 in terms of Γ(C).

b. Another possible process is the elastic scattering of two particles A and B, schemat-
ically

HHH

���

j

*

���*

HHHj
��
��
��
�

�
�

���
���@@

@
@

@
@@@

@@@

B

A

B

Ap1

p2

p3

p4 .

Write down the single diagram that contributes to this process to lowest order. Derive
expressions both for the matrix element out〈p3p4|p1p2〉in and for the differential cross
section dσ(AB → AB).

In the center of mass (CM) frame the process looks like this:

- �

��	

���
~p1 ~p2 = −~p1

~p3

~p4 = −~p3

θ

.

In this frame the differential cross section only depends on the external momenta
through p = |~p1| and θ = 6 (~p1, ~p3). Work out dσ

dΩ
(p, θ) in case of equal masses

mA = mB ≡ m. To this purpose, first prove these intermediate steps:

(i)
∫ d3~p3

E3

d3~p4
E4
δ4(p3 + p4 − p1 − p2)

CM
= p

2
√
p2+m2

∫

dΩ.

(ii) [(p1 · p2)
2 −m2

1m
2
2]

1/2 CM
= 2p

√
p2 +m2.

Calculate the total cross section σ(AB → AB) by integrating over all directions Ω.

Show that in the limit mC → ∞, while keeping λ ≡ gAgB/m
2
C constant, σ(AB →

AB) is the same as for a model with only A and B particles and interaction

Lint = −λ
4
A2B2.
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19. Lorentz transformation for spinors

- v = p3/E

x3

x′3

Σ Σ′

An electron is observed in a frame Σ, where it has velocity v along the 3-axis. It’s
rest frame is called Σ′. In Σ′ the electron’s wave function is given by

ψ′(x′) =
1√
2V ′









1
0

−1
0









e−imt
′

. (Weyl representation)

(Due to the volume factor V ′, ψ′ has a volume independent norm and one can take
V ′ → ∞.)

a. Verify that this is indeed a positive energy, zero momentum solution of the Dirac
equation. What is its spin? Transform the solution to the ‘conventional representa-
tion’ of the lecture notes p. 48.

b. The wave function ψ in the Σ-frame can be determined via a Lorentz transformation.
Show that the transformation K = (Kµ

ν) from coordinates on Σ to coordinates on
Σ′ (i.e. (x′)µ = Kµ

νx
ν) can be written as

K = e−αL
03

with

L03 =









0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0









, sinh(α) = p3

m
, cosh(α) = E

m
.

c. Show that the induced transformation of spinors is given by

S = cosh(
α

2
)1 + i sinh(

α

2
)σ03

with σµν as in the lecture notes (p. 50).

d. Determine ψ(x) = S−1ψ′(Kx) in the Weyl representation. Verify explicitly in the
Σ-frame that this is a solution of the Dirac equation with the correct momentum.
Finally transform ψ to the conventional representation.

20. Lorentz algebra vs. su(2)×su(2)

Using the property that the (Euclidean) Lorentz algebra is isomorphic to su(2)×su(2)
one can easily classify all its finite dimensional representations (su(2) is the Lie alge-
bra of SU(2)). We will analyse this situation in the present exercise.
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a. Show that the matrices Lµν defined by

(Lµν)αβ = gµαgνβ − gναgµβ ,

generate the Lorentz group (cf. part b. of the previous exercise). Furthermore prove
that

[Lµν , Lρσ] = gνρLµσ + gµσLνρ − gµρLνσ − gνσLµρ.

b. Define
J±
ℓ = 1

2(
1
2εℓjkL

jk ± iLℓ 0). (ε123 ≡ +1)

Determine all commutators [J±
i , J

±
j ] and conclude that the Euclidean Lorentz algebra

is isomorphic to su(2)×su(2).

c. It is well-known that the set of all finite dimensional representations of su(2)∼=so(3)
is given by {ρl|l = 0, 1

2 , 1,
3
2 , · · ·}, where

ρ0(Ji) = 0
ρ 1

2
(Ji) = − i

2
σi ∈ su(2)

ρ1(Ji) = Li ∈ so(3)
· · ·

For each pair (a, b) with a, b ∈ {0, 1
2 , 1,

3
2 , · · ·} an irreducible representation of the

Euclidean Lorentz algebra can now be defined:

ρ(a,b) ≡ ρa ⊗ ρb.

In particular ρ ≡ ρ( 1
2 ,0)

and ρ̄ ≡ ρ(0, 12 ) are defined through

ρ(J−
i )ψ1 = − i

2
σiψ1

ρ(J+
i )ψ1 = 0

ρ̄(J−
i )ψ2 = 0

ρ̄(J+
i )ψ2 = − i

2
σiψ2.

Subsequently we can construct the (reducible) representation ρ ⊕ ρ̄ acting on pairs
(ψ1, ψ2).

Give the action of (ρ⊕ ρ̄)(J±
i ) on (ψ1, ψ2).

d. Now derive the action of (ρ ⊕ ρ̄)(Lµν) on (ψ1, ψ2) and note that these objects are
precisely the generators − i

2
σµν in the Weyl representation (lecture notes p. 50).

21. γ algebra

The defining property of the γ-matrices γ1 · · · γ4 is

{γµ, γν} = 2gµν1 µ, ν = 0, 1, 2, 3.

Furthermore one defines γ5 ≡ iγ0γ1γ2γ3.

a. Show that
{γµ, γ5} = 0, (γ5)2 = 1.
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b. Let Tr(γµ1γµ2 · · · γµn) denote the trace over n γ-matrices (take µi ∈ {0, 1, 2, 3}).

1. Prove that such a trace equals zero for n odd. Also prove that Trγ5=0.

2. Compute
Tr(γµγν)
Tr(γµγνγ5)
Tr(γµγνγργσ)
Tr(γµγνγργσγ5)

c. Prove the following identities:

γαγµγνγργα = −2γργνγµ

γµγνγρ + γργνγµ = 1
2Tr(γαγµγνγρ)γα.

22. Majorana and Weyl fermions

a. Given any set of gamma matrices {γµ} another set is defined by

γ′µ = U †γµU, U †U = 1.

1. Take {γµ} to be

γ0 =

(

1 0
0 −1

)

, γi =

(

0 σi
−σi 0

)

(the ‘conventional representation’ on pp. 48, 51 of the lecture notes) and choose

U = σ1 ⊗ 1
2(σ1 − iσ3) + σ3 ⊗ 1

2(σ1 + iσ3) = 1
2

(

σ1 + iσ3 σ1 − iσ3

σ1 − iσ3 −(σ1 + iσ3)

)

.

Show that U is unitary and that the set {γ′µ} is given by

γ′0 = σ3 ⊗ σ2, γ′1 = −i⊗ σ3, γ′2 = iσ2 ⊗ σ2, γ′3 = −i⊗ σ1.

Note that all γ′-matrices are purely imaginary.

2. This so-called Majorana representation {γ′µ} allows us to impose the following:

ψ∗ = ψ (Majorana condition)

(with ψ = ψ(x)). Show that this is consistent with the Dirac equation.

3. Prove that the condition implies ψ̄ψ = 0.

Remark: This result is no longer valid for anticommuting ψ, ψ̄.

4. How can we interpret Majorana fermions? (charge; antiparticles?)

b. Another possible condition on fermions is

γ5ψ = ψ. (Weyl condition)

1. Use the Dirac equation to prove that necessarily m = 0.

2. Prove that Weyl fermions ω and ψ satisfy ω̄ψ = 0.
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3. The helicity operator ~Σ · k̂ (with k̂ = ~k/|~k|) is defined via Σi ≡ 1
2εijkσ

jk. Show
that in the original γ-representation of part a.1. this reads

Σi =

(

σi 0
0 σi

)

.

Also prove that (~Σ · k̂)2 = 1.

4. Show that for m = 0 the plane wave solutions of the Dirac equation can be
written as

k0 = +E : U+(~k) =

(

χ

(~σ · k̂)χ

)

k0 = −E : U−(~k) =

(

−(~σ · k̂)χ
χ

)

.

Determine the action on U± of the chirality operator γ5 and the helicity operator
~Σ · k̂. In particular show that their action is the same, up to signs.

5. Conclude that a massless spinor satisfying the Weyl condition can either describe
right-handed particles or left-handed antiparticles. Here right-(left-)handed
means having positive (negative) helicity.

Remark: from b.3. it is clear that helicity equals the (anti-)particle’s spin com-
ponent in its direction of movement. Therefore the helicity operator commutes
with the Dirac equation for any mass m, this equation being Lorentz (hence
rotation) covariant. Chirality, however, is only a good quantum number in the
massless case.

c. Is it possible to realise the Majorana and Weyl conditions simultaneously?

23. Dirac equation

We start from the Dirac action

SDirac =
∫

d4xψ̄(x)(iγµ∂µ −m)ψ(x).

a. In the lecture notes (p. 11) the energy-momentum tensor T µν has been constructed
for the (scalar) bosonic case. As this construction uses general coordinate invariance,
its generalisation to fermions is complicated (the formulation of spinors in general
relativity is involved). For this we refer to section 10 of “The spacetime approach
to quantum field theory”, by B.S. DeWitt in Relativity, groups and topology II, ed.
B.S. DeWitt and R. Stora (Norht-Holland, Amsterdam, 1984). The generalisation of
eq. (3.20) yields an energy-momentum tensor that is no longer symmetric:

T µν = ψ̄iγµ∂νψ − gµνψ̄(iγα∂α −m)ψ +
1

4
∂λ
(

ψ̄(γλσµν − γµσλν + γνσµλ)ψ
)

.

Use the equations of motion to show that ∂µT
µν = 0 and that the energy-momentum

tensor is equivalent to the following symmetric result:

T µν =
1

4

(

ψ̄iγµ∂νψ + ψ̄iγν∂µψ − (∂νψ̄)iγµψ − (∂µψ̄)iγνψ
)

.
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It is possible, however, to use only translational invariance (and of course, as always
for Noether currents, the equations of motion). This derivation is very close in spirit
to the discussion on pg. 10 and to eq. (3.20). Show that translational invariance can
be formulated in the following way:

L[ψΛ, ψ̄Λ, ∂µψΛ, ∂µψ̄Λ](x− Λ) = L[ψ, ψ̄, ∂µψ, ∂µψ̄](x), (1)

where ψΛ(x) ≡ ψ(x+ Λ) (Λ independent of x) etc.

Expand the left-hand side of eq. (1) to first order in Λ. Now use the equations of
motion, and eq. (1), to prove that ∂µT

µν = 0 for

T µν = ψ̄iγµ∂νψ − gµνψ̄(iγα∂α −m)ψ.

Also verify explicitly from the Dirac equation that ∂µT
µν = 0 is satisfied.

Show that all three definitions of the energy-momentum tensor give the same results
for H =

∫

d3~x T00 and Pi =
∫

d3~x T0i, that these quantitities are conserved and that
for a plane wave solution of the Dirac equation with momentum ~k (see section 13 of
the lecture notes) they coincide, as it should be, with the energy and momentum of

that solution, i.e. H = k0(~k) and Pi = ki.

b. Now add interactions and (external) sources:

L = LDirac − Vint + Lsource, Vint = 1
4g(ψ̄ψ)2, Lsource = −(J̄ψ + Jψ̄).

What are the corresponding Euler-Lagrange equations for ψ and ψ̄? Solve these
equations in a perturbative way, like in the scalar case (exercise 7; pp. 13–15 of the
lecture notes). In particular give the Feynman rules for the equivalent diagrammatic
expansion. For the lowest order result use the following notation:

>

< ×

×̄
J

J

ψ̄ =

ψ = ,

.

24. Canonical formalism for spinors

a. 1. On p. 54 of the lecture notes creation and annihilation operators for the Dirac
field are introduced:

ψ(x) =
∫

d3~k

(2π)3/2

1√
2k0

2
∑

a=1

(

ba(~k)u
(a)(~k)e−ikx + d†a(

~k)v(a)(~k)eikx
)

,

with k0 = +
√

~k2 +m2. Give the corresponding expression for ψ̄.

2. Postulate anticommutation relations as on p. 55:

{ba(~k), b†b(~k′)} = {da(~k), d†b(~k′)} = δabδ
3(~k − ~k′);

the remaining anticommutators are zero. Show that

{ψα(x), ψβ(y)} = {ψ̄α(x), ψ̄β(y)} = 0 and

{ψα(x), ψ̄β(y)} = (iγµ∂µ +m)αβ∆(x− y), with

∆(x− y) =
∫

d3~k

(2π)3

1

2k0

(

e−ik(x−y) − eik(x−y)
)

131



(and ∂µ = ∂/∂xµ). Compare with exercise 6 and conclude that causality is
respected.

3. Alternatively, postulate commutation relations (substitute { , } → [ , ] in above
anticommutation relations). Show that

[ψα(x), ψβ(y)] = [ψ̄α(x), ψ̄β(y)] = 0 and

[ψα(x), ψ̄β(y)] = (iγµ∂µ +m)αβ∆̃(x− y), with

∆̃(x− y) =
∫

d3~k

(2π)3

1

2k0

(

e−ik(x−y) + eik(x−y)
)

.

Conclude that causality is violated.

Remark: This result can be generalised to a theorem stating that any local quantum
field theory that respects causality admits only fermions with half integer spin and
bosons with integer spin.

b. Add a source term J̄ψ + ψ̄J to the Dirac Hamiltonian density ψ̄(−iγi∂i + m)ψ,
Jα(x) and J̄α(x) being anticommuting external fields. Expand 〈0| exp(−iHt)|0〉 up
to second order in the sources. To this purpose use the Hamiltonian perturbation
formalism (lecture notes pp. 17–20); use the properties of u, v (p. 54) and the gamma
matrices to simplify the spinor structure. Your final result should be

〈0|e−iHt|0〉eiE0t = 1 − i
∫

d4xd4yJ̄(x)GF(x− y)J(y) + · · · with

GF(x− y) =
∫

d4k

(2π)4

kµγ
µ +m

k2 −m2 + iε
e−ik(x−y).

Note that GF is precisely the classical fermion propagator of the previous exercise.

25. Anticommuting variables

In this exercise Greek letters denote anticommuting variables, ordinary letters com-
muting ones.

a. Compute the following integrals:
∫

dθ eθa,
∫

dθ
1

1 − aθ
,

∫

dθ ln(1 + θ).

b. Given the following linear relation between two sets of n independent anticommuting
variables,

ηi =
n
∑

j=1

Bijθj ,

show that (for invertible B)

dη1dη2 · · · dηn =
1

detB
dθ1dθ2 · · · dθn.

Compare this to the case of commuting variables.

Hint: Consider the most general function of n anticommuting variables, which is a
polynomial of degree n. Analyse its behaviour under integrations and linear trans-
formations on the variables.
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c. Prove that, for independent ηi, η̄j,

∫

dη1dη̄1 · · · dηndη̄neη̄iAijηj = detA.

Use this result to prove the following result, which holds for any antisymmetric matrix
A: ∫

dθ1 · · · dθne
1
2θiAijθj = ±

√
detA.

Hint: Substitute ηi = θi + iθ̄i, η̄i = θi − iθ̄i.

d. Given a smooth function f satisfying limy→∞ f(y) = 0, prove that

∫

dx1dx2dθdθ̄f(x2
1 + x2

2 + θ̄θ) = −πf(0).

26. One loop Feynman diagrams

Consider a model consisting of fermions ψ and real scalar particles ϕ with interaction

Vint = gψ̄ϕψ.

Determine the reduced matrix elements corresponding to the following diagrams (do
not work out the analytical expressions):

1. ϕ self-energy ��
��>

<

.

2. ψ self-energy > > > .

3. vertex correction ��
@@

>

< .

27. Compton scattering for pions

At not too high energies the pion-photon interaction is well approximated by scalar
QED:

L = − 1
4FµνF

µν + (∂µ − ieAµ)ϕ
∗(∂µ + ieAµ)ϕ−m2ϕ∗ϕ.

The pion (π−) is described by the complex scalar field ϕ, the photon (γ) by the vector
field Aµ (Fµν = ∂µAν − ∂νAµ).

a. Show that the 3 point vertex is given by

@
@@

�����
>

p -
q

@@R

µ
= e(pµ + qµ),

and give the other Feynman rules in the Lorentz gauge.

b. Which Feynman diagrams contribute, to order e2, to π−γ → π−γ elastic scattering?
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c. The initial and final photon states are plane waves:

εin
µ (~k)e−ik

ixi

√

(2π)32k0

resp.
εout
µ (~k′)e−ik

′ixi

√

(2π)32k′0
.

Express the reduced matrix element for the scattering process, to order e2, in terms of
the polarisation vectors εin,out and the external momenta. Use the following notation:

�
�

�

@
@

@

������
������

��
��
��
�

�
�

���
���

p′

@@R
p

���

k′
���k

@@R
εin
µ (~k) εout

ν (~k′)

d. Using the result of part c. prove (to order e2) that the S-matrix vanishes whenever

the initial or final photon is longitudinal (i.e. εµ(~k) ∼ kµ). Explain which property
of the model is responsible for this.

e. Give all Feynman diagrams that are needed for an order e6 calculation of the cross

section. Which of them are UV divergent, i.e. which give rise to expressions that
diverge due to integrations over large momenta?

28. Elementary fermionic processes

Let us reconsider the situation in exercise 18, with the bosonic fields A and B replaced
by fermionic fields ψA and ψB . The Lagrangian now is

L = 1
2∂µC∂

µC− 1
2m

2
CC

2+ψ̄A(i 6∂−mA)ψA+ψ̄B(i 6∂−mB)ψB−gAψ̄ACψA−gBψ̄BCψB.

a. For mC > 2mA, C can decay into A and anti-A according to the diagram

�
�

�

@
@

@

q -

p2

@@R

p1
���

.

Determine like in exercise 18a. the S matrix element and the decay width Γ, which
now are functions of the fermion spins. Perform a summation over all possible spins
to obtain the expected lifetime of C.

Hint: some properties of the u and v spinors (lecture notes p. 54) are very useful
here.

b. Scattering of A and B is described by

�
�

@
@

@
@

�
�B B .

A A

Write down the analytic expression for the corresponding S matrix element.
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Now assume that mA = mB and work in the CM frame. Determine the differential
cross section dσ(AB → AB). Average over the incoming spins and sum over the
outgoing spins. For which experimental situation is this justified?

Work out your result as a function of the CM variables |~p| and θ. As a check it is
given that dσ/dΩ is spherically symmetric for mC = 2mA.

29. e−e+ collisions in QED

The QED Lagrangian with two flavours, electrons and muons, reads

L = − 1
4FµνF

µν − 1
2αgauge(∂µA

µ)2 +
∑

f=e,µ

ψ̄f(iγ
µDµ −mf)ψf ,

where Dµ = ∂µ − ieAµ (lecture notes p. 74).

a. e−e+ → e−e+ (Bhabha scattering).

Which two diagrams contribute to lowest order?

In the lecture notes the Møller (e−e− → e−e−) differential cross section is calculated.
Perform an analogous calculation to obtain (in the CM frame)

dσ

dΩ
(e−e+ → e−e+) =

α2

16E2

{

(2E2 −m2)2

(E2 −m2)2 sin4(θ/2)
+

−8E4 +m4

E2(E2 −m2) sin2(θ/2)

+
12E4 +m4

E4
− 4(2E2 −m2)(E2 −m2) sin2(θ/2)

E4
+

4(E2 −m2)2 sin4(θ/2)

E4

}

,

where α = e2/4π, m = me; E and θ are the CM variables for the energy of the
incoming electron resp. the angle between the in and outgoing electrons.

Note that unlike in the Møller case there is no divergence at θ = π. What is the
reason for this?

b. e−e+ → µ−µ+.

How many diagrams contribute to lowest order?

Show that in the CM frame, and in the limit me/E,mµ/E → 0,

dσ

dΩ
(e−e+ → µ−µ+) =

α2

16E2
(1 + cos2 θ).

Calculate the total cross section. Use dimensional analysis to express your result in
units h̄, c 6= 1.

30. Weak interaction in the standard model

The Lagrangian given below describes a simplified version of the standard model.
This simplification, which only contains fermions ψ and massive vector bosons Wµ,
captures the mechanism through which the standard model gives rise to an effective
4-fermion interaction.

L(Wµ, ψ) = − 1
4FµνF

µν + 1
2M

2WµW
µ + ψ̄(iγµ∂µ −m)ψ + gWµ(ψ̄γ

µψ)

with Fµν = ∂µWν − ∂νWµ.
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a. Give the Feynman rules.

b. We restrict ourselves to tree diagrams which satisfy two conditions: 1. all external
lines are fermionic; 2. p2 ≪ M2 for all momenta pµ. Show that such diagrams can
effectively be described by

Leffective(ψ) = ψ̄(iγµ∂µ −m)ψ − λ

(2!)2
(ψ̄γµψ)(ψ̄γµψ)

and express the parameter λ in terms of g and M .

31. Gauge fields

In this exercise we use the following gauge field conventions (cf. lecture notes):

Aµ = qAaµT
a Fµν = qF a

µνT
a [T a, T b] = fabcT

c

Tr(T aT b) = − 1
2δab Dµ = ∂µ + Aµ Fµν = [Dµ, Dν ] = ∂µAν − ∂νAµ + [Aµ, Aν ],

where {T a} spans a matrix representation ρ(LG) of the Lie algebra. Note that we
absorb the coupling q in Aµ.

a. Notation: X, Y, Z stand for arbitrary elements of the Lie algebra ρ(LG).

In the lecture notes the generators of the adjoint representation are defined as

(adT a)bc = −fabc.

Show that this representation can be thought of as acting on the Lie algebra itself,
in the following way:

(adT a)Y = [T a, Y ].

Also prove from this formula that X → adX indeed is a representation of the Lie
algebra, i.e. prove that it is a linear map, satisfying

(ad[X, Y ]) = [(adX), (adY )].

Hint: work out (ad[X, Y ])Z, using the Jacobi identity [X, [Y, Z]]+cyclic= 0 (which
can be seen to hold trivially by expanding the commutators).

Finally prove that

eadXY = eXY e−X .

This means that the adjoint representation of the group G is a conjugation. Therefore
gauge transformations act on the field strength through the adjoint group represen-
tation (as Fµν → gFµνg

−1, lecture notes p. 87).

b. Define D(ad)
µ X ≡ (adDµ)X = [∂µ + Aµ, X] = (∂µX) + [Aµ, X]. Prove that

D(ad)
µ D(ad)

ν F µν = 0.

Hint: What is [D(ad)
µ , D(ad)

ν ]?
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c. The gauge invariant Lagrangian for a fermion field coupled to a dynamical SU(N)
gauge field is (lecture notes pp. 86, 87)

L = ψ̄(iγµDµ −m)ψ +
1

2q2
Tr(FµνF

µν) =

= ψ̄(iγµ∂µ −m)ψ +
1

2q2
Tr(FµνF

µν) +
2

q2
Tr(JµAµ) with

Jµ = qJµaT a, Jµa = −iqψ̄γµT aψ.

Derive the Euler-Lagrange equations:

D(ad)
µ F µν = Jν (1)

(iγµDµ −m)ψ = 0 (2)

Show from eq. (1) that
D(ad)
µ Jµ = 0.

Show that this equation follows from eq. (2) as well.

d. Use the Jacobi identity to prove the Bianchi identity:

D(ad)
µ Fνρ + cyclic = 0.

Show that for electromagnetism (G =U(1)) this gives the homogeneous Maxwell
equations.

32. Dirac equation with gauge fields

a. By construction the Klein-Gordon equation is obtained from the free Dirac equation
in the following way:

0 = −(iγµ∂µ +m)(iγν∂ν −m)ψ = (∂2 +m2)ψ.

Analogously prove from the Yang-Mills Dirac equation (problem 31c. eq. (2)) that

(D2 +m2 − i
2
σµνFµν)ψ = 0. (1)

b. Now specify to electromagnetism,

T = i, q = −e, Fµν = ∂µAν − ∂νAµ etc.

Choose the gauge A0 = 0 and turn off the electric field by assuming that ∂t ~A = ~0.
Show that eq. (1) reduces to

(D2 +m2)ψ + e

(

~σ · ~B 0

0 ~σ · ~B

)

ψ = 0.

Write ψ =
(

ψG

ψS

)

and define the 2-spinor ψsch to be

ψsch = eimtψG
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(subtraction of the rest energy from the Hamiltonian). Show that1

− 1

2m

∂2

∂t2
ψsch + i

∂

∂t
ψsch =





(~p+ e ~A)2

2m
+

e

2m
(~σ · ~B)



ψsch.

Show that in the non-relativistic limit this equation simplifies to the well known
Schrödinger equation for an electron in a magnetic field, i.e.















i
∂

∂t
ψsch = Hψsch

H =
1

2m
(~p+ e ~A)2 +

e

2m
(~σ · ~B).

33. Linear sigma model

The Lagrangian for the linear sigma model reads

L = 1
2 [∂µ~ϕ · ∂µ~ϕ+ ∂µσ∂

µσ] + 1
4µ

2[|~ϕ|2 + (σ + v)2] − g[|~ϕ|2 + (σ + v)2]2,

where ~ϕ is the pion field (3 real components), σ is the sigma field (1 real component),
v a constant and µ, g are real positive parameters.

a. Show that this Lagrangian contains a linear term ασ and express α in terms of µ, g
and v. What is the Feynman rule for such a term?

For α 6= 0, this Feynman rule makes the perturbative approach unnecessarily compli-
cated. Argue that this complication is avoided when v is such that ~ϕ = ~0 and σ = 0
corresponds to the minumum of the potential associated to the Lagrangian.

Determine v, and show that the ~ϕ and σ masses are 0 resp. µ.

b. Show that the Lagrangian is invariant under the global infinitesimal (isospin) trans-
formations

δΛσ(x) = 0, δΛϕi(x) = −εijkΛjϕk(x), (1)

and also under the global transformations

δξσ(x) = −~ϕ(x) · ~ξ, δξ ~ϕ(x) = (σ(x) + v)~ξ . (2)

Now write eqs. (1,2) in matrix notation w.r.t. the 4-component vector ϕµ(x) by defin-
ing ϕ4(x) ≡ σ(x) + v (i.e. write δΛϕµ(x) = ΛiL

i
µνϕν(x), resp. δξϕµ(x) = ξiK

i
µνϕν(x)

for suitably defined 4× 4 matrices Li and Ki). Prove that Li and Ki span the space
of real antisymmetric 4 × 4 matrices.

Conclude that eqs. (1,2) are in fact infinitesimal SO(4) transformations. Verify this
by showing that the Lagrangian, written in terms of the 4-component vector ϕµ, is
manifestly SO(4) invariant.

c. Give the Noether currents associated to eqs. (1,2)

1Please note: To respect covariance pk = −i∂/∂xk, whereas pk = −i∂/∂xk or ~p = (p1, p2, p3) = −i~∇
as used in non-relativistic quantum mechanics.
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34. Higgs mechanism

We consider a model with real scalar fields ϕi and vector fields Aiµ, i = 1, 2, 3. These
fields transform in the fundamental representation of an internal group SO(3), with
generators

(T i)jk = −ǫijk i, j, k = 1, 2, 3.

In particular the covariant derivative and field tensor read

(Dµϕ)i = ∂µϕ
i − gǫkijA

k
µϕ

j ,

F i
µν = ∂µA

i
ν − ∂νA

i
µ + gǫijkA

j
µA

k
ν .

The Lagrangian is taken to be

L = − 1
4F

i
µνF

µνi + 1
2(Dµϕ)i(Dµϕ)i − V (|~ϕ|2) with potential

V (|~ϕ|2) = λ
4
[|~ϕ|2 − F 2]2, λ, F > 0.

The (0-loop) vacuum expectation value (vev) of the scalar fields is chosen to be

〈~ϕ(x)〉 = ~F ≡
(

0
0
F

)

(F constant).

a. Explain why this is a valid choice for the vev. Show that this vev is invariant under
a 1-dimensional subgroup of SO(3).

b. Define ϕ̃i = ϕi − F i, and expand the Lagrangian in terms of ϕ̃i and Aiµ. Note that
the quadratic part of the Lagrangian contains off-diagonal elements (mixing A and
ϕ̃). In general such terms can be handled by diagonalisation (redefining A and ϕ̃
in terms of each other in an appropriate way), but anticipating the gauge choice in
part c. you may neglect them here.

Interpret the various terms (mass terms, kinetic terms, interaction terms). Give the
masses for the fields Aiµ and ϕ̃i (i=1,2,3), and also the couplings for the following
3-vertices:

@
@@

�
��

ϕ̃2

ϕ̃3

ϕ̃2

�����
�����

ϕ̃3

A1
µ

A1
ν

c. Show that we can choose the gauge such that

ϕ̃1 = ϕ̃2 = 0.

Does this completely fix the gauge?

This model contains 9 physical degrees of freedom (dof). Read off from the quadratic
terms how in the above gauge these physical dof are distributed over the fields.

d. Reconsider the situation for a different potential, V (|~ϕ|2) = 1
2m

2|~ϕ|2. What is the ~ϕ
vev in this case? Read off the number of physical dof again (ϕ1 = ϕ2 = 0 is not a
convenient gauge choice now. Why?).
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35. Higgs effect and ghosts

Take the model in the previous exercise and add the following gauge fixing term to
the Lagrangian:

Lgauge = −α
2
F2
a , Fa = ∂µA

µa − g

α
ǫabcF

bϕc.

a. Expand L + Lgauge up to quadratic terms in Aaµ and ϕ̃a ≡ ϕa − F a. For convenience
choose F a = Fδa3, as in the previous exercise. Show that due to the special gauge
choice, the quadratic terms mixing A and ϕ̃ cancel among L and Lgauge.

b. Determine how Fa transforms under infinitesimal local gauge transformations ϕ →
Ωϕ; Aµ ≡ AaµT

a → ΩAµΩ
−1 + g−1Ω∂µΩ

−1 with Ωij = (exp(ΛaT a))ij = δij − Λaǫaij ,
and write the result as δFa = MabΛ

b (cf. lecture notes pp. 90, 91). Read off the ghost
masses.

c. Determine the vector, scalar and ghost propagators as a function of α. Which limits
correspond to the transversal gauge (∂µA

µa = 0) and the unitary gauge (ϕ̃1 = ϕ̃2 = 0,
as in part c. of the previous exercise)?

d. Which poles in the propagators correspond to physical masses? Check that unphysical
poles always coincide mutually, and argue why this is necessary.

36. Elektroweak interactions in the standard model

If ψ is an SU(2) doublet and has U(1) hypercharge − 1
2Y g

′, its covariant derivative
reads (for SU(2) generators −iσa/2 and U(1) generator i)

Dµψ = ∂µψ − 1
2 igσaW

a
µψ − 1

2 iY g
′Bµψ.

It is given that the fermion fields eL, eR (electron), ν (neutrino), uL, uR, dL, dR (up
and down quarks) have the following SU(2)×U(1) properties:

ψLe =
(

ν
eL

)

doublet Y = −1

ψRe = eR singlet Y = −2

ψLq =
(

uL

dL

)

doublet Y = + 1
3

ψRu = uR singlet Y = + 4
3

ψRd = dR singlet Y = − 2
3

Furthermore, we reformulate the gauge fields:

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ ),

Zµ = −W 3
µ cos θW +Bµ sin θW , Aem

µ = W 3
µ sin θW +Bµ cos θW ,

and σ± = σ1 ± iσ2.

a. Write the covariant derivative of ψLe and ψRe in terms of W±
µ , Zµ, A

em
µ and σ+, σ−, σ3.
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b. We require the interaction between the electron fields eL, eR and the photon field Aem
µ

to be the same as in quantum electrodynamics (QED). Derive from this requirement
two relations between g, g′, θW and the electron charge −e.

c. Work out the relevant covariant derivatives to determine the electromagnetic charge
of the neutrino and the up and down quarks. Also analyse the electromagnetic
properties of the fields W±

µ and Zµ. Discuss the particle interpretation of the complex
fields W±

µ .

d. The Lagrangian of the standard model contains a.o. the following terms:

iψ̄Le γ
µDµψ

L
e + iψ̄Re γ

µDµψ
R
e .

Determine from this all possible 3-vertices of type
@@
�����> , where ���������� stands for

W+
µ ,W

−
µ or Zµ, and > for eL, eR or ν.

e. The standard model allows for the process W− → eL + ν̄. It is given that the decay
rate Γ0 equals

Γ0 ≡ Γ(W− → eLν̄) =
1

48π
g2MW

(MW is the mass of W−, the masses of eL, eR and ν are neglected). Use your results
from part d. to express the decay rates Γ1 ≡ Γ(Z → eRēR) and Γ2 ≡ Γ(Z → νν̄) in
terms of Γ0 and θW .

f. Show that
Γ(Z → eLēL) 6= Γ(Z → eRēR)

and interpret this result.

37. LEP experiment

Since 1989 CERN has been operating the “Large Electron-Positron” (LEP) collider, a
ring with a circumference of 27 km. Electrons (e−) and positrons (e+) are accelerated
in opposite directions, each reaching an energy (E) of about 45 GeV. The CM energy
(2E) in a collision is comparable to the mass of the neutral vector boson Z that was
encountered in the previous exercise. From Heisenberg’s uncertainty relation it is
then clear that a Z-boson created in the collision can exist for a relatively long time.
This gives rise to a so-called resonance in the electron-positron cross section. In the
present exercise we will analyse this phenomenon for the process e+e− → µ+µ−.

The following part of the standard model Lagrangian (in the unitary gauge) suffices
for a leading order calculation:

L = − 1
4(∂µZν − ∂νZµ)(∂

µZν − ∂νZµ) + 1
2M

2
ZZµZ

µ +

+
∑

f=e,µ

{

ψ̄f(iγ
µ∂µ −mf )ψf −

e√
3
ψ̄fZµγ

µγ5ψf

}

.

In this Lagrangian the spinor field ψe(µ) describes the electron (muon) with mass
me(µ) =0.511 MeV (105.7 MeV), while the Z-particle (with mass MZ =91.2 GeV)
is described by the vector field Zµ. For convenience the Weinberg angle θW has
been approximated (sin2 θW = 0.25 instead of sin2 θW = 0.23). As can be seen from
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part d. of the previous exercise this considerably simplifies the interaction between
the Z-particle and the fermions. The Feynman rules now are

����������k
µ ν =

−(gµν − kµkν

M2
Z

)

k2 −M2
Z + iǫ

, >
k

b a =
(mf + γµkµ)ab
k2 −m2

f + iǫ
,

@@
�����>
µ

a
b =

e√
3
(γµγ5)ab.

a. Give all Feynman diagrams and the S-matrix for e+e− → µ+µ− via a Z-particle. Also
give the Feynman diagrams for e+e− → e+e− via a Z-particle.

b. Prove from the Dirac equation that ūs1(p)γµvs2(q)(pµ + qµ) = 0 and the same for
u ↔ v. Here us(p) (vs(p)) is a Dirac spinor describing a particle (anti-particle) with
arbitrary spin s. For QED, explain why these equalities are related to U(1) gauge
invariance.

c. Show like in part b. that ūs1(p)γµγ5v
s2(q)(pµ + qµ) = 2mf ū

s1(p)γ5v
s2(q) and derive

an analogous formula for u↔ v. Here mf stands for the fermion mass.

d. The typical energy scale in the LEP experiment is MZ . This means that me and mµ

can be neglected. Show that this implies that in part a. the Z-propagator can be
replaced by

−gµν
k2 −M2

Z + iǫ
.

e. In the lecture notes (pp. 39, 46) it is explained that quantum corrections modify the
propagator. Show for the present case that the Z-propagator will be modified to

−ZZgµν
k2 −M2

Z + iMZΓZ + iǫ

(ZZ =Z’s wavefunction renormalisation; ΓZ =Z’s total decay rate).

To a good approximation the k−dependence of ΓZ may be neglected near the res-
onance. Furthermore, O(e2) corrections to ZZ will be neglected too, i.e. we take
ZZ = 1. Why is ΓZ 6= 0?

f. In your calculation below you may (or rather should) use the result from exercise 29b,
namely that in QED the total cross section for e+e− → µ+µ− (i.e. via a photon) equals
πα2

3E2 . Here α is the fine structure constant, the fermion masses are neglected, and the
incoming particles are not polarised.

Show that the total cross section σ for e+e− → µ+µ− via a Z-particle equals, for
unpolarised electron-positron bundles and in the approximations discussed before,

σ =
1
3πα

2(4E/3)2

((2E)2 −M2
Z)2 +M2

ZΓ2
Z

.

Remark Since ΓZ ≪ MZ (see below) it is clear from the above formulas that near
the resonance photon “exchange” can be neglected. Also Higgs “exchange”, possible
in the standard model, is negligible, as the coupling between the Higgs particle and
fermions is proportional to mf/MZ (≪ e).
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g. The figure on the first page of the lecture notes shows the LEP data (in the figure
Energy=2E). Explain this plot qualitatively from your calculations, and extract ΓZ .

Note that each fermion anti-fermion pair, into which the Z-particle can decay will
give a positive contribution to ΓZ . As also neutrinos contribute, one has been able
to determine the existence of precisely three (light) neutrino types.

38. 1 loop calculation with scalar fields

A model with scalar fields ϕ0, ϕ1 and ϕ2 is described by the Lagrangian

L = 1
2(∂µϕ0∂

µϕ0 +∂µϕ1∂
µϕ1 +∂µϕ2∂

µϕ2−m2
0ϕ

2
0−m2

1ϕ
2
1−M2ϕ2

2−λ0ϕ0ϕ
2
2−λ1ϕ1ϕ

2
2),

with M ≫ m1 > 3m0.

a. Even though there is no direct interaction between ϕ0 and ϕ1, the model gives rise
to diagrams with only external ϕ0 and ϕ1 lines. Clarify this statement by drawing
some diagrams contributing to the processes ϕ1 → ϕ0ϕ0ϕ0 and ϕ1ϕ0 → ϕ1ϕ0. Use
the following notation for the propagators:

ϕ0 ϕ1 ϕ2

b. Consider the diagram

ϕ1 �
�

�
�

@
@

@
@

ϕ0

ϕ0

→ q

→ q′

→ q′′ = q − q′

↓ p− q′

���
p

@@Rq − p

Give the associated S-matrix element without working out the d4p integration yet.

c. The S-matrix element contains the following expression:

g(q, q′) =
∫ d4p

(2π)4

iλ1λ
2
0

(p2 −M2 + iε)((p− q)2 −M2 + iε)((p− q′)2 −M2 + iε)
.

Argue that g(q, q′) can be viewed as the effective coupling constant for the leading
order contribution to the process ϕ1 → ϕ0ϕ0. Do you expect g(q, q′) to be real or
complex?

d. Compute g(q, q′) with the techniques introduced in the lecture notes pp. 101–103:
write g(q, q′) as an integral over a function of the form In,α,β(m̃). To this purpose use
a Wick rotation, the Feynman trick and a shift of the integration variable p. Write
the relevant function In,α,β(m̃) in terms of Gamma functions.

e. Assuming q, q′, q′′ on-shell, compute q2, q′2 and q · q′, and observe that these scalars
are much smaller than M2. Use this observation to expand your result from part d.
in terms of 1/M2. In this way show that

g(q, q′) =
g0

M2
+
c0m

2
0

M4
+
c1m

2
1

M4
+ O

(

m4

M6

)

and calculate g0, c0, c1.
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39. Vacuum polarisation and Pauli-Villars regularisation

QED, quantum electrodynamics, is the field theory of minimally coupled photons and
electrons. Their fields are a U(1) vector field Aµ and a spinor field ψ(x), governed
by the Lagrangian

LQED[A,ψ] = Lphoton + Lelectron + Lint =

= − 1
4FµνF

µν + ψ̄(iγµ∂µ −m)ψ + eAµ(ψ̄γ
µψ).

Choosing the Landau gauge (α→ ∞, lecture notes p. 17) the 2-point function reads
to 0th order

����������q
µ ν ≡ Π(0)

µν (q) = (−i)
(

−1

(q2 + iε)2
[q2gµν − qµqν ]

)

.

(the propagator equals iΠ(0)
µν (q), cf. exercise 13). We are interested in the leading

correction to iΠ(0)
µν (q), the so-called vacuum polarisation:

�����������
→ q

µ ρ��
��>

<

�����������→ q

σ ν ≡ Π(1)
µν (q).

→
1
2q + p

→
1
2q − p

a. Show that
Π(1)
µν (q) = Π(0)

µρ (q)ω
ρσ(q)Π(0)

σν (q),

with

ωρσ(q) = − e2

(2π)4

∫

d4pTr

(

γσ
m+ γ · ( 1

2q + p)

( 1
2q + p)2 −m2 + iε

γρ
m+ γ · (p− 1

2q)

(p− 1
2q)2 −m2 + iε

)

.

Note that this expression is divergent.

b. Compute the trace in the above expression using your results from exercise 21.

N.B. Throughout the present exercise do not assume q on-shell.

c. Show that qρω
ρσ(q) = 0 (strictly speaking this is only valid after regularisation as in

part e.). From this conclude that ωρσ(q) takes the form

ωρσ(q) = ω(q2)(q2gρσ − qρqσ).

d. Determine the scalar function ω(q2) by contracting the above expression with gρσ.

e. The result in part d. contains a divergent d4p integration. This divergence will now
be regularised by the method of Pauli-Villars. In this method attention shifts from
ω(q2, m) ≡ ω(q2) to the sum

ω̄(q2) ≡
∑

s≥0

Csω(q2, ms),

where C0 = 1 and m0 = m. Here the sum should be performed before doing the d4p
integration.
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Show that ω̄(q2) is of the form

ω̄(q2) =
∫

d4p
∑

s

Cs
P2 +m2

sP0

P̃4 +m2
sP̃2 +m4

sP̃0 + iε
,

where Pn and P̃n are polynomials of degree n in p and of arbitrary degree in q;
furthermore they are independent of ms.

Expand the quotient Is (appearing within the sum and integration in ω̄(q2)) for large
values of p2:

Is = Cs
P2

P̃4

+ Csm
2
s

[

P0

P̃4

− P2P̃2

P̃ 2
4

]

+ O(p−6).

Show that the conditions
∑

sCs = 0,
∑

sCsm
2
s = 0 guarantee that ω̄(q2) is given by

a convergent integral.

Remark: Closer inspection shows that the second term in Is is only of order p−6.
The naive conclusion that the condition

∑

sCsm
2
s = 0 is superfluous is wrong, as the

cancellation of the p−4 contribution does not take place at the level of ωρσ. Hence
leaving out the second condition makes the derivation in part c. invalid.

f. A solution to the conditions is

C0 = 1 C1 = 1 C2 = −2

m2
0 = m2 m2

1 = m2 + 2Λ2 m2
2 = m2 + Λ2

for arbitrary Λ2. Show that for this choice ω̄(q2) gives the same vacuum polarisation
as a model consisting of the photon field and the following fields:

(mass)2 statistics
ψ0 m2 Fermi
ψ1 m2 + 2Λ2 Fermi
ψ2 m2 + Λ2 Bose
ψ3 m2 + Λ2 Bose

with a Lagrangian

L = Lphoton +
3
∑

s=0

ψ̄s [iγµ(∂µ − ieAµ) +ms]ψs.

g. Remark
The situation in part f. describes the regularised theory. To return to the true theory
we would like to eliminate the fields ψ1,2,3 by pushing their masses to infinity, i.e. by
taking the limit Λ2 → ∞. However, careful inspection shows that ω̄(q2) diverges as
a function of Λ2:

ω̄(q2,Λ2)
Λ2→∞∼ log

(

Λ2

m2

)

.

This divergence can be absorbed in a wavefunction renormalisation, which will never
appear in physical quantities.
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40. Beta decay of the neutron

Through the weak interactions a neutron (N) can decay in a proton (P ), an electron
(e) and an anti-neutrino (ν̄e). At quark-level this so-called beta decay reads d →
u+ e+ ν̄e. The following interaction term in the Lagrangian of the Standard Model
is relevant to this decay:

Lint =
g√
2

(

W−
µ ψ̄

L
d γ

µψLu +W−
µ ψ̄

L
e γ

µψνe + h.c.
)

(h.c. =hermitian conjugate, ψL = 1−γ5
2
ψ).

a. Give the lowest order Feynman diagram for the above process (for quarks).

b. Show that if the external momenta are much smaller than the W-boson mass MW ,
we can just as well consider the effective interaction

Leff
int = − G√

2

(

ψ̄dγ
µ(1 − γ5)ψuψ̄νeγµ(1 − γ5)ψe

)

+ h.c. (1)

and express the so-called Fermi-constant G in terms of g and MW .

c. Prove that Seff
int =

∫

d4xLeff
int is not invariant under parity.

d. Since the proton and neutron are built out of 3 quarks (N = ddu, P = uud), one can
derive from eq.(1) an effective Lagrangian for neutron decay.

L̃eff

int = − G√
2

(

ψ̄Nγ
µ(1 − αγ5)ψP ψ̄νeγµ(1 − γ5)ψe

)

+ h.c. (2)

Through QCD-effects α will deviate from 1. In good approximation one has α = 1.22.
Give the reduced matrix element M for the decay of the neutron. Use the following
conventions for the momenta (p, ki) and spins (s, ti):

�
�

�

@
@

@

@
@

@

�
�

�

@@I

���

���

@@R

k1, t1
k2, t2

k3, t3
p, s

P e

ν̄eN

e. During the beta decay of the neutron, which is assumed at rest, only the momentum
of the electron (~k2) is measured. Using a magnetic field the spin of the neutron is
aligned along the positive z-axis.
Give the expression for the spinor uN for this polarisation and prove that

∑

t1,t2,t3

|M|2 =
G2

2
ūNγ

µ(1 − αγ5)( 6k1 +mP )γν(1 − αγ5)uN ·

·Tr (( 6k2 +me)γν(1 − γ5) 6k3γµ(1 − γ5)) . (3)

Here me, mP and mN are the masses of resp. the electron, proton and neutron. We
work in the limit mN → ∞, mP → ∞, but we keep ∆m = mN −mP fixed.
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f. Show that in this limit

ūNγ
µ(1−αγ5)( 6k1 +mP )γν(1−αγ5)uN = 4m2

P

(

cµgµν − α(δµ0 δ
ν
3 + δµ3 δ

ν
0 ) − iα2ε0µν3

)

,

with cµ = 1 for µ = 0 and cµ = −α2 for µ = 1, 2, 3; ε0123 = −1, εµνρσ completely
antisymmetric; g is the metric diag(1,−1,−1,−1).
Prove that the ‘partial’ decay width is given by

dΓ↑ = f(|~k2|)


1 − 2α(α− 1)

1 + 3α2

|~k2|
(k2)0

cos θ



 d3k2, (4)

where θ is the angle with the positive z-axis, along which the electron is detected.
Hint: Prove first that in the limit mN , mP → ∞ conservation of energy implies that

∆m = |~k3| +
√

m2
e + |~k2|2.

g. Explain why the unpolarised partial decay width is given by

dΓ̄ = f(|~k2|)d3k2 ?

Compute from this the life-time of the neutron in the approximation thatme/∆m = 0
(in reality me/∆m ≈ 0.4, which leads roughly to a correction with a factor 2). In
units where h̄ = c = 1, you may use that
∆m = 2.0 · 1021s−1,
mP

∆m
= 7.3 · 102,

G = 1.0 · 10−5m−2
P .

h. Already in 1957 (breaking of) invariance under parity in the weak interactions was
tested. Free neutrons are experimentally hard to handle. This is why a piece of
Cobalt (Co60) was used, whose nucleus changes under beta decay into Nickel (Ni60).
Schematically the following result was obtained:

Cobalt

6
~B

?

6

-�

@
@R

�
�	

���@@I

ee

e

e ee

ee

(that is a bigger electron flux in the direction of − ~B than in the direction of ~B, where
~B is the applied magnetic field).
Argue why this experiment demonstrated the violation of invariance under parity
transformations.
Note: Nuclear complications make the precise computations for Co60 rather more
difficult than those for a free neutron. The result is nevertheless given by eq.(4),
but with appropriately modified α. For the above question this is not relevant;
To conclude that parity invariance (mirror symmetry) is broken, the details of the
underling theory are not required.
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