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Het verdient aanbeveling aan stoffen waarvan bekend is dat zij in zeer goede
benadering als Ising-systemen kunnen worden beschouwd experimenten te ver-
richten waarbij het kritische gedrag wordt bestudeerd in gevallen waarin de
stof gelijktijdig aan temperatuurveranderingen en aan een grote uitrekking

is onderworpen.

De initi&le susceptibiliteit van een Ising-systeem op een Cartesisch rooster
waarin de koppelingsconstante voor naaste buren langs één roosteras negatief
en in absolute waarde veel groter is dan de andere koppelingsconstanten, Kkan
in een geschikt gekozen temperatuurgebied zeer goed worden benaderd door een
uitdrukking die alleen de spin-spin correlatiefunctie voor naaste buren langs
de eerstgenocemde roosteras bevat.

Dit proefschrift, hoofdstuk IV.

Bij de gangbare uitspraak dat de Bethe-Peierls benadering voor een Ising-
systeem op een gegeven rooster equivalent is met de exacte theorie voor een
zgn. Bethe-rooster met hetzelfde codrdinatiegetal als het oorspronkeli jke
rooster gaat men ten onrechte voorbij aan het feit dat het begrip thermo-
dynamische limiet niet goed is gedefini€erd voor een Bethe-rooster (behalve
in het geval van de lineaire keten). Bedoelde uitspraak is slechts correct
wanneer men uitgaast van het oneindige Bethe-rooster, en daarvoor thermo-
dynamische grootheden per punt definiert in termen van grafische reeksen.

C. Domb, Advances in Physics 9 (1960) 283.

Bij de gebruikelijke afleiding van de relatie tussen de initigéle suscepti-
biliteit enerzijds en alle spin-spin correlatiefuncties anderzijds voor een
Ising-systeem boven de kritische temperatuur wordt impliciet wverondersteld
dat de oneindige sommatie over alle roosterpunten en de limiet H=>0, waarbij
H het uitwendige magneetveld is, verwisseld mogen worden.
M.E. Fisher in: Lectures in Theoretical Physics, Vol. VIIC,
W.E. Brittin, ed., The University of Colorado Press

(Boulder 1965), p. T2.



5. Voor een willekeurig Ising-systeem met slechts twee-deeltjes interacties
geldt bij afwezigheid van een uitwendig magneetveld de volgende ongelijkheid

voor spin-correlatiefuncties:

<0105030,050> - <0p032<010,0506> = <020 ><0103050> -
- <13255><U 1930y06> = <D3OL*><01020506> = <0305><0:10,0,,05> =

= <0305><0102030g> + <0105><02030,05> < 0.

6. Aan de hand van een eenvoudige topologische overweging kan men inzien dat
de uitdrukking voor het kritische punt van het random-cluster model op het

kwadratische rooster voor zeer grote waarden van de model-parameter k van
1
de vorm 1-p ~k ° is, waarbij p de kans voor "realisatie" van een 1lijn is
r{.. 2

en p_ de kritische waarde van p.
c

T. Bij een stochastische wandeling op een lineaire keten waarin iedere lijn een
kans p heeft om (permanent) defect te zijn, is het gemiddelde aantal stappen

dat een wandelaar aflegt totdat hij voor het eerst een defecte lijn treft
g

gelijk aan p ~ - 13 hij heeft dan gemiddeld van p -1 lijnen gebruik ge-

maakt.

8. Voor een systematische analytische bestudering van vibratiespectra van on-
geordende ketens is de ontwikkeling van een theorie over stochastische pro-
dukten van niet-commuterende 2x2-matrices zeer gewenst, mede gezien het feit
dat de (spaarzame) tot nu toe verkregen exacte resultaten alle zijn afgeleid

via beschouwingen van zulke produkten.

)

3. De in de economie gebruikelijke methode van input-—-output tabellen en
is zeer geschikt voor een kwantitatieve studie van de fosfaatbalans in het

oppervlaktewater.

Stellingen behorende bij het proefschrift van C.A.W. Citteur.
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INTRODUCTION AND SURVEY

Much attention has, especially during the last decade, been given to the way
in which the critical behaviour of a physical system depends on the various
properties of the Hamiltonian of the system. On the basis of such investigations
one has arrived at the conclusion that critical behaviour depends on only a few
"global" properties of a system, such as its dimensionality, the question as to
whether the range of the interactions is finite or not (and if not, how the
interactions decrease with the distance), and the symmetry properties of the
Hamiltonian. In contrast to this, the details of the Hamiltonian, such as the
values of the parameters indicating the strength of the interactions, seem to
have no influence on the critical behaviour. One often refers to this feature

of critical behaviour as universality.

In this thesis we are concerned with the status of this universality in the
case of spin-3 Ising systems on extremely anisotropic Cartesian (= hypercubical)
lattices, i.e. Cartesian lattices in which the coupling between nearest neigh-
bours along one or more lattice axes is much weaker than that between nearest
neighbours along the other lattice axes. In the case where the weak coupling
is completely absent, the lattice in question, say L, consists in fact of
uncoupled (identical) lattices of lower dimensionality, L'; the critical
behaviour of the Ising system is then that which corresponds to these lattices
of lower dimensionality L'. In the oppecsite case, however, no matter how small
the weak coupling is, the system under consideration is of the original
dimensionality. Universality would therefore imply that the critical behaviour
is the same for all cases where the weak coupling is not completely absent, but
changes discontinuously to that of L' at the moment at which the weak coupling
has disappeared completely. In view of this fact the question as to how thermo-
dynamic quantities go over into those for the lower-dimensional lattice in the
limit of vanishing weak coupling, becomes an intriguing one.

From the investigations described in this thesis it appears that thermo-
dynamic quantities of Ising systems on extremely anisotropic lattices display,
depending on the conditions imposed, the critical behaviour characteristic for
the original lattice L, or the critical behaviour characteristic for the
lattice L' (or even an arbitrary intermediate behaviour). For any fixed choice
of the values of the coupling constants Ji’ characterizing the strength of the
interactions between nearest neighbours along the respective lattice axes, only
the first type of critical behaviour can occur. In speaking about universality

one usually has this situation in mind; it follows that under this condition

iii



critical behaviour satisfies indeed the universality hypothesis. The other forms
of critical behaviour (to which apparently universality does not apply) arise if
we allow for variations not only in the temperature, but also, simultaneously, in
the coupling constants. At first sight situations of the latter type may seem
rather "unphysical". However, in cooling down a sample in & real experiment one
might expect that the coupling constants change as a result of the variation in
distance between the atoms of the sample accompanying the change in temperature.
Furthermore, one might think of experiments in which simultaneously with a change
in temperature the system is subject to a large compression or dilatation,
resulting in a rather drastic change in the coupling constants. Variations in
the coupling constants are therefore not as artificial as they might appear.

In addition to the considerations on universality given above there are other
reasons why the investigation of Ising systems on extremely anisotropic lattices
may be useful. As is well known, only a very limited number of closed analytic
expressions for thermodynamic quantities of Ising systems is available, viz. only
for systems on one- and two-dimensional lattices. For three-dimensional Ising
systems no thermodynamic quantity is known in closed form; even an expression for
the critical temperature in terms of the coupling constants is missing. One may
hope, however, that in contrast with the case of general values of the coupling
constants, it is possible to obtain analytic information for cases of extreme
anisotropy, where the lattice L may be thought of as consisting of the lattices
L', which are extremely weakly coupled to each other. If some thermodynamic
quantities of L' are known in closed form, this could entail some analytic
information for L in the corresponding case of extreme anisotropy. The results
of our investigations contain indeed some progress in this direction, as will

appear below.

In view of the smallness of one or more coupling constants for extremely
anisotropic lattices, it is natural to investigate the thermodynamic quantities
of such lattices by means of power series in these constants or, more generally,
in variables vanishing with them. The coefficients in such series will have the
general property that they can be expressed completely in terms of multiple-spin
correlation functions on the set of uncoupled lattices L'. We therefore expect
that the coefficients display a singular behaviour at the critical temperature
of L'; however, this temperature is not the critical temperature of the
lattice L. It follows that if the series is truncated, the resulting function
has not the critical behaviour characteristic for L; this is displayed only by

the full series - whose calculation is beyong our power in general. In spite
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of this, it is to be expected that the critical properties of the coefficients
will become more and more important as the critical temperature of L approaches
that of L', which takes place in the limit of extreme anisotropy. On account
of this it is desirable to obtain information at least on the dominant singular
part of each coefficient.

In this thesis we have investigated series of the type mentioned above for
the zero-field susceptibility; as is well known, this quantity can be studied
very accurately by means of series expansions. In view of the foregoing we
have restricted our attention mainly to the dominant singular part of the
coefficients; the quantity which results if we replace each coefficient by its

most singular part has been called the leading-order term of the susceptibility.

In addition to the properties of this leading-order term we have studied, by
means of this quantity, the asymptotic form of the equation for the critical
temperature, especially of the simple cubic lattice, in cases of extreme
anisotropy.

We start in chapter I by considering the ferromagnetic quadratic lattice.
We cannot calculate the leading-order term in closed form, but only its first
few terms. From the general structure we conclude that the singular behaviour
has various aspects: depending on the conditions imposed the leading-order term
has a critical behaviour of the same type as that of the susceptibility of the
linear chain (which in this case is the lattice L'), or a critical behaviour
which, within the limits of accuracy, is of the same type as that of the
susceptibility of the quadratic lattice, or any intermediate behaviour. Further-
more, it turns out that we can obtain from the first few terms, again within the
limits of accuracy, the asymptotic form of the well-known expression for the
critical temperature of the quadratic lattice. We usually write the dependence

of the critical temperature on the coupling constants in the form of an equation

in the variables ti=tathi/kT, and call this equation the critical equation of
the lattice under consideration. The critical equation for the quadratic lattice
is then a simple bilinear equation in t; and ts.

In chapter II we consider the ferromagnetic simple cubic lattice in which
the coupling constants along two lattice axes are much smaller than the coupling
constant along the remaining lattice axis; the investigation is based on a
straightforward extension to the simple cubic lattice of the method developed in
chapter I. Similar conclusions as in chapter I can be drawn on the critical

behaviour of the leading-order term of the susceptibility. On the analogy of the

fact that for the quadratic lattice the asymptotic critical equation can be



obtained from the leading-order term of the susceptibility, we assume that this
is also true for the present case, where the critical equation is not known
explicitly. From the (numerical) results it then appears that the eritical
equation for the simple cubic lattice is certainly not a trilinear equation in
the variables t;,t and t3, but most probably a much more complicated equation.
Expressing our results in a geometrical language we can say that the critical
surface in the t;,ty,t3-space corresponding to this equation behaves as a cone
rather then as & plane in the immediate neighbourhood of the points (15050 4
(0,1,0) and (0,0,1).

In chapter III the method followed in chapters I and II for developing the
leading-order term of the susceptibility is made much more efficient and less
cumbersome by means of the extension to anisotropic lattices of a formula,
originally proposed by Sykes and derived later on by Nagle and Temperley, for

the susceptibility of isotropic lattices.

Chapter IV is devoted to antiferromagnetic Ising systems on Cartesian
lattices in which the coupling constant along one lattice axis is (in absolute
value) much larger than those along the other lattice axes. The generalized
formula of Sykes just mentioned turns out to form an ideal starting point here,
in that it not only enables us to obtain numerical information more easily than
before, but also leads us in a straightforward way to some analytic properties
of the leading-order term; it is not clear how these properties could be
established by means of other methods. More specifically, we can derive from
the generalized formula a simple relation between the leading-order term of the
susceptibility and the (similarly defined) leading-order term of the gquantity
1 +<0102> - where <010> 1s the two-spin correlation function for nearest
neighbours along the lattice axis with the large coupling constant - valid in
the case where this constant is negative. Using this relation we can derive
a closed form for the leading-order term of the antiferromagnetic susceptibility
of the quadratic lattice in this case. Similar conclusions as in chapters I
and II cen be drawn on the critical behaviour of the leading-order term of the
susceptibility for all antiferromagnetic cases.

In chepter V we study the Curie temperature of the simple cubic lattice in
which the coupling constants along one or two lattice axes are very small in
comparison with the remaining coupling constant(s). The results obtained and
conjectured , which are analytic in nature, are in agreement with predictions
from scaling theory. They imply that the above-mentioned critical surface

touches the coordinate planes; this feature is consistent with the conical




behaviour of the surface near the points (1,0,0), (0,1,0) and (0,0,1). On

the basis of these results an explicit form for the asymptotic critical equation

near (1,0,0) is proposed, which is in the best possible agreement with the

numerical results found in chapter II.
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CRITICAL BEHAVIOUR OF ISING SYSTEMS ON EXTREMELY ANISOTROPIC LATTICES

I. The quadratic lattice (ferromagnetic case)

Synopsis

The critical behaviour of the magnetic susceptibility x of a spin-3 Ising
system on a quadratic lattice in which the coupling constant along one of the
lattice axes, J;, is very small in comparison with the coupling constant along
the other axis, J);, is investigated on the basis of the series expansion of X
in the variables t; = tanh(Jl/kT) and t, = tanh(J%/kT). It is shown that for
tp << 1, 1-t; << 1 the reduced susceptibility x' = (kT/hz)x behaves as

1 - t2 \n

X'(t1st2) Xé(tl,tz) = ?:ET Z bnO [;:;TJ g

n=0

where the bnO are constants. In the limit (t;,t;) = (1,0), taken in such a
way that the series annO[tz/(1—t1)]n converges, xé diverges through its first
factor as the susceptibility of a linear Ising chain. On the other hand, the
two-dimensional nature of the system is displayed by the behaviour of xé in the
limit (t;,tp) » (T,b-1(1-T) )# (1,0), where b—1 is the radius of convergence
of the power series Snbnoxn. Numerical evidence suggests that in this limit
x, diverges as [1-bty/(1-t;)]™® with b = 2.02 + 0.03 and p = 1.77 + 0.03- The
exact value of b should be 2, as can be seen from the equation for the critical
temperature in terms of the variables t, and ty; that of p is most probably

equal to the critical exponent of ¥ for the isotropic lattice, T/k.



§ 1. Introduction

In the literature on the Ising model most attention has hitherto been given
to the properties of isotropic Ising systems. To be sure, closed expressions
have been derived for a number of thermodynamic quantities of anisotropic Ising
systems, but their derivation is a trivial generalization of that valid for iso-
tropic systems. For approximative theories, however, such as those of Bethe and
Peierls, and of Kikuchi, such a generalization, although equally trivial, seems
not to have been carried out. Series expansions for thermodynamic quantities

1) 2)

have, with a few exceptions » 8lso been derived for isotropic lattices only.
It is the aim of this and subsequent papers to study some properties of

anisotropic Ising systems more in detail. We shall restrict ourselves to spin-3

Ising systems with ferromagnetic nearest-neighbour interactions on d-dimensional

Cartesian lattices. By a d-dimensional Cartesian lattice we understand a lattice

consisting of all points in d-dimensional Euclidean space with integral Cartesian

coordinates, and by nearest neighbours two lattice points which are a unit distance

apart. If we connect each pair of nearest neighbours by a line, the Hamiltonian
of a finite Ising system as referred to above can be written as

5 ' (1)

X=-317)J..0. 0,
g
.3 J J

where i,j = 1,..., N label the points of the system, oi(= +1) is the spin

variable associated with the point i, and

Jr if the points i and J are connected by a line parallel to
J.. = the AR lattice axis (r = 1,..., d), (2)

0 otherwise;

the coupling constants Jr are supposed to be non-negative throughout this

*)

We shall pay special attention to extremely anisotropic systems, i.e. to

paper.

the limiting cases where the values of one or more parameters Jr are extremely
small in comparison with the other ones, and thus study the way in which the
properties of an Ising system on a d-dimensional Cartesian lattice reduce to
those of a system on a lattice of lower dimensionality as some of the Jr vanish.

2)

Earlier, Weng, Griffiths and Fisher discussed this limit of extreme anisotropy.

#) Cases where one or more of the Jr are negative will be discussed in a

subsequent paper.



They analysed the way in which the Curie temperature Tc of an Ising system on a
d-dimensional Cartesian lattice vanishes as all coupling constants except one,
say J), go to zero simultaneously. Their results are given in terms of the
ratio n = (J2+...+Jd)/31. It turns out that in this respect the asymptotic be-

haviour of Tc is essentially the same for all 4, viz.:

% il [iogn - loglogn = + 0(1)} (n>0); (3)

moreover, the same asymptotic form was found in mean-field theories such as
the Bethe-Peierls approximation. As we shall see, differences come in if we
describe the properties of the system in terms of the variables tr = tanhBJr
(B = 1/kT), which enter in a natural way if the Ising problem is considered as
a combinatorial problem with respect to the lattice under consideration;
obviously, 0 < tr < 1 for all r. Thermodynamic functions can then be written
as multiple power series in all variables T If, for given values of the
coupling constants Jr’ there is one, and only one, temperature T = Tc(Jl""’Jd)
at which some (or all) of the thermodynamic quantities are singular, the equation

defining this critical temperature, to be called the critical equation henceforth,

can be written in the form

Ad(tl,..-,td) = 0. (4)

Obviously, the function Ad is not uniquely determined: if the function Ad has
the required property, so has the function f(Ad), where f is an arbitrary
function with £(0) = 0 (e.g. f(Ad) = Aé). We suppose that a suitable choice

for Ad has been made; for the quadratic lattice 3),e.g., a good choice is

Bp(tystp) =1 =t = t5 = t1t, . (5)

It is a striking property of those thermodynamic quantities of the Ising
system on a quadratic lattice which are known in closed form (e.g. the
spontaneous magnetization M, the specific heat in zero magnetic field CH=O’
and the spin-spin correlation functions <cicj> for two spins i and j whose
positions differ by a vector parallel either to one of the lattices axes or
to one of the main diagonals of the lattice) that their critical behaviour

can be described in terms of the single function Ay(t;, t;) in the following

sense:



/8

Mt1st2) = altygs tp0) |82l s

ie
Cump(trsta) = Bty s t,.) log|as |, (6)
<oioj> SO cij(t1c’ t2c) Ay log|a,|
Bplt, > t,,) =0,
for (t1,t2) > (t1c, tec), where t, , t,_ satisfy: t, # 0,
t,, # 0.

For M, the limit has to be taken from the low-temperature side, i.e. from the
side where A,, as given by eq. (5), is negative; for CH=0 and the correlation
functions it may be taken from both sides.

One might conjecture that this is a more general phenomenon, viz. that
for any Ising system the critical behaviour of each thermodynamic quantity can
be described in terms of the function Ad(tl,
sufficiently general values of t,, ..., td (we know that the critical behaviour

may change as soon as one or more of the s vanish). From this point of view,

$ % td) alone, at least for

Ad seems to be the most adequate variable in terms of which to express critical

behaviour; the fact that Ad is not uniquely defined need not present a serious

q a8 @ function of tl’ oialials td‘is, therefore, a

natural first step in a theoretical analysis of the properties of the Ising

difficulty. Determining A

model in d dimensions.

Since Ad is known for d=2 (cf. eq. (5) ), the first case to be investigated
is d=3. Since the problem of completely determining Az(t;,t;,t3) looks
prohibitive at present, we shall satisfy ourselves with a study of the asymptotic
behaviour of this function for extremely small values of one or two parameters tr
We shall try to determine this asymptotic behaviour by means of a study of series
expansions, which seem to form the only tool available at present. Experience
has shown that the most reliable results on critical points are found from a
high-temperature expansion of the initial magnetic susceptibility x; therefore,
we shall concentrate on this quantity. In order to get acquainted with series
expansions in more than one variable, and to get an idea about the reliability
of the method we shall in this paper investigate the series expansion of the

susceptibility of the anisotropic quadratic lattice. The critical equation for

this lattice is, according to (4) and (5):
1 =t = tp = t1t2 = 0. (7)

Substituting t2 = 0 we get the critical equation for the linear chain:




1-1%t; =0, (8)

which expresses the well-known fact that for this lattice T=0 may be considered

as the critical temperature. Obviously, we may put
A (%) =1 -t = Ay(ty, O).
For 0 < t5 << 1, eq. (7) reduces to
1 -1t = 2ty (ta -+ 0). (9)

It is this asymptotic result which we shall have to find from the analysis of
the series expansion of x. Apart from this result, the series expansions
are interesting in themselves as they provide new information on the sus-
ceptibility x,for which no expression in closed form is known except for the

trivial case d=1.

To show the difference between exact and approximate results referred to
above, we begin by briefly discussing, in § 2, the extension of the Bethe-
Peierls and the Kikuchi approximation to anisotropic systems. They will be
shown to lead to an equation of the same form as eq. (9), the only difference
lying in the numerical factor in the right-hand side.

In § 3 we present the general formalism for finding the series expansion
of the susceptibility in terms of graphs on the lattice. Although this procedure
is more or less standard (see, e.g., ref. 4), the treatment of extremely
anisotropic lattices makes it desirable to discuss its various steps in detail.

In § b the terms of the series are classified in a way appropriate to the
special case of extreme anisotropy. To this end, the series is rewritten as
& power series in tj with coefficients depending on t1, in view of the fact
that t; is very small. Each of these coefficients turns out to be the sum of
contributions which diverge for t; + 1. We assume that for determining the
asymptotic behaviour of A; it is sufficient to take into account only the most
divergent contributions. This reduces the actual calculation, which is given
in § 5, very much, although the calculation of as few as five terms is still
laborious.

In the last section the coefficients are analysed by means of the ratio
method and its extensions. The assumption mentioned before is hereby confirmed,

which gives a certain confidence in its applicability in other cases,where Ad



is not known in advance.

For brevity we shall use the following nomenclature. The axes of the
quadratic lattice are called the x- and y-axis. Any concept which is related
to a particular axis is named after that axis, e.g. a pair of nearest neigh-
bours which are connected by a line parallel to the x-axis is called a pair of

x-neighbours, the line itself an x-line, a chain of subsequent x-lines is

called an x-chain ete. In addition, we shall use the terms horizontal (vertical)

for: parallel to the x(y)- axis; xright (left), referring to the direction of

the positive (negative) x-axis; upper, upward (lower, downward), referring to

the direction of the positive (negative) y-axis.

§ 2. Approximative methods for the anisotropic guadratic lattice

a) The Bethe-Peierls approximation

The method used to derive the Bethe-Peierls approximation for an aniso-
tropic quadratic lattice is a direct generalization of the original method

developed for isotropic lattices by Bethe 5).

Accordingly, only the main
points will be presented.

Consider an arbitrary lattice point together with its four neighbours.
Let P(0; ny, ny) be the probability that the spin variable of the central point
has the value o (0 = +1) and that the spin variables of n; of its two x-neigh-
bours and n, of its two y-neighbours have the value +1. In evaluating this
probability, the interaction between the central spin and its neighbours is
exactly taken into account, whereas the influence of the rest of the lattice
on the neighbours is approximately expressed with the aid of two positive para-

meters z; and z, as follows:

2\/2 [ ny ny
C( )( )exp BJ1(2n1—2)}exp[BJ2(2n2-2)] Z] Z2 s (10a)
nij\nz X
[F n, n
o2 )? exp BJ1(2-2n1):|exp[6J2(2—2n2):l zllzzz, (10b)
nj 2% |

where C is a normalizing factor.

P(+1; ny, ny)

"

P(=13 nj, ng)_

The values of the parameters z, and z, are determined by the requirement
that the total probability for the spin variable to have the value +1 be the

same for the central point and for its x- and y-neighbours. This requirement



leads to the equation

zy exp(2831) + 1 [z, exp(283,) + 1)2
%1 T T 2] + exp(28d;) 25 + exp(28J3)| (11

and to the equation obtained from (11) by interchanging the indices 1 and 2.
By eliminating z; one obtains an equation for z;. For B < B,» with Bo

determined by

f e -2 = -2 E 1
exp ( Bch) exp( Bch) 0, (12)

this equation has only the trivial solution z; = 1. For B > Ba it has three

roots: z; =1, 2z} =z, say, 2z = Pk (z > 1). The last two roots turn

out to correspond to stable solutions with opposite values of the magnetization,
the first root to an unstable solution. Evidently, eq. (12) is the equation
for the Curie temperature in the Bethe -Peierls approximation. Written in

terms of t;,t, it reads
1 =13 -ty = 3t =0 , (13)
which for Jp << J; reduces to

1 =t = Uty (ty > 0). (14)

b) The Kikuchi approximation

An essential feature of the Bethe-Peierls approximation is the fact
that the only correlations between spins which are exactly taken into account

6)

are those between two neighbouring spins. Kikuchi has shown how this
approximation can be improved by taking also into account the correlations
between larger groups of spins, in particular those between all spins of a
set of atoms forming the smallest possible polyggg on the lattice. For the
quadratic lattice, where this polygon is a square, a straightforward
generalization of Kikuchi's calculation to the anisotropic case can be shown

to yield the following critical equation:

2 2 2 3 3 22 3
1 - ti1-to- 1 -ty =t + t?+ t%t2+ tity +t5 +t1tp - 281t + £t = 0O, (15)

» /17 6)
For the isotropic case it gives Lo —l—%——ll 3y for Jy << J; the



asymptotic form of the equation is

1-1t1 = (1+ v2)%, (ta + 0). (16)

Now we can easily see why, as was stated in the introduction, the
approximations discussed here and the exact equation (7) all yield the same
asymptotic behaviour of i in terms of n = Jz/Jl. Both the exact equation (9)

and the approximative equations (14) and (16) are of the form
1 -t = bty (tz"’O), (17)

in which b is a non-vanishing constant. Expressing (17) in terms of J; , n
and ch, letting n, and hence Tc’ go to zero while J; is kept constant,

and retaining the leading terms only, one finds indeed eq. (3). Since in this
equation the constant b does not appear in leading orders, the asymptotic

behaviour of Tc, thus described, is independent of the approximation made.

§ 3. High-temperature series expansion for the susceptibility (general method).

T)

As is well known , the initial magnetic susceptibility per spin of the

Ising model in the thermodynamic limit can, for T > Tc’ be written as

codg 10 ] <oyl (18)
J#1

in which 1 is an arbitrarily chosen point of the infinite lattice L and j runs

over the remaining points; u is the magnetic moment of each spin and < >

denotes the thermodynamic limit of a thermal average in the absence of an

external magnetic field.

Obviously, the critical behaviour of x is contained in the second term
of the right-hand side of equation (18), to which we shall restrict our
attention. The evaluation of the sum Zj#1<o1cj> goes as follows. First,
we consider a finite lattice of N points with periodic boundary conditions,
LN’ of which, for simplicity, all coupling constants are supposed to have the

same magnitude J. The lattice, together with the lines connecting nearest

neighbours, forms a graph, also to be denoted by LN' By a partial graph
of LN one understands a subgraph of LN containing all points of LN’ by a

line component of LN a maximal connected subgraph containing at least one line.
The number of lines incident with a point is called the valence of the point.

In the thermal average <o0.0.>,. 1is by definition:
179 N



) 0,0. exp[-BE({c})]
{0} y

! exp[-BE({o})]

{a}
where the sums run over the 2N spin configurations {0} of the system and
E({c}) 1is the energy of the configuration {o}. Using standard combinatorial

methods 8) one can rewrite Zj#1<o1o.> as follows:

J N

|Gy |
yE
Go
Zt|G|

in which the following notation is used.

i) The sum in the numerator is over the partial graphs G, of LN in which each
point except the fixed point 1 and the variable point j has even valence
(possibly zero); [G,| is the number of lines in G2 . Since 1 and j are the
only points of odd valence, they belong to the same line component of Gs,

9).

according to. a well-known theorem by Euler

ii) The sum in the denominator is over the partial graphs G of LN in which

each point has even valence.

Let us denote by [2],[20], [200],... the contributions to

ZGZ t|G2| of those partial graphs G; which contain one, two, three, ...

line components; the figure 2 represents the component containing the two
points of odd valence, the figures O the cther components. Similarly, we
split the sum ZGtIG| into terms [ ], [0],[00], ..
term represents the contribution from the subgraph containing no lines, and

» Where the first

hence no line components. The types of partial graphs yielding the con-
tributions, [2 1,02 0]y oo 3101, [0 0], «os will be denoted by

2552 Oyvatsie it 10500000 ubssmaas (S0Me examples for the quadratic lattice are
listed in table I; here, as in the following, the isolated vertices of Gy

and G have been omitted.



TABLE 1
Some partial graphs on the quadratic lattice of the types 2, 20, 0 and 00.

types of partial graphs examples

e sl
2 0 i 2 as AERO

]

0 fad

Thid |

ge
.

00 =

With this notation we can write equation (20) as follows:

2% [2°0)+* 2001+ ...

[]1+[0]) +[00] + ...

The division can be carried out formally; it is convenient to do this step
by step, increasing at each step the number of line components involved by

one. The successive terms of Zj#1(°10'> obtained in this way, and described

J N
more fully below, will be denoted by Aj, Aj,

.Z <040 5>y = kz1 A . (22)

1) The first step consists in dividing [2]) by [ ]; since [ ] equals 1, this
yields:

Ay = [2] . (23)

So A} contains the contributions to Zj#1<o from partial graphs con-

g.>
13 N
taining one single line component with two points of odi valence.

10



2) The next step of the division yields
Ay =[20]-[2]"[0]. (24)

Now [2]+[0] is the sum of t'GzItlcl over all combinations of a graph G, and
a graph G both containing exactly one line component. Those combinations where
G, and G have no points (and, hence, no lines) in common sum up to [2 0] .
In addition, there are combinations where G, and G have at least one point in
common. It follows from (24) that only these are not cancelled in A, 3 de-

noting the sum of tlczlthl

over these combinations of G, and G by [2-0] we have:
Ay = -[2-0]. (25)

Some examples are given in table II.

TABLE I
Some combinations of one line component of type 2 (indicated by drawn lines) and one of type O (indicated
by dotted lines), contributing to [2-0].

O—O—O—O——j O—O0r=0—=0 O—O0—0—0-0

Seendd o N

o

O
O

3) Using the relation [2]:-[0]-[20] = [2-0], the contribution to

Zj#1<° 0.> arising from combinations of three line components can be written

1 g.N
as

Az =[200]1-[2][00])+ [2-0]-[0O]. (26)

The last two terms in (26) can be analysed in the same way as the term
[2]:[0] in (2k):

[2]-[00]=[200]+[2-00] +[0-2-0], (27)
[2-01+[0] =[2-0 0] + [2-0-0] + 2[0-2-01 + 2[({3] +[2-02]. (28)

Again, linked figures represent line components having points in common.
Combinations (i.e. sets) of several linked line components we shall call

overlappings. The types of overlappings will be denoted by the same symbols

11



as their contributions, with the omission of the brackets, e.g. 2-0-0, 2-02
The last term in (28) represents those combinations of 2-0 and O in which the
two partial graphs of type O are identical. The factor 2 in front of [0-2-0]
arises from the fact that an overlapping of the type 0-2-0 can be built up in
two ways from an overlapping of type 2-0 and a line component of type 0;
similarly for d%b. Some examples of overlappings contributing to (27) and (28)

are given in table III.

TABLE Il
Some overlappings of one line component of type 2 (indicated by drawn lines) and two of type 0 (indicated
by dashed and dotted.lina). The last two examples for 2-0-0 illustrate the fact that an ov:t:apging cannot
be uniquely characterized by the (multi)graph consisting of its points and lines.

t'ype of overlapping examples
o—o——o—o ?Qo—i Q= 0nrQ...C Qo< Qe lrenC
2-0-0 Giid &--8....0 &ty o) dytb----j—o
&
0-2-0 025 O_Q_Q_I_Z
o ey Gl
2 A
C{—:}) C»—{FZJ?%%?——O o ?::%1_5)‘73
OO0 O DB P ©)
2-0° A

Combining (26), (27) and (28) we obtain
Ay = [2-0-0] + [0-2-0] + 2[0/3] + [2-02].

Similar expressions can be derived for Ay, As, etc. Since line components of
type 2 and overlappings of one line component of type 2 and one or more line
components of type 0 play a central role in this method of calculating x, we

shall introduce a common name for them, viz. 2-graphs. Observe that in general

a 2-graph is not a graph but a combination (i.e. a set) of graphs. Obviously,
Ak stands for the contribution to the quantity (kT/uz)x from all 2-graphs

consisting of k line components.

12




Each term in the right-hand side of the equations (23), (25), (29), ete.
stands for the total contribution from all 2-graphs of a given type on LN’ the
contribution from an individual 2-graph being equal to tn, where n is the sum
of the numbers of lines of the constituting (overlapping) line components. Be-
cause of the finiteness of LN the terms [2], [2-0], etc. are polynomials in t;
the coefficient of each power t™ in these polynomials becomes independent of N
for sufficiently large values of N. This enables us to proceed to the thermo-
dynamic limit by simply taking into account all possible 2-graphs of a given
type on the infinite lattice L, irrespective of their size. The terms [2],
[2-0] , etc. then become infinite power series in t. Combining (18), (22), (23),
(25) and (29) we find the following expression for the thermodynamic limit of the

reduced susceptibility x' = (kT/u?)x

X' =1= ) <0.0.>=[2]-[2-0]+[2-0-0] + [0-2-0] + e[cf\ol + [2-02) +...,(30)

i# J
in which each term stands for the contribution from all 2-graphs of a given type
on L. The coefficient of t" in the series expansion for x' is found by selecting
from each of the separate power series for [2], [2-0], ete. the term with t? and
adding the corresponding coefficients. Since each line component of type O has
at least p lines, where p is the number of lines of the smallest polygon on the
lattice, the power of t by which the power series for a given term in (30)
starts, increases with the number of line components forming the corresponding
2-graph. Therefore, in calculating the coefficient of t? in the series expansion
of x' only a finite number of terms in (30) has to be taken into account.

The generalization of the procedure sketched above to anisotropic lattices

G
is straightforward: quantities like t|G| are replaced by HS=1t| lr where the
product runs over the d lattice axes, i tanhBJ,., and ]Glr 1s the number of

lines parallel to the rtP lattice axis in the graph G.

§ 4. Susceptibility of the extremely anisotropic guadratic lattice

We shall now apply the method introduced in the previous section to the
anisotropic quadratic lattice. There, the reduced susceptibility x' can be

written as a double power series in t; and t»

=< Ry 12
| ‘ 1
X 1 Z » anln2t1 t2 (31)
ni, ny=0
(ny+ny21)

13



Performing the summation over n; for each value of n, we obtain a single power

series in t, with coefficients depending on t)

0
' =1+ ] alt)t, ., (32)
S B
n=0
o n
= 1
a (t )= Z A (33)
nl-O
(n,#n 2 1)
In equation (32) an(tl)tg is the contribution to X' from 2-graphs containing
an arbitrary number of x-lines and a fixed number n of y-lines (with the
restriction that the total number of lines is at least 1). So ag(ty) con-
sists of the contributions from all 2-graphs containing nc y-line and at least
one x-line. These 2-graphs are line components consisting of a chain of sub-
sequent x-lines (x-chain), running from the point 1 to the right or to the
left, together with the points incident with these lines; their contributions
are readily evaluated:
o 2t
ni
&o(tl) =2 2 j 7 (R (34)
n=1 1-t,
The 2-graphs contributing to a;(t;) are line components containing one
y-line. To each of the two ends of this y-line we may, independently, attach
or not attach an x-chain, running to the right or to the left. Consequently,
2
2t
ay(ty) = 2[1 + < (35)
1=ty

the factor 2 in front arising from the possibility that, viewed from the
point 1, the y-line goes into the +y or into the -y direction. Since over-
lappings contain at least two y-lines they do not contribute to ag(ty) and

al(tl).

The 2-graphs contributing to ap(t;) fall into three categories: single
line components without points of valence 2 3 (self-avoiding walks), line
components with one point of valence 3, eand overlappings of a rectangle and

an x-chain (see table IV).

14
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TABLE IV

some 2-graphs contributing to a, (t;)

rectangle and an x-chain

type of
2_ graphs category of 2-graphs examples
(no  x-chain 1 (@)
one x-chain E (b) I»—o—o—-/»—o—I (c)
self-avoiding walks
2 containing '<
two x-chains (d) (e)
T ERTS
Lthrecz x-chains l ,
line component with one ;
2 alg, STisA=I T
point of valence 3
9....0....0....0....0....O....(?
o A R S .
50 overlappings of a ?....o‘...o....o....?
ool
Qs+




The straightforward generalization of the method followed to derive
equation (35), in which x-chains of arbitrary length and direction are added
to any end of a y-line,can be applied to 2-graphs like e.g. (d), (e) and (f)
in table IV. However, the procedure becomes involved for 2-graphs like (h)
in the same table, in which there is a restriction on the length of one or more
x-chains: in this example, the x-chain of length m has to be shorter than the
x-chain of length 2. Furthermore, there is no obvious extension of this method
to overlappings. Therefore, we shall generalize the method of calculation in
a different way. To this end we consider all infinite y-chains of the quadratic
lattice that pass through a y-line of the 2-graph under consideration or through
one of its two points of odd valence. These chains split the 2-graph into r
pieces, say. If the 2-graph contains n y-lines, the number of these chains,
r+ 1, is at most n+2; hence O < r < n+1, where r=0 represents the two walks
starting in the point 1 that consist of y-lines only. Each piece consists of a

certain number u, say, to be called the multiplicity of the piece, of x-chains,

each one running from the left-hand end to the right-hand end of the piece, and
does not contain any y-line or point of odd valence except at its left-hand or
right-hand end. Therefore, the pieces can be said to be the maximal parts of
the 2-graph that are homogeneous in the x-direction.

From the way in which the pieces are constructed one sees immediately that
all 2-graphs which are obtained by varying the lengths of the pieces at will
and independently, contribute to x'. Such a collection of 2-graphs that differ
only in the length of one or more pieces will be called a class and symbolically
represented by the same figure as the contributing 2-graphs, with the omission
of all points except the point 1. Since all combinations of the lengths of the
pieces are allowed, the contribution to an(tl) from a given class can be
written as a product of factors, each piece giving one factor. The factor
Cu(tl) that comes from a piece consisting of u x-chains of which the length £

is varied is given by
t) t
(1) = = : (36)

u 2 p=1
1 TR I TR P T )(1-t1)

—

cu(tl) =

Il &~ 8

2

It follows that the contribution to an(tl) from a given class of 2-graphs with
n y-lines and r pieces of multiplicities Wy, Hps -+ Hp 18
f(tl)

r
I ¢ (¢,)s=——— (37)
=1 Yi (1=t1)F
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where f(t;) is regular and non-zero for t; = 1. Since 0 < r < n + 1, the total
: +

(t1) consists of terms Fo(t1)/(1-t1)" L% Fl(tl)/(1-t1)n, s

Fn+1(t1) = 2; each of the functions Fg(t;), Fi(t;)s «.. is the sum of a finite

coefficient a

number of functions of the type f(t;), and is, therefore, regular for t; = 1.
If we expand these functions 1in a Taylor series around t; = 1 and recollect

terms with the same power of 1/k1-t1), we can rewrite an(tl) as

1 n+1
2 | e— = = 2
a (%) (1_t1J [bno =t o+ (1-61)% D, + ... ] - (38)
where bnO’ bn1’ bn2’ are constants. Substituting (38) into (32) we find
1 L 5 t? n
' - = —— - -
X 1 e nZO Boaid (1 tl)bm + (1-t) b ot e [1—t1] e (39)

The right-hand side of equation (39) is a power series in tz/(1-t1) in which

the coefficients are themselves power series in 1-t;. This formulation is

very useful for the investigation of the critical behaviour of the extremely
anisotropic quadratic lattice: we then have to consider the case that t; is

very close to unity and t,; is very small. To derive equation (9) from (39) we
must determine the limit of the radius of convergence of (39), considered as a
series in tz/(1-t1), for 1-t; > 0. We assume that, in order to find this
limit, 1-t; can be replaced by zero in the coefficients of [t%/(1—t1)]n right at
the beginning, or, equivalently, that only those contributions to an(tl) have to be
taken into account that are most divergent in the limit t; - 1. This assumption,
the nature of which will be discussed in § 6, implies that we restrict our
attention to the constants bnO’ to which only 2-graphs with the maximum number

of horizontal pieces (r = n+1) contribute. For a 2-graph to be of this kind its
n y-lines and its two points of odd valence should lie on n+2 different infinite
y-chains of the lattice. Many 2-graphs do not satisfy this requirement, e.g. the
2-graphs (a), (b), ..., (e) and (i) in table IV. More specifically, the 2-graphs

in question should have the following properties:

a) the valence of both odd points in the line component of type 2 is one, the
valence of the remaining points two; hence, the line components of type 2
are self-avoiding walks;

b) the valence of each point in a line component of type 0 is two, so that

these line components are self-avoiding polygons.

The contribution to the coefficient bn from a given class of 2-graphs

0
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is easily calculated from (36) and (37). It is equal to f£(1), i.e. to the
product, taken over all pieces i=1, ..., n+l, of the number u§1, which is
the value of the function tYi/(1+t1+...+t¥i_1) for t1=1. This contribution
2:] uE1 will be called the weight of the class. A few examples of classes of
2-graphs, together with the splitting into pieces, the multiplicities u of

these pieces and the weight of the class, are given in table V.

TABLEV
Examples of classes of 2-graphs. The splitting into pieces is indicated by vertical dotted lines; u is the
multiplicity of the pieces.
class of 2-graphs weight

Mkt @ Mida b Vo 'hv Y2="a

Yo'l h="a

|

ot wanity YeenghLat 1. Mpace) V- Vv Y3 Vs Va Vo Y2 = Yea0
e wm s

u;ﬁi ? B F Y uy YoV th="a
S
) ok vl =

ei1! 3 | s o3 i Yo Vo Vo Vo Vs = Vas
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In practice a minor modification of the method of dividing a 2-graph into
pieces is useful. First, we consider for a given class of 2-graphs all infinite

horizontal lines (if any) that bisect exactly one y-line (see fig. 1). If we

s

Fig. 1. Dividing the 2-graphs of a given class into slices.

delete the bisected y-lines, any 2-graph of the class falls into parts, to be
called slices. Each slice contains exactly two odd points (and therefore is a
2-graph), each of which is an end of a deleted y-line or one of the odd
points of the original 2-graph; the latter possibility exists only for the upper-
most and the lowermost slice. To begin with, we now vary the lengths of the
pieces of the slice, to which the point 1 belongs, arbitrarily. For any choice
of these lengths, the position of the other odd point of the slice is uniquely
determined; in turn, it determines the position of one of the odd points of the
subsequent slice, which for this slice takes over the role of the point 1.
Since the x-chains of this second slice can, by definition, not lie on the same
height in the lattice as any x-chain of the first slice, the lengths of the
pieces of the second slice can again be varied arbitrarily. TIterating this
procedure, we find that the lengths of the pieces of the various slices can all
be varied independently. Consequently, the contribution from the given class
of 2-graphs is the product of the contributions from the classes of the separate
slices.

The procedure of first dividing a 2-graph into slices reduces the calculation
substantially. For instance, according to the partition into pieces one should

treat separately the following classes of 2-graphs:

—o0 ———O ——o ——C —0

with respective weights 1/4, 1/12, 1/6, 1/6 and 1/3. By forming the slices
first, however, one is left with three slices, each of which consists of a
single x-chain. Hence, the total weight of all walks belonging to any of the
above classes is (1/1)3 = 1, which is also the sum of the weights of the

separate classes, as it should.
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To give another example, a similar simplification occurs for the third
class of 2-graphs of table V, for which there exist two infinite horizontal

lines that bisect exactly one y-line; they cut the 2-graphs into three

slices of the structure l l, ,| O | with respective

o

factors 1/2, 1/1 and 1/4. So the total weight of all 2-graphs that can be

built up from these slices by varying the lengths of the constituting pieces
independently is 1/2 + 1/1 « 1/b = 1/8. In this way, many classes of 2-graphs
are taken into account at once, of which the one given in table V, with
weight 1/240, is only one. One sees that the partition into slices is in fact
a generalization of the procedure that was used for the calculation of aj(ty),
the role of the x-chains being taken over by the slices, which include

x-chains as & simple case.

§ 5. Calculation of the coefficients bnO

Having established the way in which the contribution from a given class
of 2-graphs is calculated, we have now to develop an efficient book-keeping
system such that no 2-graph is omitted,or counted more than once. Usually such
a system takes the form of a lexicographic ordering of some kind.

For self-avoiding walks, which can be traversed in only one way from the
point 1 to the other odd point, the following system is convenient. Starting
from the point 1 we build up a class of walks from simple units. As a first
step we take an x-chain of arbitrary length directed to the right or to the
left; we denote it by + or -, respectively. Then we proceed by successively

NI

adding units of the following kinds: [ e - E s o 5
=

they are denoted by 1, 2, 3, 4, respectively. If each symb61 represenf?ng a

newly added unit is placed to the right of the previous symbol, a positive or
negative integer is formed which will be used as a code for the class of walks
considered. E.g., to the class 5 the code +21 is assigned. Be-
cause of symmetry it is sufficient to consider only those classes

of walks whose code numbers start by +1 or +2; since the remaining classes

can be obtained by a reflection with respect to the x-axis, or to the y-axis, or
to both axes, their contribution can be taken into account by means of a

factor 4. The classes with code numbers starting by +1 or +2 are ordered
according to their code numbers. By running through all n-digit code numbers

(n21) all classes of walks containing exactly n y-lines are taken into

account; since we consider directed walks, no class is counted more than once.
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The two classes containing no y-lines are represented by the codes + and -;
evidently, there is a twofold rather than a fourfold symmetry in this case.

Two remarks should be made on this method of coding:
i) for some codes no walk can be realized, e.g. for all codes beginning by +141;

ii) some codes still correspond to more than one class, e.g. +1442 to

: [ | and & | |; in these cases, care should be taken

to account for all possible classes.

TABLE V1
The book-keeping for the walks containing up to two y-lines.

n | code | class of walks | MYmber TALIDI= weight
of slices cities
O | + —_— 1 1 1
1 P— | 2 1.1 {
1
+2 = 2 11 1
+11 f 3 i 1
+12 E 3 294 1 1
A e L ek ol 1 ety 1
B = | Weleih 1 1.2 /2
2
+21 5 3 Vg 103 1
+22 E 3 185 4 1
+23 | | i 1 2,.1,2 "/a
+24 | o I 1 1)1’2 1/2
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For the classes of walks containing up to two y-lines (n = 0, 1, 2) the
procedure is illustrated in table VI; we also indicate for each class the
number of slices, the multiplicities My of the pieces and the weight H?:l u;

A similar book-keeping can be set up for each type of overlapping separate-
ly. Taking into account the fact that any overlapping is built up from exactly
one walk and one or more polygons we first order the corresponding 2-graphs
groupwise in conformity with the ordering for the walks that was introduced
above. We consider only those cases in which the walk either is a single x-chain
of the class with code + or starts by the unit +1 or the wunit +2; the remsining,
"reflected" overlappings can be taken into account by multiplying the con-
tributions thus found by a factor 2 and L4, respectively. For the ordering of over-
lappings within a group, i.e. of overlappings containing the same walk, no general
prescription will be given here. Instead, simple book-keeping rules will be used
which are different for each type of overlapping; we give some examples for the
2-graphs with four or less y-lines.

a) Overlappings of the type 2-0 in which the graph 0 is a rectangle with two

y-lines (which occur in the calculation of bn for n > 2) are generated as

follows: first place the rectangle at an arbigrary height with respect to the
walk in such & way that by shifting the rectangle upward or downward one can ob-
tain an overlapping in which the rectangle and the most left-hand piece of the
walk (and only this piece) overlap, and in which the infinite y-chain passing
through the left-hand end of this piece cuts the rectangle. The number of over-
lappings which can be obtained in this way will be denoted by v; obviously,
v > 2. Next, the right-hand y-line of the rectangle is shifted to the right
until one can obtain a new class of 2-graphs by shifting the rectangle vertically.
This proecedure is repeated until a further shift to the right does not yield a
new class anymore. We then shift the left-hand y-line to the right and consider
the different possibilities for the other y-line as before, and so on. At each
stage, the number V'of overlappings that can be obtained by a vertical shift of
the rectangle is at least two. Of the classes of overlappings of the walks +
and +1 obtained in this way, the ones with the rectangle in lowest position are
listed in table VII; the classes obtained from these by an upward shift of the
rectangle are taken into account by the factor v.

A generalization of this procedure is used for the case that the line

component of type 0 belongs to one of the classes

al ‘ s J ], F’ | ; these cases occur in the
C:‘__l__\ oo | koesato] ko i

calculation of the coefficients bno for n > k.
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The book-keeping for the overlappings of the walks + and +1 with a rectangle.

TABLE VI

class of

overlappings multiplicities | weight
= 2, 3,1 e
o
L ] 27372 1/12
o0 e T S
I:] 17371 1/3
(o = . -
Yoot T 35,2 e
ﬁ_— 2’3,1,1 1/6
2,3,3,1 /18
eyl
[ ] 2)37372 1/3(,
o e
D I’ 3?171 1/3
gt |
1’ 373)1 1/9
o8 [
1’37372 1/18
YOSMEEY 1,1,3, 1 s
o—l T 1,1,3,2 /e
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TABLE Vil

The book-keeping for the three-component 2-graphs contributingto b, .

type of : y
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b) The three-component 2-graphs that contribute to bho consist of an x-chain
and two rectangles, both having two y-lines. The term [2-02] in (30) does
not contribute to bho (or even to bh1)’ since the number of pieces is 3 rather
than 5. The classes of overlappings which do contribute can be found from
table VIII; each class of overlappings is understood to represent also the
classes obtained from it by shifting the rectangles vertically without changing
the type of overlapping; again, the number of classes represented is called v.
For the overlappings of type d%b the following book-keeping is used: fixing
the upper rectangle in its most left-hand position with respect to the x-chain
we first modify the lower one stepwise in the way described in (a) until all
overlappings with the given position of the upper rectangle have been generated.
Next, the upper rectangle is shifted to the next position and the procedure is
repeated, etc. Some of the classes thus formed represent (in the above sense)
the same overlappings; in such a case, only one of these representing classes
is counted, with, obviously, Vv = L4; the other ones are left out from table
VIII. Furthermore, each class representing overlappings of type dﬁb can be
transformed into four classes of type 2-0-0 by suitable vertical shifts of the
rectangles; the weights remain the same. Therefore, we have not included such
classes of type 2-0-0 explicitly in table VIII, but only those which are not

generated in this way.

The final results for the coefficients bOO up to b50 are shown in table IX.
TABLE IX
Type of Contribution oo bio bog LET by bsgg
2-graphs torx ¢
2 [2] : 2 ¢ 8 25 7 226 662 16
2-0 -[2-0] -3 -21 ~100 2| _yqy nfr2
0=2-0) [0-2-0] 2 243
2 1
d%b Q.L&QJ 23 20
2-0-0 [2-0-0] o 16
Total amount 2 8 22 56 133 6 308




§ 6. Discussion

The main feature of the procedure that was developed in the previous two
sections for the investigation of the reduced magnetic susceptibility x' for
an extremely anisotropic quadratic lattice is the replacement of the full ex-
pression (39) for x'(t;,t;) by the approximate quantity Xé(tl’tz)’ given by

n

' Al o T2
Xp(tyst,) = EE nZO 10 [1—t1] k (ko)

We now come to the discussion of the implications and the wvalidity of this
approximation. In the ferromagnetic region of the t;, tp-plane (0 < t; < 1,
0 <ty £ 1), to be denoted by F, the right-hand side of eq. (40) converges if

-1 - . . .
0 tz/(1-t1) <b , wherebd 1 {8 the radius of convergence of the series

z bnoxn. If we vary t; and tj, Xé(tl,tz) will tend to infinity if either the

factor 1/(1—t1), or the power series, or both, tend to infinity. We consider

A

only the first two cases.

a) If only the factor 1/(1—t1) becomes infinite, xé(tl,tz) diverges as (1-t1)_1’
i.e. its eritical behaviour is that of the susceptibility of the linear chain;
the two-dimensional nature of the system does not manifest itself here. A
sufficient condition for this to happen is that in F one approaches the point
(1,0) along a straight line b'ts = 1-t;, with b'> b, i.e. a straight line lying

between the positive tj-axis and the straight line
bty = 1 - t;. (41)
According to the hypothesis made in section L, (L41) should be the tangent T in

the point (1,0) to the line in the t;,t;-plane that represents the critical

equation (7) (to be called the critical line); in other words, b should be 2.

In order to check this value for b we shall compare it with the estimate for

b that can be obtained from the coefficients bnO’ n=0, ..., 5, calculated in

. ) : ) 5 :
the previous section. We use the ratio method 10‘; it may be applied because

of the positiveness of the coefficients bnO' Therefore, we consider the be-
haviour of the ratios £ = b__./b ~ as a function of n, which, as is well
n n0/ "n-1,0

known, should be of the form b + b(p-1)/n for sufficiently large n, if, as we
shall assume, the asymptotic behaviour of the power series annoxn near its
radius of convergence is of the well-known type:

n 1

v (1-bx) 7P (x 4+ b ). (42)

nzo bnOx




For the first few values of n, however, irregularities can occur. In
particular, for "loosely-packed" lattices, such as the quadratic and the simple
cubic lattice, oscillations between even and odd values of n take place. Since
in fact only a finite number of coefficients bnO are available, b and p can be
determined only with a limited accuracy.

We have used a least-squares method in order to find the values of b and
p for which the form b + b(p—1)/% lies closest to the available ratios £
n=1, ..., 5. BSince the above-mentioned irregularities in gn become less
important for larger n, it is reasonable to attach, in one way or another, more
significance to the ratios for larger n than to the ratios for smaller n. One
can achieve this,e.g., by leaving the first few gn completely out of consideration.
Alternatively, one can count the gn with certain positive weight factors which
increase with n; the ratio of the weight factors for two subsequent values of
n should approach unity for n + «», since for large values of n all ratios
become equally significant. We have followed both procedures, separately and
in combination, choosing the simplest weight factor satisfying the above con-
ditions, viz. n itself. The accuracy of the calculation can be estimated by
carrying it out for different sets of subsequent En' From the set of values

for b and p obtained in this way we derive the following estimates for b and p:

b = 2.02 + 0.03
(43)

L}
—
-3
-3
I+

P 0.03.

The value found for p suggests strongly that p is equal to the critical
index y of the susceptibility of the isotropic quadratic lattice, which is

exactly T/4. If this is true, we may start from the assumption that the series

Enbnoxn diverges for x+b-1 as (1—bx)—7/h, which in turn will give a somewhat
more reliable estimate of b 1O); the result is
b =2.01 + 0.03. (4)

In view of the fact that the value 2 for b falls indeed within the limits
of accuracy of (4L4) we may, conversely, use b = 2 rather than p=T/4 as an

extra piece of information. In that case we find
P =1.7T + 0.02. (45)

By the preceding analysis we feel justified in concluding that the

series annoxn diverges for x = 3, so that in order to find the radius of
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convergence of the series (39) in the limit i-t; -+ 0 it is indeed allowed to
put t; equal to 1 in its coefficients rignt at the beginning. In other words,
the asymptotic form of the critical equation (7) for t; » 1 can be found from

the numbers bnO alone.

b) Let us now return to equation (40) and consider the case that the power
series in t%/(1—t1) diverges, while the factor u/(1-t1) remains finite. This
will take place in the limit where (t;,t;) approaches a point (T,b_](1—T) )# (1,0)
of the tangent T. It follows from the foregoing analysis that under this con-
dition the critical behaviour of xé is of the same nature as that of the
susceptibility of the isotropic quadratic lattice; we call this a two-dimensional
eritical behaviour. This divergence of xé on the tangent T demonstrates most
clearly the shortcoming of the approximate expression (40) for the sus-
ceptibility x'. For, in contrast to xé, x' should be finite on T; its
divergence should not occur before the critical line itself is reached. Obviously,
the sum of all remaining series (l—tl)m_lipbnm [tz/Q1—t1) {AS T 2, saw if
equation (39), which alsc contribute to x' and which we have so far neglected,
nas to diverge as the tangent T is approached in order that the divergence of xé
is compensated for. It is natural to conjecture that each of the series separately
diverges as T is approached, but a definite conclusion can be reached only by an
explicit calculation of the numbers b o for m > 1, which, even for m= 1, 1s
considerably more complicated than the calculation of the numbers bnO' It 18
satisfying, however, that the critical exponent p of xé is, within the limits
of accuracy, equal to the critical exponent y = T/4 of the susceptibility of
the isotropic quadratic lattice. This is in agreement with the conjecture made
in the introduction, which implies that, for sufficiently general values of
t; and tp, the susceptibility diverges as a function of Ap; alone.
Summarizing we can say that the divergence caused by the factor 1/(1—t1)
in the equations (39) and (40) is the same, so that in this respect the
approximation for x' is correct. In contrast to this, the divergence caused
by the power series in (40) predicts a too small domain of convergence of ) g
one may expect that the discrepancy which exists in this respect between the
equations (39) and (40) decreases if one considers values of t; that lie closer
to 1.

Throughout this paper we have considered ferromagnetic Ising systems on

an extremely anisotropic qQuadratic lattice. One easily convinces oneself,
however, that in the procedure for the caleulation of the susceptibility intro-

duced in this paper no use is made of the sign of the weak coupling constant Jj.
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On the other hand, the restriction to positive values of the strong coupling
constant J; is essential, because an extensive use is made of the fact that

t; is close to 1. Hence our method applies equally well to the "semi-anti-
ferromagnetic" case J; > 0, Jp < 0, i.e. the series annOxn describes the
asymptotic behaviour of the susceptibility, not only in the limit t;41, 540,
but also in the limit t341, t2%0. A closer investigation of the series yields
indeed information on the semi-antiferromagnetic case. We shall consider this
case in some detail, together with other antiferromagnetic cases, in a separate
paper.

Having verified that the procedure introduced in this paper leads to the
correct asymptotic form of the critical equation of the anisotropic quadratic
lattice we shall in a second paper apply it to the simple cubic lattice of
which two of the three coupling constants are very small compared to the third

one.
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CRITICAL BEHAVIOUR OF ISING SYSTEMS ON EXTREMELY ANISOTROPIC LATTICES

IT. The simple cubic lattice

Synopsis

The critical behaviour cf the magnetic susceptibility x of a spin-3 Ising
system on a simple cubic lattice in which the coupling constants along two of
the three lattice axes, J, and J3, are very small in comparison with the

coupling constant along the remaining lattice axis, Jj, is investigated on the

basis of the series expansion of X in the variables I tanhBJr, r =1, 2, 3.
For tp,t3 << 1, 1-t; << 1 the reduced susceptibility x' = (kT/u?)x is found
to behave as
1 = tp |"[ ts )"
X'(tl,tz ,t3)a Xé(tl,tz,t3) = 1—_'1':'; Zn_obmno T_IT -t )
,n=

where the bmno are constants. The three-dimensional nature of the system is
contained in the double power series Xm’nbmnoltz/(1-tlﬂnl[t3/(1-t1)]n, of
which the singular behaviour is investigated for the cases tp, = atjs,

a=1, 2, k, 6, 8. Rewriting for these cases the double power series as &
single power series anno(a) [tz/(T—tl)]n and assuming for this series a
singular behaviour of the well-known type [1—b(a)t2/(1-t1)]-p(a) we find in
all five cases that the power p(a) is consistent with the value Y =~% of the
eritical exponent of X for the isotropic simple cubic lattice. Using this
value we find for b(a) the values 6.10 * 0.02, L4.48%5 * 0.02, 3.54 % 0.02,
3.19 + 0.02, 2.99 + 0.02 for a =1, 2, 4, 6, 8 respectively. These
numerical results are used for the investigation of the surface which re-
presents the critical equation in the t;, t;, t3-space. It turns out that
very close to the point (1,0,0) this surface behaves as a cone with its
apex in (1,0,0); in this respect the Bethe-Peierls approximation according
to which the surface behaves near (1,0,0) as a plane rather than as a cone,

is essentially in error.
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§ 1. Introduction

This paper, which is the second one in a series of papers on the critical
behaviour of spin-3 Ising systems on extremely anisotropic lattices, is devoted
to a study of the simple cubic (s.c.) lattice in which the coupling constants
along two of the three lattice axes, Jp and J3, are very small in comparison
with the coupling constant along the remailning lattice axis, J;. To this end
we generalize the technique that was introduced in the first paper 1) (to be
referred to as I) for the investigation of the extremely anisotropic quadratic
lattice. We write the initial magnetic susceptibility x as a triple power
series in the variables L tanhBJr, r =1, 2, 3, and rearrange it into a
double power series in t, and t3 with coefficients depending on t;. Analogously
to the situation for the gquadratic lattice, these coefficients are sums of

functions of t; which diverge for t; - 1. Our main interest concerns the

asymptotic form of the critical equation

A3(t19t23t3) * 0 (1)

of the s.c. lattics, which equation is not known exactly, in contrast to that
of the quadratic lattice. We shall suppose that, in order to find this
asymptotic form, :t is sufficient to consider only those contributions to

the above-mentioned coefficients that show the strongest divergence for t; > 1;
in I, this hypothesis was found to give reliable results. The procedure of
calculating the most divergent contributions can be taken from I with only a
simple straightfceward extension. Therefore, the terminology of I is used
throughout this paper. The extended procedure, together with the actual

o)

calculation of tke first few coefficients, 1is given in § 2

In 8 3 we investigate the asymptotic behaviour of x, using the coefficients
found in § 2. We restrict ourselves to a few special cases, viz. those
characterized by tp = at3, where a =1, 2, 4, 6, 8. For each of these cases
the asymptotic behaviour of yx is described by a power series in one variable,
to/(1-t1), which is analysed by means of the ratio method. The results
seem to confirm another hypothesis, made in I, viz. that the critical behaviour
of X can be described in terms of the function A3 alone; furthermore, they
strongly suggest that the behaviour of A3 itself near the point (t),tz,t3) =
(1,0,0) is essentially different from that predicted by the Bethe-Peierls

approximation.
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§ 2. The magnetic susceptibility of the extremely anisotropic simple cubic lattice

In order to obtain the high-temperature series expansicn of the susceptibility x
of an Ising system on an extremely anisotropic s.c. lattice for which the coupling
constants Jy and J3 are much smaller than J; we use the procedure developed in I.
The reduced susceptibility x' = (kT/u2)x is written as a triple power series in

t1, t2 and tj3:

5 Dy Rg ks
Caas a t) ty tg (D)
X Z . njnpng -t 2 U3 \2)
n),nz,n3=0
n1+n2+n3 =4
Since we consider Ising systems with tj,t3 << t;, we rearrange the series
into a double series in t, and t3 with coefficients depending on t); this is
achieved by first carrying out the summation over nj:
oo
m n
ol e ) =k Z a, (tl)t2t3
mn
m,n=0
with (3)
o0 nl .
a (t = t
o (E1) 2_ 8, ]
. 3. B1=0
ny+mtn >1

In equation (3) the term amn(tl)tgtg is the contribution to x' from 2-graphs
containing fixed numbers m and n of y- and z-lines, respectively, and an arbitrary
number of x-lines. The contribution to amn(tl) from a given class of 2-graphs
containing m y-lines and n z-lines is calculated as follows.

First, we divide each 2-graph into pieces by drawing all infinite planes
which go through the y- or z-lines of the 2-graph or through its points of odd
valence, and which are perpendicular to the x-axis. Performing this procedure
for each class of 2-graphs we find that the analytic structure of amn(tl) is
the same as that of the coefficients an(tl) given by equation (38) of 1. it is

2 m+n+1 )m+n

a sum of terms Fg(ty)/(1-ty) s, Fi(ty)/(1-ty g vew g R (t1), which

+n+1
are the contributions from 2-graphs containing min+1, mtn, ..?, 0 pieces.
Each of the functions Fg(t;), Fi(t1), ... 1is the sum of a finite number of
functions that are regular (and non-zero) for t; = 1, and 1s therefore itself
regular for t; = 1; the function Fm+n+1(t1) is a constant, equal to the
coefficient a occurring in the double power series for the reduced sus-
ceptibility of the quadratic lattice. Hence, equation (3) can be rewritten as

follows:
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L]

T2
1 /3 ~ 2 —_—
L ) b + (1-t;)b + (1-t;)%p + ... s (b)
1=t m,n=0{.mn0 mn 1 mn2 21)m+n

mn0® bmn]’ etc. are constants.

For the investigation of the asymptotic form of the critical equation of

in which b

the s.c. lattice for t, and t3 going simultaneously to zero we assume that
this asymptotic form is determined by the coefficients bmno alone. For the
quadratic lattice the corresponding assumption has been shown tc be correct
within the limits of accuracy in I. In the 2-graphs contributing to bmno the
number r of pieces is maximal (r = m +n + 1), line components of type 2 are

self-avoiding walks, and line components of type 0 are self-avoiding polygons.

The weight of a given class of 2-graphs can be found in the same way as
in I. Here, too, a simplification of the calculations is possible. It is
achieved by generalizing the division of a 2-graph into slices, introduced in
I, in the following way. We first form the orthogonal projection of the
2-graph under consideration onto the yz-plane, representing each infinite
x-chain on which there are points of the 2-graph by a point, and each line in
the 2-graph connecting two points on different infinite x-chains by a line
copnecting the points representing these chains. Next, we consider all
articulation lines of the multigraph thus obtained, i.e. each line which has
the property that its removal disconnects the multigraph. We then delete the
y- or z-lines in the original 2-graph of which these articulation lines are
the projections. In this way the 2-graph is split into one or Aore dis-
connected parts. All classes of 2-graphs which can be obtained by varying
the lengths of the pieces of these parts independently of each other contribute
to'x).. For, each choice of the lengths of the pieces of a given part fixes the
position of one and only one "point of entrance" in each of the cnhef‘parts to
whi&h.it was connected by a y- or a z-line before the deletion, i.e. the end
point of this y- or z-line in that part. By this fact, in combination with

“#he property that by definition no x-chain of a part can be collinear with
any'x—chain of another part, the lengths of the pieces of each part can be
chosen independently of the lengths of the pieces of any other part. Hence,
all 2-graphs thus obtained can be taken into account at once by forming the
produqt of the weights of all parts. If we perfcrm the énalogous procedure
for the 2-graphs on the quadratic lattice, the role of the yz-plane being
taken over by the y-axis, the parts of the 2-graphs thus formed are identical
with the slices.

The book-keeping used to take account of all classes is an extension of



that introduced in I for the quadratic lattice. In the following we consider
the problem of obtaining all 2-graphs with a fixed total number of y- and z-
lines rather than those with fixed numbers of y- and z-lines separately. We
begin with the self-avoiding walks for which the simplest extension of the
book-keeping goes as follows.

For convenience we introduce the concept of a +x step (chain) in the
description of a walk. By this we shall understand an x-line (chain) that is
traversed in the +x direction if one follows the walk, starting from the point 1;
analogously we define +y, +z, -x, -y, -2 steps (chains).

We shall build up a class of walks from 2 + 8 rather than 2 + 4 different
types of units. The units are represented by the same code symbols +, =, 1,
2, 3, 4 as used in I, but each of the symbols 1, 2, 3, 4 has now a double
meaning: the symbol 1 is used not only for a unit consisting of a *y step
followed by a +x chain, but also for aunit consisting of a +z étep followed by

a +x chain; the use of the symbols 2, 3, 4 is analogously extended.

By running through all n—dié;€\code numbers, including the ones for which
on the quadratic lattice no walk can be realized, each class of walks in which
the total number of y- and z-lines is n is obtained. In contrast to the
situation for walks on the quadratic lattice (to be called Q-walks henceforth)
there may be.realized for each code number at least one walk on the cubic
lattice, viz. the walk obtained by taking for each symbol 1 or 2 occurring in
the code number the corresponding unit containing a +y step and for each
symbol 3 or 4 the corresponding unit containing a -z step. In such a walk
no two x-chains are collinear because in order to go from one of these chains
to the other one one has to traverse, apart from x-chains, +y steps and -2z
steps only. Since for two x-chains to be collinear a necessary (and sufficient)
condition is that the numbers of +y and -y steps between these x-chains should
be equal (and similarly for the 2z steps) no two x-chains in the walk considered
are collinear.

This book—keé}ing is equivalent to the multi-valued mapping of Q-walks
onto walks on the s.c. lattice (C-walks) defined by éﬁe following rules:

i) each +x step (-x step) remains a +x step (-x step);

ii) each +y step (-y step) remains a +y step (-y step) or becomes a +z step
(-z step). From now oh we shall say that a class of C-walks belonging to a
given code number corfesponds to the class of Q-walks (if it exists) belonging
to the same code number and vice versa; the p?? x-chain in a C-walk (the

walk being traversed starting from the point’ 1) is’'said to correspopd to the
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pth x-chain in the corresponding Q-walk.

In principle, the weights of the various classes of C-walks belonging to a
given code number may be different; however, they are never smaller than the
weight of the corresponding class of Q-walks.

To prove this, we first observe that, if two x-chains in a Q-walk are not
collinear, then the same holds good for the corresponding x-chains of all
corresponding C-walks. For, as mentioned above, if two x-chains in a C-walk
are collinear the numbers n+y, n__» n,,»A_, of +y, -y, +z2, -z steps,

respectively, between these x-cha.ns satisfy the relations n+y = n =1

n_y; e A
In that case, the numbers n+y + L+Z and n + n_z, which are the numbers of

+y and -y steps, respectively, between the corresponding x-chains in the
corresponding Q-walk, are also ejual to each other; so the latter x-chains are
also collinear. On the other hend, the fact that two x-chains in sa Q-walk are
collinear does not imply that the corresponding x-chains in each of its
corresponding C-walks are also ccllinear. So each combination of lengths of
x-chains which is allowed in a Q-valk is also allowed in the corresponding
C-walks, but in addition new comt nations of lengths may occur in the latter
walks. As a direct consequence, che weight of a class of C-walks is never
smaller than that of the corresp ading class of Q-walks. For those classes of
Q-walks which have a weight equa. to 1, the maximal possible value for s weight ,
this implies that the weights of :he corresponding classes of C-walks are also I
so that the piece-structure of theie C-walks need not be investigated in detail.
The walks with one and two y- and/or z-lines are listed in table I; we
consider only the walks with a code number starting by +1 or +2, since the re-
maining ones can be taken into acccnt, as in I, by multiplying the weights by
a factor 4. For each code number -.ie resulting C-walks are listed in "lexico-
graphical" order: first the walk viich is identical to the corresponding Q-
walk, then the walk which can be obtained from it by changing the last y-line,
and only this one, into a z-line next the walk, which can be obtained from the
first walk by changing the secon last y-line, and only this one, into a z-line,

in the fourth place the walk wit both last y-lines changed into z-lines.

The book-keeping for overla;oings of the type 2-0 can be set up by a
straightforward generalization cf the procedure developed for the guadratic
lattice, the ordering being grov wise in conformity with the book-keeping for
the walks described above. Obvijusly, the®polygons to be considered may con-
tain both y- and z-lines; they :an be generated from the polygons on the

quadratic lattice according to tie rules (i) and (ii), provided we consider

35



TABLE 1

The book-keeping for the C-walks with code numbers starting by + 1 and + 2. For comparison also the corresponding
Q-walks are listed. For the interpretation of the diagrams for C-walks a tripod formed by the positive x-, y- and z-axes
is added.
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"forbidden" classes like [::L::EZZZ] as well; the role of the starting point
in (i) and (ii) can be taken over by any point of the polygon.

As a final example we consider the 2-graphs of the types 0-2-0, dib and
2-0-0, in which the total number of y- and z-lines is four. They can be found
in a simple way with the aid of the diagrams of table VIII of I; allowing for
the fact that both rectangles can be in the xy- or in the xz-plane, we find that
a) each diagram for the types 0-2-0 and d%b represents 16 instead of 4 2-graphs;
b) those diagrams for the type 2-0-0 that have a corresponding diagram for the

type 12\ represent 24 instead of 4 2-graphs, the remaining ones 28 instead of

0-0
6 -2-graphs.

Using the procedure described above the coefficients bmnO with 0 < m, n £ 5,
0 < mtn < 5, have been evaluated. The results are listed in table II, i1n which

*)

for symmetry redsons only the bmnO with m > n are given." For the interpretation

of the first colum see I, table IX.
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!
[2] 2 8 25 64 T¥ 328 || 226 1416| 2329 662% 5522 332@9%
=207 | = - 1=3 = fhepr | =2k -100—1—2— - 264~ 282 -uih{%wﬁ"(éi):-:, M
Ji - _4‘
[o-2-0]| - - - - - - 2 B b 243 3k ﬁ 57
Z[deb] - = - - - - 23 o 5 i 20 f 20 1 4z
|
[2-0-0]| - || - - - - B 28 - il G 225k !
| ]
1 i -
o] ‘ 1|
Total | o .l w3zl 220 | 6k 56 3ok || 1334 | 1152] 20645 308 | 38254110725
amount k : 6 3 1 3 9

§ 3. Discussic:

We now ccr2 to the investigation of the quantity xé, given by
: vy Py R
X1 (G1st2 i8) 2T b
o'l -ty 2_0 m0 |1-t, -ty °

0

/ \

3

by which we hie approximated the reduced susceptibility of the extremely

anisotropic s.:. lattice. Analogously to the corresponding quantity for the

%) See, howev::, the note at the end of this chapter.
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quadratic lattice, xé can diverge both through the factor 1/(1—t1) and through
the double power series. We shall consider only the latter case since the
discussion of the divergence through the factor 1/&1—t1) can be taken unchanged
from the last section of I.

In order to see in which part of the "ferromagnetic" region 0 % BiaAl)
(r =1, 2, 3) of the t;, t2, t3-space the double power series in tz/(1—t1) and
ta/(1-t1) converges, we first consider an arbitrary plane t, = at3 with a > 0
through the ti;-axis. In this plane the double power series reduces, through the
substitution tg = tz/a, to a single power series in t%/(1-t1), to be denoted
by 2:=0bno(a)[t2/k1—t1)]n henceforth. That part of the ferromagnetic region of
the plane in which the latter series converges is bounded by a straight line of
the form tg/(1—t1) = b—1(a), where b_1(a) is the radius of convergence of the
series Enbno(a)xn. Letting a vary from O to ® we find that the part of the
ferromagnetic region in the t;, t,, tiz-space in which the double power series

converges is bounded by a ruled surface which is part of a cone with its apex

in the point (1,0,0); this cone, to be called the critical cone in (1,0,0),

may degenerate into a plane through (1,0,0).

In order to investigate the cone we shall determine some of the straight
lines lying on it, or, equivalently, calculate the number b(a) for some values
of a, viz. a=1, 2, 4, 6, 8. As in I, § 6 we assume that the singular be-

haviour of the series ann (a)xn is of the type:

0

1

T 3wl Gl 1 = nlalel . b=, (6)

no

n=0

which implies that the successive ratios En(a) = bno(a)/bn_1 O(a) behave as
b(a) + b(a)(p(a)-1]/% for large n. The right-hand member of (6) describes
the critical behaviour of xé and hence of the susceptibility of the extremely
anisotropic s.c. lattice, if (tj, tz, t3) approaches in the plane tp = atj3
a point # (1,0,0) of the critical cone; the equation
t2
1=ty

b(a) = - (7)

should, for any fixed a, be the asymptotic form of the critical equation

A3(t1, to, tz/a) = 0. (8)

. . n .
The procedure used for the analysis of the power seriles anno(a)x .is the same
as the one introduced in I, § 6; however, the situation encountered here

differs in two points from the situation in I. First, we have no exact
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expression for b(a) at our disposal with which to compare our results and by
means of which p(a) could be determined more accurately. Secondly, the power
p(a) may in principle depend.ﬁn a, so that different values may be found for

the five cases considered here. However, on account of the hypothesis intro-
duced in I, § 1, that the critical behaviour of thermodynamic quantities can

be described in terms of Ad alone, we do not expect such a dependence; more
specifically, * this hypothesis implies that p(a) is equal to the critical

index Yy of the susceptibility of.the isotropic s.c. lattice, which is believed
to be 5/4, alihough this value has not been established rigorously. Accordingly,
we have used this vhlue for p(a) in order to determine b(a) more accurately.

The results of the analysis are listed in table III.

TABLE IIT

The parameters b(a) and p(a) as estimated from the coefficients b 3 the

mn0
values of b(a) in the last column are found if p(a) is put equal to 5/L.

a b(a) p(a) b(a)

1 6.08 £ 0.10 1.26 + 0.05 6.10 % 0.02
2 4,47 + 0.08 1.26 + 0.06 4.48°% + 0.02
4 3.53 + 0.05 1.27 ¢+ 0.06 3.54 + 0.02
6 3.14 + 0.05 1.30 % 0.06 3.19 + 0.02
8 2.94 + 0.05 1.31 £ 0.06 2.99 % 0.02

Note that the quadratic lattice corresponds to a = », so that cne can write
formally b(e) = 2, p(=) = 7/k. _

It is & striking feature that the values for p(a) given in the second
column of table III do indicate a dependence on a. However, we believe
strongly that this dependence is only a seeming one. A possible explanation
can be found from the fact that for all five values of a we have used the

same finite number of coefficients b (a). Our procedure for determining

0
b(a) and p(a) is equivalent to drawing that straight line % in the 1/n, € -
plane, that fits best to the points (1/n,£n(a) Yo B B 1y vesy Bv The inteér-

section of & with the an-axis should take place in the point (0, b(a) ), the
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intersection with the 1/n-axis in the point [-(p(a) -1)-1, 0| . For large
values of a, however, the coefficients bno(a) will tend to their limits bnO
which are the coefficients for the quantity xé for the quadratic lattice;
hence the points (1/n, En(a) ) will tend to the corresponding points for the
quadratic lattice.

In order to find the true asymptotic behaviour of the gn(a) for n > «,
one would have to take into account more and more coefficients bno(a) as a
increases. If, in accordance with our hypothesis, the complete series diverges
for all a with a power 5/4, then for each value of a one would find that the
straight line % towards which the points (1/n, En(a) ) seem to tend asymptot-
ically intersects the 1/n-axis in a point which comes closer to the point
(=(5/k -1)_1, 0) = (-4,0) as more points (1/n, En(a) ) are calculated and taken
into account; more specifically, the intersection point can be written as
(—(p-1)-1, 0), where p approaches the value 5/4 from above, so that the lines
(which deviate less and less from the line which would be obtained if all
points (1/n, En(a) ) could be taken into account) become less steep. As a
consequence, the intersection point with the gn-axis approaches the point
(b(a), 0) from below; hence, the value for b(a) as estimated from a finite
number of terms in the series will be too small.

On the other hand, one may use the correct value for p(a) as an extra piece

of information right from the beginning, so that the line &' which is fitted to

the points (1/n, En(a) ) is of the form
1
£ (a) = n(a) 1+ 5] - (9)

Thus, &' is "forced" to go through (-4,0) exactly; consequently, its inter-
section point with the En—axis will lie above the point (b(a), 0), so that the
value of b(a) thus determined will be too large.

Obviously, the values found for b(a) and p(a) will deviate more from the
exact values as a increases. Therefore, the information obtained from the

coefficients bn (a)y, n = Qs «++5 5, will become less reliable and care should

be taken even fgr the cases a = 6, 8 as can be seen from table III. From the
foregoing it follows that the exact value for b(a) is somewhere between the
number given in the first and that given in the third column of that table.
Note that the former number is smaller than the latter one as it should be.
Taking into account the remarks made sbove about the line 2 we conclude that
81l five values for p(a) listed in table III are consistent with the value

5/4.
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Returning to the critical cone itself, we find an important feature from
the numerical results for b(a), viz. that this cone is not degenerated into a
plane through (1, 0, 0). For, such a plane would, on account of symmetry, be

described by an equation of the form
1 =1t; - cty - éts = 0. (10)

The constant ¢ could be calculated directly by observing that (10) should re-
duce to the asymptotic form of the critical line in the t;,ty;- (or t;, t3-)

plane if t, (or t3) is put equal to zero; it is found that
c = 2. (11)

The intersection of the plane defined by the equations (10) and (11) with

the plane t; = at3, where a is an arbitrary constant, 1is given by the equation
1-t; =2(1 +%)t2. (12)

On the other hand, the intersection with the plane t; = aty should be
given by equation (7), so that the numbers b(a) and 2(1 + é) should be equal
for all a. A comparison between the values of 2(1 +-&) for' gi= 1,25 45 648
and the estimated values for b(a) listed in table III shows a manifest dis-
crepancy between these two sets of numbers which exceeds by far the limits of
accuracy of b(a). Hence, the critical cone is indeed a (non-trivial) cone
and not a plane. Equivalently, one can say that the surface in the t;, t,, t3-
space representing (1) (which on the analogy of the critical line for the

quadratic lattice may be called the critical surface) behaves near (1, 0, 0)

as a cone with its apex in this point, and not as a plane. This behaviour
is in marked contrast to that of the critical surface predicted by the Bethe-
Peierls approximation. The equation for the Curie-temperature in this
approximation can be derived by extending the procedure followed in I, § 2a
to the s.c. lattice in a straightforward way, which yields

3
2 - ) exp(-2Bch) = 0. (13)
r=1 \

For Jy, J3 << J; this equation reduces to

—
-t
=

~

1=ty = bty + t3) (tas t3 > 0),

which expresses the fact that the critical surface implied by the Bethe-
Peierls approximation does behave as a plane near (1, 0, 0). In this respect,
the Bethe-Peierls approximation is essentially in error, whereas for the

quadratic lattice it led to the right type of critical equation, viz.
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1 =1%; -ty - Ct1t, = 0, but with the coefficient C = 3 rather than C = 1.
The conical behaviour near (1, 0, 0) of the exact critical surface can,
of course, be reformulated in terms of the critical equation. However, we
postpone & discussion of the critical equation to a subsequent paper on d-
dimensional Cartesian lattices in which only one coupling constant is ex-
tremely small. There we shall encounter a new aspect of critical equations,
which is of direct importance for the asymptotic form of equation (1) for
tp,t3 * O, so that a discussion of the critical equation of the s.c. lattice
can be given a more firm basis there. In fact, we shall be led to a closed
expression for the asymptotic form which is in good agreement with the

numerical results obtained for b(a) in this paper.
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Note: The numbers bmn have also been calculated by a different method (to be

0
presented in a subsequent chapter). The numerical values of the bmnO given in
; ; 8
table II are reproduced except that of b32 0° which is found to be 107285.

Since the second method is much less cumbersome than the one followed here, the

latter value is accepted as the correct one.
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CRITICAL BEHAVIOUR OF ISING SYSTEMS ON EXTREMELY ANISOTROPIC LATTICES

ITI. Generalization of Sykes' expression for the susceptibility and application

to the ferromagnetic case

Synopsis

A new method for obtaining series expansions for the initial susceptibility
of spin-3 Ising systems on extremely anisotropic lattices is presented. The
method starts from a generalization to anisotropic lattices of an expression
proposed by Sykes (J.math.Phys. 2 (1961) 52) for the susceptibility of isotropic
lattices. As in the latter case, only closed graphs, i.e. graphs without points
of valence 1, have to be counted; this means a substantial reduction in the
labour involved in the derivation of series expansions in comparison with the
method followed in two preceding papers in this series (I, II). By means of the
new method the susceptibility series for the quadratic and the simple cubic lattice,
obtained in these papers, are rederived; to the former series two more terms have

been added.
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§ 1. Introduction

2)

In two preceding papers 1 s to be referred to as I and II henceforth,
the critical behaviour of the initial susceptibility x of ferromagnetic spin-3
Ising systems on extremely anisotropic lattices was studied. The present
paper is devoted to a different (and more efficient) method for obtaining
series expansions for y in such cases. We set up a generalization to aniso-

tropic lattices of an expression for x, originally proposed by Sykes 3)4)

>
and later on proved by Nagle and Temperley 5),for isotropic lattices. The
advantage of Sykes' formula is that it gives x in terms of closed graphs only
(i.e. graphs without points of valence 1) with the additional property that
there are two points of odd valence at most. These graphs are far less
numerous than the magnetic graphs (i.e. graphs with exactly two points of odd
valence), all of which have to be considered for the derivation of series
expansions by means of the older method of Oguchi 6). Consegquently, the
possibility of making errors is much smaller in Sykes' method. A similar,

and even more drastic, reduction in the process of counting graphs takes place
in our case of extremely anisotropic lattices, 1if studied by means of the

above-mentioned generalization. Furthermore, the generalized expression is

a very convenient starting point for a discussion of antiferromagnetic Ising

systems on extremely anisotropic lattices, which will be given in the next
paper of this series.

The generalization of Sykes' expression for x is derived in § 2. In §3a
we consider its asymptotic form in the case of an extremely anisotropic d-
dimensional Cartesian lattice as introduced in I, § 1. The formalism of
dividing 2-graphs into slices and pieces, which proved to be very useful for
the calculations given in I and II, and which entered there in a natural way,
can be used with only slight modifications. In § 3b we consider the extremely
anisotropic quadratic lattice; owing to the reduction in the labour of
counting graphs two extra terms can be added to the series obtained in I for
the leading order term ¥y in the reduced susceptibility (kT/u?)x = x'; as a
result a somewhat better estimate of the radius of convergence of this series
is found. In §3c, finally, the series obtained in II for the simple cubic
(s.c.) lattice is rederived; for this lattice, too, the new method is much
more efficient than the straightforward but cumbersome procedure followed in
II. The paper ends with a short discussion on the advantages of the new

method.
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§ 2. Extension of Sykes'formula for the susceptibility to anisotropic lattices

In order to derive an expression, similar to that of Sykes 4), for the

reduced initial susceptibility x' of a spin-3 Ising system on an anisotropic
g

. 5)
lattice, we shall closely follow the method developed by Nagle and Temperley

for isotropic lattices. With a view to the fact that we shall apply the
generalized formula to Cartesian lattices we shall restrict ourselves to
lattices with the property that the set of lines can be split up into 4
classes in such a way that with each point of the lattice exactly two lines of
each class are incident. To all lines within a given class the same coupling
constant Ji is assigned, where Ji may vary with i. This partitioning may be
carried through still further by a splitting of each class into two classes in
such a way that with each point only one line of each class is incident; the
values of the coupling constant for different classes may be different again.
The formalism for this case, which can also be applied to e.g. an anisotropic
honeycomb lattice, is similar to the procedure for the above-mentioned kind
of anisotropy.

To any partial graph G of the lattice (which is supposed to contain N
points) a vector E with 3d components p_ . (si =1 0UNEDY BOP ETy N ad)t 18
assigned; P, o is the number of vertiéés of the lattice with which
exactly s; lines o% the 1°° class, s, lines of the 2nd class, etc. of G are
incident. Denoting by gN(;) the number of partial graphs G cf the lattice to
which a given vector 5 is assigned, we can cast the partition function of
the Ising system on this lattice in the presence of an external magnetic

field H into the form

N
N d ~ - 2 o, Naiasing
(z) = [2 coshBuH T coshBJ.| } gN(p) AR s
; 1 8 . os 05
i=1 AT s =0 84=0 "1 d
P i
> . d a
where z 1s a vector with 3 components, defined by
”~ da &
{ A bi/é for Zq_ s. odd
I 1=1 1
{ 1=1 1
|
Z(“ f=i = :
Jl .o )
& s./2
| for L._.8. even
SR A 1=1
l\l-—

with t = tanhBuH, ti - tanhBJi, 8 = 0, 12,

A straightforward extension of the combinatorial proof by Nagle and Temperley

=
42
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in § 3 of ref. 5 yields the following functional equation for Z.:

N
-> il d 2 - \I ->
zN(m = | 0 (14y5) 7| 2.(v), (3)
(i=1 .
where the yi (i=1,...,d) are arbitrary numbers and v stands for a vector with
~
3~ components:
2 2 rs a t. 5 .\( r.+s.-2t
C C ° . 1{c —=S:) e - \
¥, s = adawecsid e b i Yomes: b, B (=) [ eose sed %% A1)
1 d “x.=0 pos d £;=0 t,=0 i=1 ¥ \if

in ref. 4, the importance of this theorem is due to the fact that for given
> i0r given

ISR
w

we can choose the numbers y. such that only closed graphs give a non-zerc
2 closed g

: 3 > g , / x o, P : ;
contribution to Z.(v), in contrast to the situation for Z _(z), to which all

N N
partial graphs of the lattice contribute. It follows from the definition of
ZN that this happens if each of the d components Vig...0s V010.»+035 *++3s V00..-01
is chosen to be zero; this choice implies a set of d equations from which the

& 9 . .., @ .
y. have to be solved in terms of Tt and z. The Ising partition function can
thus be expressed in terms of a (relatively small) subset of all partial graphs
of the lattice, In order to employ this alternative expansion of the Ising

partition function for actual calculations it is necessary to solve the

wn

equations for the v.:; for srbitrary values of the magnetic field H, however
Jla & )

this is not possible. Fortunately, as 1s shown below, the calculation of x'

tion in first order of H, which is readily found.

v
C
e

requires only the sol

1
Rewriting the identity

¥ e oY ! 5 -7 7 ( ©
X' = lim = > LogZp\z) > \2)
N e (8T V=g

which can be derived immediately from the definition of x', in terms of the
) \ . ) .
y. and v by means of eq. (3), one finds that these quantities need to be
]

known up to second order in T only. However, still further simplifications

5

arise.
a) The y. vanish linearly with 1:
1
1? D;d)
y. = - —iTET- v+ X12) (>0); (6)
1 QY
D

for the derivation and the notation see the appendix. Therefore, one may

restrict oneself to those terms of the r.h.s. of eq. (4) that are of at most




second order in the Y

Las,
b) In eq. (4) the term of zeroth order in the Vs g (e) 1zS g, Which
for odd values of lel venishes linearly with t (see eq. (2) %. ansequently,
if Zisi is odd, Vsl.nnsd itself vanishes linearly with 1. Since each vertex
in a graph G yields a corresponding factor v in the term of ZN(;) to

Sl‘f-S

which G contributes, the contribution from graphs with more than two vertices
of odd valence is of more than second order in t. Since for X' only the
contributions of second order in 1 are relevant and since furthermore the
number of vertices of odd valence in a graph is even, we conclude that only
closed graphs with zerc or two points of odd valence have to be taken into
account for the calculation of x' It follows that for odd values of I.s.

the v . (and alsc the yl) have to be known up to first order in 7 only;

substituting eq. (6) we find

(d s;/2
[n ts N—D(d) - Z[s-(zs )t]Dd)

= N =1
v et i t +0(2) (120)- (1)
;’:,..-Sd (d)
D
d
) 8. odd

¢c) For even values of Eis{, too, 1t 1s sufficient for the calculation of y'

to know the y. only up to the first-order term in 1. Second-order terms
4
would be relevant in those terms of the r.h.s. of eq. (4) which are linear

in the y.. However, all such terms contain a factor z with E.r.
1 L SRR | e
0dd, because the number Zi(ri+si-2ti) is 1 for these terms and hence, if

2_51 is even, Z_ri 1s odd; as mentioned above such z contain a
8 S Aé

“ve

factor t, so that first-order terms in the Y in eq. (ﬁ) actually yield terms

of order 1t1%. Substituting eag. (6) we find

~

d /c s -(2= -5 lJb
v = MEopss 1 + +
§1+++84 1 1 | 1§ (d
| 2
¢ [+ BB
+ ) = 2 l' +
1= I (g)|
1=1 led,J
\
[ oy - 3
[;,s.—s (2-s.)t.-s.(2-s.)t.+(2= -8, ) (2-s. )t,t;]D(d)D\i’ ' k\
d 1 g8 3 a3 g x el kTt Sl Bt § J .
+ ) ” 2 + ((<3) ]
i,3=1 [ (a) j
i< >



d) Finally, according to egs. (3) and (5) the factor H?_ (1+y§)—N fits ki)

1
has to be differentiated with respect to Tt. Again, only the first-order term

in t of the y, 1s relevant.

The further evaluation of x' is carried out in the same way as in ref.

(5), One finds

x' =A+B+C+D (9)

- d
WHEPSH, © {0® 6 (ks

A= e (9a)

52 1
d P J
B==-27} s =
i=1 (D(d)]
2 . a
5 a) ! - s n.)
(1-t2) DS ’1 e ( ) T b9
lll 3 A 3tl g \g(p e J J
a D v
=-2] SR : (9b)
=1 (D(d,J
d 2 S uif d n
-5, 1
n(1+t.)2] Y'e(p) 3} ... I |p s(s=2) 1 t.9J
1, : S =0 & <=0 S1 S3 =1 J
1= / p Sl_ d_ \ VJ_
Cc = 2 (9¢)
N2
)
\
[ a { o g d n.
2| m (1+ti)2J " {e@)(sp=1)(s,~1) T t.
i=1 * s 1 8
P
D = . (9d)
( A AN
]

In these expressions g(g) is the coefficient of N' in gN(E/, s stands

-
] .(=n. ) = 2 A 5
for Zisi’ the wvalence of a point, and nJ( nJ(p) ) QZS st 90, n.a

. . -> 3 v RS
is the number of lines in a graph with a given p which belong to the jth
-9

class. The summations in B and C are over all p assigned to graphs in which

- - > 3
each point has even valence, the summation in D runs over all p assigned to
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graphs in which exactly two points, denoted by P and Q, have odd valence SP
and Sg> respectively. By the presence in D of the factor (SP-i)(sQ—i), only
graphs in which both these valences differ from 1 glve a non-zero contribution,
as itshould be, according to our construction of the Yi» Analogously, the
graphs contributing to C should have at least one point with even valence
larger than 2.

From the remsrks made above it follows that the graphs considered in B, C
and D have the property in common that they contain one or more polygons as a
subgraph. f one would leave out these graphs from the evaluation of Xx's an
expression would result which is exact for a lattice with the same coordination
number as the original lattice, but without polygons as subgraphs, a so-called
Bethe lattice. 7) The Bethe-Pelerls approximation for the original lattice is
known to be an exact theory for this Bethe lattice; we therefore conclude that
A is the Bethe-Peierls approximation fgg Xx's which indeed can be verified by

using a formalism developed by Fisher. The term B is closely related to the

nearest-neighbour spin-spin correlation functions (and hence to the internal

energy), viz. in the following way. From egs. (1) and (2) we deduce
. b a !’]J". f d
Y'lelp) I t."| = logZ - logl2 I coshgd.| , (10)
R { B
> J=1 ’ J=1
P

7

in which 2 1s the thermodynamic limit of the zero-field partition function

per point of the lettice. Differentiating this identity with respect to ti

we find
; d n ) { a9 ” 3
d (R (ISP, LU = e tH | 8logZ — 1 }
g{f ) |alp) T th = Ed |3(RJ.) ~ ti = R (<G L tL s {
i 5 =1 / T A 1 / i TR A at+uy

in which SO 1s the correlation function for two spins which are located
. a.atuq 2> > > . : -

on neighbouring ~points a and atu; connected by a line with coupling constant

Jl. Especially the last member of eq. (11) will turn out to play a central

role in the susceptibility of an antiferromagnetic Ising system cn an

extremely anisotropic Cartesian lattice, which will be discussed in the

following paper of this series.

§ 3. Extremely anisoiropic lattices (ferromagnetic case).

a) Cartesian lattices.

We now consider an Ising system orn a d-dimensional Cartesian lattice as

introduced in I, § 1, for which O<Ji<<J1 (i=2,...,d). The classes into
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which the set of lines is split up correspond to the sets of lines parallel
to the respective lattice axes; hence, d is the dimensionality of the
lattice. PFor the evaluation of the terms B, C and D it is convenient to

-

change the summations over p into summations over partial graphs of the

lattice. The requirement that one has tc count graphs per lattice point

(which is implied by the definition of g(g) ) 1s then reflected in the fact

that the summations run over overlappings formed by one or more line

components of type O in B and C, and by one line component of type 2 and
zero, one, two, ... line ccmponents of type O in D (called 2-graphs in I).
Since in the above-mentioned case of extreme anisotropy of the lattice the
critical behaviour takes place for (tl,tz,.,.,td):'(1,0,...,0), we rewrite
each one of the quantities A, B, C and D as a multiple power series in
toaeeaty with coefficients depending on t,. Generalizing the division of
2-graphs into pieces, as described in I and II, to the overlappings
considered here we find again that these coefficients are sums of terms

which are infinite for t;=1; as before, we assume that for the investigation
of the asymptotic form of the critical equation one may restrict oneself to

those contributions to the coefficients of the resulting series

o @ nz ng ' -
Ln2=0"'2nd=0 anz_ ‘nd(tl) t, «eety for x that have the strongest divergence
for c1+1. On account of the results for the quadratic and the simple cubic
lattice we expect that, K for a. n (t,) these contributions are proportional

_{[’\.Z-f_ +nd& ﬁ r|2-<-.d. ! :
to (1—t1) x in this limit This is true indeed for A, the Bethe-
Peierls approximation for x'. Using eq. (A6) of the appendix we rewrite A
as

A= (
d
1 =2 ) t: /(1)

Treating this expression in the same way as the r.h.s. of eq. (A6) of the
appendix we find that the most divergent contributions to the coefficients
of the corresponding multiple power series 1in t2, ...,td come from the terms

found by expanding the second factor of the quantity

1 2
[
1=ty * 1=bty/(1=ty)-. . .=bty/(1=%)

—

Aof

which shows that these contributions have the required property.

For the investigation of B we rewrite it as

-t
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(a))?

g% )-1, which in combination with the denominator (D J ‘n eq. (94)

T o
glie: ihe required number of factors (1—t1)-1, For all other graphs, e.g.
where SP oY sQ is 5,Ts-».5 there are less factors (l—'c.l)—‘r present. in the
contribution tc x', so that again they need not be considered here.

Finally, we present the procedure for the actual calculation of B and
D, introducing it by two examples. For B we consider the class of cver-
lappings formed by two rectangles on the s.c. lattice, one of which contains
two y-lines, the other one two z-lines, which can, by the rules given in II,
teble I, be represented by the diagram E::fg§§::r . For this class, the

number ¢{0) is -1 and the number of pieces is 3. This class contributes to

<

« . 2 2N My
inmmer sum in the r.h.s. of eq. (14) a term =t5t3[t /(1-t%)j [t1/(1=t
&= 1 1 1

”
4
-~
3

) G A
i
&{ - St 4 $
t1/{1-t7)°(1-t;). The operator t,;3/9t; acting on this term may be
replaced by a differentiation of the denominator alone, because correction

-1 . : -
terms to this contain fewer factors (1-t;) ;3 replacing in the resulting

quantity factors like t? by 1 and 1—t$ by p(1-t;) (see I,§4) we find in

leading order in (i—tl)_1 a term —3t%t%/16(1—t‘)“. Furthermore, we substitute
S, : (3)

for D'” the expression given in eq. (A9) of the appendix and for L?J the

value assumed by the r.h.s. of eq. (A5) for t,=t3=0, i.e. 1; the contribution

to x' is then in leading order found to be [3t§t%/h(i—tl)5][1+8t2/f1—t1) +

Bt./(1=t;) + ... ] - Similarly, the terms resulting from the effect of the

operators t;3/3t, and t33/3t3 on -t%t%t?/(1-t%)Lf-t%) are in leading order
(3)

2 . 2 2 ) Soon
both found to be —t§t3/8(1—t1)3. Putting the factors 1-t: and D, (i=2,3)

in eq. (14) equal to 1 and 2, their respective values for (tj,t;,%t3)

D

= (1,0,0), we find for the resulting contribution to x' both for 1=2 and

i=3 the quantity [tat3/(1-ty)°1[ 1+8to/(1-ty)+8t3/(i-tq)+...]

From this example the procedure to be followed for an arbitrary class of
overlappings in B for d4=2,3,... becomes clear: in its contribution to the inner
sum in eq. (14) the differentiation with respect to t; needs t¢ be carried out
only for the dencminator; in the resulting quantity (nct in the contribution

iteelf) factors like W—t? have to be replaced by p(i-t;); for the other t. the
order of the differentiation and this replacement is irrelevant. The substitution

for quantities in the remaining part of eq. (14) is as follows:

1-t7 » 2(1-t;)

1—tf > 1, o 5 IR |
ng)(‘:1,t2, ’td:{ . ng)(‘l,O,...,O) = (=:)a-1 (15)
D80 (1) stmssecsta) > DY (1505 0a0s0) = (=381 2, i%0,.cs,d
D(d\’(n,tz, conty) > (-)d(1—t1) ["-“ %)ti/( '-t-zﬂ

=




For D we take as an example the simplest class of 2-graphs possible, viz

the class [—T——— on the quadratic lattice. Since sP=sQ=3, 1ts contribution
2 X - AN 2P ; :
to the sum in eq. (94) is ht%t?/(\—tf)‘, of which the leading order term for

- - 2 > x
ty>1 is tg/(1-t1)2. Taking for the factor Hi=](.+ti)2 its value assumed for
(t1,tz)=(1,0), i.e. 4, and using eq. (15) for D!2) we find in leading order
the contribution to x': [8t§/(1—t1)h][1+8t2/(1-t1)+,..] .

Generally, since for all graphs under consideration Sy and sQ have to be

3, we may take the factor (sP—1)(sQ—1) outside the summation, multiply it by

the value of 2ﬂ?= (1+ti)2 for (tl’tz""’td) = (1,05...50), i.e. 8, substitute

1
eq. (A9), and thus replace D by the expression Dy defined by

vy nd B [tz/(“—tl)]n2...[td/(1-t1)]n
n2=O nd=O d
Dy = : (16)
(1=t) 1=bt, /(1=,)=on=bit g/ (1-t, )17

18

32

The numbers dnz"'nd consist of contributions from all classes of 2-graphs
with n. lines with coupling constant Ji’ i=2,...,d, for which sP=sQ=3 and
for which the number of pieces is (Zini)—1. The example treated here yields
a contribution to dj3, viz. +1°§, the factor +1 arising from the fact that
we have a 2-graph consisting of a single line component, the factor i being

due to the presence of exactly two pieces, each with multiplicity

A
»

Generally, the formalism introduced in I, especially the concepts of piece,

slice and weight, may here be used to their full extent.

b) The quadratic lattice

The evaluation of B for this lattice does not require an expansion in terms

of graphs, because the partition function Z is known in closed form 9):
+17 +71

\
)

1 < ’
logZ = log2 + Bl [ dwj J dwy log(cosh2BJ, cosh2BJ y-sinh28J; coswy-sinh2BRJ, cosws

/

A (17
Combining this equation with egs. (9b) and (11) we find
+ + 2 2 2 3
55 3 f ) Qti(|+ti,)—(1+t;)(1—ti,)COSwl l
[Di 1 ti Z-E'J dw, J dwy 3 3 > 5 -tl{
s L n A s (1+£7)(1+83) -2t (1-t5 ) coswy =2t ( 1-t1 ) cosws ;
- 2
B=~2 | 2
i=1 (D(Q)]

\n
w




where 1'=2 for i=1 and vice versa.

The term in eq. {(18) which corresponds to i=71 can be written as

=D =l (1=t5) + +1r X 2
“\Dl J SRRy 1 ]T { tlﬂvt%)-(1—t2)cosw1+2tlt2cosm2
dw i dwz
A ) - {4 2y 2, 2 2\
[D(Q)}Z 4“2—11 -;T [ *t~._,(1+t2)-2t-1(1—t2)cosw1-2t2( 1=ty jccswsy

The function multiplying the integral becomes proportional to

(1—31)-1 [1—ht2/(1—tg)]-2 for (ty,tp)*>(1,0); noting that this expression
contains a factor (W—tl)-] and combining this fact with the remarks about B
made in the previous section. we expect that for (t;,t2)>(1,0) the integral
itself approaches a finite non-zerc value, which may depend on to/(i1-t;). In
order to find this function we change from the variables t; and t; to the
variables 1-t; and t,/(1-t;) in the integrand; next we rewrite the numerator

and the denominator as polynomials in 1-t; with coefficients depending on

to/(1-ty), w1 &nd ws. The term of zeroth order in (1-t;) in these poly-
nomigls is 1-cosw: and 2(1-coswy) respectively, so that special care has to

be taken for the case w;=0. The remeining procedure is standard: one puts

the variable 1-t, equel to zerc except for some small interval around w;=0,
a9
where coswj is replaced by 1-(wj/2 In an analogous way the leading order

term for i=2 can be found. After performing the integration over w; and

writin

09

s for wp, one finds the resulting expression for the leading order

w
term of B itself, +to be denoted by Bj:

2 1 ( 1-2xcosw |
BO = o J aw 5 Ul 1 +
(1=t1)( 1=bx)2 "_u (1-bxcosw+lix?)*® )
8x 1+} cosw=2x t2 .
+ 5o | dw T = ; (19)
(1-t3)(1-kx)?2 =N (1-bxcosw+lx?)? 1=t

here the first and second term are the leading order terms corresponding to
i=1 and 2,respectively,in eq. (18). The first few coefficients of the

resulting power series in x are listed in table II,
The quantity Dy cannot be calculated explicitly, we can only find the

: : F . y % - e
first few numbers dr (we write n instead of nz) occurring in eq. (16) vy

14

5k




counting all 2-graphs which contribute to these numbers. The book-keeping

for these 2-graphs is similar to the system used in I; it was found convenient
to order the dumbbells (;);1:) according to the pair of polygons which reigit
after the "bridge" s has been erased, and to order the star figure-eights EJ;
according to the "external" polygon which is left after the "internal" bridge s
has been erased. The book-keeping for the bridges s is analogous to that used
for self-avoiding walks in I. The results for dn’ n=0,1,...,7,are listed in

table I.

TABLE I
The coefficients dn’ n=0,1,.44,7,together with the contributions from
the varicus types of 2-graphs to these coefficients. The meaning of the
symbols 2,2-0, etc. is the same as in I. As mentioned in §3g the line
components of type 2 are dumbbells or star figure-eights.
+yps oF do ds d, ds dy, ds dg d-
2-graphs
102069
> . . _ ! S I - R S
3 L8 108
= S = - L . g o k3L Pasld
2-0 T3 h2 225%
0-2-0 - - - - - - - 3
35
e s o wiols monfog o - |z
—0= = = % = = - - il
2-0-0 i6
1 1_ 1_. 11_1.5_ _8@
0 0 0 " 13 h3 1'216 281296
The coefficients up to Yth order of the series expansion for (i-t,)Dgy,which

follow from these numbers,are listed in table II, together with the
coefficients for (1-t;)Ap (see eq. (13) ) and (1-t;)By and the resulting

" S 1 L ST . .
coefficients for (l—tl)xo s Where ¥, 1s written as in I as

25



TABLE II

The coefficients bnO’ 0sn<T, together with the contributions

from the quantities Ay, B, and Dy to these coefficients.

boo bio b2 b3g byo bsg bgo | b7

Ap 2 8 32 128 512 2048 8192 32768

Bo = = -10 - 80 | -48s53 -2604 -130723 |-62916
- = 2 2 10 34
Do 8 | 1063 864 55Thsr | 3168837
X0 2 8 22 56 15’6 308 693§K 15u081

The newly obtained coefficients bgg and byg of the series Z: b_x' should

=0 noO
provide a more reliable estimate of the quantities b and p describing the

. a : . : -1
behaviour of the series near its radius of convergence b

Z b x" v (1-bx)7F
n0
n=0

(x 4+ 7).

Indeed, carrying out an analysis of the series along the same lines as
in I, § 6 one finds that the new intermediate results for b and, to a less
extent, for p lie closer to and seem to converge better to the conjectured
respective values 2 and /4 than the old ones. is fact adds to the
confidence one may have in the procedure for the investigation of the
asymptotic form of the critical equation on which I and II are founded. Our

new estimates are

b = 1.99
P = 1.77

I+ 1+
o
o
o

Putting p equal to the conjectured value T/4 we find a somewhat higher

estimate for b than in -eq. (21):

b =2.01 = 0.01.

On the other hand, putting t egqual to 2 we find for p:

—
no
o

(21)



-+
p= 1.77T - 0.02, (2
¢) The simple cubic lattice.
For the s.c. lattice both quantities By and Dy have to be evaluated by
means of a graphical expansion.
i) Taking into account only the overlappings with the required number of
no
pieces the leading order term of the quantity zé‘c(o) 1 t.J) in eq. (1L) is
\ ':‘]
found to be: J
5 ¢ S e 8
t] , bt \ 22T 8t
8 B L L 2,2
P :24'*,3' * ~ t?_‘f't}] + | RIS 22 2 t2t3 o5 -
1=t 1-ty)° 4 4 (1=t i-t1)°(1-t7)
t8
1 PR Pl
- T = l6t,»uc3+36t2t3 + aa Pesza s
(1-t7)"(1-t;) 2
the terms occurring with g + sign arise from overlappings that consist of a
single polygon, those with a - sign from overlappings formed by twc polygons.
Substituting this expansion into eq. (14) and using also eq. (15) one finds
the numbers listed for By in table IV at the end of this section.
ii) The first few aumbers ATP occurring in the expression for Dy
(eq. (16) ) are listed in table III.
TABLE III
The coefficients dmn’ 0<m,n<5, O<mtn<5 together with the contributions
from the various types of 2-graphs to these coefficients. For symmetzy
reasons only the dmn with m>n are given.
*;Vpp £ : | I
A A e O - =
{900 || 910 || d20 | d11 [ d30 | d21 || dyo | d31 | d22 | d5g | dy1 | d32 |
2-grapns
z 1 1 43 1 31
2 - - = ~ 2 = 1= - — || L 65 |15==
| 3 33 48 i 36 |
| 5-0 ¥ L B ' y | b r. T s e |l -3
{ = 16 | 4
|
[ 0 0 0 0 : 0 1= o 3 I ut 61 115+ |
| ° 3 3073 1779 l
1
|

3)



The results for (1-t;)Dy following from these numbers d , are listed in

table IV, together with the coefficients for (1-t;)Ay (see eq. (13) ) =and

(1-t;)Bp and the resulting coefficients for (1-t1)xp> where Xg is written as

in II as
1 E to | t3 |B
K e B e
1-t; mn=0 ™0 |1-t,] |1-t,
TABLE IV
The cocefficients bmnO’ O0<m,n<5, Ozm+n<5, together with the
contributions from the quantities Aj, By and Dy. For symmetry
reasons only the bmno with m2n are given.
booo |[P100 |P200 |P1r10f P300| b210f Puoo [P310 | D220 b500( Puig b320
Ag 2 8 32 64 128 384 512 2048 3072 2048| 10240 20480
Bg| - - || -0 | - | -80 | -80 || -4853 |-960 [-111k [-2604|-TT24 [-11kT2
Dp| - - -~ - 8 - 106%— 64 106%— 864 ?309%- 17208—
1
xél 2 8 22 | 6L 56 | 304 133z | 1152 206&%— 308 3825%— 10728§;J

§ 4, Discussion

The generalized expression for the susceptibility of a spin-3 Ising system

on a d-dimensional Cartesian lattice as derived in the present paper has proved

This fact is illustrated

to be very useful for our case of extreme anisotropy.

by the following points.

a) The labour involved in counting graphs was substantially reduced, according

to a rough estimate even by a factor eight. This reduction is due to the fact
that the graphs in question are both simpler in structure and less numerous
than the graphs which had to be taken into account in I and II. For the
quadratic lattice an additional advantage is present, viz. the fact that the
term B (and hence By) is known in closed form, so that a detailed expansion in

terms of graphs can be avoided. By these two facts two more terms for the
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susceptibility of the quadratic lattice could be obtained. As to the s.c.
lattice, it is gratifying that, apart from bj3,p, all coefficients as derived
in IT were reproduced. Since errors had much less chance of creeping into
the calculations than in II, we have not reconsidered all calculations
performed there for bjzp, but instead we take the value which has been found

in the present paper, as the correct one.

b) The case of extreme anisotropy turned out to yield an additional
simplification, which did not occur in the isotropic case, viz. the quantity

C is zero in leading order and hence does not play any role.

c¢) The generalized formula yields automatically a closed expression for the
susceptibility in the Bethe-Peierls approximation of an anisotropic lattice

with 4 lattice axes.

APPENDIX

In this appendix we discuss the solution of the Y which makes the
->
components Vig...ps V0Q1Qe+c<Qs +++3 Vgp-+--01 ©Ff the vector v equal to zero.
Expanding eq. (4) for these components up to first order in the y; and

putting them equal to zero we obtain

0 = V10~ ™ =&Y Pwiere = {(ZZO"‘O —Zoo...o)y1+22110...0 y2+221010...0 Y3t eeo
+ 2210---01 yd} + sae s (A1)

and analogous expressions for vpip...p etc. After substitution of eq. (2)
we find the following equations for the Y3 (again up to first order):

1 1 1

3023 1 3

(t1=1)y; + 2titdy, + 2titiys + ... + 2titivy = - tti »

1 1 1 1 Rh ¥ 1

2.2 2,2 2 3 2
2t2t1y1 + (t2—1)y2 + 2t§t3y3 i s 2t2t§yd = - th >

g : ; (A2)

3 3.3 1.3 3

2bab1yy * 2tgtoy, + 2t5t3yg + ... F (tg-1)yg = - Thg -

By the application of Cramer's rule the solution of this set of linear
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equations is found to be

(O8]

- = (a) _(ad) )
in which D' ° and D. are defined as follows:
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— =~ . th 5 2 T : N 2 ahe
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diagonal el being equal to =1-t., j#i. It follows that

J
\ 2 a
q(d’ - (_\1_' B° (1¢6.), (AS)
A))
1 * 4 5]
j=1
s p
J7i
3 1
(d)
T 1 . B o 2] / - w1 + \
For the evaluat of D we writ £),
A 1
=iy
1=T 5000 9@ . we expand U nto a 1

diagonal ele

a factor (1+t.), in the same way as in the
4

eigenvalue problem for an arbltrary metrix A one expands the determinant

|A-4I}s where I 1s t into a polynomial in A. This expansion

is convenient because only >ts formed by d and d-1 factors (1+t.)

are multiplied by a factor. Products which consist of d—“-

factors (1+t.) by principal «»k minors of the matrix
ined f:u; p by leaving out the terms -(1+t.) from its diagonal elements;

of the proportionality of their rows

for

(and columns). In this way we

{(d) j E c —
D pul I — /_:/’ ¥Ea ) ¥ Il \Tul:) =
J = et J
= 1= Jv__] J
J X
J#i
i = "-.' )
| -
N ' +t )| - o (R {
J’ | & 14+ 3
.): —_] <
this in combination with eg. (A5) another identity
A i
/ 3 4 A
gk N e E2 d . T SV g - e
I = |- i+ T /. s (AT)
— ) f:\ (9 (S
which 1s in lerl ion of the expressions for A
D 1n eqgs (Ca-d).
For the ani e write eq. (A6) as
2 d I‘_:, L) .'_'.". \
rglf]\_ _\.1 e il = X _ ~ J! =
-, =i I 1| 54t+ 14+ = 1+
o \ “1 T TT . )
= d
v
~4 1% s 4 )4 4
S \ " ’ t;é(l‘*‘u _ud( +t, \
(=) ( 1+t = - - A
[ ) t . : X aalle . T (A8)
J +1 -1, )(1+ty) (1=t )(1+t.))° gl
| — 0 = 4 (9

s that in leading order

(@)




L&tz htd

D(d) = (—)d(!‘tl) i 1-t, g 1=t ’ (AQ)
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CRITICAL BEHAVIOUR OF ISING SYSTEMS ON EXTREMELY ANISOTROPIC LATTICES

IV. Antiferromagnetic cases

Synopsis
The critical behaviour of the reduced magnetic susceptibility x' = (kT/u?)x

of spin-3 Ising systems on d-dimensional Cartesian lattices in which the coupling

constants along d-1 lattice axes, J ...,Jd, are much smaller than the

2’
coupling constant along the remaining lattice axis, Jl’ and in which some of the
J; are negative, is investigated on the basis of the series expansion for x' in
the variables t; = tanhBJ;, i=1,...,d. For 1+t << 1, [t |,e.as]ty| << 1, x' is

found to behave as

w a o At
z c I 8
o : o QRN o 1+t 5

Y (% s )BT M avsenba) = (106 ) T e
e ) G Y'n = 0 2P0 i

1

where the ¢ are constants. In the limit (tl,...,t + (=1,05...50),

O, e««e050 d)
taken in such a way that the power series in this expression remains convergent,
xé behaves through the factor 1+t; as the susceptibility of the antiferro-
magnetic linear Ising chain. The d-dimensional nature of the system is contained

in the power series.

It is rigorously shown that
s ey |
X ™ 21 * 5a109>)g 4

where <010,> is the spin-spin correlation function for nearest neighbours along
the first lattice axis, and ( Jo is the leading-order term for

(tl,tz,...,td '
relation it is shown that for the quadratic lattice with (t;,t2)= (-1,0) Xg is

) > (-1,0,...,0) of the quantity within the brackets. Using this

given by

n/2

1 f t; 12 :
t 0 SRV I gy .
it T [l
0

The fact that the integral, and hence xé, displays the same critical behaviour
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as the internal energy is discussed in connection with the critical behaviour of
x' for antiferromagnetic Ising systems in general. A numerical analysis indicates
that for the quadratic lattice with t;+1, t,40 the critical behaviour of the
leading-order term of X' is also similar to that of the internal energy.

Finally, the first-order correction xi on xé is calculated explicitly for
the quadratic lattice with (t;,tp)= (-1,0), and the region of validity of the

approximation ¥X'as xé is discussed.
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§ 1. Introduction

3)

In three preceding papers n2) , to be referred to as I, IT and III hence-
forth, we have investigated the critical behaviour of the reduced initial
susceptibility x' of ferromagnetic spin-3 Ising systems on Cartesian lattices
in which the coupling constants along d-1 lattice axes are vanishing small in
comparison with the coupling constant along the remaining lattice axis. The
present paper is also devoted to a study of Ising systems on such extremely
anisotropic lattices; however, we now consider cases where the coupling
constants Ji along one or more lattice axes are negative. We shall call Ising

systems with the latter property antiferromagnetic; this common designation is

motivated by the fact that all these systems have the property in common that
the net magnetization in the ground state vanishes.

As before we use the high-temperature series expansion for x' in the
variables t; = tanhBJ,, i=1,...,d; we choose J, as the "large" coupling
constant. The critical behaviour for the afore-said cases of extreme anisotropy
occurs near (tl’tz""’td) = (£1,0,...,0), the % sign corresponding to the sign
of J,. Therefore we rearrange the series into one in the variables toseennty
with coefficients depending on t,, as we did ¥n'T, IIl-and ITI.

The first case considered in this paper is that where t, lies near -1;

the signs of t,,...,t, are not specified (§ 2). Oguchi's method for deriving

series expansions is ?ound to be even more laborious in this case than in the
ferromagnetic cases dealt with before. In view of this fact the expression of
Sykes as generalized in III, which is equally valid for negative values of one
or more t;, and which reduces substantially the labour involved in developing
series expansions, is still more useful than in the case of ferromagnetic
systems. It turns out that for t,= -1 this expression forms even an ideal
starting point: from it we can in a straightforward way show that the term xé
in x' which is of leading order in 1+t, for (tl,tz,...,td) (5140556008 “to
be called the leading-order term of x' for this limit,is half the (similarly

defined) leading-order term of 1 + <0,0,>, where <010,> 1is the spin-spin
correlstion function for two nearest neighbours along the lattice axis with
coupling constant Jj. It is not clear how this relation could be established
on the basis of Oguchi's method. A further analysis of Sykes' expression
shows that also the next-leading-order term xi in X' can be related in a
simple way to <010,> . Using the explicit formula for <0;0,> which is
available for the quadratic lattice, we are able to derive, via these two

relations, closed expressions for xé and xi in the case of the quadratic
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lattice with (tl,tz)z (-1,0).

The critical behaviour of the leading-order term xj for the cases with
(tl,tz,...,t
(tl,t

d)ﬁs (=1,0,...,0) as well as for the antiferromagnetic cases with

2,...,td)53 (1,05...,0) is investigated in § 3. According to the relation
between the leading-order terms of x' and 1 + <0,0,> derived in § 2, these
two quantities have for (tl,tz,...,td) + (=1,0,...,0) & similar critical behaviour.
On the basis of this similarity in combination with a hypothesis about the
similarity in critical behaviour of thermodynamic quantities and their leading-
order terms we show that in all antiferromagnetic cases the susceptibility and

the internal energy have the same critical behaviour, which is furthermore in-

4-9)

dependent of the signs of tisenest This result has been suggested before

on the basis of theoretical argumenis and experimental evidence. Since for the
quadratic lattice with (tl,tz)aj (=1,0) X6 is known in analytic form, a
complete analysis of its critical behaviour is possible in this case. We find
that xa displays indeed the well-known critical behaviour of the internal
energy of the quadratic lattice; this analysis shows also explicitly that Xé
yields the correct asymptotic form of the critical equation for this case.
Similar conclusions are drawn from a (numerical) study for the quadratic lattice
with t;41, t,*0.

The paper ends with a summery of the main results obtained in this and the
preceding papers for Ising systems on extremely anisotropic lattices (§ 4). By
a comparison of the expressions derived in this paper for xg @and x; for the
quadratic lattice with (t;.t2)=2(-1,0), we can draw some conclusions about the

region in the t;,tp-plane where xé may be considered to be a good approximation

to x'.

§ 2. The susceptibility of the d-dimensional Cartesian lattice with

J1 20 b3 22 |34y 27240058

We consider a spin-3 Ising system on a d-dimensional Cartesian lattice as
introduced in I, § 1, for which the coupling constant along one of the lattice
axes, Jj, is negative and, in absolute value, much larger than the coupling
constants along the other lattice axes, Jz""’Jd’ which may be positive or ne-
gative. The critical behaviour of such a system occurs near (tl,tz,...,td) =
(=1,0,...,0); therefore, we write, as in the previous papers, the reduced
initial susceptibility X' as a multiple power series in Tpaeneaty with

coefficients depending on t:
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n2=0 nd=0

In contrast to the ferromagnetic case, we are now interested in the

behaviour of the coefficients a, ., (tl) for ty +=1, Since the function
2

(L-tl)_1 remains finite for t; » -1, one cannot find the leading-order term xé

of x' for this case simply by restricting oneself to those classes of 2-graphs

whose contributions to these coefficients contain as many factors (1-'(:1)-1 as

possible, as we did for ferromagnetic Ising systems (I, II, III). Nevertheless,

Oguchi's method for developing series expansions for x'

s adapted to extremely
anisotropic lattices, on which I and II are founded, still gives an insight into

the most relevant properties of the coefficients a,
2

Let us again consider the division of all 2-graphs belonging to a given class

...nd(tl)'

into pieces. The considerations of I, § 4, which remain valid for lattices of
arbitrary dimensionality, imply that each piece yields a factor Cp(tl) =

z t?/(1-t¥), where u is the multiplicity of the piece, in the contribution from
the class in question to the corresponding coefficient; this statement is equally
valid for positive and negative values of t; (which is, by definition, in absolute
value less than 1). For odd values of u, ¢ (t ) remains finite for ty > 215 if

U is even, however, cu(tl) diverges as (1+t1)-1. Therefore, we expect that the
number of pieces of even multiplicity in the 2-graphs of a given class rather than
the total number of pieces plays a central role for t; » -1. As in the ferro-
..nd(t1) L
gether according to the way in which they diverge for t; + -1; the most divergent

magnetic case we may group the contributions to the coefficients &,

contributions will now come from those classes of 2-graphs that contain as many
pieces of even multiplicity as possible. We shall say that a piece of even (odd)

multiplicity has parity +(-). For given values of n sNg the maximal number

PR

of pieces of even multiplicity in a 2-graph is Z?=2ni, which we shall abbreviate
by n. For notational convenience we prove this for the case d=2 (i.e. the quadratic

lattice), where n=n,.

Consider the infinite y-chains of the lattice which divide the 2-graphs of a

given class into pieces. The parities of the multiplicities u, amd M of two

pieces % and r which border on such an infinite y-chain at itszleft— or right-
hand side respectively, are different if and only if this chain goes through
exactly one point of odd valence (and an arbitrary number of y-lines) of these
2-graphs. This "parity rule" applies also to the most left (right)-hand infinite

y-chain if, for this purpose, one formally treats the empty space lying at its
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left (right)-hand side as a piece of multiplicity zero and hence of parity +.
For the proof of the parity rule only the properties of the (multi-) graph
formed by the points and the lines of a 2-graph, and not its overlapping-
structure, are relevant. We consider, for the (multi-) graph G corresponding to
a given 2-graph, and for a given infinite y-chain L, the set P of points in G
which lie on L. We form the sum V of the valences in G of these points and
write it as V sV o+ Vi 4 Vy’ where V, (er) is the number of x-lines of G
whose right (left)-hand endpoint is a point of P, and Vy is the number of
incidences between a y-line of G and a point of P. Obviously, sz = My
. B and Vy is twice the number of y-lines of G lying on L, and hence
even. Consequently, V is even (odd) if g M, is even (odd), i.e. if the
pieces & and r have the same (opposite) parity. On the other hand, V is even
(odd) if the number of points of odd valence in P is even (odd). It follows
that the parities of the pieces £ and r are different if and only if P contains
an odd number of points of odd valence. Since in 2-graphs there are only two
points of odd valence, the only possibility for a change in parity is that the
y-chain goes through exactly one point of odd valence (and an arbitrary number

of points of even valence) of G.

In 2-graphs in which the two points of odd valence lie on two different
infinite y-chains, L; and L,, one or more pieces lie between these chains. It
follows from the foregoing that all pieces not lying between L; and L;, in-
cluding at least the two empty pieces, have the same parity. This parity is +
because the empty pieces have zero, and hence even, multiplicity. The parity
of the (one or more) pieces lying between L; and L, is opposite, and hence -,
so that they yield factors cu(tl) which remain finite for Ll Since the
maximal number of pieces is n+1, the maximal number of pieces with parity + is n.

On the other hand, if the two points of odd valence lie on one and the
same infinite y-chain, all pieces have parity +. However, 1in this case the
maximal number of pieces is n, so that again the maximal number of pieces with
parity + is n, which completes our proof for the quadratic lattice. The
generalization of this proof to arbitrary values of d is straightforward.

If cu(tl) is written as a series in ascending powers of 1+t;, the dominant
term is, for even u, proportional to (1+t1)-1. Since each piece of even multi-
plicity yields a factor cu(tl), and since the maximal number of pieces of parity

+ in a 2-graph is n, the dominant terms in a, . (t1) are proportional to

'nn
(1+t1)-n. Combining this with the factor t??..fgd multiplying 8 s en (ty),

one would conclude that the leading-order term xé in x' for (tl,tz,...,td) >
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> (-1,0,...5,0) is a multiple power series in the variables tz/(1+t1),...,td/(1+tl),
with no multiplying factor depending on 1+t; alone. A closer investigation shows,
however, that the classes of 2-graphs containing the maximal possible number of
pieces of even multiplicity can be grouped together in such a way that their
dominant contributions cancel completely. We are thereby led to expect that the
actual expression of xé in terms of t; end t, is of the form

n
t d
d
[1+t1] s (2)

n2

D o o0 t2
(1+t1) 2 i _Z_ cnz...ndo [1+t])
n,=0 nd—O

where the c n 0 Bare constants which are not all zero, &and where p is an
integer larger than zero. The expression (2) differs markedly from the
corresponding expression for ferromagnetic cases in that the power series is

multiplied by a factor which vanishes rather than diverges asymptotically.

We shall not prove the above-mentioned cancellation explicitly because we
shall show in a more efficient way that xé is of the form (2). We only re-
mark that the result was to be expected for a simple reason. If xé were
sctually a multiple power series with non-zero coefficients in the variables
ti/(1+t1), i=2,...,d, it would not have a unique limit for (tx’tz""’td) >
+ (=1405++.,0). For instance, if the point (=1,0,...,0) is approached along
a straight line such that the power series converges for the values of the
variables ti/(1+tl), i=2,...,d, corresponding to this straight line, xé
would tend to a limiting value depending on these values of the ti/(1+t1).

In other words, x&, and hence X', would have & finite but infinitely many-
valued limit if the point (-1,0,...,0) is approached from the "high-temperature"
side, and consequently x' would not be a well-behaved thermodynamic quantity.
Only a cancellation of the dominant terms can remove the many-valuedness, making
x'(=1,0,...,0) vanish. (In the ferromagnetic case, dealt with in I and II, the
many-valuedness of the multiple power series occurring in xa is removed by

the multiplying factor (1-t1)_1, which makes xé infinite rather than zero).

In order to find the coefficients ®n, .. a0 g0 occurring in the expression
(2) one has to consider also classes of 2-graphs which do not contain the
maximal possible number of pieces with even multiplicity. For p=1 e.g., which
will be shown below to be the correct value of p, both the next-dominant
contributions from the classes of 2-graphs containing n pieces of even multi-
plicity and the dominant contributions from the classes with n-1 pieces of even

multiplicity have to be taken into account. Such a programme seems to be even
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more laborious than that followed in I and II for the ferromagnetic case, so that

any reduction in the counting procedure is welcome. We therefore return to the

generalized formula of Sykes for x' as derived in III, which proved to be very

efficient for the case L. +1.

We recall that for a d-dimensional Cartesian lattice x' can be written as

the sum of four terms (III, eq. (9) ):

! = A+ B4+C + D,

d
where (_)d A (1+ti)

A= ;
p(d)
2 d n.
(1-t§)(D§d)] t 3—3— Z'(g(p) I tr-lJ]
d T j=19
B=-2) ( = ;
i=1 (d)}
D
d ; 2 2 g
[ I (1+t )2]2' g®) J . ) [ps g. s8(s=2) I t.J
i=1 . 810 s,=0% ! d j=1 9
C = ;

In these expressions D(d) and D(d)

: are given by

a
p{@) o ()81 1 (14t.)
1 .
=i
J#Fi
and
(a) ks ; (d)
D = (=) O (1+t.) + 2t.D. .
j=1 J j£1 J=J

respectively. The meaning of the various symbols is the same as in III.
We begin the discussion of the egs. (3) for the case (tl,tz,...,td) e

+ (=1,0,...5,0) by noting that Dﬁd), i#1, vanishes in this limit and that

T0

(3b)

(3c)



(a

Dy and D approach a finite value; we have in leading order
ng) = (_1)d—1
a) a-1 - (
Dg = (=) (1+t1), i#1 l(tl,tz,...,td) + (=15054504350) ] (4)

From the fact that each of the quantities A, B, C and D contains one or more

(a)

factors 1+t, in its numerator, whereas its denominator, containing only D or

1
2

[D(d) , remains finite in the limit considered, it follows at once that xj is
of the form (2) with p larger than zero. To determine the value of p we consider
the properties of A, B, C and D in more detail.

Substituting eq. (4) into eq. (3a) we find for the leading-order term A, of A:
Ag = 3(1+t1) (5)
this contribution to x; is of the form (2) with p=1.

From the discussion on B given in III we know that for given values of
Boseeeslly the overlappings contributing to the inner sum in eq. (3b) consist of
n-1 or fewer pieces; by the absence of points of odd valence all these pieces
have even multiplicity, so that they all yield a factor (1+t1)-1 in the
contribution to this inner sum. The differentiation with respect to t; yields
therefore, among others, a term proportional to (1+t1)-n. Using the fact that
ng) and D(d) remain finite and that T—ti becomes proportional to (1+t;) for
(tl,tz,...,td) + (=1,0,...,0), we find a contribution to x' which contains n-1
factors (1+t1)_1. Hence, the term corresponding to i=1 in eq. (3b) yields in
leading order also a contribution to xé of the form (2) with p=1. Differentiation
of thezinner sum with respect to the other ti and subsequent multiplication by
[D§d)] , which by eq. (U4) becomes proportional to (1+t1)%, yields contributions
with n-3 factors (1+t,1)"1 at most. Hence the terms with i#1 in eq. (3b) yield in

leading order contributions to xé of the form (2) with p=3.

As mentioned in III the overlappings contributing to C contain n-2 pieces
at most; by their definition they all have even multiplicity. Due to the
presence of the factor H?=1(1+ti)2, the resulting contributions to x' contain
n-4 factors (1+t1)-1 at most. Hence the leading-order term of C is of the form
(2) with p=k.

In the 2-graphs contributing to D there are n-1 pieces at most; some of
them may have odd multiplicity. Again, the factor H?=1(1+ti)2 reduces the

number of factors (1+t1)-1 in the contributions to X' by two, so that even for
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a class in which all n-1 pieces have even multiplicity, the contribution to y'
x =9 )
contains only n-3 factors (1#t;) . So the leading-order term of D is of the

form (2) with p=3.

As mentioned before the leading-order term xa of x' is of the form (2) with
p equal to or larger than 1. From the fact alone that some of the leading-order
terms met in the foregoing analysis are of the form (2) with p=1, one may not
conclude that xé has the same property. A cancellation of the leading-order
terms with p=1, i.e. those of A and B, would imply that x6 is of the form (2)
with p larger than 1. However, such a cancellation can be excluded beforehand
by considering the dependence of these leading-order terms on the variables

tyaeeest In A, these variables occur only to the zeroth power (eq. (5) ). Onm

q
the other hand, since all overlappings contributing to the inner sum of eq. (3b)
contain two or more lines with a "small" coupling constant (Jz""’Jd)’ the

leading-order term of B consists of contributions in which one or more of the
variables tz,...,td ocecur to at least the second power. Hence the leading-order
terms of A and B cannot cancel, which implies in turn that the leading-order term
of X' is of the form (2) with p=1:

n ng

! = (19t,) E E c ( 2 ] ' [ “a
Xg © 1 2 kA B n2...nd0 1+t | “.K1+tl ) (6)

in which the Cpy "'ndo are not all zero.

Summarizing the foregoing analysis we have
' = +
Xo = Ay t B » (7)

in which Ag is given by eq. (5) and By is the leading-order term of B for
(tl,tz,...,td) + (-1,0,...50). In contrast to the ferromagnetic case neither
the terms of B with i#1 nor the quantity D enter into xé. Furthermore, C is
of still less importance than it was in the ferromagnetic case.

Using an alternative form for B which follows from III, eq. (11):

)| |
D. % .l SG.0 > = %=
P sl By, T

1 (Dm)}z
()

(for the notation see III), and using eq. (4) for D, and D

to
|
I
n
e
=

(a)

, we find for BO:
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BO = %(<0102> Cx tl)O s (9)

in which <0,0,> is the spin-spin correlation function for two nearest neigh-
bours 1 and 2 along the lattice axis with coupling constant J;, and in which

( )o is the leading-order term of the quantity within the brackets. Observe
that 2(<030,> —t1)0 is the sum of the next-leading-order terms of 3<0,0;,>

and —%tl, the leading-order terms cancelling. Therefore we are not allowed to

replace this expression by 3<0,0,>g - 3(t;)p3; we may, however, write

BO = %(<O’10'2> + 1)0 - %(1+t1). 1’10)
Combining egs. (5), (7) and (10) we find
)(6 = %(1 + <O'102>)0. (]1)

We postpone a discussion of this relation between the quantities x' and <0;0,>
and its implications for their singular behaviour till § 3.

For the quadratic lattice a closed form for xé can be easily derived from
the well-known expression for the partition function. An explicit derivation
of (1 + <0102>)0,analogous to the procedure given in III for the ferromagnetic
case, is not necessary if we use the following symmetry property of Ising
systems on Cartesian lattices: the partition function of an Ising system on a
Cartesian lattice keeps the same value if the coupling constants along one or
more lattice axes are reversed in sign. It follows that the spin-spin correlation
function for two nearest neighbours along a lattice axis for which the coupling
constant is reversed, takes the opposite value. Therefore, the leading-order
term in <0,0,> - t; for (t;,t2) * (-1,0) is the opposite of that for (t;,ts) =
+ (1,0), with t; replaced by -t;. In the derivation of III, eq. (19) the
leading-order term of <0,0,> - t; (see also III, eq. (11) ) for (t;,ty)~>(1,0)

was found to be

+m
1=-2xcosw to
1
J dw =

(1-t1) “2_,"

(1-bxcosw + th)%

Writing the integral in terms of the standard complete elliptic integrals K and
1

E of the 18% ‘ana 2nd kind with the argument 2(2x)é// (1+2x), performing the

transformation w > Y defined by sinw = (1+2x)siny /(1+2xsin2w), and

integrating E by parts, we obtain this leading-order term in the form
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m/2
,
(1-t1) |- %-E(2x) + 1] = (1-t;) 4~ %— J (1-4x2sin2p)? ay + 1\ .
0

Combining this result with the symmetry property mentioned above we find

(<0102> - tl)J = (1+t1) [%E(QY) = 1 ), ((tl,tZ) "("1,0)‘], (12)

7/

where y = t%/(1+t1).
Substituting this equation into eq. (11) we derive
/2

J (1-by2sin?y)
0

Nt

ay. (13)

Xg = (1#+t1) % E(2y) = (1+t;) %

This formula shows explicitly that for the quadratic lattice xé is of the form

2

%) tZ
xt = (1+t;) J e ( } s (14)
0 1,=0 np0 |1+t

in which the coefficients .0 do not vanish for all nj
2

The discussion on the various kinds of contributions from A, B, C and D
given above enables us to draw one more conclusion in addition to eq. (11), viz.

one on the next-leading-order term of X', which we write as

N4
5 @ o t2 ( tq
' =3
xy = (1+t,) Z ac p ) an"'nd1 [1+t1] "'\1+t1] 5 (15)
n,=0 nd=O
where the c, n.1 are constants. Similarly to xé, xi receives 1its
p+eellyg

contributions only from A and the term in B which corresponds to i=1; hence

we can write
d 2 il
da
("')d.n (1+ti) Z[DE )] t1(<glc;2> » tl)
=1

U 1 5 ¥
[ W =g €] - = . s (16)
1 p(d) {D(d)]

—~

1

in which [ ], means a truncated expansion of the quantity within the brackets
containing the leading- and the next-leading-order term. For the quadratic
lattice it is possible to derive also a closed expression for xi from the
formulae for A and B. Writing A and B in terms of the variables 1+t; and

y = to/(1+t;), and expanding them up to second order in 1+t;, we find
2 1 1
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+
(1+t1)2 [ 1 i 1-2ycosw i P -1+6ycosw-6y2( 1+cos?w )+8y 3cosw
x'=-—--——[dw 1+—I(dm
: 2 b (1-kycoswthy?)® 2n (1-hycosw+hy2)3/2
- -7
which can be written as
(1+t,)? (1447)2 ™2 ay
X; %~ k(2y) = j Ne (17)
2m 2 (1-by2sin?y)?

§ 3. Critical behaviour of antiferromagnetic Ising systems

We now come to the investigation of the critical behaviour of antiferro-
magnetic Ising systems, in the sense of one or more Ji being negative, on
extremely anisotropic lattices.

Let us first consider the case J1<O,|Ji|<<]J1], i=2,...,4, treated in § 2.
We begin the discussion of the critical behaviour of the susceptibility for this
case with an analysis of eq. (6), similar to the analysis given in I, §6 of the
corresponding equation for the ferromagnetic case (and d=2), I, eq. (L0).
According to eq. (6), x6 is the product of a factor 1+t, and a multiple power
series in the variables ti/(1+t1) (i=2,...,d). It follows that xé behaves as
1+t; 1if one approaches the point (-1,0,...,0) in the t 5.+t -sSpace in such a
way that in this limit no singularity arises in Xg on the side of the power
series, which is achieved e.g. by approaching (-1,0,...,0) along a straight line
with the property that the series converges for the corresponding values of the
ti/(1+t1). Under these conditions the critical behaviour of x/ is the same as

that of the susceptibility x' of the antiferromagnetic linear Ising chain:

1+t,

X' = L ]+t1 (tl o -1). (18)

1=t

In this respect the factor (1+t;) in eq. (6) is completely analogous to the
factor (1—t1)-1 in I, eq. (40) (and in II, eq. (5), the extension of I, eg. (L40)
to d=3), which also describes the pseudo-one-dimensional behaviour, under
appropriate conditions, of a more-dimensional system.

On the other hand, we expect that, Jjust as in the cases dealt with in I
and II, the d-dimensional nature of the system under consideration is contained
in the power series. For the case where all t; are positive it was found in I
(II) for d=2(3) that the singular behaviour in the variables ti/(1—tl), i=2(2,3),

of the power series occurring in the term in X' which is of leading order in
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1-ty is, within the limits of accuracy, the same as the (supposedly universal)

critical behaviour of the susceptibility itself with respect to A Moreover,

4
it turned out that in the case d=2 the series diverges for x = tz/(1—t1)

satisfying, again within the limits of accuracy, the equation
1 -2x =0, (19)

which is the asymptotic form of the critical equation. Rather than distilling
from these indications a hypothesis on the relation between the critical behaviour
of xé and x' for the antiferromagnetic case under consideration only, we turn at
once to the most general case of extreme anisotropy where the coupling constant

J; is (in sbsolute magnitude) much larger than the other ones, i.e. to arbitrary
values of d and arbitrary signs of tiseeestye For each lattice of this type we
denote by Z:s i=2,...,d, the variables X; = ti/(1—t1) or y; = ti/(1+t1)

occurring in the multiple power series in the leading-order term of y', and by

(z ..,zd) =0 (20)

¢d 2"

the "eritical equation" of this series, i.e. the equation which is satisfied by
those -.nbinations of values of the variables Z; for which the series becomes

singular. We now assume that

a) eq. (20) is the asymptotic form of the eritical equation
Ad(tl,...,td) =0 . (21)

This assumption formed the basis of our investigations in I and II; as can be
seen from I, eq. (39) and II, eq. (4) it amounts (for the ferromagnetic case)
to the interchange of the limit 1-t;»0 taken in the coefficients of the power

series,and the infinite summation(s) in this series.

b) the singular behaviour of the series can be described in terms of the
variable @d(zz,...,zd) alone. This may be called universality for the leading-
order term of x'; the numerical results for the ferromagnetic simple cubic

lattice (II) are consistent with this assumption.

¢) this singular behaviour in terms of % is of the same form as the critical
behaviour of x' in terms of Ad for the given choice of signs of the Braeeastye
Although it was not stated explicitly in I and II, this assumption was found to
be correct, within the limits of accuracy, for the ferromagnetic gquadratic and
simple cubic lattice; moreover, we used it for obtaining a better estimate for

the region of convergence of the series.
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We shall call this threefold assumption, which states that x' is represented
asymptotically by its leading-order term as far as its critical properties are

concerned, the leading-order hypothesis for x'.

Let us now return to the case (tl,tz,...,td)ﬂs (-1,0,...,0) and consider
the implications of the leading-order hypothesis for it. An adequate starting
point is the relation (11) between xé and (1 + <0102>)0 » because from this
relation in combination with the hypothesis we can draw an important conclusion
about the critical behaviour of the susceptibility of antiferromagnetic Ising
systems in general. According to eq. (11), the singular behaviour of the power
series in eq. (6) is the same as that of the power series in the variables
tb/(1+t1)’ i#1, occurring in (1 + <0,03>)y. If we make a leading-order
hypothesis for 1 + <0,0,> similar to the one for X', we arrive at the state-
ment that x' itself has the same critical behaviour as 1 + <0,0,> (and hence
as <010,>) for t1<0, and arbitrary signs of tz""’td’ for which cases eq.
(11) was derived. Furthermore, the behaviour of x6 and, according to the
leading-order hypothesis, of x' is independent of the signs of toseensty; for,
the symmetry property of Ising systems on Cartesian lattices mentioned in § 2
implies that <0,0,>, and hence (1 + <010,>)g and Xg » are even functions of
t,5.4.5tq, 50 that the power series in eq. (6) contains only even powers of
each variable tL/(1+tl)’ 18255 e atls

Obviously, x' is a symmetric function of tlseeastys 8O that its value is
left unchanged under any permutation of these variables. Since any case where
£ is positive but one t;, i#1, at least is negative, can by a suitable
permutation be transformed into a case where t; is negative, we conclude that
the critical behaviour of x' is the same for all antiferromagnetic cases.
Furthermore, this behaviour is the same as that displayed for t;<0 by <0103>;
on the other hand, |<010,>| does not change if some t; are reversed in sign,
so that we may say that X' and <0,0,> have the same critical behaviour for each
antiferromagnetic case. B8Since the x-axis does not play a privileged role in X',
this statement may be generalized to the extent that ' and all nearest-neigh-
bour spin-spin correlation functions (and hence the internal energy) have the
same critical behaviour for all antiferromagnetic cases.

This relation between X' and the nearest-neighbour spin-spin correlation
functions is strongly reminiscent of the results obtained by Fisher et al.h-8)

for the critical behaviour of antiferromagnetic Ising systems on isotropic

lattices. In refs. 4 and 5 Fisher gave general arguments why the singularities
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in these quantities at the critical point should be of the same nature. Further-
more, he was able to calculate exactly the thermodynamic quantities, including
x', of a so-called super-exchange antiferromagnet on a decorated quadratic lattice
in an external magnetic field 6). It turned out that for this model X' (in zero
field) can in a simple way be expressed in terms of the internal energy alone;
according to this relation these two guantities have the same critical behaviour.
Thirdly, the numerical studies presented in refs. T and 8 support the statement
that x' and the nearest-neighbour spin-spin correlation functions have a similar
critical behaviour. Finally, there is also some experimental evidence for this
similarity 9). We have now supplemented these data with a simple explicit
relation between xé and (1 + <0,05>)g, valid for Cartesian lattices of arbitrary
dimensionality in the limit of extreme anisotropy, and, through the leading-
order hypothesis, with alternative arguments for the relation between the
eritical behaviour of x' and the internal energy.

For the quadratic lattice the leading-order hypothesis for x' can be checked
explicitly for the case (tj,tz)~ (-1,0) with the aid of eq. (13). The critical
equation for cases where one or both ti are negative can be found from the one
for t1,t2>0 by using the abtove-mentioned symmetry property of Ising systems on

Cartesian lattices; in this way we find for t:<0, t,>0 the equation

1+ %] -ty +t18p =0, (22)
and for t;<0, t,<0 the equation

1+t; +ty - t1tp = 0. (23)

The asymptotic form for t,»0 of these equations is given by

(t2+0]
1+ t; = £ 2¢ \
1 £us 240 (24)
or 1+2y =0
The integral occurring in the r.h.s. of eq. (13), being the complete elliptic
integral E of the second kind, becomes singular for |y| = 2. For the critical
behaviour of x; we find
1
x§ = (+t) — [1 - 3(1-ky?) log(1-ky?) + ] (l2y|+1), (25)

which is indeed of the type predicted for x' in refs. T and 8. Hence parts
a and ¢ of the leading-order hypothesis for x' are established to their full

extent for the case (t;,tz) + (-1,0), part b is trivial for d=2. Comparing
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with the well-known critical behaviour of <0;0,>, and taking into account that

eq. (25) has been derived (via eq. (13) ) from eq. (11), in which (1 + <0105>)g
appears, one may look upon eq. (25) also as a confirmation of the leading-order
hypothesis for 1 + <0105>.

For Cartesian lattices with d>2 no analytic expression for <¢10,> is
available, so that all our information about x; has to come from series expansions.
However, it has been observed that for isotropic lattices the nature of the anti-
ferromagnetic critical behaviour of X' is much harder to determine from a given
number of terms in a series expansion than that of the ferromagnetic critical
behaviour. On the analogy of this we expect in our case that for an adequate
numerical analysis we shall need considerably more coefficients of the series
expansion for xé than, e.g. for d=3, the very limited number which can be derived
from the expansion of the partition function in III, §3c. The fact that the
asymptotic form of the critical equation for d>2 is not known exactly (in contrast
with the case d=2) makes this need of more coefficients still more urgent. On the
other hand, even if we would derive a large number of coefficients for xé we could
not check the leading-order hypothesis for X' to a satisfactory extent for the
very reason that the critical behaviour of x' itself is inaccurately known. There-
fore, we shall not perform any calculations for d>2, and hence leave the question

of the validity of the leading-order hypothesis open.

We now pass on to cases of extreme anisotropy where the large variable t,
lies near +1, but where one or more of the other variables are negative. The
procedure for finding the leading-order term xé for these cases 1s quite the same
as the one developed for ferromagnetic cases, because the method followed SE i
II and III does not depend on the signs of t,seessty. Hence xé is again given by

n n
1=ty B I B A i :

o0 o0
) 1
= RN b
X0 1=t 2 Z n ...ndO
n,=0 nd—O 2

which expression was studied in I and II for positive values of tz,...,t We

a
again restrict ourselves to the case d=2, where the critical equation and the

critical behaviour of X' are known. The critical equation of the quadratic

lattice for t1>0, t2<0 reads
1 =t; + tp + t1t2= 0, (27)

of which the asymptotic form for (tji,t2)= (1,0) is

1 = t; = =2ty (tp10). (28)
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We have seen earlier in this section that in cases where one or more tj.are
negative the singular behaviour of X' should be the same as that of the internal
energy. We therefore expect that the power series annzo(tz/(1't1) )nz’ nE
denote by B(x) henceforth, with x=ty/(1-t;), exhibits in addition to the ferro-
magnetic singularity for x+3, described in I, §6, the following singular be-

haviour for x+¥-3:
B(x) = B(-3) - a(1+2x)log(1+2x) (x¥-2), (29)

where a is a constant, which in conformity with the terminology of ref. 8 may
be called the antiferromagnetic amplitude.

For lack of a relation like eq. (11), which enabled us to find xé for d=2,
(tl,tz)::(-1,o), in closed form, we now depend fully on numerical methods for the
investigation of the critical behaviour of xé. As has been pointed out above, an
antiferromagnetic singularity, e.g. of the type occurring in eg. (29), is harder
to establish from a given number of coefficients of a series than ferromagnetic
singularities of the type (1-bx)-p. Nevertheless, some techniques have been
developed which have given reasonable results 8).

The simplest procedure 1s to assume that the ferromagnetic singularity
occurs through a factor (1—2x)_7/h in B(x), i.e. that B(x) can be written as

B(x) = (1—.2>c)'7/h Qlx) » (30)
where Q(x) is regular for x=1. Using the expansion obtained for B(x) in III,
table II, we find

B 3.2,1,3_ 199 u, h60 5 21421 AT7529 .7
ngoqnx Ontx , X + 8x 192 S8 e 3814}( 13821‘x6 + 829)+hx + ( .
4 31)

Q(x)

Since Q(x) is supposed to contain only the antiferromagnetic singularity
(see eq. (29) ), the numbers n(n-ﬂ(-%)n qnshould tend to a limit for n-o«; for

n=2,...,] these numbers (up to three decimals) are listed in table I.

TABLE I

n | n(n-1)(-3)"

9y

0.375
- 0.656
0.TTT
0.763
0.726
- 0.702

-~ ON U1 F w
|
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There is indeed some evidence for the existence of such a limit; from
table I we estimate it to lie near -0.7. The amplitude a, which according to the
definition of Q(x), eq. (30), is related to this limit, to be called q, as
a=-2_7/hq, can then be estimated to be 0.2. In order to gain an insight into
the accuracy of this method, we may set up a similar procedure for singularities
which are slightly different from the one given in eq. (29), e.g. those in which
the quantity (1+2x)log(1+2x) has been replaced by (1+2x)®, where p is slightly
less than 1. We find that such singularities with p lying between 0.9 and 1 are
also consistent with the coefficients q in eq. (31); however, for p=0.9 the
agreement is somewhat worse than for the singularity in eq. (29). A similar
comparison for the radius of convergence shows that the consistency for
singularities of the form (1+bx)log(1+bx) does not change significantly if b is
varied within the range 1.90<b<2.05.

A more general method for investigating series having several singularities
at their radius of convergence consists in writing the series as a sum of quantities
each of which displays a given one of the singularities, and adapting this "Ansatz"

to the coefficients of the series which are known. On the analogy of ref. 8 we

write B(x) as

-7/)4 + )"3//‘]*

B(x) = Ay(1-2x) Ar(1-2x - A3(1+2x)log(1+2x), (32)

where Ay, A, and A3 are constants, called again the amplitudes of the respective
] AT . ; +

singularities. By taking sets of three consecutive powers xm, x 1, xm+2 and

performing for such a set the above-mentioned adaptation we find the estimates

for Ay, A, and A3 given in table II.

TABLE II

Estimates for A;, Ap and A3 for various values of m

m Ay Ay Az
2.382 - 0.310 0.128
2.380 - 0.294 0.141

5 2.381 - 0.302 0.1k49

The estimates for A; lie close to one another; to a somewhat less extent

this is also the case for A;, whereas the estimates for A3 exhibit a larger
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relative scattering. On the whole these numerical results are consistent with
the singular behaviour of B(x) as expressed in eq. (32). Summarizing, we may
say that parts a and ¢ of the leading-order hypothesis are, within the limits of
accuracy, confirmed also for the quadratic lattice with (tj,ts) - (1,0).

If we adopt the estimates obtained for m=5 for a final representation of

Xé’ we may write

Xp = i B(x) = 7%{;{%.38(1—2x)_7/h - O30(1-2x)_3/u—(115(1+2x)log(1+2x)-+wbd},

(33)

where Y(x) is chosen in such a way that the expansion in powers of x of the r.h.s.
of eq. (33) coincides with the expansion of xé up to the coefficient byg. We
find

v(x) = - 0.08 + 0.42x + 0.17x2 - 0.04x3 + 0.02x" . (34)

From egs. (33) and (34) we obtain an estimate also for the value assumed by B(x)

in its antiferromagnetic singularity:

B(-3) = 0.29. (35)

Thus far we have considered only the leading-order term xé. However, as
was shown in § 2, it is possible to derive for the quadratic lattice with
(t1st2) = (-1,0) also the next-leading-order term xi in closed form (egq. (17) ).
By the well-known properties of the complete elliptic integral of the first
kind K, xi becomes singular for |y|+%, Just like xé, which 1s consistent with a
conjecture made in I, § 6, viz. that all terms in x' other than xé become
singular simultaneously with xé. The critical behaviour of xi is different,
however: it diverges logarithmically for [y|+%. We shall come back to this

property in the next section.

§ 4. Summary and concluding remarks.

The investigations reported on in this and the preceding papers include
all cases of extreme anisotropy in d-dimensional Cartesian lattices in which
the coupling constants along d-1 lattice axes are (in absolute value) much
smaller than the remaining coupling constant. In all these cases the leading-
order term Xé of the susceptibility x' turned out to be the product of two

factors with the following properties:
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i) one factor reflects the fact that the system under consideration can be
considered as a set of linear Ising chains which are loosely coupled to one

another; this factor has the same critical behaviour as these Ising chains;

ii) the other factor is a multiple power series in d-1 variables; this factor
contains the d-dimensional structure of the system. The results obtained for
this power series are partly numerical and partly analytical. We give a short

survey here.

a) For ferromagnetic Ising systems on the quadratic lattice the first seven
coefficients of the series were calculated. By an analysis of these coefficients
we found that the radius of convergence of the series gives, within the limits of
accuracy, the asymptotic form of the critical equation for this case; further-
more, the singular behaviour turned out to be of the same nature as the

singularity for the isotropic quadratic lattice (I, § 6).

b) For ferromagnetic Ising systems on the simple cubic lattice the series was also
evaluated, this time up to fifth order in the "small" variables t, and t;. Here,
however, the numerical information obtained for the region of convergence of the
series cannot be compared with analytic data concerning the critical equation,
because such data are not available. A comparison for the singular behaviour as
under a) is possible; within the limits of accuracy this behaviour was found

to be similar to that of the ferromagnetic susceptibility of the isotropic simple

cubic lattice (II, § 3).

¢) For antiferromagnetic Ising systems for which the large variable ty lies near

-1, we were able to show that xé equals 3 (1 + <0405 = >)0 s Where <o,0, 5 2

. . : ; S a atuy a atuj
is the spin-spin correlation function for nearest nelghboﬁrs along the

ith lattice axis. As a consequence we could obtain a closed expression for xé
in the case of the quadratic lattice (and even one for the next-leading-order
term xi) (this paper, § 2). With the aid of this expression we could, for this
case, show rigorously both that the power series yields the asymptotic form of
the critical equation, and that its singularity is of the same nature as that
displayed by antiferromagnetic Ising systems on the isotropic guadratic lattice

(this paper, § 3).

d) The antiferromagnetic quadratic lattice in which the large variable t; lies
near +1, was investigated numerically; in this case the series is the same as
the one for ferromagnetic Ising systems. It turned out again that the series

yields, within the limits of accuracy, the asymptotic form of the critical
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equation, the singularity being of the same type as the singularity met in the

case mentioned under c¢) (this paper, § 3).

Both the numerical and the analytical results mentioned here support the
leading-order hypothesis, formulated in § 3, which states that the power series
in xé deseribes the critical aspects of the susceptibility itself in the limit
of extreme anisotropy. Moreover we were, via this hypothesis, led to a relation
between the antiferromagnetic susceptibility and the internal energy which has

been generally accepted on other grounds.

Up to now we have paid attention only to the mathematical properties of xé;
we now come to the question to what extent X, may be considered as a "physical
quantity, i.e. as a numerically good approximation to yx'. The shortcomings in
the latter respect were, for the ferromagnetic quadratic lattice, mentioned in
I, § 6. For that case we also conjectured that, broadly speaking, xé would be a
better approximation to x' as the large variable would come closer to 1. For
the quadratic lattice with (tj,tp)= (-1,0) we are in a position to make such a
statement somewhat more precise owing to the availability of a closed expression
for the next-leading-order term X, (eq. (17) ). As mentioned at the end of § 3,
X3 diverges as log(1-2|y|) for ly| = |ta/(1+t1)|+3. From this critical behaviour,
in combination with the fact that xi by definition contains one factor 1+t; more
than xé, we expect that a necessary condition on the values of t; and t3 for

which xi may be neglected with respect to xé, is

_ 2%t "
(1+t,) 1og(1 + 1+t1] << 1 (t2 <0), (36)
which forms a more precise form of the analogue for the antiferromagnetic case

of the above-mentioned conjecture.

The fact that xi, in contrast with xé, diverges for |y|$%, was to be
expected on the basis of the hypothesis made in I, §1, that the eritical
behaviour of thermodynamic quantities can be expressed in terms of the function
Ad(tl,...,td) alone. Combining this hypothesis, applied to x' for the quadratic
lattice, with the conclusion of § 3 that x' and the internal energy have the

same critical behaviour if t; and/or t, is negative, we can write

x'(ty15t2) = x‘(t;1 o

c 2c)+a(t1c’t

&) Ay(t1st2)logho(tysta)
(635,) * (tyste)]s (31

where 0,(t1,t2) is the l.h.s. of eg. (22) or (23) for the case t1<0,t2>0 and

2

8l




t1<0, t,<0, respectively, and where (t1c,t2c) is an arbitrary point with
o0 # 0, satisfying Az(t1c’t2c) =:Q'

Let us first consider the former case. We choose a point (t

t1c’t

st. ) with the

ey 2¢
properties just mentioned; by splitting off a factor 1+t; from A, we can re-

write eq. (37) as

x'(t1,5t2) = x'(t, st,.) +alt, ot, )(1+t)) [1-(1-t1)y] log(1+t;) +

1ei2¢ 1c

) # ("1’0)\|.
(38) °

+ a(t C,t2c)(1+t1) [1=(1-t1)y ] log [ 1-(1-t;)y] (t1st2) > (%

1c’t2c
Obviously, the singular behaviour of x' is contained in the third term of the
r.h.s. of this equation; we denote it by xé and rewrite it as a power series in

1+#t; with coefficients wn depending on y, which yields after a simple calculation:

o

2t ) (1487) ) v (¥) (14t
n=0

n
' =
X4(t1.t2) = alt, i

with yo(y) = (1-2y)log(1-2y), (39)
¥1(y) =y log(1-2y) + v,
(=y)"
wn(Y) = T30 272,

a(n-1)(1-2y)%"

This series for the "model function" xé displays all features of the series for
x' in ascending powers of 1it; discussed in this and the preceding papers. First,
the coefficient wo(y) in the term of leading order in 1+t; becomes singular for
y=3, i.e. for y satisfying the asymptotic form of the critical equation for this
case, and its critical behaviour in terms of ¢,=1-2y is the same as that of x; in
terms of 1-(1-t;)y; moreover, it is the same as that of xé and x'. Secondly, the
coefficient ¥;(y) of the term which is of next-leading order in 1+t; diverges for
y42; its singularity is the same as that of x{. A new feature is that the
critical behaviour of the coefficients of the higher powers of 1+t; is also known:
they diverge stronger and stronger as n increases. We see that in spite of the
fact that Y;, and even all wn for n>1 diverge for yt3, and that consequently the
series (39) ceases to make sense for %§y<(1—t1)_1, where xé itself is still
regular, the leading-order term of x; is a reliable tool for studying the
asymptotic form of the critical equation.

The fact that the series in eq. (39) starts by a term containing precisely
the first power of 1+t; cannot be used to draw conclusions about the critical

behaviour of x' in the limit t;>-1, because eq. (37) describes only the critical
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behaviour of x' as a point (t ’t2c) # (-1,0) is approached. To extract from the

1c

latter behaviour information on the former, one should know the properties of
. % . i T o

alt, st,) a[t1c,(1 t1c)/(1 t1c)] in the limit t, =+ -1.

If the similarity of x' to x; continues to hold for the higher-order

)-(n-1)

terms, the divergence of the wn(y) as (1-2y for n>2 implies a similar

i \ ! +1 .
divergence for the terms in X' which are of order (1+t1)n ! with n>2. An analysis

analogous to the one given above, with 1-2y replaced by 1+2y, may be given for the

case t1<0, tp<0. On account of the singularity (1-2|y|)-(n_1)

n+1

in the term of y'
proportional to (1+t;) ', n>2, thus conjectured, one might expect that the region
where xé is a good approximation to X', is determined by a somewhat sharper
condition than eq. (36); instead, it would be given by

2t2

1 + tl << 1 +

144, (t2 2 0). (ko)

The derivation of eq. (39) depends only on the hypothesis that critical
behaviour can be described in terms of Ad alone, which we enunciated in I, §1 as
a property of Ising systems on lattices of arbitrary dimensionality, either ferro-
or antiferromagnetic. We expect therefore that a procedure similar to the one
presented here, is possible for any case of extreme anisotropy (tl,tz,...,td) -+
+ (£1,0,...,0). This would imply that the successive terms Xj, X]s+++s Xjs==-
in %', considered as functions of the variables ti/(Tttl), i#1, diverge with
a critical index of the form n+p, where p is a constant; in other words, the
divergence of the terms xé would be stronger as n increases. As a consequence
one might derive for each case of extreme anisotropy conditions similar to
eq. (40) on the region in the t15++.5t -space vhere X0 is a good approximation to
x'; e.g. for the ferromagnetic quadratic lattice with (tj,tz)=(1,0) the region
would be given by

2to
11 =y IS ey (L”)

1-t;

Considering again xé as a tool for investigating the critical equation
without any questioning about its direct physical meaning, we may say that the
results mentioned above under a) through d) add to our confidence in the
relevance of the numerical results obtained in II to the asymptotic form of the
critical equation of the simple cubic lattice. In the following and last paper

of this series we shall continue the study of this equation by considering cases

of extreme anisotropy in which only one coupling constant is very small with

respect to the other coupling counstants.
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CRITICAL BEHAVIOUR OF ISING SYSTEMS ON EXTREMELY ANISOTROPIC LATTICES

V. Some aspects of the crossover from 4 to d-1 dimensions

Synopsis

The eritical equation of a ferromagnetic spin-3 Ising system on a
d-dimensional Cartesian lattice with coupling constants Jl""’Jd along the d
lattice axes is investigated by means of a series expansion for the reduced
initial susceptibility xj in the variable t, = tanhBJ;. The coefficients a
in this series are sums of products of multiple-spin correlation functions on
a (d-1)-dimensional Cartesian lattice with coupling constants J ,...,J3_q. IV

is shown that

2 3 3 L
ag = s, 8] = 2)(('1_1 5 2)(&_1 < ap :.hxé_l, 0 <a3 < 8xé_1 , Where

1
Xg-1

is the susceptibility of the Ising system on the (d-1)-dimensional lattice;

'
Xa-1 . (n) s (0) (1)
for the critical exponent Y of a (n<3) this implies: Yy P LT

2) . e
Y( 4 R y(3),ghY s Where ¥y is the critical exponent of e O

d=-1 d-1 d-1 (n) d=1
the basis of the conjecture that Y =(n+1)yd_1 and a symmetry argument the
equation
tanhBerz)\
L ‘ (3
(1 - 2x2)7/ + (1 - 2X3)7/ = 1 N R e

1 -ta.nhBJl J

is proposed for the asymptotic form of the critical equation of the simple cubic
lattice in the limit Jp/Jy+ 0, J3/J1>0; this equation is in full agreement

with numerical results obtained in a previous paper CIETR)
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§ 1. Introduction

-})

In the preceding papers in this series 3 » to be referred to as I, II,
TIII and IV henceforth, we have investigated the critical behaviour of the
initial susceptibility of spin-3 Ising systems on Cartesian lattices in which
the coupling constant along one lattice axis is (in absolute value) much larger
than those along the remaining lattice axes. In the present paper we study the
susceptibility and, by means of this quantity, the critical equation for
d-dimensional Cartesian lattices in which the coupling constant along one lattice
J

prreeady g
A lattice of this type may be considered to consist of (d-1)-dimensional lattices

axis, say Jd’ is much smaller than the other coupling constants, J

which are weakly coupled to each other. From this point of view it is natural to

b * : - 2 )
develop the susceptibility xé ) of the d-dimensional lattice into a power series
Znantg in the single variable ty = tanhBd s, in which the coefficients a, depend

on J1""’Jd—1‘ It appears that the a, can be expressed completely in terms of
multiple-spin correlation functions of the (d-1)-dimensional lattice with coupling
constants Jl""’Jd_1‘ For the investigation of the a we restrict ourselves to
ferromagnetic Ising systems, for which we have the Griffiths inequalities 5) at
our disposal. Using these inequalities we can for a; and a3 derive upper and
lower bounds in terms of the susceptibility of the (d-1)-dimensional lattice,

a, and a, are related i1n a simple way to xé_1. As a result we can prove,

Xg-15 %0 S s
for n <2, that the a have the same critical behaviour as xé_1 » and, for n=3,
that &, does not diverge faster than xé§:1

In conformity with the hypothesis made in I, § 1, that the critical
behaviour of thermodynamic quantities can be described in terms of one single
function Ad of the variables t, = tanhBJi (i=15....,d), we assume that the critical

behaviour of xé_1 is given by

o \

'd=1
Xé_] v Ad_.‘ (tl"'”’td-'l) 5.3 (tlc"."td-'l C)J ) (?)
where (tlc""’td—1 C) is an arbitrary point with t, ,...,t, , > 0 of the

eritical hypersurface for the (d-1)-dimensional lattice, and the limit is taken
from the high-temperature side. Similarly, we assume that the I being

composed of correlation functions, have the critical behaviour

#) In this paper it is desirable to distinguish the susceptibilities of lattices of
different dimensionality by an index. This index is not to be confused with the
indices 0 and 1 used in the preceding papers to denote the leading-order and

next-leading-order terms in the susceptibility.
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(n)

a " ¥ ('t AT 5

i 1 auqd Pk

‘lc"'"td-1c) . (2)

By its definition the function Ad_1 = Ad-1(t1""’td-1) has the property that

the equation

Bs bt sasnty odim0 (3)

is the critical equation of the (d-1)-dimensional lattice. In order to make
the connection with the standard definition of critical exponents we require
that the function Ad-1’ which is not uniquely defined by eq. (3), has the
property

J J

1 -1
Ad-1 tanh ;E L 0w gizal 2 ) v T - TC (T"Tc), (k4)

where Tc is the critical temperature of the (d-1)-dimensional lattice with
coupling constants Jl""’Jd—1'
The results on a (n< 3) mentioned above imply that the critical exponents

Y(n) (n <3) satisfy the following relations :

%) =
W0 =y ., (5)
)
y(1) = 2Y4_q * (6)
20 =
Y( ™ 3Yd-1 4 (7)
3
Y( ) i.hYd_1 = (8)
A preliminary account of these results was given in a letter 6)*), in
which they were compared with recent work by Liu and Stanley 7). Working in-
dependently along the same lines, these authors had (for the case Jl:"'=Jd 1)
derived the relations (5) and (6), together with the inequalities
Y(Z) ->—-3Yd—‘] - (9)
(3)
PARIEE B (10)

In their letter they gave a proof of eq. (9), deferring to a later publication

the proof of egq. (10), which we have not derived, and which, in combination

with the inequality (8), yields the identity

*) In this letter y(n) is denoted by Y, » Yg_;4 by Y, and the coefficients

a, and related quantities by c, etc.

90




v(8)im by e (11)

In a subsequent letter 8) Liu and Stanley derived the upper bound for as
which is implicit in our derivation of eq. (7), and mentioned the analogous

9)

upper bound for aj. Finally, Liu has shown that
(u) : \
Y 2 M4 q (12)

In view of the relations (5), (6), (7) and (11) we make the conjecture that

the relation

/) o (13)
is true for all n. The conjecture is confirmed for d=2, where it is a direct
consequence of I, eq. (38). A strong support for its validity for general
values of 4@ is derived from the fact that for n>1 each a contains a term
2X3?+1 Evidently, this term is for n<3 neither overgrown nor cancelled by
the other terms present in a ; there is no special reason to expect the
situation to be different for higher values of n. Furthermore, the numerical
results for the s.c. and the f.c.c. lattice, derived from series expansions
by Krasnow et al. 10), confirm eq. (13) for n<5 within the limits of accuracy.
Finally, eq. (13) has been shown to follow from scaling theory arguments 10).
e scaling hypothesis for the free energy with respect to the parameter J

d
(or rather to a parameter indicating the "strength" of Jy) leads to the relation

\n)
: + )
asgoh B (14)

where the crossover exponent ¢ is independent of n. Combination of eq. (14)

This result can

with one of the equations (6), (7) or (11) yields ¢=Yd— .
11)

1
also be derived by an independent scaling approach due to Abe

Starting from eq. (2) together with eq. (13) we investigate the way in which

the critical equation of the s.c. lattice,

Az(ty,t2,t3) = 0, (15)
reduces to that of the guadratic lattice,

Bp(ty,tp) =1 =ty =t = 1t =0, (16)

as J3, and hence t3, tends to zero. From the analysis of the structure of

the series Znantg for x; we find that the critical surface representing eq. (15)
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in the tj,ts,t3-space touches the t;,t;-plane, and hence, by symmetry, the t;,t3-
and the t,,t3-plane. It follows that in the points (1,0,0), (0,1,0) and (0,0,1)

the eritical surface has more than one tangent plane; this feature is in agree-

ment with the conical behaviour of the critical surface near these points predicted

in II on the basis of a numerical analysis of x; in the case where J, and J3 are
much smaller than Jj.

For the precise form of the critical surface in the immediate neighbourhood

of the point (1,0,0) we finally propose an explicit formula, based on the behaviour

of the surface near the coordinate planes and a symmetry argument. This formula

is in full agreement with the numerical results referred to above.

The plan of the paper is as follows. In §2 we discuss the structure of the
coefficients a, in the power series Znantg for xé. In § 3 we derive the
relations between ag,a},8 and a3 on the one hand, and Xé—T on the other hand,
and discuss their implications for the critical behaviour of these coefficients.
Section 4 is devoted to the investigation of the critical surface of the s.c.

lattice.

§ 2. The susceptibility of the d-dimensional Cartesien lattice with |J.]<<]J.],
10 5 f &

i=1z...,d-1

We consider a spin-3 Ising system on a d-dimensional Cartesian lattice L in
which the coupling constant along the dtn lattice axis, Jd, is (in absolute
value) much smaller than the coupling constants along the remaining d-1 lattice

axes, J For such a system the interaction between spins on neigh-

ganviadg g v
bouring points with the same value of the d " coordinate is relatively strong

in comparison with the interaction between spins on points with different values
of the dth coordinate. Henceforth we shall call a set of points with a common
value of the dth coordinate a layer; these layers are weakly coupled to each
other. In conformity with this way of considering the lattice we denote the set
of the d coordinates of a point by two indices, one of which is a Latin index

(ky 25 ...) labelling the points within a layer, whereas the other one is a

Greek index (K,Aseee = 1,...,Nd) representing the dth coordinate; we label the
consecutive layers by means of this Greek index as L;. Furthermore, we split

the Hamiltonian ¥ of an Ising system on a finite NIV...»Nd lattice LN (N=N;¥;...Ng)

with periodic boundary conditions into two parts:

H=% =T 1 O %% caq (17)
k,k
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with

here ﬂ: contains the interaction energy for the pairs of nearest neighbours
within the layer LL,N' (N' = anz---nd_1)- In other words, #y contains the
interaction energy for pairs of nearest neighbours within the layers, whereas
the second term in eq. (17) contains the interaction energy between the layers.

In view of the fact that |J,| is much smaller than J. (i=14...,d=1), we

al
shall expend the reduced initial susceptibility per point of LN’ xé, into a
power series in the variable Syt tanhBJd with coefficients a8, depending on
Jl""’Jd-1:
T n
1 = 1
Xd Z antd > ( 9)
n=0

For notational convenience we do not indicate explicitly the dependence of
the a on these coupling constants; furthermore, we do not, as in I, § 3,
indicate the dependence of the various quantities occurring in this section,
on the numbers Nl""’Nd“ In order to derive the series (19), and to find
expressions for the ccefficients a,, We start from I, eq. (18), which is
valid not only for the infinite lattice L, but also for the finite lattice LN’

and which reads in our notation

where < > denotes a thermal average on LN; the index o will be reserved here
and in the following for the layer containing the fixed point, which is there-
fore denoted by 1o instead of by 1 as in the preceding papers. Combining egs.

(17) and (20), we have

7 g 48 Bio3 910950 (BRI S, 010 4y (i)
> > \ L
d 3 —Ri §
J s E{O}[exp( BK0+BJde

g, O
S KK K K] R

N ; ; - :
where the sums Z{c} run over all 2 spin configurations of the Ising system

on LN. Applying the identity

exp(BJ = (coshBJd)(1 + tanhBJd) (22)

a’kx%k k+1’ %%k K+

we can expand the numerator and the denominator of the r.h.s. of eq. (21) into
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polynomials of degree Nd in td:

X'
d \J
t+2 &
{<§}|—01°‘0«5‘*’[1 "t kZchKok 1’ d k§>‘ k% k+1%22% A+1+"‘]exP( on):l
= 4 shaky

j W 2 g AL
’ ) [[th I s “kc%k k+1%22%2 A+1+"'JexP( on):l
{o} koK Kyk32,A

(23)

here zi,z;l,x denotes a summation over couples of points kk, 2A with the
restrictions that each couple occurs only once, and that kk is different from
2\ . Dividing the numerator and the denominator of the r.h.s. of this equation
by the partition function Z{c}exp(-Bﬂb) of the Ising system with Hamiltonian

X, We obtain

X3

|l
0. >g+t < 3 2 3 ¥ o
B O N %10 50k k4170 * g 2 %107 50k %k k+1%22% A+170
k,k Eak3lsA

J.aw 2 ;
1+ - > e
T i T T e Ok k+1%22%2 A+1 70
K,k K,k32,A (24)

where < > represents a thermal average in the Ising system on LN with
Hamiltonian #. Since the ﬂ; in eq. (18) have no spin variables in common, the

thermal average < >g of any product of spins can be written as a product of

(k) (2)

thermal averages < > £ > s+++» OFf the products of spins within the layers

L L! s -++» taken with respect to the layer Hamiltonians M:, ﬂ},...,

|

kyN' 2 UALN!
respectively. Since all layers are, apart from their label, identical, we may
in these averages omit all reference to these labels, and write:

(x)

sjale FHER S n [0} >

kik . 237 kK 3 q Ois. Aiic: v v < H 0 ><Ma, >...
4 J

(25)
where an average < > including spins with only a Latin index is a thermal
average with respect to the Hamiltonian of a (d-1)-dimensional lattice Lﬁ, with
1""’Jd—1° Since we consider Ising systems at temperatures
above the critical temperature of L - which, as is well known, does not lie

coupling constants J

below that of L' - we may put all (zero-field) multiple-spin correlation functions

containing an odd number of spins equal to zero. It follows that the only
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non-zero terms in eq. (2L4) are those in which each layer index occurs an even
number (possibly zero) of times. This fact reduces the number of terms which
actually have to be taken into account substantially; for instance, in the
denominator only the terms with even powers of tg yield non-vanishing contributions,
vhich corresponds to the well-known fact that the partition function of an Ising
system on a Cartesian lattice is even in each t;. In other words, all terms with
odd powers of t, in the denominator may be omitted right from the beginning.

The further development of xé consists in carrying out the division in eq.
(24), which yields a power series of the form (19), in which the coefficients a
depend, through ¥p, on the coupling constants Jl""’Jd-1' We investigate then
structure of the first few coefficients.

Obviously, the coefficient ap is the susceptibility Xé-1 per point of a
(d-1)-dimensional lattice Lg, . This follows indeed from eq. (24); putting
ty equal to zero in the r.h.s. of this equation we find

o i 2 <O1aajw "0 - (26)

]

Since the only non-zero terms in this sum are those with w=a, this reduces to

8-0 = Z <G1Oj > ] (27)
J

where j runs over all points of Lﬁ,; the r.h.s. of this equation is Jjust the
susceptibility xé_1.
The coefficient a; is from eq. (24) found to be

- Wy 2 Z <01a0jwckn<ok 1 0 (28)
J>w K,k

The only non-zero terms in this expression are those with w=a-1, x=a-1,

or w=o0+1, «=a, so that we have

o .z <o1acj a=-1k a=1%%a 0 3 .z

<0, O. (o (N < >
1o +1 +1°0°
.k j.k J o ka k o+ 1

which by the factorization of thermal averages < >p , ©3. (25), can be written

as

ap =2 ] <010, ><0,0 5> . (29)
Jsk

The coefficient a; is given by
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1
ap = ] oz *%10% 507k %k «+1%22% a+1 70 T
Jsw kyk32,A

ool s ursetence

HPA 10 £T (o o B e (30)
: 1 0 k +17 +1° 0
3¢ T o Jw K Kk+1 24X 2 A+1

The first term in this expression yields non-zero contributions in the following

three cases:

a) W= at2, K = O, A=a+tl (or A =0 , k = a+l),
b) w=9e-2, k=0a-1, A=0a-2 (or A =o0-1, k =aqa=2),
c) w=a , K=2A
In view of the restrictions on the summation Zi c:9.) ¥e choose in the
- L 2

cases a) and b) one of both possibilities for « and X, e.g. the first ones;

the summetions over k and £ can then be performed without any restriction. Due
to the fact that in case c) k equals A, k and % have to be different there, and
each couple (k,&) may occur only once; we can satisfy these restrictions, e.g.,
by replacing zi,z;i,k by Zﬁf;fi s where the Latin indices are thought of

as being ordered in some way. The total contribution from the cases a) and b)

reduces to

2 _S_ <0 .0, ><0, 0,><0,0.> ., (31)
Z 1Tk k 2 Aol |
Jsk,2

The individual contributions from case c¢) can be written as

3 >< > = -
<o1oJokcz 9,5 (¢ = a, a=1),

< y =
01acJaGkKok K+1°QKORK+1 70 (32)
- 2
<0 ,0,.>< Ry
193 994> (k # a, a=1)
For the second term in eq. (30) we have w=a, k=A3; the individual
contributions are
- o 2
< . i€ >q = ; .
01aOJu 0 Okzok K+1GL<OZK+1 0 <01OJ><0ko£> for &k (33)

Substituting egs. (32) and (33) into eq. (30) for &;, and taking into
account that in the two terms of eq. (30) the conditions on the summation
for these contributions are the same, we find that the terms with x#a, o-1
cancel pairwise, so that only the terms with «k=a, a-1 are left. This fact

reflects the occurrence of only connected 2-graphs in the full graphical
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expansion of the susceptibility. It follows that the total contribution to a,

from the terms considered in egs. (32) and (33) is given by

(k<g) (k<2)
22 _ <0030, 0,7<00y> = 223 $04957508,2% (34)
JsKs2 JsK,2

Combining the expressions (31) and (34) we find

ap = 2 E <0 o ><°k02><0 cJ> +2 E 010j°k°2><0k°2> -
J,k 9. Jak L
(k<) 2
0 E <0 ,0.><0. 0,>% . (35)
X i e k 2
Jsk,2

Finally, we mention the result for a3, which can be derived in a completely

similar way as the expressions for agp, a; and aj:

ag =2 > <00, ><0,0,><0 0 ><0 0.> + 2 > (£<m)<°10k020 ><0,0 ><0, 0>+
Jsk,2,m Wl JskKs2,m s L J

o+

2 § (2< m)<010k><0k020 o. ><020 > a9 E (k<g<m) <o1cko£0 <°k02,° g.>=-
Joks2,m J Jsk,2,m mJ

6 S (t<m) 10> <90 5><0 0 o< (36)
Jsks Lom

which can be simplified a little by noting that the second and the third su
though different in origin, are equal.

In general, each coefficient a can be written as a sum of products of
multiple-spin correlation functions on Lﬁ,. Obviously, the structure of the
a8, will become more complicated as n increases, due to the appearance of
correlation functions involving more and more spins. However, one general
property can be found immediately: for any n the points 1o, KjKjseess
ann’ J w can be chosen in such a way that they lie in the n+1 consecutive
layers labelled a, o+1, ..., otn or o, 0=1, ..., a-n. This yields for each n
a contribution ezj,k1,n.,kn<olok1><ok1ogz>"'onnoj> to.an. The significance
of this fact, together with some properties of the coefficients ap, a;, ap and

agz, will be discussed in the next section.

On account of the periodic boundary condition with respect to the dth lattice

axis the expressions for the a8, in terms of multiple-spin correlation functions
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on L&, are independent of Nd provided Nd is larger than n. In the derivation

of the expressions for a s n<3, we have tacitly assumed that this condition is

satisfied. In order to obtain the thermodynamic limit of xé we have to let the
numbers N1""’Nd tend to infinity. The limit Nd-+m is automatically taken if
we substitute for each a the expression in terms of multiple-spin correlation
functions on L', valid for all N.>n. Taking the other limits Nl""’Nd—1 + ©

implies that for each of these correlation functions the thermodynamic limit in

Lﬁ, is taken. Henceforth, we shall denote the power series for the thermodynamic

limit of xé also by Znantg ‘

§ 3. Some properties of the coefficients aj

As remarked in § 2, the coefficients a, in the series Znantg for xé have
the property in common that they are built up entirely from multiple-spin
correlation functions on the (d-1)-dimensional lattice L'. Since the critical
temperature of the Ising system on the d-dimensional lattice L approaches, in
the limit of extreme anisotropy under consideration, the critical temperature
of the Ising system on L', the investigation of the critical behaviour of xé
leads automatically to a study of the critical properties of the & - With a
view to the fact that we are mainly interested in the critical eguation of L,
which by the symmetry properties of Ising systems on Cartesian lattices mentioned
in IV, § 2 can, for arbitrary signs of the ti, be derived immedistely from the
equation for the case where all ti are positive, we restrict ourselves to the

ferromagnetic case. An advantage of this restriction is that it permits us the

.| . NS a . : - 5 N
use of Griffiths' inequalities for multiple-spin correlation functions ), which

are generally valid only for ferromagnetic systems; they will turn out to form an
important tool for the investigation of the 8 -

As noted in § 2, the coefficient agp is just the susceptibility xé_1, which

in combination with eq. (1) implies for its critical behaviour
-Yd_1 f
ao(=xé_1)’\Ad_1 ((t],...,tdq)-»(t1c,...,td_ W (37)

N

In other words, the critical exponent y( ) of ag is equal to Y41

/
n
\1)

ghadag. (38)

a-1’
Expression (29) for &; can be rewritten by first performing the summation over

j, which yields for each value of k a factor xé _, and hence transforms eq.(29) into

-1
ay =2 (E 3 ok>)X' % (39)
k d-1
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Performing in this equation the summation over k we obtain

2
ay; =2 xé_‘ 3 (40)

Hence the critical behaviour of a; can, just as that of ap, be described in

terms of the behaviour of xé_1, viz. as

-2Yg-1
d-1 (t5eeesty

(1)

.y ) »(t )| - (41)

162222 %10

Consequently, the critical exponent Yy
/

\1)
9

of a1 1s twice Yd—1:

i (42)

The situation is less simple for the e, with n>2. By the occurrence of
correlation functions involving more and more spins these coefficients cannot
be expressed in terms of xé_1 alone, as was the case for ap and a;. However,
using Griffiths' inequalities we can still obtain information on the critical
behaviour of the a, for at least n=2,3.

For the investigation of a, we start by rewriting eq. (35) in an obvious

short-hand notation as

a, = 2 E <1k><k2><2j> + 2 E (k(2)<1jk2><kz> -2 E (k<2)<1j><k2>2 =
J’k’g' j’k’z j,k39’

"

2a28 + ZaZb - 2a2c. (43)

By an argument similar to that which led to eq. (40), the quantity 8oy is seen

. =3y
to be equal to xé31 , So that it behaves as Ad 1d 1 for3(tl,...,td 1) o>
3 . X =Y : o SR d
- (t1c,...,td_1 c)' To prove that ap; diverges also as Ad_1d’1 in this limit, 1t

is sufficient to show that a is non-negative and not larger than a. , so

2a
By Griffiths' generalized first

o 2c

that it does not diverge stronger than &g

inequality applied to the two-spin correlation function <k&>,
<k&> > 0, (L)

in combination with Griffiths' generalized second inequality on the four-spin

correlation function <1jk&>,
<1jke> = <1j><k> > 0, (L45)

itself is non-negative. It

no term in a is negative; hence a

2b 2c
which, as mentioned above,is equal to

2b 2o

follows that ap is not less than Eaga,

the (non-negative) quantity 2xé31; i.€%5
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3
8 2 2x3°, 2 05 (46)

which implies

(2)
Y 2 3Yd_1- (47)
In order to prove that a, -a,, does not diverge stronger than a,, We write
(a2b—a2c) -a, 8&s
L (k<) A ; : -
(a.. -a ) - & = E <1jk&> = €1j><k2> - <1k><8j> = <14><k]J>|<k&> -
2b 2c¢ 2a :
J.k,%
-~ Z <1k><kk><kj>. (48)
Jok
By the inequality
<1jk2> - <1j><kf> = <1k><2j> =<14><kj> < 0, (L9)

which is a weaker form of Griffiths' third inequality, no term in the first

sum of eq. (48) is positive, so that the sum itself is not positive either;
< . : 2 .

obviously, the second sum in eq. (48), being equal to xé_1, is non-negative.

It follows that a2b_a2c is not larger than 8oy Hence

3
) 1
8y < bxi_; » (50)
and consequently, by the non-negativity of aj,

Y(2) < 3y, (51)

Combining eqs. (46) and (50) we conclude that the critical behaviour of ap is

3
the same as that of xé_1

-3Y4-1 \
aZmAd“1 (tla"-std_1) ~” (t'IC, ’td_ ’] - (5?)
in other words,
(2) . (=
Y b 3Yd_1' \55)

For the investigation of a3 we rewrite eq. (36) in the same notation as
used in eq. (L43):

. <
a3 = 2 z <1k><ki><im><mj> + )4.2 (2<m)

<1k2m><im><kj> +

Jsk,2,m sk, L,m
(k<f<m) b -~ (2<m) ; 2
+2 > <1kim><kimj> -6 _» <1k><kj><am>? =2a,. +h4a _+2a, -ba .,
: e 3a 3b 3¢  3d
J,k,l,m Jsk5£’m

(54)

100




where we have taken into account that the second and the third sum in eq. (36)
. . . ? : 4

are equal. The first term in this expression 1s equal to 2xé_1. In contrast

with the situation for a, we cannot show that the remainder in az, viz. the

is non-negative, which would for the critical exponent

(3)

q?igtity ha3b+2a3c-6a3d,
Y of a3 yield immediately the inequality vy 3_hyd_1. On the contrary ,
for T=0, where all multiple-spin correlation -functions are

wnity, it is negative, since the products of multiple-spin correlation functions
occurring with a -sign outnumber those occurring with a +sign. We can prove,
however, that a3 is a non-negative quantity which does not diverge faster than
xéi1 if the Curie temperature is approached. To this end we first consider the

quantity a_, +a_. -a which we write as

32 3¢ 3d’
a3a+a3c—a3d - 2 — (k<is<m) <1kfm><kimj> +
Jsk,2,m

|’ \ |
+ <1k>‘~9.m>|<k2.><mj>+<km-‘<2j>-<kj>\2m>] + <10><km> <k2,><mj>+<2m><kj>—<£j><km>| +
J J

+ <1m><ki> <km><2.,j>+<9,m><kj>—<mj>\‘k§L>! + > (k#m)<1k><kk><km><mj> -

v J.k,m

+ Z (k#l)<1k><k£><2k><kj> S (k¢2)<1k><k2><12><lj> *
Bk JoKs 2

+ §<1k><kk><kk><kj> - E (k<m)<1k>-;kj><km>2 & ; (E<k)<]k><kj><kg>2,(55)
Jsk J,k,m Joks?

In the analysis of the first sum in this expression we consider for each set of
values of j, k, % and m one of the quantities <kj><fm>, <2j><km> and <mj><ki>
which is larger than (or equal to) the other two. For instance, let this quantity
be <kj><fm>, i.e. the differences <Wm><kj>-<2j><km> and <gm><kj>-<mj><kL> are
non-negative. Using furthermore that by Griffiths' generalized second inequality
the difference <1kim><kfmj>-<1k><2m><kj><fm> is non-negative, we find that each
term in the first sum of eq. (55), and hence the sum itself, is non-negative.
Replacing in the second last sum in eq. (55) the dummy index m by & we see that
the last two sums yield together just the third sum in eq. (55), so that these
sums cancel. Obviously, the remaining terms are non-negative. Summarizing, we

conclude that a_ +a_ -a is non-negative:

3a 3¢ 3d

Bap * B, =By, 20 (56)

The same holds, again by Griffiths' generalized second inequality, for

a3b-a3d:




a3b = Bag >0 .

Combining egs. (56) and (57) we find that ajz is non-negative.

; M -
In order to prove that ajz does not diverge faster than xé_1 , we first

notice that a3c is not larger than a3b:

a

3 — *3p

This can be proven by writing a3c_a3b as

. = (k<f<m) oo ckamj> - <am><kj> - <km><Lj> - <ki><mj>| -
jaka29m
<5~ (k<m) ; e (2<K) _ 130> <aK><k > (59)
> <1kkm><km><kJj> - 3> 29
j,k’m !j,k,g'

which by Griffiths' inequalities is not larger than zero. Next we write

aBb—aBd as

i L8 (£<m)[<1k£m> - <1k><tm> | <tm>
K,2,m

The sum occurring in this expression is identical to the quantity 8oy "800 2 which

2
we proved to be non-negative and not larger than xé;1 Consequently,
b4 ,
< -~ ' (60)
02 8g = 835 = Xgg ?
vhiiech implies, in combination with eq. (58)
L
- < ! (6 )
83¢ 7 %33 = %3-1

- ; b "
Combining egs. (60) and (61) with the fact that 8ag is equal to xé_j, we find

for aj (which was shown above to be non-negative):

= 0 2)
0 <a, =2ag, + h(a3b—a3d) + 2(a30—a3d) < 8Xd—1' (62)
o —L"Yd_]
Consequently, a3 does not diverge faster than Ad_1 , and hence
it (6
3)
Lo 2 OV

In view of the increasingly complicated structure of the a we have not

attempted to obtain information on their critical behaviour for larger values

. n+1 .
of n. : <1ki1><k1kp>...<k _J> = 2x1 in
n The presence of a term 2ZJ’RI, e 1 1K2 ~ Xd—1

& leads us to conjecture that for all n
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—(n+1)Yd_1 )
- (TN TR S (64)
and hence
®) = (n+1)Y _;s (65)

which would be in line with the results obtained thus far for n<3. The various
arguments in favour of this conjecture which may be drawn from scaling theory
and numerical results have been mentioned in the introduction. An additional
support comes from the results of I, where we considered the crossover from d=2
(the quadratic lattice) to d=1 (the linear chain). Since the critical behaviour

of the susceptibility xi of the linear chain is given by

x|~ (1=t) 7 (t141), (66)

the critical exponent y; equals 1; on the other hand, the coefficients an(tl)

-(n+1
) (n+1) for ti41 *) (see

in the series Znan(tl)t? for xé are proportional to (1-t;
I, eq. (23) ). Hence for the case d=2 egs. (6k4) and (65) are established for all n.
In the next section, devoted to a study of the critical equation of the

simple cubic lattice, we shall assume that eq. (64) does indeed hold for all n.

§ 4. The critical equation of the extremely anisotropic simple cubic lattice

The results of § 3 enable us to pursue the investigation of the critical
equation of the simple cubic (s.c.) lattice, which we started numerically in II.

In conformity with eq. (19) we write for the susceptibility

! =
X3
n

an(tl,tz)trgl g (67)
0

e~ 8

where we have explicitly indicated the dependence of the coefficients a on the

1272
which has for n<3 been established in the foregoing section. Then the eguation

variables t; and t,. We assume that the an(t t,) are positive quantities,

which expresses the radius of convergence of the series (67) in terms of t; and

t, amounts just to the critical equation
b3(ty,t2,t3) = O. (68)

In other words, the critical equation is equivalent to the equation

t3 = lim Eaop Caet)
3 a (ty,ts)

nr»*» 1n

Equation (68) describes the critical surface in the t;,t;,t3-space. For

%) provided the numbers b 0 differ from zero, which is strongly suggested by
the numerical evidence.
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t3=0 it reduces to the equation (16) for the critical line in the ti,tz—plane

of the quadratic lattice. To see how this reduction comes about if t3 approaches
zero (in other words, to study the form of the critical surface near the t;,t;-
plane) we have to consider the critical behaviour of the coefficients 3n(t1st2)-
According to the conjecture made in the previous section, this critical
behaviour is for all n the same as that of the n+1st power of the susceptibility
xé of the quadratic lattice; taking into account that the critical exponent

y, of xé (see eq. (1) ) is equal to 7/4 we may therefore write

-(n+i)7/h(

a

n(tl,tz) o bq(tl,tz) Az tl’tz), (70)

where bn(tlstz) tends to a finite (#0, +=) value if a point (t1c’t2c) of the
critical line (16) is approached. Substituting eq. (70) into eq. (69) we obtain

the eritical equation of the s.c. lattice in the form

( b Abyatn)
t3 = |lim \Azwh(tl,tz) 3 (71)
‘n+e b (t;,ts)
n
which we write as
tgy = !b(tl,tz)]_1 AZY/u(t;,tg). (72)

If we assume that with the bn(tl,tz) also the function blt;,t;) tends to a finite
value if the critical line (16) is approached, this equation implies that for
small values of Ap;, t3 becomes proportional tc a power of Aj which exceeds
wnity (viz. T/4); equivalently, the critical surface touches the t;,tp-plane,

and hence, by symmetry also the t;,t3- and the t,,tg-plane.

In order to lay the connection between the results of this paper and those
of II, we finally investigate the asymptotic form of the critical equation if
not only t3 but also t; tends to zero, i.e. the form of the critical surface
near the point (1,0,0).

If the statement that the critical surface touches the coordinate planes
is correct, this implies that in the point (1,0,0) - and similarly in the
points (0,1,0) and (0,0,1) = it has at least two tangent planes, viz. the
two coordinate planes in which this point lies. This property of the critical
surface is consistent with the conical behaviour to which we concluded in II,

§ 3 on the basis of numerical results. We now substitute eq. (16) into eq.

(72) and rewrite the equation thus obtained as
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to \T/%  b(t1,t2) t3
378

1=t (1-t,

T - (H'tl)
T

According to part a) of the leading-order hypothesis (IV, § 3) the asymptotic
form of the critical equation in the limit ts,t3 -+ O should be the "critical

equation" of the series

= t2(3)
mn
:E:: b XpX3 (xz q) A= (T4)
m,n=0 0 \ i 1-t,

occurring in the leading-order term of xé for this limit, i.e. the equation
which is satisfied by those combinations of values of x; and x3 for which this
series becomes singular. Consequently, the critical equation (73) becomes in

the limit of extreme anisotropy considered here an equation of the form

7/

(1-2x5 - a(xp)x3 = 03 (75)

in other words, b(t;,ts) behaves for t,<<1, 1-t;<<1 as the product of a
function o(x,) depending on x, alone, and the function (1—t1)3/h.

On the analogy of the procedure followed in the investigation of the
asymptotic form of eq. (63) for the case t3=0, we may investigate the

asymptotic form of eq. (75) for the case x3a0 by considering the analytic

- o i o " = y m n : .
properties of the "coefficients Bn(xz) = Zmomno X, of X, occurring in the
series (T4) viewed as a series in x3 . The coerficient Bp(xy) is just the

noxz studied in I and IV in the investigation of the susceptibility

of the quadratic lattice with (t;,tp)=(1,0). According to part a) of the

quantity an

leading-order hypothesis, Bg(xz) (which in IV, §3 was denoted by B(xpy) )
becomes singular if x, approaches the "critical value" 3} corresponding to the

asymptotic form (cf. I, eq. (9) )

| - 2x5 = 0 (76)

of the critical equation (16) of the quadratic lattice; by part c) of the
leading-order hypothesis, its singular behaviour for X,43 is of the same type

as the critical behaviour of the susceptibility xé of the quadratic lattice:

Fol el i {auog o I (2o41). (77)
The coefficient By(x,) is related to Bp(xp) as
By(xp) = 2[B0(x2)]2 ] (78)

this relation is analogous to, and can be derived in the same way as, the
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'2
d-1
of Bij(x) is given by

relation a1=2x =2a§, cf. egs. (37) and (40). Hence the critical behaviour

-2+ 1/4

Bl(xz) 0" (1—2XZ (XZ*%)- (79)

Eqs. (77) and (T79) are completely analogous to egs. (37) and (41) (with d=2)
for ag and a;, respectively, with the replacement of the variable A(t;,ts)
by the variable 1-2x3. On the analogy of the conjecture made on the
generalization of the latter equations to general n, eq. (64), we make the
conjecture that the critical behaviour of the functions Bn(xz) for general n is

given by

)‘(n+1)7/u

B (x.) ~ (1-2x5 (xp13). (80)

o s
Starting from this equation and following a procedure similar to that leading to
eq. (72), we arrive at the statement that the asymptotic form of eq. (75) for

xp13% is
%5 v [r=gxs) P (x243) , (81)

which implies that a(x,) should be finite in this limit. Let us now, starting

from this property of eq. (75), look for a possible explicit form for this

equation. The requirements which in addition to eq. (81) we impose on this form

are

1) that it be symmetric in the variables x; and X33

2) that it be consistent with the numerical results obtained in II, § 3 for the
cases t,=at3, a=1,2,4,6 and 8.

The simplest equation consistent with eq. (81) and the first requirement is

)7/h

(1=2x) /% & (1-2x3)T/* = 13 (82)

this equation would imply that lime»% alxp) = %; Putting in eq. (82) x3 equal
to xp/a yields the equation

C1=2xo) 7% 4 (1-2p/8) /™ = 1, (83)

the solution of which we denote by xp(a). If eq. (82) is the correct
asymptotic critical equation, x,(a) is, by the definition of this equation,
the radius of convergence b_1(a) of the series Z:=Obno(a)xg obtained from the
series (T74) by substituting x3=x,/a (cf. II, eq. (6) ). In order to check if
the second requirement is fulfilled, we have therefore to compare the numbers

x;](a) with the respective numerical estimates for the quantity b(a). These
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two sets of numbers are listed in table I, together with the values of 2(1+&), to

which b(a) would be equal if the critical surface had a unique tangent plane in

(1,0,0) (cf. II, eq. (12) ).

TABLE I
-1 1
a b(a) x; (a) 2(1+;)
1 6.10 * 0.02 6:1155 L
2 4.48° + 0.02 4.%91... 3
N 3.54 + 0.02 3.544. .. 23
6 3.19 * 0.02 % 05 1 1 SO 23
8 2.99 * 0.02 2.9TT... 2%
The agreement between b(a) and x;](a) is very close, and in sharp contrast to
the disagreement between b(a) and 2(1-;). Eq. (82) may therefore be considered

to be a good candidate for the asymptotic form of the critical equation near
(1,0,0), at least as far as our information obtained in II and in the present
paper is concerned.

One may try to find other equations which also imply eq. (81) and satisfy
the requirements 1) ans 2); from the agreement between the values for b(a)
and x51(a) it is to be expected that a possible correction on eq. (82) will be
relatively small. As a specific example, we have considered an equation which
differs from eq. (82) in that it also contains terms with an additional factor

1-2x, or 1-2x3, respectively:

yT/4 y Tl 1/4 1/4

(1-2x, + (1-2x3 A(1-2x%5) + A(1-2x3) =1+ ). (8k)

Adapting the value of A to the various estimates for b(a) we find not only

that the values thus obtained are very small, with an uncertainty exceeding
their absolute value (e.g. A =-0.006 +0.008 for a=1, A =-0.004% 0.018 for a=k),
but also that their scattering over the "range" a=1,2,4,6,8 is of the same
order of magnitude. In view of these facts we will, as long as no further
data invalidate eq. (82) in an unambiguous way, stick to the conjecture that
this equation is the asymptotic form of the critical equation for (tj,tp,t3) =
+ (1,0,0). In order to compare the foregoing results with those following
from an approximate theory such as the Bethe-Peierls approximation , we note

that the asymptotic form, in the limit considered, of the critical equation

107




of the s.c. lattice in this approximation (cf. II, egs. (13) and (14) ):
1 - th " hX3 = 0, (85\'

can also be obtained after the application of a procedure similar tc the one
leading to eq. (82); to that end we have to take for the susceptibility exponent
Y, the Bethe-Peierls value 1, and for the asymptotic form of the critical

equation of the quadratic lattice (cf. I, eq. (14) ) the equation
1 - bxy, = 0. (86)

Concerning the direct relevance of the foregoing results to the Curie
temperature of the s.c. lattice, Tc(Jl’JZ’J3) itself, we notice that by eq. (72)

Tc(Jl’JZ’J3) reduces, for J, tending to zero, to the Curie temperature of the

4/7
o i

eq. (72) to arbvitrary values of d, with the power T/L replaced by Y

quadratic lattice with a difference vanishing like J The generalization of

_1° implies

d
for the difference Tc(Jl""’Jd) - TC(Jl""’Jd—i’O) a proportionality to
17y - ; ; -
Jd d-1 | This feature was predicted by Abe 1) on the baslis of scaling arguments.

In conclusion we want to stress that the results obtained in this paper for
the form of the critical surface near the coordinate planes, and in particular near
the coordinate axes, show that the full critical eguation for the s.c. lattice
must be of a fairly complicated nature, in contrast with the critical equation for
the linear chain, I, eq. (8), and for the quadratic lattice, eq. (16). ' In this
respect the exact critical equation of the s.c. lattice differs drastically from

that found in the Bethe-Peierls approximation (cf. II, eq. (13) ):
1 = (t+tp+ts) - 3(t ty v+t t3+tat3) = 5ttty =0, (87)

which is of the same nature as the corresponding equations for the linear chain

(which is again I, eq. (8) ) and for the quadratic lattice, I, egq (13).
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SAMENVATTING

In dit proefschrift worden een aantal thermcdynamische eigenschappen bestu-
deerd van spin-3 Ising-systemen op extreem anisotrope Cartesische { =hyperkubische)
roosters, d.w.z. Cartesische roosters waarin de koppelingsconstanten Ji (die een
maat zijn voor de sterkte van de wisselwerking tussen naaste buren) voor de
naaste buren langs één of meer roosterassen veel kleiner zijn dan die voor de
naaste buren langs de andere roosterassen. Doel van dit onderzoek is een inzicht
te verkrijgen in de manier waarop thermodynamische grootheden van Ising-systemen
op een gegeven rooster L overgaan in die voor een rooster van lagere dimensie L',
wanneer het oorspronkelijke rooster door het nul worden van de "kleine" koppelings-
constanten uiteenvalt in een aantal, onderling ongekoppelde,roosters van deze
lagere dimensie.

Het onderzoek wordt uitgevoerd aan de hand van reeksontwikkelingen bij hoge
temperatuur voor de initiéle susceptibiliteit. Met het oog op de extreme aniso-
tropie wordt de standaardprocedure van reeksontwikkeling nesar alle variabelen
ti=tathi/kT vervangen door een reeksontwikkeling naar slechts die t. die corres-
ponderen met de kleine koppelingsconstenten. De coffficiénten in zo'n reeks kun-
nen algemeen worden uitgedrukt in termen van spincorrelatiefuncties op het bijbe-
horende stelsel ongekoppelde (lager-dimensionale) roosters L'. Op greond van
dit feit zal men verwachten dat de coéfficiénten een singulier gedrag vertonen
bij de kritische temperatuur van L'. Deze temperatuur is echter niet de kritische
temperatuur van L, waaruit volgt dat de kritische eigenschappen van de coeffi-
cignten niet representatief zullen zijn voor die van de beschouwde thermodyna-
mische grootheid, i.c. de susceptibiliteit. Anderzijds zullen, naarmate de
kritische temperatuur van L en die ven L' dichter bij elkaar komen te liggen
(hetgeen bij toenemende anisotropie het geval is), de eerstgenoemde kritische
eigenschappen een steeds grotere rol gaan spelen Op grond ven deze overweging
hebben wij in de beschouwde reeksen elke coéfficignt vervangen door dat deel
dat de dominante singulariteit vertoont. De zo ontstane grootheid noemen wij

de leidende-orde term (van de susceptibiliteit) voor het beschouwde geval van

extreme anisotropie. Aan de bestudering van deze grootheid is het grootste
deel van dit proefschrift gewijd.

In hoofdstuk I wordt het ferromagnetische kwadratische rcoster beschouwd.
Van de leidende-orde term van de susceptibiliteit worden de eerste vijf co&ffi-
ci8nten berekend. Uit de algemene structuur van de leidende-orde term blijkt
dat het kritische gedrag verschillende facetten heeft: al naar gelang de om-

standigheden vertoont de leidende-orde term het kritische gedrag van de
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susceptibiliteit van de lineaire keten, of een gedrag dat, binnen de foutenmarge,
hetzelfde is als dat van de susceptibiliteit van het kwadratische rooster, of
zelfs een willekeurig intermediair gedrag. Bovendien blijkt dat men uit de lei-
dende-orde term, althans binnen de foutenmarge, de asymptotische vorm van de be-
kende uitdrukking voor de kritische temperatuur, gezien als een vergelijking in
t,; en tp (de "kritische vergelijking") kan vinden.

In hoofdstuk II wordt het ferromagnetische enkelvoudig kubische rooster be-
schouwd, waarin de koppelingsconstanten langs twee roosterassen veel kleiner
zijn dan die langs de derde roosteras. De gevolgde procedure is een rechtstreekse
generalisatie van die van hoofdstuk I. De conclusies over het kritische gedrag
van de leidende-orde term van de susceptibiliteit zijn analoog met de aldaar ge-
vonden resultaten. Stellen wij, naar analogie van de bevindingen van hoofdstuk I,
dat de asymptotische kritische vergelijking van het enkelvoudig kubische rooster
kan worden gevonden uit de leidende-orde term, dan volgt uit een (numerieke)
analyse dat deze vergelijking zeker niet een multilineaire vergelijking in de
variabelen t; kan zijn, dit in tegenstelling tot de situatie voor het kwadratische
rooster. In samenhang hiermee gedraagt het "kritische oppervlak", dat de kritische
vergelijking in de tl,tz,t3-ruimte beschrijft, zich in de nabijheid van de punten

(1,0,0), (0,1,0) en (0,0,1) eerder als een kegel dan als een plat vlak.

In hoofdstuk III wordt de methode, gevolgd in de hoofdstukken I en II, ge-
wijzigd met behulp van de generalisatie tot anisotrope roosters van een formele
uitdrukking voor de susceptibiliteit van isotrope roosters, die oorspronkelijk
door Sykes is geponeerd en later is afgeleid door Nagle en Temperley. De nieuwe
methode is veel minder tijdrovend en veel overzichtelijker dan die van de hoofd-
stukken I en II.

In hoofdstuk IV worden antiferromagnetische Ising-systemen op Cartesische
roosters beschouwd waarin de koppelingsconstante langs één roosteras (in absolute
waarde) veel groter is dan die langs de andere roosterassen. Voor het geval dat
de grote koppelingsconstante negatief is wordt met behulp van de in hoofdstuk III
gevonden uitdrukking bewezen dat de leidende-orde term van de susceptibiliteit
de helft is van de leidende-orde term van de grootheid 1+ <0,0,>, waarbij <o;0,>
de spin-spin correlatiefunctie is voor twee naaste buren langs de roosteras met
de grote koppelingsconstante. Via deze relatie wordt voor het kwadratische roos-
ter in dit geval van extreme anisotropie een gesloten uitdrukking afgeleid voor
de leidende-orde term van de susceptibiliteit. De conclusies over kritisch gedrag
zijn analoog aan die van de hoofdstukken I en II en geven extra steun aan het door

andere onderzoekers geuite vermoeden dat susceptibiliteit en inwendige energie van
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antiferromagnetische Ising-systemen soortgelijk kritisch gedrag bezitten.

Hoofdstuk V is gewijd aan een onderzoek van de Curie-temperatuur van het
enkelvoudig kubische rooster waarin de koppelingsconstante langs €én of twee
roosterassen veel kleiner is dan de andere koppelingsconstante(n). De be-
vindingen, verkregen op grond van analytische resultaten en min of meer voor de
hand liggende vermoedens, zijn in overeenstemming met conclusies die volgen uit
de schaaltheorie van kritisch gedrag.

Het in hoofdstuk II genoemde kritische oppervlak raakt volgens de verkregen
resultaten aan de codrdinaatvlakken, hetgeen consistent is met het kegelachtige
gedrag nabij de punten (1,0,0), (0,1,0) en (0,0,1) waartoe in hoofdstuk II
geconcludeerd was op grond van numerieke gegevens. Uitgaande hiervan wordt een
expliciete vergelijking voorgesteld voor de asymptotische kritische vergelijking
nabij het punt (1,0,0), die in uitstekende overeenstemming is met de numerieke

resultaten van hoofdstuk II.
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Op verzoek van de faculteit der wiskunde en natuurwetenschappen volgt hier
een kort overzicht van mijn studie.

Na het behalen van het einddiploma Gymnasium B aan het Gymmasium Haganum te
's-Gravenhage begon ik in 1958 mijn studie in de wis- en natuurkunde aan de
Rijksuniversiteit te Leiden. In oktober 1961 legde ik het candidaatsexamen da'
(natuurkunde, wiskunde, scheikunde) af en in juli 196k het doctoraalexamen
theoretische natuurkunde met als bijvakken wiskunde en klassieke mechanica.

Voor het laatstgenoemde examen legde ik tentamens af over colleges gegeven door
Prof.Dr. J.A.M. Cox, Prof.Dr. S.R. de Groot en Prof.Dr. P. Mazur voor wat be-
treft de natuurkunde, en bij Prof.Dr. H.D. Kloosterman en Prof.Dr. C. Visser
voor wat betreft de wiskunde.

Van februari 1964 tot medio februari 1973 ben ik verbonden geweest aan het
Instituut-Lorentz, achtereenvolgens als candideatassistent, doctoraalassistent
en wetenschappelijk medewerker. Van mijn doctoraalexamen af verrichtte ik onder-
zoek onder leiding van Prof.Dr. P.W. Kasteleyn. Aanvankelijk had dit onderzoek
betrekking op vibratiespectra van en elektronentoestanden en stochastische wan-
delingen in ongeordende kristallen, met name lineaire ketens; in september
1967 werd een aanvang gemaakt met het onderzoek waarvan de resultaten in dit
proefschrift zijn beschreven. In de periode van juni 1964 af heb ik deelgenomen
aan verschillende zomerscholen en conferenties op het gebied van de grafentheorie
en de statistische mechanica, waartoe o.a. een tweetal beurzen van de Nederlandse
Organisatie voor Zuiver Wetenschappelijk Onderzoek (Z.W.0.) mij in staat stelde.
Bijzonder stimulerend voor het onderzoek waarop dit proefschrift betrekking heeft,
was mijn deelname aan de Enrico Fermi-Zomerschool die gehouden werd in juli/
augustus 1970 te Varenna, Italié over Kritische Verschijnselen.

Behalve bij het onderzoek ben ik op verschillende manieren betrokken geweest
bij het onderwijs voor doctoraalstudenten in de natuurkunde.

Sedert 16 februari 1973 ben ik werkzaam bij het Centraal Bureau voor de

Statistiek te 's-Gravenhage op de hoofdafdeling statistische analyse.













