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PREFACE

This

or

the the
ef fectlve static of effectiveconstant a
dielectric which describes theconstant, a

thescale whichcoarse onon a
now

two are

one

constant of a

constant can occur

cannotone
statistics of to calculate Itsa

composite 
homogeneous, has up to 
the two components of

composite’s microgeometry if one wants 
effective dielectric constant.

properties of 
material looks

is probably 
dispersion. This 
dielectric

principle. From the fact that the Hashln-Shtrlkman bounds depend only on 
the volume fractions of the components and their dielectric constants, 
it follows that one cannot do without further information about the

calculation of

length 
been determined exactly only in the case that 

components of the composite are arranged in plane parallel 
layers (see e.g. ref. 2). When studying more complicated composites, in 
which particles of one component are distributed randomly in the other 
component, one immediately faces the problem that the probability 
distribution governing the arrangement of the particles is in general 
not known for real dispersions. The term ’random* alone does not at all 
suffice to describe the statistical properties of a composite. This was 
demonstrated very clearly by Hashin and Shtrikman^), who showed that the 
bounds which they derived for the effective dielectric 
macroscopically homogeneous and isotropic composite can be attained by 
suitably constructed dispersions: therefore every value of the effective 
dielectric constant which lies between the bounds can occur in

Composite materials are of considerable practical importance, 
becomes immediately clear when one thinks of such familiar examples as 
concrete (gravel embedded in cement), paint (pigment particles suspended 
in a solvent) or ruby glass (gold particles dispersed in glass).

The study of composite materials is a well established branch of 
statistical physics, reaching back to the work of Faraday, Mossotti and 
Maxwell (cf. ref. 1 for historical notes). In spite of this long 
history, however, even apparently rather simple problems from this field 
are not yet completely understood.

The easiest of these problems
dielectric
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is lessnot
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ofare to
they need, however,

are
ore-g-
forrise ato mus t

relationtheFrom
one

ofthe electrostatic in a

experiment 
and

fractions
in fact we do not

sufficiently flexible 
different from that

forward for the effective dielectric constant of a

e.g. in dimers, 
effective dielectric constant as a

a dispersion 
random'

components is small, the Hashin-Shtrikman bounds lie very close to each 
other; in this case, however, the difference between the composite and a 
pure material is also small. In the more Interesting case of components 
with very different dielectric properties the bounds open up, and the 
upper bound even becomes infinite for conducting particles embedded in 

Thus in general more Information about the 
composite than only the volume 

Unfortunately, however, this was not always realized: 
know

potential in a dispersion 
dielectric particles requires the solution of a many-body Interaction 
problem. For arbitrary shape of the particles this problem is hopelessly 
difficult, but in the case of spheres one can by consequent multipole 
expansion obtain a sufficiently explicit yet workable expression for the

in a hard-sphere fluid; 
corresponding correlation functions as input.

Once the statistical properties of the dispersion are specified, its 
response to an applied electric field - e.g. the polarization or the 
potential the polarization gives rise to - must be calculated 
given configuration of the dispersed particles, 
between the ensemble average of the response and the applied field 
can then deduce an expression for the effective dielectric constant.

Calculation of

As long as

functions, describing 
statistics of the composite's spatial structure, were measured.

In order to derive explicit results one therefore is forced 
consider model dispersions. A particularly popular one is 
of spherical particles which are distributed in the 
fashion, i.e. with equal probabilities for all configurations in which 
the spheres do not overlap (this is the equilibrium distribution of a 
hard-sphere fluid). We stress 
distribution

insulating 
structure of

that the specification of the particles' 
important than that of their form: if the 

particles are spherical but associated 
strongly influence the effective dielectric constant as a change of the 
particle form from spherical to elliptical. The different theories put 

dispersion of spheres 
treat also distributions of the spheres 

the

the difference between the dielectric constants

any
dielectric
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such about thean
one

a

numerical effort.

constant at

context,

In
dispersion of spheres were

the constantas

of the constant
scheme neitherThis is to

that
already used by non-

isdielectric constant.polar fluid’s
equivalent to a mean-field theory. The next non-vanishing order gives a

in a

spheres. This systematic
dispersions nor to small differences between the dielectric constants of 
the spheres and the background medium. It rather makes use of the fact 

fluctuations of the number density of spheres are small, an idea 
Bedeaux and Mazur^2)

a somewhat

molecular theory of a
The lowest order of the scheme

One such scheme is the density expansion of the effective dielectric 
constant in powers of the volume fraction of dispersed spheres. The 
coefficient of the first order was determined already by Maxwell^). The 
next coefficient, however, which requires the solution of the two-sphere 
problem, has been calculated only rather recently^»&). •j’he first terms 
of this density expansion should yield a satisfactory description of the 
effective dielectric constant at low volume fractions, but they are 
surely insufficient in concentrated dispersions.

In another scheme7developed originally by Kirkwood and Yvon in 
different context, the so-called Clausius-Mossotti function

potential.
Using such an expression together with the knowledge 

distribution of the spheres, one could in principle proceed to evaluate 
the ensemble average by brute force in a computer experiment. 
Alternatively one may, guided by physical intuition, try to devise a 
rapidly converging approximation scheme, which allows to calculate the 
dominant contributions to the effective dielectric constant with small

is expanded in powers of the spheres’ polarizability. Since just the 
first non-vanishing order is taken into account, one would only expect 
the theory to apply when the difference between the dielectric constants 
of the two components Is small.

addition bounds on the effective dielectric constant of a 
derived1®*11\ using information about the 

two- and three-particle correlation functions of a hard-sphere fluid. 
These bounds are appreciably narrower than the Hashin-Shtrlkman bounds, 

dielectric constant of the inclusions becomes larger andyet
larger, the upper bound still diverges.

In chapter one of this thesis we explore still another approach to the 
calculation of the effective dielectric constant of a dispersion of 

restricted to dilute
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contribution of the second Itsof fluctuations.moment

a to

as

ef fectivesomewhat the

formula.

notare never one

on

that
ofonly It

state an
whenare

spheres, 
diamagnetic

e.g.
; of

even for
surprisingly 

a hard-sphere fluid like dispersion is 
high volume fractions and highly polarizable inclusions well described 

classical Clausius-Mossotti formula. For low volume fractions

which in

by the 
this fact was already known from the result obtained with the first few 
terms of the density expansion, which in that domain agrees with our 
theory. In the correction to the Clausius-Mossotti formula higher-order 
multipoles turn out to be essential.

We are also able to confirm a conjecture of Stell and Rushbrooke), 
who supposed that in the Kirkwood-Yvon scheme higher-order terms in the 
polarizability are never important, although one would naively 
expect so when the polarizability of the inclusions is large.

Our theory agrees rather well with recent measurements by van Dijk, 
Broekman, Joosten and Bedeaux^) of the effective dielectric constant of 
water-in-oil microemulsions at temperatures at which the water droplets 
do not form clusters. Experiments by Guillien^) and by Mettout and 
Broniatowskll?) on systems of metal spheres dispersed in an insulator, 
however, yield much higher values for the effective dielectric constant 
than predicted by the theory based on the hard-sphere fluid model­
distribution. This fact reveals that in practice this model-distribution 
is often Insufficient, and it again underscores the need for 
quantitative experimental investigations of the spatial correlations in 
dispersions of spheres.

The second chapter of this thesis treats another aspect of the physics 
of dispersions, that in contrast to the effective dielectric constant 
became important only recently^, 19). concerns dispersions
superconducting spheres, which are brought into a metastable superheated 

by an external magnetic field. The spheres, made of type I 
superconductors, are perfectly diamagnetic when superconducting

density 
evaluation requires knowledge of only the pair correlation function, 
which for the hard-sphere fluid has been studied extensively (cf. < 
ref. 13). This is a major advantage with respect to theories 
Kirkwood-Yvon type and the theories yielding bounds, since in these the 
three-body correlation function, not nearly as well-known as the pair 
correlation, is indispensable. 

Our theory shows that 
dielectric constant of
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as
forgamma

is field surface becomesthe its thanat a

at are
thethe spheres as

maximum field
and its cannot

superconductingthe distribution of the

ofto some

of Inin a
the fraction of arewe
external fieldat as asa

also apply here.

strength at 
multipoles 
Furthermore

super- 
the

constant, 
sphere depends strongly on 

maximum cannot be determined

destroyed when the field at its surface becomes greater 
certain threshold value. Clearly, therefore, the maximum field strengths 

the surfaces of the spheres are relevant, rather than the 
in the dielectric problem, 

superconducting dispersions more difficult 
effective dielectric constant, since the

as in a

polarization of 
already makes the study of 
than the calculation of the

a superconducting sphere in such a dispersion

the surface of a

but are

(Meissner effect) and therefore show strong magnetostatic Interactions.
Dispersions of this type are not only Interesting from a fundamental 

point of view, viz. for the study of the phenomenon of superheating 
itself, but are potentially also of practical importance: it has been 
suggested that they might be used as detection medium for elementary 
particles^®) or even for 
medical applications^).

The metastable state of

we can

This alone

the development of a ray camera

higher-order 
analyt ically. 
spheres is not Independent of the diamagnetic interactions between them. 
Due to these interactions some of the spheres already become normal 
conducting at lower external field strength than others. In general the 
distribution of the still superconducting spheres therefore differs from 
that at zero external field strength.

In view of the various specific difficulties occurring in dispersions 
of superheated superconducting spheres we can only treat the case of 
dilute dispersions, in the framework of a density expansion, 
particular we calculate the fraction of spheres which 
conducting at a given external field strength, as well 
probability distribution for the maximum field strength at the surface 
of a sphere. As in chapter I, the spheres are assumed to be distributed 

hard-sphere fluid; the remarks concerning this point made above
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THE EFFECTIVE DIELECTRIC CONSTANT AOF DISPERSION OF SPHERES

1. Introduction

The effective dielectric constant
is well-known, the non-additiveas on

Interactions between
theuse

Mossotti formula

( 1 + S ) . (1-1)+ 2

their number

interactions S is to

the part of

first their density expansionsthe terms were
restricted the of the lowwhich to

Stellconcentrations. thisIn overcame

result ofwell Weisas aasapproximation 
Strauss^).

the
a2.

validity 
and

4n

spheres depends, 
electrostatic

as basis of a systematic theory for a mean-field result, e.g. 
familiar Clausius-Mossotti formula, which implicitly takes into account 
many-body interactions.

In the context of

CHAPTER I

results
Rushbrooke 7

Here a is the dipole-polarizability of the molecules and nQ 
density. If one disregards a (for molecules actually important) density 
dependence of the polarizability and also higher-order multlpole- 

between the molecules, S is just due to correlations 
between their positions. The above authors expanded S in powers of a and 
calculated only the lowest non-vanishing order i-e. the part of S 
proportional to a^. In this approximation only two- and three-particle 
interactions contribute. For the correlation functions needed to perform 
the averaging the first few terms of 
employed,

a no

a molecular theory of dielectrics this approach was 
first pursued by Kirkwood^ and Yvon^\ and later by de Boer, van der 
Maesen and ten Seldam^, who calculated the deviation S of the Clausius-

ee of 
essentially

them. Therefore it is attractive to

a dispersion of dielectric

1974, 
restriction by using for the evaluation of the Percus-Yevick pair­
correlation function together with the Kirkwood superposition

Monte-Carlo result of Alder, Weis and
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was

oflittle known aconstant

or
in which

of the

Heto

'weak-

its secondwhich ofis

that

thea

however,

"believe that terms of order

somewhat
a

In the lowest order of this

the and due correlationsis to

as
theof the withsolution
whichinteractionelectrostatic aretensors, connectors,

i

part S2, 
a

independently gave 
theory to higher-order 

the formula obtained for

view, using
Mazur and

always be small".
In this chapter we shall study the effective dielectric constant of a 

dispersion of dielectric spheres from a somewhat different point of 
modification of the fluctuation expansion introduced by 

Bedeaux • In the lowest order of this expansion the

by 
polarizabilities. Whether this is

higher order multipole 
Heinrich6\ who In a

microscopic number density of the spheres is replaced by its average.
The next order gives a correction which is related to the quantity S of

Kirkwood-Yvon theory, and is due to correlations of density

potential problem 
called

valid in 
order

A generalization of the Kirkwood-Yvon theory to 
interactions was given in 1965 by Giinther and 

paper studied the effective dielectric 
dispersion of dielectric spheres (actually these authors did not cite 
Kirkwood or Yvon and seem to have reinvented implicitly the whole 
theory). Although they had in mind the description of a system 
the spheres are distributed as in a hard-sphere fluid, they used lattice 
correlation functions.

Recently also Felderhof^^ 
Klrkwood-Yvon ox 
evaluated 1

good approximation remained an open 
question. Kirkwood originally took the point of view that it was only 

regime where also in the Clausius-Mossotti value for 
suffices, which is the case for low concentrations. Later, 
the theory was also applied at higher densities, and Stell and 

Rushbrooke^ "believe that the effect [of the terms of order a^] will

theory, 
fluctuations which we describe using the Percus-Yevlck pair correlation 
function. Our treatment is not restricted to dipole interactions nor to 
second order in the polarizabilities. We can explicitly show that the 
higher orders of the polarizabilities do not contribute significantly to 
S within the second order of the fluctuation expansion.

The outline of this chapter is as follows. In section 2 
electrostatic

a generalization 
multipole interactions.

S2 by density expansion of the two- 
and three-particle correlation functions, taking additionally a 
coupling’ limit.

All the above theories approximate the deviation S from the Clausius- 
Mossotti formula by its part Sn, which is of second order in the

we give a 
aid of

from a
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In section derive the basis of this solutionwe on a
formal ofexpansion in of denslty-fluctuat ton correlationterms
functions of higher and higher order. This expansion requires a
continuation of the fields for the ofconnector case

however, Is Influencedare
In section 4 we perform

the first choice for the connector flelds
connector fields), and calculate the firstcut-out two

nonvanishing orders of the fluctuation expansion. We also give a
generalization of the Clauslus-Mossottl expression for finiteto
wavelengths• The deals anothersection choice of

in his treatment of
6In method devised bysectionan a

for the resummatlon of ring self-correlations is
applied for both of fields. In the last thesectiontypes connector
results found In this chapter, In particular the Influence of higher-
order multipoles and of the choice of connector fields, are summarized
and compared to other theories and to experimental results.

2. Formal solution of the potential problem

2.1 Multipole expansion of the electrostatic potential

We consider collection of uncharged homogeneous dielectric spheresa
of radius sufficiently large be described by macroscopictoa >
electrostatic continuum have dielectric

and embedded homogeneousatare a
gives

rise electrostaticto an
displacement

d
(2.1)

1 
potential

with
10)

!X 
dielectric

its rate of convergence, 
by the particular choice for the continuation.

following
connector fields, which was employed by Beenakker

generalizations of the dipole-dipole Interaction tensor to higher order 
multipoles. In section 3

analogous hydrodynamic problem.
Beenakker and Mazur

?(?) - - (tj + I (e^)

constant e2 
medium with dielectric constant e

— U(r) . dr

overlapping
spheres, which Is not uniquely specified by the potential problem. The
resulting ambiguity vanishes If all orders of the fluctuation expansion 

taken into account;

theory. The spheres 
positions *n
. An external charge density pe, 

U. The associated

fluctuation expansion with a 
(which we call
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where 0 is the Heaviside function, satisfies

(2.2)

The aim of this second section is to find

U(r) - J M(r,r')Pex(r')dr' , (2.3)

where

- A (2.4)

On the other hand one finds from eqs. (2.1) and (2.2)

- A U(r) - (p (?) +.1 {S(a-|r-i |)[-i - 1] P 
el ex j J e2

J

two a
surface, and

sphere given by

(2.6)

I

- 11m ]— U(R 
i r'+a dr'

e2^ei* T° this end we define on each sphere j 
Pj with the Poisson equation

Pj(?) - (^ -1) pex(b

c
+ 4^ 6(a-|r-R |)[11m ■ 

J r’+a

(|?-Rj|< a) .

the Green function M(r,r') is given in terms of the positions of 
the spheres and the ratio 
an Induced charge density

an expression of the form

d
— • D(r) - 
dr

to Pj

pex(?) •

■x(?)

Comparison of i 
sphere j, and 
concentrated

if sphere j contains no external

°<b - (pexcb + I pj(b) -

Pj vanishes outside of 
parts: a charge density 

a regular part inside the

Thus there is no regular part 
charge.

Next we expand the potential U(r) in multipole contributions. Consider 
first a position r exterior to all spheres. We use the Taylor expansion

• (2’5) 

I r-Rj I

eqs. (2.4) and (2.5) shows that
I that it consists of 

at the sphere's
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1

(r’ < r) (2.7)

Here r - r/r is the unit vector pointing into the direction of r, and

1 (r > 0) (2.8)

th
if it of

its indices. The cartesian of of
combinations of harmonicsare

detailedA irreducible
The symbol two tensors

indicates the that theconvention first
index of the second is contracted with the last index of thetensor
first furthermoreWe the definitions (21-1)!!etc. use

~,1 Z ~1 Z ~1r ’ © r = r' © r (2.9)

we find for the solution of eq. (2.4)

(r') dr' dr'Pj(r')

(2.10)

with connector fields given by

(R > a, Z > 1) (2-11)

and charge multipoles

(2.12)

,1 r'
1+1

(21-1)!! 
Ei

-I
1=0

L

traceless
TE

the

1
Ir-r' |

pex

independent, 
_o * -1+1
\ Yi 
tensors is

u(?) - J-!
i

dr

_______ 1
|(?-Rj) - (?'-Rj)|

(-1/ 1+1
(21-1)1 I

EX !i j

defines the Irreducible part of the 1 
tensor irreducible

tensorial power of r. We call a 
is symmetric and 

elements

and (-1)!! = 1.
With eq. (2.7) and the formula (cf. eqs. (A.15),(A.18) of appendix A)

tensor,
l-3«5-...•(21-1) for 1 > 1

a J (;-s /' 
Ila J

7 e

- (J Pex(r')d?' + I i A<0'X\;-S) 0*pW} ,
1 |r-r'I j 1=1 J J

a(°'x>(5) h (21-1)11 (|)X+1 R*

Pj(r) dr .

spherical
discussion of

©* between

dr

appendix A.
contraction, with

in all pairs 
which 21+1 are

linear <
(r)

given in 
an 1 -fold
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(Pex(t)+Pj(r)) • (2.13)
J

J Pj(r') dr'!

P1(r') dr'

J

J P1(r') dr'

(r') dr'

(2.14)

__1_
l!aJ

1 
l!a

consequence of the definition (2.4) of the Induced 
carry no total charge besides the enclosed external

-I
1-0

■L.

(21-1)!! 
Fl

(21-1)!!
al

now consider the potential 
sphere i. The contribution of 
eqs. (2.7) and (2.9),

/ {
Ir’-fcj^-O I

in the case | r—| < a for a given 
ae^U(r) is then found to be, using

Ir-r'|

4a J ,
Ir-5 |<a+0

7 
' pl

Pt to
Let us

! — a _____
'+0>|?'-R1l>a-0

/Ir'-ija-o

4a ! (
Ir-Jj|<a+0

J (Wp 
a+0>|R1-?'|

+ J —?__
|r'-Sp<a-o

-I a
1-0

'(^Z

(Mp1 0X a-2*-i p.-ifp*'pi(;.) d;.
a+O>|r'-R*|>a-0

Pex(r) dr - J n-D(r) ds -
I |r-8j|»a+0

. d
x J n"— U(r) ds 
lJ-^l-a+0 dr

! ! au(?) d? -
I r-R |<a+0

Wpi(?,) d?' ’a

In other words, as a 
charges, the spheres 
one.

Note that the sum in eq. (2.10) begins at 1 - 1, since according to eqs. 
(2-1), (2.2) and (2.4) the monopole moments vanish, as they should:

o1 (-a)X (21-1)1!' (^-J')1 ') P1(?') dr' .
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1 by

A(0,1)(R) (R < a) (2-15)

for the

J

r')l Pex(r') d*' (|r-R±| < a) . (2.16)

formulaa

A<°>1\;-sj) £(«

i

(2.17)

thatfact a

init space

1 TTa

potential it produces 
distribution is non-zero.

-1 2-1
11 ‘J'" 

'(S-Rj/'o1 A(1>0)(RJ-?'))pex(?’) d?') .

pex

A<°’

Using the definition (2.12) of the charge multipoles, the fact that the 
induced charge monopole vanishes, and also the relation (2.6) 
regular part of the induced charge densities one obtains

(?') d£- + Z 1 
J *-l

1 -1
2-1

u(?) - { !

o1 A<1'°>(R1

+ (^ -1) Z 0(a-|r-R.|)
2 j 3

i?Ti P‘rt'
f {

|r'-R1l<a

= A<X-°>(-R) = (22-1)1! (|)X

+ (^-l)

f (■
|r'-R | <a

) d?- - z 
2-1

Collecting the results (2.10) and (2.16) one obtains 
for U(r) which holds outside as well as inside the spheres:

In the first term of the last member we have extended the integration 
over the whole sphere and compensated this by subtracting the additional 
contribution from the second term. We now Introduce connector fields for 
R < a and 1 =

The presence of the last term in the right member of this equation 
reflects the well-known fact that the multipoles of a charge 
distribution alone do not contain sufficient information to describe the 

those regions of space where the charge

the last
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2-2 Determination of the induced charge multipoles

(2-18)

leads afterthis condition

- <ere2> I ?

. (2.19)+ 2

? of Che first two terns

a ,p+ix(X,p)(i)

(2.20)(R > 2a)

(cf. eqs. (2.11), (2.8)) and

(2.21)A<X’°’(li) R > a andfor

one obtains, using also eq. (2.9),

a__
1!

The following step is
on the r.h.s. of eq. (2.19). Defining

in
of

d
1 dF

d
2 dF

J
I r'|>a

B A(0,X)(-R)

I (21-1)!! (tl(l+l)+e2*) rl 0*

A(0-p)(;+s1-sj) °p 4P)

(a)P +■ (

| r+R^-r' |

■a|)X *(°>PM) . { ® )1 (_ p a
®R aS

- (-1/ (2Jt+2p-l)!. (|)X+p+1 T+T

2^1

a Taylor expansion in

T. (*) it now rests to find an expression for the multipole moments 
terms of the external charge density. This requires the exploitation 
the boundary conditions at the spheres' surfaces:

and a rearrangement of terms to

;-W?>|r-a+0
- '"“(^i^lr-a-O

U<V?>|r-a+0

”(Ri+?)|r-a-0

Substitution of formula (2.17) for U into 
multiplication by e^a^

i I
j*i p-1

pex<?') d?'

X J A(X,0)(ii-?’) Pex<r’> }r.a 
|?'-R1l<a
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<2X-1)!! (X(E1+e2)+E1J ^XoXp<X) -

(a® 1*)k dr f A^P^-ty o»p(P> +a

°)<R1-J') pex(?') d?- + A(X’0\Rrr') Pex(?') dr'}

A(X>P)(S1-Sj) ePp<P>

+ / A1 (2.22)

moment we eqs.

f r“ rA dr = (2.23)

of rankFor 1 = m

(*>*) 01 (2.24)A

and

{ ! A(m,0)(R1-;) pex(?) dr +
m!(2m-l)l!

(p) (2.25)1,2,...) -

are given byThe coefficients

1) ■ (2.26)

12) which connect“r

I

/ , 
l^'-^Ka

' I 
j*i P-1

*1 r *1 r

L

} (i,m=

(2m+l)!! 
4k m!

<X-°>(V?') Pex(r') } .

I (e2 + ep + E1
They are related to the multipole polarizabilities

A<X'X> 
,m -

J A<X> 
Ir'-R^a

- El>

(m) 
El

A(m’P>(514j) ®P p<

(^1 z ) Y 
1 z 1=1

- (ere2) I 
1=1

To derive from this equation an expression for a particular multipole 
(1)f>l z we employ the orthogonality property (cf. eqs. (A.11)-

(A.13))

If we then multiply both sides of eq. (2.22) with rm 4itm!/(2m+l)!! 
integrate we find, according to eqs. (2.23) and (2.24),

A (e2

r=a 1 L j*i P-1

(1 1) this equation defines the isotropic tensor A5, *
21, which has the property (see eq. (A.18))

(X^

<■ I I 
j*i P=1
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Winduced themultipole p ofan derivativewith
by1’

(2.27)1) •1
For conductingthe

(2.28)
and

(2.29)

at

-1 JT~ (?-R /' A(i’0)(R -?')} .
X-l 3 3

(2.30)

rl couldInstead of the we

the difference between abstract 
components relative to a given basis.

also have used
6)

S"1

21+1 a

... eXsoX!

Ela

(XpX.

I I {A(0’Xl)(?-Rj )
...... X1............V1 1
Wi

a(°-°>(?) - 4-

2}(R -R
31

the desired expression for the 
the iterative solution of the

bX " PX XI (2X-1)1!

PX as 
) all

bx A(* 
s

. oth the 1charge
polarizing potential at position

+ X e(a-|?-R |)0(a-|R (A<0’0)(r-r’) - 1
2 J J J

(X >-

reduced polarizabilities.
spheres (i.e. + 00 ) all are equal to unity.

Let us furthermore Introduce the quantities

“x - E

3S

irreducible tensors 
spherical harmonics, as has been done by GUnther and Heinrich03 and by 
Felderhof?\ The difference between both formulations may be compared to 

vector notation and a notation using

With this notation we finally arrive 
Green function M(r,r’) by inserting the iterative 
system of eqs. (2.25) into eq. (2.17) (cf. also eq. (2.3))

Note that our formalism also allows for the case that there is an 
external charge density inside the volume occupied by the spheres.

We shall refer to
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3. The fluctuation expansion scheme

<U(r)> - ! <M(r,r’)> (?’) d?' . (3.1)

on

<M(k,k')> - M(k) 6(k-k') (3.2)
and

<U(k)> (3.3)

on

(3.4)

Comparison of eqs. (3.3) and (3.4) shows that

(3.5)M(k)

fluctuation

(3.6)

for twoThis or more
fields theconnectorwe

(3.7)for r < 6 1and- 0

arbitrarily small positive number. We can then write6 « awith an

expansion of <M(r,r’)> 
the Green function in terms of the microscopic density of the spheres

k2

pex

Since the system is statistically homogeneous and isotropic, 
of the Green function M(r,r’) depends on |r-r’| only, 
language this means that there is a function M(k) with

density vanishes 
spheres overlap, 
convention

%(k)

the average
In Fourier

n(r) - 2 6(r-R.) • J J

- J <M(k,k')> Pex(k') dk' - M(k) pex(k) .

all configurations 
Furthermore we adopt for the

’■»(?)

k2

In order to calculate the effective dielectric constant we perform an 
ensemble average < ... > of equation (2.3),

<U(k)> -
%(k)

we now have to reformulateFor a

Pex(S) •

in which

If, on the other hand, the average dielectric properties of the system 
can be described by an effective dielectric constant Ee(k) one has
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(3.8)

(3.9)

(3.10)

We thus find from eq. (2.30)

<*2-0) + ...)(?,?')oX2

(3.11)

(3.12)

(3.13)

and define matrix multiplication by

(3.14)

I

I 
J 

1* j*k

CD

-1 
m=0

n(r.r’) = n(r) 6(r-r')

=/*-“>(?-?•) .

(m’P\?-Rk) d?

\n - b. n A
2

= A<X’»>

(•^Xp

- ! A^’0^-?) o“ n(?) bm A<

- (A(1'“>

I A<°>*1> A

0“ jd- 
mp

+ I e(a-|r-r-|)e(a-| |) n(?“) {a(0>0)(?-?')

- I (r-?")1 °l A(t’0)(?"-?’)} . 
7.-1

to be

/o.D sSi

J#, 
7m

*p

of A<X-P>

n A<*>°>

- A<X’X)
= A

ea n

Cja M(r,r') - (a(0,0) +

2»1

bffl A(“-P>)(R1,Rk) .

as matrix

A(*’B)(Ri-Rj) 0“ ba A<“’p)(Rj-Rk) -

If we furthermore consider the upper indices 

indices, put

bx 6X,p (1-6t,o) ’

In the last member of this equation n and A^X,m^ are understood 

operators with matrixelements
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1

(3-15)

can be summed, and the average Green

o* A(Z,0)(r"-r')} . (3.17)

fit = {1 - (3.18)

one has

= <{ [1 -j4^nQ] -jJjs&n]

= $ + $ j£<6n ?? £ 6n>2? (3.19)

The equations (3.5), (3.15) and (3.19) together lead to the fluctuation

The geometric series on the r.h.s. 

function then takes the form

-L

aCj M(r,r') = ( si + jd- £ n + ji £ n jd n + ...)00(r,r')

<{1 ->/n} 14 >

I?

= <{[1 -^/no)(l - [1 -v^Zno] > - <{1 -KAhn] L2? >

Here 0 = nQ4xa^/3 « <n(r)> 4xa^/3 is the volume fraction occupied by the 
spheres, and the dimensionless function K is given by

e
ae1<M(?,?’)> - <({1 - >/n[ W)oo(?,?')> + - 1)K(?-?’) . (3.16)

we arrive at the compact notation

terms containing higher order 
moments of density fluctuations .

K(?-?') - / dr" 0(a-| r-r*'| )0(a-|r*'-r'1 ) {a(0>0)(?-?’)
4ita

-i
Jl-1

+ (^--1) J dr" 0(a-|r-r"|)0(a-||) n(r") {A<0,0)(?-?') - 
2

£ (l-SVV A(t-0)(?■'-?■)} .

Formula (3.16) is the starting point of our expansion of the effective 
dielectric constant in density fluctuations 6n(r) = n(r) - nQ. The 
second term on the r.h.s. depends only on the average density n^, while 
the first term also depends on 6n and may be expanded in powers thereof. 
Introducing the renormalized connector field
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expansion of the Inverse of the effective dielectric constant

(3.20)

(3.21)

(3.22)

fluctuationindicates order in theThe index of theupper

e<2)(k) +... {1 - ••I • (3.23)(k) +
(k)

have to discussWe now an
connector

actual

- +
(3.24)

the entire space,
for r < 2a in the case

For is free choose continuationtoone

result.same
does depend choicetheon

made, and so does the rate of convergence of the expansion.

expansion. The equivalent expansion of the effective dielectric constant 
itself reads

X<2’(k) 
x<°>(k)

expansion, all continuations must yield the 
the expansion (3.20) separately, however,

%(k) -

X(0)(k) 6(t-{') - {3?00(S,J') + 6(f-i?')*(?| - l)K(ic)}
2X(2)(k) 6(J-k’) - (k.k1) .

E1 
x<°>

any
which satisfies condition (3.7). If one calculates X exactly,

R<x’p\;,p)

important technical point concerning the 
definition of the renormalized connector fields. Since in (3.18) the 

microscopic density n(r)

extend over the entire space, so that we also have to define 
A^*P)(r) for r < 2a in the case X,p = 1. We recall that this quantity 

was only determined uniquely by the potential problem for r > 2a , cf. 
eq. (2.20). For r < 2a one is free to choose any continuation of
A<X>P\?)
or equivalently, if one takes into account all orders of the fluctuation 

Each term of

e1/ee(k) 5 X(k) - X(0)(k) + X(2)(k) + ..

is replaced by the average density nQ, 
the situation of overlapping spheres is no longer excluded. The 
integrations occurring in the calculation of R^’P\r,r'),

+ I ! d^ era bmnQ A(“'p>(?1-;') + ..
m=»l
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The perhaps most obvious choice Is

for 1=0 and/or p=0 and all R
> (3.25)for l,p 1 and R > 2a
>for l,p 1 and R < 2a0

Incorporates In the connector fields as much information asThis choice
fieldsdistribution of the spheres. Thepossible about the connector

thegiven by cut-outas
connector
the Clausius-Mossotti result for

in his theory ofA different continuation was
the effective viscosity of suspension,a a

calledfields,from a mathematical point of view. These connectorours
of thezeroth orderfields here,connector

up
sec.

calculation of the renormalized connector fields.

4. Fluctuation expansion with cut-out connector fields

4.1 Renormalized cut-out connector fields

4.2 and 4.3 we shall determine the coefficients
the(3.21) (3.22), using cut-outandinas eqs •

therequires(3.25). This firstfields inconnector eq.
Fourierinfields repre-

(the index C reminds of
According to eq.

(3.18) they satisfy

R^i,p)(k) - C(i,p)(k) (4-1)nQ i s'

*) Note that the term "cut-out connector field** is used with a different 
meaning in ref. 10.

given 
defined

give in
to linear order in the volume fraction

a<x->»(5)

bB e" R<">p)(k) .

x(0)

eq. (3.25), to which we shall refer as the cut-out (C) 
fields*), lead in zeroth order of the fluctuation expansion to

factorizing (F)
fluctuation expansion e|/ee
(cf. sec. 5). They have the advantage of considerably simplifying the

In sections 
and X<2>,

used by C.Beenakker
problem closely related to

C(A’p)(R) =

evaluation of the renormalized connector 
sentatlon r£*,p)(£,£') -R<*’p)(£) 6(2-£') 

the fact that we work with cut-out connector fields).
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In solve (4.1)equatIon need the Fourier-we
of the In appendix B we

c(i>p)(k) - J dr

^2- (22+2p-l)! != 1 (4.2)

with scalar coefficients given by

for

(4.3)

3/x2 for A = p = 0 .

of order A. Note that

for x « 1 and all A,p, (4.4)

because

(4.5)) for x « 1 .

Inserting the result (4.2) Into eq. (4.1) one obtains

^’P\t) . /-p4Ka3 (21+2p-l)! !

Pm “^(ka) sI“ R^m,P)<k) • (4-6)- *

4

I I1 
m=l

(2A+2m-l)!! A!
(i+m)!(2m-l)! !

(X4-p)! 
I! p !

(ka) k r

-lk*r e

order to 
transforms c(1,p\ic) 
show that these are

12 
2*+p

A! p!
(1+p)! CXp

^(x) - xX/(21+l)!l + (T(x*+2

Here denotes the spherical Bessel

clp(x)

r- 13)function

cx (*) " &(*i+p 2)

- cp0(x) - 3(2p+l) jp(x)/x2 for A = 0
and p = 1

Alp! ?a+p
(I+p)t cip(ka) k

To proceed we have to make some remarks about the tensorlal structure 
of From eq. (2.8) it is clear that k^ is built-up exclusively 
from combinations of k and the unit tensor 1 of rank 2. Considering the 
iterative solution of eq. (4.6) one may convince oneself that the same

cut-out connector fields.

l,p = 1 ,

4xa3
3

cxP
Wi(2x)

2x
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in its last indices. It therefore is lineara

(4.7)

where the tensor «—j- of rank 2j has components

(4.8)

of the indices of the intensor

7^R<X’p)(k) -

(4.9)

where the scalar coefficients

4.2 Zeroth order of the fluctuation expansion

the evaluation of the zeroth order of the fluctation

1-m (21+2m-l)!! 1! (4.10)

The tensor contraction can easily be performed (cf. eqs. (A.22), (A.4))

10 
ro '
-♦if 

mal

P 
combination of terms of the form

3 a

expansion, for which we need to know the 0,0 element of the renormalized 
connector field (cf. eq.(3.21)). Inserting eq. (4.9) into eq. (4.6) for 
p =• 0 we find

xp(k) kx-1 -1- kp-1

+ rXp(k) kJ

( ’ 6»1?1 5“2P2 ■" 'Vj

(k) kX - il

,(ka) k1+” 0“^ r™°(k) .

Under permutations of the Indices of the tensor between brackets 
expression (4.7) this expression either remains invariant or vanishes, 
since the A tensors with which the term between brackets is contracted

rJP(k)

(21-1)11 Cjt0(ka) kX

We now turn to

r^p(k) vanish for j > JI or j > p.

(Jl.Jl) /(Jl-J^P-j) op ^(p.p) ,= a1

is true for ’p(It) , and that this tensor is furthermore Irreducible 
first 1 and its

form both sides are symmetric and traceless. Consequently tensors of the 
form (4.7) are the most general ones that satisfy our conditions, and we 
may write
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kX4in em km f^X+m-V 0m-l ^m-l

(2A—1)!!
JI! (4.11)

so that eq. (4.10) reduces to

AOZ1 4k 3 z. x 
ro (k)' ’ 3" a cX0(ka)

r“°(ka)l . (4-12)

, can thus

fQ°(k) ■= ^ a3 {(1 + *c(ka)-p] (4.13)

with the matrix 0 given by

(4.14)

in the

{c(ka) - $ c(ka)*p«(l + $c(ka)-0)3

xc

(4.15)

(4.15) is just the

1

J? 
ma

1. lim
“ 3 x*0

lim
k+0

(Jt+rn)!
(2Jt+2m-l)! !

i m 
(2m-l)!!

A+m 
2Jt+2m-l

- ('k*4™'- k) e"*1 k”’1 -

(ka)}00

- * 2 cim(ka) pm (■ 
m=l

10<x>}

rg^(k), the quantity which we need for the evaluation of X^^ 
in matrix notation be written as

Note that
Also, because of the behaviour (4.4) of the 
the dipole moment contributes to X^\o).

The effective dielectric constant given by eq. 
well-known Clausius-Mossotti expression e__: GM

lim (ka) 
“ k+0

{x2Coo(x) - *xc01(x)P1

1 -
1 + 2|P1 •

_____ 1______
1 +

- (r<0’0M) + <t> (^1 -1) K(S)} 
2

^(21-1)1!

k^K(tc) vanishes for k * 0 since K(r) is absolutely integrable. 
c^(ka) for small k, only

(ka)}00 •

k£°\o) =

Before discussing the general case let us first calculate X^' 
limit of infinite wavelength. In this limit one obtains from eqs. (3.21) 
and (4.13)
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(4.16a)

perhaps more familiar in the form

(4.16b)- 4>

consider the of theWe therefore

zero wave vectors.

of the function

(4.17)

Insertion into (3.21)of

4>c(ka)*p)

Sl(2ka)^
2ka 1 '+ * (e^e.,-1) (1 -3 (4.18)

forformulawith thisvaluesshows1

to

(4.19)

Here Si(x) denotes 
yields

lim
k-n» E2

(0) 
eC

1 +
" E1 —

jj/Zka) 
2ka

e2 ~ el
e2 + 2el

■ 2*p LEi 
x<0)(0) ecm ’E^<0> -

accuracy 
of the rate of convergence with respect 
calculated with L - 1,...,16, are listed in table 1.

In the limit of vanishing wavelength formula (4.18) leads

K(t) = (1 - 3
kZ

2(k) - x£0)(k) = {(1
j/Zka) 

2ka

1—4> 
“h

Ei/E

We shall now evaluate this quantity. The necessary calculation of the 
Fourier transform K(^) of the function K(r) is performed in appendix B, 
where we show that

<ka>)00

ecm

ecm

- E1
+ 2C1

+ 3 jg(ka) - 3

+ 3 j£(ka) - 3

constant to non­
may

Clausius-Mossotti value for
eX0)« as the generalization 
the effective dielectric

Fig. 1 shows values of X^\k) calculated 
conducting spheres, 0^=1, and wave vectors in the range 0 < ka < 10. 
In the numerical evaluation the infinite matrices c and 0 were 
approximated by finite ones, neglecting charge multipoles of order L + 1 
and higher. The number L of multipoles needed to achieve a prescribed 

increases with wave number and volume fraction. To give an idea 
with respect to L values of X^\10),

the sine integral1^)

Si(2ka)t
2ka J ’
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spheres

164 71 10 13L

0.5009(10) 0.6876 0.6739 0.6304 0.5113 0.5010

(0)L (0)

-0.0103 
-0.0161 
-0.0187 
-0.0201 
-0.0206
-0.0208 
-0.0208

-0.114 
-0.129 
-0.136 
-0.139 
-0.141 
-0.142 
-0.143 
-0.145

1
2
3
4
5
6
7

Table 1: The zeroth order of the fluctuation expansion 
for conducting spheres at ka = 10 and 4> = 0.4 as function 
of the number L of multipoles taken into account.

Table 2: The second order of the fluctuation expansion 
for conducting spheres at ka = 0 and <$> = 0.4 as function 
of the number L of multipoles taken into account.

^2)

x<°> xc

with C 
of the

Fig' connector fields and conducting spheres as function 
wavenumber k for different values of the volume fraction 0.

1.0

<t> = 0.2
0.5 0 = 0.3

0.0
0 5 10
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This is what be the basis of ofcan on a
Ford andas These

an

Clauslus-terms to
same

formula
point * i.e.

a

a as
a set

1

■) • (4.20)

Next recall that radiusthe entered c ofwe a our
definition of (cf. andcut-out connectors

which took into theaccount
in the thetoeq. a

thein centresare we
take limit a + 0 into eq.

The result that we then find is

(Ee )(k))pol.point el +

This expression corresponds precisely to formula (4.9) of reference 14.

physical 
authors

nature, 
also

eqs. ( 
the

4na 
9e no

Si(2ka) 
' 2ka

partly
Everywhere else

except 
the

dielectric properties 
of the spheres, 

(4.20) everywhere but

^(ka) because 
(3.25), (B.l), (4.2) 
» impenetrability of 
radius a is due

+ 3j£(ka) -3-

in c11(ka).

(4-3)), 
spheres.
dielectric discontinuity on 
polarizable point model, 
dispersion are uniform 
therefore have

ka c01(ka) (1 + n^^(ka)) 1 c1()(ka) ka

j,(2ka)___  2ka

considerations
Cohen .

(4.20)
1 the surfaces of the spheres. To obtain the 
in which the dielectric properties of the

4xn a 
------------- -------------------- (4.21) 
1 - 41tno(a/e1)(l - 2J1(2ka)/(2ka)]

they consider a 
which have the background dielectric 

point-dipole of polarizability 
. To derive their result (for the longitudinal dielectric constant) 
special case of ours we first have to set a/(e^a^)

and 0^ - 0 for X = 2, since there are no higher order charge multipoles 
in the polarizable point model. The r.h.s. of eq. (4-18) then becomes

expected 
argued by Felderhof, 

gave an extension of the Clausius-Mossottl formula to 
finite wavelengths. They start from a cluster-expansion of the effective 
dielectric constant, identify the terms that lead to the 
Mossottl formula for infinite wavelength, and use the same terms of the 
cluster-expansion to define the generalization of the Clausius-Mossottl 

to finite wavelengths. They do, however, consider ’polarizable 
Inclusions instead of homogeneous spheres, 

dispersion of spheres of radius 
constant but contain in the centre a
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4.3 Second order of the fluctuation expansion

<6n(r)6n(r')> - nQ6(r-r') + n2 (g2(|r-r'|) - 1) . (4.22)

is a contributionthe r.h.s.
pairofcontributionone a

82 ’

-lk«r+ik’*r’X<2)(k) 6(£-t') -

(r2-r’)l

- 6(t-k')

(4.23)

(1=1). (4.24)

(4.25)- w

correlations, described by the pair correlation function
With eq. (4.22) one obtains from eq. (3.22)

f dk k2 (J 
0

lim
k+0

IA,p=l

bP

/dr /dr’e

R<P’0)(?

dk (no + n2 v(k)} ,

k r£0,1)(£) 0* bt J d?

(5-Jp e* bA <6n(?1) R<*’p)(^

k2 {Jdr1 /d?2

Let us now turn to the determination of k£2\ the second order term of 
the fluctuation expansion. It gives corrections to the Clausius-Mossotti 
formula due to the correlations

k R<0,X)(£) - 1

/ dr R^1,1)(r){no6(r)+n2(g2(r)-l)} - (2it)

k 61,1

3J die R^1’1)(k){nQ+n2v(k)}

It now rests to calculate the Integral over R^3,3\r) , which in Fourier 
representation takes the form

e-ik*? R<i>P)(?) (no6(?)

. 2 4ita
1 + 20PX

of density fluctuations. The first part on 
of self correlations and the second

We restrict the evaluation of X^\k) to the infinite wavelength limit. 
In this case eq. (4.23) greatly simplifies, since according to eq. (4.4) 
only renormalized dipole interactions then contribute:

(fj-rp 6n(r2)> op

4^T j
x,p=l

bp R<P’0)(k) k .+ %(g2(r)-l)} ®P
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where

r(g2(r)-l) dr •v(k) - J (4.26)

In Ln the lines of thea

J dk - - 3 4> h(ka) , (4.27)

with a scalar function h(x) defined by

h(x) = (c(x)-p-(l + ♦ c(x)-0] •c(x)

+ c(x)-p-(l - 6f-c(x)-p) (4.28)

The constant matrix f occurring in the last formula has elements

(4.29)

We then obtain

e

(4.30)x

beenThe

The

3 for

appendix 
evaluation of

*) Use was made of the adaptive Gaussian quadrature routine D01AMF of 
the NAG program library.

1 
X+l

calculation along 
that

2
3W

1 - 9x

show,
r""(k) (cf. eqs. (4.10) - (4.13)),

<2*>

, using for 
15> of

the pair-
the Percus-

-)2 
1

I (1 + 0 4na

C we 
00,.

Integral has 
correlation function 
Yevick equation. The infinite matrices appearing in the function h were 
again approximated by finite ones, setting P^ « 0 for m >L . 
result converges rather well with increasing L (see table 2): Even in 
the case of conducting spheres, when the influence of the higher order 
multipoles is greatest, L = 6 suffices for an accuracy of IX. Values 
for L - 6 and conducting spheres are given in fig. 2 and table 
different volume fractions 4>.

*)i evaluated numerically
the Wertheim-Thiele solution

v(x/a)) x2 h(x) dx .

X<2> = - (,*\

3»

•f«c(x)|11 .
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(^2)) (^2))0 self pair

1.0

00
0.1 02 03 0.4 0.5

4

05

1 
2

-0.0258 
-0.0584 
-0.0817 
-0.0965 
-0.1053

for
the
the

(2) 
C

(2) 
F

order of 
infinite 
subscripts

0.0139 = -0.0397
0.0304 - -0.0888
0.0415 - -0.1232
0.0487 - -0.1452
0.0534 = -0.1587

0
0 
0.3
0.4
0.5

Fig. 2: The first two non-vanishing orders of the fluctuation 
expansion with C and F connector fields for conducting spheres at 
infinite wavelength as functions of the volume fraction $».

Table 3: The second order of the fluctuation expansion 
conducting spheres at infinite wavelength as function of 
volume fraction 0. The subscripts "self" and "pair" mark 
contributions of self and pair correlations respectively.

(^2>)palr

-0.0078 + 0.0019 - -0.0059 
-0.0226 + 0.0095 = -0.0131 
-0.0386 + 0.0208 = -0.0178 
-0.0545 + 0.0337 - -0.0208 
-0.0700 + 0.0477 - -0.0223
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all powers of p linear
retained in p re ta ined

as

0

■

4
5

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50

0.2572 
0.2321 
0.2068 
0.1823 
0.1597 
0.1404 
0.1256 
0.1162 
0.1124 
0.1133

0.851 
0.640 
0.505 
0.420 
0.357

0.0916 
0.0887 
0.0850 
0.0804 
0.0748 
0.0682 
0.0608 
0.0530 
0.0455
0.0392

0.0295 
0.0297 
0.0298 
0.0298 
0.0297 
0.0293 
0.0286 
0.0274 
0.0257 
0.0232

0.0089 
0.0090 
0.0091 
0.0093
0.0095 
0.0097 
0.0100 
0.0103
0.0105 
0.0106

0.0026 
0.0026 
0.0026 
0.0026 
0.0027 
0.0027 
0.0028 
0.0029 
0.0030 
0.0031

0.6199 
0.5109 
0.4224 
0.3531 
0.3007 
0.2621 
0.2333 
0.2098 
0.1875 
0.1633

0.873
0.658
0.512
0.420
0.352

W1

0.1 
0.2 
0.3 
0 
0

Table 5: The first 
with respect to

Integral I with 
only terms

order Taylor coefficients of the integral I 
p ,..., p as function of the volume fraction 1 6

W4 W6

Table 4: The integral I occurring in x<2’(0) and S
function of the volume fraction <t> (conducting spheres).

W2 W3 W5
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It is a remarkable fact that the integral

3|
(4.31)

4na

From eqs. (1.1), (4.16) and (4.30) we find

Px4>- e
S = 1 = I +

Since isas
.2is its

case

4.4 The Gaussian approximation

The an

cumulantsan

for

to

(A.33)1 
IT

*) This approach, and in particular the trick (4.35) below, have been 
suggested to us by Prof. H. van Beljeren.

of the operator 6n , which are linear functions
of the cumulants of 6n itself, are defined by

> - exp{ \ 
1-1

contributions of higher 'powers!^ 
of density fluctuations.

! = ■=—/ (1 + 3n J, '

a2

(uAx} •

2 00v(x/a)) x h(x) dx = J* i
1-1

1 1

the integral I, as discussed above, is nearly linear in the 0^, 
the quantity S is well approximated by its part of order 0^. This 
justifies Kirkwood’s procedure, who in the dipole case only calculated 
the correction S to order

z i£/?i£6n. se

occurring in eq. (4.30) is with accuracy better than 5% given by its 
part linear in 0 (see table 4). The expansion coefficients w^($) are 
listed in table 5.

can 
*) these quantities

the latter scheme is 
making the Gaussian approximation for the probability 

distribution governing the density fluctuations. Though this probability 
distribution can in fact not be Gaussian, since the third moment of 6n 
does not vanish, it is nevertheless interesting to investigate how much 
the fourth and higher-order moments of 6n contribute to X ■ E|/Ee 
Gaussian approximation.

The cumulants

fluctuation expansion developed in section 3 is essentially 
expansion in moments of the density fluctuations. Alternatively one 
also perform an expansion in the cumulants of 
Neglecting third- and higher-order 
equivalent to

cumulants in



41

They are connected to the moments of R Jr 6n

(4.34a)

- <(S/Jn)2> - <«Z6n>2 - <(??^6n)2> . (4.34b)

to
appears as

(4.35)

(3.5), (3.16) and (3.19) we find

2] « )00<U')1

+ 6(k-k') * (-!• -I) K(it)} . (4.36)
E2

theDueinthe toNext

Fourier space

f dr J dr’ J dr.K2(k,k’) - (2n) 1

<6n(r1) ??(r1-r') fr 6n(r')>

??(r) /6<6n(r)6n(0)>- 6(k-k') ft(k) Z f dr

(4-37)

containedof

1 rr= / d£o

-ik’t e

Using this formula together with eqs. 
for X in the Gaussian approximation

* 1 ■ < 3? £ 6n> ■ 0 ,

Therefore the operator products of 
function in the Integrand in the right member of eq. 
ordinary products,

«2

S 6(k-k') K2(k) .

(exp I
1-1

<(1 - > - </ d£ (0
e-(l- «-^6n)5jw >.

K2

e-ik.;+ik-.;-

6(«-) (Xc(k)]Gauss

in the usual way, e.g.

we have to evaluate the Integral in eq. (4.36). 
translational invariance of the density fluctuation correlation function 
the cumulant occurring in this integral is a diagonal operator inis a

To perform the cumulant expansion it is convenient, in view of the 
definition (4.33), to reformulate the expression (3.19) such that the 
operator A- 6n appears as the argument of an exponential function:

e_

in the exponential
(4.36) reduce to
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ti +

(4.38)
c2

The further evaluation of this
of inf inite limitIn

(4.39)

(4.40a)k ,

(4.40b)ux
the r.h.s. ofon

(4.38) can

k

k

(4.41)

terms of
as

Jdr R^’^\r) <6n(r)6n(0)> =
(4.42)

{( J
0

lira 
k+0

lim
k+0

4xa

7«
0

2

+ — (^)2
21 l2 1

,2 
<5-“o'

^2)(0) .
(l+2g *)2

1---A-

4 . 2i4ita
1+20^

(k2(£))u

= u

k£2)(0). with 
eq. (4.30) it is not

wavelength. In this limit renormalized quadrupoles 
higher order multipoles do not contribute, since

Here we also made use of eqs. (4.15) and (4.24).
The coefficients u° and u^ can be expressed in 

the aid of eqs. (4.22) and (4.24)-(4.27) as well < 
difficult to verify the following relations:

(M^Gauss

- ^((ka)i+p-2)

(Mk»Gaus3

(<2(k)^p

k(*2(k) )Q1

t2(k)K2(f) + ...) ??(k) )Q0 + -l)K(k)) .

kk + utG ~ kk) ,

formula will be restricted to the limit 
and

5_ + 1 
ecm 4,ta

a scalar

holds, as can be seen from eq. (4.37) together with eqs. (4.4) and 
(4.6). After abbreviating the remaining matrix elements of by

the exponential function of matrices in the Integrand 
(written in expanded form there) can be reduced to 

exponential function

. -2 . _
+ J,- (|~) uok-(u2kk + uj^-kk)) + ...)•
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fdr R(1,1)(r) <6n(r)6n(0)>b1)Uq =

1+20^
(4.43a)

a

(IQ'bJdr R(1,1)(?)<6n(r)6n(0»bl)U1

(4.43b)(0) .

In terms of the parameter
1

(4.44)Y

(4.43)and forobtains from the Gaussianone

3(xc<0)) + 2(1+20^)Gauss

(4.45)

is, to

since we knowa

{7« 
0

lim
k+0

exp(-C2/(4Y2)-?) -1}

2
{eY /tT Y erfc(y) “1} •

X<2)(0) ,

Ei 3

eCM 2<1+W

-1 <l+2M> xc2)

ei

function^) of x. If one inserts

= y (- j (l+2P10) x£2)(0))- 2 -

lira kk : 
k+0

finally obtains from eqs. (4.41) 
approximation of X the simple expression

erfc(x) denotes the complementary error
into formula (4.45) the values for X^2\o) from table 3, one finds that 
(X„(0))„ and X<0)(0) + X<2)(0) differ by less than 0.02Z for

C Gauss C G
$ - 0.1 and less than 1Z for <t> ■ 0.5 . In the Gaussian approximation 
the fourth and higher moments of 6n thus do not significantly contribute 
to Xc> and up to second order the moment- and the cumulant-expansion are 
virtually equivalent. It is, however, not clear to which extent this 
indicates a rapid convergence of the expansion scheme, 
that the actual probability distribution for the density fluctuations 
must deviate from the Gaussian form.

xc°>(0) + xc2)(0)
less
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5. Fluctuation expansion with factorizing connector fields

5.1 Renormalized factorizing connector fields

x<2>(0) withcalculation of X and
connector fields.
transform of

4Tta3( lA(2Jt+L) ! I

T?) s iX (1 p (2p+l)!1 for X,p

F<x’p>(t) (5.1)
C(X’P>(k) and/or p ° 01-0for

yields for r > 2a the connector field A<X-P>(?) :

! (r > 2a) . (5.2)(r) - (2x)

thefor

(5.3)

instead of

can very

F(1’m)(k) «" F(n>p)(k) -

(2m+l)!l (2m+l) m! J2(ka) F^X,p\f) (5.4)1).

thea

connector field in

J

Expanding the expression (3.18) in 
above relation we find for the

geometric series 
renormalized F

J/ka)
ka

elk-: djJ . a(*’p)(?)

Vka) 
ka

A^’p\r) - 0 for r < 6 (see t 
in wave

F(X,p)

two F(X,p)(£)

F<x.p)(:

(?) B 0(r-6) F(1,p)(r)

we can also use

q(^>p)(f). The modification (5.3) is needed to satisfy the 
A^*,p)(r) - 0 for r < 6 (see eq. (3.7)). We call Fc, which

Because of this and the freedom of choice 
connector fields for overlapping spheres, cf• section 3,

4na3
(ka)*

factorizing
shown that the inverse Fourier-

We now turn to the

(m -

In appendix D it is

requirement A'k''’,H‘z (r) - 0 for r < 6 (see eq. (3.7)). We call F^, 
in the limit 6 * 0 factorizes in wave vector representation, the 
factorizing (F) connector field. Its use facilitates the calculation of 
the renormalized connector fields.

We observe that the tensorial contraction of 
easily be performed with the aid of formula (4.11):

continuation of

and using
wave



45

vector representation

- id

1 3
- F<X’P>(?) + ! d?

(2n) (ka)

I (3m (2m+l)2 j2(ka)}8 F(X,p)(k) , (5.5)
m=l

where for the notation
also beenonsums

f<*>p)(£)

63. This

of order

With the abbreviation

3 (5.7)

equation (5.5) gets the simple form

R^X,P)(k) - F^X,p)(k) - (5.8)

k

eq. 
however

(5.5), 
small 6

1 (-♦

i
ml...."a

i s-1

F(X,p)(k) .

Ik-? e

'3’P)W

! F<X>"1

(V":b n F m^ o —

»o(ka) (
1 + ♦o(ka) -

b n m o —s

a(x) =
x

lk«r e

by F<X>">

l2\k) em2 . . . o”s

I Pm {(2m+l) Jn(x))2 
m=l

7 6
eq. (3.12)). Note that In the sums on the r.h.s. has

replaced by F^. This Is admissible for the following reason: The Inverse 
Fourier transform of a product of two or more F^’p\£) yields a
convolution integral of the form

denotes the matrix of F connector fields (cf.
Note that in the sums on the

'2)(?1-?2)...®ms F^"19>p)(?s-?')d?1...d?s. (5.6)

If we replace all by in the above Integral, this Integral
changes for all r only by an amount of order 6^. This is not true for 
the first term of the last member of eq. (5.5), since £^,m\r-0) - 
F^’ra) (r=0) is of order unity, however small 6 may be. These 
considerations justify equation (5.5) for sufficiently small 6.
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5.2 Zeroth and second order of the fluctuation expansion

(0) lim(0) - X^'(0) -

4na+ (?(k)J (5.9)( 1 -
k

towas
fluctuationthein

assame

(4.22)eqs.

f dk’ (
o

+ v(x/a)J 
4ita

- ( (5.10)dx .

(5.U)

the hascase one to a
than some weas

sin 2x 
4x

cos 2x
2

The lowest order of the fluctuation expansion with F connector fields
Is In the limit of Infinite wavelength given by (see eq. (3.21))

11m
k->0

approximate a by 
number L ■ 1 ,

finite « 
did

sum,
I 1°

k2
4 k a

jj(x)
1 + *a(x)

In the general 
setting - 0 for 1 greater

4>o(k' a)
1 + 4>o(k'a)

1 + ♦a(k'«)) • blk •£1,°)(iO}

1 + 3*0*

3*0r
1 + 3$01

)2

The scalar Integral was again evaluated numerically. The sum occurring 
in the expression for a was for conducting spheres calculated analyti­
cally by Beenakker18) (see also appendix B for a similar calculation):

with F connector fields proceeds along 
corresponding one with C connector fields (cf.
Using eq. (5.8) one finds

• ^F <°> ’ E1/XF 
of e • Note that

e /e<°> 1Z eF

That the term k2K(k) in eq. 
discussed In section 4.2 
density expansion^) » 12) 

shown to be a lower

- I (-<->

1
1 + 34^ ’

XF2)(0) ■ 4^ klo • bl<2’)

bound for

- (^L2)2) (Pf i) .o(x) “ ~2 (x si(2x) + 
X

"o v<k'>

The calculation of the second order term of the fluctuation expansion 
the same lines as the 

(4.30)).

(3.21) vanishes in the limit k ♦ 0 has been 
(°)f(H = r /x5°)(0) is just the first order 

egP^(0) lies below which
e by Hashln and Shtrikman•

This already indicates that the higher orders
expansion will be more Important for F than for C connector fields.



1*1

section 4. the resultAgain,
and are plotted inFor

(2)x(0)The C and withresults 4- X found with Ffortwo connector

than Ifthat between the one uses
of the fluctuationforindication theas an

6. Partial resummation of self correlations

6.1 Definition of renormalized polarizabilities

fluctuation expansion,of theTo ofrate
allows Includethatscheme toBeenakker and a

ofcontributionsfields therenormalizedthe aconnector

for thereturn nowmoment towe a
notation:

•i.■J ‘j

(6.1)

was
but

contributions higher of the

M(?.?') - (j4(J-?>) + I

table 2).

fig- 2.

-I 
1=«1

improve the rate of convergence 
Mazur11) developed

(6.1) may be identical, 
orders

already in 
special class of self correlations. In order to explain this procedure 

formula (2.30), written now in matrix

ela

converges
conducting spheres

I j^(?-R. )/^(R. -R. )/
s-1 ....j„ J1 J2

Ji*
ji (R, -R. )/. . . <X(R

J2 Jj

In eq. (3.11) we replaced the sums over particle positions by integrals 
for which in turn the

convergence 
expansion, the C connector fields have to be preferred.

over the microscopic density, for which in turn the average density n° 
substituted in lowest order of the fluctuation expansion. Thereby

r,)^00

+ (-1- 1) y 9(a-|r-R |) 0(a-|R -r'|) {A(0,0)(r-?') - 1
2 J J J

Sji'tJ-RpV A(1,0)(Rj-r’)} •

fields still show significant differences, although the discrepancy is 
much less than that between the two X^^ . If one uses the ratio 
x(2>/x<°>

rapidly with increasing L (see 
X<°> + X<2>

not only the mutual impenetrability of the spheres was neglected, 
also the fact that two or more j-lndlces in eq. 
The self correlation contributions in the
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?? (r-r‘) - d (r-r') + / d?x >(r-rp Jj nQt/(r1-r') +

(6-2)

the symbolic notation

(6.3)

as

/ I dr2 J dr3 / dr^ / dr& Xr-rp^ n<)d/(r1-r2)^ nQXr2-r3)

/ noX?3-J4)/ n0^(r4~r2)^^ (?2-?6)>^ nQX?6-?')

- / drr J dr2 j dr6 j4 (r-r p Z nQ^(r1-r2) £ nQ [f d?3 J dr^ jl (-? 3)

nQj4(r3-r4) / noJ^(r4) ]/c^ (r2~r6) no^(r6-r') . (6-4)

the

A + Z^(?-o)Z + Z??(?-o)^^(?-o)/ + . .

- /(i - ??(?-o)Z) (6.5)

fluctuation expansion correct for the latter approximation.
We introduce for the matrix of renormalized connector fields

+ ! drt J dr2 l^(r-r1) Z nQ X^-rp Z n°j/(r2-r') + .. .

indices in (6.1) are 
netted diagrams 
corresponds to

Since R^*p\r-O) is an isotropic tensor 
its last p indices, it is proportional

a summand of

irreducible in its first i and 
tO ^Xp (see theorem 4

for an integration 
r^. The cases in which some of the j- 

identical corresponds in this symbolic notation to 
given in fig. 3. The example (a) of this figure

A line stands for a connector field, a circle 
over an intermediate variable r,. The cases

In the term between square brackets one recognizes 
expansion of fl (r-0) . Simple rings as In fig. 3(a),(b) can thus be 
Included In the renormalized connector fields by substituting In (6.2) 
for the matrix
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of

for C connector fields a t
L 1 ♦ = 0 . 1 ♦ =0.3 ♦ = 0.4 ♦ = 0.5
1 1 1.040 1.084 1.135 1 . 201 1 . 303
2

for F fieldsconnec tor a t
L JI ♦ ■0.1 ♦ = 0.2 ♦ =0.3 ♦ = 0.4 ♦=0.5
2

5

1 2 3 4 5
at ♦“0.5 2.092 2.262 2.326 2.356 2.374
connect.

L

1
2

1
2

Fig-
some

1
2
3
4
5

1 . 195
1 . 130
1.092 
1.070
1.056

1.040
1.012

1 • 193
1 . 126

1.085
1.025

1.420
1 . 264

1.678
1.412

2.027 
1.634 
1.427 
1.313 
1 . 242

1.204
1.053

1.962
1.567

1.312
1.071

2.262
1.727
2.374 
1.832 
1.555 
1.403 
1.308

1.432
1.280
1 . 194
1 . 146 
1.115

1.711 
1.448 
1.306
1.227 
1.177

1.137
1.039

3: Diagrammatic representation 
terms occurring in formula (6.1).

Table 6: The polarizabilities of conducting spheres renormalized 
by resumraatlon of ring self correlations. L is the number of 
equations of the system (6.10) used in the calculation.

♦ = o . 2

L 

for F

la)

Id)
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(6.5) isthe express ionTherefore the matrix

theleads(6.5). Thisfield itself toconnector
connector field

(6.6)
with

- /(I - fts(?-o)/ ) (6-7)

- (^S) (6.8)

they satisfy the equation

o* P1 A<x’x>.- (A(X’X) + (6-9)

asThe field containsconnector

6.2 Evaluation of the renormalized polarizabilities

Rs(X,p)The renormalized connector field 1 can be obtained

we

I(1/0® - 1/Pjt) A(X,1)-

Before this

course,

ref. 19)
diagonal.

One

57

___ _____  rs(^’^)(r=0)YA!(2X-1)!1 - Q H

/ dk k2 / dk Rs(X,X)(ic) . (6.10)
0 “

from the results of sects. 4 and 5; 
latter, however, still

X!(2A-1)!!(2n)3

AP

pS A(l,l)

solved numerically, the angola* 
performed, yielding a set of scalar 

we have to truncate this system, which

We also introduce renormalized reduced polarizabilities 0® by

set of equations can be 
integration on the r.h.s. has to be 
nonlinear equations. Of

(r=0) in

R 3

the new renormalizedcan resum still more diagrams if
instead of in

one uses

for A,p =
one just has to replace the 0^ by 

the 03 . The latter, however, still have to be calculated. From the 
relations (6.7) - (6.9) we get an infinite system of coupled nonlinear 
equations for these quantities:

also diagrams with nested rings 
e.g. in fig. 3(c). Not included are more complicated diagrams of the 
type indicated in fig. 3(d), in which two rings share a line.
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first

FFor connector
forbe

so

for

- 1(1 -mS6&S 6") (6.11)

holds, with the matrix R given by

«“(■?)- 0(r-6)^S(?) . (6.12)

find from eq. (6.11) (cf. also eqs.

- xs(0)(k) + xs(2)(k) + . (6.13)X(k)

Xs(0)(k)6(k-k') - + (T(k) , (6.14)

6n> f,a ^S]00(k,k*). (6.15)

*) We used the routines D01AMF and CO5NBF of the NAG library.

increasingly tedious with 
and 1=2 only (see 

cannot take L greater

s
6

we 
r.h.s. p’ - 
integration can easily 
(5.8)), and in this 
evaluation of

fluctuation expansion we 
(3.2O)-(3.22))

L equations and setting 
fields the

*3loo

2Xs(2)(k)6(k-k’) ^*/s<6n *S6

*0(A5'>
k2

4ica

((1 - Z n) x Joo

We now turn to the fluctuation expansion of the reciprocal dielectric 
constant X with the 0?s connector fields. It is shown in appendix E 
that (neglecting terms which vanish together with 6)

do by considering only the 
P^ for 1 > L .
can

we use

For the

in the

The truncated system of equations can be solved by standard numerical 
methods \ As starting point tn the search for the solution
0^ = for all 1. In the case of C connector fields we retain only 6 
multipoles; it was checked that the results for P® and P® change by 
less than 0.5% if more multipoles are taken into account. The results of 
the calculations for conducting spheres are listed in table 6. Note that 
the renormalization of the reduced polarizabilities has a greater effect 
with F than with C connector fields.

angular 
performed for all A (cf. eqs. (5.1) and 

case we go up to L ■ 5. For C connector fields the 
the angular integral becomes 

growing A. We performed the integration for A = 1 
appendix C), so that for C connector fields we 
than 2.
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xs(2) xs(2) xs(0)♦

0.1 02 03 04 0.5

*

xs(0) X3(2)The evaluations of and

of

0.10

0D5

0.1
0.2
0.3
0.4
0.5

0.742
0.546
0.392
0.264
0.149

0.002
0.011
0.027
0.048
0.081

0.736
0.540
0.398
0.298
0.228

-0.017
-0.040
-0.052
-0.055
-0.053

0.736 
0.538 
0.394
0.291 
0.219

for
as

-0.017
-0.040
-0.052
-0.055
-0.053

c
o'u

• nearly Identical to those of the 
and 5: one lust has to reolace Pone just has to replace

the self correlation term in the 
In the calculation with C connector 
used for and ps the values given

,s(°) ,s(2)
5 renormal. P

xs(0) s(2)
F F

2 renormal. P

xs(0) xs(2)

2 renormal. p

are
corresponding quantities in sections 4 
by ps and omit the contribution 
second order, since ^^(r=0) - o.
fields we retained 6 multipoles and

Table 7: Zeroth and second order of the fluctuation expansion 
conducting spheres with resummation of ring self correlations 
function of the volume fraction 0 (infinite wavelength)

Infinite wavelength). < 
indicate the connector 
used, S2 and S5 mean 
mation of ring self 
relations with the first 2 
respectively the first 5 
polarizabilities renormalized. 
All results are subtracted 
from the zeroth order of the 
fluctuation expansion with C 
connector fields, in order to 
make the small difference 
between the curves C and CS2 
visible. The dashed lines 
indicate the results obtained 
without renormalization of the 
polarizabilities.

Fig. 4: The sum of the first 
two orders of the fluctuation 
expansion (conducting spheres, 

C and F 
■ fields 
resum- 
cor- 

f irst 
first

FS2

C
; ‘CS2 ■
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< <in table 3 6 we 1. For Ffor

approximations for
approximation as i.e.

of the

are
4. Note

to

considerable increaseto a
dielectric constant.

7. Conclusions

7.1 Discussion of the results and comparison with the density expansion

we
correlations.self two

or
in other words,
the fluctuation expansion.

On the basis of the results obtained In this chapter we conclude that 
the C connector fields should be preferred, because
1) they include more information about the configuration of spheres than 

the F connector fields,

In the preceding sections we have employed four different methods for 
the fluctuation expansion of X ■ 1/c : we used C and F connector fields 
with and without resummation of ring self correlations. Only 
results, viz. those obtained with C connector fields, lie very close to 
each other. We now have to discuss which method is most trustworthy, 

for which method we expect the fastest convergence of

6;
connector fields we

approximated p^ by 0* - 
retained all multipoles and employed two different 
the pS. Qn the one hand we used the same 

in the C case, l.e. P$ and P^ calculated with the first 
two equations of the system (6.10) and P* set equal to p^ - 1 for 
1 = 3. On the other hand we also used p®,..., p^ calculated with the 
first five equations of (6.10) and set p| - 1 for 1 > 5. The results of 
the calculations are listed In table 7, and are plotted with respect to 
X<°> in fig. 4. Note that In the F-case the difference between the 
curves corresponding to 2 respectively 5 renormalized polarizabilities 
is rather small, Indicating that the renormalization of higher-order 
polarizabilities has little Influence on the result of the fluctuation 
expansion; we expect the same to be true in the C-case, where only the 
first two polarizabilities have been renormalized.
The striking feature of the renormalization of the polarizabilities Is 

the fact that the resummatlon of ring self correlations has very little 
effect if C connector fields are used, whereas for F connector fields It 
leads to a considerable increase of the result for the effective
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2)

6 muchin section important than other correlationsare more
cannot be resummed algebraically.

5In the relative deviation effectiveof thewe
the thevalue inconstant

Our resultextreme case

that 0 = 0.5small correction, ateven
with factorizingcalculation fieldsconnector

0.47 .at <t>
A closer discussion of the bounds will be given below.

(CD) shows thatthe C withcurve

Clausius-Mossotti dielectric

low volume fractionsAt the
with the truncated density expansionfields

under consideration

Levine and
exactly, but 2.66, dominantapproximate valuean

can

fig­
dielectric

plotted I
£ from eCM

obtained with

is much smaller than x<2)/x<0) •G b (0) (2) F F3) the result for X£ ' + X£ is almost not affected by the 
resummation of ring self correlations.

Because of the last point the resummation of ring self correlations may 
as well be omitted for C connector fields.

*) Beran derived general formulas for the bounds, but he did not 
evaluate them for the special case of a hard-sphere fluid. This was done 
by Beasley and Torquato (cf. ref. 25).

<2)/x:

Comparison of the curve C with its dipole version 
higher-order multipoles account for about half of the correction on the 

constant (see also table 2). The line CD

is much smaller than
' •<°> + i<2>c + xc

This is gratifying, since it 
reduces the amount of numerical work to a minimum. Furthermore, there isFurthermore, 

that the ring self correlations resummed 
which

coincides 
21 +3$ + 4.514>

el 
monotonically increasing but
does not exceed 10%. The

<2’f\

Clausius-Mossotti 
c2^ei* 00• °ur result Ee« (X^°)+ X^2^) 

cut-out connector fields (curve C) gives a

(curve F) yields a contribution which is of the 
but decreases as <t> becomes larger than 1/3 and crosses 
(curve L) derived by Beran*), Felderhof®) and Torquato2^)

to assume

lies close to the evaluation of the Kirkwood-Yvon theory by Stell and 
Rushbrooke^) (curve SR); below we shall return to this point, too.

no real good reason

fluctuation expansion with C connector

(curve D2). The first-order coefficient was calculated 
already by Maxwell^), the second-order coefficient by Jeffrey1^) and by 
Felderhof, Ford and Cohen^2) (in the case e2^el* °° 
the second-order coefficient can also be obtained from a calculation of 

McQuarrie2?))• The third-order coefficient is not yet known

not exceed
(40)+ ^2)) 

same order of magnitude, 
a lower bound

in which only the
be found from a resultdipole contributions are taken into account,
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of de Boer,
approximation for the second-order exact

tocurve

theconnector to curveup
deviates at 0 - 0.2 .

and the

connector fields describes the effective dielectric constant of a hard-
sphere fluid like dispersion of spheres correctly.

5 w

J5

Fig- 5: Comparison of various theories and experiments 
in the case c2/e]* 0D* See texC f°r explanations.

van der Maesen and ten Seldam^). Comparison of the analogous 
coefficient with its exact value

in this approximation is not larger than 
ee/el “ 1 + 30 + 4.510 + 2.660

5) follows the result of the fluctuation expansion 
0 a 0.3, while the curve D2 already

low volume fractions on
In view of the good agreement between the density expansion (D2, D3) 

fluctuation expansion (C) at low volume fractions on the one 
hand, and the agreement of the result of Stell and Rushbrooke (SR) with 
the dipole version (CD) of the fluctuation expansion on the other hand, 
there can be little doubt that the fluctuation expansion with cut-out

suggests that the error made
20Z. The corresponding 
(marked D3 in fig. 
with C fields

0.1

0.2 0.5

.--L V-CD
—SR

03
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7.2 Comparison with experimental data

are

were
the condensor used thea measurements

of the cut-out at

to
’baker i.e. theto were

transforma-as a
Aftertions. five transformationsca. a

rise

In the of Guillien the emulsion was
continuously the electricalthe

upon
and

*) This type of samples as well as the baker transformation method were 
used earlier by G.Waysand et al. for experiments on dispersions of 
superheated superconducting particles (cf. chapter II of this thesis).

mercury-in-oil
condensor used for t

Experiments on samples of conducting spherical particles dispersed in 
an insulating background medium have been performed many years ago by 
Guillien20^ and very recently also by Mettout and Broniatowskl28)* 
Guillien studied mercury droplets with diameters in the order of 0.5 mm 
suspended in oil; his results are marked by circles in fig- 5. Nothing 
is known about the size polydispersity of the droplets.

The squares in fig. 5 indicate the experimental data found by Mettout 
and Broniatowskl for samples of tin spheres dispersed in paraffin. The 
spheres had diameters in the range 30pm ... 40pm. The large error bars 
are mainly due to changes of the measured that were found 

from the condensor used for

experiments 
pumped through 

measurements, in order to avoid sedimentation. It seems plausible that 
the distribution of the spheres in the flow field deviated from a hard- 
sphere fluid’s equilibrium distribution.

removing a sample 
reinserting it again.

Both sets of experimental data substantially deviate from the result 
fluctuation expansion with cut-out connectors, especially 

higher volume fractions. In our opinion the reason for the discrepancy 
must be sought in the way the spheres are distributed in the samples. 
The tin-in-paraffin samples are known^) to contain clusters of spheres. 
In order to dissolve these, Mettout and Broniatowskl subjected the 
samples to ’baker transformations’*), i.e. the dispersions 
repeatedly stretched and folded. The effective dielectric constant was 
measured as a function of the number of performed baker

Ee reached a stationary value, 
while "a structure of lighter and darker layers could still be seen in 
the sample even by the naked eye. This might indicate that the baker 
transformation did not destroy those clusters which give 
enhanced effective dielectric constant.

to the
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There three dif ferent theoretical results which in ratherare a

of andMe 11 ou t

in fig. 5),
(curve GH), and the so-called unsymmetric Bruggeman
B; Bruggeman himself referred to this theory thatas

the The derivation of the Bruggemancase

functions- Therefore they used instead
close packing of spheres. Thesethose of f-c-c-a

lattice rotationally; thesmeared-outcorrelation functions were
two- andvolume fraction wascorrect

is
It

from those of a hard-sphere fluid; geometrical contact of the spheres is
inwhereas itthe lattice functions,ine-g- aoccurs

HeinrichGunther andonly.fluid probabilitywith zero
measurements
distribution"obviously detailed formthat the

functions results thisofinfluence".has essent ial In view ourno
conclusion is not justified.

expansion with factorizIngAs for fluctuationthe result of the
correlations, itsselffields ofand resummation ringconnector
fortuitous inGuillien iswith ofthe ouragreement measurements

of Bruggeman and ofopinion, with the theoriesis its agreementas
why the resummation of aGunther and Heinrich. We do not see any reason

for hard-sphere fluid distributioncertain class of self correlations
functions of the latticetheshould the result useassame

rather that thebetween the C and FScurves we

of "Kugeleinstreuung"). 
theory is based

always present 
hard-sphere

yield
distribution functions employed by Gunther and Heinrich. From the large 
difference between the curves C and FS we rather conclude

hard-sphere fluid like distribution of 
the inclusions, but they lacked explicit formulas for the corresponding 
two- and three-body correlation

satisfactory way follow the measurements of Guillien, and to less extent 
also those

concluded from the good agreement of their theory with the 
of Guillien that "obviously the detailed form of the

Bronlatowski. These are the result of the 
fluctuation expansion with factorizing connector fields and resummation 
of ring self correlations (curve FS in fig- 5), the theory of Gunther 
and Heinrich^) 
theory21) (curve 
for

plausible but vague argument, and it is not quite 
clear to which microgeometry of a dispersion it applies.

The theory of Gunther and Heinrich is closely related to the Klrkwood- 
Yvon theory, but higher order multipoles are taken into account. Gunther 
and Heinrich wanted to describe a

expressions based on

on a

accounted for by multiplying the 
three-particle densities by appropriate powers of 0/0.7405 (0.7405 
the volume fraction corresponding to close packing). It is quite clear 
that the correlation functions obtained this way are markedly different
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effectof ring self correlations theresummation has negativea on
convergence of the fluctuation expansion.

It is interesting to compare the various theories with recentvery
of the effective dielectricmeasurements

droplets in goodthese spherical and mono-dispersesystems are to a
approximation, with diameters of ca 10 nm. They are stabilized by a

/

0.3 I

O T = 15°c
A T=25°C

T= 35°C□
A

A

/n
/

*

HS

7 
/

z
co0

a>

i 
021

i 
i 
i 
i 
i

i
I
I
i
i
i

,/u 
i

Fig. 6: Comparison of measurements of the effective dielectric 
constant of a microemulsion ^1.8) with various theories.
See text for explanations.
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constants of water-ln-oll 
microemulsions by van Dijk, Broekman, Joosten and Bedeaux^O). The water
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the theories theWe toa
35.ofwithon a

also
the

are
fluctuation

lowerabove the
formtheis

to
startmeasurements

(curve U) for a
The Hashin-

7.3 Comparison with bounds and with the Kirkwood—Yvon theory

upper

are

?r 1.

accuracy,
When the

upper 
but clearly it is

= 81.1/1.94 - 41.8 of the

*) A rather successful theory of the influence of clustering on the 
effective dielectric constant, based on a description of a cluster as a 
superposition of dimers, has been given by Bedeaux in ref. 30.

upper 
hard-sphere fluid like 
Shtrlkman bound (curve HS) is also shown in fig. 
not very restrictive for the large ratio e2^el 
water-in-oil microemulsion.

In fig- 7 the Beran-Felderhof-Torquato®»25) upper (U) and lower (L) 
bounds are compared at 4> = 0.2 with the C fluctuation expansion (C), 
the Hashin-Shtrikman bounds (HS) and the unsymmetrlc Bruggeman theory 
(B). Clearly the bounds are excellent for low dipole polarizability 
of the spheres. The Beran-Felderhof-Torquato bounds Improve the Hashin- 
Shtrikman bounds for intermediate values of the polarizability, but the 
upper bound becomes useless in the limit 1. The result of the

monomolecular layer of a surfactant. We compare 
measurements on samples with a molar water/surfactant ratio 
Experiments on samples with smaller water/surfactant ratio have 
been performed by van Dijk et al., but in these the influence of 
surfactant on the dielectric properties can clearly not be neglected, 
since the one-particle contribution to (the term proportional to $) 
was found to lie below that corresponding to pure water spheres in oil.

The droplets are known to form clusters when the temperature T of the 
emulsion is increased. The experimental data obtained at T = 15, 25 and 
35 degrees centigrade are displayed in fig- 6. At T = 15°C the 
experimental data agree quite well with the result of the 
expansion with cut-out connector fields (curve C). They also lie, within 
experimental accuracy, above the Beran-Felderhof-Torquato lower bound 
(curve L). When the temperature is increased the droplets 
aggregates and the effective dielectric constant becomes larger. At T =
25 C the experimental results happen to lie close to Bruggeman's 

unsymmetrical theory (curve B), and at T = 35°C the 
to violate the upper Beran-Felderhof-Torquato bound 

distribution of droplets*). '
6,
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0.15

<|)= 0.2

/
0.10 -

the

0.05

C
L

1.00.5

to

toon an

for
is

dr +
0

2

bound
?r

5
>

+ 2n ‘ o

S2 - a2 ( 8itnQ J g2(r)

0 L 
0

I
H7
/

I

T
I

I
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I /

//*

?2 is the second Legendre polynomial. We report here without derivation 
the result of the fluctuation expansion for $2 with C connector fields

expansion, 
Felderhof and Torquato in the evaluation of their exact expressions for 
the bounds.

Fig. 7: Comparison of 
our result obtained with 
C connector fields with 
the upper (U) and lower 
(L) bound derived by 
Beran, Felderhof and 
Torquato. Plotted is the 
relative deviation from 

Clausius“Mossottl 
dielectric constant as 
function of the reduced 
dipole polarizability, 
for a volume fraction of 
20X. Also shown in the 
figure are the unsymme- 
trie Bruggeman theory 
(B) and the upper bound 
(HS) derived by Hashin 
and Shtrikman; the lower 
Hashln-Shtrikman 
coincides with the 
axis.

fluctuation expansion lies rather close to the lower bound. It should be 
mentioned that for very low polarizabilities the curve C drops below the 
lower bound L (this cannot be resolved in fig. 7). This is due on the 
one hand to the contributions to the higher orders of the fluctuation 

and on the other hand also to an approximation made by

We now return to a more detailed comparison of our result obtained 
with cut-out connector fields in dipole approximation and the result of 
the Kirkwood-Yvon theory. The latter yields the following formula^) 
S2 (i.e. the part of S proportional to a2, cf. also eq. (1.1);
taken equal to unity):

J dr / ds (g3(r,s) - g2(r)g2(s)) ?2(s-r) (rs) 3| . (7.1)
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without the restriction to terms of second order In fin:

In fin Is thanrather aas a

+ n° / dr J ds l)(J) (g2(r)-l) , (7-3)

- n2 / d? f dJ C(l>l>(;-S) •c
+ n3 J dr / ds C^1,1\r)"C^1,1\s) [g3(r,s)-l] . (7.4)

eq.

g3(r,s) » g2(r) g2(s) g2(|r-s|) . (7.5)

the

Interpreted as a function 
operator; more explicitly one has

c<1’

„(l,l)(s) (g2(r)-l)

this formula 
multiplication

s2 1 ■ {<5n C(l,l)-C(l,l)6n> + — <6n C(1,1)-(6n <?
a “ n0 * ~

— <5n no

c<1-1>(?4).

c*1-1^) -
0(r - 2a) (cf. eqs. (2.20) and (3.25)), that both

2 are Identical, as they should be*). They correspond, 
to entirely different decompositions of S2! The first Integral

(7.1) results from combination of the first Integrals In eqs. 
the second Integrals in eqs. (7.3) and (7.4) cancel,

(7.4) Is equal to the second Integral In

nQ J dJ C(1,1>(?)-C(l,1)(?) (g2(r)-l)

One easily convinces oneself, recalling that 
(a/r)3 (1^ - 3r2) 

expressions for S 
however, 
in

*) Note that the term g2(r)g2(s) 
replaced by one, rlr.-s 4- — 
finite spherical domains 
to unity for large r. 
absolutely convergent.

<6n C^’1’ £ fin> = nQ •c<l-l\;) +

(1,1)6n]>} . (7.2)

! d;c(?)(1>1)

C • fin

eq.
(7.3) and (7.4);
and the third Integral in 
eq. (7.1).
In fig. 8 we plotted results of different approximations for 82* The 

curve SA was obtained by Stell and Rushbrooke^), using the Percus-Yevick 
pair correlation function and the superposition approximation

) in the second integral of (7.1) may be 
since*" it gives no contribution for integration over 

as / dr P2(r«s) - 0 , and since g2(r) tends 
The term only serves to make the integral
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increasing volumeWith fraction this approximation and lessis less
reliable. The superposition approximation be avoided directincan a

integral in (7.1), which wasMonte-Carlo second
single value of 4> (point markedperformed by Alder al. foret one

AWS). The interpolation SR between SA and AWS is, according to Stell and

CD shows fluctuation expansion resultThe second ordercurve our
(7.3); the difference between CD and SR must be attributed to the third

fluctuation expansion. isorder of the The fact that this difference
0.4 may be taken as an indication of

convergence of the fluctuation expansion. The curve 12 in fig. 8 gives
the contribution of the first Integral in eq. (7.1), also evaluated with

thethe it is very poor approximation toa
underscores the advantage of theresult SR.

while with this method obtainfluctuation expansion: aone may
three bodysatisfactory approximation to S without knowledge of the

for the KY theory in itscorrelation function g3» case
usual form.

2 
this is not the

Rushbrooke, the "best prediction available for S^"*

a reasonablequite small below 4>

Fig. 8: The quantity 
S_ of the Kirkwood- 

Yvon theory. SA = KY 
theory with Percus- 
Yevick g? and super­
position approxima­
tion for g , 12 = 
idem but with g„ set 
equal to zero, AWS = 
Monte-Carlo result 
of Alder, Weis and 
Strauss, SR - inter­
polation of Stell 
and Rushbrooke, CD = 
dipole version of 
fluctuation expan­
sion with cut-out 
connector fields.

calculation of the
5)

Percus-Yevick g?. Clearly, 
This observation once more

0.04
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0.0 2

4 
f
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Appendix A

cantensors

r1 of rank I by

1 1 (A.l)

For I

r = r

(A.2)

in r offrom the definition thesees

(A.3)

finds from eq. (A.l) the relationsUsing this property one

1+1

dr
(A.4)) "

and

& (-D (A.5)

&r

21-2 with thefor

property

F- + r2 Q<*-X’2) °*'2 F2 • (A. 6)

also write(A.6) shows that one canRepeated application of eq.

19.
We define the tensor

21+1 r
( 2JL-1) ! !

r* 
1+1

As one easily 
degree 1

potential-theory approach to the theory 
• A more general group-theoretical approach can be

1+2 r
d *1 , ..1r  (~1)

r21+l “ (21-1)1!

1 
' (21-1)!!

r* are homogeneous

d 
(-) dr

Tf -w r2 r 3 rr - y- £ ,

by induction that 
of rank

In this appendix we sketch a 
of Irreducible 
found in ref.

Obviously it is symmetric in all pairs of its indices- 
one has e.g.

d 9 1 
(-) F ’

■ I (xa6p,r + Vm + XA.0) r

-(-1/

';i+i'
- - (21+1)

1, 2, 3

F dr
With the aid of eq. (A.5) It Is not difficult to prove

> „(l,l-2)1=2 there exist constant tensors Q
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r = r (A.7)

Using the2(1-j)•of ranktensors
well-known relation

1 (A.8)A

is harmonic for r>0, i.e.it immediately follows from eq- (A-l) that

r - (A.9)A 0

The inalso in

r1

0 A

A

-J {(■?*),

I dr

(A.10)= (P-A) dr .
al........... aJl

Eqs- (A.10) and (A.7) together yield

I - I (A.IL)dr dr
and - J ? ? (A.12)dr for p < X .

J

* J { ( r* ) 
r<l

■ i
J > 0 

l-2j a o

r

“1 “x

.. %

= - An 6(r)

oX-2j r^2?t(A.*-2J)

T(l.l-2j)

latter equation also holds In the point r - 0, since 
particular two times continuously differentiable (cf. eq. (A.6)).

is

( rp 11 X’02...%
I dr

- f'p’ 11 \.. %
/ ( ),

al’--->aX

.. %

..

“l'a2... “x

1 ^1....%

a 
aF

with suitable constant

j r1 rp dr - 0

We now turn to the orthogonality properties of the rA with respect to 
integration over the surface of the unit sphere. With the aid of Green’s 
theorem as well as eqs. (A.3) and (A.9) one finds
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The tensors defined by

(A.13)dr

(A.14)

In particular they are idempotent,

(A.15)

and

" 4?

" 4^

(A.16)

If isone an

irreducible
in (A.16) shows that

I- ;p op a(p>p) °p a(p) ,;p op A<p> (A.17)

/ ( *(?') 
r'<l

irreducible 
contraction:

-I 
1-0

i 
1-0

1_
4n

1 

l?-M

(21-1)!! 
XI

1

(21-1)!! 
1!

A' ¥(r') } dr'

constant
of rX

T<r) - ! 6(r-r') T(r') dr' 
r'Cl

r* a1 J r'1 {(1+1) T(?') +— T(?') } dr’ 
r'-l 9r'

A^’*) ©X

(21+1)!I 
E!

A<*>

I {*(?') 
•'=»1 dr'

, where A^p^ is an arbitrary 

comparison of the coefficients

^(A»*)

A<X’*>a(A,1) Ql a(A,1)

and p-fold differentiation with respect to r yields the eq. (A. 14). If 

one inserts Y(r) = rp into eq. (A. 16) one furthermore obtains

;x ©x _ ;x oi ?(?')}d;' 
a A. I L __ a A. > 1 <•. _  ar ’ r or

now chooses Y(?) - ?p ep A(p) 
tensor of rank p,

play an important role in the theory of irreducible tensors. They leave 

any irreducible tensor of rank 1 invariant under 1-fold

A<*> -

may therefore be called projectors. In order to prove the property 
(A.14) consider first an arbitrary solution Y(r) of Laplace's equation. 
Applying again Green’s theorem and expanding l/|r-r’|in a Taylor series 
one finds for r < 1
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- P ©P A(P’P) . (A.18)

From eq. (A.18) one can calculate the gradient of r^ :

- JI (A.19)©'

Combination of eqs. (A.19) and (A.5),

- (21+1)

-21 A(A,A) (A.20)1+1 1+1

gives the useful formula

(A.21)r

derive contraction formulae for the tensorsnow some

For p i 1 one finds from eqs. (A.11), (A.18) and (A.12)

i d; ?-•> 'F
s p +

/ d; ( ? ? o* e’
! d; ? OP’* ( ? o* A(X’*> 0* A(P’P>)

! dr (A.23)- 0 (1 < p =< 2i) .

with one ofFor the contraction of one of the first 1 indices of 
its last Z indices the formula

‘1+1

a?

■*i+i*

i+i

(21+1)!!
“ 4k 1!

(21+1)!!
" 4k 1!

(21+1)!! 
4k 1!

Use of this formula together with eqs. (A.18), (A.11) and (A.12) shows 

that for 1 < p < 21

A(X’X) ©P

1__
21+1

A<X’X) ©P

d 'i

d

A(X,1)

1~1 0r^ ) = -21 r —  + * r^ 1 
' s+i 9+1 r

q(p,P 2) OP 2 rP-2j  . (A.22)

A(*.i)

We shall
A(X,*)

(p,p)  (21+1)11
- 4n 1!

(p,p)  (21+1)1!
- 4it 1!
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21+1 (A.24)

(A.25)

(*,D g'

(A.26)
I

i

.A1 ~,1 I r ® r (A.27)(r1 < r) ,

terms

,11 (A.28)

one finds the two relations

y”(;')y”(;) , (A.29)

*,1 1 *1 r ® r (A.30)- P/r’-r) ,

1 
1(21-1)

(21-1)!! n

eqs • 
harmonics

22, 
spherical

I a

■L

= (21+1)!!
4x 1!

(21-1)!! 
1!

3 al... a

(cf. ref.
of

(3.38) and (3.70)) expansion of 
and Legendre-polynomials

= I r
1-0 r

Aa,t)
“i........Vi.........Y2

holds, as can readily be verified with the aid of eqs. (A.11) and (A.4). 
Repeated application of (A.24) yields

(21+1)!!
4k 1!

1... a2
Using eqs. (A.11), (A.21) and (A.4) one can finally show that

(1,1) (1,1) 
“l - • ■ • ,“jt-l’PJ.’<I2’Pl....P2-l P1.... P2,Y1.... Y2

with the well-known 
l/|r-r’| in 

respectively,

^Yf(;.)Y“<;)=[or ,1 ~ - 
-1+T pl<r’’r)>

 (22+1)1!
TiTTf—

- 22+1 .
•“1.... “2

,2 +2
*2+1 ~ m=-l

f dr (r • A

» ?*+1 a(A-1,1-1) 
■P,P,Y1.... y2-1 2i~1 al’” ‘ ,a2-l'Yl....Y2-l

"2-1 ■)
“1....a2’Yl.... y2

f " ,22+1 " , ' "2+11 > ^7 iI dr r •{ r r - r ) r 

We conclude this appendix with a discussion of the connection between 
irreducible tensors and spherical harmonics. By comparison of the Taylor 
expansion of l/|r-r’| ,
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and, using eq. (A.12) as well as also

*>■) ?X e* ? (A.31)

Y”(r) ! d? ?X y” (?) . (A.32)r

theforallow formulaetranslate familiarto
irreduciblethe tensors, e-g-

(A.33)

Y^(r) j dr’ y” (?) f(?) (A.34)

Upon insertion of the relation (A.29) this expansion takes the form

\1 r ’ (A.35)f(r’)

rXexpressing a completeness property of the tensors

Appendix B

shallWe the Fourier transforms of the cut-out

(3.25) and of functiongiven in theeq-

C<X-P>(?) theof in case

f(? -1
1-0

1
1

+1
’Li

1-0

■L
- £ 1*(2*+1) jx(kr) Px(k-?lk«r e

Eqs • 
spherical harmonics into the language of 
Rayleigh’s expansion of the plane wave:

f(^) - 1 
1-0 m—1

1 (21+1)!!
1 1!

<^>11 ? S s d?

(A.29) - (A.32) 
harmonics into

calculate here 
connector fields C^*p\r) ;
K(r) defined in eq. (3.17). 

Consider first the Fourier transform 
l,p 1. Using the expansion (A.33) and the formulae (A. 13) and (A. 14) 

one finds

/ Y” (? YP(? dr* - 6XiX6ra>(j>

The spherical harmonics form a complete set of functions on the surface 
of the unit sphere. For an arbitrary function f(r) one therefore has the 
expansion

jx(kr) ? oX kX
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(-i)

^t-p a*+p+i■ 4x (B.l)dr

With aid of the formula (cf. ref. 13, eq. 10.1.25)

(B.2)

the scalar integral

dx

(B.3)

and one obtains

£i+p .22-Jt-p (B.4)

In the case A ■ 0, p * 0 the angular integration can be done as above:

dr} . (B.5)
P

(B.6)(ka)/(ka)

(2*+2p-l)!l / jjt+pCkr)

C(1>P>(5) - J d?
r>2a

sin x 
x

W'.(2ka) 
2ka

The first of the two scalar integrals may again be evaluated with aid of 

formula (B.2),

X aA+p+l

can readily be performed,

C(0,p)(t) - 1

la Wkr) rl 1-p dr ■k' 
j*+p-l(ka) 

2ka

i+p_2 ~ xl-x_p (_x)i+p d_)A+p 
2ka

k1+p

+ a“P

C(1,p)(t) - ii-p 4na3 (2X+2p-l)l!

(2t+2p-l)!l ! Jm(kr) r1-X-p dr

rp+2

dr - a3a^1

- (2a)2'*’p

7 J_(kr) r 
a F

(2p-l)!l kp {ap+1 7 JD<kr> rl’Pdl 
a p

- j ),<“>

e-lk.? £(A,p)(?) _ 2 (-!,»■ £« o»
m=0



70

function j

(B.7)Jp+l/2(x)

We can therefore use formula (6.561.5) of ref. 23 to obtain

>+2 (B.8)(ka)/(ka) .a
P

With the relation (cf. ref. 10.1.19)

(x) + J, (B.9)

one finds from eqs. (B-5), (B.6) and (B.8)

C(0’p)(k) - rp 4na3 kp (B.10)(2p+l)!I (p 1).

(2.15) and (2.21)), one also haseqs.

c(p>0)(k) - c(0-p)(-k) . (B.U)

The Fourier transform of

c(0-0)(k) - s — dr = 4n (B.12)

(B.4) and (B.10) - (B.12) yields the formulae (4.2)
and (4.3).

We now turn to the Fourier transformation of K(r) :

K(k) - ! dr (?) -1)

3

4ita

a3 

(ka)

/<dr"

4ita3

I 
Jl-1 |r-r"|<a

-ik«r e

1 
A!(21—1)!!

the spherical Bessel 

by

I J.(kr) rP 
0 H

-ik*r e

Jp+1

-lit.;-, 
e J

Jp+1

Combination of eqs.

Vka> 
(ka)2

Since C^0,p)(r) - C^p,0)(-r) (cf.

[J d?" 0(a-|?-?"|)0(a-r"))(C(O,O)

dr = a3

In order to work out the second one we note that
I is related to the Bessel function J P p+1/2

13, eq.

j (x)
Ip.^x) - (2p+l) -L-

0^(0,0)(r)j finally, is well-known

Jp(x) - 1/2
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0(2a-r)(a - 5-)2 ( 2a + |) ] (| - 1) r2 dr

(B.13)

The of this
a

(0,1)

4xa^K(k) - (1 - 3- (B.14)(ka) .
(ka)

§ 116 of ref. 24)

Jl-V v-p (B.15)Jv-l(t) Jn(t) dt

the squared spherical Bessel functions can be performed:

1=0

(B.16)—— dr

Eventually we thus find

•) - (B.17)3

( / d?
r<a

x
J t 
0

Sl(2x)
2x

z
1=1

C<°’X>(;))eX1 
1!(21-1)!!

Si(2ka) 
2ka

J1(2ka)

2ka

( / d?
r<a

3 I

I 
n=0

.2 . . x vJ*+l(x) " 27 ? JL1/2(x) - - Jo<X)

-ik«r e

j1(2ka) 

2ka

sin kr 
kr

the sum over

-1 fx

[251 3

2 2
" jL(x) - j0(x)

4na3

(ka)7
2

- Sj^ka)) -

2 2
“ JL(x) - j0(x) •

Wx> wx) ■x

K(t) - -
k

e-it.;£d,o)(?)).

With aid of the formula (see

2+ 3 j‘(ka) - 3

integral between square brackets in the second member 
equation was evaluated using the well-known formula for the volume of 
sphere’s segment. The integrals containing q(0»1) an<j q(1,0) £n t^e 
last member of eq. (B.13) were already evaluated earlier (see eqs. (B.5) 
and (B.8)). Substitution of the results obtained there and evaluation of 
the remaining Integrals in

- Jl+1 1=1

- —-3- ?4na3 t-1

eq. (B.13) leads to

sin T
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Appendix C

deals with the evaluation of the
1 - 1 and X - 2.

(k) J.} dk

” 4’ 1 {y ro1(k) + • (C. 1)

11In order determine substituteto and r we

(2X4-1)!! fTP,?  
X4-1 1 K K

-1-). (C.2)

r.h.s.

1 om ' a"-1 k”-1 -

I ■ (C.3)

I (C.4)£0

■ (C.5)XI
■1

(C.2) we can extract 
of the

xir 
rl

11 
rl

4na^
3 CX1{rj1 ? £ +

I R^l,1)(k) d£ - / fr^Ck) kk +

k" k + '

(X+m)! 
(2X+2m-l)l !

(2X-1)!! n

(X+m)!
(2X+2m-l)l!

(2X+1)!!
1+1

the coefficients
eq. (4.9) into eq. (4.6) with p = 1 :

X__
2X+1

((zx+pgr- _
1X+l K K

2X4-1 ml 
T+T 1

This appendix
1 R^i,X)(k) dk for

(2X4-1)! ! ' -X4-1 '
(X4-1)! *

- ♦ I i1 
m=l

X—1 4na^
"3“ CX1

~m (2X+2m-l)!!X!
(X+m)!(2m-l)!!

integral
Consider first the case X = 1:

Upon substitution of eqs. (4.11) and (C.3) into eq.
from the latter two scalar equations by equating the coefficients 
linearly independent tensors kX k and'?'1

we used the decomposition (A.21). The 
first tensor contraction in the second term has already been worked out 
in eq. (4.11); for the other one we find

(2X-1)! IX x v ,X-d (2X-1)!!
x+i 9 L ; -------m=l

X ml 
(2m-l)!! CXmPm X4-1 ri

and adding the second one to

- J i*-“ (2X-1)!! { Xl+
(2m-l)l ! CXmPml 0

In the first term on the

1+1Dividing both equations by i (2X-1)!!
the first we arrive at two uncoupled equations
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(r^Ck) + r”l(k))} , (C.6)

(C.7)

With the matrix f defined in eq. (4.29),

(C.8)

we may thus write in matrix notation

(C.9)

(C.10)

For the desired integral (C.l) we finally obtain

♦ {c(ka)-p-(l + *c(ka)-p) •c(ka)

(C.ll)1 .+ c(ka)*p*(l - ♦f-c(ka)'P)

The calculation of

(C.12) I

(r“(k) + r“(k)) - {(1 + ♦c(ka)-p)

r“(k) - - ~~ {(1 - ♦f.e(ka)-p)

(cf. eq. (A.13) for the angular integrations) proceeds analogously. From 

equations (4.6) and (4.9) we find

! R^1,1)(k) dk = - (2x)

, .2 22. . 1 22,.. 22,.., .(2,2)- 4it (yj rQ (k) + y rL (k) + r2 (k) J A

3 2a3
9k

.(2,2))J dk R^2,2)(k) - f dk (r22(k) k2 k2+ r22(k) k '-l-'k + r22(k) A*

•f«c(ka)|11 .

•c(ka)}u ,

•f*c(ka)|u

£lm Sl,m 1+1 ’

, , ,*+lI (-1) 
'(21-1)11 (rJl(k) + rX1(k))J - - cn(ka)

- ♦ z c.Jka) LL -k-n- Im m '(2m-l)!l

r*'(k)| - Cjii(ka)

+ * S ,WT Clm(ka) pm •
m=l

I (-l)x+1 
'(21-1)!!
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k""2 u-2-i } . (C.13)

eqs.

(C.14)

i? k + i k>2{ i2 k - i31| + ;x-2h

A(X,X)el-l -x-1

- (y + |-) kx k + (| +n) F 1 1 (C.15)

Comparison with equation (A.21) shows that

£ = (C.16)n

2

2X " yra *

m2 r
r2

{rg2 txF+rX2FTZ.i5T+
(2X+2m-l)!!X! 
(X+m)!(20-1)1 !kX+2 _ „ I

m=l

■ |kX k + 5 A(X,X)eX kX 1 (| kk

+ n kX 2 1-2-

the scalar coefficients E, and r> 
with k from the right, using formulae (A.4) and (A.21),

+ CFFVT

-2—1 o2 A<2>2>).k

3 Fl5 .- 5 k }T + n

We now decompose kX+2 in a sum of the tensors occurring
the last equation. We already know (cf. eqs. (4.7), (4.8)) that it has 
the form

X 4na3 (2X4-3)!! 2 
“3 (X+l)(X+2) CX2

X(X-l) 
(2X+l)(2X+3) ’

on the l.h.s. of

+ 5 (*<*•*’ i i) o2 (A<2-2>. m

+ n (a(x-*> ix’2

rX2F<-2- | -

After the tensor contractions on the r.h.s of eq. (C.13) have been 
performed with the aid of formula (4.11) and the results (C.14), (C.16) 
have been substituted one finds

CXm Pm

' rx+r x+2 rrl' ; 2 k 2X+3 - k k 3

In order we contractto determine

o" {r”2FF+ r™2 r
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Ir*2^

-X-2

(21+l)(21+3) m2, _
(l+l)(l+2) 2 >

r”2| . (C-17)

then obtainFor we

(C.18)

(C.19)- (-12) ((1 - ♦f«c-P)

(C.20)

The matrix f’ In the last equation Is given by

(C.21)

(C.18) - (C.20) into eq. (C-12) finally yields

•c(ka)<t> {c(ka)«p’(l + <t>c(ka)«0)

•f*c(ka)

+ | c(ka)’P'(l + *f'-c(ka)’p) •f'-c(ka)) (C.22)

4
53f

(2m-l)!! Clm

1(1-1) 
(21+l)(21+3)

(1-1)1
(i+l)(l+2)

21+1 m2
1+1 1

x 1(1-1)
1,m (1+2)(1+1) ’

J dk R<2,2)(k) - - (2x)

Insertion of the eqs.

+ | c(ka)«p>(1 - »f-c(ak)"P)

. 3 -22 + 2 r2

! 4na^
” T

.*2r^n1rr+

•f*c)22 ’

3 3 a

.1 4xa2 (21+3) ! ! 2 iTTTi1 21 '‘1-1 ' a- 
3(l+r)(l+2) c12 k - 2J+3 k 1 k +

.(2,2)
22 -

^m « +

and taking suitable linear 
from this set of tensor equations 

in matrix

f \m

/ 3 i

- 9 ((1 + *c-P) ,

•*2r^7.2J} .

-4 I I1-”1 (21-1)! ! 
m»l (- -.

22 22
ro + rl

•f'-c)22 ’

22
2

r22 - 6 ((1 + d'-c-P)

( 1 r»2. 21(21+1) m2, +'fl-2’
ll+l rl (l+l)(l+2) 2 ’

By equating the coefficients of like tensors 
2 2combinations of the r^ we may derive 

three sets of scalar equations.
notation the following formulae:

22 the r j
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Appendix D

J(2%)

! k" k* kp dk)

(D.l)

(A.6) the theto be expanded intensor can

(0.2)+ terms containing with n < l+p-2

Due relationto

/(2it)

! dkT^ kZ'kp' )

(0.3)

Vx) " IT ( hm(x) " hm(x) 5 • (D.4)

The functions analytic in the complex plane and have the

jB(x) - (-1)” jn(-x) , (0.5)

We split the spherical Bessel function
Hankel functions

(2m+l)!!
411 m!

(2m+l)! ! 
m!-I

m=0

p(2X+l)!!(2p+l)!! jm(xl) jx(x) jp(x)) .

According to eq. 
following way:

Jm and
following properties:

■ r
m=0 

m+l+p even

(A.12) the angular integration in 
m > 1+p . It also vanishes if 1+p+m is 
This allows us to write

the orthogonality 
(D.l) therefore vanishes for 
odd, since (-k)m - (-1)“ km .

elJ-; /X,p)({) djJ _

ei5-; L(x,p)({) di> _

h are m

In this appendix the inverse Fourier transform of F^’P\ic) is evaluated 
for l,p i 1. Using eq. (A.33) we may write

in the sum of two spherical

(1B+X-p (2XM-l)!!(2pH-l)!! ~s dx }
(2x) 0 ■» a * p
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(0.6)(x« 1))

11™ x| (0.7)< const.

j„(x) dx
P

1J41

J

h><) J/m)tn

n (D.8)- 6

Combination of eqs. (D.3), (D.8) and (A.13) finally leads to

/(2x)

IAppendix E

the relation (6.11). We first derive the auxiliary

JZ/n^/nJ- -

+ (T(63) .7/n{ %S(?-0)^ + (1 + (E.l)

for arbitrary matrices 7 and of such integral operators, which are

" lire n+o

for r > 2a evaluate the scalar integral 
closing the integration paths by

n
2

J.(x> - (I^ryrr + <*x"-2). h*(x) - + <%(x
X

♦ Im x e

(3 ji+p+1

i jx>
» Um i n+o 4 X hm(xI> jl(x)

Jpdn)

Jp(x) dx - |j- J (h^(xl) - h;(x£)) j/x)

jp(x) dx

h±(x) m< const, e

.  (21+2p-l)! !
m,X+p 2 (2A+1)!!(2p+l) ! !

+ 11m n+o x Vxt> ii<x> Vx) dx

Here we shall prove 
formula

(2*+2p-l)!l (1)*+P+1 ^X+p . (0.9)elk>? (1,P)(J) d£ . (_r)*

Using these properties one can 
in eq. (D.3) with Cauchy’s formula, 
infinite arcs:
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In

find (cf. also the discussion following

- (1 + - (1 + fljAj ft* ■ (E.2)

We insert this relation into the l.h.s. of eq. (E.l):

^6

7(?,R±)^

- (1 + *6*%) (E.3)

We now apply formula (E.l) repeatedly and obtain

(1 -.X/n) + + X^n<>Mn«^ + ••

= j4 + jtf/nc4 + J^/n[/?S(?=0)^ + (!+??

+ j^^n{ ^?.S(r=0)^ + (1 + ??

= erf- +j/^n{l - ^S(r=0)^ - (1 +^g^Sno) (E.4)

Next we

1 
i.j

Rewriting this expression in terms of the operator 
of eq. (E.l).

from the term between 
and substitute for <rf formula

(3Z n^n?)(r,r') - £
i.J

-I J(?,R )/(SS - (1 +^T/Sn )
i.J

- £ J(r,R1)Z<??S(R1,Ri)Z^(R1,?') +

n one gets the r.h.s.

- <*5

regular in the sense that their kernels are piecewise continuous 
functions. In what follows we shall not write down terms of order 6^ and 
other terms which vanish as 6 tends to zero (all equalities are meant to 
hold in this limit).

Solving eq. (6.6) for we 
eq. (5.5))

split off a factor 1 - ^?s(r=0)^ 
brackets, use the definition (6.7) of rfrs 

(E.2)

6^no)
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(E.5)

(E.6)

= 0 .because (^S)oi

{(1 - n) )0Q

- ((1 - «^S6n)_1^S}00 ,

(1 -.On)’1^ - J* +t4^Sn {1 - (1 + 8 A/rf 5 /M

■ ^+^8n {1 + n | £Sno - «8rn)-' (1 + *8Z8no)^
- (1 + «8£8no)-1 (1 + «8^Sn {1 - ^8/86n}-1)^8

“(l+l??&/-8no) 1 (l-(X^^-86n + ^8-ASn) {1 - $ ^Z-S6n}

’ (1 + (i»S- ^)ZS6n) (1 - <* 5 ^S6n}-1^s .

In the last step we used the fact that ^^^8no(^S - g) =0- Since 
$S(r-0) is a diagonal matrix it commutes with , and we finally get

= ((1 + ^S(^?8 - (L *)6n) (1 - ^?8 ^S6n)-1??8}00



80

References

ten Seldam,

I

1) J.G.Kirkwood, J. Chem. Phys. 4 (1936) 592
2) J.Yvon, Recherches sur la theorle cin&tique des llquides II 

(Hermann, Paris 1937)
3) J. de Boer, F. van der Maesen and C.A.

Physica 19 (1953) 265
4) G.Stell and G.S.Rushbrooke, Chem. Phys. Lett. 24 (1974) 531
5) B.L.Alder, J.-J.Weis and H.L.Strauss, Phys. Rev. A 7 (1973) 281
6) K.Gunther and D.Heinrich, Z. Physlk 185 (1965) 345

A description of their work in English can be found in: S.S. Dukhin 
and V.N.Shilov, Dielectric Phenomena and the Double Layer in 
Disperse Systems and Polyelectrolytes (Wiley, 1974)

7) B.U.Felderhof, J. Phys. C 15 (1982) 3943
8) B.U.Felderhof, J. Phys. C 15 (1982) 3953
9) D.Bedeaux and P.Mazur, Physica 67 (1973) 23

10) C.W.J.Beenakker, Physica 128A (1984) 48
11) C.W.J.Beenakker and P.Mazur, Physica 126A (1984) 349
12) B.U.Felderhof, G.W.Ford and E.G.D.Cohen,

J. Stat. Phys. 28 (1982) 649
13) M.Abramowitz and I.A.Stegun, Pocketbook of Mathematical Functions 

(Harry Deutsch, Frankfurt 1984)
14) B.U.Felderhof, G.W.Ford and E.G.D.Cohen,

J. Stat. Phys. 33 (1983) 241
15) M.S.Wertheim, Phys- Rev. Lett. 10 (1963) 321

E.Thiele, J. Chem. Phys. 39 (1963) 474
16) D.J.Jeffrey, Proc. R. Soc. A 335 (1973) 355
17) Z.Hashin and S.Shtrikman, J. Appl. Phys. 33 (1962) 3125
18) C.W.J.Beenakker and P.Mazur, Physica 120A (1983) 388
19) J.A.R.Coope and R.F.Snider, J. Math. Phys. 11 (1970) 1003
20) R.Guillien, Ann. de Physique 16 (1941) 205
21) D.A.G.Bruggeman, Ann. Physik 24 (1935) 636
22) J.D.Jackson, Classical Electrodynamics (Wiley, New York 1975)
23) I.S.Gradshteyn and I.M.Ryzhik, Tables of Integrals, Series and 

Products (Academic Press, New York 1980)



81

?

24) N.Nielsen, Handbuch der Theorle der Cyllnderfunktionen 
(Teubner, Leipzig 1904)

25) J.D.Beasley and S.Torquato, J. Appl. Phys. 60 (1986) 3576
26) J.C.Maxwell, Electricity and Magnetism (Clarendon Press, 

Oxford 1873)
27) H.B.Levine and D.A.McQuarrie, J. Chem. Phys. 49 (1968) 4181
28) B.Mettout and A.Broniatowski (Ecole Normale Sup6rleure), private 

communication
29) D.Hueber, C.Valette and G.Waysand, J. Physique Lett. 41 (1980) L611
30) M.A.van Dijk, E.Broekman, J.G.H.Joosten and D.Bedeaux,

J. Physique 47 (1986) 727



82

CHAPTER II
DISPERSIONS OF SUPERHEATED SUPERCONDUCTING SPHERES

1. Introduction

an

the a
a a

the
increased abovecan

if the field a

that the can

a

suffices thermo-theintoto
be
ofof

flux the latter
a

as

of ofone
is

state, 
initiate

Bsh 
1)

B.c 
occurs•

phase
certain

been suggested to 
the change 
becomes normal

B^ without 
exceeds

superheated superconductor 
the resulting local increase of 

the transition

(fig.
with B greater

Deposition of a 
destroys the metastable

regions 
than twice the critical field.

sample
only 

it becomes normal

tiny amount of energy in 
for

Type I superconductors undergo a 
the

This effect has 
elementary particles^* ’ 

magnetic flux through the sample, when the 
conducting due to energy deposited by 
be registered as

one can
Bc’

metastable normal conducting state until
B^ is reached and the transition into the superconducting state 

Analogously, the magnetic field at the surface of a 
superconducting sample can be 
transition, and 
value B_u > B^ 

shows

temperature 
dynamically stable normal state, 
used for the detection

use of a

i-2’. If

strength
conducting. The phase diagram of tin 

metastable regions can be quite large,

passing elementary particle, can 
voltage pulse in an induction loop.

The superheated state is, however, also very sensitive to defects at 
the surface of the superconductor, which may act as nucleation centres 
for the transition into the normal conducting state. The phenomenon of 
superheating can therefore in general only be observed in a sample with 
an extremely carefully prepared surface^), making the construction of a 
large detector consisting of one single piece of superconducting 

the use of a large number of very 
more likely to be free of

consisting
material unfeasible. A way out 
small superconducting grains: Small grains are

first order phase transition between 
normal and superconducting states when an external magnetic field 

reaches the critical value B . As in other first-order phase transitions 
c 1 9\

observe the phenomena of supercooling and superheating
field strength is decreased below B^, a normal conducting sample 

remains in a metastable normal conducting state until a certain value 
<
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0

one

zero

to

super 
cooled

super 
heated

normal 
conducting

defects, 
the surface 
into another.

step 
however,

Fig. 1: The phase diagram of 
tin (cf. references 3 and 12)

since the number of surface defects is roughly proportional to 
area, and a phase nucleated in one grain cannot penetrate 

Indeed superheating can easily be achieved?in tin or 
Indium spheres of diameters smaller than ca. 40 pm.

One is thus led to consider dispersions of superconducting spheres. 
Due to the diamagnetic interactions in such a dispersion the maximum 
field strengths at the surfaces of the spheres are not equal, an effect 
that must be taken into account in the interpretation of experimental 
data.

and a

superconcL '—

0 12 3 4
temperature iKelvin]

in□
2 600 '
2

o
1 300 - cn .
E <

Over a period of many years experimental studies of dispersions of 
superconducting spheres have been performed?. As an easily accessible 
quantity one measured in particular the fraction F of spheres which 
remain superconducting when the external field is increased from zero to 
a given value. For a collection of non-interacting, defect-free spheres 
F would be a step function. Due to defects and due to diamagnetic 
interactions, however, not all spheres transit at precisely the same 
external field, and the step of the function F is smeared out.

Theoretically little is known about the influence of the diamagnetic 
interactions^^, and it is our aim to help filling this gap. In order to 
keep the problem tractable, and also because experimental information 
about the detailed structure of the dispersions is lacking, we have to 
use a simplified model:
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that

a
ca.

occur sense

to no
about the

radius thein
is much

the distance surfacesbetween theas as

thatassume a
soon

is correct
totalexternal field theis then

of the or

at
the inter­

can
so

are
a

without amplification 
itself or by

Bc» 
even

to do so, 
lies typically in 

which

to a

normal conducting as 
reaches the value B^.

strength Be

Bex
field strength reaches the value Bg^ due to diamagnetic 

actions, can by partially transiting into the normal state reduce the 
field strength in the rest of Its volume below Bc, so that this rest 
remains superconducting. The super- and normal conducting regions 
then separated by a region which is tn the Intermediate state (cf. ref. 
11, chpt. 44). The partial transition is excluded for an Isolated sphere

order of

the suspended particles are 
spherical form and monodisperse in size, 
unrealistic. In practice the particles are 
of molten metal?)

of perfectly 
Both assumptions are not too 
produced by ultrasonic mixing 

with oil, and due to high surface tensions they become 
spherical to a very good approximation. After repeated sieving of the 
thus prepared spheres one can obtain10) a collection of spheres with 
diameters inside the range of ca. 35...40 pm.

(2) We shall assume that the spheres are distributed in the samples as 
in a hard-sphere fluid, i.e. that all configurations of non-overlapping 
spheres occur with equal probability. This in a sense 'most random' 
distribution is what experimentalists try to achieve to a sufficiently 
good approximation. Inspection by microscope, however, shows that the 
spheres tend to form aggregates. But no quantitative experimental 
information about the distribution of spheres in actual samples, on 
which a theory could be based, is currently available.

(3) We shall neglect the penetration of the magnetic field into the 
superconducting spheres. While this effect could probably be taken into

it would not be worth-while to do so, since the

in a

(1) We shall assume

account rather easily, 
of the spheres used in the experiments 

10 pm and is much larger than the penetration depths, 
are of order 0.05 pm. The field penetration should therefore not play an 
important role as long as the distance between the surfaces of the 
spheres is larger than ca. 5Z of their radius.

(4) We shall assume that a superheated sphere becomes completely 
as anywhere at its surface the field strength 

This assumption is certainly correct if the 
x — larger than B^, since 

volume of the sphere is in a metastable state 
of the field by the demagnetization of the sphere 
diamagnetic interactions with other spheres. The situation is different 
for B  < Bc- In this case a superheated sphere, at the surface of which 

reaches the value Bgh due
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the surface ofreason:
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must always be

of
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in effectthis work. Fortunately the
theseis innot
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reachesas soon

strengthfield
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however,This nomay,
field

which the

furthermore it can

an
theInof the

I

spheres
spheres

except 
defects

very
longer

Section 2 deals with the 
which

partially 
shall not

Bex
1. Therefore

Bex 
for

important
metastable,

Bc« 0.45
0.45

partially transited
Because

The maximum field strength at
1.5 B___ (cf.

dilute dispersions.
become completely

As will be shown in the

expect to make a 
possibility of partial transitions, 

longer be true if 
external

conducting as soon as 
following sections, 
reaches Bgh only on 
small (< 10%). 
serious

Due to these simplifying assumptions one may not expect quantitative 
agreement between calculations based on our model and experimental data, 

provide a qualitatively correct description 
guideline for the

\h- 2'2 BC- 
larger than Bc

The

strength at 
below 0.45 Bgh.

as can

B < 0.45 B . ex sh
few spheres (less than 5%) if the volume fraction is

In dilute systems we therefore do not 
error when neglecting the 
for B < 0.45 ex 
of the

Bsh- 
surfaces of the spheres reduce the 

spheres become normal conducting substantially

The model should, however, 
of the experiments; 
construction of a more refined theory.

The outline of this chapter is as follows: 
magnetostatic interactions between perfectly diamagnetic spheres, 
are placed in an external magnetic field. In section 3 we introduce 
indicator functions describing the state of the spheres, 
following section these functions are used to derive a density expansion 
of the average fraction F of superconducting spheres. A density 
expansion of the probability distribution of the maximum field strength 
at the surface of a sphere is discussed in section 5. We conclude with a 
comparison of the theory with experimental data and with computer 
simulations.

Bsh- 
the maximum

be seen from fig. 1. Therefore 
when the maximum field strength exceeds Bg^* 

description of diamagnetic interactions between 
transited spheres constitutes a formidable problem that we 
attack in this work. Fortunately the effect of

for the following 
an isolated sphere

serve as a
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2. Diamagnetic interactions between superconducting spheres

2.1 General relations

(2.1)

V"B(r) - (2.2)0 .

B(r) - -VU(?) (2.3)

(2.2) then implies that the potential Uand

(2.4)

the surfaces of the superconducting

(2.5)

with

of the
theto

(2.6)B ex

outside the spheres, and eq. 
satisfies Laplace’s equation

VaB(c) = 0 ,

5i a Che radius of the

-VU(r) ♦
(r*“)

AU(r) - 0 .

The magnetic field 5 in the space between the superconducting spheres 
is governed by the two Maxwell equations

the medium between the spheres carries neither a 
current density nor a magnetization. Equation (2.1) allows us to write

the position of the centre of sphere i and 
spheres. These boundary conditions stem from the fact that the magnetic 
field vanishes inside a superconductor (Meissner-Ochsenfeld effect), and 
that the normal component of the magnetic field it is continuous at an 
Interface. In writing down eq. (2.5) we have neglected the penetration 

field into the superconductor (cf. assumption 3 of the 
introduction). Far away from all spheres it becomes equal 
homogeneous applied field ^ex»

Here we assumed that

u(r,+t)| = odr i z1r=a

The boundary conditions for U at 
spheres are given by
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solved Inbeendielectric

affect

i.e.

(r') dr'I (2.7)

1.2 thesectionofresultsrules theobtains fromone

(Ir-^l > a) (2.8)

and

w - (2.9)1,1

with

the
The

a.
sum

of I

Using these 
relations

+ 1 
j

B ex

■r*B ex

bll-6

B(r) - S ex

A^^iL-iL) °P m(p)| ,
i J —J

(>■)

”1

1>

of the field

proportional to the 
the total

-H a(1-X)(?4
1 Jl=l

The boundary value problem constituted by the equations (2.4)-(2.6) 
nay be translated into the equivalent problem of electrostatic 
Interactions between dielectric spheres, which has 
chapter 1.2. To adapt the solution found there to the present problem 
one has to put the background dielectric constant equal to unity and 
the dielectric constant equal to zero (that this is an unphysical
value does not affect the validity of the mathematical analysis). For 
the external potential of section 1.2 the potential of a homogeneous 
external field must be substituted,

R

it gives rise to. 

multipole moments 
field in

of section 1.2.
as 5;

R > 2a; in

b^- X ((!+!)! (2A-1)! ! J”1 . The quantity mJX? is the magnetic 2A- 

pole moment of sphere 1, generated by the Induced currents flowing at 
its surface- It corresponds to the quantity p^^/a^ °f section 1.2. We 
defined m^^ such that it has the same dimension 

conventionally defined magnetic dipole moment is equal to 
connector A^1,X\r) was in eq. (1.2.20) only defined for 

this chapter we extend the definition (1.2.20) to
The total field at the surface of sphere i is the 

which magnetizes the sphere and the field of the magnetic moments

Since the magnetic moments are 
of the magnetizing field, we can express

terms of the m^X^ • Taylor expansion of the magnetizing 

field we find, using relations (2.8) and (1.2.20),
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A(1’p)(it -RJ 0p m(p) .
— i J — J (2.10)

on

*2 (2.11)o'

*1+1l(^^+ar) = (2.12)

In view of the relation

(2.13)

(cf. eqs. (I.A.5) and (I.A.4)) we may alternatively write

(2.14)

2.2 The two sphere problem

interactions

which can be verified using eqs. (I.A.21) and (I.A.4), we obtain for the 
field on the surface of sphere i the expression

-1
j

I 4=1
1 

(4-1)!

(24+1)! !
X dr

IJI, p=l

■

4°. If we insert

B^+ar) - - 1

I (24+1)!! (W2) •
4-1

and the moments
(1) ^i

'*1+1' 1+1 *1-1 
r 21+1 r

B(S.+ar) = B i ex

.(1,1) 21+1 .. *2. *1+1A - -j— (1-r ) • r

With the aid of eq. (2.9) the external field 
spheres j*i may now be eliminated in favour of the 
the explicit form of the connectors and also employ the formula

- ? 
dr

This simplest case of diamagnetic interactions between spheres is 
important for the study of average properties of dilute dispersions of 
spheres, when pair interactions are expected to yield the dominant 
contribution. For two spheres eq. (2.9) takes the form
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bX 1-6. (2.15)

be eliminated in

obvious symmetry

(2.16)

equation (2.15) to scalar equations wereduceto

4X> rR.5( + (i-R2)-5exl (2.17)ex

are

+ di d-R2)-Bex} -

- 2A (i42*'Sex> ■ (2.18)

sides ofon bothtensorial structure

and the ‘i

(2.19a)

(2.19b)

these equations take the symmetric form

(2.18) is 
arbitrary(2.18) holds 

from it

3
+ 2

~2 -> R *B ex= 62,1

• fp+1 
x2p+l

RA+1 *{dj RR’B 
X ex

+ I 
P=1

ma8net^-c moments of sphere 2 may 
those of sphere 1 with the aid of the

with & = 

favour of 
relation

4

A(Jt’p)($) °P m<p)) ,'2,lBex

= (-1/

one finds

, A+l (A+l)! 1
' ii+i dx

^•{-1

where d^ and d^ are scalar coefficients depending

this ansatz into eq. (2.15), uses relation (2.16) and repeatedly applies 

the tensor formulas (1.4.11) and (I.A.21)

on R. If one inserts

In order 

make the ansatz

' I (-l)A+p <*+P)l (2X+1)X za^+p+l p-1 (2+1)! (2+1)! IrJ r

eq. 

for an

can extract from it two systems of 
d^. In terms of the variables

siX)(?,?ex) -

d" r2-b 
p ex

the tensor

The fact that the
equal justifies the ansatz (2.17). Eq.
angle between B and R, so that we ex (|
linear equations for the d^
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(»i+p+14 (2.20a)

(2.20b)

-a! (2.21)

Performing the differentiations with respect to

(2.22)

(2.23)R = Bex-

the

cos<|> sinQ
sin<|) sin0

cosQ

0 
0
1

siny 
0
cosy

(A+D! 
(21+1)!!

(21+1)!!
1

Xp
(X+I)(p+1)

L Ji! 
‘X (2X4-1) ! !

(X+p)!
X!p!

(X+p)! 
X!p!

- d^ Pj'(r-R) Rr* (j_-R2 ) } .

- ip-l
6X,1 + 

p-l4-

4
a

" 5 •'» '

’1

B($ +ar) = - J 
1=1

Px(;-R) R-?ex

R and r one then finds

The systems of equations (2.20) can be easily solved numerically if one 
cuts them off at a suitable multipole order.
The magnetic field at the surface of sphere 1 is obtained by inserting 

the expression (2.17) for the magnetic moments into formula (2.14). We 
first write the contracted tensors in terms of Legendre polynomials (cf.
eqs. (2.13), (I.A.30) and (I.A.4))

‘ 6a,i f *P 11/2 l(l+l)(p+l)'

y denotes the angle between ft and it . In these coordinates the field ex
strength on the surface of sphere 1 is given by

At this point it is convenient to introduce spherical coordinates 0, 4> 
on sphere 1. Polar axis and prime meridian are fixed by it and ^ex:

= "I (X-l)I (1-r2) '{d} (X+l) P^(r-R) R2 - d* P'(^-R) (V-R2)
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\ labeling the lines.

° §> o



92

+ 2 cos<t> cosy
X=«l

k=l

(2.24)(x-i)!p;<

can

“ ( Z (1-1)! [P^(cos0)+P”(cos9)cos0Jd^]2}

iMj+a^l2’ CO s2$ sln2Y s

cos0)d*)2} .

x ( f (k—1)![P^(cos0)cos0 - P£'(cos0)sln20]d^)|

slny Sln0 ( Z (1-1)! (Jt+l)Pl(cos0) d!) 
0 = 1 x x

+ {cos2y sln20 ( Z (1-1)1 (1+1 )P;(cos0)d',)2 
1-1 x x

+ sin2Y ( Z 
X-l

in 9 ^(1"1)!Pi,(cos0)d^2

In the numerical calculations only a

3b shows as

finite number of multipoles
be taken into account. As the spheres approach each other, more and more 
multipoles are needed to achieve a satisfactory precision. Fig. 3a shows 
for fixed R/a the maximum field strength as function of the number of 
multipoles taken into account, while fig. 3b shows as function of R/a 
the number of multipoles necessary to achieve a precision of 17.. This 
number increases dramatically when R becomes smaller than ca. 2.1a.

The maximum of this function with respect to the angles Q and 4> can be 
determined numerically. Fig. 2 displays for some values of the maximum 
field strength those positions of the second sphere (characterized by R 
and y). which correspond to these values. When R lies parallel to &ex the 
spheres screen each other slightly. This screening, however, is weak 
compared to the amplification of the maximum field strength which occurs 
in the case R 1 it
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3« Indicator functions

For calculation of

external
by

(3-1)

some

l.e.

IsolatedandFeder on
fieldthe

This
to

(1-1,....N)

Intervalzero

Isolatedofthefield at

so

(3.2)

Because of
we

probably due 
anisotropic 
non-unlformity of

given 
y(N) 
*i

a smooth

their properties. One has 
Itself of indicator functions

’ex' 
conducted

superheated superconducting

strength at which a

12) McLachlan
threshold

1 superconducting
if sphere i is

0 normal conducting...5

that the notion
partial transitions of spheres can occur,

the
spheres we 

conducting at a 
Indicator functions

Due to diamagnetic interactions the indicator functions depend on the 
configuration of the N spheres. In this section we shall derive formulas 
for these functions and discuss some of their properties. One has to 
keep in mind, however, 
becomes meaningless when 
for Bex< Bc " 0,45 

Experiments

:) - e(sx- | Bex) .

0 denotes the Heaviside function. Because of the hysteresis connected 
with the phenomenon of superheating and supercooling we have to specify 
the way in which the magnetic field reached its present value: it shall 
always be assumed that B^ has been (slowly) Increased from zero.

by 
spheres showed that 

sphere becomes normal conducting depends on where on 
the surface of the sphere the maximum field strength is attained, 
is probably due to very small defects of the surface as well as 

properties of the material in the sphere. We shall take the
the threshold values Si (1-1,...,N) of the spheres 

into account by assuming that they are distributed according to 
probability density Q(S), which is zero outside a small

The maximum strength 
superconducting sphere, subject to the homogeneous field ^ex> eQua^ 
to 1.5 Bex (cf. eqs. (2.9) and (2.12)), so that the Indicator function 
of an isolated sphere is given by

the average fraction F of superconducting 
need to describe which spheres have already become normal 

field & . To this end we introduce

surface
field S

an
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When two spheres are present the indicator function is given by

(3.3)) •

still are

thelarge radiustheto

one as sec •
if 1.5 certainexistsor a

(2) =
is outsideon

interval (B

For the theof the indicator function with to
threshold finds fact(3.3),from usingone eq.
that

)

)))
(3.4)) ,

with q denoting the primitive function of Q

q(S) = (3.5)

respect i 

the

S
J Q(y) dy .
0

1
I

0

X<2MpMex

+ e(B^1)-B^2))(l-q(B^1)))q(B(12)

strength at the 
when X other perfectly 

. The first term

q2(B<2>

average 

values
B<2)- b<2>,

)(l-q(B<2>

Q(sx) Q(s2) x^2)(R1,R2;?ex

+ e(S1-s2) x*1’^

)^(b<2)

dSx j dS2

- d-q(B<2>

compared to the spheres ’ 
on the field strength at the surface of 
(a/lRj-^l )3 (cf. sec- 2). Therefore, 
B > B , , there" Sh (2) (1)

far
holds. How large this
lies outside the

) - e[S1-B1(2)(R1,R2;Bex)) G^-B^C^ ;Bex) )

2 (1) q (B!

When becomes
influence of the second sphere 
the first one decays 

Bex<Bsh<1-A> °r !-5 
distance of the spheres beyond which 
distance is depends on how 1

Xj
1.5 B ex

Here B^M^ S*;^) denotes the maximum field 
surface of the perfectly diamagnetic sphere 1, 
diamagnetic spheres are present at positions ,.•.,R^ 
in eq. (3.3) corresponds to the case that both spheres 
superconducting. The second term accounts for the case that sphere 2 
transited, as expressed by the factor 0(B2^^~S2)» prior to sphere 1. The 
latter condition is guaranteed by the factor ©(S^-^) • The factor X^^ 
finally describes the state of sphere 1 after sphere 2 became normal 
conducting.
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In the a

) • (3.6)

Note that
threshold

For three spheres the Indicator function is given by

)

) • (3.7)
3

Three besituations have tonow
thatthe areto cases

transited

wrote
at

spheres the indicator function can be

(3.8)
B

(3)

respectively
superconducting (first term),

(3)'2

corresponding
still

S1 
,(N)

) e(s2-it) - StSj-B

-^3y) ^l-Mex+ 0(b<3)-s2) e^jy-^py) °(;py

limit A * 0 of 
becomes equal 
function X^2)

N
[ n ©(■ 
i-i

"^y)] .. Vi

+ I 9(B<2)-1

) e(s3-B

Bf2)>Bsh 
right from

7(2) xi

7(2) *i

sharp distribution of threshold values q(S) 
to 0(S-Bgh), and the expression (3.4) for the Indicator 
then takes the simple form

would always vanish for B^^B^ we had assumed equal 
values for both spheres right from the beginning, i.e. 

interchanged the limit A* 0 and the averaging over the threshold values.

N
..

- 0<Bsh-B$2>>

e^-B^0) +pje(Bp)-sJ]

distinguished, 
all three spheres

that sphere 2 (second term)
prior to spheres 1 and 3, and that sphere 3 (third term) transited prior 
to spheres 1 and 2. We here have to write 0(S^/B^^- S^/B^^) where we 

O(Si-S2) in eq. (3.3): This is necessary because with three 
spheres present 
general not equal.

For an arbitrary number N of
constructed recursively:

0(b<3>-S3) 6(-^y - -^y) - ~^y) X^^-Mex
B1 B3 B2 B3

13>)

We here have to write 0(S^/B^^-
eq. (3.3): This is necessary 

the maximum field strengths at their surfaces are in



96

Density expansion of the fraction F

4.1 The general scheme

- I ^N><51.......5N:5ex> P>A.•••.%) . (4.1)

In order

denotesetc.

not to
function

fractionlowno *
one
in |. As is
ifcoefficients thecan on one

/N> i.e.

(4.2)) + . .

V[X] their’cluster withwith respect to
thefastwhich to zero as

It is clearly 
complicated

N+1 
l.j-2

functions’ X 
first JI arguments, which tend 
difference between any 
Taking the average of the A 
obtains

I x*N)> - <N>> 1 1

the Taylor 
the reduced

F(Bex> ’ 8 <

distribution functions belonging to are analytic in 4>, and if on the 
other hand x^N^ possesses a cluster expansion, i.e. if one can write

average 
exactly, and approximations have to be made, 

equivalently low volume
may try to approximate F by the 

well-known, 
hand

symmetrical
sufficiently

these arguments becomes larger and larger.
term of the right member of eq. (4.2) one

x'X’MAx

.w

The average fraction F of superconducting spheres 
configurational average <...> of x^N\

we shall from now on sometimes
Y(N) instead 

the

to keep the notation simple, 
omit the sphere label when speaking of sphere 1 and write 
of instead of etc. PN in eq. (4.1)
probability density for the configurations of N spheres- 

feasible to evaluate the average of the
x<”

For low number density n°, or 
4> = of dispersed spheres,

first terms of its Taylor series 
be calculated

is given by the

of
th
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(4.3)
no

(4.4)

(4.5)

- x[1] + - I111} (4.6)

that

(4.7)

Analogously one finds

J x'^CRpR.,......... R/.Bex) PJl(Bl..........BP dRp-.dR^

J XU,(51......... Rjt:Bex) gt(^l..........d^.-.dRjj

x^dEpSp

,2<Bex) + ••

N
I I 

. h’2 
for k*j

x'2’^,^)

must have, if a cluster expansion
(4.2) for different N. Thus

) + $2F.F“’Bex> * F0<Bex> + ♦Fl<Bex

- 1 W1
N (N-l)l

JO) -P1)

x[21

Here was assumed to be 
pairs of its arguments, 
analytic in 4>, and if 
one can find from 
powers of 4>:

The form which the functions 
exists, can be determined by considering eq. 
we see from

In particular, when one is only Interested in the first I terms of this 
series, it suffices to study the interactions between at most A spheres.

translationally invariant and symmetric in all 
If the A-particle correlation function g^ is 

the Integral in eq. (4.3) converges for each 1, 
eqs. (4.1) - (4.3) the density expansion of F in

*1X1<Mi2........ PN(B1.......................... d*l--’d<N
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x[2](^,r3) (4.8)

We turn to innow
In the

•x

- 1 + q(B

= 9(B ) - q(B ) + q(B

) - q(B

) (q(B (4.9)

i3(i-;2)4(4ex- sex+ (?-(r-4))i -3 Be:max
IX

+ (7(r-4) . (4.10)

< 1.5 ofthe as

on

(4.3) 
is of

'F’-S ex

B<1)(?1;Bex) =

- I[2](^.r2)

- 1 Ar(1) y q (B

B(2)(S1^2:SeX) -

B < ex 
slow

= " I 'ex'

(2)_b(D

and all higher x^

B^

) - y {7<3)(R1>52^3)

^MpMe,) - - i<2>

(1))-1) {b<2)- b'

+ 0(B(1)-B(2))[1 - q(B

(1)} + <?({b(2’-b'

)(|q2(B(2) <2))

- Q(B(1)

(1))}
(2))}

(1))

Bsh 
to make

as 1.5

tensor, 
a large 

feature of

the question whether the Integrals in eq. 
converge. In the case 1=2 we already saw in section 3 that xl J 
finite range as long as 1.5 Bex< (l-A)Bgh or 1.5 Bex> Bgh holds. When 
the maximum field strength 1.5 B^^ at the surface of an isolated sphere 
lies inside the interval (B^fl-A ]>Bgh) , however, x^2 (R^ ,R2 ’ 
becomes long-ranged. One then finds for widely separated spheres with 
B^^Sj.Jj) - B(1) from eqs. (4.7), (3.2) and (3.4)

The difference B - Bki'/ is in leading order proportional to 
the dipole tensor, as can be seen using eqs. (2.9) and (2.12) (ft again 
abbreviates ft^-i^)

(2’))[q(B<1>

Thus for Bg^(l-A) <1.5 Bgx< Bg^ the decay of x^2,R2»®ex) 
l^x“^2l * °° 1S too slow to make the integral (4.3) absolutely 

convergent. By virtue of the special properties of the dipole 
however, the integral converges conditionally and depends for 
sample only on the sample’s shape. This is a familiar
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if oneoccurs
function aas

thethe

A.2 The coefficient

thedevotedbewill
as

3
Vl21^lA;5ex>Fl<Bex> *

4xa

)- lq<B

(4-1.1)+q(B(1)))

distribution of spheres, using

(4.12)
(%(♦) •

in

ine-g-

(4.13)

we

magnetostatic 
similar

threshold values has 
. by measuring F(®ex)

(4.3) 
did not

k/2
J dy siny {0(B 

y=0

Lacking suitable experimental data, however, 
distribution which is continuous and vanishes

(2))](q(B(1))-q(B(2))]l ■

shall use a simple model 
outside the Interval

J dR2 

|R1-R2l>2a

The function q describing the distribution of 

principle to be determined experimentally, 

very dilute systems when

Integral in eq.
however, we

-1" d- (_)2 

R-2a a a

F(Bex> " FO<Bex> ‘ 1 ’ Bex’ ‘

mathematically related ones. A 
calculates the 

of

(1),

Here we assumed a hard-sphere fluid like 
for the pair correlation function the expression

<2>-b

+S(B<1)

This subsection
coefficient F1(Bex)» which according to eqs. 
well as eq. (3.4) is given by

(2))(i-q(B

W)-q(B(2)

g2 - -2a)

case 1 = 3
Unfortunately,

(1))(^q2(B

to the discussion of
(4.1) - (4.4) and (4.7)

converges at least conditionally, 
succeed in providing a general proof.

interaction problems and 
shape dependence occurs already 

magnetization of a simple diamagnetic medium 

homogeneous applied field.
We believe that also in
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0 or
(4.14)Q(S) - A2

elsewhere.

themaximum
The
was

4.are
0.01 thethan inerror to range

0.3 < < 0.5, relative numericalwhile for 0.5> the

, there exists a distance of
discussed above. This rangeas

is in 5 function forof thatobserveWeas
than thosegreater

in the distance thethe
the field doto then not

(cf •to F Not1,
into the penetration thereforeaccount no

which

contribute,
function for < 0

that the hand alsonegative on one

i fig- 
the

J
for B

Bex

1 
field

Fl<Bex> 
is shown in dependence of ( 

values of B^1^

range 
which

imposes
since due to the

positive

> 0, implying

|RrR2l 
at

Bex-
2.2a,

Increases 
b<2>-

B<1>

If S < Bsh(l-A)

 f,_A  
11 2

Bsh 
and less

—)21BshJ ’

S > Bsh ■

and consequently t 
between the surfaces of

/B K sh

BP 
of these field strength amplifying configuration 

As b^I) increases above 0.8 B u c^e 
B<D

decreases.
becomes

B<1>

If 1.5
the spheres beyond which x^2] 

plotted
2 0.45 1

Or Bsh< 
vanishes,

B & 0.45 B . ex sh
configurations, 
spheres is comparable 
essentially contribute
taking 
additional restriction on the validity of the theory, 
neglect of the possibility of partial transitions of spheres it is only 
reliable for Bex> 0.45 Bgh anyway.

In order to understand the form of the function 
look at fig. 6, where x^2^ 
for A ■ 0.2 and different

B /B , ex sh
error is estimated lower than 2Z.

B - B^1) ex

below more

) let us have a 
B<l>)/Bex

. As long as B^1^ < Bg^(l-A)
= 0.8 Bgh> only those configuratons of the spheres contribute to F^ for 

B^2)- B^^> (l-A)Bgh“ For B^^ approaching 0.8 Bg^ from
and more

The evaluation of the integral in formula (4.11) was for 24a >
(2) performed numerically, with the maximum field strength B 

surface of sphere 1 calculated using eqs. (2.20) and (2.24). 
contribution to the integral from configurations with l^-^l > 24a 
determined analytically with the aid of eqs. (4.9) and (4.10) 
(neglecting terms of order R in the integrand) for a sample having the 
form of a flat slice perpendicular to $ ; this is the geometry used in
the experiments. The results thus obtained for the coefficient F^(Bgx) 

listed in table I and displayed in fig. 4. The absolute numerical 
made is estimated to be lower

penetration depth, 
also sect. 1, assumption (3)).

, and 
7[2J

(2)_
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4

-4

2/30.60.3 0.4

a ofwidthsdifferent

Fl(Bex>Table I: The coefficient
forF1forF1

6-0.26=0.16=0.16=0.26=0.16=0 shlsh

*

2

0

-2

0.30 
0.35 
0.40 
0.45
0.50 
0.52 
0.54 
0.56

0.58 
0.60 
0.62 
0.64
0.66 
0.68 
0.70

-0.15
-0.26
-0.42
-0.67
-1.02
-1.24
-1.49
-1.82

-0.18 
-0.31 
-0.53 
-0.86 
-1.40 
-1.73 
-2.17 
-2.81

0.5

Bex' Bsh

-0.24
-0.42
-0.71
-1.21
-2.17
-2.97
-6.88

-11.6

-2.24
-2.83
-3.83
-5.54

-16.8
0.26
0.00

-3.92
-7.75

-22.5
-9.45
-0.15

0.00
0.00

-11.5
-8.16
-3.88
-0.90

I -0.02
0.00
0.00

B /B ex

Fig. 4: The coefficient for
the distribution of threshold values.

B /B ex

/ / / /

I 
i 
i 
i

i
i

A = 0.2^
\ \

\ X

I
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Bex'Bsh

Fig- 5: of the spheres at which clusterthe
becomes function the externalofzero as

field, for different values of A.

1.0

0.5

0.0

thegivefor curves
to which they belong.values of B sh

I 
0

I 
0.5

tn

■a

CN 

lx

S
IX i \0.9 

V.

a»

a

TA \
\ \l.O 

T
-°-5H i

-0.5
-B11’

08 \ \ 
\ \0.7

IB121 >/Bex

The

The distance
—[2]function J

as function ofFig. 6: The cluster function X
A=0.2 . The numbers labeling the

0.62.0 L-*a
0.2
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B

of

field strength5. Probability distribution of the maximum

ofF

an

are
thepoints,

workitself we prefer to

(5.1)

average

need
the

all N spheres are

coefficient

implying

it shall always 
formula for P(B) we 

actual maximum 
1. While 

in the

is ■x

superconducting spheres, 
the probability 

the

A + 0. For
Fy therefore becomes very 
poor convergence of the density expansion

for finding, at 
maximum field strength at 
quantity of interest. An 
the Introduction, would be run at 
that at which an appreciable fraction 
diamagnetic interaction induced transitions, 
sensitivity of the detector, one needs to know 
close to their transition points, and in 
distribution P(B) is important.

Rather than with the distribution function P 
with Its integral p, given by

and in what follows
write down a 

denoting the 
a superconducting sphere 

perfectly diamagnetic,

Besides the fraction 
experiments have 'concentrated, ; 

given external 
the surface of a 
elementary particle detector,

external field strength well below 
of spheres Is lost due to 

estimate the 
how

to Introduce 
field strength at 
In B<N>

on which 
also the probability distribution P(B) 
field strength, the value B for the 

superconducting sphere is a 
as described In

average number of superconducting spheres
, B with maximum field strength smaller than B

P(B) = J P(B')dB’ » _______________________________________0 average number of superconducting spheres

configurations screening the field strength now contribute, 
the other hand the Influence of amplifying configurations diminishes, 

consequently Fy grows.
The Influence on F^ of configurations 

proportional to the slope of X^ at B 
width of the distribution Q this slope Increases 
limit A •> 0. For small A the absolute value 

large when Bgx Is close to y Bsh* 
in this region.

Obviously P(B) vanishes for B > Bgh> 
be understood that B < Bsh* Tn order Lo 

the new symbol 
surface of 

assumed to be

with widely separated spheres is 
B^l) = 0; with decreasing 

and it diverges In the 
the 
2 ,

spheres
In order to
how many spheres 

this connection
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only those still superconducting taken intoare
account,

the indices
(5.2))

Using the new notation we may write

< x(N)0(B-B(N) (5.3)> .

in section 4 we shall
order infirst

a

+ (?(*2)} Fl(Bex) + (5.4)

over

X

(5.5)

S(2) B<2>

1
' F

(with 1,J1....Js
of all still super­
conducting spheres).

B ex

x(1)e[B-B(1)] = x^1^s(b-b(1)) .

BiN) - . \ =

+ 341 
4ita3,

Vi X1N)0(B-B1N))>

calculation of B^N^

P(B) “

J dR2 (x(2)(R1,R2;Bex)S(B-B(2)) - x(1)0(B-B(1))] 

|R1-R2l>2a

I if* > 
1=1

X (F0(Bex) + *

p(b) = { x(1)e{B-B(1)]

When two spheres are present Bk*' is either equal to Bkx> or to B^\ 
depending on whether sphere 2 still is superconducting. From eqs. (3.3) 
we find (remember that B^2^" B^2^ = B^2^)

To proceed the averages over the threshold values have to be performed. 
For a single superconducting sphere B^1^ is obviously equal to B^1^ when

0 , so that

Analogously to the density expansion of F(Bex) 
here calculate the interaction contribution to p(B) to 
the volume fraction. Under the assumption that a cluster expansion of 
x(N)0(B-B(N)) exists we find from eq. (5.3) for a hard-sphere fluid 
like distribution of spheres (cf. also eqs. (4.1)-(4.7))
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)
+ 0(B(2)-S2)0(S1-S2)0(S1-B(1)))0(B-B(2))

)

(5.6)
) + S(S1-B

(1)

(5.8)
- P0(B) + tp/B) +

with

(5.9)pq(b) b 0(B-B(1)) ,

(5.10)
PX(B)

Theone

P<B> - {(fo-H'F1)0(b-bi

X(2)0(b-B(2)]-{0(S1-B

<2>))2(0(B-B(2))-0(B-B(1>)]-

p0 
probability

(2))0(S2-B(2))(0(b-b(2))-0(B-b'

to diamagnetic 
non-negatlve 
because p(B)

.x(2),0(B-8(1)

- 9(S1-B<2> (2)-S2)0(S1-S2)0(S1)0(s2-b

(?-(*2) .

5 +

(2))40(B 5l^)0(B-B^1^

» (©(B-B^2) )-0(B-B(1) )] ] + <^(*2)l tF0+*Fl+

J di<2 [(1-q(B^ ))) 

|R1-R2l>2a

(5.8) corresponds to the 
) of the maximum field 

ix 
non-interacting spheres. The second term 

broadening of P(B) due I 
One easily convinces oneself that p^ is 

and non-posltive for B > , as it must be

The first terra pQ in the last member of eq. 
sharp probability distribution 6(B-1.5 Bfi 

strength which one finds on
♦p^ describes to lowest order the 

Interactions.
for B <

(2))0(B-B

= -------- - -------3 J dR2 {l-q(B
F0(Bex)4,Ia |5142l>2a

(2))0(S2-B(2)

oneself 
B^1) , as

X(2)0(B-B(2)) - I<2>0(B-B<1) )+{l-q(B<2) )}2(0(B-B(2))-0(B-B(1)) )• (5-7)

(1b) ,

By Inserting formulae (5.5) and (5.7) into eq. (5.4) and expanding the 
denominator of the r.h.s. of that equation (which Is of course only 

possible If | 4>Fl| < F ) one arrives at the desired expression for the 

integral of the probability distribution:

yielding for the average over the threshold values
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the l.h.s of (5.8) satisfies Theon
in itfactora

have
transited state

for whichare

result
2 isfactor the

Bif B < tends tonon-zero
normalizationin the

fromin stems
the

An limit A -* 0 of sharpsituation theis a

(5.11)

’constructive zero' and recalling that

)}
)0(B

and the expression (5.10) for the coefficient takes the formPl

»P/B) -

3 )) • (5.13)
4xa'

Pl 
close to

Pl 
with

eq.
contains

For
(1)

• J dR2 (e(Bi 
li^-^2 |>2a

integrand 
for B<2> .

interesting special
distribution of threshold field strengths, when one has

sharpening 
vanishes,

))2 {o(b-b(2>

)) - 0(B-B(1)

)}2 - 0(Bsh- B

b<2>

- (0(B-B(2)

- 0(B-B(1)

)-0(B-B^^

(1-q(B(2>

- 0(B-B^2^

! dR2 (0(B-B(2)) - 0(B-B(1)

|R1-R2l>2a

‘sh-B

)- {0(B-B(1) .-B sh

(1))| , (5.12)

(2))6(B .-B sh

)-0(B-B(1)

){0(Bsh-B

)-0(B-B(1)

deviates from unity, and the smaller is 
in a sharpening of 

{l-q(B(2))J 
therefore only 
approaches B^ from 
condition P(Bsh) = !• The factor l/FQ(Bex) contained in p^ 

fact that p(B) gives the ratio of the number of superconducting 
spheres with maximum field strength smaller than B and the total number 
of superconducting spheres.

(I),

Bsh' Thus 
accordance

(l-q(B(2>

(2))-0(Bsh-B

(2)) -

(1))J - 0(Bsh-B

,(2))-0(Bah-B<1)

P(B).
and when B > B 
b<2><

is, the 
significantly 

Pp thus a broadening of Q will
> Bgh the 
integrand

0

zero as

One may then write , inserting a
B < Bsh-

p(B) * 1.
which damps 

, if one 
(2)

the condition 
{l-q(B(2))}2 ,

B^. This factor can be understood physically, 
realizes that spheres in configurations with high values of B^ 
already transited into the normal conducting state with enhanced 
probability. The broader the distribution Q of threshold values 
smaller are the values of B^^ for which {l~q(B^2^)}^

below,
factor l/FQ(Bex) 
the ratio of the
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-B)+20(B-B (5.14)

For A / 0 there is
first

values values•of the width A of the
an

too to
resolved

wherea
thePo

two

1.0

0.5S 
CL*- 

s 
§o 0.0

(5.13) are connected with the coefficient (also 
a simple manner; comparison with eqs.

' Be
in

clearly visible that 
the lowest order

) + (0(B(1)(B ex

B'Bsh
Fig. 7: The result of the first order density expansion for the 
integral p of the probability distribution P, at 4>=0. 1 . The full 
lines correspond to A=0, the broken lines to A=0.1 and the dashed 
lines to A=0.2 .

The integrals in eq. 
evaluated in the limit A -* 0) in 
(3.6) and (4.11) shows that

Py(B) =

In fig.
order density expansion of p(B) at 
different values of the external

x/Bsh“ 
the figure, but at larger external field strengths it is 

3 positive A makes P(B) narrower. At B=£Bex, 
of the expansion has a jump discontinuity,

density expansion converges poorly (cf. also the discussion at the end 
of section 4.2); therefore the two branches of the curves do not match 
at that point.

Apparently 10% volume fraction suffices for
P(B). For B _/B_u= 0.2 the Influence of f

but at

no such simple relation between p^ and F^.
7 we plotted Pq(B) +0.1 p^(B) , the result of the 

a volume fraction of 10%, for three 
field strength and three different 

distribution Q of threshold 
appreciable broadening of 

finite A is too small to be

0.80.60.40.2

CD 
"x

>7/ 
!// 
h/
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6. Comparison with other work

was our

a
Before iswas a

case.

•)2 + (• (6-1)Bex '

In the assumed 90 The appropriateto

(6.2)

rather than the volume since the

<7"(n2)

R-2a

- BshWBsh- kJ - 0(Bgh- kx» ++ |e(

3
2

N Tta2______________

area of the monolayer

■ 0(Bsh“ kx* + 2\!, $ {9(Bsh~

X[2I(R1,R1+R;Bex) +

fraction <t>, since the latter depends 
thickness of the non-magnetic material embedding the spheres, while the 
diamagnetic interactions do not.

Using" eqs. (6.1) and (6.2)
first order in n from eq. (4.11)

siny =—— 
l-(a/R)J/2

F<Bex> ’ F0(Bex> + A
■Jia

b<2>

/ dR dR x y
R >2a
Rz“°

■)2}1/2

we find for the density expansion of F to

{( COSY 3 
l+(a/R)J

n =

3B ex
32-(a/R)

9) . In this simulation, as
We shall first compare our results with those of a computer simulation 

carried out by Valette, Waysand and Stauffer 
in our theory, the spheres were supposed to be monodisperse in size and 
distributed in a hard-sphere fluid like fashion. A sharp distribution of 
threshold values was assumed. In contrast to our work, however, only 
dipole Interactions were taken into account, and only a two dimensional 
arrangement of spheres - a 'monolayer' perpendicular to the external 
field - was considered. Before a comparison with the simulation 
possible, we have to restrict our theory to this

Retaining only dipoles in eqs. (2.12), (2.17) and (2.18) we find for 
the maximum field strength the simple expression

geometry y is equal to 90 degrees.
parameter for the density expansion is the area fraction

on the

3B
— 2-(a/R)J
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)) + ^(n2)nex

<7(n2) ■ (6-3)
sh

8 the

curves
due

area
volume theif one

thisequal Fortheto

as
a

2

J as c e( 
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the simulation corresponds 
thickness of the monolayer 
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"Bsh

Fig. 8: Comparison of 
the computersimulation 
by Valette, Waysand and 
Stauffer (full line) and 
the result of the first 
order density expansion 
(dashed line) for a 
monolayer of area 
fraction rj =0.075 in 
dipole 
The 
marks 
density expansion for 
three dimensional sys­
tem, with all multipoles 
taken into account, 
at $=0.05 .

- $ «2-3>)

is also shown in fig.
two dimensional model in

spheres.
for a three dimensional system, with all

8. As had to be

to a

In fig. 8 the first order density expansion (6.3) of F is compared to 
the simulation of Valette, Waysand and Stauffer. The agreement of both 

is very satisfactory; the small difference between them could be 
to higher orders in T|. Only near Bex/Bgh“ 2/3, the point at which 

the density expansion diverges (cf. sect. 4.2), the discrepancy between 
the simple formula (6.3) and the simulation becomes appreciable. 

The area fraction r)=O.O75 used in 
fraction $=0.05, if one takes 

the diameter of
result of the density expansion 
multipoles taken into account, 
expected, it substantially deviates from the 
dipole approximation. The simulation of a three dimensional system, with 

many multipoles retained as needed for a realistic description of the 
diamagnetic interactions, requires a dramatically higher numerical 

13) effort. Nevertheless, work in this direction is in progress

0.5

0.0 --
0.62 0.64 0.66

Bex/Bsh
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1.0

0.5

0.0
0.2

since
were

Feder andmeasurements on

detection method ment ioned in the
measured so

one

the 9 for

a

were
andsame as

Broniatowski determined (cf.effective sect.constant
1.7.2).

In fig.
the values for Fq and F^ one

way
the

expansion 
and

2

10 we show the experimental results. Figs. 11 and 12 display 
obtains from them by a least square fit of

0.4 0.6
Bex'Bsh

introduction;
the effective permeability of the sample, 

not distinguish between the transitions of one large sphere and those of 
several small ones. Keeping this in mind, it is not astonishing that the 
measurements of Feder and McLachlan do not quantitatively agree with the 
result of the first order density expansion, also drawn in fig-
0=0.17 and A=0 . We rather consider remarkable the extent to which the

Fig. 9: Comparison of the 
experimental results of 
Feder and McLachlan (full 
line) with the first order 
density expansion at 
0=0.16 and A=0 (dashed 
line).

use the pulse 
they essentially 

• that they could

Comparison of our results with real experiments is problematic, 
the presently available data were obtained with samples which strongly 
deviate from the idealized system treated in this work.

Fig. 9 shows measurements conducted by Feder and McLachlan^) 
indium spheres mixed with plastic powder. The volume fraction of indium 
was about 1/6. The spheres were not at all monodisperse, but their radii 
varied from 5 to 25 pm. Since Feder and McLachlan did not

theoretical curve corresponding to a strongly idealized system correctly 
describes the global form of the experimental results.

On the other hand recent experimental data obtained by Mettout and 
Waysand^O) strongly deviate from the theory. The samples used in their 
measurements consisted of tin spheres dispersed in paraffin; they 
prepared in the same way as the samples of which Mettout 

dielectric
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sh
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0.60.40.2
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The 
results 

and 
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the

0 L
0

corresponding to 
fieldstrength.

Fig. 11: The fraction Fq, corresponding to single particle 
effects, versus the external fieldstrength. The experimental 
points are obtained from the raw data shown in fig. 10.

Fig. 10: The experi­
mental results of 
Mettout and Waysand. 
Plotted is the fraction 
F versus the volume 
fraction $>; the numbers 
marking the curves give 
the value of the ratio 
Bex^Bsh to which they 
belong. The dashed lines 
are the fits used to 
extract the values of Fq 
and F^ plotted in figs. 
11 and 12.
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$ = 0.05,to the values of F measured at
the0.15 and were

finds for measurementsone
0.05 and

the function
drawn InalsoIs

the theoretical
foundthoseorder ofvalues for are one

cannot
which had dimensions notwere

*0
0

spherical geometry

- 5

flat-slice geometry

0.4 0.60.2 Bex'Bsh

*1 
experimentally.

This disagreement

0.1, 
results

-10L 
0

e-rCT

Fig. 12: Experimental results of Mettout and Waysand for the 
coefficient of the density expansion compared with the result 
of the theory, evaluated for two sample geometries- The distri­
bution of threshold values corresponds to the values of Fq 
displayed in fig. li­

the linear function F^ + <t>F
0.21. Error bars

discrepancy between theory and experiment is enormous:
magnitude larger than

be explained by the fact that the samples, 
20mm x 15mm x 2mm, were not infinitely extended 

flat slices, as assumed in the evaluation of the long range part of the 
integral (4.11). Even if one puts the long range part of this Integral 
equal to zero, which corresponds to a spherical form of the sample, the

To Interpolate between the values found for Fq we use
F0(Bex) " <1/2>h " tanh( 15<Bex/Bsh"°-48) 51 ■ ”hlch

fig. 11. Fig. 12 shows the theoretical curve for F^ calculated with the 
distribution of threshold values corresponding to this function. The

estimated by comparing with
Fq and F^ when only the measurements of F at 

4> “ 0.1 are used.
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theoretical values for

transitions accounted for Ln the theory, which describes thenotare
states of if a

spheres partial transitionsand for these are

due

a
it that there are

transitions escape
low external f ieldstheir transitionsspheres start at

the which havebe ones
Interactions•

relatively less importantselected forspheres thusare
defects theand interactions.

muchfor the a

one

been

not
insufficient,volumethe effortsso

better theory for Fy. In particular partialon a

only voltage pulses above
Thus many 

but

’ex 
and/or

< Bc- 
experience 

’detectable’

sudden complete transition. In order to be able 
to distinguish signals from noise of the detection electronics, however, 

certain threshold value can be accepted.

They therefore will 
strong magnetic

spheres which become normal 
the detection. These

suggest t 
fraction isFo + 

should concentrate

large defects
The remaining

Fr still 
experimental ones (see fig- 12).
The reason for the disagreement between theory and experiment might be 

related to the phenomenon of partial transitions of spheres. Partial

to a

weak magnetic Interactions. This might explain why 
experimental data obtained for the 'detectable' spheres show 
weaker influence of magnetic Interactions than one would expect from the 
theory.

Although the effect discussed above might well be the reason for the 
disagreement between theory and experiment, one can hardly claim that 
the Influence of magnetic interactions in dispersions of superconducting 
superheated granules has been understood in a satisfactory way. How 
could one improve on this situation from the theoretical side? The data 
shown in fig. 10 do not suggest that the linear approximation 

in the volume fraction is insufficient, so that

is possible 
conducting via partial 
'undetectable'

the spheres by the indicator functions. Consequently, 
large percentage of all spheres reaches the normal conducting state via 
gradual partial transitions instead of quasl-instantaneous complete 
transitions, the theory cannot be applied. From fig- 11 one sees that a 
considerable fraction of all spheres, viz. about one third, transits for 
Bex < Bc - 0.45 Bsh, 
possible in principle.

As has been pointed out by Mettout^\ it is even possible that, 
to partial transitions, only spheres with weak interactions have been 
detected for the following reason. A slow partial transition of a sphere 
gives rise to a much smaller voltage pulse in the induction loop used 
for registration than a

are about five times larger than the
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was
will in have

The
on

inthe

In ofview thebetween the
on

more
a

A

the qualitative 
measurements of Feder and McLachlan

On the experimental side progress could be made if it were possible to 
produce spheres with less defects, resulting in a narrow distribution of 
threshold values. In a dilute (<t> < 10%) , cluster-free dispersion of
such spheres the theory predicts that only very few spheres start the 

below the critical

formidable one

powder (see fig. 9) it is tempting 
promising than the dispersions of

transitions of spheres should be taken into account. This, however, is 
extremely difficult. The problem of magnetostatic interactions between 
two diamagnetic spheres was rather easy to solve because of the simple 
geometry. Partially transited spheres will in general have normal 
conducting regions, regions being in the Intermediate state and also 
perfectly diamagnetic superconducting regions. The geometry of these 
regions will be complicated and depend on the magnetic Interactions. 
Therefore even the two-sphere problem is a formidable one when partial 
transitions are possible.

Another point on which the theory might be improved is the way 
which the effect of defects is incorporated, but before trying this it 
seems to be advisable to first gather more empirical knowledge about the 
structure and distribution of defects.

agreement between the theory and 
indium spheres mixed with plastic 

to infer that this system is 
in paraffin. Suchthe dispersions of tin spheres in paraffin.

conclusion would be premature, however, since the qualitative agreement 
might be fortuitous: after all there is only one measurement at one 
volume fraction available, while there are at least two parameters - Fq 
and Fi “ present in the theory. Nevertheless a systematic experimental 
study of the indium/plastic samples would be very interesting.

transition into the normal conducting state for Bex 
field, so that the problem of partial transitions would virtually be 
eliminated.
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OVER ELECTRISCHE EN MAGNETISCHE EIGENSCHAPPEN
VAN DISPERSIES VAN BOLVORMIGE DEELTJES

SAMENVATTING

behandeld.

Het eerste onderwerp is de effectleve dielectrische constante van een
dispersie. Deze constante beschrljft de dlelectrlsche elgenschappen van
het materiaal lengteschaa1, alsde dispersie zichop een eenwaarop
homogeen medium gedraagt-

ef fect ieve dlelectrlscheDe al langer danwordtconstante eeuween
bestudeerd zi jn dan ook reeds diverse theorieen hlervooren er
voorgesteld. kunnenDeze echter slechts restrict iesonder bepaalde
worden gebruikt. Met het ge val hoogpolariseerbarename voor van
inclusies geconcentreerde dlsperslesin ontbrak tot toe eennu
systematische behandeling.

In hoofdstuk I wordt theorie ontwikkeld die ook in dlt moellijkeeen
gebled toepasbaar is * theorie ordeDeze verwaarloost tn laagste
correlaties tussen de poslties de deeltjes, die dan in de hogerevan
ordes op een systematische raanler in rekenlng worden gebracht.

deIn theorle onder vee1-deelt jes electrostat ischmoet meer een
interactieprobleem worden opgelost. Wegens de gecompliceerdheid
probleem kan slechts geva 1het bolvormige wordenIndus lesvan

De orde de theorie hangt af de n-deeltjes correlatie-van van
functie van de verdeling van de bolletjes. Experimentele informatie is
echter zelf s de paar-correlatiefunctie in dispersie nietvoor een
beschikbaar, zodat modelfunctie gebruikt worden. Eenmoeteen
vergelljking van diverse met Ingen met de theoretische resultaten toont

dat het veel gebruikte harde-bollen-gas model wel maar langaan, soms,
niet altijd voor de beschrijving van reele dispersies deugt.

wordt golfgetalhoofdstukIn I voorts afhankeliJkenog een
Clausius-Mossott1 fortnulegeneralisatie de dewordengegevenvan en

zelfcorrelaties onderzocht-

behandeld.
nde

In dlt proefschrift worden twee aspecten van de fyslca van dispersies

merites van een methode voor de hersommatle van een bepaalde klasse van

van dlt
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vooral met op

Interactles

ZljInteractles. tot
In dede veldsterktes demaximale van

waardoor hetdeze van

wordt inII voor
wordtVoorts

devoor

en
komt kwalltatlefis minder goed.

de andertheorie van eenmaar
experlmenten 

redelljk met overeen, 
experiment vertonen grote afwljklngen van wat op grond van de theorie te 
verwachten was. Hiervoor zljn verschlllende redenen aanwijsbaar.

verschlllen
diverse

magnetostatIsche 
diamagnetIsche 
bestudeerde

Een experiment
de resultaten

In een

tussen de supergeleidende, perfect 
bollen zljn wlskundig equivalent met de In hoofdstuk I 

electrostatIsche Interactles. Zlj geven aanleldlng 
op de oppervlakken 

verschlllende waardenbollen, waardoor deze blj 
ultwendig veld normaalgeleidend worden.

De fractie van bollen die na een bepaalde verhoglng van het ultwendig 
veld nog supergele1dend z L in is een gangbare meetgrootheld. Deze fractle 

verdunde dispersles in het kader 
dichtheidsontw Lkkeling berekend. 
heldsverdellng voor de maximale veldsterkte 
nog supergeleidende deeltjes bestudeerd- 

speclaal geval kan de theorie met een computersimulatle worden 
vergeleken en komt met deze ultstekend overeen. De overeenstemming met 
echte

nog supergeleldend z L jn is 
in hoofdstuk

na een

Het onderwerp van hoofdstuk II vormen dispersles van supergeleidende 
bolletjes, die door een ultwendig magnetlsch veld in een oververhltte 
metastablele toestand gebracht zljn. Dit soort dispersles wordt al enlge 
tljd experimenteel onderzocht, vooral met het oog op mogelijke 
toepasslngen In detectoren voor elementalre deeltjes.

De

ook de waarschljnlljk- 
op de oppervlakken van de

van een
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theorie van 
ten gevolge

3. Ten onrechte verwaarloost Schurr in zijn theorie van electrolytische frictie 
de hydroelectrische koppeling.

5. Uit het feit dat de door Rybczyfiki en Hadamard berekende mobiliteit van 
enkele bolvormige druppel overeenkomt met de mobiliteit van een harde bol met 
geschikt gekozen slipparameter mag men niet concluderen dat er voor de veel- 
deeltjes-mobiliteiten een soortgelijke overeenkomst bestaat-

1. De door Namiot gegeven 
tussen Brownse deeltjes 
incorrect.

een lange-dracht interactiepotentiaal 
van hydrodynamische fluctuaties is

2. De door Guillien waargenomen waarden van de effectieve dielectrische 
constante van suspensies van kwik in olie liggen ook voor lage volumefractie 
van kwik hoger dan de waarden die door de theorie voor een harde-bollen-gas 
model van de suspensie voorspeld worden. Dit verschil kan niet alleen het 
gevolg zijn van polydispersiteit in de grootte van de kwikdruppels.

6. Beschouw een systeem uit de irreversibele thermodynamica, dat snelle en 
langzame variabelen bevat, en waarvan de beweging door een stelsel van lineaire 
differentiaalvergelijkingen beschreven wordt. Voor lange tijden kan men de 
beweging van de langzame variabelen door een slechts deze variabelen bevattend 
stelsel vergelijkingen van het zelfde type beschrijven; de cofe’fficienten van 
dit gereduceerd stelsel voldoen echter i.h.a. niet exact aan de Onsager 
relaties.

4. Het verdient aanbeveling, om de fluctuatieontwikkelingen van hydrodynamische 
transportcoefficienten in suspensies van harde bollen te herhalen met 
anders gekozen voortzetting van de connectoren voor de virtuele situatie 
elkaar overlappende bollen.
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bestaat, waarbij a(n), b(n) en c(n) scalaire coefficienten zijn.
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(Max Planck, Vortrage und Erinnerungen, Wissenschafcliche 
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(Palm & Enke, Erlangen 1980)

7. Het effect van fluctuaties op de beweging van een gedempte Duffing- 
oscillator kan in plaats van de door Rodrlguez en van Kampen toegepaste 
ontwikkeling van de Fokker-Planck vergelijking ook met behulp van de Langevin 
vergelijking op een systematische manier berekend worden.

(n-1,n-l)
X”- kn_2 P. Ji

+ b<n> j ... j1 n-1* Jn-1 J1

10. De door Planck gebruikte indeling van de natuurkundigen in de metafysisch, 
de positivistisch en de axiomatisch ingestelden is tegenwoordig minder van 
toepassing.

Gemengde slip-stick randvoorwaarden zijn niet voor alle waarden van de 
slipparameter voldoende om de oplossing van de stationaire Stokes vergelijking 
voor de stroming van een incompressibele, visceuze vloeistof binnen een 
bolvormig vat eenduidig te bepalen.

“ 31

8. Men kan eenvoudig inzien, dat tussen de isotrope tensoren
A(X,X)
il i2’” 12’ 3X 3X-r” 31

die totaal spoorloos en symmetrisch zijn in hun eerste X en in hun laatste X 
indices, voor n > 1 een samenhang van de vorm

A(n,n) / \ A(n,n)
V” "n-l ? ’ “ Jn-1’" Jl = 4--- Vl “• P 3n-l ’' ’ 31

. (n-1,n-1)V-*n-P °


