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Chapter I

i

Spin glass theory:
Introduction and Survey

The purpose of this chapter is twofold. On the one hand it serves as an introduction 
to spin glasses, in particular to the more recent theoretical developments. On the 
other hand it surveys the subjects as treated — in more detail — in the subsequent 
chapters.
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On the experimental side there is no single criterion that defines a spin glass, but 
there are some general properties that more or less identify systems as such:

(i) The dynamic susceptibility x(cv; T) for small oscillating magnetic fields cusps 
at a temperature Tj which only weakly depends on frequency u>. The “sharp­
ness” of the cusp may increase when the magnetic field amplitude is reduced 
[7]. An additional constant magnetic field also affects the shape of the cusp.

(ii) There are no Bragg reflections in neutron diffraction patterns; this indicates 
the absence of long range ferromagnetic or antiferromagnetic order [8].

Characterization of spin glasses

The archetypal spin glasses are dilute magnetic alloys consisting of a noble metal, 
such as Cu, weakly diluted with transition metal ions such as Mn. The impurity 
concentrations range from 1 to 10%. For much lower concentrations, c <C 1%» 
the impurities can be considered as isolated and this relates to the Kondo prob­
lem. At higher concentrations these systems become magnetically ordered at low 
temperatures, e.g. CuMn orders antiferromagnetically.

The dominant contribution to the interaction between the magnetic ions is due 
to the scattering of the conduction electrons at the spins of the impurities. This 
indirect exchange interaction J(r) oscillates strongly with distance r and is given 
by

where Jo and <f>0 
metal [1,2,3].

The r-3-dependence of this Rudermann-Kittel-Kasu 
(RKKY) has the interesting consequence that the free energy of 
obeys the scaling relation [4]

<•?).
with temperature T, magnetic field H, and concentration c. For the scaling function 
J- there is no microscopic theory but it follows, in principle, from a determination 
at one particular concentration. From the scaling relation (1-2) universal curves can 
be derived for e.g. the magnetic susceptibility and the specific heat as a function of 
temperature [5].

Another aspect of the RKKY-interaction is that it changes sign over distances 
of the order of the lattice spacing. Since the distance between the impurities is 
a random quantity the sign of the interaction between impurities is also random: 
either ferromagnetic or antiferromagnetic. This, in turn, leads to a high probability 
for frustrated loops of connected spins in the system. A loop of connected spins is 
frustrated if the product of the signs of the connecting bonds is negative: there is 
no spin configuration that satisfies all these bonds [6].
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(iv) The magnetic contribution to the specific heat shows, for low temperatures, 
linear temperature dependence with only a broad maximum at a temperature 
well above Tj [10].

1__
cJ\/2Tr

where J is the typical coupling strength and c is the impurity concentration.
The experimental evidence that below a well-defined temperature Tj the spins 

freeze in random directions [9] led EA to consider the order parameter

9 = (Si’’ ' s!2))>

(Hi) If feasible, as for instance in AuFe. Mossbauer spectra show a splitting of 
the hyperfine line at the cusp temperature Tj. This is a clear proof of the 
formation of static or quasistatic internal fields at temperatures below Tj and 
indicates the freezing-in of the spins [9].

The linear specific heat dependence on temperature is characteristic of many 
“glassy” systems (see section 4) and can be explained by considering the system 
as an .! v subsystems with only two accessible energy levels [12]. Such a 

i-.mt account for the cusp in the dynamic susceptibility. On 
. i ? cusp, and the formation of local moments, are arguments 

. msition at Tj. But if there is a phase transition then it is 
: long range ferromagnetic or antiferromagnetic order and 

: . specific heat.

(v) Around and below Tj magnetization and susceptibility depend strongly on 
“history” and relax on macroscopic time scales [11].

The first milestone in the development of spin glass theory is the work of Edwards 
and Anderson (EA) [13]. They considered the Heisenberg Hamiltonian

w = - 57 Aa • sj — h • 57 s>>
•J ■

where i and j are sites of a regular d-dimensional lattice and where the spins 
are considered as classical vectors pointing in directions s,. In a spin glass with 
substitutional disorder (such as CuMn) the coupling constants should be written 
as = EijJfrij) with e.y = 1 if both sites i and j are occupied and = 0 
otherwise. The coupling strength J(r,j) is, at least for the case of CuMn. given by 
the RKKY-interaction (1.1) that varies with spin spacing r,;. EA chose a simpler 
model where the coupling constants Jy Eire independent random variables drawn 
from the Gaussian probability distribution

2c2 J2 J ’
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same spin at widely seperated instants 
an average over thermal fluctuations.

’ < Tj, even 9 = 1 for T = 0.

The idea is the 
realization of

H i ) J

The average of the free energy can be expressed as

K = -TlogZ = T lim=——i, (2.7)

where the overbar ... denotes the disorder average. In principle it is not rigorous to 
take the limit of n —* 0 as Eq. (2.6) allows one to calculate Zn only for integral values 
of n (in practice it is easy since one only keeps terms linear in n). Nevertheless, that 
is what EA did and they found a transition temperature Tc where the susceptibility 
has a cusp. The cusp is smoothened when a magnetic field is applied. Unlike in 
real spin glasses, the specific heat also cusps at Tc.

The order parameter (2.3), but now with S;1’ and sj2’ (as suggested by the no­
tation) taken from different replicas in (2.6), plays a particular role in their calcula­
tion of the free energy. The transition temperature Tc is defined as the temperature 
where q vanishes. The low temperature (“spin glass”) phase is characterized by a 
nonzero order parameter g, whereas the total magnetization vanishes in the absence 
of a magnetic field.

It was Blandin [14] who established the equivalence of the order parameter (2.3) 
and the expression

x exp

where s-1^ and s-2^ are two observations of the 
of time. The angular brackets, (. ..), denote 
One expects q = 0 for T > Tj and q 0 voor T < Tj, even q = 1 for T = 0.

The thermodynamic properties of systems described by a Hamiltonian 7Y as a 
function of temperature T follow from of the free energy

F = — TlogZ (2.4)

(Boltzmann’s constant is taken to be unity, kg = 1) where Z is the partition 
function

Z = Tre~^ (2.5)

with ft = T-1. A problem that arises here is that the Hamiltonian of Eq. (2.1) is 
a random quantity due to the randomness of the bonds that obey the probability 
distribution (2.2). One seems to have the choice of either averaging the partition 
function Z over disorder (which is easy), or the free energy F (which is hard). The 
coupling constants are to be considered as “quenched” random ; iables with their 
values fixed for a particular sample. One should therefore t - . . verage of the
free energy, which represents the behaviour of a typical syst

EA introduced the replica method to calculate the free 
following. One considers n independent copies (replicas) of 
the system and calculates the total partition function

zn=j n^1’ / iw1 n^n)

a=l



(2.8)

the EA order parameter.
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(2-9)

(2.10)

with

(2.11)

= (s“s?)n (a 0 6) (2-12)

where

(2.13)

should

Qab = Q (2-14)(a 0 b).

With this choice the variational free energy per replica becomes, in the limit n —♦ 0,

5

and where {s“} denotes all possible configurations of the spins s“,t = 1,2,..., N.
The natural variational parameters that appear in the calculations are the ele­

ments of the matrix

A priori, the replicas 
take the form

(X)n = ££...£Xe-^"/Z".
{*"}

which is usually referred to as

q n N nN

= E E^^-^EE^- 
a,6=1 tj=l a=l »=1

zn = EE--Ee~'w"
{»■} 02} {»”}

are identical so SK postulated that the matrix Qab

1EA = ^E ’̂

The Sherrington-Kirkpatrick model

The work of EA is not fully exact in the sense that approximations are made 
that cannot be rigorously justified. The development of a full-fledged mean field 
theory was initiated by Sherrington and Kirkpatrick (SK) [15,16]. They considered 
a system consisting of N Ising spins, s, = ±1, with Hamiltonian

N
H= - JijSiSj - Hy' Sj,

.=1

wh.:: .' .- .- T'ii-ig constants are independent, identically distributed random
■/ :■ from a Gaussian probability distribution with zero mean and vari-

Tie scaling of the typical coupling strength (i.e. the variance of the 
-lion) with the system size N guarantees the existence of the ther­

modynamic limit.
; he replica method introduced by EA to calculate the free energy of 

■ lie model. After the disorder average of the n-fold partition function (2.6) one has
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0
0(Q°k) = 0

0

Fig. 1. Structure of Parisi’s matrix for n = 8.
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Qo 
0 /

/?2(i - QY
4

Qi Qz
Qi Qi

dz
—== C
/2tt

decreasing coefficients Qo, Qi,... that, in the limit n —» 0, changes into a monotonic 
“order parameter function” Q(x) with 0 < x < 1. For temperatures T > TC(H) 
the order parameter function Q(x) = 0 identically. This leads again to the replica 
symmetric solution. For T < TC(H) one has Q(x) 0 with a maximum value 
Qm = Q(l) (which is identical to the EA order parameter (2.8)) that tends to 1 for 
T->0.

It was also Parisi who in 1983 gave a physical interpretation of the order param­
eter function Q(x~) [19]. This picture, which now is widely accepted, is that below

Qo Q\ Qi Qi Qi Qi Qi
Qi Qi Qi Qi Qi Qi

Qo Qi Qi Qi Qi
Qi Qi Qi Qi

Qo Qi Qi 
Qi Qi 
0 

Qi Qi Qi Qo

oo

+ J
—oo

and Q is determined by the requirement dFq/dQ = 0. In zero magnetic field there 
is the solution Q(T, 0) = 0 for T > Tc = 1, but for T < Tc there is another solution 
where Q(T, 0) 0. For nonzero magnetic field there is no transition. From the free
energy SK found cusps at Tc for the susceptibility, as occurs in reality, and for the 
specific heat, which does not occur in real spin glasses. The magnetization is zero 
in the absence of a magnetic field for all temperatures.

There are problems with this solution for T < Tc and the most important one is 
that the zero temperature entropy per spin S(0) = —1/2tt whereas entropy, being 
the logarithm of an integer number, should be nonnegative.

A more careful analysis performed by De Almeida and Thouless (AT) [17] showed 
that the replica symmetric solution is only stable beyond the ‘‘Almeida-Thouless- 
line”, i.e. for temperatures T > Tc(/f). One has Tc(0) = 1 -nd T-(H) —♦ 0 for 
|/f| —♦ oo. Where it is stable the replica symmetric solution : exac' and has been 
verified by other methods. For temperatures T < TC(H) t rejkca symmetric 
solution is invalid and in order to find a solution replica symn b: to be broken 
[17].

In 1979 Parisi suggested a scheme for replica symmetry breaking that led to a 
stable solution for temperatures below the AT-line [18]. The structure of Parisi’s 
matrix, for the example of n = 8, is sketched in Fig. 1. It involves a sequence of

/ 0
Qo o
Qi Qi
Qi Qi Qi

Q2 Q2
Q2 Q2 Qo

Q2 Q2 Q2 Q2 Qi Qi 
\ Q2 Q2 Q2



(2.17)

(2.18)

— rri) = 0.

(2.20)

2.3
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can be expressed as

The self overlap qao is the previously defined EA order parameter, see Eq. (2.8). 
For three different phases a, (3, and 7 one either has qat> = q^ = q~'a or two of 
them are equal and one is larger. This is the ultrametric property (see e.g. [22]). 
The relation between the order parameter function <2(rr) and the overlap qo13 is an 
intricate one which will not be discussed here, but see the references of Section 5.

The question whether the Parisi solution is unique has not yet been answered. 
Also the lower critical dimension, below which there is no longer a phase transition, 
is unknown. The upper critical dimension, below which the mean field picture is 
no longer valid, is generally believed to be six [23].

Dynamics in the mean field model

The SK-model deals with Ising spins that have no natural intrinsic dynamics. One 
way of introducing a time-dependence in this model is by means of Glauber dynam­
ics [24]. An other one is to introduce a “soft spin” version of the model in which 
the spins s,- are continuous variables submitted to a double well symmetric poten­
tial which strongly favors s, = ±1, the Ising model being recovered in a suitable

the AT-line the spin glass has an infinity of phases. Each phase a is identified by 
a set of local magnetizations m“ = (s,)“, where (.. .)" denotes a thermodynamic 
average in the phase a. The free energy of a phase a is given by

Fa = Nf + fa, (2.16)
where f and fa are of order N°. Eq. (2.16) expresses the fact that all the phases 
have the same thermodynamic properties as determined by f. Mezard et al. showed 
that the phase free energies fa are to be considered as independent random objects 
[20] with a distribution that depends on temperature. From Eq. (2.16) one has for 
the probability that the system is in the phase a

P-0fa
P = —---------

so that the thermal average of an observable O

(O) = ^P„(O)°. 
o

It is jnst.'nriive at this stage to point out an analogy with the low temperature 
ferromagnet where there are only two phases, labelled 4- and —. One would write 
for the average magnetization

(s.) = |(s.)+ + |(s,)_ = |(rn - m) = 0. (2.19)

Mezard et al. [21] showed that the set of the phases a is ultrametric. To demonstrate 
this one defines the overlap qo(3 of two phases a and fl by



Finite-dimensional spin glasses3

8

The solution of the SK-model reveals a rich structure: below the critical temper­
ature TC(H) the system condenses into a “non-ergodic” state characterized by an 
infinite number of pure phases unrelated by symmetry. It is important to know 
whether this complex ordered phase persists when one goes from a mean field 
(d = oo) model to real (three-dimensional) spin glasses and indeed whether real 
spin glasses exhibit an equilibrium phase transition at all. One possibility to an­
swer these questions is to take the solution of the SK-model as a starting point,

limit. Relaxational dynamics is then introduced through a Langevin equation with 
a Gaussian noise term [25,26].

The results can be summarized as follows: Above the AT-line (T > TC(H)) the 
relaxation is exponential with a relaxation time that diverges as T —* TC(H). Below 
the AT-line one distinguishes relaxation within one phase, which is nonexponential, 
and the relaxation associated with the “hopping” of the system between the phases. 
The latter appears to occur on timescales that diverge with system size. For instance 
Mackenzie and Young [27,28] estimate for this timescale r

logr~jV«. (2.21)

One often assumes that, since the dynamics of real spin glasses appears to occur 
on macroscopic timescales, the dominant process in the relaxation can be identified 
as the hopping between the phases. This led to the studies of models with a 
hierarchical distribution of timescales [29] and hopping dynamics , ametric 
spaces [30,31,32,33].

Another approach is to study a system of states that have randon energies. 
The simplest possible model of this kind has been introduced by I -: la [34,35] 
and it consists of a set of independent, Gaussian distributed energy le vels. It has 
several important features in common with the SK model below the AT-line. In 
particular it is known (see Eq. (2.16)) that in both models the (free) energies of the 
lowest lying states are random variables with an exponential distribution.

De Dominicis et al. [36] were the first to consider the kinetics of a system of 
exponentially distributed random energy levels. They postulated a master equation 
for the occupation probabilities of the energy levels and for one particular choice of 
the transition rates (for going from one level to another) they found stretched expo­
nential relaxation. Some time later Koper and Hilhorst [37] showed that this same 
model, with slightly modified transition rates, also exhibits power law relaxation. 
In Chapter II a study is presented that deals with a more general class of transition 
rates for which it is possible to obtain analytic results. In all cases considered either 
power law or stretched exponential decay is found for the asymptotic behaviour of 
the equilibrium autocorrelation function. All exponents are temperature depen­
dent. FYom this study it can be concluded that in order to obtain nonexponential 
relaxation no hierarchical tree structure is needed, let alone ultrametricity; the fact 
that the level energies are random suffices.
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and to obtain the properties of finite-dimensional systems by systematic expansion 
around the SK-model. Such a program is technically rather difficult but neverthe­
less De Dominicis and Kondor have made considerable progress, the latest result 
being a continuation of spin glass field theory below the upper critical dimension 
d = 6 [38]. An alternative approach to the study of finite-dimensional spin glasses 
is referred to as “zero-temperature scaling”: a self-consistent, phenomenological, 
theory of the ordered phase.

Zero-temperature scaling

Central to this theory is the idea that one can understand the ordered phase of a 
spin glass, which at least should exist at zero temperature, from its ground state 
properties. A key role is played by an exponent y which is related to the sensitiv­
ity of the ground state energy to changes in the boundary conditions and which 
can be determined in the following way: consider a hypercubic spin system (in 
d-dimensions) of linear size L with periodic boundary conditions in all directions. 
Its ground state energy is denoted by Ep. Next impose anti-periodic boundary 
conditions in one direction; the new ground state energy is denoted by Ea. For 
the case of an Ising ferromagnet it is immediately clear that Et, = (£„ — Ep)/2 
is the energy that is associated with the interface (“domain wall”) introduced by 
the anti-periodic boundary condition so that it scales with linear dimension L as 
EL ~ Ld~1. For spin glasses one also finds interface energies scaling as ~ Ly and 
obviously y < d — 1 as a consequence of the frustration inherent to these systems. 
When the exponent y is negative there can be no ordered phase for any positive 
temperature T since arbitrarily large connected clusters (“domains”), which cost 
arbitrarily small energy, will be thermally excited. So the sign of y determines 
whether the system is ordered for nonzero temperature or not.

Both McMillan [39,40] and Bray and Moore [41,42] have numerically determined 
the exponent y for Ising spin glass models with a Gaussian bond distribution cen­
tered around zero. For d = 2 they found y ss —0.3 and for three dimensions y ~ 0.2. 
Thus there should be no phase transition (except for T = 0) in two-dimensional 
Ising spin glasses, whereas three-dimensional systems should exhibit a phase transi­
tion. These predictions are supported by Monte-Carlo studies by Bhatt and Young 
[43] and by Ogielski [44],

In the framework of the renormalization group (RG) theory (see for instance 
[45]) the energy of the interface is regarded as a scale-dependent width of the 
distribution of effective coupling constants at length scale L: ~ JLy where J is
the typical, microscopic, bond strength. The scale-dependent coupling constant Jl 
scales to infinity (“strong coupling”) with increasing L if y > 0 and to zero 
coupling”) if y < 0. This is consistent with the requirement y > 0 for an * 
phase at low temperatures.

Physical properties at nonzero temperature depend on dimensionless ratios like 
J/T so it makes sense to reinterpret the increase (decrease) of the characteristic 
coupling with increasing length scale as a decrease (increase) of the temperature
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i

(3.1)

the magnetic field

y > 0

—A— 
Tc

* 
0

0

oo

oo

all temperature 
there is a stable 
:n loses order at 

vr. Tc: an unstable

Fig. 2. Schematic RG flows. For y > 0 the zero temperature fixed point is 
stable whereas for y < 0 it is unstable. This implies an ordered phase only for 
y > 0.

3.2 The droplet model

Based on the results of the domain wall studies by MacMillan [39,40] and by Bray 
and Moore [41,42] Fisher and Huse (FH) have developed a “droplet”-picture of the 
ordered spin glass phase [46,47,48]. This discussion will be limited to Ising systems.

A definition of a droplet in a ground state can be given as follows:
One picks a particular site, say i, one chooses a length scale L, and considers all 
the connected clusters of Ld spins that contain i. With each such cluster there is 
associated an energy that is the difference between the energy of the ground state 
with and without the spins of the cluster flipped. Those clusters with lowest energy 
are called droplets and FH assume that their typical energy El scales as El ~ Lv 
as described above.

The basic hypothesis of FH is that the droplets are the low-lying excitations 
from the ground state. For small positive temperatures T the behaviour of the

at fixed coupling strength. From this point of view an ini: 
decreases under coarse graining for y > 0, and increases f< >i 
zero temperature fixed point for y > 0. Since for T —> oo 
longer length scales there must, for y > 0, be a critical ten:] 
fixed point of the RG. Schematic flows are depicted in Fig.

The exponent y is associated with the physical proper ti at or near zero tem­
perature — hence the name “zero-temperature scaling”. Indeed all quantities that 
are dominated by large scale excitations can be described by exponents related to 
y. Examples are the decay of the correlations in the spin glass phase [46]:

((s.s.+r) - («.)(«.+r))2 ~ r~v (r -> oo),

and the dependence of the singular part of the magnetization on 
[42]

^^sing
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(3.5)S(^) (“> 0)

yielding 1//-noise up to logarithmic corrections.

3.3
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lagnetic field, which breaks the global spin flip symmetry, the 
. phase is destroyed.

with y < < d — la new exponent. From this assumption they derive logarithmic
decay for the time correlations

a magnetic noise spectrum that behaves as 

l/u>| logu;p+v^)

• At any given temperature below the ordering temperature Tc (which FH as- 
sume positive for d = 3) the system has only two pure equilibrium states 

simply related by globed spin reversal. In such a state each spin s, 
zero expectation value (s,) and thus the EA order parameter (2.8)

The chaotic nature of the ordered phase

If one had to estimate the energy associated with the reversal of a droplet of Ld spins 
one would guess that it should scale as Ld‘/2 being the sum of order Ld‘ random 
bond contributions of uncorrelated sign, with d, the fractal dimension of the surface 
area of the cluster. Ofcourse d — 1 < d, < d. This estimate is much larger that the

This co:;: ■. s with the mean field theory, which predicts an infinity of states in 
the spin glass phase where the latter exists for all temperatures below the AT-line 
Te(/f).

In order to deal with the dynamical behaviour of the ordered phase a new hy­
pothesis is required. FH follow MacMillan [39] who assumed that the relaxation 
takes place via thermally activated processes over free energy barriers. They conjec­
ture that the typical free energy barriers Bl associated with the reversal of droplets 
of linear size L scales as

(logt)-^

ordered phase (which only exists for y > 0) is dominated by the “thermally active” 
droplets, i.e. those droplets with energies not greater them T. For general positive 
temperatures FH argue that the properties of the spin glass phase can still be 
understood in terms of such droplets that now have a typical free energy Fl which 
also scales cis Fl ~ Lv.

The static properties of the spin glass phase as derived from the droplet picture 
are none other than those given by the zero-temperature scaling theory discussed 
above (see Eqs. (3.1) and (3.2)).

The two main features of the ordered spin glass phase, as emerge from FH’s 
droplet picture, are
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A system is said to be in thermodynamic equilibrium when all of its physical ob­
servables are stationary with respect to time. The properties of a thermodynamic 
state depend on a set of thermodynamic variables, e.g. temperature and magnetic 
field for a magnetic system. After a change of these thermodynamic variables, such 
as a sudden reduction of temperature or magnetic field, it takes some time before 
the new thermodynamic state is reached. For many systems in nature this equili­
bration time is very short, of the order of seconds or less. But there are marked 
exceptions where the equiEbration time can (depending on the circumstances) be 
much longer than experimentally accessible observation times. When, during the 
equilibration process, the system appears to be in equilibrium on experimental time 
scales (i.e. when many observables appear to be stationary) the system is said to 
undergo aging.

actual free energy of order Ly which imphes that large cancellations from different 
parts of the interface take place. Such cancellations should be sensitive to changes 
in temperature T implying that the relative orientations of spins sufficiently far 
apart can change with arbitrary small changes in temperature [46].

A simple Imry-Ma-style argument [49] will be given not for temperature changes 
but for small changes in bond strength: Consider an Ising spin glass with a con­
tinuous bond strength distribution of width J. A low energy excitation from the 
ground state, involving an overturned droplet of linear dimension L, costs an en­
ergy of order Ly. Now a small random perturbation of typical size A.7 is added to 
each bond. If the ground state remains unchanged, the contribution to the droplet 
energy is of order AJLd*!2. Hence, provided ( = ±d3 — y is positive, the ground 
state will be unstable to the perturbation on length scales L >, with

&)'

The relative orientations of spins separated by more than be strongly af­
fected. This sensitivity is a fundamental property of spin gl- '• one has ( > 0 
due to d, > d — 1 and y ~ 0.3 for d = 3 and y ~ —0.2 for < The behaviour 
(3.6) has been numerically confirmed for d — 2.

For temperature changes AT Bray and Moore constructed e railar argument 
[50] which gives

|AT|-1/<.

Hence, for any change of temperature AT, however small, there exists a length scale 
lor beyond which the equilibrium state becomes unstable.

It is interesting to point out a correspondence between this result and Parisi’s 
solution of the SK-model: both show a chaotic dependence of the spin correlations 
on temperature. This correspondence has recently been discussed by Kondor [51].
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The best known systems that exhibit aging are the glasses of which vitreous 
silica (window glass) is a familiar example. Glasses are to be regarded as solidified 
supercooled liquids that undergo extremely slow processes which attempt to estab­
lish equilibrium. It was the glassy behaviour that led Coles, at the end of the 60’s, 
to coin the name “spin glass” for the random spin systems such as CuMn [52].

Detailed studies of systems that undergo aging, in particular performed by 
Struik on amorphous polymers [53] and by Lundgren et al. on spin glasses [54], 
have firmly established that, during the aging process, linear response relations 
hold provided that the perturbations are sufficiently small. For spin glasses this 
means that for instance the magnetization per spin m(t) responds linearly to the 
applied magnetic field H(t):

The t, \ c esponse function x(t,t — t') gives the response at time t to a unit 
magnetic impulse at time t — t'. Causality implies that y(t,t — t') vanishes 
for t' < 0. The time instant t = 0 cannot be chosen arbitrarily (the system is 
not stationary with respect to time): it is the instant of time on which the system 
was “born”, i.e. for spin glasses it is the moment on which the quench into the 
spin glass phase took place. In thermodynamic equilibrium the response function 
depends only on the time difference t' and not on the absolute time t.

A system that undergoes aging exhibits waiting time effects or memory effects: 
the behaviour of such a system depends on its history, i.e. on what happened to 
it from the moment that it was born. The dependence of the response functions 
of an aging system on absolute time accounts for such phenomena. The simplest 
demonstration of the waiting time effect in spin glasses is done with magnetization 
relaxation: At time t = 0 one quenches the system into the spin glass phase while 
keeping the magnetic field at a constant small value (e.g. 10 Gauss). One then waits 
for some time tw and at the instant t = tw one cuts the magnetic field and from 
then on one records the decay of the magnetization. If one repeats the experiment 
for different values of the waiting time (experimental values range from 1 second to 
several days) one finds that the observed magnetization profiles differ with waiting 
time: the decay becomes slower as the waiting time tw gets larger. Moreover, at 
the absolute time t ~ 2tw a change in the decay rate of the magnetization takes 
place which shows up as an inflection point in log-log plots of magnetization versus 
time. It is because of the latter effect that sometimes the term “memory effect” is 
used.

Linear magnetic response of a spin glass can only be observed for very small 
magnetic field changes (10 Gauss or smaller). For larger values nonlinearities come 
into play. These nonlinearities have nothing to do with those of the static sus­
ceptibility but rather manifest themselves in the dynamics. The studies of Alba 
et al. [55], Nordblad et al. [56] and Refregier et al. [57] are concerned with these 
dynamical nonlinearities and their discovery made clear that there was a need for



4.1

14

a theory of, in particular, nonlinear aging phenomena. In 1988 Koper and Hilhorst 
presented a phenomenological theory for aging in spin glasses [58]. Not long after, 
and independently, Fisher and Huse presented a similar theory [59] that puts more 
emphasis on the activated dynamics of the droplets (see section 3.2). The theory, 
in the language of Koper and Hilhorst, is presented in full detail in Chapter III. A 
concise description follows in the next subsection.

coupling 
distribu- 

mponent)

Domain theory

For definiteness the discussion will be focussed on a spin glass model which consists 
of Ising spins on a simple d-dimensional lattice. The Hamiltonian is given by

H = - (4-2)
(ij)

where the first sum runs over all neighbouring sites on the lattic 
constants are independent random variables drawn from a pro 
tion with zero mean (no residual ferromagnetic or antiferromagr 
and variance J.

A fundamental role in the theory is played by the overlap betwc r two states of 
the system which is, loosely speaking, the degree of similarity of the correlations of 
the two states. (This overlap of correlations is not to be confused with the overlap of 
magnetizations defined by Eq. (2.20)). For two thermodynamic equilibrium states 
of the same system at temperatures T and T' and in magnetic fields H and 
the similarity between the correlations can be expressed by means of an overlap 
function that essentially is the projection of one of the states onto the other

C^’x,(r) = ((SiSi+r)£ - (si)'x’(si+r)'x’)((5isi+r)5’, - (4.3)

where X = (T, H) and where (.. .)^ denotes a thermal average at X. The overbar 
denotes, as usual, an average over disorder. The self-overlap function

C^x(r) = (fe^>3 - WIMP (4.4)
is nothing but the correlation function associated with the EA order parameter 
(2.8). In the paramagnetic phase this correlation function decays exponentially 
and one may define a spin glass correlation length ^e,(X) by

^x,x(r) ~ e-2r^'’(x’ for r —» oo. (4.5)

The correlation length diverges when X enters the spin glass region, in which 
it is infinite. The question whether there exists an AT-line TC(H), which delimits a 
whole spin glass region, or whether there is only a spin glass phase for zero magnetic 
field (as FH argue) is not a relevant one as far as the domain theory is concerned. 
If the correlation length is finite for all nonzero magnetic fields then the domain 
theory is still applicable provided that the magnetic fields are small: as long as the 
correlation length is the largest length in the problem the system can be considered 
to be effectively in the spin glass phase.

A consequence of the chaotic nature of the spin glass phase (section 3.3) is that 
there exists an overlap length lcg(X,X') such that
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(4-8)for r —> oo.e
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Cx(r,t) = «^i+r)( - (s,),(s1+r)0((^,+r)l’ - (s,^.{si+r)n
where (...)< denotes an average over a time-dependent ensemble. The time-depend­
ent characteristic length of the overlap function (4.7) is referred to as the time­
dependent characteristic size €%(t) of the X-domains:

Cz(r,t) ~

It describes up until what length scale correlations in the time-dependent state are 
identical to those of the same system in equilibrium at X.

A natural assumption of the theory is that once the system (at t = 0) is quenched 
into the spin glass phase at X it equilibrates by developing X-domains, i.e. the 
characteristic X-domain size grows with time e.g. according to a power law

e-2r/<.,(X,A")C'\,(r) ~ for r -» oo. (4.6)

In the limit where the two thermodynamic states become identical, i.e. X = X', 
the overlap length diverges up to the correlation length For a finite difference 
between X and X' the correlations of the two thermodynamic states are nearly 
identical on length scales less than £„,(X,X') and different on larger length scales. 
This overlap length is a generalization to nonzero magnetic fields of the length 

discussed in section 3.3. It is a key concept in this thesis as it allows for the 
description of, in particular, nonlinear aging effects.

Let X be an
this framework,
at X': these are 
a copy . the ■ 
above i 
empha •

«x(t)
with p a positive constant (but this particular form of the growth law is not crucial 
for qualitative conclusions). The characteristic size of the X'-domains also grows 
with time t until it finally reaches the overlap length £C,(X, X'). For the special 
choice X = X' this upper limit is the correlation length £<.,(X) and so in a system 
that for X exhibits spin glass order the characteristic X-domain size grows without 
limit (in principle until one single mono-domain is formed).

The necessity to consider simultaneously and within one and the same system 
X'-domains for more than one value of X' (or even for a continuum of such val­
ues) becomes clear when there are time-dependent magnetic fields or temperatures. 
Such a description is essential for a correct qualitative understanding of field and

arbitrary reference temperature and magnetic field. Then, within 
a definition can be given of X-domains in a thermodynamic state 
regions where the correlations are identical to the correlations of 
le system in equilibrium at the reference X. According to the 
these domains have a characteristic size f„,(X,X'). It should be 

■or a particular thermodynamic state at X' there is an infinite set 
of dom ■’ ores each of which belongs to a different reference temperature and 
magnetic field .< .

In a nonecmlibrium state one can again distinguish X-domains, whose linear 
size then depends on time. The overlap function (4.3) can be generalized to the 
nonequilibrium case by



related to the X-domain size. In this thesis it

(4.10)Tmaxft)

(4.11)Z’max(^ )

A one-dimensional model
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4.2

The domain theory of aging is built upon quite some postulates. One would like 
to construct however simple a model that demonstrates some of the ideas of the 
theory.

The model of choice is a one-dimensional Ising spin glass chain with randomly 
temperature-dependent nearest-neighbour couplings. The coupling constants are 
taken to be independent random variables such that

temperature jump experiments. But it is also logically unavoidable: if e g- the tern 
perature and magnetic field keep alternating between two values A' and A . then 
neither the X'-domain structure nor the X"-domain structure should be priviliged.

The relaxation of magnetic fluctuations of the system in equilibrium at A , where 
it consists of one “mono-domain”, will be referred to as equilibrium relaxation at A . 
According to experiments [55,60] and to theoretical predictions (see section 2.3) this 
relaxation is very slow, e.g. power law (like ~ t~° with a « 0.1) or even logarithmic 
(like ~ 1/ logt). In a system equilibrating at a temperature and magnetic field A, 
where the range of the X-correlations is the time-dependent X-domain size €x(t), 
it is natural to conjecture that the magnetic relaxation spectrum is characterized 
by a maximum relaxation time TmaI i  
is postulated that at fixed X

It is easy to see how the above postulates can be used to explain linear aging 
effects. Consider for instance the field jump experiment described in the beginning 
of this section: At time t = 0 the system is quenched into the spin glass phase while 
a small magnetic field is applied. At time t = tw the magnetic field is cut. The 
longer one waits, i.e. the larger tw, the larger the (T, 0)-domain size (the magnetic 
field is so small that it has no influence). Consequently, the relaxation for larger 
waiting times is slower than for shorter waiting times, because through the domain 
size the maximum relaxation time gets larger with increasing waiting time. In 
Chapter III a more detailed explanation of aging effects is given. In particular the 
interplay between the time-dependent domain size and the overlap length Ceq is 
discussed as it gives rise to the more interesting nonlinear aging effects.

At this point it is of interest to remark that Rossel et al. have observed aging 
effects in a single crystal of the high Tc superconductor Y1Ba2Cu3O7-x [61]. Much 
of the theory sketched above appears also to be applicable to this system.

with z a positive constant. (Only the fact that Tmaa. increases with the domain 
size matters, the actual analytic form has been chosen to fit experimental data). 
The important consequence is that in a time-dependent temperature and magnetic 
field Xt the instantaneous maximum relaxation time is related to the range of the 
Xr correlations:



—J with equal probability,

ir-T'r<4,CRT') (4-12)
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(i) for T = 0 a bond is either + J or

up to - /lies of the order of the equilibrium correlation length The above 
descrii , ! may arise if one renormalizes a d-dimensional spin glass bar of size

y x .
T.. is endowed with Glauber dynamics [24]: a master equation, with

specific ber transition rates, is postulated for the evolution of the probability 
of finding a particular spin configuration of the chain at a particular instant of time.

The full analysis of the model is given in Chapter IV where it is indeed shown 
that aging effects appear on length scales less than the correlation length R, and 
on a time scale less than the maximum relaxation time. The growth law for the 
characteristic domain size (4.9) and the dependence of the relaxation time on this 
domain size (4.10) are demonstrated. Within this same model one can also calculate 
(i) the time-dependent dynamic susceptibility xr°(u>\t), which is roughly speaking 
the proportionality between the amplitudes of an oscillating magnetization and 
magnetic field at time t, and (ii) the time-dependent spectrum of magnetization 
fluctuations STo(u>;t). Both these quantities depend on the observation time to 
which is the time window around the absolute time t within which the magnetization 
and its fluctuations are analysed. The observation time is chosen much smaller than 
the age t of the system. In equilibrium the two quantities (i) and (ii) are related 
by the fluctuation dissipation theorem (FDT). Experimentally the validity of the 
FDT for the nonequilibrium spin glass was reported in 1987 by Refregier [62]. The 
calculations of Chapter IV also demonstrate the validity of the FDT for this model 
in nonequilibrium, however with a proportionality factor that depends weakly on 
the observation time.

The interesting question is: How can one explain this result? Refregier [62] 
argues that, during the observation time, the system is to be considered as in “local 
equilibrium”, i.e. the system visits only part of its phase space but each phase point 
is visited with a probability that is proportional to the equilibrium probability. 
From the analysis in Chapter IV it appears that this may very well be true for 
the one-dimensional model. It should be remarked, however, that every almost- 
stationary distribution is sufficient for the FDT to hold because it approximately 
satisfies Glauber’s master equation for the system.

(ii) for a temperature increment AT the bond changes sign with probability 
rzXT/2,

where J and T are constants. (Only infinitesimally small magnetic fields are con­
sidered and hence the magnetic field dependence of the bonds is not taken into ac­
count.) As a consequence the equilibrium correlations of the model vary randomly 
with temperature (as they should according to section 3.3) in such a way that the 
overlap function (4.3) indeed behaves as (4.6) with an overlap length R,(T, T') that 
scales as
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. . ..y cl
ially disrupted. The 
the growing and the 
haracteristic domain 

•ng length scale in the 
.in size remains finite 

’hat there is also a finite 
and time-independent maximum relaxation time. Th. ximum relaxation time 
depends, through the characteristic domain size, on th< temperature rate of change 
and can presumably be made small compared to experimental time scales.

It is certainly interesting to know whether the predicted behaviour occurs 
nature. In the experiment one would have to look for the value of the temperature 
rate of change that is required to provoke the effect. Theoretically this question is 
answered in this thesis only within the framework of the one-dimensional model. 
There one distinguishes two types of temperature dependencies: a “weak” tempera­
ture dependence of the “equilibrium” relaxation (within the domains) of the system 
and a “strong” and chaotic temperature dependence of the correlations. In the cal­
culations the temperature rate of change is taken so small that during for instance 
a magnetic relaxation experiment the equilibrium relaxation is not affected signifi­
cantly. The calculations show that, subject to a temperature rate of change T, the 
magnetic relaxation takes place on a time scale rqa ~ . This timescale is much
smaller than the corresponding time scale of the system at constant temperature.

sistationary state (which is unlike any equilibrium state; in which no aging effects 
are present. The details of this analysis are presented in Chapter V. Here it is shown 
how, within the framework of the domain theory, one can arrive qualitatively at 
these conclusions.

The basic assumption of the theory is that the spi: x'.ass equilibrates through 
the growth of domains. When the temperature is cr : _ly changed at no mat­
ter how small a rate the growing domain structure : 
phenomenon of interest here is that a situation aris- 
breaking of the domains balance each other such t:. 
size is stationary. In this situation there is no longer 
system and hence there is no aging. The character:' 
(and dependent on the temperature rate of change

Suppression of aging effects

Lp till here no predictions were made from the domain theory. Even the validity 
of the FDT in a nonequilibrium spin glass [62] was demonstrated experimentally 
before it was derived theoretically.

But recently it has been found from calculations within the one-dimensional 
model that one can accelerate the dynamics of the spin glass drastically if one 
applies a linearly time-dependent temperature instead of a constant temperature.

Further reading

In this introductory chapter a concise review has been given of the developments 
m spin glass theory with an emphasis on aging. The aim has been to place the 
su sequent chapters in the proper context. More elaborate reviews are given by 
Binder and Young [63], Fischer [64,65] and by Chowdhury [66]. A fairly complete 
reatment of mean field theory is given by Mezard et al. [67]. Through these reviews



the interested reader has access to the bulk of the spin glass literature.
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"Apart from minor modifications, this chapter has appeared in Physica A 155(1989)431.
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i

In this chapter a general class of master equations for a system consisting of ex­
ponentially distributed random energy levels is solved. The equations differ in the 
choice of transition rates. The relaxation is found to be nonexponential in all cases.

Nonexponential Relaxation 
in the Random Energy Model



Introduction1

The kinetic random energy model2

(ii) that are independent random variables

P(E) = (2.1)
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(Hi) drawn from a Gaussian probability distribution with zero mean and variance 
1JVJ2:

Derrida’s [1,2] random energy model (REM) is defined as

(i) a system of 2^ energy levels E,

The simplest possible model of a random system is probably the model of inde­
pendent Gaussian distributed random energy levels (REM) introduced by Derrida 
[1,2]. It has several important features in common with the Sherrington-Kirkpatrick 
mean field model [3,4] of a spin glass which has been extensively studied in recent 
years, notably by Parisi and coworkers [5,6], In particular it is known (see Mezard 
et al. [7]) that in both models the (free) energies of the lowest-lying states are 
random variables with an exponential distribution. For the REM we rederive the 
connection between the Gaussian and the exponential distribution in a very simple 
way in appendix A.

It is therefore of great interest to study also the kinetics of a system of expo­
nentially distributed random energy levels. This was first done by De Dominicis 
et al. [8], who considered a master equation for the occupation probabilities of the 
energy levels. For one particular choice of the transition rates De Do: et al.

showed : ■ at this
.. . .r.ion.

it is 
end it is

[8] found stretched exponential relaxation. Some time later we 
model, with slightly modified transition rates, also exhibits power lav

This chapter deals with a more general class of transition rates fo: 
possible to obtain analytic results. In sections 2 and 3 this class is def. 
shown how the solution of the master equation can be found. In section < 5 the 
relaxation for an interpolating set of transition rates, parametrized by 1 w table q, 
that has the models of De Dominicis [8] and of Koper and Hilhorst [9] as limiting 
cases, is studied. The time dependent behaviour of an autocorrelation function 
of the occupation probabilities is determined. The special case of q = 0, that 
corresponds to De Dominicis’ transition rates [8], is treated separately in section 4, 
the general case in section 5. The behaviour of the relaxation can be depicted in 
a “phase diagram” with temperature and q as parameters. In section 6 transition 
rates based on the existence of barriers of random height between the energy levels 
are considered. In all cases it is found that the relaxation is either of the stretched 
exponential or of the power law type.



(2.3)

(2.4)

(2-5)P(e)
0

(i)

(2.6)
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(ii) that

(Hi) drawn from the exponential probability distribution (2.5).

The physical properties of the REM for temperatures T < Tc take finite, cutoff 
independent values in the limit

(iv) N —♦ oo, ec —> oo, while Ne~K‘ — v fixed (this is the limit in which the 
density of the levels e, at any given value of the energy becomes a constant).

For the dynamics of this model De Dominicis et al. [8] postulated a master equation. 
The master equation describes the time evolution of the probability Pi(t) of finding 
the system in level i at time t and reads

N N

= £^fx«)-E^.-p.(c (i = i,2,...,fv).dPj(t) 
di

are independent random variables

a system of N energy levels e,-

and where 0 is the inverse temperature (Boltzmann’s constant kg = 1). Clearly 
the lowest lying energy levels dominate the low temperature phase. The energies 
2. of the low -st N energy levels (where N is arbitrary) will be written as

Ei - E'o((V) + £,■ (» =

. r.dl and nonextensive random energy. By linearizing the Gaussian 
■oo..-Auibution of the full REM one can show that the e,- are distributed 

according tc : lie exponential probability distribution

( pe^'-'J e <ec

where p = T~' is the inverse critical temperature of the REM and ec is a cutoff 
energy. This is shown explicitly in appendix A, but see also Ref. [7], Hence the low 
temperature phase of the REM can be defined equivalently as

The model exhibits a phase transition at the critical temperature Tc = J/2v/log2. 
For temperatures T below Tc and in the thermodynamic limit the free energy be­
comes a constant E^Af) ~ Af J vdog 2 and the entropy vanishes. This indicates a 
completely frozen low temperature phase.

The probability P'’ to find the equilibrated system in level i is given by

P-’ = Z-’exp(-/?E,), (2.2)

where the partition function is given by

V
Z = J2exp(-^Pj)



(2.7)(« J)

e 0t' will be attained.

(2.8)(i # »,

W{j = e-^VfVj. (2-9)

We will restrict ourselves to some particular choices of barriers, namely

stud: De Do-

1. The cas = 0 is.9

fin) Independent random barriers.

(2-10)

(2.11)

(2.12)= -AP.(t)

<t>i = (2.13)

all i yields the eigenvalue equation

24

The transition rates for going from level j to level i obey the detailed balancing 
condition

(ii) Level dependent barriers, V) = voe/3,r' where 0 
identical to (i).

where we define Boltzmann factors Bt = exp(—/Je,) and where

N

C=Y,ViBi-

dPj(t) 
dt

ViBj

ViC-X

By demanding that

dPj(t)
dt

one obtains the eigenvalue problem. Let be the i-th component of the right-hand 
eigenfunction with eigenvalue —A. Then one can write

Multiplying Eq. (2.13) by V) and summing over

The solution of the master equation can be expressed in terms of a Green function. 
Eq. (2.6) with transition rates (2.9) can be written as

N

(i) Homogeneous barriers, V) = V, which is the special case 
minicis et al. [8].

w.jp;’ = w^p:"

so that in the limit t —» oo the equilibrium distribution P'’ ~ 
This requirement forces the transition rates to take the form

= e-^e-0^’

where is symmetric in i and j and can be considered as due to a barrier A,j 
between the levels i and j. In this work we consider e_<SA,) that factorize so that 
the transition rates assume the form



(2.14)= 1

A2 < V2< (2.15)0 = A, < V,C ■ • • < A/v < Vjv£.

N

(2.16)
t=i

The magnetization autocorrelation function3

(3.1)

(3-2)
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N

E V?B, 
V,C-A

GiM = Ee’A,‘ 
Z=1

In zero magnetic field we can average Eq. (3.1) with regard to the distribution of 
the magnetizations, which yields

C(t) = £ {Gn(t) - <?,,(«>)} P?-

The kinetic REM can be extended to a magnetic model by associating with each 
level i an independent random magnetization m drawn from a probability distribu­
tion with zero mean and variance N. The equilibrium autocorrelation function of 
the magnetization is then

1 N
CM = n E * - Gb(«>)} M.TJ’

The condition mentioned in Eq. (2.14) is fulfilled when V 0 for at least one pair 
i 0 j. When all Vj’s are different so that they can be ordered, 0 < Vi < V2 ... < Vn, 
then it is easy to see that the solutions of Eq. (2.14) satisfy

By the same argument it can be shown that C(t) is proportional to the equilibrium 
autocorrelation function of any physical quantity that does not couple to the ener­
gies of the REM. It is the purpose of this work to calculate C(t) using the kinetics 
defined in section 2.

Eq. (3.2) involves the Green function (2.16) and we cannot evaluate it without 
knowing the eigenvalues —A;. In order to cast Eq. (3.2) into a form that allows for 
an average over disorder we consider its Laplace transform,

N

iff / °-

Besides the right-hand eigenfunctions one can also compute the left-hand eigen­
functions detailed balance (2.7) implies = tf/Bi [10]. From the left and 
right-hand eigenfunctions the Green function can be calculated as

N

k= 1
VjBj Vj

- Az - Xt
V?Bk 

h -A')2



(3.3)(Re s > 0),C(t)

(3.4a)(Re s 0)

where

(3.4b)

and

(3.4c)- 1

(3-5)

(3-6)f^) =

(3-7)
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- E

N 

w = E

N 

yb]z2

(s + A,)F'(A,)

V?B] 
(YX + s)2 

N~ 

ZY XX + 3

B, 
VjC + s

V"B1 
(vx - X2

VjBj 

VX-^

VfBj 
ViC - z

1 N

oo

<5(s) = Jdt e 
o

which with (2.16) and (3.2) can be written as

c(5)4e
Z=2

C(s) = i

It turns out to be more convenient to write Eq. (3.7) as

and where A! = 0 is the eigenvalue of the equilibrium probability < ution. 
Using Eq. (2.11) one can rewrite Eq. (3.4c) as

N

^) = |E
We now consider the function f defined by

g(z)
(s + z)F(z)

in the complex plane. This function has poles in z = — s, in z = V}Q and in the 
zeroes of F(z). Since F(z) = 0 is equivalent to the eigenvalue equation (2.14) the 
residues of the poles in the zeroes of F(z) = 0, except for z = 0, exactly sum up 
to C(s). The contour integral of /(z) along a circle centered in the origin with 
radius R vanishes as R —t oo and hence we find from the total of the residues of 
/(z) an expression that no longer contains the unknown eigenvalues but only the 
Boltzmann factors B, and the random Vj:

N

<E



(3-8)

(3.9)C(t)

N

e~

(3.10)

Homogeneous barriers4

N
(4.2)
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N N

^EE
J=1

N N 

<EE
J = 1 kjt,

VtB( 
s-Vt

VtBt 
V'C,+s

VtB' 
V^ + s

VjBjVkBk 
(YX + s)(YX + s)
N

an inverse Laplace transformation yields the equilibrium autocorrela-

on the negative real axis: there isfrom which it is clear that C(s) has poles only 
no pole for s = 0.

Applying
tion function

<w=

(VX + s)(YX + s)
N

sZY.

^E^-x

f ds

C(s) = -1

g—woZt

The simplest situation arises when all barriers are of equal height. This is the case 
when all Vi are identical which corresponds to taking = Wq in Eq. (2.8). The 
transition rates then assume the simple form Wij = wqB{. When these rates are 
substituted in the master equation (2.6), the set of equations decouples and the 
solution can easily be found:

P,(t) = Pj" + {^>(0) - P/’} (4.1)

The Green function G.j(t) is the solution P,(t) of the master equation with initial 
condition P,(0) = 6{j and so the equilibrium autocorrelation function, Eq. (3.2), 
becomes

■ S7 is oriented counterclockwise and encloses all the poles of (7(s) 
.1 axis. When we change from the integration variable s to — sQ 

>>■■■_ that is more convenient for further calculations

,,r A y VjBjVkBk 

^ ^ (^ - Y,)(^ ~

^E
where the contour Q is still oriented counterclockwise and encloses all the poles of 
the integrand on the positive real axis. This expression will be used in the next 
sections where averages over various kinds of disorder are discussed.

c<*> -
n



oo
(4.3)Pb(B) =

otherwise.0

(4-4)0,n > 0).a

then be written

X N

C(t) =

N-1 -i

(4-5)X

(4.6)
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1
F(n)

Taking all V;’s in Eq. (3.10) equal to yields exactly the same result.
The equation (4.2) is to be averaged over the disorder. It is expressed in terms 

of the random Boltzmann factors B, rather than in the random energies e,. Their 
distribution function pg is easily derived from Eq. (2.5):

p 6.
' for (£)' <B

N P

lim
N—»oo

lim
N—oo

N fi 
(#)

For the squared partition function in the denominator of (4.2) 
integral representation 

oo 

JdXXn~'e-°>' (Rea 

0

we shall use the

= i - ^(wot)?r (i - £) + o (nS)

The JV-th power of this expression yields, in the limit of large TV, an exponential. 
The same procedure is to be applied to the Bj-integral of the second term. The

The average of the equilibrium autocorrelation function (4.2) can 
as

-fle-wolS. _ exp

: y dB,B;

(*)'

OO oo

JdX y dByXB}"*

0 / X2

(*)'

g — XB, —wq Btt

y_p_
N p

(*)

The limit N —♦ oo cannot be performed immediately due to the divergences at the 
lower bounds of the integrals. Consider for instance the first term. After a partial 
integration an expansion can be made in negative powers of N:

OO

y dB,B;

g

— — B 
N p

OO

! y dBiB~ie~w°‘B‘

(#)"

VP

OO

e.

—G):}

P g—wo B,t

V

N



finds

(4.7)+

T(a;x) (4.8)

(4-9)

-«r (4-10)

(4.11)

whereas we calculate the equilibrium autocorrelation function (3.10).

Level dependent barriers5

(5.1)

(5.2)
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c(t)=y 
n

-stags’

where the incomplete gamma function [11] is defined by
oo

= Jdt

case where the barrier factors V, in 
the energy levels according to

sBt-1

C(t) a? exp

where q is a parameter in the interval [0,1], and the factor N~p anticipates upon a 
possible need for scaling the transition rates with N. We shall deal with situations 
where g 6 (0,1), that is, temperatures below the freezing temperature. With this 
choice for V) we can write our starting point, Eq. (3.10), as

ds j=i 
27ri

F<-: la t one can write Eq. (4.7), by means of (4.9), as

(1-i
This result has been obtained along the lines of the analysis of De Dominicis et 

al. [8]. They, however, calculated the time-dependence of the overlap y(qw) at the 
maximum value qw of the Parisi [5,6] order parameter q(x)

N 

In this section we shall calculate C(t) for the 
the transition rates (2.9) depend on

A A BjBk
(sB’- l)(sB’- 1} 

' N------ =------------- eXP

Z=1

r(a; x) ~ x° 1e

which for largo x behaves as

other two integrals pose no particular problem and one

C(t) = exp |-nF (1 - (wot)«|



N—*oo

X

-stN+x

(5.3)x

taken

_£

= exp

+ stN~2p(l - q)B^qX-fi

(5.4)- stN-^B1-"-XBk-
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•J

ds

-XBk-

v
N

(#)

^Bk 
sB’-l

pBk 
sB’-l

_£ _£
B{ BBj " 

s^BI - 1)(SB] - 1)
Bj 

SB? - 1
Bj

SB<-
exp {-A(B, + Bj) — fi {

-SW’2P®

-2p (gl-f +

- stN-irBlk~"^

oo

J dBkB~J
£

oo

j dBkB~k 
g

-1

1 - 5(1 - g)B^ 
(1 -

__i_ V p[n~2 =-------
N 0

exp {-AB* -

v p
N0

(*)
As in the case of uniform barriers (section 4) the limit TV —♦ oo can >e 
immediately in Eq. (5.3), but first a partial integration over Bk is nc

OO

; I dBkB~k
(#)?

* exp

x exp
pBk

SBI-1
For > 1—g we adjust p such that —2p—(1—g)^ = —1, which gives p = | —|(1 —g)^- 

(Other choices for p would lead to a trivial result for C(t): either I is infinite or it 
becomes independent of t). This case will be treated first in the next subsection. 
Then we shall treat the simpler case of | < 1 — q where we can take p = 0 since 
the exponential expands as 1 + o(TV-1).

After introducing integral representations (see Eq.(4.4)) for the partition function 
and for the sum in the denominator we can perform the average over all sets of 
random levels, using the probability distribution (4.3) for the Boltzmann factors:

2 00 00 oo oo

C(t) =jJim>v2 I dBi y dBjJdxjdp^
(£)' (^)'

1 V’2 

-stN-2pBl



5.1

exp

(5.5)x exp

(5-6)

C(t) ~ A (5.7a)1-9)

where

(5.7b)r

1 this expression reduces

5.2

A + p—vexp

(5-8)
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ds
2^i

CO 

0+J) /du 
0

The integral in the latter expression converges. For q 
to the result published earlier [9].

-XBk-

(a + M

s(l - gtf - 1 
(^ - I)2

-sv?’1"’’} .

oo

I dBkB\ 
0

+ si(i - 9)b;’)

Bk 
^-1

(1 + u1-1)^

(l + u)2+i#

exp |

<>•«)=

— stv^1 — V
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find in the limit N —» oo:

Bi = xt*, Bj 
dropping primes again, 
expansion is, after

“ stBk~q

s(l — g)Bk — 1\ 
(sB’-l)2 J

s = (z + y)/(xyq 4- xqy), so

The case g < 1 — q

In the case | < 1 — q there is no need for a scaling of the transition rates with N, 
so p = 0. The I as defined by Eq. (5.4) then becomes, in the limit of N —+ oo, equal 
to

I ~

I ~

x exp < — XBk — p

oo

I dBkB,

(-“‘-Jrh)] _
This is substituted in Eq. (5.3). In order to evaluate C(t) for long times we set 
B, = xt*, Bj = yt?, Bk = zt$, s = s't-1, A = A't-» and fi = Then, after 

we expand in powers of The leading term in this 
one performs the A- and ^-integrations,

2 oo ooCO ldx 1dyfo o n 
x~ey-o

s(x + y){s(a:y’ + x^y) - x - y}

Inside the contour Q there is one simple pole, viz. at 
that we obtain power law relaxation for this regime

The case > 1 — q

For this case, where p = | — |(1 — we



{-s(x‘ ’ + j? ’)}

(5.9)x

that we

(5.10a)1-9)(9

where

(5.10b)

(5.11)a =

x

(5.12a)+ 9x exp

where
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2p 
t 3(2,-1)

O) -

1 p 
2’/3

p 
3(1 - 9)

_£ _£
x py 0

s(z + y){s(z’!/ + xyl) - x - y}
t'1' + !/’"’) + vT (1 -

ds 
2^eXP

(x + y)/(xy’ + x’y), so

r2 (1 +

This can be substituted in Eq. (5.3). We can evaluate C(t) for long times by 
changing the integration variables according to B, = Bj = t/P’-1, Bk =
zP*-1, /x = /x't-2*-1, A = A'i”2*-1 and s = s't-2’-’. Then, after dropping primes 
again, we expand for long times in powers of t~ . This means that the expansion 
is valid only for 7 > |. For the leading term of this expansion one obtains, after 
performing the A- and the /x-integrations, 

00 00

«29-i) J dx j dy £ 
0 0 n

s(z + y){s(xyq + xqy) - x - y}

The contour £1 only encloses a simple pole at s = 
also obtain power law relaxation for this regime:

C(7)-B+ (^9)

0(2,-1) 
2o 

0(2,-1)

1 can be taken for comparison of the result with [9]. Note 
£ < 1 — q only allows zero temperature, = 0.

can be obtained by the following change of integration 
xt°, Bj = yta, X = X't~a, p = p.'t~o, s = s't-qa and Bk = 

where

„2A
23

C(i) ~

g(W) 1
1 ~ 2g +

C(t) ~

Here also the limit q 
however that the condition

The result for 9 < | 
variables: Bi — 
2r^(s')-T^(t')-

C(t) can then be evaluated for long times. Expanding in powers of t we find, after 
dropping primes and evaluating the A- and the ^-integrals, for the leading term

}]dx/dyf^i
0 0 n



(5.12b)7 =

exp{-/(x, A)C} (5.13a)

where

(5.14a)zo

and

(5.14b)Aq — 1.

C(t) ~ B_ < 1 - 9) (5.15a)(« <

where

(5.15b)7t = - 7

(5.16)X
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-i

p?rv(l - q)
P

W - 9)

P
- 9)

(-

/?gr (i -

{(-

1 p 
2'P

(2g-3)(g-l)}

0 we have 7 —> and

are positive at (a?o, Aq).

«l-9)

. (5.13b)

5 = (x + y)/(xyq + xqy).

Both the trace and the determinant of the Hessian of /(a:, A) 
Hence we find in the long time limit

(J,g) ee-o(s.,)p

f{x, A)= X

B-(p) -

-l-2£ .
X 0 A

(1 + A)2

_ a_ /1 + AA x A>-«) I --------  I\A’ + A/

y/(i-2,+

P<1 \
/?(1 - g)(l - 2g) J

This analysis strictly holds for 1 > g > 0. For g
D(£,g) —* vF(l — 0), corresponding to the case of homogeneous barriers (section 
4), but 7t —> —- !) / 0 and •B-(p>9) diverges for g —» 0.

c(t) = v2 r2(^-1)7

i-2,1+2 + „r 
A’

_____ _________r
{/?(!—g)(l — 2g)

0 /?(l-9))
We shall 1 -'ply the method of steepest descent around the minimum /(zo,^o) 
of /, which c curs at

( 2? -P</3(l-9) J
and 7 has been given by Eq. (5.12b). Furthermore P(^,g) = /(xo, Ao) and

________ P________
^(l-2g + ^))’

Again we only have a simple pole inside the contour Q, at 
After setting y = Xx we have



I

III
C(t) ~ At

C(i) B_t exp (—(DF')')

where
II

7< = 7
C(t) ~ B+t

0 1 q

5.3

34

Fig. 1. Exact results for the asymptotic behaviour of the equilibrium auto­
correlation function in the kinetic random energy model. The values of the 
constants A, B±, and D are given in the text.

1
2

p 
p
1

7 - ^/ (1 2q +

Discussion and qualitative understanding of the results

The results of this section are summarized in Fig. 1. In region I, where > 1 — q, 
we find power law relaxation after scaling the transition rates with N. In region II 
we also find power law behaviour but with a different exponent. The limit q —» 1 
for both regimes corresponds to the case considered elsewhere [9]. Finally, in region 
in, we find stretched exponential behaviour. The above results can be understood 
from the following qualitative argument. The Markov process described by the 
master equation (2.6) describes the motion of the system in the space of energy 
levels: the system arrives at some instant in level i and stays for some time at that 
level before jumping to the next level j, etc. The time that the system spends in a 
level, the waiting time, is distributed exponentially with a characteristic time



(5.17)

level i to level j is given by the transition probability

U * «)• (5.18)PH

(5.19)Ti

,{p—(1 —
(5.20)P

leno-.

(5.21)Ti

(5.22)Ti P

(5.23)PH =
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y = e 
P~

V1 = E^...
k*i

The probability to jump from

E^
We shall first analyze the waiting times. With (5.17) and (2.9)

jv-2?

i/i

We can ,.:.pro- . e.te the

we have for Vj =

sum by its average (see (2.5))

,{p-(l -q)0)tc _ e

P- (1 - ?)£

The scaling with N of the transition rates does not enter these probabilities. So 
the probability p(e)de to jump to a level with energy in the range (e, e + de) erm 
be approximated by

p(e)de ~ e^-f’-’W'de (5.24)

for e > e_. Again we see that the result is determined by the sign of p — (1 — q}p. 
For > 1 — q most jumps will be towards energy levels around ec and so transitions 
between low-lying energy levels, where the system spends most of its time, almost 
always occur via the highest energy levels. For | < 1 — q most jumps will be towards 
the lowest levels (near e_) and so jumps between low energy levels occur directly, 
not via the high energy levels.

where r the lowest, negative, energy in the given realization of the model.
The res-? dep.-nds on the sign of p — (1 — q)/3. For g > 1 — q we find

jy-2p+l-(l-«)£ e0qc,

'' P-(l-9)^

where we used e-'*' = v/N. Sounlessp = | —|(1 — g)^ the relaxation time becomes 
zero or infinite in the limit of N —+ oo. For < 1 — q we have

7\r-2pe{/’-(1-?)PF-+P9't-

|p- (1 - q)f}\
which is finite in the limit N —» oo provided p = 0. In both cases the longest 
waiting times belong to the lowest energy levels.

Then we turn to the transition probabilities. With (5.18) and (2.9) one finds 
for Vi = n~pb;''-.



Random barriers6

oo oo

C(t)
n

(6.1)x exp

— .—B

exp

dB1B1 exp

(6.2)

(6.3a)

and

(6.3b)
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y_P_ 
N P

N/3

0
N

{ — Bi {stVJ + A + p—

{—Bt fstVi + A + /i-

P-Vk 
s-Vk

Vi
J s-V,

ViB.VjBj 
(s-^Xs-VJ

.-g * 
' s-Vi

{—-Bj {stV,- + A + /z—

oo oo
C(t)S = lim £ dS [dX Idfi 

v ’ N-<*> J 2ms J J
n oo

NN

’ w
N “

-*>£ /
(*)'

■‘fis? ] dB‘B‘
WiJ tw

In order to evaluate this average we need two types of integrals, 
oo

; / dBB~^e~aB

(*)?

^)}
Aj)}

OO

; y dBB~l~Be~aB = 1 - 

(*)'

0

— Bk ( st Vk + A +

We first calculate the average over all sets of random levels using t.l p -obability 
density function (4.3) for the Boltzmann factors:

"exp

Finally we shall treat the case where the VJ are independent random variables 
distributed according to some distribution pv(K)- In particular they do not depend 
on the energies £,• of the levels.

When we introduce integral representations (see Eq. (4.4)) for the partition 
function and for the sum in the denominator, Eq. (3.10), which is again our starting 
point, becomes



(6.4)x exp

(6.5)

N

(6-6)vV

■V

■V

(6.7)-vrx exp

The A- and /z-integrations
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The latter integral is calculated 
in Eq. (6.2) gives:

_1_
N

N

E
N

E

+ A 4-

+ A +

s-V

V> 
s - V

Vi 
s-Vi

Vj 
s-V,

can be performed and one finds

are self-averaging:

N 

E

as in Eq. (4.6). Substitution of (6.3a) and (6.3b)

The sums of functions of the random barriers V)
2

(1-|) (3t)?V/ + AV/’1 +

V? 
s-Vk

s - V,-

s-Vj

x-^r N p

s-K

s-Vj

A)’}

00 00 N

h !d4 e
n 0 0 1-1

"TV1

N P , N£ E

s — Vt

Ctrf = ^lim

C(t) ~. lim { ds.
N—co J 2?ris 

n ■=>

*#i,J )

The final step involves the average over all possible sets of barriers. In order to 
perform this average we again introduce integral representations (see Eq. (4.4)) for 
the sums in the denominator:

(stVk + A +

T :. .. . ■ s to analyze C(t)B for long times. To this purpose we set A = X't
and -C'P the primes afterwards. The integrand then shows a boundary
max \ and /z = 0. We apply the method of steepest descent and find

I// 1
s-ViN

x exp

x exp

-XVf~1V -n

V

N

pVi \
3- Vi J

n



■ (6.8)

(6.9)Pv(V) = 6{V — y/wa).

for b < oo0 < a < V
(6.10a)Pv(V) =

otherwise0

(6.10b)c;i =

(6.11a)

(6.11b)

■v

(6.11c)

exp{-w(st)i} (6.12a)~ log'

the positive real axis and where

(6.12b)Cab(b - a).

w(xt)«| . (6.13)- log'
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s-V

where fl encloses all the poles of the integrand on 
we set

exp { — vr (1 — 0 j-(vl-.')

cpj"'

cm”

where the normalization constant is given by

-a~P
1 - £ ’

This distribution leads to the following averages,

Using this distribution in (6.8) one recovers Eq. (4.10) of section 4. More generally 
we expect all distributions that are centered around some mean value to yield 
stretched exponential relaxation as is the case in Eq. (4.10). More interesting 
results might be expected from a barrier distribution with a large spread. For ease 
of calculations we choose

( cabv-$

[ ds
J 2xis s - V 
n

We shall now discuss some barrier distributions. A special distribution is

w = «r (1-0
Due to the logarithm in the integrand there is a branch cut inside the contour fl 
on the positive real axis between a and b. Integrating around this cut yields

= Cab(b-a),

= <^log(0, 
, (s—a\

=

Substituting these in Eq. (6.8) gives

© n

C(t)fl’v ~



C(i)' (6.14)log

Gaussian

(A.l)

wo (A.2)

(A.3)£N = E0(AO + + °(1)

where

5o(_A0 = —A/-J \/iog2 + (A.4)

for E < £n

(A.5)PN(E) =

for E > £n0
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as N —» oo

C(t)B' ~ w

Appendix A: Derivation of an exponential from a 
distribution

N = 2V

J log AT
4\/log 2

The first term of the right hand side of Eq. (A.4) is the extensive part of the REM 
free energy in the frozen phase. In the limit of large N we may consider the N 
lowest energy levels Elt E?,..., En as independent random variables drawn from 
the probability distribution

■P(^)

J^dE' P(E')

In thif ; we shall derive the exponential probability distribution Pjv(E) for
the lu-. . •' gy levels of a 2>v level random energy model with a Gaussian level
distribution Ff . given by Eq. (2.1). Let 5/v be an energy such that the expected 
number of energy levels below is equal to N, that is

2V y dE P(E) = N. 

—OO

Using the asymptotic expansion for the complementary error function [11] we find 
for large negative £y.

y/AfJ2e-£^'^J7
2y/n(-£N')

Solve this expression for £pj:

J log { 2N^/k log 2}
2-s/log 2

Finally we apply the method of steepest descent, the integrand being maximal for 
x = a. Hence we again find, for large times, stretched exponential relaxation:

exp | —w(at)’ }

In the limit a —♦ 0 the above expression diverges. This corresponds to the situation 
where the barriers may be infinitely high and this of course frustrates the relaxation.

Performing the calculations for the milder distribution p(V) ~ Vn~ » (n > 0) 
one also obtains stretched exponential relaxation. Hence we conclude that there is 
stretched exponential behaviour of the equilibrium autocorrelation function when­
ever there are no infinite barriers.



(A.8)p(e) = Pn(E0 + e) =
0

where

(A.9)= TC =P

(A.10)v = Ne~pCc -
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(A.7) 

we find

as Jif —> oo

amount of order 1 we can put

(A.6a)

(A.6b)

Since these levels differ from E0(ff') by at most an

Ei = E0(AT) + £i, (i = l,2,...,JV)

£n = -Eo(A^) + ec 

and expand

£? = (Bo(X) + E,)2
A/J2 A/J2

= jVlog2+llogjV-^y^£i + o(l)

Upon using this expansion for P(E) (see Eq. (2.1)) in (A.5) and with (A.l)

( s < ec

J
27Iog2’

is the critical temperature of the REM. From (A.l) and (A.6b) it also ;c•Lows that
1

2v'’rlog2
Equations (A.9) and (A.10) relate the parameters p and sc of the exponential dis­
tribution to the parameter J of the original Gaussian distribution. The thermo­
dynamic limit now corresponds to taking IV —» oo and se —> oo while keeping 
Ne~’‘Cc = v constant.
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A Domain Theory for
Aging Effects in Spin Glasses

In this chapter a theory of aging in spin glasses, subjected to a time-dependent 
temperature and magnetic field, is presented. It is shown how the theory explains a 
variety of aging effects as have been observed experimentally.
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(1-1)lim = 0,
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reached, and 
or switched

tization M(t), which in that case
Alternatively one may cool the sample in zero fie 

perature T, then switch a field on and watch the increase of IW(t), t! 
zero field cooled magnetization: M(t) = Mzfc(1}- Obviously

1.1 Aging in spin glasses

In a typical spin glass relaxation experiment (“field jump” experiment) one rapidly 
cools a sample in a magnetic field H to a temperature T below the freezing tem­
perature Tj. One then cuts the field and observes the relaxation of the magne- 

is called the thermoremanent magnetization: 
may cool the sample in zero fiei to the tem- 

alled the

The phenomenon of aging in spin glasses was discovered in 1983 by Lundgren et al. 
[1]. It has since then been confirmed and investigated by many workers on a variety 
of spin glasses. Here a theory of aging in spin glasses is presented. In subsection
1.1 the context within which aging is observed is briefly discussed and in subsection
1.2 a summary of this chapter is given.

lim = 0, lim MZFc(t') =
t—»oo t—oo

where Meq(H) denotes the equilibrium magnetization in a field H. Experimentally 
one finds that Mj-RM^t') and MzfcW relax extremely slowly (the relaxation is 
spread over a microscopic, a macroscopic and cm astronomical time scale!) and 
nonexponentially. Except for temperatures very close to Tj, the system is still far 
from equilibrium even after the longest possible observation time, which is of the 
order of days.

Several theories have attempted to find the functional dependence of M(i) on 
time (see e.g. the review article [2]). In particular, logarithmic, power law and 
stretched exponential (or Kohlrausch) relaxation have been proposed and used to 
fit experimental data. It gradually appeared, however, and was first pointed out by 
Lundgren et al. [1], that in very small magnetic fields these relaxation curves are 
not uniquely determined: they turn out to depend on the waiting time tw that has 
elapsed between the moment t = 0 at which the temperature Tj was 
the moment t = tw at which the field was cut (in a TRM experiment) 
on (in a ZFC experiment).

During the waiting time one has not detected experimentally any changes in the 
system; in particular its magnetization remains constant (except for a slight (~ 1%) 
decrease after field cooling). Nevertheless, the response of the system to a jump in 
the magnetic field at t = tw becomes slower as tw gets larger [1]. This indicates that 
during the waiting time the system is not in equilibrium but only slowly evolves 
towards it: it ages. Aging effects also occur when not the field but the temperature 
is varied (see Nordblad et al. [3] and Refregier et al. [4]), and can be detected by 
measurements not only of the magnetization but also of the ac susceptibility (see 
Lundgren et al. [5,6], Svedlindh et al. [7], and Refregier et al. [4]) and of magnetic 
noise (see Ocio et al. [8]).
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Linear and nonlinear response2
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■ale 
ion 4

In subsection 2.1 we briefly expose the phenomenological linear response description 
of a spin glass. We emphasize that all relevant quantities erm be expressed in 
terms of a single response function This is done in particular for the time­
dependent ac magnetic susceptibility in subsection 2.2. Although most of the ideas 
of these two subsections occur and have been used in the literature, a coherent 
presentation has, to our knowledge, not been given. In subsection 2.3 we indicate 
how experimentally the limits to the validity of the linear response description

■ time-dependent linear dimension of a domain. The second 
■i.;th f(AT, Aff) which indicates up until which length scale we 

•vo thermodynamic equilibrium states whose temperature and 
by amounts AT and AH, respectively; this length generalizes 
p roduced by Bray and Moore [9] to nonzero field.

present the simplest application of the theory, viz. to the field 
jump experimc; it a constant temperature. In the limit of small magnetic field 
jumps one recovers the linear response phenomenology. We then turn towards 
nonlinear phenomena. These are due to restrictions on the domain growth imposed 
by the overlap length. Our results for both the linear and the nonlinear effects are 
found to agree qualitatively with the experimental data [10]. In section 5 we apply 
the theory to more complicated recent relaxation experiments [3,4] in which one 
carries out both magnetic field and temperature jumps. We review the experimented 
data and show how the theory accounts for the observed phenomena. In section 6 
we consider experiments [4,6] in which one observes the time dependence of the ac 
magnetic susceptibility following temperature jumps. We obtain again theoretical 
curves in good agreement with the experiments.

To our knowledge, the only earlier theoretical work which specifically focusses 
on aging in spin glasses is a mean field approach by Ginzburg [11]. In section 7 we 
comment on the relation of our work to Ginzburg’s as well as to some more general 
work on spin glass dynamics, and we make a few concluding remarks.

Summary

In section 2 we succinctly review the phenomenological linear response description 
of aging and some of its implications. We argue that there are experimentally 
observed aging phenomena for which this description fails. In the remainder of 
this work we then develop a theory which is also capable of describing a variety of 
experiments in which nonlinearities dominate.

The theory describes the magnetic response of the system in the presence of rm 
arbitrary (but small) time-dependent magnetic field ff(t) and temperature T(t). 
Its general framework is given in section 3. The theory postulates a mesoscopic 
picture of time-dependent domains of correlated spins and assumes that the mag­
netic response behavior of a spin depends on the size of the domain in which it is 
located. A fund.'" rental feature of the theory is the interplay between two lengths. 
The fir.- one ■ 
one is 
canno 
magn 
a lengt

In ..



manifest themselves.

2.1

(2.1a)

(2.1b)

(2.2)

(2.3)R(t,t) = 1,

(2.4)

(t < <„)
(2.5)

H. = Hq - AH (t > tw).
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Ho

=

M(t) = M(0) + NXc, Jdt'G(t,t')H(t') 

0

ff(t) - Jdt'R(t,t’)H(t') 

t o

Here ye, is the equilibrium de susceptibility in zero field and N the number of 
spins in the sample. The response function G(t,t') measures the response at time 
t to a unit increase in magnetic field at time t'. The two expressions (2.1a) and 
(2.1b) are equivalent, the relaxation function R(t,t') being defined as

R(t,t') = 1 — G(t, t').

We have the properties

lim R(t,t') = 0.
-t'—»oo

Furthermore, when the time following the quench tends to infinity, R tends to the 
equilibrium relaxation function:

lim R(t,t - r) = Rcq(r) = 1 - Ge,(r) 
I—*0©

The relations (2.1a) and (2.1b) essentially already occur in Ref. [12], but their signif­
icance has been insufficiently stressed: in the linear regime the function G(t, t') gives 
a complete description of the spin glass response to small magnetic field changes, 
including the aging behavior.

In what follows we shall frequently consider the field jump experiment described 
by

Linear response

The waiting time effect mentioned in section 1.1 has been the subject of detailed 
studies. In field jump experiments one has varied the waiting time tw from a 
few seconds to a day and over. One has also studied the response Af(t) to time­
dependent fields H(t) more general [12,13] than the step functions of the TRM and 
ZFC experiments.

It has been firmly established by several groups and in a variety of experiments 
that for reasonably small field values (say <, 10 Gauss) the response Af(t), t > 0, is 
linear in the applied field H(t'), t'>0. (We recall that t = 0 is the instant of time 
at which the sample was cooled to the temperature T below Tj.) The most general 
relationship which expresses this fact is



According to the linear response relationship (2.1b) the excess magnetization

(2-6)AM(t) = M(t) - NXc,Hi

(2.7)AM(t) = NXcq^HR(t,tw') (t tw).

(2.8)

2.2 Ti

(t < iw)0
(2.9)tt(t) =

<»)■

H(t')

(2.10)(t > tw).

susceptibility,

(2.11)x(w;t) = -x«i
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dR(t, t — r) 
dr

+ IWzFc(i) = NXcgH,

a relatic . n..n' + to a high degree of accuracy in experimental results [13,14].

(*
Upon applying a partial integration to (2.1b) and using (2.9)

R(t, 0)77(0) + J dt‘ 
0

„dR(t,t') 
di'

dR(t,t — r) 
dr

we find

ldT 
0

decays as

Lundgren et al. [6] were the first to report on such time-dependence of the ac- 
susceptibility. They found power law decay towards the equilibrium value with an 
exponent ~ 0.5 in their experiments on Cu(4at%Mn). (This power is identical to 
the one occurring in R if R is assumed to decay as a stretched exponential; see Ocio 
et al. [8].)

If the coefficient of H^t) in (2.10) varies only little over a period 27r/u>, then it can 
be identified with the time-dependent ac

M(t) = NXeq

ei^

tCVT e

The thermoremanent magnetization AfrRM(t) and the zero field cooled magneti­
zation Mzrcft) discussed in section 1.1 are special cases of equations (2.5) and 
(2.7) obtained by setting Hl=0, Ho = H and Hi = H, Ho = 0, respectively. As a 
consequence

dent ac susceptibility

Within Tmalism one can discuss the time-dependent ac susceptibility.
We sup. / ■ sample is cooled in zero field at time t = 0 and that after a
waiting time tw .:n ac field with frequency is applied:

= -JVxe,K(t) j dr 
0



(2.12)Xeq

(2.13)*(M') F(t,i'),

(2.14)

(2.15)

(2.16)

(2.17)0).
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air 
cos T ~~

dR^r) 
dr

ac susceptibility of the

- -x"(w) (u>

In the limit t —♦ oo the expression (2.11) reduces to the 
system in equilibrium,

xM = ,l>mx(w;t) 
t—»oo

J dT 
0

where (2.4) has been used; with the aid of (2.3) one sees that x(0) = x5,.
In order to proceed we now exploit the fact that the experimental data (e.g. 

[10,15]) are well described by a relaxation function 7i(t,i') of the form

in which a is a temperature dependent exponent in the range from 35 o 0.2 and 
F is a function for which F(f,t) = 1 and

lim F(t,t — r) = 1 (t fixed) . 
t—‘OO

The nontrivial implication is that from (2.4), (2.13) and (2.14) one

^w=(i+3 -
Such power law relaxation in a system in equilibrium has also been found, e.g., in 
Monte Carlo simulations [16]. The expression (2.15) satisfies Reg(0) = 1; however, 
the time constant to is so small that for all times r for which data are available (i.e. 
r >, 10-6 s [12]) one has r/t0^> 1, and hence R^r) — (TI*o)-a•

In the remainder of this work the form (2.15) of the equilibrium relaxation 
function will be taken for granted, and we shall be concerned with the mechanisms 
by which deviations from it are generated when the system is out of equilibrium. 
These deviations are represented by the function F\ in the following sections explicit 
expressions for F will be derived on the basis of an underlying physical picture.

Upon using that |u>|to 1 for all frequencies of interest we find from Eq. (2.12) 
and Eq. (2.15)

x(^) ~ Xe, [1 — (|w|io)“r(l - a) (cos ~~~ - isgnwsin^) | .

It was first noticed by Lundgren et al. [5] that the real part y' and the imaginary 
part x" the ac susceptibility approximately satisfy a law”:

?r dx'(^)
2 d log iv

In Ref. [5] the relation (2.17) was proved to hold approximately for a spin system 
having a broad spectrum of relaxation times. It was subsequently derived and dis­
cussed by Pytte and Imry [17] in the wider context of scaling in random systems 
governed by thermally activated processes. In the present case we may verify ex­
plicitly that (2.17) is also valid for the equilibrium susceptibility (2.16), provided ot 
is not too large with respect to unity.
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(2-18)

A mesoscopic theory of spin glass response3

3.1
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In this section we present the theoretical framework capable of explaining, at least 
qualitatively, all the observed phenomena. As we shall see when discussing the 
experimental results (in particular in sections 5 and 6), past values of temperature 
and magnetic field leave traces in the structure of the spin glass which at a later time 
may manifest themselves in the measurements. The main difficulty to be resolved 
is how to characterize this structure at the mesoscopic level. Our theory will be 
constructed in agreement with a few postulated principles that we shall list first, 
in section 3.1. In sections 3.2 to 3.4 these principles will then be converted into an 
operational tool.

Nonlinear response

We shall especially be interested in explaining what happens beyond the limits of 
the linear response regime. Experimentally these limits appear, for example, in 
the field jump experiment described by Eq. (2.5) as we shall briefly discuss now. 
Eq. (2.7) shows that in the linear response regime &M(t)/AH is independent of both 
Ho and AH. When AH grows one expects, of course, nonlinearities associated with 
those of the static susceptibility, i.e. with the higher-order terms in the expansion

^Mcq(H) = XeqH + X3,cqH3 + ...

These nonlinear terms can no longer be neglected when AH becomes comparable 
to \/lx<s«/X3,e»|. Recent experimental evidence [12,13,14] indicates, however, that 
when AH incr> s a different and more important nonlinearity manifests itself in 
the dy.” - fibre AH becomes comparable to y |,Xe«/X3,e?|- Its effect is to
accelera 

follow 
■ and 
■sica! :

Principles

(i) A thermodynamic state of a spin glass at a temperature 7) and in a 
magnetic field H, is characterized by a specific set of spin correlations. We shall,

■ tion in a way which does depend on AH.
sections we shall construct a theory capable of explaining both 
nonlinear observed behavior. We shall do so on the basis of 
heses, in particular the one of time-dependent domains. Our

In ti 
the lin 
a few p 
hypothe. wi!'. d us to a theory for the spin glass response which is in form iden­
tical to '.he linear response relation (2.1b). There is again a “relaxation function” 
H(t,i') which contains all basic information. The theory is, however, linear only in 
appearance, since H(t, t') will in general depend on the size of the magnetic field 
jumps.

In section 3 we present our general formalism. In section 4 we apply it to exper­
iments with field jumps at a constant temperature, and in section 5 to experiments 
with both field and temperature jumps. In each case we describe the relevant 
experiments and show how these can be explained by the present theory.
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for short, refer to these as the (T), Hi/correlations. In a system in equilibrium at 
(7i,Hi) the range of the (T), Hi/correlations is infinite.

(if) The correlations of two different thermodynamic equilibrium states, one 
at (TltHi) and one at (T2,H2), are nearly identical up to their “overlap” length 
£(2i — 1?, Hi — H2). This length scale diverges as (T2, H2) —»(T), Hi). In this sense, 
in a system (whether or not in equilibrium) which possesses (7), Hi/correlations 
there also exist (T2, ff2)-correlations, and vice versa.

(in) At any time, a nonequilibrium spin glass may be analyzed with respect 
to its (I),Hi)-correlations for an arbitrary choice of (7), Hi). One then finds, in 
general, that the system is composed of domains within which there exist (Ti, Hi)- 
correlations, but beyond which the (7),//^-correlations are destroyed. We shall, 
for short, refer to these as (7/ //i)-domains. For a system in equilibrium at (71, H) 
one finds a single infinite (T, ZZ)-domain. However in the same system one finds 
a distribution of (Ti,//i)-domains centered around £(7i — T, Hi — H In a general 
nonequilibrium system there will be, at a time t, a distribution p(s,; Hi) of the 
sizes s of the (T), Hi/domains. (This distribution does not itself play dominant 
role in what follows, but we will comment on it in the appendix.)

(iv) At the time t = 0, i.e. just after the quench to a temperate 
system is totally disordered and all domain sizes are zero (i.e. of t? . order of the 
typical spin spacing).

(a) In a nonequilibrium system placed at a certain time t in a heat bath of 
constant temperature T and in a constant magnetic field H, the (T, H)-domains will 
start growing without limit. Furthermore, for any (T), Hi) / (T, H), the (Ti,Hi)- 
domains will grow until they reach the overlap length £(T] — T, Hi — H). If at time 
t any (T), Hi/domains larger than this size are present, these will subsequently be 
broken up into domains of this maximum size. The laws governing the growth and 
breaking-up have to be specified.

(yi) We describe magnetic relaxation of the spins by a linear response relation. 
At time t the maximum relaxation time for a spin is determined by the size of the 
(T’(t), H(t))-domain to which the spin — at that time - belongs. The response func­
tion of a spin in a domain with a time-varying size s(t) is a complicated functional 
of s(t), to be specified below.

The necessity to consider, simultaneously and within one and the same system, 
(T, ///domains for more than one value of (71, H) (or even for a continuum of 
such values) appears when there are time-dependent fields or temperatures. Such a 
description is essential for a correct qualitative understanding of e.g. the modified 
field jump experiment of section 5 and the susceptibility experiments of section 6. 
But it is also logically unavoidable: if e.g. the field H(t) keeps alternating between 
two values Hi and H2, then neither the (T, Hi/domain structure nor the (71, H2/ 
domain structure should be priviliged.

We have tacitly assumed, for simplicity, that only a single equilibrium state 
exists for each pair (T, H). If more states exist, labeled by an index a, then we 
have to denote the equilibrium by a triplet of parameters (T, H, a), and the present 
theory has to be generalized accordingly. It would remain true, however, that for
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(3.1)£ar r~

where

(3.2)

(3.3)Ft

(3.4)+ C2
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f-v
= 1,

The overlap length f(AT, AH)

We first discuss a length which was introduced by Bray and Moore [9,18] (but see 
also Ref. [19] ) within the context of the Fisher and Huse [19] droplet model for the 
spin glass phase. In this droplet model one supposes that spin glass behaviour can 
be understood in terms of reversals (“excitations”) of spin clusters (“droplets”). 
For large £, the free energy Ft associated with a typical low-lying excitation of a 
droplet of linear size I is assumed to scale as Ft ~ J(£/d)v, where J is the typical 
coupling strength between neighbouring spins and a the typical spin spacing.

Bray and Moore, on the basis of this droplet model, associate with any temper­
ature change AT of the system in the spin glass phase a characteristic “overlap” 
length For smm! AT this length behaves as

t —+ oo at constant T and H the system will tend to form a single infinite domain 
with correlations which cure characteristic of a triplet (T, H,a) for some a.

c = -f - y<
with y a constant and d, the fractal dimension of the droplets. The meaning of 
is that two identical systems, one in equilibrium at a temperature T and one at a 
temperature T + AT, have nearly identical spin-spin correlations over distances less 
than but completely different correlations beyond £&r.

Next we consider the more general case where there is both a change of tem­
perature AT and a change of magnetic field AH. Our argument generalizes the one 
given by Bray and Moore [9]. We focus on a particular low-lying droplet excitation 
of excitation energy Ft. Due to the change AT the free energy of this same excita­
tion will change by an amount AF^ which is proportional to AT(^/a)d'/2, being 
the sum of ~ (£/a)dj contributions with uncorrelated signs. Similarly, the change 
AH in the magnetic field will bring about a change AF,(//) which is proportional to 
/rAH(€/a.y!'1, being the sum of the Zeeman energies of ~(€/a)J randomly oriented 
spins. The droplet excitation in question loses its property of being a low-lying 
excitation if AT or AH becomes so large that

|AFf>| + |aF<">|,
that is, if

^G) -^G)
where Cj and c2 axe numerical constants. Our length £(AT, AH) is defined as the 
solution of Eq. (3.4). For AH = 0 it reduces to the Bray and Moore length (3.1).



> — ^ — t,)/Tmax(s) (3.6)

(3.7)

t" i)

while a plausible generalization of (3.6) is

(3.9)F(t,t'; [s(t")]) = exp

(3.10)
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a size 
id (2.15), 

Due to 
work we

R(t,t’') = Rcq(t — t')F(t,t'). (3.5)

Here Rcq is the relaxation function for an infinite domain in equilibrium, and F(t,t') 
is a cutoff reflecting the system size. For an equilibrium domain of size s a plausible 
choice is

F(t,t') = e

where rmaI(s) is the maximum relaxation time in the relaxation spec: um of 
s domain. The equations (3.5) and (3.6) are of the same form as (2. 
except that now the function F has been given a physical interpret 
the spin coherence within a domain, rmax(s) will increase with s. h 
shall use the form

^mar(^) — tj (q) ’

where ti is a microscopic time and z a constant. A dependence of this kind is used 
in various other discussions of spin glass dynamics (see e.g. [20,21,22]).

When the domain size varies with time it is natural to put, in analogy to (3.5),

B(t,t';[s(t")]) = Ke,(t-t')F(t,t';[a(t")]) (t' < t" < t) (3.8)

3.3 Magnetic relaxation in time-dependent domains

We start from the idea that a spin in a hypothetical finite domain in equilibrium 
responds linearly to magnetic field variations, the response being described by 
Eq. (2.1b) with a relaxation function 7?(t,t') which depends on the domain size 
s and can be expressed as

/dt'-r-M")) .
V

In a nonequilibrium spin glass the relaxation time of a spin at time t" is deter­
mined by the size of the (T(t"),/f(t"))-domain to which the spin - at that time - 
belongs (see (tn ) of section 3.1). Consequently the relaxation function l?(t,t') of 
the whole system is a weighted sum on the (T(t"), H(t"))-domain sizes for times 
t' < t" < t:

K(t,t') =
/F,[sT(t"),H(i")(t")] /(t, t'; [sT(i"),W(i'q(i")]) F(t, t'; [sr(i"),H(t")(f")])-

Here st,h(R) denotes the size of the (T, Ff)-domain to which a spin belongs at time 
t. Eq. (2.1b) together with Eq. (3.10) yields a relation between magnetization and 
magnetic field which is linear only in appearance. Nonlinearities come in implicitly 
via the mechanism which governs the evolution of the domain sizes.
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ST'J. (3.12)

(3.13)
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where t2 is 
spatially u .
[23].) Th. 
the overla; 
increases .

arm a, ./ell 
' ,H'

- 1
S,’ + ar

<■

Now consider the (T‘, Ff')-domains in the same system when at time tj the heat 
bath temperature is changed from T to T\ and the field is switched from H to Hi. 
In this situation the rule (v ) of section 3.1 applies:
(«) Whenever sr',//'(ti) < £(Ti — T', Hi—H1), the characteristic domain size increases 
according to (3.13).
(ii ) When > £(Ti — T',Hi — H'~), the domain size distribution will start
to break up into two populations, one with the former characteristic size sr'.W'(ti) 
and one with a new characteristic size £(7j — T',Hi — H1). In each time interval 
At the population of the larger domain size decreases by an amount rt-1At while

Domain dynamics

The weight function f(t, t'\ [s(t")]) introduced in (3.10) follows from the domain 
dynamics. We shall develop this dynamics for some practical situations where the 
weight function [s(t")]) is centered around one or two characteristic domain 
sizes.

The simplest situation arises immediately after a quench to a temperature T < 
Tj at t = 0 in a magnetic field H. The (T, If)-domains will then start to grow and 
we shall postulate that the characteristic size sr,//(t) of these domains grows as a 
power law of time

■\ mici ■ copic time and p a constant. (Growth laws of domains in 
as disordered systems have been reviewed by Binder et al.

mains, for arbitrary T' and H', will grow as well but up to 
T', H — H'). As long as they grow their characteristic size

y,
This is just Eq. (3.11), but with t2 temperature dependent. The first temperature 
argument, T, is the actual temperature and the second one, T', indicates that we 
are considering (T1,7f')-domains (t2(T, T) is equal to the t2 in Eq. (3.11)). For 
what follows it is necessary to remark that (3.12) is a solution of the autonomous 
differential equation

dsT,„,(t) = p<-1(rr)ai^>(<)

When the environmental temperature T is an arbitrary time-dependent function 
T(t), the solution of Eq. (3.13), with initial condition = is given by

t I p

ydt".
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the population of the smaller domain size increases by the same amount. For ft we 
take the maximum relaxation time of a domain of size £(7\ - T', Hx - H'),

n = Tm„(£(T! - T', Hx - H')- Tx, T')g
Here the relaxation time rmox(s;7\,Tz) is a generalization of (3.7) where the tem­
perature dependence of the time constant tx is accounted for (ti(T,T) is equal to 
the ti of Eq. (3.7)).

With the above rules one can, in principle, describe the evolution of (Tz, H')- 
domains, after temperature and magnetic field jumps at time instants ^2, • • • 
The most general case, with arbitrary time-dependent temperature and magnetic 
field, is described in the appendix. In the examples that we shall eat in the next 
sections it suffices to consider one or two characteristic domain size. s simplifies 
the evaluation of (3.10) significantly.

Field jump experiments at constant temper

We shall apply the theory of section 3 to field jump experiments irmed at a 
constant temperature T <Tj. We consider the experiment described by Eq. (2.5), 
where after a waiting time tw the magnetic field is changed from Hq to H\ =
Of interest is the decay of the excess magnetization AM(t) (see Eq. (2.6)). In a 
constant temperature experiment the general theory simplifies considerably. In 
particular, the time constants tl(T",T) and t2(T", T), defined by Eqs.(3.15) and 
(3.12) respectively, remain unaltered during the experiment and hence can simply 
be denoted by ti and The overlap length discussed in section 3.2 will be denoted 
by as it only depends on AH:

- |zy7|-2/(d"2v). (4.1)

The calculation of the response M(t) after the field jump requires the knowledge of 
the relaxation function H(t, tw) for t >tw (Eq. 3.10) which, in turn, only requires the 
knowledge of the (T, Hi)-domains for times after the field jump. In order to proceed 
we shall assume that the weight function /(t,f; [sr(t"),H(t")(t")]) is centered around 
an average size 37,^ (t), 311 d that therefore the functional integral in Eq. (3.10) is 
well approximated by the integrand evaluated in St.HiW- Together with Eq. (3.8) 
this leads to

7?(<, tw) = Req(t — tw)F(t, [37,7/1G")]). (4-2)

According to the domain dynamics postulated in section 3.4, in the time interval 
(0,tw) the domain size 37,7/, (t) cannot grow larger than the overlap length The 
interplay between these two lengths leads to the distinction of two cases that will 
turn out to correspond to linear and to nonlinear behavior, respectively: small field 
jumps (i.e. AH small enough so that 37,7/, (tw) <^ah), discussed in subsection 4.1, 
and larger field jumps, discussed in subsection 4.2.
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(4-4)

x exp

5(r) (4-5)
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with C a constant of order unity or at most a weakly varying function of tw.
From Eq. (4.4) it follows that for the theoretical curves of Fig. lb the propor­

tionality (4.6) holds with C given by

Tm = C(tw)tw,

Small field jumps, sTiHl(tw)<e^

After the quench to T <Tj in a field Ho the characteristic dimension Sr.Wi(t) will 
begin to increase according to Eq. (3.11). We consider here field jumps which by 
hypothesis are small enough so that at t = tw the characteristic dimension
is still less than For t > tw the growth law (3.11) will continue to hold, and 
from Eqs. (2.7), (4.2) and (3.9) we have that the excess magnetization AM(t) will 
decay as

tw

Using the experimentally obtained equilibrium relaxation function (2.15) and the 
power law dependencies (3.7) and (3.11) we find from (4.3) that

AM(t,„ + r) = (1 +

___ _____ f(t + t)>-p« trCl-pz)'^4^

Eq. (4.4) is the result of our theory. It predicts a definite waiting time effect on 
the magnetic relaxation. The corresponding relaxation curves have been plotted in 
Fig. la for a number of values of the waiting time tw. (From Alba et al. [10] we 
estimate a = 0.05, to = 1-5 x 10“17 min., pz = 0.9 and = 1 min1-’’*.)

In the analysis of experimental data on single jump experiments it has become 
customary to plot not only M(t), but also the “logarithmic” decay rate S’(r) here 
defined by

1 dM(tw + r)
_|lVxe,AH dlogr

In Fig. lb we show the decay rates corresponding to the curves of Fig. la. It appears 
that the function S(r) exhibits a clear maximum for a value of r to be denoted as 
rm. Hence rm can be considered as the crossover point for AA/(tu,d-r) between 
the slow power law decay (“equilibrium relaxation”) due to the function 7?e,, and 
the more rapid decay imposed by F (see Eq. (4.2)). The experimental S(r) curves 
indeed exhibit a similar maximum [1,15,24]. Moreover, for several different types of 
spin glasses, such as Cu(5at%Mn) [14,15], Ag(2.6at%Mn) [25], and CdCr1.7Ino.3S4 
[4], experiments with waiting times tw ranging up to 104 s show that this crossover 
takes place when the time rm is roughly equal to the waiting time tw, i.e.,
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Fig. 1. Theoretical curves for (a) the relaxation of the excess magnel.iza- 
tion AA/(tw + r)/, Eq. (4.4), and (b) the logarithmic relaxation rate .S'(r), 
Eq. (4.5), for small magnetic field jumps AH and waiting times tw = 10, 100, 
1000, and 10,000 min (from left to right). See the text for the parameter 
values.
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0.1 -
+
J

«T,w>(t) = a

Larger field jumps

The second case to be considered is when the linear size of the (T, Hi)-domains 
reaches its upper limit in the time interval (0, tw), so that ST,Hi(tw) = ^ah- 
After the field jump this limit is removed and the domain growth will proceed. 
With initial condition st.h, (4w) = f ah the solution of Eq. (3.13) reads

p

310 10
T [min]

io4io4

(v)!+^
The theoretical decay of the excess magnetization is again given by Eq. (4.3), but 
now with the expression (4.8) for st.h, (t). Hence the effect of the larger field jumps 
is reflected in the dependence of the characteristic domain size on AH and this is 
the way in which the relaxation is nonlinear in the field jump AH.

/
,6,
_ 0.05 -

i-j

in

b i

10" 53
T [m j

C(tw) ~ (1 - 2a)/(pz + (4.7)

for small a, pz ml and not too small tw (tw >, 1). For the parameter values given 
above and tw in the experimental range we have that C(tw) is of order unity and 
weakly varying with tw. Hence we conclude that this kind of field jump experiments 
are well described by our theory.
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as in Eq. (4.7) and

= <2 (jr)'
The equations (4.6), (4.9) and (4.10) can be merged into a single expression for 

the time rm at which the logarithmic decay rate reaches its maximum, viz.

Tm =

where

Hence, this ;>i> tuve of growing domains together with a domain size dependent 
relaxation process leads to
(») a small iSH regime, in which the relaxation is linear: curves for AH
obtained at a fixed tw, but at different values of AH superimpose. In this regime 
the relaxation rate maximum occurs at a time rm = C(tw)tw independent of AH.
(it) a regime of larger £sH, in which the relaxation is nonlinear: curves obtained at 
different AH no longer superimpose. In particular, when AH becomes larger the 
location rm of the relaxation rate maximum begins to depend on AH and shifts to 
smaller values according to

|AH|-2/’’(‘i-2!'). (4.13)

The crossover between the two regimes occurs at a value of AH which satisfies 
s(tw) = This equation therefore divides the — plane into a region of 
linear and a region of nonlinear relaxation. In particular it predicts that the longer 
is the waiting time, the smaller is the field jump needed to provoke nonlinear 
relaxation [10,13,26,27]. It is furthermore apparent from the above discussion that, 
if one accepts the power law dependencies (3.7) and (3.11) with exponents z and p, 
respectively, the linear relaxation depends only on the product pz, which should take 
a value close to unity. The nonlinear relaxation, however, allows for a determination 
of p and z individually via Eq. (4.13). We have attempted an estimate based on the 
work of Alba et al. [10] on the insulating spin glass compound CdCr^rlno.sS^. Alba 
et al. report on field jump (TRM) experiments performed at a fixed temperature of 
0.72T} (12 K) where the field jump AH is varied from effectively zero to 50 Gauss 
for a range of waiting times tw between 10 and 900 minutes and where the relaxation 
curves of the magnetization for times t > tw are recorded. Subsequently their results 
are fitted to a master curve of which the parameter values for several tw and AH axe

For this case one can also calculate the maximum in the logarithmic decay rate 
S(r) (Eq. (4.5)) and finds that now it is dependent on the size of the field jump 
AH through

Tm =

where the function C is
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Fig. 2.
size AH for data taken from Alba et al. [10].

io1

Location of the maxima rm in the relaxation rate versus field jump

io3

IO2

given [10]. We have pursued this analysis in the following way. From the expression 
for the master curve we went back and calculated S(r). We plotted S(r) and located 
the maximum rm for the values of AH and tw using the parameters from [10]. Fig. 2 
shows a log-log plot of the rm versus AH for the given set of waiting times. We 
do not show rm for AH = 0 and 10 Gauss; in this field regime rm levels off to a 
value independent of AH. For each waiting time, the four values of rm belonging 
to 20, 30, 40, and 50 Gauss lie on a straight line whose slope is approximately 
— 1.55. With this information we find the approximate value p ~ 0.5 if we take 
y ~ 0.2 for d= 3 from Ref. [9]. This value of p for a real spin glass is, somewhat 
surprisingly, closer to the value | applicable to domain growth in spatially uniform 
Ising ferromagnets (see Binder et al. [23]) than to the slow logarithmic growth law 
often found for random systems by theory [28] and by Monte Carlo simulation [29]. 
A possible explanation is hindered by the fact that, whereas ferromagnetic domains 
are easily observed experimentally, there is no direct way to see spin glass domains 
in the laboratory.

9°^n
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5 Relaxation experiments with field and temperature jumps

T(t) = (5-1)

5.1
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T (0 < t < ti)
T 4- zYT (ti < t < tjj < tw) 
T (t2 < t)

Both positive and negative AT will be of interest. In section 5.1 we shall first discuss 
the experimental data. Then we shall show, in section 5.2, how the theory developed 
above can account qualitatively for the observed phenomena. The formalism is 
exactly the name as was applied to the constant temperature experiments, except 
that we now have to allow for a temperature dependence of the times t\ and t?. 
In section 5.3 we shall show how the extra parameters in the case of nonconstant 
temperature can b set to fit the experimental curves.

Experimental results

The experiment described above has been performed by Nordblad et al. [3) and 
by Refregier et al. [4]. In the limit of sufficiently small AT (for the examples of 
CdCr1.7Ino.3S4 [4] and Cu(10at%Mn) [3] this means |AT| <,0.1 A' ) the magnetic 
relaxation curves coincide with the ones obtained at constant temperature T for a 
waiting time tw. For sufficiently large positive XT (which means in practice ZYT >, 2K 
for CdCr1.7Ino.3S4 when t2 — tj =300 s [4]) the relaxation curve appears to coincide 
with the one at constant temperature T for a waiting time tw —12: at the time t2 
the system is “reborn” in the terminology of Ref. [3]. However, for intermediate 
values of AT the situation is less simple: the relaxation curves obtained there do 
not coincide with the curves at constant T for any tw, as demonstrated both by 
Nordblad et al. [3] and, in a particularly clear way, by Refregier et al. [4]. The former 
authors speak of an “incompletely reborn system” and of the “coexistence of two 
separate and distinct aging states” in the same system. Our conclusion is that in 
this intermediate regime the system cannot be described by a single characteristic 
domain size, but that the distribution of domain sizes has more structure. This is 
what motivated the development of the full theory of section 3.

The modified field jump experiment with negative values of ZYT [3,4] shows a 
different picture. The situation is not symmetric with respect to ZYT = 0. When 
ZYT is sufficiently large negative, the relaxation curves for t > tw coincide with those 
obtained at constant temperature T for a waiting time tw — (t2 — ti), ie. relaxation 
takes place as though the interval (ti,t2) of a decreased temperature had been 
completely nonexistent [4]. The correlations characteristic of the temperature T 
that were built up during the interval (0,t>) are not lost during the interval (?i,<2) 
but seem to remain frozen; then, once the temperature T is reestablished, their 
buildup continues. This shows that although a temperature jump AT (or, by the

In this section we shall consider a modification of the field jump experiment. The 
time dependence of the magnetic field is still given by Eq. (2.5), but in a time 
interval (ti,t2) during the waiting time period the temperature is kept at T + ZYT 
instead of T:
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acteristic
(3.14) of

i

ij — fi 
t2(T +AT, T)

f, 
’<2(T,T)

t — t2 
t2(T,T)

are two possibilities.

s(i) = a

s(t) = a

same token, a field jump AH [27] ) may be large enough to require the breakup of 
existing correlations, this breakup is not instantaneous but should be described by 
a relaxation time.

so small

We are again interested in the decay of the excess magnetization z\Af(t) for t >tw 
and hence only the (T, H\)-domain structure is needed to calculate the weight 
function f(t, t'\ [sr(<"),H(i")(f")]) (see (3.10) and (2.7)).

We shall again assume that in the first time interval, 0<t<t1, ti distribution 
of the sizes of the (T, H] (-domains is well represented by a singl 
length s(t) = This length then grows according to the sod
Eq. (3.13) and is given by 

p

/pOunS(t2;ti) = 1 - exp

The first one 
given by Eq. (5.3), is less than 1st ■ 

In that case, s(t) will continue to grow according to Eq. (5.3), albeit at a different 
rate due to the temperature dependence of t2. Moreover, if s(t) reaches the upper 
limit before the time i2, then it will stick to that value. From t2 on the domain 
size evolves again without limit, and hence we have for t>t2

( ,. .1J (t&r\ r min < I ----
[\ “ /

Application of the theory

We shall analyze the modified field jump experiments for values of AH 
with respect to KT that for all practical purposes we have

The second possibility is that |AT| is so large that s(fi) > In that case, 
according to the theory of section 3, there appear two different domain sizes: the 
“old” one soU(t') = s(ti) and a “young” one svou„5(f') = fAr for t'> t'i. The fraction 
/poUnS(f'; fi) of spins in domains of size increases with time whereas the fraction 
/oid(t';ti) of spins in domains of size s(ti) decreases. At time t=i2 we have

t? — f i 1 

n J ’

(<2(T,T))

In the second time interval tj < t < t2, there 
is that |AT| is not too large so that s(fi), as

f2 — fi 1 
n J

Here rj is given by Eq. (3.15) as the maximum relaxation time of a domain of size

£(£T, AH) as £(AT, 0) = far
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(t > 42) (5.7a)

and
p

(4 > t'2). (5.7b)

R(t, tw (5.8)- w )
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with two characteristic domain sizes the basic equations 
relaxation function R reduce to

Syoung

one take for soid(t)

(0 = «

^o/d(4) — <2
k h{T,T) J

Since the bre .-zingprocess stops at t = t2, the fractions fy( 
constant for ' > t2.

In the pt
(3.10) and (;‘

52 /.■(<'2;«iW1tu,;[5i(t")]) (t>tw)
i=young ,old

This expression also holds for the case s(ti)<(ar provided that 
the expression (5.3), and put f„id = l and fyoung =0.

The decay of the excess magnetization can be obtained by substituting Eq. (5.8) 
in Eq. (2.7) and using Eq. (3.9). In the next subsection we shall show how this 
leads to the theoretical curves for AM(4) corresponding to the modified field jump 
experiment, Eq. (5.1).

Fit to experiment

In order to obtain explicit theoretical curves it is necessary to specify the temper­
ature dependence of ti and 42 (Eqs. (3.15) and (3.13)), and of the constants in 
Eq. (3.4). We shall use the data from experiments carried out by Refregier et al. 
[4] on the insulating spin glass compound CdCrj.7Ino.3S4 to obtain values for the 
parameters that govern these temperature dependencies.

As discussed in section 3 the time constants 4,(T;Ti), i = 1,2, refer to the 
dynamics of (Tj, Tfj )-domains in a system at temperature T. For T = Tj we shall 
use the abbreviation 4,0(Tj) = 4,(Tj; Tj), t = 1,2. If domain growth is a thermally 
activated process, one would expect the T-dependence of the dynamics to mani­
fest itself as an Arrhenius factor in the 4,. The experiments [4] show, however, a 
rather stronger asymmetry between positive and negative AT. We therefore put, 
for general T and Tj

4,(T;T1)=4i0(T1)A(T-T1) (5.9)

in which A(0) = 1 and A increases steeply when T—Tj becomes negative. All strongly 
varying functions A(AT) give qualitatively similar results, and we have obtained a 
good fit with the three parameter function

n = rmox(^; T + AT, T) = 4j (T + AT, T) ^)

From t2 on both characteristic domain sizes evolve again without upper limit 
according to the rate equation (3.13). This yields

- \ p t-t2
t2(T,T)

,oung and fold remain
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A fit to an analysis of the experiment by Refregier et al. [4] yields the values q = 1.66 

and A = 4.77 K’min.
With the parameters listed above and the choice for AfAT) given by Eq. (5.10) 

the theoretical curves of Fig. 3 are obtained. Fig. 3a shows the curves for positive
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Fig. 3. Theoretical curves for the relaxation of the excess magnetization where 
in a time interval (ij, t2) during the waiting time period (0, tw) the temperature 
is kept at T + &T. (a) shows the curves for positive AT where = 895 min, 
t2 = 900 min and tw = 930 min. The solid lines correspond to TRM curves 
obtained for waiting times of 30 min and 930 min without temperature jumps. 
The squares (□) refer to the curve for AT = 2K and the circles (o) to the curve 
for AT = IK. (b) shows the curves for negative Z\T where ti = 15 min, f2 = 915 
min and tw = 930 min. Here the circles (o) refer to AT = —IK and the squares 
(□) to zYT = —0.3K. See the text for the parameter values.

A(AT) = xe-<-isl + (1 -

where 7_ = 18 K-1 is large compared to 7+ = 2.4 K-1 and where x =0.1. We set 
^io(^)^2OZ(^,) = 1 min1-pj, a = 0.05 and to = 1-5 x 10-17 min as in section 4.

Only two combinations of parameters from Eq. (3.4) play a role, viz.
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1

the domain growth

K(M-r)=(1 + j)

The ac

we can calculate the asymptotic behavior of this curve 
we compute the derivative of Eq. (6.1) and expand

AT. For sufficiently large AT the fraction of spins with the “young” characteris­
tic domain size is dominant wheras for not too large positive AT domains of the 
“young” and the “old” size coexist. This explains why the theoretical curve for 
AT = IK does not look like a “normal” TRM curve. A decomposition into two 
“distinct aging states” as performed by Nordblad et al. [3] clearly is possible here. 
Fig. 3b shows the curves for negative AT, where there is no breaking-up but where 
the domain growth simply freezes for sufficiently large AT. For not too large nega­
tive AT there is no freezing but domain growth at a lower rate. Hence the resulting 
decay curve is still similar to the “normal” TRM curves. All theoretical curves of 
Fig. 3 are qualitatively the same as the experimental curves obtained by Refregier et 
al. [4] as well as those of Nordblad et al. [3]. We conclude that the theory correctly 
accounts for this class of experimental data.

Substitution of (6.1) into (2.11) and evaluation of the integral for t > 0 results in 
the first curve shown in Fig. 4. The values for a, t0, pz and ti are the same as 
in the sections 4 and 5.

Just like in section 2.2
for long times. To this purpose 
for large t and r fixed and find

dr t0 \ to)

A third type oi b inent that has been performed by Lundgren et al. [6] and
in greater detail . fregier et al. [4] consists of observing the behavior of the
zero field ac susceptibility ,\'(u>;t) after temperature jumps. As discussed in section 
2.2, this quantity relaxes towards an equilibrium value. In this section we shall 
consider the behavior of the time-dependent ac susceptibility for three cases: (i) 
immediately after the quench to a temperature T <Tj at t = 0, (if) after a second 
temperature quench to T\ = T — AT (AT positive) at some later time ti, and (:::) 
after reheating the system to T at t2 > tv This sequence of temperature jumps 
corresponds to an experiment performed by Refregier et al. on CdCr1.7Ino.3S4 [4]. 
Experimentally one observes a relaxation of the susceptibility after the first two 
temperature changes, but not after the third one. We shall show how our theory 
predicts a similar time dependence of x(uq t). The amplitude of the ac magnetic 
field will be taken infinitesimally small.

The analysis of case (t), the behavior of the ac susceptibility immediately after 
the quench to the temperature T, makes use of results from subsection 4.1. We 
describe the system again by a single characteristic domain size sr,o(<). There is no 
upper limit on the domain growth so from Eq. (4.4) we have the response function

<1(1-pz) J
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Fig. 4. Theoretical curve for the imaginary part of the time-d-. 
susceptibility Shown is the relaxation to equilibrium ii
after the quench to T < Tj at t = 0, after a second quench to - ,1T at 
t = 1000 min and after reheating to T at t = 2000 min. The equilibr alues 
of x" at T and T — NT have been assumed equal. See the text for the parameter 
values.
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In practice the oscillating part is suppressed by averaging over one or more periods 
2ir/u> and subsequent low-pass filtering. (For the theoretical curves of Fig. 4 this 
suppression has been achieved by sampling x"(u>,t) at times 2-k/lo apart.) Hence 
we find power law decay towards equilibrium with a power pz.

In case (>i), after the second temperature quench at time to a temperature 
T\ = T—££T (XT positive), only the (Ti,0)-domains are to be considered. We can 
describe the system by means of a characteristic domain size ST,,o(t)- During the 
interval (0,^) the growth of Sr,.o(t) is restricted to the overlap length. We will

where c = titj’’1. When (6.2) is substituted in (2.11) the first term gives rise to the 
equilibrium susceptibility x(u>) that we calculated in Eq. (2.16) but due to the finite 
upper limit in the integral there will be an additional, rapidly decaying, oscillating 
part. The second term gives rise to a similar integral, so

Xeq

QTT Q7V ]
cos —---- i sgn uj sin — j

air
2
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be calculated by substituting Eq. (6.4) into 
so small that s^ oft) is

«T,o(<) = a

sTi,o(<) = a

We wish to discuss the relation of the present study to existing work on spin glass 
dynamics. Virtually no theoretical work focusses specifically on the aging phenom­
ena in spin glasses. An exception is the paper by Ginzburg [11], who, within a mean

assume that we deal with the case, where the domain growth is actually limited 
by the overlap length st,,o(U) = far, where we used again the abbreviation ^t^r — 
f(AT,0). This is the case for sufficiently large AT. For times t > t) the domain 
growth is unrestricted and we read from Eq. (3.14):

The response function 7?(t,t') can
Eq. (4.2). For sufficiently large AT the overlap length far is 
only influenced at very short times t — t\: the domain growth for the (7), 0)-domains 
will effectively set in at t = it. Therefore the second theoretical curve in Fig. 4 is 
very similar io the first curve for the quench at t = 0. (The parameters used are 
the same as i.. sect: i 5). For simplicity we have assumed not to depend on 
temperature.

Finally v. - ass the case (ui) where the system is reheated to T at time t2.
As was the . ion 5, breaking-up of the domains will occur in the interval
(ii,i2) for s’ : . large AT, and two fractions of spins will emerge after t2: a 
“young” fra —a “old” fraction. As in section 5, the “young” fraction will 
be very small for AT large enough and hence we can very well describe the system 
for t > i2 witii one characteristic domain size, which equals ST,o(ti) at t = t2. From 
Eq. (3.14) we then have

6+^]
The third theoretical curve in Fig. 4 clearly shows the absence of the relaxation be­
haviour of the previous curves. Similar curves have been obtained by Refregier et al. 
[4] for their experiments on CdCrj.7Ino.3S4. Our results for x"(u); 0 3X6 furthermore 
fully consistent with the experimental results of Lundgren et al. [6] on Cu(4at%Mn) 
obtained during a sequence of temperature increases. A small discrepancy remains, 
nevertheless, when the relaxation behaviors of x" and x' are compared: Lundgren 
et al. [6] observe that in the nonstationary regime the | law (2.17) remains valid, 
whereas our asymptotic behavior (6.3) does not satisfy this law.

We conclude this section by pointing out an interesting although only partial 
analogy. In an Ising ferromagnet in zero field, after a quench to the low-temperature 
phase, ferromagnetic domains appear whose average size increases with time [23]. 
Under these circumstances one would expect to find for the frequency dependent 
staggered susceptibility a relaxation behavior analogous to the first curve in Fig. 4 
for x"(«; t).
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field approach, does address aging, starting from the dynamical theory of the spin 
glass by Sompolinsky and Zippelius [30]. Our work differs from Ginzburg’s in that 
it does not start from a microscopic spin model, but rests on a set of assumptions 
at the mesoscopic level; it attempts to describe finite-dimensional systems posses­
sing one or more characteristic lengths; it presents a quantitative comparison with 
recent experimental findings, in particular by Refregier et al. [4] and by Nordblad 
et al. [3]; and it goes beyond the linear response regime.

Recently Sibani and Hoffmann [31] have shown that linear aging effects can be 
reproduced by a model based on the picture of motion in phase space as thermally 
activated hopping in an ultrametric space [32]. It is, however, not clear how this 
theory can be extended to account for nonlinear aging phenomena as well.

A great deal of attention has been given to aging in polymers (see, in particular 
ref. [33]). Alba et al. [25] and Ocio et al. [34], in order to fit their magnetic relax­
ation data in spin glasses, succesfully use the same parametrization . uiployed for 
polymers. A physical picture underlying this procedure is, however still lacking.

A theory which, like ours, addresses the spin glass dynamics a{ mesoscopic 
level, is the “fractal cluster model”. This model was introduced and iied recently 
by Malozemoff and coworkers [20,35] as well as by Lundgren et al. [21]. The fractal 
cluster model has been used to derive static and dynamic scaling la v in the vicinity 
of Ty, but has not been applied to aging. It postulates the existence of “clusters” 
inside of which the spins are randomly oriented but rigidly coupled together. In 
response to magnetic field changes such a cluster may be visualized as rotating 
in a frozen matrix [36]. With each cluster a relaxation time is associated via an 
equation identical to our Eq. (3.7). In this model the distribution law for the cluster 
sizes is assumed to be the equilibrium distribution, characterized by a temperature­
dependent length. For T<Tj there is also an infinite cluster [20].

In this work we speak of domains of correlated spins rather than of “clusters”. 
The two concepts cannot be identified. Firstly, each pair (T, H') has a different 
domain structure associated with it. Secondly, a domain represents a less rigid 
and permanent aspect of the spin glass structure than does a cluster: it responds 
to a change of magnetic field or temperature by starting to grow or to break up. 
Hence the distribution of the domain sizes is not in equilibrium but evolves with 
time (it can tend towards an equilibrium distribution only when t —> oo at fixed T 
and H). It is precisely this feature which enabled us to explain the great variety of 
experimental aging effects.

A description of the nonequilibrium spin glass state as consisting of equilibrium 
domains separated by domain walls was given also by Kinzel [37]. In this work the 
domain size increases with time and Kinzel argues that there is a power law relation 
between the excess energy and magnetization during the equilibration process.

A cluster of spins that can flip between only two configurations is a two-level 
system. Models of spin glass dynamics involving a distribution of two-level systems 
and an associated distribution of relaxation times were considered by many authors, 
e.g. McMillan [22], Prejean and Souletie [38] and Hiiser et al. [39]. In all these cases 
the distribution of relaxation times is fixed once for all. In contrast, the present
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~Tb '6 p(s,t;T\,Hi')

+r^6 (A.l)

(A.2)A(s;T,T1) =

(A.3)
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d_ 
ds

theory associates with each of the time-dependent distributions p(s,t-,Ti,Hi) (see 
section 3 and the appendix) a time-dependent distribution of relaxation times via 
the relation (3.7) between s and rmar(s).

The notion of a time-dependent spectrum to describe spin glass relaxation was 
used earlier by Lundgren et al. [1,21,24]. Our work bases this notion on a picture of 
domains that grow and break up, and makes the evolution equation for the spectrum 
explicit. Along the way we have needed several assumptions, which however we feel 
are all secondary. The agreement found with experiment does not prove that all 
these hypotheses are right; however it means that a simple picture like the one 
proposed here is capable of explaining the large collection of experimental data.

In section 3.1 we ha'. • introduced the distribution p(s, t; 7), ) of the (Ti,/7i)-
domain sizes ... a . . Although this distribution has not played an explicit role in 
the subsequent . halons, it is nevertheless interesting to remark that is satisfies 
the master equation

~tp{s,t-T...H.') - - A [A(s;T(t),T1)p(sIt;T1,^1)] 

^s-^(T(t)-T1,7f(t)-/f1))

oo
(s - Jds'p(s',t-T,

a domain of size s at temperature T, which,in which A is the growth rate of 
according to Eq. (3.13), equals

p 1 Erl ----------- a e S r .
i2(T,Ti)

The time constant rj is defined by Eq. (3.15). One easily checks that Eq. (A.l) is 
compatible with the normalization

y dsp(s,t;T,H') = 1 

0

According to («v) in section 3.1, if at time t = 0 the system is quenched to below 
Tf, we have that the initial condition is a delta peak at s = 0, regardless of (T, H\.

(A.4)p(s,O;T,/7) = <5(s)

It is clear that in experiments in which after the quench only a finite number (say n) 
of temperature or magnetic field jumps are applied, the function p(s,t;T,/f) can 
be the sum of at most n delta peaks.
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Chapter IV

•Apart from minor modifications, this chapter has appeared in Physica A 155(1989)431.
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dimensional model system how 
microscopic basis.

Nonequilibrium Dynamics and 
Aging in a One-Dimensional 
Ising Spin Glass *

In this chapter it is shown for the example of a one- 
the domain theory of Chapter III can be given a
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Overlap between two states and domains

The standard spin glass model is the Edwards-Anderson model [2] which has the 
Hamiltonian

^({sj}) = ~ 5? JjtSjSk,

where the Ising spins, Sj =■ ±1, are located at sites j of a regular d-dimensional 
lattice and where the sum runs over all pairs of neighbouring sites. Disorder is 
introduced by a suitable probability distribution for the bonds Jjt- The 
Edwards-Anderson correlation function for this model is given by (see e.g. [13]):

C^M(T) = ((^t)?)2, (1.2)

where |j — is the distance between sites j and k. Throughout this paper (.. .)$? 
denotes a thermal average at a temperature T and the overbar ... denotes an 
average over the disorder. In the paramagnetic phase, for temperatures T > Tj, this

In Chapter III a theory is presented that explains the observed aging phenomena on 
the basis of a domain picture of the nonequilibrium spin glass state. A somewhat 
different theory that embodies the same ideas is given by Fisher and Huse [1]. The 
aim of this chapter is to show how in a specific case, viz. for a modified Edwards- 
Anderson model [2] endowed with Glauber dynamics [3], such a domain theory can 
be developed from a microscopic level. The model is one-dimensional, but despite 
its simplicity it contains the essential features of a spin glass. It is expected - and 
indeed found - that on length scales shorter than the correlation length this model 
shows behaviour characteristic of a true spin glass phase.

In subsections 1.1 and 1.2 two preliminary concepts, viz. the notion of (time­
dependent) domains, and the measurement of the dynamic susceptibility and fluctu­
ations in arbitrary time-dependent systems, are considered. In see' ; the model 
is defined, and in the remaining sections a theoretical description “temper­
ature jump experiment”, in which at an initial time the heat bath perature is 
suddenly changed from T, to T, is given. In sections 3, 4 and 5 the . dependent 
overlap with the fined equilibrium state at T, the time-dependent may ■ response, 
and the time-dependent magnetic fluctuations of the system, are co- ddered.

In particular the question of the validity of the Fluctuation-Dissipa tion Theorem 
(FDT) in nonequilibrium is addressed because up till now there is no agreement 
between theory and experiment. Theoretical investigations of a mean field “soft 
spin” model endowed with Langevin dynamics [4] yield a violation of the FDT in the 
nonequilibrium regime [5]. On the experimental side one [6] has only very recently 
succeeded in measuring the magnetic fluctuations in and out of equilibrium. Many 
groups [6,7,8,9,10,11] report the validity of the FDT in equilibrium and Refregier 
[12] reports also its validity in nonequilibrium.
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one may define a spin glass correlation

(1-4) 

id £e,(T') are 
an overlap

1 , 1
2^(T) + 2fe,(T')

with c a constant. For £cq(T) and fc,(T') both infinite Eq. (1.7) leads to Eq. (1.6). If 
(e«(T) is large but finite and fe,(T') is infinite, the scaling behaviour (1.6) for larger 
temperature differences |T — T'| levels off to a constant value Ccq(T, T) = ^,(7) as 
T' —» T. Eq. (1.7) is exact for the model that we shall treat in the next sections 
and we expect it to hold for other spin glass models as well.

Let T' be an arbitrary reference temperature. Then, within this framework, we 
can give a definition of what is meant by T'-domains in a thermodynamic state

correlation function decays exponentially and 
length fe,(T) by

^r’(T) ~ exp{-2r/^e,(T)} for r —► oo. (1.3)

The correlation length fe,(T) diverges at the freezing temperature Tj and is infinite 
for temperatures T < Tj.

A recent observation by Bray and Moore [14,15,16] has been that the correlations 
in the spin glass phase are very sensitive to small changes in temperature. The 
similarity between the correlations of two thermodynamic states of the same system 
at different temperatures T and I" is expressed by means of the overlap function 
that essentially is the projection of one of the states onto the other:

C|7_fc|(T,T') = {ajSk)^{siSk}^.
For the spin glass phase- where T, T' < Tj and hence both £eg(T) am 
infinite, the analysis of Bray and Moore demonstrates the existence of 
length Ccq(T, T') such -t

Cr'’(T,T')r. ...Xp{ -2r/l',(T,T'y} for r-» oo. (1.5)

They used a descripti. >;: of the spin glass phase in terms of a T = 0 scaling theory 
[16] to investigate the scaling behaviour of €C,(T, T') and found

_i
T-T' 

J
with positive exponent (j and J the typical coupling strength. So in the limit of 
vanishing temperature difference, |T — T'| —> 0, when the two thermodynamic states 
become identical, the overlap length in the spin glass phase diverges as it should. 
For finite temperature differences the correlations of the two thermodynamic states 
are nearly identical on length scales less than ^C,(T, T') and different on larger length 
scales. Eq. (1.4) is also of interest when the correlation length fcq for one or both of 
the states is finite. Let for instance T > Tj so that the correlation length £e,(T) in 
the thermodynamic state at temperature T is no longer infinite. As a consequence 
the correlations of the two states cannot be equal over distances longer than ^,(T). 
The more general expression for the overlap length (1.6) is therefore

T-T'|< 

J
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General1.2.1

(time-dependent) magnetic field H(t) gives rise to a Zeeman

(1-9)

(1.10)(t > 0),
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(1-8) 

where (.. .)t denotes an average over a time-dependent ensemble. The Lime-depen­
dent characteristic length of the overlap function (1.8) is referred the time­
dependent characteristic linear size T') of the T'-domains. It det -s up until 
which length scale correlations in the time-dependent state are ide- 1 to corre­
lations of the same system in equilibrium at temperature T'. A quilibrium
system evolving towards equilibrium in a heat bath of temperature lay at any 
time be analyzed in terms of T'-domains for an arbitrary reference tz . rature T1. 
One then finds that the characteristic domain size T') changes wi i time t until 
if finally reaches the overlap length eeq(T,T'). For the special choice T' = T this 
upper limit is the correlation length fe9(T) and so in a system that for temperature 
T exhibits long range order the characteristic T-domain size grows without limit.

The presence of a
energy

For sufficiently small magnetic field values this additional energy can be treated 
as a perturbation to the interaction energy (1.1) and the magnetization per spin 
m(t) = (sj)t responds linearly to the applied magnetic field:

t

m(t) = j — f)
o

Fluctuations and dissipation: theory and experiment

In this work we shall address the question of the validity of the FDT in nonequilib­
rium systems within the context of the model of section 2. Here we present some 
preliminary considerations.

at temperature T: these are regions where the correlations are identical to the 
correlations of the same system in equilibrium at the reference temperature T'. 
According to the above theory these domains have a characteristic size €C<7(T, Tz). 
We emphasize that for a particular thermodynamic state at temperature T there 
is an infinite set of domain structures each of which belongs to a distinct reference 
temperature T'.

In a nonequilibrium state one can again distinguish T'-domains, whose linear 
size then depends on time. The overlap function (1.4) can be generalized to include 
the nonequilibrium case as follows:



the time difference t' and

(1-12)

•piibility x'’(u>) is defined as the Fourier trans-

(1-13)

arbitrary nonequilibrium system

(1-14)H(t) =

which when

(1-15)

(1-16)icrf"

I

it tends to x'’(w).
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[ 0 otherwise

substituted in (1.10), yields the response

Xeg(T) = lim 
t—»oo

- t').
tw

The equilibrium dynamic susce\ 
formed response function (1.11)

oo

xc"^) =
0

Experimentally the dynamic 
is measured by applying to it

( Hoe-iu,t fort

= j dt'x(t,t — .
0

Then one filters out the Fourier component of this signal with frequency w by 
multiplying it by e,u,< and by subsequent averaging during a time window to that 
is centered around t and that comprises one or more full periods of the frequency 

The amplitude of this component divided by Ho is the experimentally measured 
time-dependent dynamic susceptibility Xrjw’yt), given by

t) = 1 y df'dt"x(t', t' - i")e'
. 1 0t-jTo

Of course this time-dependent dynamic susceptibility is a useful concept only when 
the observation time ro is sufficiently small compared to the time scale on which 
the nonequilibrium behaviour of the system manifests itself. For stationary systems 

t) is independent of the observation time ro and for t —> oo it tends to Xe’(w)- 
The autocorrelation function of the magnetization,

susceptibility of an 
an oscillating magnetic field

0

where we took the initial magnetization to vanish, m(0) = 0. The magnetic response 
function x(t, t — t') gives the response at time t to a unit magnetic field impulse 
at time t — t'. Causality implies that — t,y) vanishes for t' < 0. In thermal 
equilibrium the response function depends only on the time difference t' and we 
write

x(t.t-t') Xe’(t'). (1-11)

Furthermore the response to a unit magnetic field step at time t = tw tends to the 
equilibrium susceptibility at temperature T,
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(1-19)

dynamic

(1-20)

(1-21)

1.2.2

(1.22)

and
•Ort'
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STo(w; t) = — 
7TTO

x(t, t — t') = Xeg(.T)ae at for t' > 0, otherwise 0. (1-23)

Let t„ comprise n„ periods of length 2xa>-1. From the expressions (1.16, 1.21) one 
obtains the equilibrium dynamic susceptibility

1 L 

can in thermal equilibrium situations be written as

(1.18)

Whereas is an even function of the time difference t' we have to expect that 
Cjvf(f, i — tz) in general is not. In equilibrium systems the autocorrelation function 
(1.18) is related to the fluctuation spectrum Seq(u>) by the Wiener-Khinchin theorem

co
Se’(w) = | jdt'cos ut'

0

and the fluctuation spectrum is in turn related to the dissipative part 
susceptibility by the FDT

2

Experimentally one determines the fluctuation spectrum of the magn :f ion of an 
arbitrary nonequilibrium system from an observation during a finite time window 
ro, centered around t. The result is

H-jr© t+|ro

jdti j dt2 CM(t^t2) cosu>(t1 - t2).

1 <_1T2 ° 1 2 °

In equilibrium the expression (1.21) is independent of t; moreover for sufficiently 
large observation times ro it should also become independent of ro. The question 
now is whether the experimentally obtained nonequilibrium quantities (1.16) and 
(1.21) also satisfy the FDT (1.20). In section 5 we shall come back to this question 
and answer it within the context of the model to be defined in section 2.

Example

It is easy to illustrate that the FDT (1.20) is not automatically satisfied even in an 
equilibrium system when the time window ro is only finite. We consider a simple 
stationary system with a single relaxation time a-1, so that

g-a!1'1



(1.24)Xr.(w;t) = Xe,(r)

(1-25)

A renormalized Edwards-Anderson model2

2.1 Derivation of the model

(2-1)

be described by the Hamiltonian (1.1) for dimension

(2-2)(•SL+fc = sk)
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-------—(-1)-
a —

Hence the FDT holds only for t
If the relaxation tin; of the system, a 

relevant to consul. . 
much shorter tha< 
fluctuation specti. 
compared to the 
a proportionality 
large.

g — (a—«u>)t 
1---------------7

T = flToarS), 

and we suppose that it can 
d=l,

a — icv I

and the fluctuation spectrum

Xeq(T) 2a 
tv /3 a2 + cu2

In the expression for the dynamic 
brackets is an exponentially decaying transient due to the fact that the ac magnetic 
field was switched on at t = 0; it is negligible if t a-1. The expression for 
the fluctuation spectrum (1.25) is independent of time. However, it assumes its 
equilibrium value only in the limit of an infinitely long observation time ro a . 

to » a-1.
, is very long, then it is experimentally 

24) and (1.25) the limit a"1 » ro (observation time 
:-y time of the fluctuations). In that limit the measured 

equencies = el'nno/to) appears to acquire a factor two 
n expression. Hence the experimental data will satisfy 
FDT but with a proportionality factor almost twice as

u>2 — a2 1 — e aT° 1 
1 + 2 2------------ ?+ a^ clto J

susceptibility (1.24), the second term in the curly 
exponentially decaying transient due to the fact that the 

0; it is negligible if t a

sinh(aro/2) 1
ro/2 J

We shall imagine that originally we are interested in a d-dimensional lattice of 
(bL)x bd~l sites, i.e. remaining finite in all but one directions as L —♦ oo. The system 
is supposed to be described by the Edwards-Anderson Hamiltonian (1-1) with short- 
range random couplings of typical strength J. The system is at a temperature Tj>arc. 
We assume that we can apply to this system a renormalization procedure in which 
L block spins s*, with k = 1,2,... ,L, are introduced, that represent blocks of b 
original spins. The system of spins sjt is at a (renormalized) temperature T which 
is a smooth function of T^are,

L

W(U}; { J*(T)}) = - Jk(T)sksk+1
k=i

in which the renormalized random couplings Jk are again of typical strength *7. Due 
to the effects of frustration in the original system, however, the precise value of the 
individual couplings Jk will depend very sensitively on the original temperature 
Tfcaro or, equivalently, on T. This has been indicated explicitly in the notation.



(2.3)

(2.5)

(2.7)
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as a temperature independent

(s,Sj+n)? = JJtanh/JJj+^T) (n > 0), 
l=o

where fl is the inverse temperature (Boltzmann’s constant is taken to be unity).
The correlation length (1.3) is

C/CO = -1 log tanh20 Jfc(T) = -logtanh/V- (2-6)

One can also calculate the equilibrium overlap function (1.4) and finds for the 
overlap length

(T, T') = -1 log tanh/3J*(T) tanh/3'J^T').

An exact calculation of the Jk(T) is not feasible. We shall therefore replace such a 
calculation with a set of assumptions concerning these couplings which brings out 
their sensitivity to temperature changes.

We stipulate that the bonds Jj(T) and J^(T) are independent for j / k and 
that furthermore Jk(T) is a Markov process of the following type (this process is 
called the “random telegraph process”):

(i) For T = 0 the bond Jfc(0) is either or —with equal probability.

(ii) For a temperature increment AT the bond Jk(T) changes sign with probability 
FAT/2, where T is a constant that arises in the renormalization process.

Consequently, for all temperatures T, the bond distribution is of the “± j7-type” 
[13]:

P(Jfc,T) = | {6(Jfc + J) + 6( Jk - J)} .

The bond correlation is given by

(2.4)

The system dimension d and the finite size b must obviously enter into the 
renormalization relations linking T and T to Tt>are. It is not here our aim, however, 
to study this dependence. In particular, for our purpose of demonstrating how 
aging phenomena can arise, it suffices to consider T 
constant.

2.2 Statics

The starting point for the remainder of this paper is the Hamiltonian (2.2) together 
with the assumed properties of the couplings Jjt(T). The static properties of this 
system are easily obtained.

For a given realization {Jk(T)} of the bonds the spatial correlation function is, 
in the thermodynamic limit of chain length L —» oo, equal to



(2.8)— log tanh

(2.9)

2.3

.,-sk,...,sL},t)

(2.10)
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Dynamics

We finally introduce the dynamics for this model. We follow Glauber [3] and pos 
tulate a master equation for the probability P({st}, t) of finding a particular real 
ization of the chain with spin configuration {$t} at time t,

?P({s. ,St},t) = £ iv(st| - S*;7(t))P(k
fc=l

L
-^w{-Sk\Sk-,T^)pas„..

(2-11)

The transition rates are such that detailed balance is satisfied. Note that by this 
definition time is measured in units of the elementary spin flip time. One easily

The disorder average in Eq. (2.7) can be performed with the aid of expression (2.4) 
for the bond correlation. The expression for the equilibrium overlap length is then 
indeed of the form (1.7):

sk = 5t(7) JJsgn J((7)

in the Hamiltonian (2.2) which yields a Hamiltonian for a ferromagnetic chain of 
Ising spin variables sjt(T). The same transformation converts the Zeeman term (1.9) 
into a randomly site-dependent magnetic field, so that, again at a fixed temperature, 
the present model is also a random field Ising model.

4,(7, 7') = 2 |r|7 - 7'1 - log tanh - log tanh J

Eq. (2.8) differs from the simple scaling form (1.6) found by Bray and Moore [14,15] 
in that for no finite temperature does the overlap length diverge when |T —T,| —♦ 0, 
it only increases up to the spin glass correlation length £eg(T). This is due to 
the absence of long range order in this model. We shall however take £eg(T) very 
large and study in the subsequent sections time-dependent phenomena that involve 
spatial scales much shorter than feg(T). Such phenomena should be completely 
analogous to phenomena in the spin glass phase of systems with a freezing transition.

In this model all frustration effects have been absorbed in the temperature 
dependence of the couplings J*(T). Therefore, at a fixed temperature T, this model 
is just a Mattis spin gla? [17] as can be seen after one transforms the spin variables 
according to

Here T(t) is the temperature at time t of the heat bath in which the system is 
placed. The transition rate W(—T) for a spin Sk to flip to — st depends on 
the values of the neighbouring spins and s^+i according to

W^(-st|s*;7) = | {1 - + a*+i) tanh^(Jt-i(7) + Jt(7))
-|s*(s*_i - s*+i) tanh/?( Jt_i(7) - J*(7))} .



(2.12)

., : .im Ref. [3]

The time-dependent overlap function3

C„(t;T) = {sjS3+„)t(SjSj+n)5?

(3.1)
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o. the chain 
r he chain is in 

■am- - time t = 0 it
temperature jump AT so that for times t > 0 it will tend to

verifies that the Mattis transformation (2.9) converts the master equation (2.10) 
for the disordered chain into a master equation for a ferromagnetic chain of spin 
variables st(T) and that the transition rate for a spin sj(T) to flip to —si(T) is 
given by

W(-5ifeT) = i{l-i-|*(sJ

where 7 = tanh These rates
Ising chain.

From the master equation we shall derive evolution equations for the spin cor­
relation functions. The time-dependent correlation functions will be used in the 
following sections to analyze the nonequilibrium behaviour of the i.todel. Because 
of the correspondence with the ferromagnetic chain some of the res 
can be used immediately.

+ 5k+l)} >

are identical those of Ref. [3] for a ferromagnetic

= fl sSn2 tanh" (1 J
= <5J(T)5j+n(T))1z"
= zncn(t) (n > 0),

where we introduced the shorthand z = tanh/3J' and cn(t) = (sj(T)sj+„(T))<. 
The experimental conditions given above imply that the initial value of the overlap 
function is equal to the projection of the equilibrium state at temperature T, onto

In this and the following sections we shall study the equilibrat 
in a typical experimental setup. We shall assume that for t < 0 
equilibrium at an initial temperature T; = T + AT and that at 
is subjected to a
equilibrium at temperature T.

The aim of this section is to analyze the evolution of the overlap function Cn(t', T) 
of Eq. (1.8) at temperature T. This quantity is not itself experimentally measurable, 
but its decay length f(t; T) plays a fundamental role in the theory of aging proposed 
earlier [18]. The final result of this section will therefore be an expression for this 
length.

The time-dependent overlap function Cn(t;T) of Eq. (1.8) contains an equilib­
rium correlation function (sjS]+n)^ for which Eq. (2.5) is substituted and a time­
dependent correlation function (sj3j+n)t where (...)( denotes an ensemble average 
with Glauber dynamics at temperature T. After performing a Mattis transforma­
tion (2.9) and after a trivial disorder average that involves the bond correlation 
(2.4) we obtain



I

(3.3)

■'(T)

sgn2 Jj+/(T)tanh2"y3y

2n

(3.5)

(3-7)

evolution equation (see

(t) (n / 0)—2c„(t) + 7<=n+i(i) + 7C>
(3-8)=n(t)

(n = 0)0
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..

= z'" (n > 0). (3-4)

The final overlap length is therefore equal to the correlation length at temperature 
T,

the reference state and by means of Eqs. (2.5, 2.4) it

C„(0;T) = (sjSj+„)T’(sjSj+„)r

can be written as

= sgn Jj+i(T)) sgn J,+/(T) tanh" fa J tanhn 0 J

= {ziZe~r^)n (n>0), (3.2)

tanh/?,<7 and /?,■ = 7)-1. The characteristic length of Eq. (3.2) is thewhere z,-
initial value of the overlap length

2
£(°; T) r|AT| — logz,-— logz

The final, asymptotic value of the overlap function equals the projection of the 
equilibrium state r. terr- ature T onto itself and so it is the equilibrium correlation 
function at temp-

lim Cn(t;T 
t—>oo

lim £(t;T) = 6,(T) = Ilogz|-’,

which for any finite AT is larger than the initial overlap length (3.3).
We shall first derive the time-evolution of the correlation function cn(£)- From 

Eqs. (3.1) and (3.2) we obtain the initial condition

c„(0) = (zie-rl^l)n = ze” (n > 0), (3.6)

where we introduced an effective temperature Te and put ze = tanh • It can 
shown that ze < z, and that the equality holds only for AT = 0: The change of the 
bonds induced by the temperature jump AT breaks up correlated regions and so 
the initial chain appears as a chain that was in equilibrium at a higher temperature 
Te, regardless of whether the initial temperature T, was smaller or larger than T.

From Eqs. (3.1) and (3.4) we can also obtain the asymptotic value

lim cn(t) = zn (n> 0). 
t—»oo

One can, by means of the master equation (2.10), derive an 
Ref. [3]):



and it is easy to verify that the solution to (3.8) and (3.6) reads

(3.9)c„(t) = zn - yn(t, z; z) + y„(t, z„; z) (n > 0).

(3.10)

(3.11)

(3.12)g—2(1—'ycosk)t/n(*,p;z) (n > 0).

(3.13)0,/ —» oo)/n(t,p;z) (n

(3.14)

and

(3.15)« 1 - ic,2(n7 =

(3.16)/n(i,p; z)

where
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2
7T

Z„(x) = ~jde cos(n(?)eICO’e 

0

the sum in Eq. (3.10)

psin k sin nk 
1 — 2p cos k 4- p2

/dk 
0

Now 0 = k/y/t is substituted and 
finds for the leading term

can be performed by elementary methods and i ■ finds

The function z) is defined as

OO

/„(t,p; z) = e"21 ^p' {Z„_,(27t) - Z„+i(27t)} ,

where In is the modified Bessel function of the first kind and of order n (see e.g. 
[19]), and where the z-dependence comes in via 7.

With the integral representation

2ne-2(1-’)‘
~ ^Vt

z = e-V«.,(T) ~ _ ^-1(T)

*(1-P)2)

an expansion is made in powers of 1 / y/t and one

OO 

0

with the first order corrections of relative order n2/t.
We shall be interested in the low temperature regime where tcqfT) is large so 

that

2z
1 + z2

We shall also take the temperature jump sufficiently large, r|zNT| ~ 1, so that 
initially the chain appears as a chain with a very small correlation length £e,(Te) ~ 1- 
Experiments with smaller temperature jumps have also been carried out and one 
can readily extend our analysis to such situations. We can than write Eq. (3.13) as

“ y/Tt

fc2 c-^ 
t^ + k*



p I'A .17;F(x)

(3.18;c„(t) ~ 1 -

(3.19/

(3.21)

and one has

for 1 <Cf « £2,(T)rrt
(3.22)««;T)

t» £,(?)■
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2
A

( fe,(T) for

Then, using Eq. (3.1), we find

f(‘;T) = 2{f-1(r) + r1(*;T)}”1-
The above derived behaviour of the overlap length

For p = z the argument '/f / 
*i v/c *haB 

Substitution of (3J4) arid

this determines the behaviour of the overlap function; 
•? definition of the time-dependent characteristic length 

tows that

k2
x 4- k2

e-i/ec.(T)
T) = «e,(T) { 1 + e. —F

ne

co

/" 
0

One finds F(0) = 1 and F(x) Qi l/2rr for x —♦ oo.
in Eq.(3.16) equals t/£c2,(T) and for p = zc it equals (1 - 
write as at/^2(Te) with a nonsingular constant a. C-------
in Eq. (3.9) yields

f?,(T.))}

(3.23) 

can be understood from a 
simple physical picture. When at time t = 0 the temperature jumps to T a fraction 
of the bonds changes sign. The result is that at t = 0 the correlation length of the 
chain is reduced to ^e,(Te) ~ 1, where the effective temperature Tc is defined by 
Eq. (3.6). From this initial condition the chain has to evolve towards a situation

n ne '/'■ii'-1 > t \ / 

6,(T) v/?t e«2,(r)/" \
For times t with 1 <*< $2,(T’) Eq. (3.18) reduces to

c„(t) ~ 1 - -fL (1 « t « e2,(T), n2/t « 1).
"yTit

Together with E
C„(t; T). Comparis'
f(t; T) which follow shi

^;T) ~ 2y/^. (? < t < £,(T)). (3.20)

This is of the general power law form £ ~ tp postulated in the phenomenological 
theory of Chapter III (see also Ref. [18]). Here such a law (with p = |) has been 
derived from a microscopic basis.

The above analysis can be extended to include the crossover to times where 
the final correlations become of importance: both t 1 and £lq(T') 1 but with
arbitrary ratio t/gq(T). We first introduce a time-dependent correlation length 
i(t]T) which is the characteristic length of cn(t). From Eq. (3.18) we read

G^)}
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(4-1)

are given by Eq.(2.11).
replace H in Eq.(4.1)

an evolution equation for the average of a spin

In the
by ff(t).

From the master equation (2.10)
can be derived (see Ref.[3]):

’ —(s*)< + 2 sgn + ^sgn Jt(T)(st+1)f

+ tanh (/?/!(<)) (1 - ^Sgn Jt-i(T)(«k-iSi)( - sgn Jt(T)(sjtsn.i)(} (4.2) 

which contains, besides the expected inhomogeneous term tanh (3H(t), the spin cor­
relations and (sfcSjh+1)t. In terms of the Mattis transformed spin variables

where the correlated regions, these are the sequences of spins joined by satisfied 
bonds, are very large, fC(7(T) 1. The temperature T is very low so that it is
very unlikely that a spin inside a correlated region of size f (t; T) <C £eg(T) fliPs- 
The boundaries of the correlated regions, these sire the bonds that are not satisfied 
by their neighbouring spins, can move freely in both directions: they perform a 
random walk.

The number of random walkers decreases with time because when two of them 
meet they annihilate each other. The average distance between the random walkers 
increases with and this is exactly the growth law for f (t; T). It holds as long 
38 ^e,(T), but when gets closer to £eg(T) the creation of random
walkers inside the correlated regions, caused by spontaneous spin flips, gets more 
probable and this limits the growth of f(t; T) to £cg(T). The latter behaviour is 
found for times t larger than the maximum relaxation time |(1 ~
(see Eq. (3.12)).

The time-dependent response function x(t, t -

In this section we continue to consider the temperature jump experl n described 
in the first paragraph of section 3. There we considered the time-dope; dent internal 
domain structure of the spin glass chain. We now turn towards the experimentally 
observable magnetic response of the chain (cf. Eq.(1.10)) during equilibration after 
the temperature jump at time t = 0. We begin by calculating the time-dependent 
magnetization m(t) for the case of an infinitesimally small magnetic field H(t). We 
shall then see how the time-evolution of m(t) is coupled to that of the internal 
domain structure.

As a preliminary the transition rates in a magnetic field have to be defined. In a 
constant field H there is a Zeeman energy term (1.9) to be added to the Hamiltonian 
(2.2). In order to satisfy detailed balance in the presence of the magnetic field the 
transition rates have to depend on H. The following choice is made:

^(-3*|sfc; T, H) = ^(-Sfclsjt; T, 0) (1 - s* tanh pH), 

where the transition rates in the absence of a magnetic field 
In the case of a time-dependent magnetic field H(t) one can



(4.3)

(4.4)

(4.5)(fc > I)-<T) {I-7C1W}h*(0 = H(t)

It

(4-6)e

(4.6), (4.5), and (3.7), and the iden-

(4-7)

(4-8)

(4.9)
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£ - t').
l=—co

(see Eq.(2.9)) the evolution equation (4.2) reads

= -(5*)t + + |(st+i)<

+ tanh(/3H(ty> ^jjsgn Ji(T)

ii

can easily be verified t •  rhe solution of Eq.(4.4) is 

oo
(it)i = e“‘ ^2 («l)<=o/k-i(7i)

/ = —OO

1 - ^(s*-i«t)i — ^(5t5*+i)iJ .

This equation describes the evolution of the average of a spin s* in a ferromagnetic 
j  ‘ ’t can be

ignetic field. The spin correlations (sjk-i-Sjt)t and 
_ , X , ! ^ce

random field Ising model. For translationally invariant initial conditions it 
solved to linear order in the mag„
(s*Sfc+i)t are, to zeroeth order in approximated by Eq.(3.9) and hem

= _(^)« + ^(^l-l)< + ^(S* + 1)‘ +

where the random fu is h <) are given by

(**)« = £ (nsgnJAn) tanh^/Jy
/=—oo \J=1 '

(for I negative the product over j runs from I to 0). This is also the result given y 
a transfer matrix calculation in equilibrium if one formally expands to lowest or er 
in pH. We expect it to be correct only if the distribution of (st)oo as a wi 

small compared to unity, i.e. if

(^)I«1.

+/? J"dt' 
o

It is interesting to remark that if one uses 
tities

OO

I dt e ‘I„(yt) =
J /l-72

and (1 - 7z)/yi - 72 = 1, one finds that in a constant field H(t) = H the spin 
averages {sk)t approach for t —► oo the equilibrium values



finds that this leads

(4.11)0).

(4.12)

(4.13)

(4.15)
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be calculated in 
obtains, taking

oo) the magne-

eplace the 
we find

the Jj(T) one

m(t) = P J- t'){l - 7C.(t - i')} (t > 
o

For long times, t 3> 1, and low temperatures, fe,(T) 3> 1, we 
correlation function Cj(t) in Eq. (4.11) by Eq.(3.18) and with (3.21

By substituting (4.8) in (4.9) and averaging over 
to the condition (for <1 and £r,(T) » 1)

< T (4.10)

The left hand side of this inequality represents the Zeeman energy of a correlated 
region, and the right hand side its free energy with respect to the ground state. 
For the infinitesimal magnetic fields which we consider here, (4.10) represents no 
serious restriction, provided we do not also let T become equal to zero.

From the solution (4.6) the average magnetization (1.10) can 
terms of the spin variables Sj. After the disorder average one 
(-Sfc)o = 0 for all spins

tf(t) = H8(t - tw).

Substitution of (4.15) in (4.12) shows that on the time interval [tw, 
tization increases from m(tw) = 0 to m(oo) = pH according to

m(t) ~ p Jdt'e-1'~ - t').
0

The response function is read off directly from Eqs. (1.10) and (4.11):

x(t, t - t') = j9e-‘70(7t'){l - 7c,(t - t')},

and under the above assumptions

x(t, t - t') ~ ^e-'70(7t')e-1(t - t'; T). (4.14)

The Eqs. (4.12) and (4.14) show how the magnetic response of the system is coupled 
to the time-dependent size £(t;T).

The result derived above can readily be understood since only the boundary 
spins of the correlated regions of the chain are susceptible to the infinitesimally 
small field. This is because their local field is zero as compared to the local field 
of 2y of the spins inside the correlated regions. The factor £-1(t;T) in Eq. (4.14) 
represents the fraction of susceptible spins at time t. Such predominance of domain 
boundary contributions to the magnetization has been observed experimentally not 
directly in spin glasses but in random field systems [20,21].

Suppose that following the temperature jump at t = 0 we keep the magnetic 
field zero until t = tw, and at that time switch it on to a thereafter constant value 
H:



H16)

(4.17)
t=tw

(448;

5

(5.1)

85

m(t) ~0H [ dt’e-eI0(-ft'^-'(t - t1- T). 
0

A measure of the magnetic relaxation time r(tw) associated with the magn/rtz f./sd 
step at time tw is given by the initial slope of m(/), normalized by the ftt/rp

1 dm(t) I 
m(oo) dt |

iven by (4.16). Working this out yields

f(*;T)

When one expresses the magnetic fluctuations (1.17) in terms of t le . att 
transformed spin variables sjb(T) (see Eq.(2.9)) and subsequently averages over 
order using (2.4) one obtains

= i>m y y, (n ■^+'^ 
L-“L^i\r4 /

and one notices that only the spin autocorrelations contribute to the magn 
fluctuations since

with m(t) gi-

T(t) =

In the time regime 1 t <g f’,(T) one finds from (3.23) and (4.18)

r(t) ~ 2£(t; T) (1 < t « <C2,(T)).

This relation couples / -cutaneous magnetic relaxation time to the domain 
size. It is precisely of ; ; law form r ~ £z hypothesized in Chapter III (see
also Ref. [18]). Howev' .. has been derived (with z = 1) from a microscopic 
starting point.

T ’(tw) =

The Fluctuation-Dissipation Theorem out of equilibrium

In this section we calculate the magnetic fluctuations of the chain as it equilibrates 
(in zero magnetic field). Then we shall calculate the fluctuation spectrum and 
the dynamic susceptibility and discuss the validity of the FDT. The experimental 
conditions are as in section 3, where at time t = 0 the temperature jumps from its 
initial value T, to the value T = 7) — AT The magnetic fluctuations are derived from 
the time-delayed correlation function (cf. Eq.(1.17)) which for t2 > t> is defined bv

(Sj(b)st(ii)) s
y SjG(si, • • •, sl; <zl^i, • • •> s‘l<b)5*-P(si> • • ■ >st>b)

{•},{«'}
where G(«i,... t2|sj,... ,s't;*1) is the conditional probability of finding the 
chain in the spin configuration {s} at time t2 given the spin configuration {s } 
at time tp

When one expresses the



(5-3)

-(<■-«>) (5.4)(ti > t2)

(5.6)S'’(W)

and

S'’(o>) ~ (5.7)

(5.8)

(5.9)
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among spin glass

CAf(ti,<2) = e

we find (see appendix A)

■ w fST„(u>; t) ~

X”(u>) ~

defined by Eq.(3.1) and given by Eq. (3.9).
be calculated by substitu: g the magnetic 

rate on the 
mes, t 1. 
. quency u>, 

lementary 
:re jump:

(5-5)

Xto(w; t) ~

= (s/tjjs/t,)).

This is not a peculiarity of this model but rather a common rule 
models; see for instance the review by Fischer [22].

From the master equation (2.10) an evolution equation for the time-delayed spin 
correlation function is derived and from its solution one obtains (see Ref. [3])

oo

52 cn(b)/n(7(il - M) 
n=—oo

where the spin correlations cn(t) are
The fluctuation spectrum can now 1. v  

fluctuations (5.4) in Eq. (1.21). As in the previous sections wc 
low temperature regime, £eq(T) 1, and on the behaviour for lod 
The observation time ro comprises a number no of periods of 
uto = 2noir, and we shall take this time window much larger tha 
spin flip time and much smaller than the time lapse since the ten

1 < w-1 < to < t.

Under the above conditions

1
^eq(T)^/2-

First we note that the measurement result (5.6) is observation time dependent 
as was to be expected from the example in section 1.2.2. Secondly there is a 
time dependence via £(t; T), the fraction of susceptible spins. For fixed no and in 
the regime 1 <C t < feg(T) (see Eq.(3.22)) the fluctuation spectrum (5.6) decays 
towards its asymptotic value as a power low, ~ t-1/2. Precisely such decay of the 
fluctuation spectrum has been reported by Refregier [12].

In order to test the validity of the FDT we calculate the dynamic susceptibility 
(1.16) with the response function (4.14). With the same assumptions (5.5) on the 
time scales as above, we find (see appendix B) 

 
<(t;T)X

with the equilibrium value

£(! + «)



(5.10)

Appendix A: As ic calculation of Sro(u>;Z)

(A.l)

5r.(wjt) =

(A.2)+

(A.3)sro(w;t)
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2
7rr0

 i amount of order to <C t. 
replaced by t neglecting corrections of

7=}/Ho J

that feg(T) 1 and that t 1.
ti is split into two parts, ti > t? and t\ < 

some changes of variables one obtains

1
7FTO 

0

<; 00 I
I dtS'e-1' cos ivt" cn(t ~ ~2 + ) •

0 n="°°

The arguments of the cn’s in (A.2) differ from t by an
Therefore the arguments of the cn’s are i 4 
order ro/t. This leads to

To t' OO

Idt' f dt"e~‘" coswt" c„(t)Z„(7*")-

0 0 n=-oo

We first note that the measured dynamic susceptibility (5.8) is not observation time 
dependent. This is in qualitative agreement with the example of simple exponential 
relaxation of section 1.2.2. The time-dependence of the dynamic susceptibility is 
governed by <(t;T) as was the case with the fluctuation spectrum (5.6). As a 
consequence, the ratio

t) ~ 2
ImXro(w;t) “ 7T

is a constant independent of t and u. According to the FDT this constant should 
be 2/tt. Here we find the exact validity of the FDT only in the limit of large no. 
for long observation times.

Many groups [6,7,8,9,10,11] report a proportionality of the kind (5.10) for the 
“equilibrium” values of the fluctuation spectrum and the dynamic susceptibility. 
Refregier [12] reports a constant ratio (5.10) also for the time-dependent values. 
To date the experime; \ of the constant, which is reported to be indepen­
dent of frequency and : « ; .ure, has, to our knowledge, not appeared in the 
literature.

In this appendix the fluctuation spectrum (1-21) is calculated from the magnetic 
fluctuations (5.4). The size ro of the time window is assumed to be large compared 
to the elementary spin flip time but small compared to t, the time-lapse since the 
temperature jump at t = 0. Furthermore the time window comprises a number 
n0 of full periods of the frequency u>, hence ro = 2irno/w. To summarize these 
assumptions (see Eq. (5.5)):

Also it is assumed that T is low so
overFirst in (1.21) the integral

Then (5.4) is substituted and after

1 dt' fdt"e~‘" cosut" cn(t + y - t' + t")Z„(7<")

J 7 n=—oo



(A.4)c„(t) ~ 1 - ~ c?(t) (n 0)

(A.5)fc)t"

(A.6)Re

Re

(A.7)

(A.8)S. = Re

(A.9)
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2(1 - 7cc)
%2TO

5? 4n|(i)cos(
7l = —OO

2(1 - 7eC)

j  e-(i—rcosfe)To

(1 — 7 cos k — iu>)2(l — 7C cos fc)

_______________ 1_______________
(1 —xccosA:)(l — 7 cos A: — iiv)

_______________ 1_______________
(1 —yc cos fc)(l —yc cos k — iu>)

l~7eC 
7T2

2(1 - 7eC)
7T2

9
STJa>;t)~ —

7FTO

are used. The integrals over t

— ioi — ^/(l — ia>)2 — 72| .

ST<>(w;t) st
c-(l-tw—y cos fc)t"

1 — 7C cos k

Tr ‘r
/ dt' / dt"e~,“ coscut" 52 cln|(t)I„(7*")

0 0 n=-oo

From (3.18) and (3.21) it follows that 

n

with corrections of order n2/t. For the higher values of n in the sum of (A.3) the 
product e-,"/„(7t") is sufficiently small to surpress further contributions:

where u>ro = 2tttio is used.
The second term in (A.7) demonstrates the effect of a finite time window. In 

the limit of t0 —♦ oo only the first term remains and this term is proportional to the 
equilibrium spectrum. The evaluation of (A.7) will be done in two steps, starting 
with the first term: 

0 *
Re jdk 

0

= -l~Re

2x

/■“ 
0

Set u = etk. The integral in (A.8) then becomes a contour integral along the unit 

circle. Inside the unit circle two poles axe located. One at z and one at

= - {1
7 1

fa 
0 0 0

where the shorthands c = C](t) and ~fc = 2c/(l + c2) 
and t' can now be performed and one finds

STo(u>;f) ~

» to e
ydk ydt' ydf'e-ri-^-rco. 

0 0 0

In the last step the integral representation (3.11) is invoked 1 ce cosivt" is 

replaced by Ree‘u,i ). The sum in (A.5) can be carried out and is



s, =

(A.10)

(A.ll)
$'’(“) =

(A.12)

(A.13)I

I ~
(1-7 +

(A.14)

(A.15)
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1
ft

• ro. To this end 
The leading term of the

00

0

ffc4/4 — u>2ro2)(l — e~*2^2) 
jfe2(fc4/4 + w2r02)2

'27TTO

z and 7c —» 7>

1 _ e-(l~7)To-7*2/2 

^-^)2(l-7e+<)

1 - e"*’/2 
Jt2(fc2/2-fwro)2’

1 - e-j2 
X2

Re/ ~

fc^Im =£=== 
rrw x/(l - io>)2 — 72

Using 7 ~ 1 - |C2,(T), 7c I ’ r(<; T) and c ~ 1 - T) in (A.10) and using 

the assumptions (A.l) final;:

Cc,(T)
((t;T) k >

and Se,(u>) given by (5.7). ,
Then the second term of (A.7) is evaluated. First concentrate on e in egr

f | _ e-(l—1 cos k)ro

J (1 — 7 cos k — zcu)2 (1 — 7c cos k) 
0

Since to 1 this integral will be analyzed asymptotically for large 
substitute k = k'/^t~o and then drop the primes again. ----------
expansion for large ro then is 

00 

/■“ 
0 

00

= ydk 
0

In the second step terms of order (1 - 7)r» r0/«2,(T) have been neglected. The

real part of I equals 
oo 

2r//2 jdk 
o 

y/2^ 
w2

After some algebraic manipulations one finds

- 1
(^-1)2+^ 

i - 1

(£-l)2 + ^
w

(i-l)2+w2

2 
7T

+ A1-1'cC)___ _________Re 1
7c (£ - I)2 + u>2 y(l - iw)2 - 72

. 7(1 ~ 7cC) j 1 I
7c (^ - I)2 + w2 ’ y(l - io?)2 - 72 j

The equilibrium spectrum is attained in the limit t —♦ oo, where c —* 
so



s2

(A.16)

Appendix B: Asymptotic calculation of xTq(u):

u

(B.2)+
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where we assumed that = 2™o > 1. With this result the second term of (A.7) 
gives

result (5.6).

| _ e-(l—y cos k)ro

(1 — 7 cos k — iu>)2(l — 7c cos k)
Re J dk 

o

t'/2

J dt' ydre-V,,(7r){l-7c1(t'-r)}e- 

0

In this appendix the dynamic susceptibility (1.16) is calculate 
function (4.14). Here to is the size of the time window aro- 
t (when at time t = 0 the chain was subjected to a tempi 
time window comprises a number n0 of periods of the frequen 
2xno/w. It is assumed (see Eq. (5.5)) that the time window

i the response 
time instant 
jump). The 

nd hence ro = 
 x zz    u much larger than 

the elementary spin flip time but much smaller than the “age” of the system:

1 <ro«t,f2g(T)

It is also assumed that the temperature T is low
First (1.16) is substituted in (1.16) and

(B.l)

so that 1 and that t 1-
first, ^i.roj is substituted in (1.16) and one notes that the integrand of the 

integral over t" contains two factors. The factor exp(-t")Z0(7<") is maximal for 
t" = 0 and the second factor, 1 - 7C1(t' - t"), is maximal for t" = t', the other end 
of the integration interval. Therefore the integration interval is split into two parts, 
each containing a boundary maximum. In the first term, where t" ranges from 0 to 
i /2, one sets r = t" and in the second term one sets r = t1 — t":

2(1 - 7eC)
7T2TO

U(T) 2
f(f;T)7r7n;

Summing up (A.12) and (A.16) finally gives the

1 + T./2

Xr.(u>;t) =
TO

t-To/2

t'/2

y<fre-'+^0(7(t'-r)){l-7C1(r)}e-' 

0

Since t' is of order t (because ro t) one may expect that the integral over r in the 
second term hardly vanes with t’ so that the average with the phase factor exp(iw^) 
over an integer number of periods 2tt/u> vanishes. A detailed analysis shows that 
this term gives rise to contributions of order ro/t and of order to/

It remains to calculate the first term in (B.2). The argument of C\ can be 
replaced by t thereby neglecting terms of order To/t. Using the relation 1 — 7ci (0 ~



finds

Xr«(w; t)

xUo,;t)

(B.4;

(B.5
*'» =

<B.6>

VB.7'

finds
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i

P 
-{(t:

j

- >/( 1 — iu>)2 - 72} .

0. Consequently one finds

P 
2-«e,(T)

P 
r<£(t; T) 

I-r./a

1
1 — iu> —1 cos fc

rf7_e_(l_lu,-7e.»Mr

(~’(t;T), see (3.21), one

« one

p
T)
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Chapter

Acceleration of Spin Glass 
Dynamics by Temperature 
Variations *

In this chapter it is shown for the example of the one-dimensional model system 
that a spin glass subject to a linearly varying temperature reaches a quasistationary 
state in which the dynamics is much faster than in a constant temperature state.



Introduction1

imework.

(1-1)

if v'k / Th
(1-3)

1-lrAT if ^ = 7*
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1.1 The simple spin glass model

Our simple spin glass model consists of a 1-dimensional Ising spin ch? i with Hamil­
tonian

k

in which the bonds are written as

[1,2]).
brief introduction of the one- 

expression is derived for th ■ decay of the 
and here it is

response 
he latter

As a result the spin correlations vary randomly with temperature. In this model 
frustration effects as are present in more elaborate spin glass models manifest them­
selves via the temperature dependence of the couplings J*(T). We have argued in

|TAT

J*(T) = 7*(T)y (1.2)

with the typical bond strength and 7j(T) randomly temperature dependent co­
efficients. We stipulate that the coefficients 7,(T) and q*(T) are independent for 
j k and that furthermore

(i) for T — 0 the coefficient 7*(0) is either +1 or —1 with equal probability,

(ii) for a temperature increment AT the coefficient q*(T) changes sign with prob­
ability TAT/2, where T is a constant; formally, q*(T) is a Markov process (as 
a function of T) with a transition probability per temperature increment AT 
given by

In this chapter it is shown that, when a spin glass is subjected to a nonconstant 
temperature, a modification of its dynamics occurs. In particular it is demonstrated 
that the one-dimensional model, subject to a linearly varying temperature, quickly 
reaches a quasistationary state in which the dynamics is much faster than in a 
constant temperature state and of which the properties depend singularly on the 
temperature rate of change. This effect is completely due to the random tempera­
ture dependence of the correlations in the spin glass state (see

The remainder of this section is devoted to a
dimensional model. In Section 2 an
magnetization of the model subject to a linearly varying temperate 
shown that the dynamics is accelerated. Section 3 deals with the m: 
function which involves the calculation of the spin correlation fum 
calculation provides the evidence for a quasistationary state.

Finally, in Section 4, the results are discussed within a more ger



(1-4)W) = (k = 0)■So

—1/ fog

(1.5)as

Ising chain leads to a longest

(1-7)0,
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where /? = 1/T sin-
The similarity .

T and T' is express* . h;
of the overlap function

C:’(T,T') = (Sj-3i+n)5?(sjsj+„)^

T —» 0, 
arm’s constant kg = 1. 
elations of two thermodynamic states at temperatures 
overlap length, which is twice the characteristic length

time dependent correlation function (stst+nji- We shall use these evolution equa 
tions in the next sections. Glauber dynamics for an I „ 
relaxation time re, for the pair correlations given by

T‘i = 1(1-7)-’

= tanh" tanh”e-"r|r-T'1 (n > 0), (1-6)

where the angular brackets denote a thermal average and the overbar denotes an 
average over disorder, i.e. over the random rjk’s. The overlap length approaches 
^eg(T) when T and T' become equal, and vanishes when T and T' are very different. 
This is exactly the type of behaviour that has been found for more realistic spin 
glass models by Bray and Moore [1,2].

We choose the dynamics for this model to be of the Glauber type [5]: a master 
equation, with specific “Glauber” transition rates, is postulated for the probability 
of finding a particular realization of the spin chain at a particular instant of time. 
From this master equation one can derive evolution equations for the spin correla­
tion functions, in particular for the time dependent spin average and for the

( n/c(T)77A-+i .. .77-i(T)sfc (k < 0).

This converts the Hamiltonian (1.1) into a Hamiltonian for a ferromagnetic chain 
of Ising spin variables s^(T). Its correlation length is

£C,(T) = .h/V

as T

Chapter IV (see also Ref. [3]) how such a model may arise if one renormalizes a 
d-dimensional bar of size Ld~* x oo.

At a fixed temperature T, this model is equivalent to a Mattis spin glass [4] as 
can be seen after one transforms the spin variables according to

( (k>0)



(1-8)(1 - 7)t « 1

for all t £ rclp.

Decay of the magnetization2

(2.2)= -(s*)i + 1711-1 (TfXst-i), + 571t(7’i)('s*+i)<-

(2.3)(**).^(i) = < for n = 0

1*-i(7i)i*_2(T()... l*+n(T()(st+„)t for n < 0.
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i so
which we consider

(2.1)

= 1.

n > 0

i me rexp

2.1 An equation for the magnetization

For a chain with Hamiltonian (1.1) Glauber dynamics [5] yields the following time 
evolution equation [3] for the spin averages:

dt
The constant T will be taken small enough and the temperature Tt low enough 
that we may take 7 to be constant during the time interval over \....--  ----------

Eq. (2.2) constitutes a complete set of equations that can be solved in principle 
but whose solution still contains the randomly temperature dependent and hence 
randomly time dependent coefficients 1/^(7)). Since we are only interested in the 
disorder averaged quantity (si)1 we shall construct another complete set of equations 
that does not have this drawback. We introduce

( 1*(T()i*+l(T,).. •1i+„-i(T()(st+n)< for

In this section we shall derive an expression for the decay < magnetization of 
the system while the temperature Tt varies linearly with time t according to

T, = To + Tt (t > 0).
For simplicity we stipulate that at t = 0 the chain is fully magnetized, (sr)o 
Other initial conditions can also be dealt with.

where 7 = tanh 10 J.
The model (1.1) obviously does not undergo a spin glass transition at a finite 

temperature. Our point of view is, however, that the aging effects of interest will 
appear on spatial scales less than the correlation length and on time scales 
less then the largest relaxation time re?. Throughout this work we shall therefore 
restrict ourselves to temperatures so small that

(') is much larger than any other length in the problem, and

(ii) T'q >s much larger than the largest time attainable in a laboratory exper­
iment, i.e.



Then let

*•(<) = »?*(T() (2-5)

(2-6)

(2.7)

(2.8)

(2-9)

used (1.3). By combining (2.5), (2.2), (2.6), and
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lim 
atio

^([’7*(T)],To,T, + ZST) =
+ AT)|r?lt(T())P([rM(T)],7’o,T1).

Using (2.7) and (2.8) in the right hand side of (2.6) yields

= I]/ 2’[%(T')]7’(MT’)],To,Tl)4(r?),

where ^([^(T)], To, T,) is the probability of having the fth bond realize the function 
'lt(T') in the interval [T0,T(]. We shall discretize the T-axis in small intervals of size 
M’, small enough so that the probability for more than one change of sign of 7*(T) 
per interval is negligible. Because of the Markov property of the ^(T) we have to 
leading order in AT

pend on

^(T, + AT) - ^(T,)
(■s*+i It

m e n / 
<=±i i

x^(^|7?*(T1))7’([7?z(T)],To,T1)^^^(at+1)1

= -rII y^>[’?«(7’)]^>([’?z(9n)],To, T()t7*(T1)(s)k+i)(

= -r<z,(t), 

where in the second last step we 
(2.9) we find that

T lim r,k^T' + ~ rlk(T^ i. \

Here and allowing we take the constant T to be positive. For negative T
the absolu.. . should be taken at the appropriate places.

For any quantity X(r?) that depends on the 7t(T) for T in the interval [T0,T(] 
we have

For the first term we can 
second term we write

‘f’h.-U-
~dt v’" ''

The disorder average restores the translational invariance so that an does not de- 
the spin index k. FYom (2.2) and (2.3) it immediately follows that

<z0(t) = -<r0(t) + + |7o-i(t). (2.4)

us consider cr^t). Using the product rule for differentiation we obtain 

d(s*+i)( dri^Tt)

invoke (2.2) to eliminate the time derivative and for the



(2.10)

2.2

(2.12)

(2.14)

^m(ir) — y/CXm (2.15)(m = l,2,...)

(2.16)(m — 1,2,...)

2

(2.17)(m = 1,2,...).
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2TT
7

2TT
7

2rf
7

<t(x,/), where an(t) 
grated over 
becomes

£ = -1 + 7 - rr|x|. (2.i3)

The initial condition becomes <7(1, 0) = 6(z), and <t(z, t) should vanish for |t| —> oo- 
Because the initial condition is symmetric we can restrict ourselves to the subset 
of symmetric solutions. The operator C is hermitian and the eigenfunctions 
satisfy

Am = 1 - 7 + 57«'„

1

1*1 - <

{dt — £} <z(x,t) = 0 

with

Solution of the equation for the magnetization

We shall solve the above set of equations (2.11) in the contin’ im limit <rn(t) —» 
) can be regarded as corresponding to the -it- inte-

the interval (n — |,n + |). In terms of the densi ') Eq. (2.11)

<h(0 = -ai(t) + ^7^0(0 + 57^2(0 - rr<zi(t).

In the same way one can derive

ff„(t) = -a„(t) + 57<*»-i(*)+ |7<7„+i(t) - |n|rTa„(t) (n = 0, ±1,.. ■) (2H) 

which constitutes the announced set of nonrandom equations. The initial condition 
becomes an(0) = 6„,0. FYom the solution we only need <r0(t) which by the definition 
(2.3) is equal to the magnetization (s^),.

^m(i) = —Am<^m(x)

for eigenvalues Am (m = 1,2,...). Eq. (2.12) with Eq. (2.13) is also the Schrodinger 
equation for a particle in a linear potential well. Its symmetric eigenfunctions are 
the Airy functions [6]

with the normalization constant
OO

Qrn = 2 y dy Ai2(y - a'm) 

0

where a'm is positive and the mth root of Ai'(—a'm) = 0. The eigenvalues are given 
by



find for the Green function G of problem (2.12)

Ai

z
(2.18)tx exp

.);t)- G-

(2-19)

(2.20)

(2.21a)
^■(0) = 1,

(2.21b)

(2.23)
r,.(T) =
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rr
7

2rr
7

2rt
7

2TT
7

- '  ’ much over the
>od approximation, and because of the initial condition

e~<!
\/2~ ’

•7"(u) ~ 2« x/7T7uai Ai2(—a'^exp 2

The property (2.21a) is proved in the appendix.

with the scaling function T7 given by
CO

5-(u) = 2« yjic'iu y a.

This function is such that

z ■

t

i
Ai

■m Ai2(-a'm)exp{-2 ’7<“}

-A"‘^m(x)^(x')

oo

= 52"“ 
m=l

1 - 7 + 570™

1

3 |x'l - <
1

M - <4

2.3 Discussion of the result

We recall that the times t that are of interest satisfy
t £ Texp « Teq = 1(1 - 7)-1. (2.22)

Therefore Eq. (2.19) shows that at a fixed constant temperature, i.e. for T = 0, 
power law decay of the magnetization is observed. This decay and its consequences 
were discussed in the previous chapter. A basic result of the present study, brought 
out by Eq. (2.19), is that for nonconstant temperatures a new time scale

_2

as u oo.

r J, 

i \ 7

With (2.15) and (2.17) we
OO

G(x,x';t) = ^2 e

2TT
7

For not too short times (t » 1) the density <z(x,t) does not vary 
interval (—1,1) so that as a j 
a(z:,0) = «(x), 

(st)t « <z(0.
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(3.1)

(3.4)
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When one uses T 
sjt(Tt) it becomes obvious that

= -2(sjSt)l + |7r/J_1(T()(sj_1sJfc)l + |7’b(2"<)(s.>+i's*)t 

+|7’?*-i(r1)(sJ-st_i)( + 57’1*(Ti)(sjs*+1)i. (32)

we defined <zn(t) by Eq. (2-3). FurthermoreWe shall proceed as in Section 2 where 
we define

— —<•»*>« + 27’?t-i(r1)(slt_1)( + |7Vt(T<)(4*+i)<

+^(t) {1 - h’fc-iWX**-!**), - ^(T,)^*^).} •
We shall be interested in (sj), to linear order in the magnetic field and therefore it 
suffices to consider the spin correlation function to zeroeth order in the magnetic 
field. For j k Glauber dynamics [5] leads to the set of equations [3] 

d(sjsk)t 
dt

comes into play. For r„ <, r„p, this time scale becomes experimentally accessible. 
Eq. (2.19) then describes the crossover from the power law relaxation for times 
* X to exponential relaxation, with a time constant r,,, for larger times. For 
Terp £ this crossover no longer occurs on experimentally accessible time scales.

cn(t) = . rZt+„-i(T1)(sts*+n)< (” > 0) (3-3)

which is the disorder average of the Mattis transformed (cf. Eq. (1.4)) spin corre­
lation function at time t (temperature Tt). From (3.1), (2.11), and (3.3) it imme­
diately follows that

= -a„(t) + |7^n-i(t) + >■.+!« - Hr2>n(t) + hn(t) 

where the “local magnetic field” is given by

MO = /9g(t)r?fc(T,)>?t+1(T,),,, __________
x {i - |7’7*-i(T<)(3*-i3i)( - |7^(7’<)(5*3i+i)i} (n > 0). (3.5) 

the Mattis transformation (1.4) to transform to the spin variables

The time dependent magnetic response function

In this section we derive an expression for the time dependent magnetic response 
function for the situation where the temperature varies linearly according to (2.1). 
We shall do so by calculating the magnetization due to an infinitesimally small 
magnetic field H(t).

3.1 An expression for the response function

When a small magnetic field H(t) is applied, the correspond. 'man energy
adds to the Hamiltonian (1.1) of the system so that the evolutio on (2.2) is 
modified by terms proportional to the magnetic field (see [3]),

d(sk}t 
dt



(3.6)

(3-7)(n > 0).

(3.8)

<r(z,t) = y dx < (3-9)

(3.10)

(3.11)

(3.12)
c(0,t) = 1, c(x,t)

101

X(t, t - t') = 0G(O,0; t') {1 - 7c(l,t - «')} .

We took, for simplicity, the initial density <7(1,0) = 0.

(»*)« = Idt'
0

with the dynamic susceptibility

''•r',0) + f dt' j dx' G(x,x';t')h(x',t — t'). 

o

be approximated by a(0.t) and 
as

0 as x —> oo

3.2 The spin correlation function c(l,t)

According to Eq. (3.11) the response function x(t->t ~ depends not only on the 
time difference t' between stimulus and response, but also on the absolute time t — t 
(measured with respect to the instant that the system was quenched to low tem­
peratures). The (t — t')-dependence comes in via the correlation function c(l,t — t ). 
which shows that aging in the spin glass chain is a result of the nonstationarity of 
the spin correlations. In this subsection we shall see that a linearly varying tem­
perature introduces a very particular situation where the spin correlations acquire 
stationary values. We shall call this quasistationarity.

Let us first formulate the problem for the spin correlation function:

( dtc(x,t) = ydxxc(x,t) — 2(1 — y)c(x,t) — xFTc(x,t) (x > 0)

Since for not too she; ■ : s . density (sk)t can 
since h(x,t) has a de]- . peal- x = 0, we can write Eq. (3.9)

hn(t) = 6n,oPH(t) {1 - 7Ci(*)} •

Then we consider the spin correlation function. One has Co(^) = 1 and by the same 
procedure as outlined in Section 2 one finds from (3.2) and (3.3) that

C„(t) = -2c„(t) + 7c„-i(() + 7Cn+1(t) - nrTc„(t)

As in Section 2.2 we study Eqs. (3.4), (3.6), and (3.7) in the continuum limit, 
e„(t) -» hn(t) -» h(z,t), and cn(t) -» c(x,t), and we shall start with
the density <z(r,t). Due to the local magnetic field h(x,t) we have instead of the 
homogeneous problem (2.12) the inhomogeneous problem

{dt — £} a(x, t) = h(x, t).

Its solution, in terms of the Green function defined by (2.18), is:



(3.13)exp —ya

(3.14)c-’M + x0 / Ai(io)Ai

(3.15)

independent

(3.16)f,.(T)

(3.17)

(3.18)

(3.19)
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/Ai

in which the coefficients gm are dependent 
is positive and the mth root of Ai(—am) = 
given explicitly by

case where T is sufficiently large so

exp

where xq >s the constant

cq*(x) ~

z - am

The problem is very similar to (2.12) and the eigenfunctions 
functions. The general time-dependent solution takes the form

c(x,t) = c’,(x)+e-2(1-'r)'
oo

*E
m=l

on the initial condition, and where am 
■- 0. The quasistationary solution c’5 is

2(1-7)
7

We call this solution quasistationary because it is formally a til 
solution of (3.12) but, as noted above, for a nonstationary situation.

The time-dependent part of the correlations decays, just as the magnetization, 
on a time scale rgl (see Eq. (2.23)) which for sufficiently high temperature rates of 
change is much smaller than the experimental time scale rexp. In that case c(x,t) 
decays rapidly towards its stationary value and aging is absent. We shall therefore 
first consider c’’(x).

We define a quasistationary correlation length

are likewise Airy

(note that rq, = £2a) and express the quasistationary correlation function (3.14) in 
terms of this length and £e,:

We first analyze the limit £q, —» oo which occurs when T —» 0. From the behaviour 
of the Airy function for large argument [6] it then follows that

c”(x) ~ e-1^*’

as it should (see [3]). For the
find for x

that Ce, we



Since Vt<

(3.20)

by

(3.22a;1.05

(3.22b)u

(3.23)

(3.24)

(3.!Xi)
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The latter decay is nonexponential with characteristic length £.,»(’/').
In Eq. (3.11) only the nearest neighbour correlation c(l,t) occurs.

shall assume that always £,3(T) 1, we may expand Eq. (3.17) in this quantity:

c’-(i)~i_
S<?S \S>CQ / 

with the scaling function f given

/(u) = - Ai'(u2)/Ai(u2). (3.21)

This function describes the crossover of c’*(l) from the quasistationary to the equi­
librium regime that occurs when T tends to zero. It has the properties (see [6])

/(o) = 3ir(l)/r;f

/ t \

ppear. If we wish to describe the 
r the deviation of the correlation 
(3.13) and (3.20) we have to first

for u —» oo

f(u) ~ u as

In the limit T —» 0 the 
crossover to this limit, we 
function from its quasista. . 
order in with t/r,, and f

Here the scaling function g is given by
oo

s(u) = 2v^7 £ gm Ai'(-am)e-^"“ 
m=l

with history dependent coefficients <72, • • •• From (3.24) we see that for fixed t 
one can make a large time expansion and that the first correction term to quasis- 
tationarity follows from

sW = 201V^e^°1“{l + ^ for u-> 00 (3.25)

which contains only a single undetermined coefficient g\ = g\ Ai/(—a»). The higher 
order terms in the expansion are negligible for u 1, i.e. for t rq9. Hence, taking 
into account only the first correction term, we have from (3.23) and (3.25)

c(l,t)~l-±{/(0) + ff1e-'-</T’-}

where we used r,, < re,, and t,, = This describes, within this nuxiek
the crossover from quasistationarity to aging behaviour.

Then let us finally turn to the magnetic response function. The time settles 
are ordered asl<t'<t < rtIp re, and from (3.11) with (2.19) mul (3,23) wv 
obtain



(3.27)

for t' «-„
(3.2S)

T„ « « tfor

for
(3.29)xM - '

f(0)^x'’(^) wr,3 » 1,for

3.3
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f the mag­
tai' results.
Jq. (3.27),
ale r,3) to

<^t,s C 1

*') •
2^/(0)O,

\ Tqs

For the dynamic susceptibility y(w;t), which is the Fourier trai: 
netic response function x(t, t — t') with respect to t', one can det 
Considering frequencies uj such that 1 <g u>-1 C t < rcxp we find, 
that the dynamic susceptibility decays rapidly with time t (on a 
the quasistationary value

There are, according to the value of r,s, three regimes to consider. First rq, >, re,, 
and since t C rc, also t r,,, resulting from an extremely small temperature rate 
of change. The behaviour of x(t,t — t') is then dominated by aging effects.

For larger T, when t?j <g rexj), terms dependent on the initial conditions (aging 
effects) decay on the time scale rq, (cf. Eq. (3.26)). One then has

Qualitative understanding of the results

The above described behaviour can be understood from a simple physical picture 
of the spin glass chain. At every instant of time t there is a fraction p(t) of bonds 
that are not satisfied by their neighbouring spins. The temperature T is very low 
so that it is very unlikely that a spin inside a correlated region flips. During a small 
time increment At the temperature changes by an amount AT = T&t. A fraction 
FTAt/2 of the bonds changes sign and this changes the fraction of frustrated bonds 
by (1 — 2p)FTAt/2. Each frustrated bonds performs a random walk until it meets 
another one: then the two annihilate one another. Their average spacing grows 
as y/t (see Ref. [3]) so the fraction of random walkers decreases in a time lapse 
At by p3(t)At due to the annihilations. Hence for small p(t) it is clear that p(t^ 
remains stationary when the two contributions cancel. This leads to pg’ ~ (FT)3 
which corresponds to the result (3.16) because pq’ ~ £“*. The dependence of 
the dynamic susceptibility on the fraction of frustrated bonds is understood (see 
Ref. [3]) from the fact that only the boundary spins of the frustrated bonds respond

/W)(l+i) _ tln^
2^73^

where xe’ is the equilibrium dynamic susceptibility for this model, see [3]. Eq. (3.29) 
shows that for not too low frequencies, wrq, 1, the dynamic susceptibility is 
increased by a factor £Cg(T)/£,a(T) with respect to its value in equilibrium.
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(A.l)
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In this appendix we prove Eq. (2.21a). From (2.19) one has
oo

Z(u) = 2« 1/71-711 57 “m Ai2(-a'm) exp{2~3 7a'mu} 
m=l

to an infinitesimally small field. This is because their local field is zero whereas 
the local field for spins neighbouring satisfied bonds is 2 J Finally, the maximum 
relaxation time of the system is reduced from the value req = = 1/2(1 — 7)
for a system at a fixed temperature T to the value Tqa = £qa ~ T~* due to the 
smaller (quasistationary) correlation length.

We have shown that, for a simple spin glass model, the dynamics is drastically mod­
ified when the system is subjected to a linearly varying temperature. The system 
then quickly reaches a quasistationary state of which the properties arc dictated 
by the magnitude of the temperature rate of change T. With the quasistationary 
state a length £qa(T) is associated that diverges as T“3 for T 0. In this state 
the dynamic susceptibility is increased by a factor £cg(T)/£,;.s(Tj ; i ■ < > >.-ct to its 
value in equilibrium. A similar enhancement of the dynamic :• in y should
be observable if not the temperature but a background magnen n varied 
sufficiently slowly. This effect is currently being investigated [7‘.

Within the framework of a domain theory for aging in spin glasses [8,9] one 
can arrive at qualitatively the same conclusions. The basic assumption of the the­
ory is that the spin glass equilibrates through the growth of domains. When the 
temperature is continually changed at no matter how small a rate the growing do­
main structure is continually disrupted. The phenomenon of interest here is that 
a situation arises where the growing and the breaking of the domains balance each 
other such that the characteristic domain size is stationary. In this situation there 
is no longer a growing length scale in the system and hence there is no aging. The 
characteristic domain size remains finite (and dependent on the temperature rate 
of change) so that there is also a finite and time-independent maximum relaxation 
time. This maximum relaxation time depends, through the characteristic domain 
size, on the temperature rate of change and can presumably be made small com­
pared to experimental time scales.

It is certainly interesting to know whether the predicted behaviour occurs in 
nature. In the experiment one would have to look for the value of the temperature 
rate of change that is required to provoke the effect. The total amount of variation 
of the temperature over the measuring period, namely Tt, should remain so small 
that there is no appreciable change in the rate of the thermally activated processes 
that play a role. Experiments indicate that such is the case, for typical spin glasses 
like CuMn [10] and CdCr1.7Ino.3S4 [11], when Tt £ 0.2K.



(A.2)dx Ai2( —x).

(A.3)

(A.4)dx Ai2( —x)

(A.5)

sin2 (k~ + 0 — 5)

(A.6)

(A.7)

(A.8)Ai(-a'm)
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37r(4fc - 3)
8

3?r(4fc - 3)
8

3ir(4k — 3) 
" 8

(I)’*/"
0

Ai( —z) ~ 7T

~(-l)n

1

with which (A.4) can be written as

“l+i 

f dx Ai2(—x) 
“1

“m

one finds for large values of m 

y!
y’

d0 cos2 0 = -i-. 
2<

For small u the sum in (A.l) will be dominated by the larger terms (m large). 
These are the contributions that will be calculated.

The normalization constant om, given by Eq. (2.16), is written as

" / 
0

With (A.6) and (A.5) in (A.2)

m

Jdk ( 
0 

2^ 
7T

From Ref. [6] one has

With the asymptotic expansion [6]

sin (jar* +

one has for large values of k

“l+i “l+>
j dx Ai2(—x) ~ — J dx sin2 (fx’ + j)

“1 “1

Also one as for larger k values [6]
2



:p{-2 s7<“}^(u)

da a ’exp{—2 >7au)

(A.9)0.
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and (A.8) in (A.l) and

1
— exl 
am

The property (2.21a) is proved by substituting Eqs. (A.7) 
by replacing the sum by an integral:
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Samenvatting
Dit proefschrift handelt over de dynamische eigenschappen van een bijzondere klasse 
van magnetische systemen, die bekend staat onder de naam spinglazen. Het betreft 
hier systemen, waarvan de wisselwerkingen tussen de magnetische momenten (spins) 
°P ongeordende wijze met elkaar in competitie zijn. Het belangrijkste kenmerk 
van spinglazen is dat beneden een redelijk scherp bepaalde overgangstemperatuur 
Tj de spins “invriezen” in vjillekeurige richtingen op een zodanige manier dat er 
geen globale ferro- of antiferromagnetische ordening ontstaat. Ook de tijdschaal, 
waarop de relaxatieprocessen in spinglazen zich afspelen, neemt extreem snel toe 
met afnemende temperatuur. De dynamica van deze systemen vertoont dus sterke 
overeenkomsten i I die van gewoneglazen (zoals het bekende vensterglas); vandaar 
de naam spingl

Een g; manier om meer begrip te krijgen van een onbekend systeem is
door gebn miken van een gemiddelde-veld benadering. Voor een ferromag- 
netiscli sys( - •. -i t dit een eenvoudige theorie op die kwalitatief het gedrag van
het systeem goed ^eschrijft. Voor spinglazen is de theorie, zelfs in gemiddelde-veld 
benadering, ui term ate ingewikkeld en alhoewel men er al rond 1975 mee is begonnen 
heeft het tot 1983 geduurd voordat men met name de lage-temperatuur fase goed 
beschrijven kon. Het beeld dat men nu heeft van een spinglas vertoont enige gelijke- 
nis met dat van een ferromagneet. De gemiddelde-veld benadering voor een spin­
glas geeft, net als bij de ferromagneet, een welgedefi nicer de kritische temperatuur 
Tc waaronder het systeem geen twee, zoals bij de Ising ferromagneet, maar oneindig 
veel fasen kept. De ordeparameter is niet, zoals bij een ferromagneet, de magneti- 
satie maar een ingewikkelder functie van de gemiddelden van alle spins. Alle fasen 
van een spinglas hebben dezelfde thermodynamische eigenschappen: zij verschillen 
slechts met een niet-extensief bedrag in vrije energie. De niet-extensieve bijdra- 
gen aan de vrije energie kunnen worden beschouwd als onderling onafliankelijke 
stochastische variabelen getrokken uit een exponentiele verdeling met een breedte 
die afhangt van de temperatuur.

Omgekeerd kan het lage-temperatuur spinglas beschreven worden met een een- 
voudig model dat bestaat uit een verzameling energienivo’s, waarvan de (vrije) 
energiewaarden aan de hierboven gegeven specificaties voldoen. Vervolgens kan het 
model worden uitgebreid door, met behulp van een “master”-vergelijking, voor te 
schrijven hoe het systeem van het ene energienivo naar het andere kan springen. 
Het idee is dan dat daarmee de extreem langzaam verlopende dynamica van een 
spinglas verklaard kan worden.

In dit proefschrift wordt het asymptotisch gedrag, voor lange tijden, bere- 
kend van een autocorrelatiefunctie in het hierboven beschreven “kinetic random 
energy model”. De studie is beperkt tot een aantal overgangswaarschijnlijkhe- 
den waarvoor analytische resultaten konden worden verkregen. In alle gevallen 
tonen de berekeningen aan dat de autocorrelatiefunctie asymptotisch vervalt als 
een negatieve macht van de tijd t (zoals t"°) of als een gerekt exponentiele functie 
(zoals exp(—t0) of t-7exp(—t0) met 0 < p < 1). Alle exponenten (a, p en 7) zijn 
temperatuurafhankelijk. Deze resultaten stemmen kwalitatief overeen met wat men
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H

het niet- 
eenvoudigste manier waarop dit kan worden 

veldsprong experiment: op het tijdstip t = 0 
het spinglas naar een temperatuur beneden de cv Tgangstemperatuur 

jorh <ld 10 Gauss) 
' wachttijd tw 

den. Daarna 
ent herhaalt 
•pen van een 

•i satie trager 
• enten blijkt 

•1 v >vacht in een 
Men spreekt in dit

experimenteel vindt.
Vanwege de extreem trage dynamica beneden de overgangstempcratuur is het 

te verwachten dat ook de equilibratie van een spinglas zecr langzaam verloopt en 
het is dan ook zeer de vraag of een spinglas, dat ter experimentele bestudering 
(snel) wordt afgekoeld tot een temperatuur onder de overgangstempcratuur, binnen 
een experimented tijdsbestek thermodynamisch evenwicht bereikt. Niettemin heeft 
het theoretisch onderzoek zich lange tijd (noodgedwongen) geconcentreerd op de 
evenwichtseigenschappen van het spinglas in de lage-tempcratuur fase.

Vooral na 1982 kwamen er meer en meer experimentele bewijzen van 
evenwichtskarakter van spinglazen. De 
aangetoond is met behulp van een 
“schrikt” men
Tj terwijl het magneetveld op een kleine constante waarde (b: 

men het systeem geduv 
tw het magneetveld uit 

de magnetisatie. Als men d 
de wachttijd (experimentele ’ 

van < 
en anden 
tot wat 

het spinglas.

wordt gehouden. Vervolgens laat 
ongemoeid om op het tijdstip t = 
registreert men het verval van 
voor verschillende waarden van 
seconde tot enkele dagen) dan ziet men dat het verval 
verloopt naarmate de wachttijd groter is. Uit deze 
dat de magnetische responsfunctie, in tegenstelling 
systeem in evenwicht, afhangt van de leeftijd van 
verband over veroudering.

Een belangrijk deel van dit proefschrift handelt over
Het begint met de formulering van een theorie die veroudering in spinglazen ver- 
klaart vanuit een beeld van groeiende (en krimpende) domeinen. Het hierboven 
beschreven experiment kan op eenvoudige manier worden uitgelegd met behulp van 
deze theorie: vanaf het moment t = 0 beginnen zich in het spinglas domeinen te 
vormen, waarbinnen de spincorrelaties zich gedragen als in evenwicht. Daardoor 
groeit het spectrum van relaxatietijden van het totale systeem naar langere en lan- 
gere tijden zodat na een steeds grotere wachttijd de magnetische relaxatie zich op 
steeds grotere tijdschaal afspeelt.

De, leeftijdsafhankelijke, lineaire respons van een naar evenwicht strevend spin­
glas kan dus worden begrepen met behulp van een met de (leef)tijd toenemende 
lengteschaal. Bij grotere verstoringen, zoals grotere temperatuur- en magneetveld- 
sprongen, komt een tweede lengteschaal, de overlaplengte in het spel. Deze over­
laplengte geeft de typische afstand waarover de correlaties in twee copieen van 
hetzelfde systeem bij verschillende temperaturen en magneetvelden overeenkomen. 
Het bijzondere van spinglazen is, dat deze overlaplengte snel afneemt als functie 
van bijvoorbeeld het verschil in temperatuur van de twee copieen. Met behulp van 
deze tweede lengteschaal worden alle niet-lineaire verouderingseffecten verklaard.

In dit proefschrift wordt ook een een-dimensionaal spinglas model behandeld 
waarmee een aantal aannamen, die zijn gemaakt in de domeintheorie, worden 
gerechtvaardigd. Met name de leeftijdsafhankelijke lineaire respons wordt in ver­
band gebracht met een in het model gedefinieerde lengteschaal die in de tijd varieert. 
In het bijzonder wordt ook de geldigheid van het fluctuatie-dissipatie-theorema voor
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het niet-evenwichtsspinglas bediscussieerd.
Als laatste wordt in dit proefschrift beschreven hoe men i w

in spinglazen kan onderdrukken. Het idee daarachter is dat de, bij constante tem- 
peratuur gebruikelijke, groei van domeinen wordt tegengewerkt door een afbraak 
tengevolge van een lineair met de tijd varierende temperatuur. De lengteschaal 
in het model grocit dan niet meer maar blijft op een door de mate van tempe- 
ratuurvariatie gcgeven waarde. De theorie voorspelt, voor niet te grote tempera- 
tuurveranderingen, dat de magnetische responsfunctie varieert op een tijdschaal die 
afhangt van de mate van de temperatuurverandering en die veel kleiner is dan bij 
een constante ter.. peratuur.
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en “Een 
•or spinglazen”. De twee onderwerpen zijn bestudeerd onder 

rivelijk prof. dr. P.W. Kasteleyn en prof. dr. H.J. Hilhorst.
1986 tot februari 1990 ben ik aangesteld als promovendus bij 

i de Stich- 
ting Fundamenteel Onderzoek der Materie (werkgroep VS-th-L). Begeleid door 
prof. dr. H.J. Hilhorst nam ik deel aan het theoretisch onderzoek naar de dynamica 
van veeldeeltjessystemen, in het bijzonder van spinglazen. De resultaten van het 
onderzoek zijn in dit proefschrift beschreven.

Met ingang van februari 1990 word ik aangesteld als uni versitair docent bij de 
faculteit der Wiskunde en Natuurwetenschappen van de Rijksuniversiteit te Leiden 
om, onder leiding van prof. dr. D. Bedeaux, werkzaam te zijn op het gebied van de 
Fysische en Macromoleculaire Chemie.

In juni 1970 behaalde ik het diploma MULO A en B (richting wiskunde) in Amster­
dam en in december 1975 behaalde ik, met lof, het diploma HTS-Elcktrotechniek 
(specialisatie electronica) in Alkmaar. Nadat ik van januari 1976 tot mei 1977 
mijn militaire dienstplicht vervulde ben ik bij de Sylvius Laboratoria (Faculteit 
Geneeskunde van de Rijksuniversiteit) te Leiden aangesteld als electronicus op de 
afdeling Histochemie en Cytochemie; vanaf augustus 1982 in deeltijd (voor 50%).

In juni 1982 heb ik het colloquium doctum aan de Rijksuniversiteit te Leiden 
behaald waarna ik onmiddellijk ben begonnen aan de opleiding natuurkunde van 
dezelfde uni. < . Het propaedeutisch examen is behaald in augustus 1983 en in 
januari 1986 ’• . . ■ ik het doctoraal examen in de theoretische natuurkunde. De
doctoraals als onderwerpen “Diffusie op percolatienetwerken’
eenvoudig 
leiding vai
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G.J.M. Koper, januari 1990.

L.C.E. Struik, Physical aging in amorphous polymers and 
other materials, Elsevier Scient. Publ., Amsterdam, 1978.

Stellingen behorende bij het proefschrift

On the Dynamics of Spin Glasses

Struiks poging om voor verouderende systemen lineaire-respons relaties te for- 
muleren door het tijdsverschil tussen respons en stimulus te schalen met de leeftijd 
van het systeem is overbodig en verduidelijkt bovendien niets omtrent het ver- 
ouderingsproces.

Gegeven een stel “dronken wandelaars” in een zeer lange en uiterst smalle steeg. 
Zodra twee van die wandelaars elkaar tegenkomen slaan ze elkaar neer en is de 
weg vrij voor de overgeblevenen. Als de kans dat een wandelaar spontaan neervalt 
of weer opstaat verwaarloosd mag worden dan neemt de fractie na een tijd t nog 
overeindstaande wandelaars asymptotisch af als t~2.

jffoofdstuk IV van dit proefschrift.

H.J. Tanke, Cytometry 2(1982)359.

De bijdrage van de synthetiserende cellen in een DNA-histogram kan beter op 
het oog worden bepaald dan met behulp van uitgebreide data-analyse.

Veroudering is een jonge en veelbelovende tak van de wetenschap.

Het berekenen van het typische aantal metastabiele toestanden met gegeven mag- 
netisatie en energie van een Ising spinglasketen is equivalent met het berekenen 
van de toestandssom van een Ising spinglasketen met stochastisch-ruimteaflianke- 
lijk magneetveld.

Er bestaat niet zoiets als een niet-lineaire Schrodinger vergelijking.

De bewering, dat de Yang-Baxter relatie een voldoende voorwaarde is voor de 
oplosbaarheid van een statistisch-mechanisch model, kan niet worden bewezen.

M. Wadati et al., Phys. Rep. 180(1989)247.

De sterke concentratieafhankelijkheid van de fluorescentieopbrengst van gekleurde 
celkernen, gemeten met een microfotometer met hoge numerieke apertuur bij 
golflengten waarbij een sterke emissieabsorptie optreedt, is te verklaren door 
zowel de golflengte- als de concentratieafhankelijkheid van de brekingsindex in 
beschouwing te nemen.

Als in de onder stelling 2 geformuleerde situatie per tijdseenheid en per eenheid 
van lengte een klein aantal, ct, nieuwe wandelaars wordt geboren dan onstaat een 
quasistationaire toestand, waarbij gemiddeld per tijdseenheid evenveel wande­
laars worden geveld als er geboren worden. Die toestand wordt gekarakteriseerd 
door een wandelaarsdichtheid die afneemt als a 3 met a —> 0.

Hoofdstuk V van dit proefschrift.

De golffunctie, die men gebruikt bij de quantummechanische beschrijving van een 
fysisch proces, is afhankelijk van de kennis die men van dat proces heeft.

N.G. van Kampen, Physica A 153(1988)97.
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