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Chapter 1

Introduction

This thesis analyses the so-called sublattice parity order which we prove to occur in a 
special class of low dimensional systems, the so called Luttinger Liquids [1]. Although 
Luttinger Liquids have been investigated in great detail [2], this kind of order has been 
overlooked. Before we indicate what is meant by this type of ordering, we give a brief 
overview of Luttinger Liquids and order in general. After this we will describe the sub­
lattice parity as it occurs in two dimensions in high Tc superconductors and in Haldane 
spin-1 chains. We end this chapter by summarizing the work presented in this thesis.

1.1 Fermi and Luttinger Liquids

Condensed matter physics describes the behavior of huge amounts of particles. A gram 
of material such as a simple metal houses the unimaginable number of 1023 particles 
which all interact, for instance through Coulomb interactions. Faced with these enor­
mous quantities it seems impossible to do any theoretical calculations on physical sys­
tems. Fortunately, this is not true for three dimensional metals.

Most of the characteristics of these materials can qualitatively be described by a 
gas of non-interacting electrons. The reason for this was given in 1956 by Landau in 
his so called Fermi Liquid theory [3]. Among other things, due to the discontinuity of 
the particle density around the Fermi level, the elementary excitations of the strongly 
interacting system can be described by effectively non-interacting quasi particles. These 
quasi particles obey Fermi Dirac statistics and have the same quantum numbers as free 
electrons. The electron-electron interactions lead to a renormalization of the kinetic 
parameters compared to free electrons, like the effective mass. The Fermi Liquid theory 
provides a systematic way to calculate these kinetic parameters and quantify the changes 
produced by the interactions.

However, for a one dimensional system, the Fermi Liquid theory breaks down. This 
is because for d = 1 the momentum distribution function n(k) is expected to be smooth at 
the Fermi wave vector and quasiparticles with a finite lifetime cannot be defined. Instead 
of the quasiparticles with charge e and spin the elementary excitations are collective
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2 CHAPTER I. INTRODUCTION

charge and spin density fluctuations with bosonic character, the so-called spinons and 
holons. These spin and charge excitations propagate with different velocities which lead 
to the separation of spin and charge. This is known as the Luttinger Liquid [1]. Such a 
model has been solved by means of a bosonization technique [2].

The one dimensional Hubbard model is an example of such a Luttinger Liquid and 
describes spinful electrons which interact through a Coulomb interaction U [4], In this 
model there is a straightforward interpretation of spin charge separation. For consider 
the large U limit for ptot = 1, with pt0t the total electron density. In that case, there are 
no doubly occupied sites and because of the strong short range antiferromagnetic order, 
a typical local configuration will be as depicted in figure 1.1a. Consider what happens 
when we remove one up electron and move the spin vacancy to the left. The neighboring 
spins move in the opposite direction. Due to this spin movement, the original hole has 
split into a so called holon and a spinon. The holon is a pure charge excitation and is 
characterized by a hole surrounded by antiferromagnetically ordered aligned spins. The 
spinon is a pure spin excitation characterized by two adjacent up or down spins, which 
has an excess spin with respect to the initial antiferromagnet. The spinon and holon 
can move separately.

■> i t i t i t i i i i i
» I I l t I t I ° I ! I

til!1 t ° 1 l t 1
f 0 I) 1! 1 klT-t 1

Figure 1.1: Cartoon picture of the mechanism of spin charge separation in one dimen­
sion. a) The typical local configuration for large U in the Hubbard model. By removing 
one up electron we introduce a hole (figure b), which can move due to the hopping of the 
electrons and is split into a holon and a spinon (figure d). The left dashed oval indicates 
the holon, and the oval on the right marks the spinon.

In this thesis we analyse an order that occurs in these Luttinger Liquids. To do so, 
we review the concept of order in a physical systems in the next section.
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1.2 Order and Disorder

Almost all phase transitions encountered in condensed matter physics are transitions 
from an ordered to a disordered phase [5]. The first phase displays certain correlations 
which are absent in the second phase. Since the disordered phase has less order than 
the ordered phase, the system has a higher symmetry. In other words, in the disordered 
phase the system is invariant under a symmetry which is spontaneous broken in the 
ordered phase. The two phases can be distinguished by a so called order parameter 
which is an average (0) of an operator which is not invariant under the symmetry. This 
quantity is zero in the disordered phase and non-zero in the ordered phase.

A simple model to explain order and correlations occurring in physical systems is 
the Ising model [6,7] on a square lattice defined by the Hamiltonian

H = —J ^2 cr(i) cr(j). (1.1)

<ij>

Here <r(y) = ± 1 are defined on a lattice and < ij > denotes a pair of neighboring sites 
/ and j. We consider ferromagnetic interactions with J > 0, so neighboring sites want 
to align. The Ising model has been solved exactly and has a phase transition from an 
ordered to a disordered state at the critical temperature Tc [8].

At low temperatures T <TC the spins tend to align and the system is ordered. This is 
expressed by the non-zero spontaneous magnetization (cr(r)) = M{T) ^ 0 which breaks 
the global Z2 symmetry of the Hamiltonian (1.1). For these temperatures, the kinetic 
energy destroys the order of the aligned spins only over a maximum distance of the 
finite correlation length £(T). And thus for large distances the spins stay correlated with

(cr(r)cr(O)) = (<j(?))2 + Ae~mi^T) -» / 0, (1.2)

for large |r| and with A a constant. So the model displays long range order. When the 
temperature increases the correlation length £(T) becomes longer until it becomes infi­
nite at the critical temperature Tc. At this point the kinetic energy is powerful enough 
to break up the aligned spin order throughout the system and the staggered magnetiza­
tion has decreased to zero. For these critical temperature the model is on the point of 
becoming disordered.

For high temperatures T > Tc the system is in the disordered phase which can be 
characterized by a zero magnetization (a(r)) = M(T) = 0. In this region neighboring 
spins still want to align but due to their kinetic energy, they can only do so up to a 
maximal distance of the correlation length |(T). Now, the model is short ranged ordered 
and for large distances the spins are uncorrelated which is expressed by

(£7(?)a(0)> = (a(?))2 + -+ [M(T)]2 = 0. (1.3)

So the high and low temperature regions are qualitatively different and can be distin­
guished by the spontaneous magnetization M(T) which serves as the order parameter.

In this Ising model the order parameter can easily be identified. In other more com­
plicated cases, the identification of an order parameter is not that simple. For instance,
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after the discover}' of superconductivity in 1911 in Leiden by Kamerlingh Onnes [9] it 
took till 1956 for the order parameter for the superconducting state to be found [10]. For 
these systems the density of the so-called Cooper pairs [11] can be used to distinguish 
the superconducting from the normal state. But as we will discuss now, not every system 
can display long range order.

In this thesis we analyse the so-called sublattice parity order in an example of a 
Luttinger model, namely the one dimensional Hubbard model. In this system the spins 
have a continuous symmetry, instead of the discrete Z2 symmetry of the Ising model. 
Therefore, according to the Mermin-Wagner theory [12], this model cannot have long 
range order. Instead a correlation function like the spin correlator decays algebraically 
to zero {Sz(x)Sz(0)) —► 0. This is referred to as quasi long range order. Furthermore, 
there is another difference between the order in the Ising model and the order analysed 
in this thesis.

The order in the Ising model can be detected using a local two-point correlator 
(<r(r)cr(0)) which depends only on the value of o{j) on the lattice sites 0 and r. In 
our study we investigate a topological order which can be detected with the correlator
Ot0p(x) = — {Sz(x)(— 1)^=' n,ol^sz(0)). This correlator cannot be expressed as the 
product of two operators and is highly non-local. Because of this, this order is difficult 
to measure in an experiment and the order is referred to as an hidden order.

So the sublattice parity order analysed in this thesis is a form of hidden topological 
order. This kind of order is also studied in two dimensions by Zaanen and Nussinov [ 13]. 
In this article they describe a phase transition in which the sublattice parity disorders. 
As an introduction to the sublattice parity order, we will review this transition in the next 
section.

1.3 The stripe dislocation transition

A topological phase transition closely connected to the order described in this thesis 
is the quantum phase transition addressed in a geometrical language by Zaanen and 
Nussinov [13]. The transition is in more algebraic terms studied by Sachdev et al [14] 
and describes the destruction of the sublattice parity order in two dimensions. As we 
will discuss now, this kind of order is associated with the so-called striped phase.

The stripe phase occurs in high Tc superconductors which were first discovered in 
1986 [15]. These compounds consist of parallel copper oxide planes which are sand­
wiched between layers containing oxygen, rare earth materials like La, and sometimes 
copper atoms. By chemical substitution of the rare earth materials, one can add or re­
move electrons from the Cu O2 planes in which the conduction takes place. Examples 
of such compounds are La2-xSrxCuO4 and YBa2Cu30e+s- At zero doping, the com­
pounds are Mott insulators. When the materials are doped, the holes do not spread 
homogeneously over the two dimensional C11O2 plane, but can instead form lines in the 
antiferromagnetic, Mott insulating background, as is schematically indicated in figure
1.2. These lines of holes form domain walls in the spin system and are referred to as 
stripes.

Stripes have to do with a kind of topological order. They form domain walls in a
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Figure 1.2: Schematic illustration of the stripe ordering. The stripe is an antiphase 
boundary for the antiferromagnetic order. For the lowest line we have indicated the A 
and B sublattices as well as the sublattice parity defined in figure 1.3. This shows that 
the stripes are domain walls of equal sublattice parity and the parity changes sign across 
the stripe.

geometrical quantity, the so called sublattice parity which has to do with the notion of 
bipartiteness. A lattice is called bipartite when it can be subdivided into two sublattices 
A and B, such that all sites on the A sublattice are neighbored by B sublattice sites
and vice versa. This division can be done in two ways (----- A — B — A — B • • • and
----- B — A — B — A - ■, see figure 1.3) defining a Zj valued quantity p = ± 1, which
we will refer to as the sublattice parity. Stripe order means that every time one passes 
a charge stripe, the sublattice parity p changes sign. This is indicated in figure 1.2. One 
can refer to this as the ordering of the sublattice parity. This ’topological’ aspect of the 
stripe order can be seen as a form of long range order, which is of geometrical nature. So 
when only fully connected stripes occur, the stripes are domain walls of regions of equal 
sublattice parity as is shown in figure 1.4a. In this figure the value for the sublattice 
parity is indicated and the lines represent the stripes.

In their article [13], Zaanen and Nussinov showed that the destruction of the sublat­
tice parity order is governed by an Ising gauge theory. This transition is due to the fact 
that topological excitations associated with the destruction of charge and the excitations 
responsible for the disordering of the sublattice parity are different, as is shown in fig­
ure 1.4. The charge dislocations, represented by connected stripes, cause the charge to 
disorder but leave the sublattice parity intact. On the other hand, the stripe dislocations 
which are represented by stripes coming to an end destroy both charge and sublattice 
parity order. When the charge dislocations quantum proliferate, the sublattice parity 
turns into an Ising gauge field, and the confinement transition of the gauge theory de­
scribes the unbinding of charge dislocations into stripe dislocations. For small doping
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a)
p = +l

A BABA BAB

P = “l

BABA

Figure 1.3: The subdivision of an antiferromagnetic chain into A and B sublattices 
according to a sublattice parity p = +1 and p = -1.

b) 111
BABA

Figure 1.4: One can distinguish two types of topological defects in the stripe phase, 
namely charge dislocations (a) and stripes dislocations (b). The charge dislocations, 
represented by connected stripes, cause the charge to disorder but leave the sublattice 
parity intact, whereas the stripe dislocations, represented by stripes coming to an end, 
destroy both charge and sublattice parity order. In these figures, the 4-1 or — 1 indicates 
the value of the sublattice parity and the lines represent the stripes.
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the dislocations are suppressed and we are in the deconfined phase of the Zo gauge the­
ory. For higher doping the dislocations have a finite density and proliferate destroying 
the sublattice parity. This is the confining phase of the Z2 gauge theory. It is suggested 
that this quantum phase transition might be the one responsible for the quantum criti­
cality near optimal doping in the high Tc superconductors. However, since the order in 
this confinement-deconfinement transition is topological, one need to consider non-local 
correlation functions to observe this. But experimentally, it is very difficult to measure 
such correlation functions and therefore it is called hidden order.

Up to now, we implicitly assumed that not only the charge order but also the an­
tiferromagnetic spin order is fully destroyed. This leads to two phases, a deconfining 
and confining phase. However, there is also another possibility. In principle a state can 
occur where the charge is disordered while next to the ordering of the sublattice parity 
also the spin system is antiferromagnetic ordered. However due to the stripe fluctuations 
this is a spin nematic instead of a normal antiferromagnet. Also this phase can easily 
be calculated with a gauge theory which is the quantum interpretation of the classical 
0(3)/Z2 model. Such models were studied in great detail by Lammert, Rokshar and 
Toner [16] and Senthil and Fischer [17].

J

Higgs
phase

Confinement
phase

Coulomb
phase

K

Figure 1.5: The quantum interpretation of the 0(3)/Z2 model has three phases [16]. 
One phase in which the spins are ordered the Higgs phase or quantum spin nematic 
phase and two phases where the spins are disordered, namely the confinement phase 
where stripe dislocations proliferate and the Coulomb phase where they are suppressed.

The phase diagram of this model has the previously outlined three phases as func­
tion of the interaction J of the spins and the Z2 confining-deconfining parameter K. 
For small J, the spin system is disordered and we find the two phases which were dis­
cussed first, the confinement phase in which stripe dislocations occur, and the so called 
Coulomb phase in which the dislocations are suppressed. For large J the spin is ordered 
and we obtain the quantum spin nematic phase, which is also referred to as the Higgs 
phase. The phase diagram is depicted in figure 1.5.

In summary, the sublattice parity order is important to distinguish different phases in
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11111111111 
ABABABABABA 

p = +l

V
10-110-11-110-11-101

b) I ° t f ° I t t t ° t t 1 ° t
ABABABABABABABA

H I------ 1 I------------ 1 I--------- 1 H
p=+i p=-i p=+i p=-i p = +i

Figure 1.6: Construction of a configuration in the AF spin ordered fluid phase by inser­
tion of holes to a perfect AF without holes. The two configurations are denoted both in 
the spin-1 representation as in the diluted spin-5 reformulation. This process changes 
on the constant sublattice parity in the perfect holefree AF. Due to this process, the holes 
cause the sublattice parity locally to change sign.

these two dimensional system. In this thesis we investigate to what extend the sublattice 
parity order occurs in one dimensional Luttinger Liquids represented by the Hubbard 
model. A similar study was done on Haldane spin-1 chains by den Nijs and Rommelse
[18], which we address first in the next section.

1.4 The hidden order in Haldane spin-1 chains

As was shown by den Nijs and Rommelse [18], sublattice parity order also occurs in 
Haldane spin-1 chains. This is most easily seen when the spin-1 chain is described 
as a diluted spin-5 chain. In this language the state Sz(x) = 0 in the spin-1 model 
represents an empty site and Sz(x) = ±1 denotes a site occupied by spin-5 particles 
with respectively spin up or spin down. Using this reformulation, the phase diagram 
consists of different regions where the spin-5 Particles behave like a solid, fluid or dilute 
gas with or without long-range AF spin order.
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a) 10-11 0 -11-110-1 1-10 1

b) JM t 0 1l ti t 0 1 1101
c) 1Ml 0 1HIM 11 ° t
d) 1t M t 0 1m 101 1101

Figure 1.7: A typical configuration in the AF spin ordered fluid phase depicted (a) in the 
spin-1 Haldane chain representation and (b) in the diluted spin-^ reformulation. Figure 
c displays the staggered spin Mz(x) = (—1 )■*$*(.*) and figure d shows the altered stag­
gered spin (M')z(x) = (—1 Mz(x). The positions of the spin ^ particles
are ordered and the spins have AF long-range order. Using (Mf)z(x) the chain in figure 
b turns into a FM like spin fluid.

Consider the phase where the positions of the particles behave like a fluid while the 
spins are AF ordered. A typical configuration of this phase in both spin-1 and dilute 
spin-5 language is depicted in figure 1.6b. Since the spins are AF ordered, one can 
construct this configuration from a perfect holefree AF ordered state by inserting holes, 
which are Sz(x) = 0 states in the diluted spin 5. This process is indicated in figure 1.6a. 
We will refer to this perfect holefree AF ordered state as squeezed space because it can 
be obtained by ’squeezing’ out the holes.

The process of inserting the holes has an impact on the sublattice parity defined in 
figure 1.3. Since the spins in the squeezed space are AF ordered, the sublattice parity 
is uniformly constant. Let us fix the gauge in squeezed space, by choosing a particular 
sublattice parity, let say p = 4-1, and consider what happens when we insert the holes. 
In this process of unsqueezing, together with the holes, also the lattice sites are inserted. 
These lattice sites cause the sublattice parity to flip sign every time a hole is passed. So 
the insertion operation can be parametrized by attaching a sublattice parity flip to every 
hole.

In figure 1.7 we have displayed the configuration of figure 1.6 again together with 
its staggered magnetization Mz(x) = (— l)*.Sz(.x). Here one can see that the sublattice 
parity flip induced by the hole causes a kink in the staggered magnetization. Since the 
particles behave like a fluid, these holes and thus the kinks fluctuate which cause the 
spin-spin correlation function to be zero with (Sz(*)Sz(0)) ->■ 0 for large x.

So although the configuration in figure 1.7 clearly displays an order, the spin-spin 
correlation function is not the proper correlator to measure it. Instead of the normal 
spin Sz(x) or the staggered spin Mz(x), one can consider the altered staggered spin 
(M')z(x) = (— l)^/=-oo(1-”(y^Mz(^) = (— Sz(x) which is pictured in figure
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1.7d. Here /?(*) = 0 for an empty site and n(x) = 1 for an occupied site. So every 
time one crosses a hole, all the spin to the right of the hole are multiplied with a minus 
sign. This function removes the kinks from the staggered spin and turn the system 
into a FM spin fluid. Its correlation function does show the order in the system with
((M')z(x)(M')z(0)) = — (Sz(a')(— 1)^3=' n(7)S2(0)) = C # 0. This correlation function 
measures not just one single spin, but a whole string of spins and is therefore very non­
local. So the sublattice parity order in this Haldane spin-1 chain can be measured using 
this non-local string correlation function.

1.5 Hidden order in Luttinger Liquids

Now let us focus on the order described in this thesis. We will show that Luttinger Liq­
uids represented by the positive U Hubbard model, display the (quasi) hidden sublattice 
parity order. This is a new kind of order that has been overlooked in previous studies of 
the Luttinger Liquid.

The sublattice parity order becomes most transparent in the Bethe Ansatz solution of 
the one dimensional Hubbard model in the limit U ->■ oo as described by Woynarovich, 
Ogata and Shiba [19,20]. Generally speaking, the Bethe Ansatz provides for every 
Coulomb interaction U the complicated way in which the spin and charge degrees of 
freedom are entangled [21]. The spin degrees of freedom depend on the charge degree 
of freedom and vice versa. Only in the limit of large U these equations are disentangled 
and show a relative simple structure. In that limit the wave function is built from first 
placing the electrons with unspecified spin over the lattice like spinless fermions and 
subsequently distributing the spins over these electrons like the spins on an undoped 
Heisenberg chain. This construction is very similar to the construction of the wave 
function for the Haldane spin-1 chain and suggests that behind the complicated wave 
functions a simple internal spin system is present in which the spins live, where the spins 
have antiferromagnetic interactions. This spin system is obtained by squeezing out all 
the holes and is therefore also referred to as the squeezed chain. Note that this internal 
spin system is only accessible to the spins and not to external observers like a person who 
is doing an experiment. For an external observer this simple spin system is obscured by 
the movement of the holes, resulting in the complicated wave function calculated by the 
Bethe Ansatz. It can easily be shown that this construction of the wave function gives 
rise to sublattice parity order, indicating that the spins are anti-parallel over a hole. Or 
more precise, the holes can be thought of as providing an antiferromagnetic exchange 
interaction between its neighboring spin. One can view this as the holes binding to flips 
in the sublattice parity.

Is this construction also valid for intermediate U1 We show that the algebraical order 
in these one dimensional systems displays a lot of information and reveals the presence 
of quasi sublattice parity topological order. This can be demonstrated by considering
the non-local order string correlator (Sz(jt)(—1)^=1 n,o,(j^Sz(0)). If the sublattice par­
ity is ordered, we expect the operator (—1)^=1 n,ot^ to untangle the obscuring effect 
of the holes on the wave function and reach the internal spin space. This space con-
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sists only of singly occupied sites and all of the holes and doubly occupied sites have 
been squeezed out. Using various calculations we demonstrate that for all U > 0, the
squeezed spin correlator (Sz(x)(— i)^=l n,o’^j)Sz(0)) ~ - \/xKs and thus has an alge­
braic order which is longer ranged than the usual unsqueezed spin-spin correlation func­
tion (5Z(^)5Z(0)) ~ cos(2kf.x)/xK*+Kc. So by considering the squeezed spin correlator, 
we do indeed measure asymptotically the spin-spin correlations as they are seen by the 
spins in the internal spin space free of any holes, which proves that the system has sub­
lattice parity order.

The sublattice parity order can also be denoted in terms of the elementary collective 
excitations of the Luttinger Liquid, the spinon and the holon which are depicted in figure 
1.1. Spinons and holons cause kinks in the staggered magnetization Mz(x), which are 
responsible for the decay of the staggered spin-spin correlation function. This can be 
seen from the Parola and Sorella approximation for the staggered spin correlator in the 
U —>■ oo limit [22] valid for large distances jc

{Mz(x)Mz(0)) {n ^ro/(0)) {S'-(pt0tX)-S'"(0))par.Heis.
cos[(2/:/r — n)x] 1 

y/x X
(1.4)

The first decaying term in this product is caused by the kinks attached to the holons. 
The second one is produced by the fluctuations of the kinks due to the spinons in the 
internal spin system. Note that, because we are using the staggered magnetization, we 
lost the staggering terms and the spin correlations have turned into those of an effectively 
parallel spin system with {Sz{ptotx)Sz{0)) par.Heis. = l(S2(Aor*)Sz(0))//m.l ~ 1/.y.

In this thesis we demonstrate that a similar approximation is valid away from the 
limit U -> oo. We show that the staggered magnetization correlator can be written as

(.Mz(x)Mlm ~ (nJ(j)(-l)I?='l(1_"*U))III(0)> {Sz(psx)Slmpar.internal

C0S[(2/c/r — 7T )A' ] 1 /1C,
^ IS IS • d •*'/XKC x*s

Here ns(x) is the density operator for single occupied sites, defined by ns{x) = 1 for 
single occupied sites and ns(x) — 0 for double or non occupied sites. The correlator 
(Sz(psx)Sz(0))par.internal = | {Sz(psx)Sz(0))internaiI describes the spin correlations in 
the internal spin space which are rescaled Heisenberg correlations. This term is propor­
tional to \/xKs and describes the decay caused by spinons in the internal space. Note 
again that in this procedure the spin correlations are similar to those of an effectively 
parallel spin system. The first term in (1.5) is due to the fluctuations of holon kinks. 
This formula is valid for all U > 0. In the limit U —> oo, we find ns(x) —> ntot(x) and 
formula (1.5) equals equation (1.4).

Formula (1.5) indicates that in calculating the spin correlator (Mz(x)Mz(0)) for 
U > 0, the wave function can be thought of to first order as constructed in a similar 
way as in the limit U —> oo used by Parola and Sorella. The difference is that now we 
only consider the single occupied sites. So for general U we first place the single oc­
cupied electrons with unspecified spins over the lattice such that (n5(A)/i5(0)) ~ p] and
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subsequently we distribute the spins over these electrons like the spins on a chain with 
a spin correlator (Sz(x)Sz(0)) internal ~~ (-l)x/x. Note that in this construction doubly 
occupied sites are treated as empty sites. This is correct since S^-(x) = 0 in both cases 
and therefore they can not be seen by the spin correlator. In the limit U -» oo, the dis­
tribution of the spin sites becomes that of spinless fermions and the correlations of the 
spins on these sites turn into those of spins on a Heisenberg chain.

Using this interpretation using holons and spinons we also can investigate the effect
of the sublattice parity operator (—1)^=1 In adding the operator to the stag­
gered spin operator Mz(x), we remove the kinks due to the holons. This can be seen in 
the correlator function

{Mz(x)(-l)Ej='0~nto'U))Mz( 0)) ~

with ps = {ns(x)). So by multiplying the operator (—1)^'=|(1 to the spin oper­
ator, we remove the decay of the holons and we measure the rescaled internal spin-spin 
correlations. This indicates that the system has quasi sublattice parity order.

Using a similar method we can remove the influence of the spinons on the spin 
correlation function. This is done by multiplying the staggered magnetization M‘(x)
with the operator Mz(x)(—\)^-‘j=l^~n,°'^^ instead of the term (—1)^=,(1 We
will show that the correlation function of this product operator equals

((M2(x))2 (-1)^=''(1_"'°'0)) (Mz(0))2) =

X,Xc

and yields only the decaying term caused by the holes.
Finally we can wonder what happens if we first remove the holon kink and subse­

quently we take out the kink attached to the spinon or vice versa. This process yields 
the operator (Mz(x))2 and the correlator function gives

<(Mz{x))\Mzm2> = ^(/!,(*)n,(0)>. (1-8)

To zeroth order this correlator is proportional to p] = (ns(x))2 = p2s and describes 
the lattice of single occupied sites on which the spins contributing to the correlator 
(Sz(x)Sz(p))in,ernai are defined.

In summary, the construction of the wave function using equation (1.5) which is 
described above gives rise to sublattice parity order and indicates that the spins have 
anti-parallel spin interactions over holes or a doubly occupied sites. This form of hidden 
order in these systems can be unmasked by considering the squeezed string operator
0,op(x) = -(Sz(x)(-1)T-P'n’°'{i)sz(0)).

-Un,C*)(-l)E?='(l "sU))nsm 
lo
cos[(2 k.F — n)x]

{Hs(x)ns(0)) {S<‘(psx)S''(0))par.internal 

Ps (SZ(Psx)SZ(0))par.internal
-=4-’ (
X XK*
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1.6 Outline of the thesis

The thesis is organized in the following manner.
Before turning to the subject of the hidden order in Luttinger Liquids we start by 

taking a closer look at the pseudogap regime in chapter 2 and study the effect of a single 
magnetic and nonmagnetic impurity in high Tc superconductors. We will predict that 
as long as the band density of states is depleted at the Fermi energy the existence of 
impurity resonant states is robust regardless of the microscopic origin of the pseudogap 
state.

In chapter 3 we summarize the main properties of Luttinger Liquids. Using the tech­
nique of bosonization, the results for the usual density-density and spin-spin correlation 
function are described. Furthermore, we bosonize the one dimensional Hubbard model 
giving the relation between the Hubbard model and a generic Luttinger Liquid.

The Bethe Ansatz for the Hubbard model for general Coulomb repulsion U is intro­
duced in chapter 4. This is used as an introduction for the technique used by Parola and 
Sorella to calculate the spin-spin correlation function (5z(a')5z(0)) in the U -> oo limit.

In chapter 5 we study the sublattice parity order in the Hubbard model as it can 
be seen from the Bethe Ansatz wave function in the U large limit. We introduce the
topological correlator Otop(x) = — (5z(a')(— 1)^=i n,o,('^Sz(0)), which can be used to 
demonstrate the sublattice parity order and show that in the large U limit Otop{x) ~ 
\/xKs, indicating that the sublattice parity is ordered.

In chapter 6 we consider a different limit of the Hubbard model, namely the case of 
no Coulomb interactions (U = 0), which reduced to a gas of spinless fermions. We will 
calculate the topological correlator Otop(x) and show that the sublattice parity is also 
ordered in this limit.

After the discovery of sublattice parity order for U = 0 and U —► oo we turn in 
chapter 7 to the technique of bosonization in order to demonstrate sublattice parity order 
for intermediate Coulomb repulsion U. But as it turns out, bosonization is not equipped 
to calculate non-local string correlators like Otop{x).

To resolve the ambiguity in the bosonization results McCulloch performed DMRG 
calculations which are analysed in chapter 8. This study indicates that the sublattice 
parity is also ordered for intermediate Coulomb repulsion U > 0.

In the final chapter 9 we will interpret the results found in the previous chapters 
and describe what the sublattice parity order means in terms of spinons and holons. 
Furthermore, we investigate whether the sublattice parity order is induced by a local 
gauge symmetry.
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Chapter 2

Pseudogap

Before addressing the issue of the hidden order correlations in one dimension, we will 
first take a closer look at the pseudogap regime in this chapter and investigate impurities 
in high Tc superconductors. This work was done together with Balatsky and Martin 
at the Los Alamos National Laboratory and published in [23]. We predict a resonance 
impurity state generated by the substitution of one Cu atom with a nonmagnetic atom, 
such as Zn, in the pseudogap state of a high-7^ superconductor.

2.1 Introduction

The copper oxide high temperature superconductors are constructed from C11O2 planes 
and the superconductivity is believed to originate from strongly interacting electrons in 
these planes. The effects of a single magnetic and a nonmagnetic impurity in such a 
plane have been studied intensively both theoretically [24-28] and more recently ex­
perimentally by scanning tunneling microscopy (STM) [29-31]. Understanding of the 
impurity states in these high-Tc materials is important because the impurity atoms quali­
tatively modify the superconducting properties, and these impurity-induced changes can 
be used to identify the nature of the pairing state in superconductors.

In this chapter we investigate the impurity induced resonance, or quasibound state, 
which is generated by a strong nonmagnetic impurity scattering in a Cu 0 plane in the 
normal state of high-Tc materials. Specifically we calculate the resonant state generated 
by the substitution of one Cu atom with a Zn atom using the self consistent T matrix 
approach. We rely on the fact that the density of states (DOS) is depleted at the Fermi 
energy in the pseudogap regime. We argue that the mere fact that the DOS is depleted 
at the Fermi energy is sufficient to produce a resonance near the nonmagnetic impurity, 
such as Zn. However no particular use of the superconducting correlations above Tc is 
needed in our analysis. For example, the results we present will be valid in the pseudo­
gap state with no superconducting phase or amplitude fluctuations above Tc, as long as 
there are interactions that lead to the pseudogap state, as indicated by a depleted DOS. 
This is an important feature that broadens the validity of the model regardless of the

15
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microscopic origin of the pseudogap in the high~rc superconductor. The approach we 
take is similar to a previous analysis of the nonmagnetic impurity in the superconducting 
state [24]. See also Figure 2.1.

Up to now, the theoretical analysis of the impurity states has been focused on the low 
temperature regime T <£; Tc, well below the superconducting transition temperature Tc. 
On the other hand it is well known that in the normal state (T > Tc) of the underdoped 
cuprates, the electronic states at the Fermi energy are depleted due to the pseudogap 
(PG) A pc, as was seen by STM [32] and by angular resolved photoemission [33]. One 
can consider the temperature evolution of the impurity state as the temperature increases 
and eventually becomes larger than Tc. Then there are two possibilities for the evolu­
tion of the impurity resonance at T > Tc: a) the impurity resonance gradually broadens 
until the superconducting gap vanishes, at which point the impurity resonance totally 
disappears and b) the resonance broadens, but still survives above Tc. Which of these 
two possibilities is realized depends on the normal state phase that the superconductor 
evolves into. It has been argued [34,35] that in the underdoped regime the superconduct­
ing gap opens up in addition to the pseudogap present well above Tc. In this chapter we 
claim that the depletion of states due to the pseudogap regime gives rise to a resonance 
impurity state. Hence, we find that the impurity resonance survives above Tc in the 
pseudogap state of high-Tc materials. The position and the width of the resonance are 
determined by the impurity scattering strength and the pseudogap scale. In the absence 
of a pseudogap above Tc the impurity state disappears.

2.2 T- matrix approximation

The Hamiltonian for the problem of a single potential impurity of local strength U is 
given by

H = Hq + H\mp,

H,mp = f/"0 = £/X>L<V*. (2-D
kk'cx

where Ho is the Hamiltonian for the clean system, with the corresponding Green func­
tion Gk- The scattering T-matrix [24] can be written as

l-^£kCk(<u) 1 — U Go(a>y

with Go(cu) the on site Green’s function. The states generated by the impurity are given 
by the poles of the T matrix:

G0(fi) = -^. (2.3)

This is an implicit equation for £2 as a function of U, the strength of the scattering. This 
solution can be complex, indicating the resonant nature of the virtual state. To solve 
this equation, we split Go into its real and imaginary part Go = G'0 + /Gq. Note that 
Gq((o) = —tiNo{.u>), with No((o) the density of states.
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Figure 2.1: An impurity state in a high Tc superconductor: (a) The DOS in the pseudogap 
regime used in this article (see also [11]), and (b) the DOS in the superconducting state 
as was used in [24]. In both phases there is a resonant state.

To be specific, we need a model DOS that captures the main features of the pseu­
dogap in high-7c materials. For this purpose we use the DOS that was measured by 
Loram et al. [34]. These measurements on the electronic specific heat show that the 
normal state pseudogap opens abruptly in the underdoped region below a hole doping 
equal to pcrit ~ 0.19 hoIes/Cw02- Inspired by these data, we will assume that around 
the pseudogap region, states are partly depleted and the density of states is linear, that 
is N(co) = No\(o\/Apg for \co\ < A pg and N(co) = No for A pc < M < W/2 with W 
the bandwidth. This density of states is depicted in figure 2.2a. As it is obvious from 
the solution of equation (2.3), the precise position and the width of the resonance will 
depend on the specific form of the pseudogap. For starters, we will use this linearly 
vanishing pseudogap DOS. Later, we will briefly consider the results for other forms of 
N((o) like a fully gapped DOS or a DOS with a quadratic dependent gap, which can be 
obtained in a the same way and lead essentially to similar expressions.
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From the Kramer-Kronig relation [42]

G'0(o>) = - f°° do/G^o/)p(-T-]
7T J-oo \CO'-COj

= -No f APGd(o'p(-^—)-No [+Tdco'p(-^—) J-^ \co'-coJ JApc \co’-co)

N0 I. M+&PG
dco'

A pc Ape

f-L-V
\Co' — CO J

(2.4)

with P Cauchy’s principle value. And so the real part Gq(&>) equals
w

G'0(co) = -N0 In
¥+«

co
-N0------ In

Apg

+ No In
A pc — co
A pg +co

PG (2.5)

This function is plotted in Figure 2.2b together with 1 / U. If 2UNo > 1, one can see from 
this figure that equation (2.3) has four solutions. But because the width of a resonance 
state is proportional to |£2|, the only state with sharp width is the solution with \Q\ close 
to zero and we will only consider this solution. After the expansion in co of equation 
(2.5) we arrive at an expression for this solution Q of equation (2.3):

G0(S2) = -
2£2N0

PG
In A pg in sign(U)~

12 2 j
(2.6)

This equation can be solved exactly in terms of LambertW functions Lw(—\,x). The 
exact solution equals Q = -Apcs\gn[U]exp[Lw(-\,B{U,No)] 4-1 —in 12 where the 
term B(U, No) equals B(U,No) = -sign [U]exp [in/2 — \]/(2NoU) and Lw(x) is de­
fined by Lw(x)cxpLw(x) = x. To logarithmic accuracy this solution equals

Q = Q' + iQ"
PG

2UN0\n\2UN0\
[■- 1 in sign(U)

\n\2UN0\ + 2\n\2UN0\_ (2.7)

Here Q' is the energy and denotes the decay rate of the impurity state. Furthermore 
we have assumed the impurity scattering to be strong enough so that the result can be 
calculated to logarithmic accuracy with In \2UNo\ > 1.

These results strongly depend on the specific shape of the DOS. However, we argue 
that the appearance of the intragap impurity state is a robust feature of any depleted DOS 
around the Fermi energy. We also considered the model DOS with a quadratic dependent 
gap where N(co) = [a + (1 — a)co2/A2PG] which leads essentially to similar results as 
a function of the impurity strength with a resonant state at

S2 = A pg

4N0U(\-a-Apg/W) 

&PG

[1 -PinaNoU]

(4M)£/(l-0)) U+inaNoU) (2.8)
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when Apg/W is small. But also a fully gapped DOS equal to N(a)) = No for \co\ e 
[A/>g> W/2] and zero otherwise gives rise to a comparable expression with a resonant 
state at Q = — Apg/(2U No).

Let us again consider the linear DOS leading to the solution of formula (2.7), and tak­
ing No = 1 state/e V, A pc ^ 300 ~ 30meV and the scattering potential U % ±2eV, 
we estimate Q ~ ±2meV ~ ±20K as was found by Loram et al. [34] This energy is 
close to the Zn resonance energy coq = -16K, seen in the superconducting state [29]. 
By combining these results with the band-structure arguments [41], we come to the con­
clusion that the Zn impurity in Bi2212 is strongly attractive, with U ~ — 2eV. This 
result, as we will see, may be modified due to the particle-hole asymmetry characteristic 
of doped cuprates.

In the absence of a particle-hole symmetry, one can perform a similar calculation. 
The simplest way to introduce the asymmetry is by making the upper and lower cutoffs 
in the DOS unequal. This situation corresponds to a chemical potential \a, located away 
from the center of the band. Keeping the DOS otherwise unchanged, with the pseudo­
gap centered at the chemical potential, results only in the following change in the first 
logarithmic term of equation (2.5):

-N0 In
w
2 — fl — (D
W
2 + /X + &)

(2.9)

Neglecting the frequency co relative to the chemical potential \x and assuming that \x is 
small relative to the bandwidth, we obtain that the results for the asymmetric case can 
be obtained from the symmetric ones by the substitution

1 1 4N0/x
U U ~ W (2.10)

The effect of the asymmetry term can be estimated for superconducting cuprates. For 
20% hole doping, [A ~ —(1 /5) W/2 = —W/10. Hence, the modified value for the Zn 
impurity strength in 5/2212 can be obtained from the symmetric result, 1 /U* = 1 /U + 
4Non/ W. The new value is U* ~ — 1 e V, which is a strongly attractive potential, as is 
expected from the band structure arguments.

The solution of the impurity state deep in the superconducting regime involves two 
aspects: the energy position and the width of the resonance and secondly, the real space 
shape of the impurity state. We have discussed the energy of the impurity state above. 
A great advantage of the on-site impurity solution for the localized potential U is that 
only the on-site propagator GoM enters into the calculation. Hence, the knowledge 
of the DOS is sufficient to calculate the impurity state. On the other hand, to calcu­
late the real space image of the impurity induced resonance, one would require more 
detailed knowledge of the Green’s functions in the pseudogap regime. Quite gener­
ally, one would expect for a d-wave like pseudogap with nearly nodal points along the 
(±tt/2,±jt/2) directions, that the impurity resonance in the pseudogap regime would 
be four-fold symmetric, similar to superconducting solutions [24-31]. This calculation 
would require a specific model for the pseudogap state and goes beyond the scope of 
this investigation.
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(c) Resonance
Intensity

11
co

Figure 2.2: (a) The density of states N(co) = —Gq(co)/7z. Around the pseudogap states 
are only partly depleted e.g. N(co) = No\a)\/Apc, where N(co) = No for Apg < M < 
W/2 with W the bandwidth, (b) The real part G'Q(co) of Green’s function together with 
\/U and U positive. £2' is the real part of the solution of the equation Go(^) = 1/G 
close to zero and therefore with sharp bandwidth, (c) The impurity induced resonance at 
£2' = — Apg/2UNo ln(2UNo). Because the other three solutions of equation (2.3) have 
much broader bandwidth, they are not depicted here. All the figures are taken on the 
impurity site.
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In conclusion, we present a theory for the resonance state that is induced by a non­
magnetic impurity in the normal state of a high-7c superconductor in the pseudogap 
regime. The precise microscopic origin of the pseudogap is not important for this state 
to be formed, in particular this resonance will be present even in the absence of super­
conducting fluctuations in the normal state. The nature of this impurity resonance is 
similar to the previously studied resonance in the d-wave superconducting state. For the 
particular model of linearly vanishing DOS we find the impurity state energy, equation 
(2.7). We also analyze the effects of the particle-hole asymmetry. Impurity states sur­
vive at high temperature T > Tc since the pseudogap produces the DOS depletion. This 
depletion is all that is necessary to produce the intragap state.
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Chapter 3

The Bosonization procedure

In this chapter we summarize the main properties of a Luttinger Liquid. The dynamics 
of the electrons living in these one dimensional models is described using the technique 
of bosonization. Bosonization is based on the equivalence between interacting fermions 
and non interacting bosons [45]. Using this formalism, the fermion operators can be ex­
pressed in bosonic ones. In this chapter we review how to get expressions for correlation 
functions like (ntot(x)nlot(0)) and (5’z(x)5z(0)) using these bosonization operators. But 
apart from showing these characteristics of a Luttinger liquid we will also need this in­
troduction in chapter 7 where we will show that bosonization is not always suited in the 
calculation of string operators. We start our summary with the most simple example, 
the non-interacting spinless fermion gas. After this we consider interactions that finally 
lead to the bosonization of the Hubbard model.

3.1 The free spinless fermion gas

To explain the principles of bosonization [46] we will start by describing the method for 
the simple case of non-interacting spinless fermions in a one dimensional metal. The 
Hamiltonian describing this trivial problem consists only of a kinetic term

H = Yl£k ct(*)c(*)> (3-D
k

with c(k) the electron annihilation operator at wave vector k. In a simple tight binding 
model the energy equals £* = —2tcosk. Our main goal is to transform this fermionic 
expression into one consisting of bosonic terms. An important first step in doing this is 
linearization.

At low temperatures the energy band is filled to the Fermi energy £f and the particle- 
hole excitations are restricted to the regions near the Fermi points ±&f• In this case, it 
makes sense to linearize the electron dispersion around these Fermi points as depicted

23
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in figure 3.1, and write the Hamiltonian (3.1) as

H c\q + k) c(q + k). (3.2)

The energy derivative is related to the Fermi velocity vf = ^\~kF ■ We only
consider states with distances A to the Fermi points as shown in figure 3.1 and imply
a momentum cutoff A. In the Luttinger liquid model, this cutoff A is taken to infinity. 
This means that we add to the model an infinity of states far from the Fermi energy that 
were not present in the original model. We assert that adding these extra states far from 
the Fermi energy will not change the physics.

Using the linearization in (3.2) it is possible to identify (3.1) with a relativistic field 
theory of free Dirac fermions, as we now demonstrate. Namely, the expansion of the 
annihilation operator c(x) in position space around the Fermi points yields

(3.3)

The operator c(x) can be expressed in terms of the so-called left and right mover oper­
ators

c(x) = eikFXf(x) + e-‘kFX\ir(x),

where the right and left movers \J/(x) and \}{x) are defined as

(3.4)

(3.5)

Using (3.2) and (3.5) it is easy to show that the Hamiltonian in (3.1) is exactly the 
Dirac Hamiltonian given by

H (3.6)

and xfr and i/r are completely decoupled. If we also consider the time dependence of \J/, 
the Hamiltonian equals

where we make use of complex coordinates defined by

z = —i(x - VFt) 
z = +i(x + v?t). (3.8)



3.1. THE FREE SPINLESS FERMION GAS 25

2A 2A

Figure 3.1: The energy dispersion for the non-interacting spinless fermions and the 
fermions in the Dirac Hamiltonian. Linearizing the dispersion and moving the branches 
to respectively the right and left maps both dispersions onto each other.

This shows that the spinless fermions can be mapped on massless ‘relativistic’ fermions, 
moving at the speed of light with c = vp. How do we bosonize these fermions?

3.1.1 Bosonization of spinless fermions

Without going into details, we will sketch the basic ideas behind bosonization. 1
The technique is based on the observation that particle hole excitations and thus 

the electron density hsf(x) is bilinear in the electron fields and is therefore bosonic in 
character. Let us suppose that it is the derivative of a boson field <p(x)

1
hsf(x) = -~dx(p(x)

<p(x) = dynsF(y), (3.9)

where A. is a constant to be determined. This means that if we want to create a particle on 
site a, we have to create a kink of height X in cp and (p has to be increased by A. at points 
to the left of a. We split the field (p into a left and a right moving part (p(x,t) = 0(a — 

vfO + 0(a + vt) or in complex variables <p(z,z) = 0(z) + 0(z). What is the expression 
for the creation operator for right movers?

Since the momentum operator generates displacement, our first guess would be

i,](x) ~ e-'V-oo^nW. (3.10)

Here n is the momentum density conjugate to 0 with [0(a ), n(y)] = i8(x — y). How­
ever, this operator commutes with itself instead of satisfying anticommuting relations.

1 Here the notation presented in [47] was used. Other reviews can be found in [46].
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This can be repaired by multiplying it with an operator that changes sign each time 
a particle passes through x. Such an operator is c^*). Defining the dual boson 
dxti = -n = giving &(z,z) = 4>(z) - 4>(z) so that

<5P = ^(<P + $) (3-H)

we can write —ik fl^dyTliy) = ik$(x). If we now take k = >/SF we obtain operators
which are pure right and left moving by adding or subtracting eT^x\ So a reasonable 
representation of the electron creation operators is

r(x) =

r(x) = (3.12)

After the proper scaling of the field t/r one finds A = 1/-/27T.
Using this heuristic and incomplete derivation of the bosonization principle we ob­

tain the following bosonization formulas [47] for the right moving fermions

e-iy/4n<t>(x)
0U) =

V2n
ei-/47T<p(x)

rw = V2n ’

and similarly for the left movers

ei >/4ir<p(x)
=

y/2n
e-iJ4n0(x)

ir\x) =
y/2n

The bosonization formulas (3.13) and (3.14) are the basis for the translation of 
fermion operators to bosonic operators. Using these formulas we can for instance cal­
culate the boson form of the fermion current operators J = \f/*\J/ and J = These 
operators contain the product of an exponent of the fluctuating field 0 and (p and we have 
to define this exponent carefully in order to gain finite averages of this operator. We can 
regularize this divergent product of two fields at the same point by adopting the point 
splitting prescription. For J(z) it is defined as

: J(z): = Jim |Vf(z + 0\Hz) - (0f(z + )0(z))]. (3.15)

From the mode expansion (3.5) one can show that the Green function (0' (z -I- e)0(z)>
equals

(1l'Hz + e)f(z)) = 3--.
2 7T €

(3.16)
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And so, using the bosonization formulation this can be expressed as

-— lim
2jt t->0

j~£»V^0(z+Oe-»N/4jr0(z) _ I j

_L Mm n,/^Wz+f)-*U)]I _ I]
2jt €->o\_ € €\

-— lim 
2tt € —► o

,iCs/4nd:<t>(z) 1 _ 1

—/ sfAndrfp = —=d-(p.
2jt y/n (3.17)

Note that 3C0 = d?cp. In the second line we used eAeB = eA+Be^A,B^ and e2j7(0O:+<O.0(2)] 
= j-. Similar we find for the left moving density

■Az): = —l-j=d-z(p. (3.18)
y/jT

So for the sum of both densities we find
J(x) + J(x) =—]-dx(p. (3.19)

v^F
Using the method of point splitting, we can also bosonize the Dirac Hamiltonian (3.7). 
For instance, the first term can be expressed as

: 'J/'(z)dz\J/(z): = Jim [\J/'(z + €)dz\J/(z)~ {'l''(z + e)dz\J/(z))]- (3.20)

Making use of the expansions

1'Hz + emz) =

1lrHz + €)dz\J/(z) =

we find
: z)dzf(z): = ^=32<p + (dz<p)2. (3.22)

Since (p is periodic, the term proportional to 32<p does not contribute to (3.7). So after 
point splitting the Dirac equation transforms into

Ho = -2vF J dx[(dz<p)2 + (3^)2]

= V-L j dx[n2 + {.dxV)2], (3.23)

which is the Hamiltonian for a free boson fields. So we have transformed the fermionic 
free Hamiltonian (3.1) into the Hamiltonian of free bosons.

In the next section we will calculate the charge-charge and spin-spin correlation 
functions for this boson model.

+ i —7=dz<P + z —7=d?<P - *(d<p)2 + 0{€2)
2tz€ yjn y/An ”
^2+/^=3z2¥> + (3^)2 + 0(6). (3.21)
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3.1.2 The density density operator

After linearization using equation (3.4), it follows that the density operator acquires the 
bosonized form

nsF CO : c'(x)c(x): = : r(x)f(x): + : ^(x^x): 
+ e~2,kpx : \l/\x)xj/{x): 4- e2,kFX : \jr\x)\J/(x):

—-=dx (p + 
sfn

-2 ikFx —
£_____ ei^r<p(x) _j_

2 71

p2ikFx —
£_____ -iy/Tn<p(x)

2x

---- 7= dx <P + ®2kF(x) + oy/7T
t
2kF CX), (3.24)

where C^U) and 0\kf{x) express respectively the e 2lkpx and e2lkpx component of 
nsf(x). This equation shows that expansion of the fermion operator c(a ) around the 
Fermi points relates it to fluctuating to periodic density waves. The operator o\kp can 
be taken as the order parameter for this wave and can be expressed as

®2 kF(x) e~2ikFX\Jr\x)\j/{x) =
e-2 ikFx

2n
eiy/4n(p(x) (3.25)

or in Fourier language

OuF(g = 2 kF) = £ + 2k F). (3.26)
k

The fact that the fluctuation has period 2kp is a consequence of exchange of the particles 
between the Fermi points. We find for the density-density correlation function

(nsF(x)nSFm = Udx<p(x)dx<pm + [(®2kF(x)Glkf(0)) +/t.c.] .

(3.27)

Since the bose fields are free we can use standard gaussian identities and it follows that 

-(dx(p(x)dMO)) =
TC

{OnFWG\kFm =

which yields the total expression for the charge-charge correlation function

(iSF(x)nSFmBOS = - A 4 + T2i°S(2^), (3.29)
2nL X1 27TZ XL

2n2x2

4n2
e~2ikFx ^eiV4n[(p(x)-(p(0)]j

j e~2 ikFx

4 7T2
(3.28)
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The exact analytic expression for (nsr(x)nsF(O)), starting from the free fermion 
Hamiltonian (3.1), can be calculated using Wick's theorem

(nsF(x)nsf(O))
1

V2
E e‘(k' k2)xKak2aiak*'>

k\...k4

tt2 E eilk'~hu
ki...k4

^E
m=\

N

Ye
n=\

1 — cos(2 A:/r.x)\ 

1 -cos(^) /
(3.30)

Here we used < a'kap >=8(k, p) and applied periodic boundary conditions so that k\ =
y-n and k2 = y-m with m,n = 1...... V and kf = yr with the volume of the system
and N numbers of fermions. In the thermodynamic limit /V, V -» oo and y = psf the 
function equals

{hsf(x)"sf( 0)) (Psf)2 ~ £
2
/ 1 — COS(2^/r,v)\
V ^ A (3.31)

The bosonized expression (3.29) is equal to this exact expression apart from the 
constant p^r = (y-)2 This is due to the fact that we mapped the spinless fermions on 
the Dirac fermions in equation (3.7) by adding an infinity in the density of states which 
in principle would cause the density expression nsf to be infinite. By point splitting we 
remove this infinity in hsf, but as a consequence we are not able to obtain the correct 
answer for constant value in the operator iisf or in (hsf(x)hsf(O))- Apart from this, 
we find that bosonization characterizes correctly the density density correlations. Let us 
now continue considering a system of spinful electrons.

3.2 The spinful fermion gas

Let us consider a Hamiltonian describing weakly interacting spinful electrons in a one 
dimensional metal. The kinetic term for this system is of the form

Ho = cl(k) c<r(k\ (3-32)
k,a

with ca(k) the electron annihilation operator at wave vector k and for spin a e {T,4<) 
and e/c = -2tcosk. Similar to the spinless fermion case we linearize the Hamiltonian, 
giving

Ho = \cl(q + k)ca{q+k)9 (3.33)

a q=±kpk=-A \ '//
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and expand the annihilation operator ca(jc) around the Fermi points

A
QtU) = f — ei{q+k)x

J-A2jt
ca{q + k).

q=±kF

The left and right mover operators are defined by

ca( x) = e,kFX\lfa(x) + e-,kFX\//a(x\

(3.34)

(3.35)

similar to (3.4) and (3.5). It is now easy to show that the Hamiltonian is exactly the 
spinful Dirac Hamiltonian given by

Ho = -ivFJ2 J dx\\J/l(x)dx\J/a(x)-\J/l(x)dx\iro(x)^ (3.36)

Finally, we arrive at the following bosonization formulas for the right moving fermions 
(for a =t»4>)

t„{x) =
\Z2tt

tlw =
V2 n

(3.37)

and similarly for the left movers

s/2jt

tl(x) =
\/2;r

(3.38)

Here we have to include the Klein factors and f)a to guarantee the appropriate anti­
commutating relations ({t/'a.Vv} = 0 for o ± o'). The Klein factors are Hermitian and
obey the Clifford algebra

{*7cr> *?a'} = { *7<7» j?cr'} = 2<5aa>
[rio.rio'} = 0. (3.39)

The Klein factors disappear if we are considering correlation functions of the form 
{0(x)0^(x)) [47]. After point splitting of the operators Ja = V'JV'ct and J0 = 
the spinful Dirac equation transforms into

Ho = / rf*[(W + (W]

= y ^/</x[nJ+o^„)2]. (3.40)

which is the Hamiltonian for two independent free boson fields.
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3.3 Bosonizing the interactions terms

Now we turn to the terms describing the interactions of the particles. General speaking, 
the Hamiltonian describing a two-body interacting between electrons can be written as

Hint = '^^Voo'(x) n„(x)na'(x)

a,a' x

4
= v<r,a'(ki,k2,k3)cl(k\)cl,(k2)c(r'(k3)ca(k4)8(^kj).

cr ,k] ,...Xi 7=1
(3.41)

In the low-energy limit, the electrons are restricted to the vicinity of the Fermi points k = 
±kr and the scattering processes for these right and left movers fall into four kinematic 
types illustrated by figure 3.2. They are denoted by forward, backward and Umklapp 
scattering.

H 1

H9

H-
o l-o

k F

■0" 1-0-

Figure 3.2: The four scattering processes denoted by forward (H2 and H4), backscatter- 
ing (H1) and Umklapp (H3) scattering.

Forward scattering describes the process where two particles scatter with a small mo­
mentum transfer so that the particles will be moving in the same direction as they were 
before the collision. So a left (right) mover stays left (right) moving. These collisions 
can be subdivided into scattering between particles going in the same (H2) or opposite 
(7/4) direction. The H2 contribution is sometimes denoted by dispersion. In case of 
backscattering (H\) a right mover becomes a left mover and vice versa. With Umk­
lapp scattering (H3) two right movers become left movers or vice versa. This Umklapp 
process violates momentum conservation, and is only possible for the half-filled case 
(kf = j), in which the momentum violation is equal to a reciprocal lattice vector.

Splitting the Hamiltonian into a charge and spin part Hj = HJ + Hj for j = 2,4, the
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corresponding contributions are equal to

H\ = vFgi^2j dx K $0 t'-a t-a 

= VFg2.c J dx (/f + + Jl)

H{ = VFg2,s Jdx(J^- Ji)

l) F v-' f x —
H3 = —83 2^ / dx W ^-a 'I'O rjf-a + h.C.)

»l = Y«4,c|^[(yT + yi)2+(/t + /i)2]

j dx [(yt - 7|)2 + (Jt - Jo2], (3.42)

with fermionic current operators Ja = V'ct’Act and da = w‘lJl f =1\4-- Here we 
suppress the a- dependence of the operators.

Let us first consider just the forward scattering and (11 = c,s) which together 
with Ho defines the Tomonaga-Luttinger model and is the model to which the bosoniza- 
tion method was originally applied [48]. We will consider the effects of backward and 
Umklapp scattering in section 3.3.3.

3.3.1 Bosonizing the Tomonaga-Luttinger model

The Hamiltonian obtained by adding only the forward scattering to the kinetic term,

Htl = H0+J] [H2 + "4"]. (3-43)
fl=C,S

is referred to as the Tomonaga Luttinger model. Using formulas (3.37) and (3.38) the 
bosonized version of these scattering interactions are easily calculated

Hl = ~F^2C Jdx'^2,dz(padl(p<J> = ~F?2x Jdxdz(pcdi<pc
oja' J

H2 = "VF^2,S j dx dz<psd-z<ps 

H4 = — Jdx + ^z^4-)2 “i"(^z^f +^l^4.)2j

= ~~ J dx [|j|^)2 + (9-z<Pc)2~\

Hl = Jl£t± f dx[{dz(Ps?-Hd-z<Ps)2]. (3.44)
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Here we combined the boson fields <p^ and <p± into charge and spin components

(Pc

<Ps

-j=(n+n)

-j=((pi-n)- (3.45)

So in boson language the two forward scattering contributions are equal to

h? = Jdx [n2 - 0,*v)2]

nit = VJ^rjdx[ n^+Ox^)2]. (3.46)

Combining these results the Tomonaga Luttinger Hamiltonian Hjl in (3.43) can be 
written as

Htl (3.47)

with

(3.48)

Using rescaled operators, <p' = (p^/yfK^ and = y/K^U^ for \x = c,s this Hamilto­
nian can be written as:

tfri. = Yj dx [(n')2 + OX)2]. (3-49)

and has the same form as the free boson Hamiltonian (3.23). So adding forward scatter­
ing interactions to the kinetic Hamiltonian Ho only rescales the free boson operators!

Let us now calculate the charge-charge and spin-spin correlation functions for this 
Tomonaga-Luttinger model.
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3.3.2 The correlation functions

Using the bosonization dictionary the density operator n,of(x) = n^(x) + n±(x) can be 
expressed as

fhotix) ]T : c~aca : = [ : fl(x)i/a(x) : + : V'JCOlM-*) ‘ ]
a a

+ e~2ikFX J2 ■ KWtM ■ + e+T,kFX E : ^ ;

E 1 3<pa . e 2ikr* ..
J7T dx

,2 ikFx 

2 71

+
2jt

r\ai

,s/4s/4tt(Po

— -j^ + OCDw(x) + 0CDW(x). (3.50)

Here Gcdw(x) and G'CDW{x) express respectively the e~2lkpx and e2lkpx component 
of nt0t{x). As in equation (3.24) we obtain a periodic modulation which is referred to as 
a charge density wave (CDW). The operator Gcdw can be taken as the order parameter 
for this wave and in Fourier language can be expressed as

OcDwiq = 2 kF) = J2tl(k)f„(k + 2kF). (3.51)
a ,k

or in real space coordinates

®CD\v(x) = e~2lkpx Y^J/l(x)\fra(x)
a

p 2 ikpx _ _— p 
_   piy/mpM\
~2jt L

= Le-*kF*ei'ffiv'MC0S [VSF^jc)]. (3.52)

Here we fixed the Klein factor gauge by taking = rjifji = 1. In general the Klein 
factors disappear from a correlation function of the form (0(;c)0*(O)) (see [47]). Gcdw 
describes the process where a left mover is annihilated and a right mover is created both 
near the Fermi surface. This is a two-particle process. But since both an up and a down 
electron can be located on the same site, we also need to consider the operator

GuF(,q=4kF) = ^fl(k)t!_<7(k)t-.Ak + 2kF)fa(k + 2kF). (3.53)
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Or in real space coordinates

04 k„M = e-*iki:xY2*l(x) ^_a(x)t-o(xWaM
O

— g-4 ikFx eiVS7r<pc(x) (3.54)
In2

And thus we get for the charge-charge correlation function

0n,o,(x)nlo,m = ^(3x<pc(x) dx<pcm + [(0cmy(-v)0cDly(O)> +/I.C.]

+ [o4kF(x)OlF(0) + h.c.]. (3.55)

The first and second contribution can respectively be written as 

2
n n

2K Y i
~{dx(Pc(x) dxcpc(0)) = —C~{dx(p'c(x) dx<p'c(0)) =----- -----
IT TT TT YX.n x‘

-2\kFx
(GCD\v{x)0'CDwm = ——(e'

e-2ikFx j

V2n[(pc(x)-(pc(0))} (ei'/2*[<ps(x)-<ps(0)]}

In2 XKc+Ks 
1. , .— p—^ikfx i

<04*f«04V(O)> = = ^4-^

and the charge-charge correlation function (3.27) can therefore be written as

Kc 1 1 cosilkFx) 1 cos(4 kfx)
(n,o,(x)n,0,( 0)> = + — xK-k~ +

Similar to the density iisf(x) the operator Sz(;t) can be written as 

n^(x)-ni(x):

(3.56)

(3.57)

Sz(x) =

d.xtysix) ~b GsDW,z(x) "b G$[)w z(x), (3.58)

with order parameter

GsdwAq = 2&f) = n fl(k)ia(k + 2kf) - tl(k)fi(k + 2kF)]. (3.59)

Or in space coordinates

Gsdw,z(x) = \ [V'fC*W*) ” W* W*)]

= j_e-hkFxeis/2n<pc(x) sjn (3.60)
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where we neglect again the Klein factors. In analogy with the CDW case we find

(S2U)SJ(0)) = d-^—) + [(OsPH'.zWOsovr,z(0)) +h-c]

(0SDWJX)GIDWM) = ±.e-2ikFx{e,^[VcM-M

(3.61). J_e-2ikFx___|___
8 TT2 XKC+KS

And the spin-spin correlation function becomes

(sz(x)szm =
Kx

7) +
1 cos(2kfx)

47T2 X2 47T2 XK'+K*
(3.62)

In the upcoming chapters we will discuss the form of this formula and explain the origin 
of the term proportional to cos(2kfx)/xKs+Kc.

3.3.3 Spin and Charge gap
Let us now examine the effect of the backward scattering and Umklapp scattering. In 
boson field language the backward scattering interaction term H\ can be written as

H i
2jt2

J dx cos £\/87r<p5(A')j, (3.63)

where we again neglected the Klein factors. If we add the term to the spin part of the 
free bosonized Hamiltonian (3.40) for Ks ^ 1, we obtain the sine Gordon model defined 
as

HSg=y J dx[n% + (dx(p's)2] + ^^ J dxcos^y/SjTK~s(p's(x)^. (3.64)

Studying the renormalization group (RG) flow [49] one can show that for Ks = 1 this 
cosine term is marginal. If |gi| > 2n(Ks — 1), the system flows towards strong coupling 
indicating that gi is marginally relevant. This results in a gap in the spin spectrum. 
The charges remain gapless. This is described by the Luther-Emery liquid [50]. For 
|gi| <2tt(Ks — 1) it flows togi =0and is marginally irrelevant. Then the model reduces 
to a Luttinger liquid. Here both charge and spin excitations are gapless.

Finally, let us discuss Umklapp scattering which is only important when 2kf is com­
mensurate with the lattice vector. The Umklapp term Ht, can be treated in the same way 
and yields:

#3 = ~2n2 J (3.65)

Now we can apply the same analysis as used for backward scattering. We simply have 
to replace gi by g3 and Ks by Kc. Thus a charge gap develops if |g3| > 2tt(Kc — 1) and 
the system is a Mott insulator.
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3.4 The Hubbard Model

Using bosonization we can analyze the one dimensional Hubbard model. The Hubbard 
model is defined by the Hamiltonian

H = —t ^^(cJac/+ior + h.c.)+U (3.66)
O i i

where o denotes the spin of the electron <j 6 {|, !}• The first term describes the move­
ment of the spinful electrons and the second term represents the local Coulomb re­
pulsion. Using the description of the previous section the Hubbard model can be de­
scribed by the Hjl = Hc + Hs in (3.47) with Ks = 1 and in the weak coupling limit 
^c = (l+^r)~1 = l — ^ + .... Using the Bethe Ansatz wave function described in the 
next chapter, we can calculate the Kc more precisely [58] and these results are depicted 
in figure 3.3. The Coulomb interaction produces a backscattering term proportional to U 
similar to the one in (3.64) which can lead to a mass gap term when it becomes relevant. 
But using the RG flow arguments used in the previous section we find that this cosine 
is irrelevant for U > 0 and therefore we can neglect it. For U < 0 it becomes relevant 
where it produces a spin gap. For all U the charge sector is massless, and there is no gap 
in creating charge excitations. The system is metallic.

For half filling, that is k.Fa = tz/2, we cannot neglect the oscillatory terms, and we 
get an extra Umklapp term, giving also a cosine term by bosonization, giving exactly the 
reversed situation as for the charge case: The cosine term is irrelevant for any negative 
U, but relevant for positive U. The latter case is called a Mott Hubbard insulator since 
the gap is created by electron interactions, in combination with lattice commensuration.

3.5 Summary

In summary we can conclude that in the Tomonaga Luttinger model but also the sine 
Gordon Model and the Hubbard Model with respectively positive gi and U, away from 
half filling, the long-wavelength theory is expressed by the charge and spin correlators 
according to bosonization

{n,oi(x)niot(0))

(Sz(x)Szm

Kc 1 cos(2 k.Fx)
+ ^ xK.+Kc + 

1 cos(4kfx)
+ 2^ x™' +'"

1 1 cos(2 kpx)
4(7rx)2 + 47r2 xK*+Ke (3.67)

Note again that bosonization is not capable to spot the constant term p}ol in the correlator 
{ntot(x)ntot( 0)).



38 CHAPTER 3. THE BOSONIZATION PROCEDURE

Figure 3.3: The charge stiffness ATc(here denoted as Kp) as function of the density 
p(here n) and U/t where U/t = 1,2,4,8,16 for the top to bottom curves [58]. The 
function is discontinuous for the densities ptot = 0 and ptot = 1, where Kc = 0.



Chapter 4

The Bethe Ansatz

In this section we will summarize the analytic Bethe Ansatz solution for the Heisenberg 
model and the Hubbard model [51]. As will turn out, these solutions are an important 
starting point for defining the topological order discussed in the next chapter.

The Bethe Ansatz technique can be used for so called integrable models. In these 
systems, not only the total momentum of the particle is conserved, but also the individual 
momentum of the particles remains unchanged after the collision with other particles. 
This is a strong requirement which makes the problem solvable. The Bethe Ansatz was 
first introduced in 1931 by H. Bethe [53] when solving the isotropic Heisenberg model. 
We will review this solution in section 4.1. As we will see in section 4.2, the solution 
of this model can be related to the nested Bethe Ansatz solution necessary to solve the 
Hubbard model. This solution was used by Parola and Sorella [22] to show that the spin 
spin correlator equals (5Z(^)5Z(0)) ~ cos(2kpx)/xKc+Ks. This is reviewed in section
4.3. Finally we will reinterpret these results and show that it is not correct to view this 
as an harmonic solid with spin where the elastic coupling is provided by the motion 
of the charge as was descriced by Schulz [59]. This analysis will be the basis for our 
investigation of the topological order in the next chapter.

4.1 The Bethe Ansatz for the Heisenberg Model

We will write the Hamiltonian [54] of the anti ferromagnetic Heisenberg spin chain of L 
sites in the following form

L
H

(4.1)

39
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with Sj~(Sj ) the raising (lowering) operator working on the spin on site j. Furthermore 
we use periodic boundary conditions so that Sl+\ = S\. Since this Hamiltonian con­
serves the ^-component °f the total spin, the eigenfunction of a state with N
down and L — N up spins can be written as

W = nxu.:,xN)S-...S-N\^...t), (4.2)
X\<...<XN

with Xi the positions of the down spins. The spins are ordered so that x\ < ... < a/v. 
The time-independent Schrodinger equation for /(ai,...,ajv) is obtained by applying the 
Hamiltonian to this state | \f/). To illustrate how this is done, we start with N = 2, the 
case where only 2 of the L spins are down spins.

4.1.1 The case N = 2: two reversed spins

If the two spins do not collide, that is x\ 4-1 # A2, the Schrodinger equation for f(x\, *2) 
is given by

Ef{x i,*2) B2(Di +D2) + - -2

1 x L'
-(Ai -f A2)+ —

fix 1,A'2) 

/(Al,A2). (4.3)

where Dy - 2 is the discrete version of the Laplace operator Dy — 2 = V? and describes 
the kinetic energy part for spin j. For instance □i/(aj,A2) equals

U\f{x\,X2) = /(Ai+ 1,A2) + /(A] - 1,A2)

= (□+ + D-)/(a1,a2). (4.4)

Here generates a movement of the first down spin of one space to the right and 
□j" a movement to the left. The contribution □’j1' 4- dj in (4.3) is due to the op­
erator J2t=i 1 and □]" + DJ is because of Ylt=\ ^T^i+i- The potential term 

(j -2)/(aj,A2) in equation (4.3) is caused by SfSf+]. This Schrodinger equation
(4.3) is a simple Laplace equation which is solved by the usual plane waves

f(xi,x2) = Aeik,x>+iklX2. (4.5)

Now consider the situation when the particles collide so that aj + 1 = A2. ’Before’ 
and ’after’ 1 this collision the particles are not adjacent and the solution is a plane wave. 
So before the collision, the two particles are moving towards each other with momentum 
k 1 and &2 described by the solution A exp(ikix\ 4- ik^xT) as depicted in figure 4.1(a) and 
after the collision the particles drift away with some momenta k\ and k'2 as described

*The terms before and after should not be taken too literally. Since we consider the Laplace equation 
in the place coordinate x, the two events before and after the collision take place at the same time.
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a) k, k2

Xj a a+1 x2

b) k’i

Xj a a+1

k2

X 2

Figure 4.1: Two particles moving (a) towards each other before the collision described 
by Aexp(ik\x\ -\-ik2x2) and (b) after the collision described by Bexp(ik\x\ + ik'2X2). 
The collision takes place at x\ = a,x2 = a + 1. Note that before and after the collision
*1 <x2.

by B exp(ik\x\ +ik'2X2) and depicted in figure 4.1(b). The Bethe Ansatz now consists 
of assuming that the particles exchange their momenta so that k\ = k2 and k'2 = k\ and 
therefore the wave function equals

f(x\,x2) = AeiklXl+ik2X2 + Beikm+ik^X2
— Ae‘kix\+*k2X2 4- Be‘k2xi+‘k\X2
= Y^ApeiY-^'kr,JXi. (4.6)

P

Here, the sum is over all the permutations P of the two particles, so A — An with I the 
unity permutation and B = A( 12). Note that, if P = (12), then P 1=2 and P2 = 1.

The coefficients A/ and A( 12) are obtained by solving the Schrodinger equation for 
A*i + 1 = X2- This equation is very similar to (4.3). The only difference is that because 
the two particles are adjacent, particle 1 and particle 2 cannot move to the right and 
left so respectively we have to subtract Aj1" and A2 from respectively Aj and A2 in
(4.3). Furthermore the energy is increased by one because the particles have now only 
one neighbor of opposite spin instead of two. So when x\ + 1 = X2, the Schrodinger 
equation for f(xi,X2) equals

i(A,+A2-A+-A2-) + ^-2+l

together with the assumption that (4.6) still holds for x\ + 1 = X2, we can determine the 
ratio between Aj and A( 12):

>4(12) = l+e'(*'+*2)-2e^
A i 1 _j_ej'(*i+*2) — 2eik' ’

The Bethe Ansatz solution (4.6) can also be interpreted in a different way. To do this 
we start with an eigenfunction of the form

= SX] -‘’SXN | f ••• t)>
X\,...,XN

f(x\,X2) = Ef(x \,X2). (4.7)

IVO (4.9)
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a) k,

X] a a+1 x2

b) k2

x2 a a+1

ki

*1

Figure 4.2: The collision event in the second approach. Before the collision (a) 
the particles are moving toward each other (jci < *2) described by the wave func­
tion A/exp(//ti;q -\-ik2x2). The collision only affects the relative phase factor so 
that after the collision (b) the particles are moving with momenta k\ and k2 described 
A(i2) exp(ik\xi +ik2X2) and x\ > X2.

where the particles are now not ordered, so we have to consider both x\ < X2 and X2 <x\. 
We can also look upon the Bethe Ansatz as the assumption that during a collision the 
particles move through each other without affecting their momenta and only chang­
ing the phase factor of the wave function. So before the collision x\ < X2 and the 
two particles approach each other with momentum k\ and k2 described by the solu­
tion Aj txp(ik\x\ +ik2X2). After the collision we have x\ > X2 and the wave function is 
equal to A(]2)Cxp(ik]X\ +ik2X2). This is depicted in figure 4.2. The function f(x\,X2) 
can then be written as

f(xuX2) = ef*'+ik™[A,9(Xl) + Av2)0<.X(l2)j\, (4.10)

with 0(Xp) — 1 if jcpi < xp2 and 0(Xp) = 0 if xp\ > xp2- Since the spins are bosonic, 
the total wave function should be symmetric and we need to symmetrize this solution 
/(*i.*2) giving

f{xi,x2) = Se^U^iJ^ApOiXp)
P

= Y' ApQ(Xqp)

Q P
= Y,Y,eiEUkQ~'jXjAQ-1^(^)

Q R
= 'Y, gf kpJxJ A prO{xr). (4.11)

P R

Here S is the symmetrizer, making the solution symmetric by summing over all permu­
tations Q of the indices j of place x}. If we take the region R = /, so that x\ < X2 we 
find equation (4.6)

f(xl,x2) = J2APei^='kpjXj-

P
(4.12)
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Figure 4.3: Graphical picture of the periodic boundary condition (4.14).

At this point we can introduce the scattering matrix which relates the amplitudes in 
the two regions S]2(k\,k.2)A/ = A(i2). So the scattering matrix transforms the wave 
function A/ expi(k\x\ + £2*2) for x\ < X2 before the collision into the wave function 
A(i2)exp/(^jxi -\-k2x2) for*i > X2 after the collision. From equation (4.7) we find:

S'2(kuk2)
*(12) = 1+<■•<*■+*»>= _emklM) 
Ai 1 + <?'(*!+*2) ~2eik'

(4.13)

Here 6 is the phase shift by which the prefactor A/ is shifted during a collision. Note 
that the scattering matrix S[2(k\,k2) depends on the momenta k\ and &2, but not on the 
positions*! and*2.

What remains to be determined are the allowed k-values in the Bethe Ansatz wave 
function (4.6). These follow from the periodicity condition on the Xj, which states

f(X[,X2) = f(x2,xi+L). (4.14)

Note that because the wave function is symmetric, this equation is equal to /(*i,*2) = 
/(*2 + L,x 1). This gives the following equations for the amplitudes A/ and A(i2)

Sn(ki,k2)eik'L = ^±eik'L = \
A/

S2\koM)eiklL = — e,'*2i = 1. (4.15)
“4(12)

These equations can be understood as follows. To obtain /(*2,^1 + L) from /(*i,*2) 
we have to move particle 1 along the chain L as depicted in figure 4.3. In doing so, the 
wave function Ajexpi(k\ +k2) acquires a kinematic term exp(ik\L) and the scattering 
matrix from colliding with particle 2 on site *2- But in total the procedure of going in this 
circle should be equal to doing nothing, that is the identity so Sl2(&i,&2)exp(//:iL) = I 
giving the first equation in (4.15). The same can be done for particle 2 giving the second 
equation in (4.15).
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4.1.2 General N case
In this section we will derive the Bethe Ansatz wave function in case N of the L spins 
are down spins and L — N are up spins. If none of the N spins are adjacent, the time 
independent Schrodinger equation equals

E/(xu...,xn)
1A L 
?£a;+i-2
? L-J J 4 
j=1

1 V'n 1
2£Dj + 4

fix x2)

fix 1,...,*2), (4.16)

which is again solved by a product of plane waves

fix u...yxN) = eikiX'+~+ikNXN. (4.17)

Suppose two particle do collide, say xq 4-1 = xq+\. The Bethe Ansatz states that a 
collision changes only the phase factor and leaves the momenta unaltered. So before the 
collision the wave function fixis equal to Ajtxpiik\X] + ..• 4-Hc^xn) and 
afterwards it is given by the expression A(q^q+\))Qxpiik\x\ 4-... + Hcnxn). The total 
wave function can be written as

f(x 1.....xN) = e^U^Y^ApBixp), (4.18)
P

where the sum is over all the permutations P of the N spin down sites and OiXp) = 1 
only if xp\ < xp2 < ... < xpu and OiXp) = 0 otherwise. The expression has to be 
symmetrized giving, similar to (4.11)

/(*,....,**) =
P

= (4.19)
P R

If we take the region R = /, so that x\ < ... < xn we find

f(xu...,xN) = Y^ApeiZU kn*l. (4.20)

P

Since xq + 1 = xq+\, the Schrodinger equation (4.16) is altered by a term (—□+ — 
□~+l + 1)/(*i,...,*n). Using this equation we get the relation between some of the 
coefficients Ap

1 + eikP‘i+kP'q _ 2eikPq

1 _l- eikPq+l:p'q _ 2eikp,‘i

= -e~m^ ’V,) = S^+'Hkp^kp'q).

Ap
Ap>

(4.21)
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which defines the scattering matrix Sq(-q+l\kpq,kp>q). Here the permutation P equals 
P' except for the interchange of Pq and P{q + 1), so

P'q = P{q +1)
P'(q + l) = Pq

P'j = Pj if j 7^ q,q +1- (4.22)

So P' can be written as the product of P and the 2-cycle {Pq P{q + 1)):

P' = (Pq P(q+l))P. (4.23)

One can think of this scattering matrix in (4.21) as describing a collision between the 
particles on sites xq and xq+\ with momenta kpq and kp>q = kp(q+\). Since every per­
mutation P can be built up from the identity permutation by a sequence of elementary 
2-cycles, the relation (4.21) fixes all the coefficient Ap in (4.20) up to an overall nor­
malization constant. But we have to be careful here! This sequence of 2 cycles is not 
unique and therefore could lead to different expressions for certain coefficients Ap.

For instance, the permutation (132) in case N = 3 can not only be written as (132) = 
(23)( 13)( 12)/ but also as (132) = (12)( 13)(23)/. Thus this permutation can be reached 
by (at least) two different paths of 2-cycles. For the procedure to be consistent these 
paths must be yield the same result A( 132) when using equation (4.21). This equivalence 
can be expressed in terms of scattering matrices as

512(*,,A:2)5-13(*i,*3)S23(*2,*3) = S23(*2,*3)S13(*1,*3)^12(*1,*2), (4.24)

which is referred to as the Yang Baxter equation. Similar considerations require that the 
scattering matrix also needs to satisfy

Sij{ki,kj)Sji{kj,ki) = I

Sij{ki,kj)Smn{km,kn) = S"w(k„MSij{ki,kj), (4.25)

for m,n ^ i,j. It can be shown that if the scattering matrix fulfills the Yang Baxter 
equation together with the relations (4.25), equation (4.21)

S^+l\kpg,kP,q)=^, (4.26)

yields for every Ap a unique value, which proves that the construction (4.20) is consis­
tent [55]. One can demonstrate that the scattering matrix (4.21) obeys these equations 
and therefore the Bethe Ansatz construction (4.20) for the Heisenberg model is consis­
tent.

So in general, if the 5-matrix derived from the Hamiltonian satisfies the Yang Baxter 
equation, then the Bethe Ansatz solution for the wave function is consistent and the 
model is integrable. But how can a model fail to have Bethe Ansatz states? Using the 
Bethe Ansatz procedure we insist that during collisions the individual momenta of the 
particles are conserved. This goes beyond energy conservation (£^.cosfy=constant) or
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momentum conservation - kj= constant) and this is a special feature of an integrable 
system. This feature reflects the fact that the model possesses additional dynamical 
symmetry, expressed by an infinite number of conservation laws which make the model 
solvable.

To determine the allowed values for the momenta kj, we consider the periodicity 
conditions, which can be stated as

*a0 = + L). (4.27)

This yields N equations

eiktLSjJ-\kj,kj-i)...Sj\kj,kl)SjN(kj,kN)...Sji+\kj,kj+l) = I. (4.28)

for j = These equations consist of a kinematic part exp (ikjL) and terms ex­
pressing the scattering of the particle j with the N — 1 other particles when the parti­
cle j makes the circle. Since the scattering matrix is a complex number S->l(kj,ki) = 
— exp [iO(kj,ki)], this equation can be written as

N
eikjL sjl(kjM = eiklL(-\)N-lei^d{kj'kl) = \. (4.29)

One can introduce the the so-called rapidity transformation

^■) = -ico<an(|), ^ = (430)

to make the scattering matrix depend only on the difference of the velocities kj and X/ 

Sjl(kjM = X'J~X‘ + \ = S]l(\j — X,). (4.31)
kj —kl—l

Using these rapidity variables X/, the periodicity equation (4.29) simplifies to

/2X/ — i\L _ t-t A/ ~ ~ i \
\2X/ + i J \X/ — kj -{- i)

If all the X’s are real, we can simply take the logarithm and we obtain

(4.32)

N
2 L arctan(2X/) = 2n 7/ + 2 ^ arctan(X/ — kj), (4.33)

j=1

where the 7/ are integers if L — N is odd and half integers if L — N is even with

|//l<
L-N 4-1

2
(4.34)
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In the ground state N = L/2 and then all the // are uniquely determined. In the thermo­
dynamic limit the separation between the allowed A’s vanishes. From equation (4.33) we 
can derive the distribution density p{X) of solutions X for the Bethe Ansatz equations.

The equations for the rapidities (4.33) are the most important results of the Bethe 
Ansatz procedure. Most results are extracted from these equations without referring to 
the precise form of the corresponding wave function (4.20). For instance, using these 
equations, we can calculate the ground energy which in terms of the rapidity X can be 
written as

j N r N
E=j-NJ2coskJ = j-J2

j=i 4 U'+AXT

In the thermodynamic limit this expression becomes

£o = /"^(rrs?) Lln2.

(4.35)

(4.36)

Excited states can be constructed by taking out several down spins so that a number 
of possible X/ states in equation (4.33) is not filled. Furthermore, excited states can also 
be obtained by looking at complex Xj in (4.33) [52-54].

4.2 The Bethe Ansatz for the Hubbard Model

In the previous section we summarized the solution of the isotropic Heisenberg model 
using a system of N interacting particles with no internal structure, whose states are 
completely determined by the position in the chain as expressed by (4.20). For the Hub­
bard model we need to construct a system of particles with an internal spin structure 
where the different spin states get mixed in the process of collision. This requires a gen­
eralization of the Bethe Ansatz, the so called nested Bethe Ansatz, as we will explain in 
this section. The solution was obtained by Lieb and Wu [21] using a method introduced 
by Yang [56].

Let us start with the Hubbard Hamiltonian

L L
h = -tJ2^2^Ci+l<T+ (4*37)

O 1=1 i=l

where L is the length of the chain and o denotes the spin of the electron cr e {f, |}. The 
first term describes the movement of the spinful electrons and the second term represents 
the Coulomb repulsion. Because the z-component of the total spin is conserved we can 
again choose the eigenfunction of the form

N

I F) = E E Fo\...<jn(.X 1> • • • *XN) 1 |^JC/,cr;
o\...on 1 <Xk<L /=!

(4.38)



48 CHAPTER 4. THE BETHE ANSATZ

where c'Xj%ai creates an electron with spin cr, on side Xj. Note that in contrast with the 
Bethe Ansatz for the Heisenberg model, a permutation is carried out not only on the 
coordinates of the particles but also on the spins of the electrons.

Now we have to solve the equation E\F) = H \F), which amounts to solving h Fa,
(.v i,..., a-n ) = F Fa] (x i,..., xN) where

N
(4.39)

7 = 1 j<l

First we will consider the case of two electrons.

4.2.1 The case N = 2: two electrons
When the particles are not colliding, that is, a'i ^ a'2, the Coulomb interaction vanishes 
and the equation is solved by plane waves

F„m(xi,«) = Aamei(k'x'+km\ (4.40)

with Aaia2 a constant. Using the Bethe Ansatz, stating that during a collision the parti­
cles move through each other and only the phases of the particles change and not their 
momenta, the general solution can be written as

Fc,o2(.X UX2) = <Ae'(‘^l+^2)[Aaia2(/)e(X;) + A(72(ri((12))0(X(12))]

= d4>e'C*i^i+*2^2)[y4/(/)6i(A:/) +A(12)((12))6'(X(12))]. (4.41)

Here A/(I)txp[i(k\x\ -\-k2x2)] describes the wave function before the collision (ai < 
A‘2) and A(i2>((12))exp[/(/:iAi -\-k2x2)] IS l^e wave function afterwards (a* 1 > *2). Fur_ 
thermore we use Ap(Q) as a shorthand for Aap^ap2{Q). A is the anticommutator mak­
ing the expression antisymmetric.

Equation (4.41) shows that there are two unrelated areas, x\ < X2 and *2 < x\. 
We can introduce the scattering matrix S12 relating the amplitude in the two regions 
^(12)((12)) = 512A/(7) which means

^*,((12)) = y^rsl2(*,,*2)l"1?' A^U). (4.42)

Note that a general wave function Aaiff2(/)exp[/(/:iAi +k2X2)] for x\ < X2 now can 
scatter into four different wave functions A£2£,((12))exp[/(fciAi + £2*2)] for *1 > x2 
and £/ e {f, i}. Therefore the scattering matrix has in general 4x4= 16 components 
describing the transition of the 4 different components A$^2(I) into the 4 components 
Aq20\ ((12)). Note that a lot of these components are zero because the spin is conserved 
during a collision.

Using the Schrodinger equation in case x\ = *2 and using the continuity of (4.41), 
we obtain an expression for the scattering matrix

(sin/ci - sin^)^,8a^2 + i 

sin — sin/:2+
[s12(*,,<:2)r?1
L Jcr2£2

(4.43)
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and we find that the scattering matrix depends on the momenta k\ and £2- Using (4.42) 
we obtain

/\(12)((12)> =
iU fit

sink] — sin A:2 +
, , sin/:i — s\nk2
AlU)+ | —------- . - tu A<.I2)(/).

sin/ci — sin At2 +

Generalizing this procedure for N down spins we obtain

= AeiZilV*JYiAR(R)0(XR)
R

= £(- if^j^J^ApKiRW^PR)
P R

= £(-1) pe‘^Jk^J2AQ(pQWXQ)

P Q

= £(-l)W'«™/ Y,AQ(pQ)e(xQ)

P Q

_ ^(p+Q)e‘e>kpjXQj E Aq{P)0(Xq). (4.44)
P Q

Here 6{Xq) = 1 if xq\ < • • • < xqn and 9{Xq) = 0 otherwise. The coefficients Aq(P) 
can be related using the scattering matrix Sq('q+l\kpq,kp(q+1)) which describes a colli­
sion between particle q and q + 1 with momenta kpq and kp(q -I-1). Using the Schro- 
dinger equation for xq = xq+\ and the continuity equation for (4.44), we find

AqW) = Sq(q+l\kPq,kP{q+]))AQ(P)

(sinkpg -s\nkp(q+i))AQ(P)A-(ijj)AQ'{P) ^ ^

sinkpq — sinkp(g+\) + i 57

Here P' is defined as in (4.22). Q' is defined in the same way and equals Q except for 
the interchange of Qq and Q{q + 1). So the scattering matrix equals

Sq('q+l\kpq,kp(q +!)) =
(sinkpq - s\nkp(q+i)) + i%PQqQ(q+l)

sinkpq — sinkp(q+\) + i 37
(4.46)

where the permutation operator p2<?G(<7+0 interchanges the spin labels Qq and Q(q + 
1). One can prove that this scattering matrix obeys the Yang Baxter equation (4.24) 
together with the equations (4.25) and thus the Bethe Ansatz construction (4.44) is con­
sistent.

To obtain the allowed values for the momenta, we have to consider the periodicity 
condition, which can be written as

po\ ...,ct/v (•*•! 1 • • • = F(J2...,ON,a\ {X2,...,XNyX\ +L). (4.47)
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Because the wave functions is antisymmetric, this expression is equivalent to a similar 
expression for the other Xj. This equation gives rise to N equations for j = 1,... N:

eikJNSjj-\kj>kj-])...Sj\kj,k])SjN(kj,kN)...Sjj+\kj,kj+])=L (4.48)

This equation consists of a kinematic term exp(ikjN) and scattering terms Sjl describing 
the collision with particle / when particle j makes a circle. Note that because S-*1 are 4 x 
4 matrices they do not really commute and this product is not equal to Yli^j S-i'(kj,ki) 
like in the Heisenberg model where SJ (kj,ki) is just a complex number and therefore 
commutes.

4.2.2 General N case
In deriving equation (4.44) we have not made use of the spin degree of freedom and 
only considered the movement of the electrons disregarding their spin. To solve the 
periodicity equation (4.48) and obtain the allowed values for kj, we will make use of the 
symmetries of the wave function with respect to the exchange of spins. This is done in 
the similar way as was done for the Heisenberg model.

Suppose we have M down electrons and N — M electrons whose spins are up. At 
this point Aq(P) is written in the form

Aq(P) = A(Jq\...OqN (P) = 4>(y\,...,yM\P). (4-49)

Here the numbers y\,.. .,yM are defined to be the positions of the down spins among the 
spins in the N-chain oq\,oq2,-- .,ctqn in increasing order, that is

1 < yi <yi< ... <yM <N. (4.50)

So the yi are the positions of the down spins on a lattice where we have squeezed out the 
holes and <p(yu..*9yM\P) keeps track of the relative position of the up and down spin. 
So the general equation equals

Fat...„N(x i,...,xN) = Y^(-vp+Qei^='kFj*eiMyi’---’yM\py 

P
(4.51)

The solution of <p(yi,... tyMIP) can be obtained in the same manner as the solution for 
*jv) in the previous section, but now we use the periodicity condition (4.48) 

instead of the Schrodinger equation like (4.16).
First we will examine the case the particles are non-overlapping so that ya 4-1 ^ 

ya+1- The solution of the periodicity condition (4.48) is not a product of plane waves 
like the solution for /(x\,...,xn), but more generally solved by a product of functions 
Gp

M
I~| Gp(Aa,ya) = Gp(A],y\)...Gp(AM,yM)•
or=l

(4.52)
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These solutions Gp(Aa,ya) are characterized by the rapidity Aa with

Gp(Aa,ya)
y|-J sinkpj — Ag+ijj 

sinkpj- Aa-i^
(4.53)

Now consider what happens if two particles are colliding so that ya + 1 = ya+i- Using 
the Bethe Ansatz which states that the wave function only changes with a phase factor, 
the general solution for (p(y\,...,ym | P) can be written as (see also (4.11) and (4.20))

0()'1>-• -,yM\P) = & I Gp(Ai,yi)... Gp(AM,yM)^2 Bq 0(Yq)

\ Q
= Gp{A\,yR\)...Gp{AM,yRM)0{yRQ)

R,Q

= Gp(AQ\,y\)... Gp(AQM,yM), (4.54)
0

where £ is the symmetrize operator and 6{Yp) is defined similar to 9(Xq) in (4.44). 
Furthermore we used that the yj are in increasing order.

Using the periodicity condition we obtain the following solution for the rapidities
Aa in GP(Aa,ya).

A- Att--sinkj+i%

J=, Aa-sinkj-i%

Here (j = \,...,N) and (a = 1 ,...,M). Note that these equations are coupled and 
therefore difficult to solve.

In summary, the full Bethe Ansatz wave functions for the Hubbard model are gener­
ated in two steps. First the charge waves of electrons of unspecified spins characterized 
by momenta kj and describing the positions of the electrons are constructed in equation 
(4.44). Secondly a number of spin waves characterized by rapidities A j and associated 
with the position of the down spins of the these electrons over a squeezed lattice, are 
injected. This procedure is called a (2-step) nested Bethe Ansatz.

From these equation in the thermodynamic limit, one can derive expressions for the 
distribution densities pc(k) and ps{A) for the solutions. Many results for the Hubbard 
Model can be extracted using these densities. For instance, the ground state energy is 
given by

A« — sirijgjr + / U

a=l sin kj-ijtf

jL (Ap — Aa) + iji 

P=\ (A/S — Aar) — *27
(4.55)

/*o
dk pc(k) cos*:, 

-*o
(4.56)
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where the value ko is set by the condition

dk pc(k)
N
T' (4.57)

These expression for the energy will be used to calculate Kp in the next section.

4.2.3 Large U limit
Let us now consider the limit when the Coulomb interaction U is very large. It will turn 
out that the wave function then simplifies enormously.

In the large U limit, Gp(Aa,ya) in (4.53) is approximated by

Gp(Aa,ya) (4.58)

with X.a = If we now write exp(i^) = (§xj+f) then Gp(Aa,ya) ~ exp(ik'aya) and 

4>(yu...tyM\P) ~ £*A*exp(i Y,jkRjyj) similar to the Bethe Ansatz solution for the 
Heisenberg chain. Furthermore in this limit the rapidity equations for kj and Aa (4.55) 
completely decouple

eikiL

(4.59)

The first equation reproduces the spectrum of a spinless fermion gas with antiperiodic 
boundary conditions. The second one is the equation for a Heisenberg chain with peri­
odic boundary conditions.

Thus for U large the wave function equals

Foi...on(x\,...,xn) = ^(-\)P+QelkpjXQ] Y^ARe‘^"=lk'Rmym
p R

= ]T(-1 )pei^='kpjXjJ2ARei^,'"=lk’Rmym’ (4.60)

P R

and can be written as the product

Fo\...on(,X\,...1Xn) = y!rSF(xu...tXN)4>Heis.(yU—>yM\ (4.61)

with
fsF{xel^={kpjXj 

p

= Ape1 1 y,n.
R

(pHeisAy 1 > •••> yM) (4.62)
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Here xj denote the spatial coordinates of the N electrons, and the y\,.. .,yM coordinates 
label the positions of the M spin down electrons on a squeezed lattice whose sides 
are x\,...,xn. With this notation, (pHeis.(y\y— >y\i) is the same function appearing in 
the Bethe Ansatz wave function of a Heisenberg N-site chain. Furthermore, \J/sf is 
the groundstate wave function of a free spinless Fermi gas with antiperiodic boundary 
conditions.

Using formula (4.61), we may think of the wave function F0l,m,aN(x\,...,xn) as be­
ing constructed by two consecutive steps: First distribute the N electrons arbitrarily over 
the chain while disregarding their spin as though they were spinless fermions. Secondly, 
distribute the spins over these electrons like the spins on a Heisenberg chain of N sites 
while disregarding the holes in between the electrons.

So for U large the fundamental excitations of the Hubbard model are not electron- 
like but are either spinon (carrying spin and no charge) or holons (carrying charge but no 
spin) form a two-component Luttinger Liquid. These decoupled equation for spin and 
charge will be used in the next section to calculate the spin-spin correlation function.

4.3 Hubbard model spin-spin correlations for large U

The previous section showed that when U is large the distribution of the charge and 
spin is completely decoupled. The spins of the electrons are independent of the holes 
that are located in between the electrons. This means that the spin correlations of the 
doped problem in the large U limit are identical to those of a Heisenberg spin system, 
except that the spin system now resides on the ’squeezed’ chain obtained by removing 
all holes situated in between the spins. Parola and Sorella [22] used these notions in 
their calculation of (Sz(jOSz(0)). We will present these calculations in this section. As 
will turn out in the next chapter, their technique can also be used to calculates the hidden 
order in the large U limit.

To calculate this spin-spin correlator, they summed over all possible spin configura­
tions with sites 0 and x occupied and j — 2 electrons in between. For fixed j, the spin 
correlations over the squeezed lattice of length j — 1 for these configurations equals the 
Heisenberg spin correlation function Oneis.(*) = (Sz{x)Sz($S))Heis.> and one can write

(4.63)
7=2

P'sfO’) is the probability of finding j particles in [0,*] with one electron at 0 and one 
at x. So for fixed j, the spin-spin correlation function factorizes into a charge part P^p 
and a spin part OneisXj — 0- The Heisenberg spin correlation OHeis.(j) describes the 
tendency toward antiferromagnetic long range order. For large separation j

(4.64)
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where T is a constant [57]. Furthermore the function /(j) obeys the following inequality 
for any j > j1 > x

< M{x) = 2r
log 5 (A-)

(4.65)
j-r

In formula (4.63) the function P$F{j) is given by

psf(J) = {n(0)n(x)8 J2n^~jySF
1=0

(4.66)

Here the average is taken over the spinless fermion groundstate. This function PsfU) 
is a highly non-local correlation function and it is difficult to calculate, even for the free 
fermion case. The function is positive definite and as is proven in (3.31), is normalized 
to

*+i
z = J2 PsfU) = (n(0)n(x))sF = {nSF(,0)nsF(x))

j=i
2 1 (\ -cos(2kFx)\

= ~ 2 \ 7TX2 / ’ ^

where kf = ptot = p-j- + Pi is the average electron density and we took the thermo­
dynamic limit {N, L —► oo,ptot = N/L). The first two moments are given by

| A+l
{r)x = yYl-i PsfU) = xptot + 1 

7=2

(r\ = ~ T,j2 PsfU)=^)1 + ^- (4-68)
Z 7=2 71

Note that the averages (.. .)x are x dependent.
The results from equation (4.68) show that the function P$FU) *s strongly peaked 

around j ~ Ao/A, which means that a small neighborhood of j = ptotX gives a sig­
nificant contribution to the spin-spin correlation (5z(a)52(0)) in (4.63). This makes it 
possible to calculate the asymptotic behavior of the sum (4.63) without knowing the full 
probability function P'sF(j). To do this, we need the lemma which was used by Parola 
and Sorella. We present their prove in the next section. We need this prove also to 
calculate the topological correlator Ot0p(x) in the limit U oo in the next chapter.

4.3.1 Lemma
In this section we will prove the following lemma:



4.3. HUBBARD MODEL SPIN-SPIN CORRELATIONS FOR LARGE U 55

Lemma The sum Ylj=2 0;/0) with f(j) bounded and satisfying (4.65),

differs from the sum ^]Cy=2 ^sfO)(— l)yJ f((r)x) by terms vanishing faster than log~/-r).

Proof The difference R between both expressions can be split into two sums R = 
R\ + R2 with

(r)x
«1 = i2PsFux-vJ[fu)-mx)x)]

j=2
x+\

R2 = E PSF(j)(-'y[fU)-n(r)x)]. (4.69)
j=^+1

Since the function f(j) is bounded, say \f(j)\ < A, we find

(r)x

/?, <2aJ2p*fU). (4.70)
7=2

Using PgF(j) > 0, this sum can easily be bounded using the variance of j

*+i
J2PSFU)U-{rhY
j= 2

And thus, using (4.68):

(r)x~r
— E Psf(J)u (r).v)~

7=2

> () - (r)x)j=iu PSrU)

(r)
Vf-

~Ew-
i=2

(4.71)

8A ln(jr) 8A ln(jr)
(XyO+1)2 7T2 y027T2 X2

(4.72)

we find R\ < const. In2(.t)
The term R2 can be bounded using condition (4.65) together with the Schwartz in-
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equality stating that for any scalar product |y2| < |y|2 and so

fo <
' ' <r>7 = 

.r+l
< M \j-{r)x\PsFU)(t)g'

m(^y) fei-(rw2Pifu)

2rin*(*£i) (p1

< const.

(f)2

ln(A)

r- ln(.v)

< const. -
ln(jc) (4.73)

And so we get the desired result. □

4.3.2 Final result

Now we can use the lemma of the previous section to calculate (Sz(a)Sz(0)). For large 
distances x, the spin-spin correlation function (4.63) can be written as

.r+l
(SZ(x)SZm = J2PSF<<j)OHeis.U-\)

7=2

.r+l Jt+l
]£ PsFU)(-iy-lfu -1)« - £ pxSFu)(-i)Jfu)
7=2 7=2

.r+l
E^x-iy
7=2

= -ccor

f((r)x) + 0

ln2(p,0,*) / Ini (jt)\

'..." \r (4.74)
PtotX

where we used (r)x = ptotx -F 1 % ptotx for large distances x and

X+l X + l / X \

c(a) = x;^F(;)(-iy'=;£^^
7=2 7=2 1=0

= (n(0)(-l)^=o^/)/i(A)>sF = (nSFm-l)T:lonsFil)nsF(x)). (4.75)
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As will turn out, C(x) is also important for the topological correlator calculations for 
U = 0 which are considered in chapter 6.

In case p,ot = 1, the half filled case, Parola and Sorella show that C(x) = (—l)t+1. 
When substituted in (4.74) this gives just the Heisenberg spin-spin correlation (4.64), 
appropriate in the half filled case for large U:

{Sz(x)Sz(0)) ~ rcosCif*)^^ = (4.76)
X X

Here kF — = j.
For quarter filling p,ot = j, Parola and Sorella demonstrate that for large x, C(x) 

equals

A2 cos(2kFx)
C{x) = ~~7s-----■—v2 x*

(4.77)

where again kF = ^- = ^- where A = 0.645002448. So at quarter filling ptot = 
the long range behavior of the spin-spin correlation function equals

(S*(jc)Sz(0)) = A2V2rCOS-(2^Y) Ini (jc/2) + Q
pX 2

\nHx)
(4.78)

Furthermore. Parola and Sorella argued, although they do not rigorously prove this, 
that C(*) ~ cos(2kFx)/x 2 for all p ^ 1 away from half filling and thus (Sz(;c)Sz(0)) = 
cos(2kFx)/x? in the large U limit. In chapter 6 we numerically calculate C(x) for 
several fillings away from half filling and verified that this assumption is indeed correct. 
(See equation (6.16).)

4.3.3 Interpretation

In this last part of this section, we will summarize the results that we obtained so far. 
Also we reinterpret the data and show that the usual explanation as is presented by 
Schulz [59] is not valid. The analysis we present is the basis for our investigation of the 
topological order in the next chapter.

Let us start by comparing the lattice expressions equations (4.76) and (4.78) with the 
general bosonization results of chapter 3 in equation (3.67), {Sz(x)Sz(0)) ~ cos(2kFx) 
/ xKs+Kc. By SU(2) symmetry, in both cases Ks = 1. And thus we find Kc = 0 and 
Kc = \ which are appropriate for respectively the half and quarter filled cases. The 
deviation of the charge stiffness Kc for ptol = 1 is due to Umklapp processes, which 
are present only at half filling and enhance the antiferromagnetic correlations. These 
results are in agreement with values for the charge stiffness obtained by numerically 
[58] solving the Bethe Ansatz (4.55) as shown in figure 3.3. The function Kc(Ptot) is 
discontinuous for ptot = 0 and ptot = 1 where Kc = 0.

It has been claimed by Schulz [59] that the result (Sz(a:)5z(0)) ~ cos(2kFx)/xKs+Kc 
can be explained using the idea that the system can be seen as a harmonic solid with a
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spin at each site where the elastic coupling between the sites is provided by the motion 
of the holes. In this picture the spins are ’surfing’ on charge waves. This interpretation 
is wrong! For let us calculate the spin-spin correlation function using this approach.

In this continuum approximation, the spin density equals

5(a) = ^ SHeis.(m)S(x ~ Xm), (4.79)
771

where we sum over all the electrons. Using the hypothesis about the harmonic motion 
of the electrons, xm can be written as xm = Rm + /<„,, where Rm = ^ is the average 
electron of the ;?i-th electron and um is the displacement to this position. Using some 
algebra the correlation function can be written as

(S(x) Sm ~ [dqJ2e-iqXlSH'isXm)-SHeisAm'))eiq{R"-R"'Heiq{u'n-""''))-

m,m'
(4.80)

Here, the average over um has a powerlaw behavior

(eiq{um-um')j % |m (4.81)

with a(q) ~ q2. The q integration in (4.80) is dominated by the term q % np = 2kp and 
thus, using the Heisenberg correlation function (4.64), we obtain

<5(a)-5(0)> *

In comparing this result with the bosonization result (Sz(a)Sz(0)) ~ cos(2fc/rx)/xKs+Kc, 
Schulz claims that a(2kf) = Kc. This is of course tempting, but also incorrect. Using a 
similar calculation one can show that {ntot(x)nlot(0)) ~ 1 /xa^2kF\ But in the limit U —> 
oo the particles behave like spinless fermions and («rO/(*)n/or(0)) ~ 1 /xAKc = 1 /x2 with 
Kc = 1/2. And so one finds a(2kp-) = 4Kc and not a(2kf) = Kc, like Schulz claimed. 
Using this correct identification, the spin-spin correlation (4.82) yields (S(x) • 5(0)) = 
cos(2kFx)/xKs+4Kc. This is indeed the result for spins that are surfing on charge waves 
since it is the product of charge and spin decay. But it is clearly not equal to the results 
for the Hubbard model.

So although the spin and charge degree of freedom are decoupled, the spin-spin 
correlation function is not simply the product of the charge and spin correlator. The rea­
son for this can be best explained using equation (4.74) for the staggered magnetization

/ rf<7 £e>
777,771'

I

«R"-R»'-*\SH'isAm)-S„ehim'))\m-m'\-tti2kF)

(-1)'
| m — in' |1+«(2^r)

cos(7rp*)ln2(/9A-) cos(2kf?x) i ^ x 
(px)\+a(2kF) ~ {px)\+a(2kF) (4.82)
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Mz(x) = (— 1)x52(jc) which yields

.v+l

(Mz(x)Mzm = P$F(j) (-1)* (SZU - \)Sz{0))Heis.
j—2
•v+l

= ^2{nt0i(x)S
j=> \/=0

i\ntot(0)> (-l)-v+'~7(y-l)

<«fo/ (JC)(— 1 )Z?“,I(1 (0)) <Sa:(p,of JC)Sz(0)>par.«W*.

, lxX^ Xjr/ \ cos[(2kF-jt)x] 1 
-(-\)xC{x)f{xptot)=--------- 7=----------

cos[(2/:/r — 7t)jc]
Kc+Ks (4.83)

with (Sz(x)Sz(0))par.Heis. = fix) the Heisenberg correlator without the staggering term 
defined by (4.64). From this formula it can be seen that the alternating sign of the Hei­
senberg chain gets entangled in the function P§F(j), describing the charge. Because of 
this, {Sz(x) ■ Sz(0)) ~ -C(x)f(xplol) instead of the simply being proportional to J2j=i
PSF 0) f(xPtot) = i^totix^toti0)) f iPtotx) =■ (ntot(x)ntot(O)){S^ix) • Sc(0))par.Heis. 
which is the product of the spin and charge decay with {Sz(x) • Sz(0))par.Heis.- We 
would obtain this result if the Heisenberg spins would be parallel. In that case the spin- 
spin correlations would yield

-V+l

(M (x)M'-(0))angnecj — y 'Psf(J) (~ {Sz(j - l)Sz(0))Heis. 
j= 2
.V+l / x

= ^2(n,ot(x)& j
7=2 \/=0

% (— 1 )* {n tot (x)n tot (0))(SZ (PtotX) SZ(Q)) par. Heis.
~ (-|)>>°'l = SzLL, (4.84)

yfx X XKc + Ks

and the spin correlator is the product of the charge and spin correlations. We can also 
explain this result using the elementary excitations of the Luttinger Liquid, the spinon 
and the holon.

Figure 4.4 shows the spinon and holons in the configuration described in the intro­
duction and depicted in figure 1.1, only now for the staggered magnetization Mz(x) = 
(— \)xSz(x). Clearly both the spinon and the holon cause a kink in the staggered mag­
netization. Note that when using the staggered magnetization the spinon is a fluctuation 
in a an effectively parallel spin Heisenberg system as can be seen from figure 1.1. The 
fluctuation of the kink attached to the spinon causes the ferromagnetic like algebraic de­
cay in the function f(ptotX) = \/{px)Ks in formula (4.83). The fluctuation of the kink

y,„,m (-i)vo-i)
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k k k k k k k k k k k

b)

d)

! t t ! t t ! ° t ! t
k k k ! ° I I I 

t (1° I I I 1( 0)1
Figure 4.4: The staggered magnetization Mz(x) = (— l)jr5’z(jc) for the spin configu­
rations depicted in figure 1.1. Both spinon and the holon give rise to a kink in this 
operator.

attached to the holon is responsible for the algebraic decaying term

(n»«(Jt)(-l)^-ll(1-"'"U))nfo,(0)) = -4= — -4~ (4-85)
y/X XK‘

in (4.83). So in calculating the staggered spin-spin correlation function both the spinon 
and the holon have a contribution with respectively a term \/xKs and \/xKc. So the 
kink caused by the holons the simple order of the spins is obscured and (Sz(;c)Sz(0)) ~ 
cos (2kpx)/xKc+Ks.

In the next chapter we will show how to untangle the obscuring effect of the charge 
and to reach the internal spin-spin correlations.



Chapter 5

Sublattice Parity Order

After having studied the general structure of Luttinger Liquids using bosonization and 
the Bethe Ansatz wave function for the Hubbard model, we are ready to turn to the main 
subject of this thesis, sublattice parity topological order in Luttinger Liquids which are 
represented by the Hubbard model with positive Coulomb repulsion U.

Sublattice parity order in the Hubbard model is most convincingly in the limit of 
strong interactions, U -»■ oo. In this limit the wave function factorizes into a spin and a 
charge part, which on close inspection hints at the existence of the hidden order. In this 
chapter we will prove that in the limit of large U the Hubbard model has (quasi) sublat­
tice parity order by showing that the topological correlator (S:U)(—l)^=l n,ol^Sz(0)) 
decays like a Heisenberg spin correlator.

We start by reinterpreting the Bethe Ansatz wave function in the limit U —► oo in­
troduced in the previous chapter.

5.1 Sublattice parity order for U -> oo

As was summarized in chapter 4, the Bethe Ansatz wave function for the Hubbard model 
simplifies significantly in the special case that U is very large (U —> oo) [19,20]. In 
this limit the charge and spin degrees of freedom decouple and the multi-electron wave 
function xj/ factorizes into a spin and a charge component

= ^SF(x X//) 'l'HeisXy\y->yM)-

The charge part \J/Sf represents the wave function of non-interacting spinless fermions 
where the coordinates x-, denote the positions of the N electrons. The spin part ^Heis.1S 
identical to the wave function of a chain of Heisenberg spins interacting via an anti er 
romagnetic nearest neighbor exchange. As the total spin is conserved, the wave unction 
xl/Heis. is completely determined by the M positions of the up spins correspon in© W1 
the coordinates yjJ = 1,.... A#. The surprise is that the coordinates yj do not refer to 
the original Hubbard chain with length L, but instead to a new space, a lattice o eng

61
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a) x m
• • o o
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b)
\

A

p = -l

I
*m
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P = +l

P = +I
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Figure 5.1: The emergence of the Z2 sublattice parity field in the geometrical squeezing 
operation demonstrated for a certain configuration in full space (a) and its related spin 
configuration in spin space (b). The open circles represent unoccupied sites, the holes. 
The black dots refer to occupied sites in both the full lattice (figure a) and the squeezed 
lattice (figure b). The unsqueezing can be parametrized by binding the holes to flips in 
the Z2 valued sublattice parity field. In squeezed space, the distance between the spins 
on positions x„, and x„ is a ' - x'm.

M constructed from the sites at coordinates x\,X2given by the positions of the 
charges in a configuration with amplitude \f/sF- This illustrates that although the factor­
ization property (5.1) gives a precise meaning to the notion of spin-charge separation, 
charge and spin are actually not quite independent from each other.

The construction of the wave function in this manner is based on a geometrical struc­
ture similar to the one encountered in general relativity. There the presence of mass 
influences the metric connected to a particle. In our case the holes change the metric ob­
served by the spins compared to the metric attached to an external observer, for instance 
an experimentalist. Let us visualize this for a representative example (See figure 5.1).

Consider N electrons on a chain with L sites where N < L. In the full Hubbard 
chain a charge configuration contributes an amplitude \J/sf to the wave function. These 
charges are depicted in figure 5.1a as black dots with coordinates a*/, where i = 1,..., N. 
An external observer would say that the relevant distance between the two spins m and 
n is xn — xm. However, the spin system is confronted with a different internal space, the 
so called squeezed space. This space is obtained from the full space by removing the 
holes together with the sites where the holes are located, substituting the hole and its site 
with an antiferromagnetic exchange between the sites neighboring the hole. So in spin 
space the distance between the two spins equals x'n — x'm. This distance is smaller than 
xn — xm because the spins of the electrons are independent of the holes that are located 
in between the electrons.
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a) tltltltl
ABABABAB

p = +l

b) lilt p = -l

BA BABABA

Figure 5.2: The subdivision of an antiferromagnetic Heisenberg chain into A and B 
sublattices according to a sublattice parity p = +1 and p = — 1.

As in general relativity, the physics is derived from relations between the different 
reference frames, but the geometry involved in the Woynarovich-Ogata-Shiba case is 
obviously much simpler than the geometry of fundamental space-time. This simplifica­
tion makes it possible to parametrize matters in terms of a simple gauge theory. Let 
us compare the internal and external space: in which regard are the full chain and the 
squeezed chain different?

First of all, as already noted, squeezing changes the distances between spins. This 
can be parametrized by a simple dilation: a distance x between two spins measured in 
the full chain becomes a distance plotX in the squeezed chain with plot = N/L equal to 
the total electron density.

Another difference between the full chain and the squeezed chain is expressed by 
the sublattice parity which has to do with the notion of bipartiteness. A lattice is called 
bipartite when it can be subdivided into two sublattices A and B, such that all sites on 
the A sublattice are neighbored by B sublattice sites and vice versa. This division can
be done in two ways (----- A — B — A — B • and------ B — A — B — A • • •, see figure
5.2) defining a Zi valued quantity p = ±1, which we refer to as sublattice parity . The 
Heisenberg spin system in the squeezed space is a quantum antiferromagnet and it is as 
such sensitive to the geometrical property of bipartiteness. Now consider the sublattice 
parity. A redefinition in this system of p = 1 and p = — 1 is just a global shift o t e 
coordinates by one lattice site and does not carry any consequences, it is a pure gauge 
degree of freedom.

However, sublattice parity becomes important in the mapping of squeeze space 
into full space. To examine this, let us fix the gauge in squeezed space, by choosing a 
particular sublattice parity, let say p = +1 (see figure 5.1) and consider what appens 
when it is unsqueezed. In the process of unsqueezing, together with the holes, t e attice 
sites themselves are inserted. These lattice sites cause the sublattice parity to ip sign 
every time a hole is passed, which is referred to as the ordering of the sublattice pan y. 
So the squeezing operation can be parametrized by attaching a sublattice panty ip o 
every hole. Due to the sublattice partity flips attached to the holes, the simp e or er o 
the internal spin is obscured by the presence and motion of the holes an yie a spin



64 CHAPTER 5. SUBLATTICE PARITY ORDER

a)

A BABA BAB

b)
T

Figure 5.3: A spin configuration with a sublattice parity flip caused by a hole (a) and 
its staggered magnetization (b). The sublattice parity flip causes a kink in the staggered 
magnetization.

spin correlator equal to (5:(x)5c(0)) ~ cos(2kpx)/xKs+Kc, as was described in the last 
section of the previous chapter.

5.2 Probing the internal spin-spin correlations

Is it possible to untangle these fluctuations due to the charge motion and can we recover 
the order of the internal spin system by observing the full Hubbard chain? Or to put it 
differently: can we define a correlation function acting on the full Hubbard chain which 
can measure the ‘true’ internal spin correlations associated with squeezed space?

To_construct such an operator, we first turn to the staggered magnetization M(x) = 
(—l)A5(x). As is shown in figure 5.3, a sublattice parity flip due to a hole is equal to 
a kink in the staggered magnetization Mz{x). This indicates that the damage done by 
a hole on the staggered spin due to the sublattice parity flip can simply be repaired by 
multiplying every spin to the left of the hole by —1. Therefore, we restore the original 
sublattice parity in the full space by looking at the altered staggered spin operator (M')z 
defined by

(M‘f(x) = l)£P-=o',0') = Mz(*)(—(5.2)

where h(j) = 1 — ntot(j) is the number of holes on site j and the charge operator 
ntot(j) = HtO’J + 'UO) taktng the values 0, 1 and 2 for an empty-, singly- and dou­
bly occupied site, respectively. The operator (— i )(t —”/o/(y)) takes the value +1 for a 
singly occupied spin site while it is — 1 for a hole or doubly occupied site. By multi­
plying these values on the interval 0 < j < x all the minus signs associated with the 
sublattice parity flips are removed from the spin correlations. We can use this operator 
(M')z to measure the true internal spin correlation associates with squeezed space. For



5.2. PROBING THE INTERNAL SPIN-SPIN CORRELATIONS 65

instance the spin-spin correlations function measured in squeezed space is given by

0,op{x) = < (.M')z(x) (M')z(0))

= (Mz(x)(-\)^XJ=°{l~",o,U))Mz(0))

= -(Sz(x)(-\)^j='n,o,ij)Sz(0)). (5.3)

A comparable correlation function was also used to find a similar hidden order in Hal­
dane spin-1 chains, as was described by den Nijs and Rommelse [18].

Although the string operator (— l)^-1is non-local, it can be evaluated 
straightforwardly in the limit U -> oo using the techniques introduced by Parola and 
Sorella which were discussed in chapter 4. They used (Sz(a)Sz(0)) = Y^=2 ^5fO) 
OHeisXj — 1) to calculate the spin-spin correlation function, where Of/eis. is the spin- 
spin correlator of the Heisenberg chain, while the expression P§F(j) = («sfC*)hsf(0) 
^(5Z/'=o,1sfU) — j))sF is the probability of finding j spinless fermions in the interval 
[0,.t]. Using this they showed that (Sz(a)Sz(0)) ~ cos(2kFx)/xKs+Kc. Using the same 
principle we find

Oiop(.x) =

Here we used equation (3.31) from the chapter 3. So the asymptotically exact result is 
Otop{x) = T ln1/2(yototx).

To get the spin correlations in the internal squeezed space, we have to correct for the 
fact that the density of staggered spin in full space is reduced by a factor plot as compared 
to squeezed space while in addition distances are measured by x/ptot instead of a. After 
rescaling, Oj™led(x) = ±ln,/2(A) which is indeed the behavior of the staggered spin 
correlation function of a Heisenberg spin chain at large distances. So in the limit U ->• oo 
the topological operator Otop{a) enables us to reach the spin space and calculate the spin 
spin correlation in the internal spin system.

x+\
J2PsFUX-l)j-2°HeisXj-V
7=2

x+l
£ pxSFu)f{j)
7=2

-V+l

psfU)

7=2

f(xplot) + •(^)
r I / In 2 (a){nsF(x)nSF(0))-—-\ni(plotx) + 0 ( ——
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In the study of the Haldane spin-1 chain by den Nijs and Rommelse, the topological 
correlator gave a finite result with Olop = C/ 0 for large distances x [18]. But in 
the Hubbard model the spins have a continuous symmetry, instead of the discrete Z2 
Ising symmetry of the internal spin space of the Haldane chain, and so, according to the 
Mermin Wagner theory [ 12], our system has no long range order and we find Otop(x) = 0 
in (5.4) for large distances x. How should we interpret this result?

Let us consider the well known asymptotic behavior of the ‘normal’ staggered spin 
correlations for the Hubbard chain and large (/, which is given by

Om(x) (Mz(x)Mzm
cos [(2k f — n)x]

X K.i + Kc (5.5)

What matters is that the algebraic decay of Om(x) is more rapid than that of the topolog­
ical correlator Olop(x) in (5.4). This is because the direct spin correlations as measured 
by equation (5.5) are sensitive to the kinks attached to the holes which are disorder events 
for the spin correlator. This adds an additional algebraic decay to the spin correlations 
~ 1 /xKc as was described in the last section of chapter 4. In the topological correlator
Otop(x), the charge string operator (-l)^y=on,w,(-/) removes the kinks attached to the 
holes and therefore measures the algebraic decay \/xKs of the spin correlations as they 
exist in the squeezed chain. Note that in this process the spin correlation have turned 
into those of an effectively parallel spin system.

The extra decaying term l/y/x is closely related to the fact that the internal spin 
system has antiferromagnetic interactions. Because of the fact that the internal spin 
correlations alternate with (Sz(x)Sz(0))Heis. ~ the normal spin-spin correlations 
do not just get diluted with a factor no, but produce a decaying term 1 /y/x when we 
inject the Heisenberg chain with holes.

Another way to say this is that in the Hubbard chain the sublattice parity is ordered, 
which means that the sublattice parity changes sign every time a hole is passed. Using 
the topological correlator Otop(x), the original sublattice parity from the spin sector is
restored by the string operator (— \)^j=on,o,U\ And because of this, apart from some 
scaling effects, Otop(x) calculates the spin-spin correlations in the squeezed space.

Note that in principle this kind of hidden order can also occur in systems defined 
on a continuum instead of on a lattice. For the construction of the wave function de­
scribed in (5.1) can also be applied on a continuum. But since the sublattice parity can 
only be defined on a lattice, we would not refer to it as the sublattice parity order. On 
a continuum, the order would be characterized by the property that neighboring spins 
have antiferromagnetic interactions independent of the distance between them. Only 
the interpretation of the topological correlator described in section 5.1 is now not com­
pletely appropriate anymore and we have to change it. For instance in a continuum, it is 
not true that the holons and spinons simply cause kinks in the staggered magnetization 
Mz(x) = (— I^S^jc). On the other hand, the expression for the staggered spin correlator 
(4.83) is still valid. So also for continuous x, we obtain an extra decaying term 1 /*/x 
caused by the antiferromagnetic staggering in the internal spin system and represented
by the (-1 in the term (/i/0/(a:)(—1 )^=‘(1 “',,o,0))/z/o/(0)> in (4.83). To re­

move these minus signs we have to multiply the function with (— 1 )£/=i simiiar
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to what we did for the lattice limit which yields the expression — (Sz(jc)(— l)^-1 n,ot^

Sz(0)). Now the term (—1)^=' n,ot^ can be interpreted as removing the internal anti­
ferromagnetic staggering in the internal spin system and making the spins parallel. And 
thus by calculating Olop(x) we obtain the product

Otop(x) = (nlot(x)ntolm{Sz(x)SzmHeis, (5-6)

This interpretation is not only valid on a continuum, but also on a lattice.
In the next two chapters we will calculate the topological correlator Ot0p(x) for 

U = 0 and for intermediate Coulomb repulsion U > 0. These calculations will show 
that for all U > 0, Otop{x) ~ 1 /xKs = \/x.



68 CHAPTER 5. SUBLATTICE PARITY ORDER



Chapter 6

Sublattice parity order for U — 0

The calculations presented in the previous chapter all refer to the specific situation of 
the strong coupling Hubbard model, and the generality of this Z2 topological order is 
a-priori unclear. Is this only restricted to the strongly coupled case? In this chapter we 
consider the limit where the Coulomb interactions completely vanish and the system is 
described by a spinful fermion gas on the lattice. For this U = 0 case we calculate the 
topological correlator 0,op{x) numerically. Remarkably, these calculations will show 
that also under these conditions the sublattice parity is ordered.

6.1 Introduction

To see whether the sublattice parity is ordered we have to consider the topological cor 
relator O,op{x) defined in equation (5.3). For zero Coulomb interactions U —■ » I e 
Hubbard model is described by a spinful fermion gas. In that case, the up an own 
electrons completely decouple, and this simplifies the calculation of Otop(x) const er 
ably. Using Sz(y) = ±(nt(y) - /i|(y)) and ntot(y) = (wtM + 'UM) the topological 
correlator can be written as

0,op(x) = - (Sz (*) (-1) £;= 1W Sz (0)) =

- ^(ntW(-l)^=l'"fO)/iT(0)>((- 1)*£

1)23-

jp-'
1)^

«iU)

nxU)

mU)

«tO)

>

)

)

>•

(6.1)
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This expression contains several averages in which there is only one sort of particle 
that is either up or down. Therefore, in the calculation, it suffices to consider spinless 
fermions with density hsfU) so 11131 the topological correlator equals

0,op= - (SJW(-l)^=''”'wO)Sz(0)) =

+ j to (~ 1)^='nsrU))(nSF(0)(-1 ”SF(J>)-
(6.2)

It follows that the topological operator Orop in (6.1) can be expressed in the spinless 
fermion correlators ((—1)^=' nsF^)t {iisf(x)(- 1)^=1 nsF^)) and the average (hsf(x) 

(—1)^=> ksfU) nSF(0)). In the next section we describe the method for the numerical 
calculation of these expressions.

6.2 Spinless fermion numerics

As shown in equation (6.1), the topological correlator Olop(x) can be expressed in the
spinless fermion correlators ((— 1)^>=I nsF^)t (tisf(x)(— 1)^7=1 and {iisf(x)

(—1)^=1 nsFW usf(0)). Let us start by considering the expression ((— 1)^=' nsF^). 
Using periodic boundary conditions, this expression can be written as

((_l)Ey=/«5F0)^

x\-XNyi-yN
i * /

X e-ik\X\-...-ikNxN eik\yi+...+ikNyN

Y Y <°l^—fljc,^1°)
xi...xn yi».yN

/ i x e-ik\x\-...-ikNxN eik\yi+...+ikNyN

N
x ]~[ [1 - 20(>V - D0(r - 1 - yy)]. 

;■=1

(6.3)

Here j&i ...ku) indicates the ground state. The product term on the last line equals 
— 1 when yj e [1,* — 1] and 1 otherwise, taking into account the result of the factor
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(— 1 )^=* nsF^\ Part of this sum can be written as

I J2eiy(p~k) - - Y^eiy(p~k)
V y V y=i

2 eHp-k)x _ eUp-k)

«*(/>,*), (6-4)

where we introduced the altered delta function 8*(p,k). Using this function, the expres­
sion (6.3) can be expressed as the determinant of a N x N matrix made of 8*(kj,kj) 
functions

i£y>'(p-*)[l -26{y- 1)6>(a- — l — >>)] =

y

<(-l )ZS-i»sFU))ssdti

S*(kiM
8*{k\,k2)
&*(k\,kj)

S*(k2,ki)
S*(k2,k2)
S*(k2,k3)

8*(kN,ki) \
S*(kN,k2)
8*(kN,k3) (6.5)

V 8*(kukN) 8*(k2,kN) ••• 8*(kN,kN) >

This is similar to calculating (1) = {k^,.. .k\\k\,. ..k^), which is of course 1, and equals 
the determinant of a similar N x N matrix

(1) =det

/ $(k\,k\)
m,k2)
$(*1,*3)

8(k2,k\) 
S(k2,k2) 
8{k2,k3)

8(kfi/,k\) \
8(ku,k2) |
8(ku,k3)

\ 8{k\,kN) 8(k2,kN) 8(kN>kN) /

(6.6)

only now consisting of normal 8(kiykj) functions.
c ,, . . , , w uT:l-lnsFU)x-/(^\)T.jZlnsFU)nSF(0)).S‘\m\-
Secondly, we consider (/zsf(.x)(—1) ;

lar to equation (6.3)this is equal to

(nsF(xX-l)E3-'nsFU)) = (kN...kl\nsF(x)(-l)UlZ'nsFU)\kl...kN)

iV £ £ WaXN...axtalaxalr..alN\0)
' x\...xny\...yN

■-i k\ x i -,...,. ■-iknx n e‘k t y\ +..... +/fyv )’N 

N
xH[l-2B(yj-mr-l-yj)]-
j=i

(6.7)
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0

X

This can be written as the determinant of the (N + 1) x (N 4- 1) matrix

/
yv

**(*2,*i) ••• F&nM

8*(k2M 8*(kN,k2)

eik\x
yv

S*(kuki)

S*(kuk2)

yv
eikNx \
yv

e-iksx
\ yv

(6.8)

8*(k\,ku) 8*(k2,ku) ••• 8*(kN,ku) y

Again, if we replace the redefined delta function 8*(kj,kj) in this matrix by a normal 
delta function, we obtain an expression for the normal density (/?sf(*)) = ("sf(0)) =
■i. ^Tk e-ik\xe-ik2x _ = y, where we used that k\ = with m = 1,..., V.

Finally we consider (njf(jt)(— l)^=l nsF^nsF(0))- This average can be expressed 
as the determinant of the (N 4- 2) x (N 4- 2) matrix

/ 0

0 
l

yv
i

yv

o

0
e-«*lr
yv

e~,k2x
yv

e-ikN.x

yveik{x
yv

S^kukO

yveik2x
yF

S*(k2,k,) ••

yv
eikNx
yv

• 8*(kN,k,)

nkuk2) 8*(k2yk2) •• • 8*(kN,k2)

S*(*i,*tf) 8*(k2,kN) •• • 8*(kN,kN)

\

(6.9)

\ yv yv

If we replace the redefined delta function 8*(ki,kj) by a normal delta function 8(kj,kj),
we obtain an expression for (/isf(*)wsfO0)) = (y)“ - yr Em=l Lp=i ^ 
which is calculated in (3.31) in chapter 3.

A Fortran program was used to calculate the expression for the correlation functions
((-1)^='"sfU)), <nSF(x) (-i)^;,1""U)) and (nSFM(-l)^:''"SFU)nsF(0)) in re- 

spectively (6.5), (6.8) and (6.9) for various fermion densities psf• Careful analysis of 
this data, obtained via the determinant of (6.5) demonstrates that away from the density 
PSF = 1.

((_l)Ey=l"SF0')) _
A2x/2 cos(£»)

ySin(^)yp^i^'
(6.10)

Figure 6.1 displays the results for psf = y = 0.1 with TV = 20 and V = 200 together 
with this analytic expression (6.10). Furthermore, figure 6.2 displays the numerical data
for the prefactor of ((— 1)^=> nsF^) normalized to 1 for psf = y = 0.5, which is equal 

to ((-1)^>=1 n5f0))y^sin(;r(V1))/(A2\/^cos(;r(J:vl)N))^ together with the function 

y~sin(lrpsf) ^or severa* values for Psf in between 0 and 1. Also here N = 20 and V = 200.
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Figure 6.1: Numerical data for the function D(x) = ((—1) 7=0 SF ) using equation 
(6.5) together with the analytical prediction in equation (6.10) and a density psf — y — 
0.1. Here N = 20 and V = 200. Note that in these calculations periodic boundary 
conditions were used.

Taking the thermodynamic limit V —► oo, y -*■ psf the function in (6.10) will go to

cos (w(*-D) (6.11)
v/sin(ttpsf) s/x

This in agreement with calculations done by Parola and Sorella, discussed in chapter 4. 
They showed that for psf = 5 the asymptotic form of D(x) is

/7T(.Y+1)\
DVc) = ((-1)£h>'w(7)> = (6-12)

with A = 0.645002448 [22] . Our numeric result in (6.11) is expressing the generaliza­
tion of this result for densities away from psf = 5 anc* ?SF = **

The averages (nSF(x)(.- 1)^='"sf0>) and {nSF(x){-l)%=' "SF°W(0)) can be 
related to the expression for D(x) = ((-l)E'=°"sf0))- For instance, using nSF(j) -
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0.5------ ----- ---------------------- — •................ ...............—------------------
0 0.2 0.4 0.6 0.8 1

Density of electrons n

Figure 6.2: The points indicate the numerical value of the prefactor of the function 
D(x) = ((—1 )^j=onsfU)) normalized to 1 for n = psf = y = 0.5 with V = 200. The

solid line represents the function ■, --- -.
r vsm (7TPSF)

5 [l — (—1)"^0')] for j — x we get

= <(-l)E^,,"sfO')nsF(0)) = DU-2)-D(a-1)

A1 / cosjnpsFx) [cosjnpsF) - 1 ] + sininpsFx) sinjnpsF) \
•Jl )

A2s/\ —cos(jzpsf) cosinpsF* — K)
V2sin(7rpsf) V

= sign [cos(tzpsf) — 1]
Vsin (npsF)

(6.13)

where the constant K is given by

( sin (npsF) \ 
a*0 an \ cos(jtpsf) — 1 / (6.14)
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Furthermore, in the same manner we obtain

('t5FU)(-l)E>=ll,,5FO)nsF(0))

= {-[D(x-2)-2D(x-\) + D(x))
4
A2(cos(nPSf)- \)COS(npSFX) „

= ------. —------------ 7=----- . (o.l5)
>/2sin(7rp5/r) V*

Although we will not show the figures with the numerical results for these expres­
sions, it turned out that our numerical data are in good agreement with these results. This 
is in agreement with the calculation of Parola and Sorella of this quantity for psf = 
where

C( x) = (|15H*)(-1)^;°"°'W(0)>

_ A2 COSjjTpSFX) (6 16J
•Jl -/x

as was described in chapter 4. The result in (6.15) expresses the generalization of this 
result for densities away from psf = \ and p = 1.

6.3 Final result spinful case

Inserting all the different spinless fermion averages calculated in the previous section in 
equation (6.1), we find for the spinful topological expression

0,op(x) = - (S2(jr) (-1 )£?=' "m(i) 5:(0))

= -^OU-2)DW-Db-l)2]

A4sin(7ry05/r) ^ A4sin(jrpsF) _ A4sin(kF) 
4^sin(^) 4l “ 4x

A4 sin(7rpf or/2)
4a

where pSF = p,ot/2 = (pt 4-/0;)/2. Note that 2kF = nplo, = and so kF =
7T N$ p
~v~ =71 Psf-

Figure 6.3 shows the numeric data for Otop{x) using the determinant expression of 
equation (6.5), (6.8) and (6.9) for ptot = 2NSf/V = 0.2 and V = 200. The data is in 
good agreement with the analytic expression in (6.17). The algebraic decay is clearly 
in log-log plot of these data in figure 6.4. Here the string correlator function (5**(a)
(—1)^=> n,o,U) 5*(0)) is calculated for the densities ptot = 0.2, ptot = 0.6 and ptot = 1-
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Figure 6.3: The function O,op = -(S"U)(-l)E^'',",'O)S‘(0)) for U = 0 calculated 
numerically using determinant formulas (6.5), (6.8) and (6.9). Here plot = 2Nsf/V = 
0.2 and V = 200. The drawn line is the analytic solution in equation (6.17).

Figure 6.4: The function Otop = ~{SZ00(-l)^=1 n’o,('^Sz(0)) for p,ot = 0.2, ploi = 0.6 
and p^t = 1. shown in a log-log plot. The algebraic decay in equation (6.17) is displayed 
as a straight line.
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So we can conclude that for U = 0 the topological correlator probes the internal spin 
spin correlations with Otop{x) ~ 1 /x for large distances a*, indicating that the sublattice 
parity is ordered.

It is remarkable that even in the limit of zero Coulomb interactions the sublattice 
parity is ordered. Before giving an explanation for these results, we will investigate in 
the next chapters the sublaltice parity order for finite intermediate U > 0. Since the 
Luttinger model is solved by bosonization, we will first try to apply this method to do 
this.
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Chapter 7

The failures of Bosonization

After proving the existence of the (quasi) sublattice parity order for the Hubbard model 
in the limits U = 0 and U —> oo, we would like to use bosonization to investigate this 
hidden order for intermediate U > 0. Although this technique is defined on a continuum, 
a hidden order similar to the sublattice parity order can occur, as was pointed out in 
the end of chapter 5. But in this chapter we will demonstrate that despite triumphant 
success in many other arenas, the method of bosonization does not correctly represent 
the string operators in the lattice Luttinger liquid described in the previous sections, 
which gives rise to an incorrect behavior of the correlation functions. As we will show, 
this is partly because in going from a lattice to a continuum the technique generates the 
wrong continuum limit for these operators. But as we will indicate, this is not the only 
problem and we conclude that bosonization cannot be trusted when calculating these 

string operators.
We will start this chapter by giving some examples of where things go wrong.

7.1 Examples of where things go wrong
A first example of this failure of bosonization can be seen by considering the expectation 
value of the string correlator itself. To obtain an expression for it using bosonization, we 

first represent this function as a cosine with

<(_ l)Ej=o^/0)) = (C0S
X

nY^ntot(j)
;=0

(cos ^ J dy iitotiy) ) (7.1)

Here we took the continuum limit. According to the bosonization dictionary, the total 

charge density is given by ntot{y) = yfI*g.(y) + oCDw(y) + 0'cDw(y), where the 

charge density operator 0CDw(y) = cos[^/2n (ps(y)]. Using these ex­
pressions, it follows that on average ((— i)E/=o"wt/)) ^ ^/^/5jrfar(*)-#r(0)l) _ \/xK'\

79
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Since bosonization can only probe the non-zero wave vectors of the density operator 
nlol(x), this expression is only valid up to multiplicatory factors of order cos(7Txplot)- 

On the other hand, because on the lattice

(_iyjroiO) = (_n« tO')+niO) = (_ iy*tC/)-»it/) = (_i)2s:0'\ (7.2)

we might as well use ((—1)^=0",<M^) _ (cos[27t J^_0S2(7)1)- Because in bosoniza­

tion 2Sz(x) = + OsowCr) + 0'SDW(x), we obtain

((-1 )^°n,0,U))BOS. - 4-- (7*3)

XKS

For U = 0, the modulus Ks = Kc and the two expressions are the same, but away from 
this point Ks / Kc and bosonization runs into a paradox: depending on the way one 
calculates ((—1 )E-j=on,0,W)t one obtains different, mutually exclusive answers. As will 
be shown in the next chapter, DMRG calculations prove that for positive U this function
equals

= Il_ + BcCOs(2kFx) (7.4)
X^s X^c

and apparently the two ways of calculating the operator in bosonization recover part of 
the correct answer.

A similar problem occurs when one uses bosonization to calculate the expectation 
value of the string operator (—1 )2^j=on“»U\ On the lattice this operator is just the 
identity operator. But according to bosonization its expectation value decays like

((_1)2E;=o'"o,0)) = (COs[2nf^nlo,U)]) = -^T * *■ (7'5)

i=0 '

These examples show that the usual bosonization description can yield incorrect expres­
sions for certain string operators. What is going on?

7.2 Why does bosonization fail?

To explain why bosonization fails to describe these string operators, let us take a closer 
look at the principles of the technique, starting with the bosonization of spinless fermions 
as was described in chapter 3.

Using bosonization we write the number operator nsF(y) as a bosonic operator. On 
the lattice, the number operator nsF(y) is integer valued. A site is either empty or 
occupied corresponding with respectively charge quantum number 0 and 1. In boso­
nization this discrete valued operator is approximated by a continuous function <p(y) 
with nSF(y) = --j=dx(p(y)t or equivalently f*dy nSF(y) = Mx) - <p(0)]. The

operators nsF(y) and Ylj=0nSF(j) for the discrete lattice configuration of spinless
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c)

x
I nSF0) 
j=o

----1------- #-

d)
lL[cp(x)-<p(0)]

VT

1
i

1
0

2

1
0

Figure 7.1: These figures show the principle of bosonization of spinless fermions. The 
spinless fermions are indicated as black dots. The first two figures display the density 
operator nsr(y) on a lattice (a) and its continuous version obtained via boso­
nization (b). The last set of figures show the accumulated electron density J^Lq'IsfO)
and its continuous bosonized version —\= [<p{x) — (p{0)]. On a lattice, the particles are

y/n Gj•
located on a single point while in the bosonized version the particles have acquired a 
width A.. Although we have drawn A of finite length in reality A = oo. Note that the 
function on a lattice theory is only defined on the lattice points. The dashed lines is 
added to a guide to the eye.
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fermions depicted in figure 7.1a and 7.1c are approximated with the continuous func­
tions --j=dx<p(y) and [^(a) — ^>(0)] in respectively figure 7.1b and 7. Id.

The main difference between the lattice operators and their bosonized continuum 
counterpart is that on the lattice, the fermions are located at single points whereas in the 
bosonized description, the fermions are spread out continuously around this point and 
the particles have acquired a width X as indicated in figure 7.1. For the long wavelength 
scale behavior this difference is not important and the bosonized theory gives proper 
answers for the correlation functions as (hsf(a)”sf(0))-

The width X of the bosonized particles is of the order X = ^ where m is the mass in 
the Dirac equation (3.6). But since m = 0 we find X = oo. The fact that X = oo makes 
the identification of the expressions nsF(y) and Ylj=onSF(j) with their bosonized form 
in figure 7.1 more difficult, but the most important notion is that they are in principle of 
the same form.

Let us now consider the operator (—1 )2^j=onsF(J) On the lattice, this operator is 
identical to the unity operator. In bosonization this operator is approximated with the 
operator cos[V47t(<p(a) — <p(0))], depicted in figure 7.2. Clearly this function is not 
a good approximation of the constant function (— i)2£y=°',SF^); in bosonization the 
charge is spread out over a width X and so the continuous function cos[a/47t(<p(a) — 
^j(O))] is not totally constant but has a dip of width X around the particle. The fact that 
X = oo and not finite as is drawn in the figure does not change this observation. If one 
increases X the position of the dip can somewhat change but because — [<p(a) — <p(0)]

is monotonically increasing, the function cos[n/47t(<p(a) — <p(0))] will always have a 
dip centered at the points where the cosine equals -1 and is therefore not constant like 
(—1 )2^j=onsFU) has a drastic effect on the expectation value of the operator. The 
dip causes the expectation function to decay so that in bosonization

((_l)2E;,0»^O))fios= > (7.6)
X1

In other words, in bosonization the operator (— \)2^j=onsF(j) js treated as the operator 
(_l)E;=°nsFO) wjtk fjSF(j) the density of spinless fermions with hsfU) = 2wsfO)- 
But since the charge is a continuous variable, the function is not constant like it would 
be on a lattice and causes a dip on the location of the spinless fermions. Why does this 
happen?

We want to approximate an operator defined on a lattice with a continuous function 
defined on the continuum. This means that we have to construct a continuation of this 
operator. But there are infinitely many ways to make such a continuation. The bosoni­
zation procedure is designed to generate the proper continuation for the density operator 
nsF(y)• But using this description, it selects the wrong continuum limit for the function 
(_l)2E;=o«srO)

A similar problem occurs for the string operator (- l)3=o"«'(j) for spinful electrons 
in (7.1). Figure 7.3 depicts this function for a selected electron configuration together 
with the bosonized version cos[\/27r(<pc(A) - <pc(0))] used in equation (7.3). One can 
clearly see a discrepancy between the lattice expression and the bosonized continuation.
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a)

2SnnSF 0)

b)
^ [<p(x) - <p(0) ]

c)
X

COS[ 27c ^0n Sp (j) ]

cl)
cos[74tT (<p(x) — <p(0))]

Figure 7.2: In straightforward bosonization the constant sum (— \)2^j=onsF(j) depicted 
in figure c, is approximated by the continuous cos[v/4H{(p{x) — ^>(0))] in d, which clearly 
is not constant and yields incorrect long wave length behavior. In reality X = oo and is 
not finite as drawn in the figure. But for every X > 0 the function cos[V4n(<p(x) — ^(0))] 
has a dip centered at the points where the cosine equals -1 and is therefore not constant

like(-l)2£;=o ”sfU)
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The bosonized function has a dip of width k around a doubly occupied site, which is 
not present on the lattice expression. So cos[v/27r(<pc(-v) - ^c(O))] is not the proper con­
tinuum limit for the operator (—1 )^j=onio,^\ Although k = oo. we used a finite k in 
this picture. But since the function -yJ~^{<Pc(x) - (pc(0)) is monotonically increasing

for every k > 0, the function cos[-y2jr(^c(.v) — w(0))] has always an extra dip cen­
tered at the point where the cosine equals -1 due to a doubly occupied site compared to 
(— \)£'j=on“”U) for the configuration drawn in figure 7.3.

Now write the string as ((— \)Ej=oni*W) _ ((_i)2E;=o5‘0)) jn bosonization this 
function is written as cos[-s/27r(^5(at) — ^(0))], see figure 7.4. Again instead ot k = oo 
we took k finite in this picture and it appears that this function is the correct contin­
uum limit for ((— i)£;=on,0,^)) depicted in figure 7.3b. But now we have to be careful! 
Since the function —J^[<ps(x) — <ps(x)] is not monotonically increasing the form of 

the function will change if we increase k\ This can be seen in figure 7.5 where we 
increased the value of k. As k increases the dip in the cosine in figure 7.4d and 7.5d 
will decrease and in the limit k —► oo will be very close to unity. This is in contrast 
with the function (— 1 )£/'=» which changes sign after a singly occupied site in fig­
ure 7.5c. But despite this discrepancy this function gives a good approximation for the 
function at the doubly occupied sites in contrast to cos[\/27r(<pc(A) - <pc(0))]: There 
are no dips in the function for doubly occupied sites although now the function fails 
to describe singly occupied sites. In conclusion, cos[\/27r(^c(A) — y>c(0))] describes 
properly the behavior of singly occupied states but is wrong for doubly occupied states 
whereas cos[>/2jr(^(A) — ^j(O))] is correct for doubly occupied states, but fails for 
singly occupied states. Clearly the right expression is some combination of both ex­
pressions and it is not surprising that DMRG calculation show that <(-l )^U=°,,,°,(-/)) = 
Bs /x Ki + Bc cos(2 k/?x )/x Kc.

7.3 Bosonizing using the proper continuum limit

So we can conclude that, although the bosonization procedure is correct for the den­
sity correlator {nlot(x)nlot(0)), the bosonization procedure selects the wrong continuum 
limit for averages like ((— l)2^'=°,,Sf(-,)) ancj bosonization fails. On the other hand, it is 
not true that bosonization generates the wrong continuum limit for every string operator. 
In this section we present some spinless fermion operators for which bosonization is 
expected to generate the proper continuum limit. But as will turn out, even in this case, 
the method is not able to generate correct expressions.

For instance, consider the string operator for spinless fermions (—1 ^j=onsFU) = 
cos[n^2J=QnsF(j)]- 1° bosonized form this function equals cos[-s/7t(^(a) — <p(0))]. 
These operators are depicted in figure 7.6. Now because for spinless fermions two par­
ticles cannot be on the same site, we do not run into the problem that we encountered
before in calculating ((— l)^->=o",0/(^)) and here bosonization does generate the proper 
continuum limit. What is the average of this operator?
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a)

b)

(<PC00 - <pc(0))

c)

T 3
f2\ 1

k

cos[rc£ ntol0)] 
j=0

d)

cos[\/Tn(<pc(x) - <pc(0))]

i +1

Figure 7.3: Picture a and b show respectively the sum Y^j=ontot(j) a°d *ts bosonized

version - <pc(0)). Using the normal bosonization procedure, the function

cos[7r Yl'j=Qnlot(j)] in figure c is approximated by cos[\/27r(^c(-*) - ^c(O))] which 
is depicted in figure d. Here we again took k finite instead of k = oo. But 
since cos[\/27r(<pc(jc) — <pc(0))] is monotonically increasing for these configurations, 
cos[y/2jz(<pc(x) — <pc(0))] will have two dips, one too many as compared to the func­
tion cos[7r J2j=oniotU)] in figure c due to the doubly occupied site. Clearly this is not 
the proper continuum limit in the case that two particles can be on the same site.
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2lSz(j)

. , \‘ , t.l .
1 1f n

b)

[<Ps(x)-<Ps(0)]

c)

cos[ 2n Z Sz(j)] 
j=0

d)

cos I>/2^r «ps(x)-tps(0))]

I-'

Figure 7.4: Instead of the function cos[\/2jr(<pc(;t) — <pc(0))], we can use 
cos V2^Cr) - <psm depicted in figure d to approximate (—l)^;=on,0'(-/) = 

(~ l)^=0 ’ in figure c. It appears that this function is the correct continuum limit for
cos[7T Yl]=ontot(j)] = cos[2;r E;=0 SZU)] depicted in figure c. But as can be seen in 
figure 7.0, this operator fails for singly occupied states when we increase A.
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a)

2lSzG)
j=0

b)

(<ps(x)- <ps(0)]

c)

X

cos[ 2n L Sz(j) 1 
j=0

d)

cos[ '/27t1((ps(x)-<ps(0)))

*

+ 1

Figure 7.5; Pictures showing cos[v/27r(^(.r) - <p5(0))] as an approximation for 
(—1) j=o sfU) as ajso was cjQne jn fjgUre 74 only nQW wjtj1 a laj-gej- width X of the 
particles. Figure d shows that for larger X the function cos[\/27r(^(jc) — <p5(0))] is not 
the proper continuum limit for (— i)£y=o25Z0‘) _ jn figUre b and d we
only depicted the width X of the down spin particle in the middle.
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a)

X

cos(n £ nSF(j) ]

Figure 7.6: Pictures showing the string operator cos[;r Y,j=onSF(j)] and ns bosonized 
version cos[V5r(^()0 — <p(z))]. Since the spinless fermions can not be localized on the 
same site, bosonization yields the proper limit.

Using bosonization we find for the average of this string operator is 

<(-l)Ej=onsFU)) ^ (cos[v/*(<p(:O-<p(0))]) =
y/X

The numeric calculation presented in the previous chapter showed that

K-n^SFU), = a2^ cos (npsFx)

y/s\n(jTpSF) y/x

as was presented in equation (6.11). Since bosonization can only probe the non-zero 
wave vectors of the density hsf(x) this expression ((—1 )fo nsF(y)dy^ js oniy valid up 
to multiplicatory factors of order cos(7rpsfx) and so we can conclude that bosoniza­
tion yields the correct powerlaw decay in (7.8) although it does not yield the prefactor 
A2V2/y/sm(jTpsF)-

We can also calculate the expression (hsf00(—1)^=1 nsF^^). In principle, like
with the average ((—1)^=1 ”SF^), bosonization yields the proper continuum limit for 
this average. In bosonization this expression is

(7.7)

(7.8)

{"sf(x) cos
x — 1
^2«sfO')

;=i
> =

+ {dx(p(x)
2y/n

(i____—ei'/4n<P(x)eiVn{<p(x)-<p(0)) + ^ Q ^

/p+2ikpx —
^_____ e-''WV(x)e-iJn(<p(x)-<p{())) + /j c j (7.9)
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To simplify this expression, we use

(e iy/n(<p(x)-<p(0))
i s/tt dx

= -(dMx)e-i'/*Wx)-vm),

and we obtain

(nsF(x)(-l)Z^nsFU))BOs = 0.

(7.10)

(7.11)

Note that because of normal ordering we can neglect the last two expressions in (7.9). 
As was pointed out in equation (6.13) of the previous section, this average can be linked 
to the expression in (7.8) which yields

= sign(cos(7rps/r) — 1) 

where the constant K is given by

K = arctan

A~s/\ -cos(7rp5f) cos(7rpsF„Y - K)
y/sin(jrpsF) 

( sin(7rps/r)

(7.12)

(7.13)
\cos(jtpsf)

Comparing the bosonized formula (7.11) with this expression, one should remember 
that since bosonization does not describe the background density psf in hsf(x), the
bosonized expression misses a term of the order psf((~ 1)^;=i The expression
in (7.12) is precisely of this form because it can be obtained by multiplying the average
((— l)^v=l "5/r(y)) with the constant g(psF) = A2s/\ -cos(7rps/r)/>/2 which is of order 
Psf• On the other hand, the bosonization result does not describe the shift of the cosine 
with the constant K.

Using the same principles, we can also calculate (/t5FC*)(“ l)^=l nsF^nsF(Q)) 
which in bosonization after normal ordering can be written as

{"sf(x)(- 1)^=i nsFij)nsF(0))BOS =

(~(dx<p(x) d.M0)) + I’-c.)

(

\ 2jt

The first part can be calculated using

Ox<p(x) ByV,(y)) =

■ 7r
p-2ikFxpiyfin(<p(x)-<p(0)) \, i e e___________ e'Jn(<p(x)-<pm +fl c \

{ 2 71 >
p-likFX iV4n(<p(x)-<p(0)) \
e e .e-'V*(.<P(x)-<p{Q)) + h.C.y (7.14)

(e' >/5t(?(-0-p09))
Ti dx dy 

-3

47t(x-y)i'
(7.15)



90 CHAPTER 7. THE FAILURES OF BOSONIZATION

and so

(nsF(x)(-lj%=' n5Fij)?lSF(0))BOS

_______ L_ _j_ C0S@kFX) (ei3j^(<p(x)-<p(0))i

4tt2x -
_3__ 1_
4 7T2

71
cos(2kpx) ^eijF((p(x)-<p(0))}

cos(2Icfx) ( 1 1
71 (-+J0Vt 2 1-3/

(7.16)
*X2 X

So for large x the bosonization calculation yields

<*SFW(-l)^;'"SfO'W(0)) BOS
cos(2 Icfx) 

TTy/x
(7.17)

Again this operator can be linked to expression (7.8) which yields (see (6.15))

A2(cos(jtpsf) ~ l)cos(;rpsfx)"SFiJ)nsFmNUM = v/2N/sin(7rps/r) yfx
(7.18)

The bosonization result and the exact result look very similar and it seems that bosoni­
zation generates the correct answer. But we have to be careful here! Note that since bo­
sonization does not describe the background density psf in iisf(x), the result in (7.17)
misses a term of ((— 1)^'=I nsF^). In comparison with (7.12) our first guess for this 
missing term would be

s(asf)2<(-D^= nsfU)\ _ A2(cos(tipsf) - \)cos{ttpSfx)
(7.19)

v/2Vsin(7zpsf)

But this expression exactly equals (7.18)! So it is not clear what to think about the 
bosonized expression (7.17). Although it has the same powerlaw decay as the numeric 
calculated expression (7.18), it is probably not referring to it because (7.18) can be
completely described by the missing term g(psF)2{{— l)^;=l nsF^)- On the other hand,
we are only guessing the expression of the missing terms of order p|F((— 1 )^=1 nsF^). 
So maybe the bosonized expression (7.17) together with this unknown missing terms are 
describing (7.12). So it is not completely clear what is happening here.

We see that even in the case that we use the proper continuum limit for the expres­
sions ((—l)^=l ''5f(7)),(/jsf(*)(-1)^;=i nsF^)) and («sf(*) (—l)^y=l nsFwsf(0)) 

in bosonization we are still missing important contributions. This is because bosoniza­
tion is handicapped due to the fact that it cannot track down the background component 
Psf of the charge density hsfU)- Therefore we have to be very careful when using 
bosonization for such expressions.

7.4 Bosonizing the hidden order string correlator

From the previous sections we conclude that bosonization can yield incorrect results 
even when we take the proper continuum limit. Being warned by this, let us consider the
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hidden order string correlator (5z(jcX-l)^4=l#,,o,(y')5z(0)> and see what bosonization 
has to say about this expression.

We already observed in section 7.1 that we can either use cos[\Z2n(<pc(x) — ^c(O))]
or cos[ v/27t(<£v(a-) — 0r(O))] to approximate the product (— 1 )23=> n,ot^\ We also noticed 
that the first expression is correct for singly occupied states and fails for doubly occu­
pied states, while cos[>/2jr(^j(jt) — <p5(0))] is correct for doubly occupied states and is 
incorrect for singly occupied states. But since Sz(x) and Sz(0) are zero for doubly occu­
pied states, it is correct to use the expression cos[V2n#f(0))] as the continuum 
bosonized version for (—l)23=i n,0,W in this string operator. And so the topological 
correlator Otop{x) can be written as

Otonix) = -{Sz(x){- l)Zj=l'l'°'Wszm

(Sr ^^^(x)e'^(<Pc(',:)“<Pc(0))^^(0)) + /z.c. j

/ q 2 ikfrx — v

/ e2 ikFx __ vf -^^(e-iV27T^(x)-M0))e-i>/2^(ipc(x)-M0)))^e-iy/^(<Ps(x)-<Psm)+h c \

(7.20)

And these contributions equal

O,op(x) = -(Sz(x)(-l)E^'"'o'U)Sz(0)) =

1 cos(2 kFx) 1 cos(2 kFx)
4ft- x^s47T2*2+*c 4tt2 xKs 

So for large distances the bosonized expression equals

cos(2 kFx)
{Sz{x){-1)^=' n,ot(j)szm = Ks

(7.21)

(7.22)

Because bosonization does not describe the background density ptol in ntot(x) the os­
cillatory term in (7.22) should not be taken too seriously. Furthermore since /?t = p;, 
the constant background term in Sz(x) is zero, and we do not run into missing terms
like we did when calculating expressions like {nsF(x)(—\)^J=l nsF^) and (wsfCO 

(-1)23=i nsF(j) ,jSf(0)). This result indicates that the sublattice parity is ordered. But 
as was described in the previous section, the procedure of bosonization can generate 
incorrect results for string operators, even when the proper continuum limit is obtained.

So from these results it is still unclear whether the sublattice parity is ordered or not. 
In the next section we will turn to numeric DMRG calculations to resolve this question.



CHAPTER 7. THE FAILURES OF BOSONIZATION



Chapter 8

DMRG calculations

In this chapter we will analyze the numeric calculations performed by McCulloch to 
resolve the ambiguity in the bosonization results for the topological correlation func­
tions found in the previous chapter. Using the Density Matrix Renormalization Group 
(DMRG) algorithm, the sublattice parity order in the Hubbard model for finite Coulomb 
repulsion U was investigated. In this regime it is difficult to calculate the topological 
correlator Otop(x) from the Bethe Ansatz solution. Furthermore, we will also discuss 
the DMRG calculations of the averages of some other functions, which are needed in 
chapter when explaining the obtained results.

Before presenting the results of the DMRG calculation, we give a quick introduction 
of the technique in general.

8.1 Introduction

The Density Matrix Renormalization Group (DMRG) algorithm was introduced by White 
in 1992 [62]. It evolved from Wilson’s famous Numerical Renormalization Group ap­
proach [63], although the resulting algorithm owes very little to the renormalization 
group idea. In fact, the name ‘DMRG’ is a historical misnomer and the algorithm is 
essentially a direct diagonalization of a truncated Hilbert space, and there is no scaling 
transformation or any renormalization group flow as such. DMRG is conceptually simi­
lar to exact diagonalization, or similar pure variational calculation where the number of 
variational parameters is rather large.

In exact diagonalization, one directly constructs the Hamiltonian matrix for the lat­
tice system and diagonalizes it using some numerical diagonalization algorithm, usually 
the Lanczos algorithm [64] or similar. The problem with this approach is that the di­
mension of the Hilbert space increases exponentially with the lattice size. For example, 
the Hubbard model requires four basis states per site; hence the full Hilbert space of an 
L-site lattice contains states. Even with sophisticated numerical techniques, diago­
nalizing such a matrix for a reasonably large value of L (say, around 20 or so) rapidly 
becomes impractical. A solution for this is provided by the DMRG method.

93
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The DMRG algorithm is based around an approximation whereby the lattice system 
is split into two parts, called the left block and the right block (denoted A and B here) 
and the basis in each block is then truncated. The wave function is written in the basis 
of the tensor product of the two-block basis (usually called the superblock basis),

na nb

w=EE^> 1°)®^)’
a=lb=1

where the dimension of the left block is Na and the dimension of the right block is Nb- 
The essential approximation is to reduce the dimension of the blocks, such that the wave 
function is affected in the smallest possible way. To see how this works, we construct 
the basis states in the left block that are the most important in the representation of the 
wave function. Let |0) be an arbitrary state in the left block basis,

Na

a= 1

The weight of this state in the superblock wave function is simply the trace over the 
environment block of (</>|^) = Ylab^a^ablb),

No Nb
W(|*)) = £X>0*ei,. <8-3)

a=lb=\

We now calculate the expansion coefficients (pa such that W(\(p)) is a maximum, subject 
to the constraint that (0|0) = 1. This can be done simply with Lagrange multipliers, 
giving the result that

Na
<t>a' = ^E Pa'a<^a ’ (8‘4^

a
where A is a maximum and pa>a is the reduced density-matrix,

Nb
Pa'a = J2'l'a‘bKb- (8'5)

b= 1

Hence the important states required in the system basis are the eigenstates of the reduced 
density-matrix that have largest eigenvalue.

Using this result, we construct the simplest form of DMRG, the so-called infinite- 
size algorithm [62]. In this scheme, a single lattice site is added to each of the left and 
right blocks at each iteration; thus the length of the superblock L grows by two sites 
at a time. Prior to the first iteration, the left and right blocks each consist of a single 
site. The iterations are started by adding a single site to each block and forming the 
superblock as the tensor product of the resulting two blocks. In the usual graphical 
notation, this is given by the first line of figure 8.1. Here, solid rectangles indicate
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truncated blocks with at most m basis states and open circles indicate bare sites. The 
ground state wave function of the superblock is found using a matrix diagonalization 
algorithm, for example the Lanczos or Davidson algorithms [64]. From this, the reduced 
density-matrix in (8.5) is constructed and the truncation to m basis states is performed as 
described in the previous paragraph. This is done for the left and right blocks separately. 
New sites are then added to each block and the process is repeated. This is called the 
infinite-size algorithm because it is commonly supposed that the limit of a large number 
of iterations corresponds to taking the thermodynamic limit to an infinite lattice size. 
It must be remembered however, that infinite-size DMRG only converges to the exact 
ground state in the limit m —> oo and this limit must be taken before the limit L —> oo.

• •

• •

• •

• • n
Figure 8.1: Schematic form of the infinite-size DMRG algorithm. Open rectangles rep 
resent truncated blocks, solid circles are bare lattice sites.

If one is interested in calculating accurately the properties of a system of some spe­
cific size, then it is possible to significantly improve upon the accuracy of the infinite- 
size algorithm. Constructing an L site system using the infinite-size algorithm requires 
the construction of blocks of all sizes 2,3,...L/2. In the infinite-size algorithm these 
smaller blocks are not needed and can be discarded on the next iteration. However, 
the overall system size can be maintained at L if we take the next left block to be size 
^/2 + 1 and the right block to be the block from the previous iteration, of size L/7 — 1. 
This procedure can be carried further, so that the /z’th iteration uses a left block of size 
£/2 + n and a right block of size L/2 — n. Once the right block gets small enough that 
it can be represented exactly (ie. when the dimension of the Hilbert space becomes less 
or equal to m), the direction of iteration is reversed. This is illustrated schematically in 
figure 8.2. Many ‘sweeps’ can be performed over the system, so that the target state is 

iteratively improved.
The DMRG calculations presented here make all use of the 50(4) symmetry in the 

Hubbard model. We describe this application in the next section.



96 CHAPTER 8. DMRG CALCULATIONS

LJ••

• i

I» •

• i

» • Q

LJ • • □

» • Q
• i

i •

Figure 8.2: Schematic form of the finite-size DMRG algorithm.

8.2 S O (4) Symmetry

The DMRG calculations presented here utilizes the non-Abelian DMRG algorithm de­
veloped by McCulloch and Gulacsi [65]. This algorithm makes use of the celebrated 
Wigner-Eckart theorem [66] to reduce substantially the dimension of the Hilbert space, 
thus increasing the accuracy of the calculation. This also has implications for the types 
of quantities that can be measured using the algorithm. We will now briefly sketch the 
main principles of this algorithm.

Consider the matrix elements of some operator Ok, which transforms as the D(k) 
irreducible representation of for instance SU(2) (ie. k = 0 scalar, k = 1 vector etc.). We 
can denote the matrix elements of the /lh component of Ok by

{j'm'ict'^O^jmip)), (8.6)

where jf,j are the total spin, m',m are the corresponding projections onto the z-axis, 
and (a'),(or) are labels to distinguish different basis states that have the same 0’fm) 
quantum numbers. The Wigner-Eckart theorem states that the matrix elements can be 
factorized into a product of two factors, a purely geometric component, given by the 
Clebsch-Gordan coefficients, and a factor that is independent of the projection quantum 
numbers, called the reduced matrix element. Thus,

(j'm'(a')\Of\jm(a)) = C™ x (;V)l|0*ll;'(a)). (8-7>

The reduced matrix element is denoted with the unusual notation {j'(a')\\Ok\\j(oc)) to 
indicate that it acts in a different Hilbert space, and the algebra of reduced basis states 
!!;(«)) is different to that of ordinary kets and requires special treatment.
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The significance of this theorem is that the single ’reduced’ operator Ok acts on a 
different Hilbert space to the full operator Of. In particular, all 2k+ 1 components Of 
can be recovered given knowledge of just Ok, and the dimension of the Hilbert space 
has been reduced from £T(2/ + 1) to 1.

For example, consider the spin operator itself acting on a single spin j. The full 
Hilbert space comprises the 2j + 1 states | - j), \ - j + 1), \j), therefore the spin
operator 5 requires 3 x (2/ + l)2 matrix elements to fully specify. But, since the spin 
operator transforms according to the s = 1 vector representation of SU{2), the matrix 
elements factorize into the product of a Clebsch-Gordan coefficient and a single reduced 
matrix element (y/||5||y)- In the specific case of the Hubbard model, we can see that 
the original 4-state basis is reduced to three states, since the two states | t) and I 1) 
can be replaced by a single spin 1/2 multiplet ||j). Note that the spin operator cannot 
distinguish between an empty and a doubly occupied site, and therefore we cannot use 
this symmetry to make a further reduction of these two states.

But for the Hubbard model, in addition to using the SU(2) symmetry leading to 
(8.7), we can use another symmetry to reduce the basis states. This is the so-called 
pseudospin found by Yang and Zhang [67]. To obtain this symmetry, one notices that 
the Hubbard Hamiltonian introduced in equation (4.37) is invariant under a particle-hole 
transformation of the eg. down spins only,

C\U) “* = (— (8.8)

C|0) -> cx(j) = (-iycj(y).

The staggered phase ensures that the hopping term connecting nearest-neighbor sites is 
preserved. More generally, the hopping term remains invariant if and only if the lattice 
is bipartite, with hopping only from one partition of lattice sites to the other partition.

Since the Hamiltonian is invariant under the transformation equation (8.8), for any 
operator X that commutes with H, the image under the transformation, X, must also 
commute with H. In particular, this applies to the operators 5+, S and S'-. This 
is useful because the image of these operators under the transformation equation (8.8) 
results in a new set of operators generating an additional SU(2) symmetry,

i+u) = 5+o') = (-iyc\u)c\u),

r(j) = s~u) = (-ly'^a^o), (8-9)
izu) = szu) =

The pseudospin operators 7+, /“, Iz all mutually commute with 5+, S and S-, which
means that the 6 quantities generate the algebra SU(2) x SU(2), which is locally iso­
morphic to 50(4).

The additional SU(2) symmetry label means that there are now two spin indices on 
every operator and basis state, which we write as (s,/) for spin s and pseudospin i. On a 
single site of the Hubbard model, pseudospin symmetry places the empty- and double- 
occupied states into a multiplet of degree 2, with pseudospin 1/2 and spin zero. The 
singly-occupied states in the spin 1/2 multiplet have zero pseudospin. This is indicated 
in the table 8.1. These two multiplets have the quantum numbers of the holon and spinon
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s 5: i iz
0 0 0 + 1/2 -1/2

m> 0 0 + 1/2 + 1/2
it> + 1/2 -1/2 0 0
u> + 1/2 + 1/2 0 0

Table 8.1: The eigenvalues s,sz,i and iz for the operators 5, 5’. / and /: for the zero and 
doubly occupied site 0 and 1 tl) and the two single occupied sites | t) and | |). Note 
that using only the (s,i) coordinates, we can not distinguish between the non and doubly 
occupied sites, and the two single occupied sites.

respectively [68]. The two reduced basis states can be conveniently denoted ||s), ||/i) for 
the spinon and holon respectively.

Now we can use the Wigner-Eckart theory to reduce the dimension of the Hilbert 
space. Instead of a SU(2) symmetry in (8.6) we have a 50(4) symmetry where j and m 
are replaced by the pairs (s,i) and (s-,iz) respectively and we retrieve a reduced matrix 
element similar to (8.7) which only depends on the eigenvalues (s,i). So this method 
is designed jo calculate operators which are 50(4) symmetric and commute with the 
generators 5 and /. One can show that the total number operator ntot does not com­
mute with the pseudospin [n,ot>I] ^ 0, and it is rather inconvenient to obtain correlation 
function like {ntot(x)nlot{0)). Instead, we must use the unfamiliar (but equivalent) total 
pseudospin correlation (/(x)I(0)). This is not the case for the operator for single occu­
pied sites ns for which [/j5,7] = 0. This operator is defined by ns(x) =1 for a single 
occupied site and /?5(.t) = 0 for a doubly or non occupied site.

8.3 Specifications of the DMRG calculations

For all the calculations presented in this chapter, the finite-size algorithm was used ex­
clusively. For a finite-size calculation, one would prefer to use periodic boundary condi­
tions, as this ought to give the best scaling to the thermodynamic limit. However, it was 
noted quite early [69,70] that using periodic boundary conditions in DMRG result in a 
loss of accuracy. Thus open boundary conditions are strongly preferred.

The charge and spin density fluctuations caused by open boundary conditions can 
be interpreted as generalized Friedel oscillations. If the oscillations remain finite in the 
thermodynamic limit then the oscillation corresponds to a charge density wave (CDW). 
More commonly, they decay with power-law behavior, with an exponent related to the 
density correlation exponent [71]. The advantage of measuring Friedel oscillations over 
correlation functions is that the former requires only single-site expectation values which 
are less susceptible to numerical error than two-point correlation functions, in large part 
due to the slower decay; the exponent governing the decay being half that of a two- 
point correlation function. However, the relationship between Friedel oscillations and 
topological correlation functions is less transparent. Thus, rather than using Friedel os­
cillations we explicitly construct the correlation functions and perform a direct fit. This
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actually works quite well for the topological correlation functions as they generically 
decay slower than two-point correlation functions anyway.

To reduce the effect of the open boundary conditions, we used a relatively large 
system size (1000 sites) large enough to achieve a truncation length of the order of 200- 
300 lattice constants. In this way meaningful results can be obtained from a simple curve 
fit to obtain the desired exponents.

8.4 Outline of the DRMG calculations

Before considering the topological correlator, we will calculate the average of some 
other functions which we need in the upcoming chapter, when we review the results.

First we focus on the calculation of the quantity Ds(x) = ((—1)£;'=°",0,(-/)) for the 
Hubbard model. Amongst other things, this function has served in the previous chapter 
as an evidence in demonstrating that bosonization cannot be trusted when calculating 
non-local string correlators like Olop(x).

After this, we investigate the correlators (ns(x)) and {ns(x) (—1 /j5(0))
with ns(x) the density operator for single occupied sites. As is shown in the next chapter, 
these operators are very important in explaining the origin of the sublattice parity order. 

We end the chapter by describing the DRMG results for the topological correlator
Otop(x)’

8.5 Calculating Ds(x)

In this section we consider the correlation function Ds(x) = ((—1 for spinful
fermions for several total densities ptot and Coulomb interactions U > 0. These results 
were already used in the previous chapter when we proved that bosonization cannot be 
trusted when calculating non local string correlators like Otop{■*)• We can calculate the 
function Ds(x) analytically in two limits, namely U = 0 and U -> oo.

For U = 0, the up and down electrons decouple and the function can be calculated 
using spinless fermions and formula (6.11). But note that here we use psf = Ptot/2 = 
kp/jz and so we find

Ds(x) = ((-l)J3f-l","U)> = ((-l)^-lW°’))2
2A4 cos(nxpsF)2

s\n(npsF) x 
2A4 cos(^)2

sin*2^) *
Aa (1 +cos(2kfx)

sin(^) \ x
(8.10)
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Furthermore, for U oo the electrons behave like spinless fermions and there are 
no double occupied sites. In that case, the function can be written as

Ds(x) = ((-1 )X3-i"«0)) = ((-1)2?-iwU)>
A2 \/2 cos(tt xpiot)

s/s\n(7Tp,or) sft

A2s/2 cos(2kFx) (811)

s/sin(jrplot) sfx

with the density pSF = Ptot = and A = 0.645002448. Here we used again formula 
(6.11) which was proven in the previous chapter.

Since <(—1)^=»we can use the 50(4) DMRG algorithm 
to calculate it. The results indicate that away from half filling this function can be fitted 
with the function

DAx) = ((-D^.'-o-O)) = !l+ gcCOs(2A:rx) (8.12)
X8\ x82

It is found that gi = 1, independent of the parameters and can be identified with Ks = 1 • 
The values for g2 are displayed in figure 8.4, right under the figure 8.3 of the charge 
stiffness Kc, as it was obtained by Schulz in [58]. The two show a similar shape and we 
conclude that g2 matches Kc. So according to DMRG calculations

DsM = ((-1)13.1—O)) = A | flcCOS(2tfJ)
X^s X^c

(8.13)

The prefactors Bs and Bc are displayed in the figure 8.5 and 8.6 for different values 
ot the density ptol and Coulomb repulsion U. The analytic expression in (8.10) shows 
t 3t or U — 0, Bs = A /sin(i^2L). We displayed this curve in figure 8.5, and it is in 
good agreement with the DMRG results . Furthermore, upon increasing the Coulomb 
repu sion , the prefactor Bs rapidly goes to zero. Again this is in agreement with the 
™Vn ' ) or U oo, since it does not have a spin decaying term proportional to

The analytic expression in (8.10) and (8.11) indicate that Bc = /l4/sin(rrp,0,/2) and 
c - * v^/vsmfjrp^) for respectively U = 0 and U oo and we plotted these 

curves in gure 8.6. These figures show that the numerical data for Bc are slightly too 
io compared to the analytic values. On the other hand, the values for the exponent g2 

m ngure m a blt t0°low and since they appear like Bc/X82 this is at least consistent.

8.6 Calculating ps = (ns(x))
As we will see in the next chapter, it is convenient to have an expression for the correlator 
ins(x)). As stated before, ns(x) is the density operator for singly occupied electrons and 
is defined as ns(x) = 1 for a single occupied site and ns(x) = 0 for a double or non- 
occupied site. In formula

HjC*) — nf(x) + ni(x) — 2nf(x)n±(x). (8.14)
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Figure 8.3: The charge stiffness Kc (here denoted as Kp) as function of the density 

n = Plot for U/t = 1,2,4,8,16 for the top to bottom curves.

Figure 8.4: The exponent g2 as measured from formula.(8.12) usingcalcula 

tions. The exponent g2 matches the charge stiffness Kc disp aye i
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Figure 8.5: The prefactor Bs as function of the total density ptol for different values of 
U together with the analytical curve for U = 0. Upon increasing U. the function decays
rapidly to zero.

Figure 8.6. The prefactor Bc as function of the total density ptot for different values of 
U together with the analytical curve for U = 0 and U -* oo.
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The density ps = (ns(x)) can be obtained by calculating the correlator {ns(x)ns(0)). For 
U = 0 the up and down electron decouple into independent spinless fermion particles 
and we obtain

(ns(x)ns(0)) = 2pjF + (2 - 8psF)(nsFW»SFm + 4(hSf(j:)"5f(0)>
✓ « I. — \ \

= Pwt (1 ~ )2 + tfot + 2P'Ot ">( 1 — cos(2/cf*)\
7T2X2 )

+
(1 — cos(2/cfx))2 (8.15)

-4 v4

Here we have used that psf — Ptot/7. So for f/ — 0 we obtain A — AorO Ptot 17)•
In the limit £/ -> cx> the electrons behave like spinless fermions with ns(x) nSF(x) 

with psf = Ptot and the correlator equals

(ns(x)ns(0)) = (nsF(x)nSF(0)){nsF(x)nSF(0))
, ^2 l/l-cos(2kFx)\ ,fi= (Aw) ~ 2 ( g2X2 -)■ (8-16)

So in this limit we find ps = ptot• . , x, f dif
Now we turn to DMRG calculations to calculate the density A 7 1 R 7

ferent densities p,0t and Coulomb repulsion U. These results are depicte in gure 
together with the analytic results for U = 0 and U 00.

8.7 Calculating (/i5(jc)(—ns^ns(0))

In this section we will calculate {ns(x)(-i)^=l nsij)ns(0)). As will be demonstrated 
in the next chapter, we need this average to explain the structure of the spin correlator

(Sz(x)Sz(0)).
The function (rts(x)(— l)£/=l ns^ns(0)) can be related to the correlation function 

Ds(x) calculated in section 8.5. Since ns(j) = (1 — (— 1 one can write

(ns (*)(— 1 )£?=■ ",0)ns( 0)) = - [Ds(x - 2) - 2D Ax - 1) + Os(x)]. (8.17)
4

For U = 0, Ds(x) is given by (8.10) and using the above expression we find

, T*-'n(i) A4(l-cos(2/:f)) cos(2kFx) ,ox(ns(x)(-1)^/=« n*(j)nsm =------ ------------------------7----- • (8-lg)

In the limit U oo, we find ns(x) —> hsf(x) with ptot -* PSF and the expression 

can be written as
<«*(*)(-l)E'='',’o')nJ(0)) ->■ UK-1 )^=' °W(0)>

A2( 1 - cos(?rpioi)) cos(2kFx) .

y/2 sminptot)
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Figure 8.7: The density ps of single occupied sites as a function of the total density Ptot 
for various values of the Coulomb repulsion U.

as was already calculated in equation (6.15). Note that 2Icf = nptot = XPSF-
For intermediate U > 0, the DMRG calculations presented in section 8.5 showed 

that Ds(x) = Bs/xKs + Bccos(2kFx)/xKc and using (8.17) we find

(ns(x)(-l)%=‘'n’°\(0)) Bc( 1 - cos(2kF)) cos(2kFx) 
2 xKc

_ QcCOS(2^fX) /R 90)

with Bc calculated in figure 8.6 and Qc = 5C(1 -cos(2fc^))/2. We also calculated
the correlator (/!,(*)(-1)^M nsU)n5(0)) using DMRG. The results are consistent with 
equation (8.20) and show that

{nAx)(-^rJ^ns( 0)) = _«^. (8.2D
X11

The results for Qc and Fc are depicted in figure 8.8 together with the analytic result for 
U = 0 and U = oo. The values for h are displayed in figure 8.9 and match the charge 
stiffness Kc from figure 8.3. And thus

rAc
(8.22)



8.7. CALCULATING (Ns(X)(-\jEjJ nsU)Ns(O)) 105

Figure 8.8: The prefactor Fc and Qc in respectively (4.21) and (8.21) as function of the 
total density ptot for different values of U together with the analytical curve for U = 0 
and U —► oo.

Figure 8.9: The exponent h as measured from formula (8.21) using DMRG calculations. 
The exponent h matches the charge stiffness Kc displayed in figure 8.3.
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8.8 Calculating the correlator Otop(x)

Finally, we turn to the calculation of the topological correlator 0,Op(x) to resolve the 
question whether the sublattice parity is ordered or not for intermediate Coulomb repul­
sion U > 0.

The numeric calculations show that this is indeed the case where

Otop(x)—
G,
xf'

(8.23)

with Gs a constant depending on U and the total density ptot.
Figure 8.10 shows the exponent / together with the exponent rj for the standard 

two point staggered spin correlator {Mz(0)Mz(x)) ~ cos[(2kp -n)x]/xn for various 
interaction strengths. It is seen from this figure that the exponent 77 depends strongly 
on the parameters. In fact, the exponent behaves exactly according to the expectations: 
77 = Ks 4- Kc where Ks = 1 and Kc is consistent with the values previously obtained 
by Schulz [58] for the same values of U and ptol depicted in figure 4.4 in chapter 4. 
we find no other characteristic momenta in the Fourier transform of Olop(x) which is 
already reminiscent of the staggered spin correlator of a Heisenberg chain. This is fur­
ther amplified by our finding that the exponent i]top does not depend on the microscopic 
parameters at all. In fact, for all parameters the exponent of the topological correlator 
*1top = 1 = Ks. Hence, regardless the values of U and p the long distance behavior of 
the topological correlator is indistinguishable from the spin-spin correlator of a Heisen­
berg chain, demonstrating that the Hubbard model indeed carries the sublattice parity 
topological order fully for all values U > 0.

In figure 8.11 we depicted the numerical data for the prefactor Gs of the topo­
logical correlator Olop(x) together with the analytical result for U = 0 where Gs = 
A4 sin(7Tplo,/2)/4 as was shown in (6.17). Furthermore the data is also in agreement 
with our results for U —► 00 in chapter 5 showing that Gs ~ plot.
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c<ucoQ.Xcu

Figure 8.10: Exponents of the spin-spin correlation, 77, (top) and the topological cor­
relation, /, (bottom) as a function of electron filling, for various values of interaction
T1

Figure 8.11: The prefactor Gs of the topological correlator Ot0p(x) from equation 
(8.23).
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Chapter 9

Conclusions

In this chapter we will interpret the results obtained so far. From the previous chapters 
we conclude that for all Coulomb repulsions U > 0, the topological correlator Ot0p(x)iT\ 
the Hubbard model measures the internal spin-spin correlations with OtoP(x) 1/* 
From this one can be shown that the one dimensional Hubbard model spin charge sepa 
ration is controlled by the sublattice parity. In this chapter we will describe the ordering 
of this Z2 topological order parameter in terms of the elementary collective excitations 
of a Luttinger model, the spinon and holon. We noticed already that the corre ator 
Otop(x) can be seen as removing the effect of the holons. In this chapter we intro uce 
the correlator Otop(holon)(x) which removes the effect of the spinons.

9.1 Removing the effect of the holons
The concept of spin charge separation in terms of spinons and holons was introduced 
in chapter 1 and depicted in figure 1.1. The holon describes a pure charge excitation 
and is characterized by a hole surrounded by antiferromagnetically aligned spins. The 
spinon is a pure spin excitation with two adjacent up or down spins, which has an excess 
spin ±1/2 with respect to the initial antiferromagnet. The spinon and holon can move 
separately.

In chapter 4 we showed that both the spinon and the holon cause a kink in the stag­
gered spin Mz{x), as is depicted in figure 4.4, can be characterized by a Z2 topological 
order parameter, the sublattice parity. Using the technique of Parola and Sorella [22], 
we calculated the contributions of these kinks caused by the spinons and holons to the 
staggered spin-spin correlation function, which yields in the U -* 00 limit

(Mz(x)Mz(0)) = {n,0,(x)(-\)^Z'{X~n,o'{i))n,„,m {Sz(p,o,x)Sz(0))par.H'is.

cos[(2kf - jt)x] 1 cos[(2£/r — n)x) ,Q
~ 7* x~ *Kc+Ks '

So in the limit U —> 00, the kinks attached to the holon and spinon give rise to an al-

109
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gebraic decay with a factor \/xKc = \/y/x and \/xKs = 1/a- respectively. The spinons 
cause kinks in the internal spin system, as is seen by the spins, and destroy the internal 
spin structure. The kinks connected to the holons have an obscuring effect to these in­
ternal spin correlations and cause the spin spin correlator to decay with the extra factor 
1/^/a, so that (Sc(a)Sc(0)) ~ cos(2fx)/(xy/x) = cos(2krx)/xKs+Kc. Note that the 
extra decaying term \/y/x is connected to the fact that the spin correlations in the Hei­
senberg chain are antiferromagnetic. For if the spins were effectively parallel, the spin 
correlator would yield

(A/*-(a)M'-(0))aligned = (~ l)'r(/J/o/(A)/Z/O/(0)) {SZ(ptolx)S'-(0))par.Heis.

~ (9-2)

and we would directly see the internal spin structure by measuring (Mz(x)Mz(0)).

A A

b)

c)

d)

t I I ! i ! 
t t t I I t I o I
I ! t !

o

o t I I 
t ill

T T

Figure 9.1: The operator Sz(a)(— \)n^j=-oon>oiU) for different configurations in fig­
ure 1.1. This operator is equal to the staggered magnetization Mz(x) depicted in the 
figure 4.4, only now holons do not produce kinks in this function.

We can repair the damage of kinks connected to the holons by considering the string 
operator (M')z(x) defined by

(M')z( a) = Mz(x)(-l)^J=-oo^-n,0,(J)) = Sz(xX-l)^J=-^n,0,u\ (9.3)

instead of the staggered magnetization Mz(a). This operator removes the kink caused 
by the holon. We depicted this operator in figure 9.1, using the configurations selected in 
figure 1.1. The typical anti-ferromagnetic configuration in figure 1.1a, has turned into a 
ferromagnetic chain. Introducing a hole will now cause a kink in this ferromagnetic like
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chain which is connected to the spinon as the holon moves to the left (Figure 9.Id). This 
function is very similar to the staggered magnetization Mz(x), only it is not sensitive to 
the holons. So the holons do not produce kinks like they did in Mz{x). If we now con­
sider the spin spin correlator ((M')z(x)(M')z(Q)), we obtain for U —> oo the topological 
correlator Otop(x)

Ofop(x) = ((M')z(x) (M')z(0))

= ( (A/')*(j:)(—l)5^»<l_"'"O))(Af,)z(0))

% intot(x)Htot(0)} (SZ(PiotX)S<’(0))p(ir.Heis.
n 1 Dint Dtnt

(9.4)

as was shown in equation (5.4) in chapter 5. And thus we obtain the rescaled internal 
Heisenberg spin spin correlations. This can also be explained by saying that t e operator

in 0lop(x) = -{Sz(x)(-l)^n,o,(j)Sz(0)) removes the antiferromag­
netic staggering in the internal spin space turning it to ferromagnetic like interactions 
and yielding a similar expression as in equation (9.2). . .

The topological correlator OIOp(x) for U > 0 has also been considere . e ana y l 
expression for U = 0 together with DMRG calculations show that

(9.5)

with Gs{ptot,U) depicted in figure 8.11. These results can also be interpreted in terms
of holons and spinons using a formula similar to the one used by Parola and Sorella
described in section 4.3.3. Namely, away from the U —► oo limit we can use a similar 
analysis as in (4.83) for the staggered spin correlator

— y | y~^Ms(0 ~ j ) rtj(0)) (SZU — I)S"(Q))internal

* (^(jcX-I)^^1-^0^^))^^^)^^))^., (9.6)

where the internal spin interactions are described by (Sz(j)Sz(0))inlernai = (— l)HSz(j) 
Sz(Q))par. The DMRG calculations described in the previous chapter show that

(9.7)

So also away from the U -> oo limit the contributions to the staggered spin can be
subdivided into a part coming from the holons giving rise to a decaying term \/xKc and
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a part coming from the spinons which yields a term {Sz(psx)Sz(0))par. ~ 1 /{x)Ks. This 
indicates that in calculating (Mz(x)Mz(0)) for U > 0, the wave function can be thought 
of to first order as constructed in a similar way as in the limit U ->• oo used by Parola 
and Sorella. The difference is that now we only consider the single occupied sites. So 
for general U we first place the single occupied electrons with unspecified spins over the
lattice such that (/?s(a)/2s(0)) ~ p2 and {ns(x)(—1)^=1 ,,j(;)/i5(0)) = Fccos(2Icfx)/xKs 
and subsequently we distribute the spins over these electrons like the spins on a chain 
with a spin correlator (Sz(x)Sz(0))jnternai ~ (— l)x/x. Note that in this construction the 
doubly occupied sites are equivalent to empty sites. This is natural since for doubly 
occupied sites Sz(a) = 0 hence like empty sites, they do not contribute to the staggered 
spin correlator (Mz(a)Mz(0)).

Using this interpretation, we can eliminate of the decay caused by the kinks con­
nected to the holons by considering the topological correlator Orop(x) which equals

(Mz(A)M)^=>(1~n,o,a%z(0)) =

where we have defined (Sz(x)Sz(0))par. = H5(ptol,U)/xK*.
So in order to be consistent with the DMRG result (9.5), we find Hs(plot,U) = 

Gs(Ptot, U)/p5. These values are depicted in figure 9.2. In the limit U -» oc the internal 
spin is ordered like a Heisenberg chain with (Sz(x)Sz(0))par. = {Sz(x)Sz(0))par.Heis. ~ 
1/a and the prefactor Hs(ptot,U) is independent of ptot. The data in figure 9.2 show 
that for values of U away of the limit U ^ oo the prefactor Hs(plol,U) start to depend 
on the density plot and the internal spin system is a rescaled Heisenberg chain.

(ns(x)ns(0))(Sz(psx)Szmpar.
2Hs(P,o,M) Hs(plol,U)

Ps / 71? Ps ~tOrAr*

9.2 Removing the effects of the spinons

In the previous section we found that by considering the topological correlator we re­
move the effect of the holon in the spin correlator. So in calculating Olop(a), we are left 
with the spinons which contribute to the spin correlations in the internal spin space.

One can wonder whether we can construct an operator which does the opposite and 
only filters out the effect of the spinons, leaving the holons intact. To obtain such an 
operator we have to multiply the staggered magnetization Mz{x) with the string operator
Mc(a)(— \)^j=-oo^ nIO'U)) insteacj 0f the operator (— 1 )?/=-«>(which we did 
previously in (9.3). This yields the operator

(M")z(x) = (Mz(a))2(—l)^=-‘»(1“"'<’,(-/)). (9.9)

This is accomplished by multiplying the square of the staggered magnetization (A/z(a))2

with the string operator (—l)^=-oo(1 n,0,U)) C0rreiat0r is not sensitive to fluctu­
ations caused by the spinons in the internal spin system. The way the configurations in 
figure 1.1 are viewed by this operator are shown in figure 9.3, showing that there is only
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Figure 9.2: The quotient Hs(plol,U) = G5(pto,M)/Ps as function of the total density 

Ptoi for different values of the Coulomb repulsion U.

»1111111 ° 111 
•’ 111111 ° 1111 
* i o ° [> 111 ' j j ■ 11

in figure 1.1. This operator is equal to the staggered magnetization 
4.4 only spinons do not produce kinks in this function.
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one kink which is connected to the holon as it moves to the left. Note that a spinon has 
no effect on this kink operator. To calculate this effect of removing of the spinons on the 
correlation function, we have to consider the correlator

O,op(holon)(x) = ((MZ(x))2(-l)%=''('-"mU)>(MH0))2)

= 4(hs(.v)(- l)E^'<l",'"'o));i.v(0))
lo

= -^-<nIU)(-l)Z?;,'"*u)n,(0)>. (9-10)
lo

Here, we used the fact that (Afz(x))2 is proportional to ns(x) with (Mz(a))2 = ns(a')/4 
and (— l)n,*0') — (—l)n*0‘). The DMRG calculations presented in chapter 8 showed that 
for Coulomb interactions U > 0 this correlations function equals

Otop(holon){x )
Fc cos[(2kf — n)x]
1 6 A"Kc

(9.11)

The wave vector 2kF - ji can be seen as n/lh0i0ns where Ihoions = 1/(1 — Plot) is the 
distance between the holes if they would crystallize in a lattice. Comparing this with the 
unperturbed spin-spin correlation function {Mz(x)Mz(0)) ~ cos[(2kF - jt)x]/xKs+Kc, 
we find that the correlation function decays more slowly than (Mz(x)Mz(0)). This is 
the result of removing the fluctuations induced by the spinons and we are left with the 
decay caused by the holons.

9.3 Removing the effects of spinons and holons

After having removed the effect of the spinons and holons on the spin separately, a 
natural question to ask is whether we can remove the spinons after we have squeezed 
out the holons and vice versa. The answer is yes and both operations are described by 
the same operator. Namely, first squeezing the holons and then removing the spinons 
would yield

M'(x) —> Mz(x)(— i)^=-oo^ n‘oiU»

(Mz( x))\(-\)Zj=-ooV-"'o'U))f = (Mz(x))2. (9.12)

On the other site, first removing the spinons and then squeezing out the holons would 
give

Mz (a) (A/2 (a ))2 (— 1) -«>( 1 ~n'01 C))

(Mz(a))2((-1)^oo(^^)))2 = (mz(x))2. (9.13)

So we obtain the function (M^(a))2 if we squeeze out the holons and remove the effect 
of the spinons. This function is 1/4 for singly occupied states and 0 for empty or dou­
bly occupied sites. Therefore ((Mc(x))2(Mz(0))2) is proportional to the distribution of
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singly occupied sites, in a background of empty and doubly occupied sites and can e 
written as (ns (x)ns(0))/16. How do we interpret this?

After we squeezed out both the spinons and the holons, the spin texture has tota y 
disappeared and we are left with the fluctuations of the lattice sites on which the spins 
are defined. So the function {(Mz(x))2(Mz(0))2) measures the correlations of the lattice 
sites on which the internal spin is defined. Note that we do not get any information o 
the doubly sites: In removing the holons we have lost all information about the position 
on the doubly occupied sites. This is because in the squeezing process we did not only 
squeeze out the holes, but also the doubly occupied sites.

For the U —► oo limit, ns(x) —> nsF(x) anc* the correlator can be written as 
density density operator for spinless fermions with psf — Ps = Ptot anc* e9ua s

((M'(a-))2(Mz(0))2) = — («*(*K(0)) = — (nsF(x)nsF(O))
16 lo
If I - cos(2 JtpiotX) 

16 4tt2a4*
1 f 2 1 — COS(4£/ta) (9.14)

This is precisely what one would expect according to the Woynarovich-Ogata-Shiba 
solution (5.1). For U —> oo all spins are on singly occupied sites which are distributed 
like spinless fermions with psf = Ptot-

For U = 0 this function the up and down electrons behave like independent spinless 
fermions and the function equals

(■ns(x)ns(0)) = 2p$F + (2 - SpsF)(nsF(x)nsF(0)) +4(nsF(x)nsF(0))~

(1 — cos(2 kFx))2 (9.15)

as is shown in (8.15). Here we used ptot = 2pSF-
For intermediate U we only calculated the constant term ps = (ns(x)) of the correl- 

atlon Unction (ns(x)ns(0)). This is depicted in figure 8.7.

9*4 Summary Hidden order
Let us summarize what we have found. Our quest started with the Woynarovich-Ogata- 
Shiba solution (5.1) describing the structure of the wave function in the limit U -> oo. 
In that limit the wave function is built from first placing the electrons with unspecified 
spin over the lattice like spinless fermions and subsequently distributing the spins over 
these electrons like the spins on an undoped Heisenberg chain. This construction gives 
rise to the sublattice parity topological order which indicates that spins are anti-parallel

»-*— r\ /„\__ _over holes. Because of this hidden order we can use the topological correlator Ot0p(x)
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-(•^(atX-I) 7=1 n'°’ y)5'-(0)) to measure the spin correlations in the internal spin space. 
Our calculations show that Olop ~ 1/a *1, also away from the U —► oo limit. Together 
with the results discussed in the previous section this suggest that we can extend the 
Woynarovich-Ogata-Shiba solution for all positive U in the following manner.

When calculating the spin-spin correlation function (Sz(a)Sz(0)), one can effectively 
think of the wave function being constructed in the following two steps: First distribute 
the electrons of singly occupied sites over the lattice with density psf — Ps such that to
first order (>z5(a)/z5(0)) - p; and {n5(x){-\)^'nsU) ns(0)) = Fccos(2kFx)/xKc. Sub­
sequently, distribute the spins of these singly occupied sites over these lattice sites like 
spins on a spin chain with correlations given by {Sz(x)Sz(0)) internal = (-\)xHs/xKs. 
Note that Hs is U and plot dependent. In this construction the position of doubly oc­
cupied sites is not specified. But since Sz(y) = 0 for a doubly occupied site, they are 
treated as empty sites and we can neglect them in the calculation of the spin spin correl­
ation function.

Note that it is only correct to think of the wave function being constructed in this 
way in the calculation of (a )$*•(())). For instance in calculating the density density 
correlations function {ntol(x)n,ot(0)), the doubly occupied sites do contribute and we 
have to know how to distribute the doubly occupied sites in between the singly occupied 
sites.

Due to this construction one can think of the holes as providing an antiferromagnetic 
interaction exchange between its neighboring spins. And similar to the case U —> oo, 
this gives rise to quasi sublattice parity order as is demonstrated in (9.8). In the one 
dimensional Hubbard model this order is only quasi long ranged and not true long ranged 
with Otop{a) = C ^ 0 as for the Haldane spin-1 chain. This is because spins in the 
internal spin space of the spin-1 chain have discrete Ising symmetry and not a continuous 
symmetry as they do in the Hubbard model. Due to the Mermin Wagner theory [12], the 
latter can only have quasi long range order.

We end the thesis with a comparison of the sublattice parity order with a local Z2 
symmetry.

9.5 Local Gauge Symmetry

Finally, we want to discuss the possibility that the sublattice parity order described in 
this thesis turns into a local Z2 symmetry. To do so, let us define the Z2 variable o(j) = 
(_I) tot j As charge and spin are decoupled, we may shift the charge degrees of 
freedom to the lattice formed by the midpoints of the bonds between the sites of the 
original lattice (the bond-, or dual lattice, with coordinates (j,j 4-1)) while concurrently 
retaining the spin degrees of freedom on the original lattice. That is, we can define

cr(jj + l)==cr(j). (9.16)
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Using this notation, the topological correlator Otop(x) can be written as

O,0p(x) = (A/*(0)(-l)£/='(1 n,0,(J)) Mz{x))

= (Mz( 0)
«/>€ r

Mz(x)). (9.17)

W ere r is the path connecting the point 0 and x. This is nothing else than jhe gauge 
invariant correlation function of a theory containing a SU{2) ‘matter’ field M coupled 
to an Ising gauge field. The product flro- can be identified with a Wilson-line [75] of 
f e Zi gauge theory which has to be inserted to keep the matter-field correlator gauge 
invariant. By the same token, the ‘normal’ spin correlator (Mz(x)Mz(0)) is not gauge 
invariant, because the Wilson line is missing, and our observation that (Mz(x)Mz(0)) is
more rapidly decaying than Orop(x) which could signal the presence of local Z2 sym­
metry.

Let us explain this in some more detail. Imagine that an effective, long wavelength
t leory is realized with a Hamiltonian invariant under the following Z2 gauge transforma­
tion.

a(x,A+l) -> 77(A) <t(a,a + 1) *?(*+ !)
M(x) 77(A) A/(a), (918)

with arbitrary 77(y) = ±1. Here o'(a, a + 1) is the value of the Z2 variable on bond 
(a, a -f 1). Given this symmetry, some very general statements follow regarding the e 
havior of correlation functions. First consider the spin correlator (a)). inc®
(Mz(x)Mz(0)) ~{Mz(x)Mz(0)) under the transformation equation (9.18) at either 0
or a, the correlator has to vanish: it is not gauge invariant. Since the gauge symmetry is 
emergent an energy scale should exist below which it becomes active. An energy sea e 
implies a length scale lgauge and therefore {M'(x)Mz(0)) ~ exp(—a/Igauge)- 0 an un 
avoidable consequence of a full realization of the Z2 gauge symmetry is that corre ation 
function violating the gauge invariance should decay exponentially faster than t e gauge 
invariant ones. This induces a complication. In our case (M'-(x)M‘(0)) ^
algebraically faster than the supposedly gauge invariant correlator 0tOp(x)- n 1 us 
the system is not exactly Ising gauge symmetric. ... .

This exact gauge symmetry does occur in the Haldane spin-1 c^?in .e, 
den Nijs and Rommelse [18]. As mentioned before, in this system (M'WM ((W 
decay exponentially faster than the operator Otop(a). Batista and Ortiz [ Is owe 2 
the Haldane spin-1 chain can be mapped onto a t — J" model with an a ltiona 
charge breaking superconductor term. So although the local symmetry oes no occu 
in the Hubbard chain, this proves that it can exist in one dimensional ermion sys ems 
like it does in two dimensional high Tc superconductors. But instead o aving jus on 
confining phase in one dimension, in two dimensions the phase diagram is nc er, 
there is also room for a deconfining and Higgs phase.
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Samenvatting

De natuurkunde van de vaste stof beschrijft het gedrag van immense hoeveelheden 
deeltjes. Zo huisvest een gram metaal al de onvoorstelbare hoeveelhei van 
100.000.000.000.000.000.000.000 electronen die allemaal met elkaar wisselwerken, ij- 
voorbeeld door middel van een afstotende Coulomb kracht. Geconfronteer met zu e 
grote aantallen lijkt het haast onmogelijk om theoretische voorspellingen te oen. oc 
blijkt dit niet het geval. . .

In drie dimensies kan een metaal bijvoorbeeld kwalitatief worden esc ouw a 
gas van electronen die effectief geen wisselwerking hebben. Dit wordt esc reven 
de zogenaamde Fermi vloeistof theorie. Hiermee kunnen vele eigensc appen van 
stoffen worden verklaard. ,,

Jammer genoeg is deze simpele Fermi vloeistof theorie niet ge lg voor f® 
dimensionaal systeem. In dit geval moeten we ons wenden tot de Luttinger v oeis o 
orie. De elementaire excitaties van dit model zijn de zogenaamde spmonen en o » 
die schematisch zijn afgebeeld in figuur 1.1 van hoofdstuk 1. Deze quasi ee 
lading e en spin 1/2 en beschrijven collectieve lading en spin fluctuates ie ° 
van karakter zijn. Een voorbeeld van een Luttinger vloeistof is et n in\
Hubbard model. Dit model beschrijft bewegende electronen met spin / » 1 .
beinvloeden door een afstotende Coulomb kracht wanneer ze op deze Ancaf7
zijn. De golffunctie voor dit systeem wordt gegeven door de zogenaam e e ,
oplossing en beschrijft de ingewikkelde wijze waarop de lading- en e SP1IJ .
graden met elkaar zijn verweven. De Luttinger vloeistoffen die wor en« 
door dit Hubbard model zijn het onderwerp van studie in dit proe sc n . i 
we aantonen dat voor alle positieve Coulomb interacties V deze systemen 
de subrooster pariteits orde herbergen. , . . 4 1

Deze orde is het best zichtbaar wanneer we de Coulomb krac t in e u ^
erg groot nemen. Woynarovich, Ogata en Shiba hebben laten zien at voor , de 
lading en spin vrijheidsgraden enigszins ontkoppelen en de go unc i een
wijze kan worden opgebouwd. Allereerst, plaats de electronen over sDinloze
manier zoals men zou doen bij fermionen die geen spin dragen, e zoSe" . • een
fermionen. Verdeel vervolgens de spin over deze posities zo s wor figuur
antiferromagnetische Heisenberg spin keten. Deze procedure is weerg g 
5.1 van hoofdstuk 5. , _ . *

Deze constructie suggereert dat er achter de gecompliceerde Bethe Ansatt golffunc 
tie een simpel spin systeem schuil gaat, dat kan worden verkregen door alle gaten mt
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systeem te persen. Dit inwendige spin systeem is alleen toegankelijk voor de spinnen 
en kan niet direct worden waargenomen door een experimentator in het laboratorium. 
Voor deze exteme waamemer is dit spin systeem verborgen achter de beweging van de 
gaten waardoor hij (alternerende) spin correlaties meet als (Mz(x)Mz{0)) ~ \/xKs+Kc, 
in plaats van (Mz{x)Mz(0)) ~ \/xKs, geldig voor een Heisenberg spin keten. Dit inter­
ne spin systeem samen met de hierboven beschreven opbouw van de golffunctie zorgen 
ervoordat de subrooster pariteit algebraisch is geordend. Omdat dit interne spin systeem 
niet direct zichtbaar is voor de waamemer, wordt deze orde ook wel als een verborgen 
orde aangeduid.

Maar allereerst, wat stelt de subrooster pariteit voor? Subrooster pariteit is sterk ver- 
bonden met de bipartietheid, de tweedeligheid, van het rooster. Een rooster is bipartiet 
wanneer het kan worden onderverdeeld in twee subroosters A zn B, zodanig dat alle A 
plaatsen worden omringd door B roosterplaatsen en andersom. We kunnen dit op twee 
manieren doen, namelijk volgens ...A — B — A — B... en ... B — A — B — A.... Voor 
een antiferromagnetisch spin systeem worden deze twee toestanden weergeven met een 
Z2 variabele p = ±1 die we aanduiden als de subrooster pariteit. Dit is weergegeven in 
figuur 1.3 van hoofdstuk 1. De subrooster pariteit is van groot belang in de hierboven 
beschreven constructie van de golffunctie.

Stel we beginnen met een intern spin systeem met een subrooster pariteit p = +1, en 
plaatsen daarin vervolgens de gaten. Samen met deze gaten voegen we aan het systeem 
ook roosterplaatsen toe. Deze verstoren de oorspronkelijke subrooster pariteit van het 
interne spin systeem en zorgen ervoor dat elke keer wanneer we een gat passeren de 
subrooster pariteit van teken verandert. Anders gezegd, de tekenwisselingen van de 
subrooster pariteit zijn verbonden aan de positie van de gaten. Dit wordt aangeduid als 
de ordening van de subrooster pariteit en kan worden vergeleken met een kink in een 
telefoon snoer zoals afgebeeld op de voorkant van dit proefschrift. Net zoals een gat 
de subrooster pariteit van de keten verandert, verandert de kink de draairichting van het 
telefoonsnoer. Aan de ene kant draait het rechtsom en aan de andere kant draait het 
linksom. Omdat in het Hubbard model de gaten door het rooster bewegen. veroorzaakt 
dit een extra verval van \/xKc in de correlator {Mz(x)Mz(0)) in vergelijking met de spin 
correlaties in het interne systeem.

Deze subrooster pariteits orde kan worden aangetoond door het berekenen van de 
niet-lokale string correlator Otop(x) = {Mz(x)(k—\)^J=l^l~n,ol^Mz(0)). Omdat de

term (—een minteken verbindt aan elk gat in de keten, verwachten we 
dat wanneer de subrooster pariteit is geordend, deze term de subrooster pariteit van het 
interne spin systeem herstelt. In dat geval meten we direct de spin correlaties van het in­
terne systeem zonderenige ladings fluctuates en vinden we dat O,op(x) ~ \/xKs gelijk 
de spin correlator in het interne spin systeem. In dit proefschrift laten we zien dat dit 
voor het Hubbard model inderdaad het geval is, niet alleen voor grote U, maar voor alle 
positieve U. Dit bewijst dat de subrooster pariteit voor deze waarden is geordend.

Voor deze tussenliggende Coulomb interacties kunnen we de golffunctie op gelijk- 
soortige manier opgebouwd denken als voor de limiet waar U groot is. Alleen beschrijft 
deze constructie slechts de electronen van enkel bezette roosterposities. Dit gaat op de 
volgende manier. Eerst worden deze electronen van de enkel bezette roosterpunten in
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het rooster geplaatst en vervolgens wordt de spin over deze posities verdeeld zoals in een 
antiferromagnetische spin keten. Over de verdeling van dubbelbezette roosterplaatsen 
wordt hierbij geen uitspraak gedaan. Deze constructie is alleen geldig in de berekening 
van de spin correlator (Mz(x)Mz(0)), waaraan dubbel bezette toestanden niet bijdragen.

Het aantonen van de verborgen algebraische subrooster pariteits order in Luttinger 
vloeistoffen gerepresenteerd door het positieve U Hubbard model is het belangrijkste 
resultaat van dit proefschrift. Hoewel Luttinger vloeistoffen al in vele studies zijn onder- 
zocht is deze orde nog niet eerder aangetoond. Het bevvijs hiervan is in dit proefschri t 
op de volgende manier opgebouwd.

Het begint met een inleidend hoofdstuk waarin we de oorsprong van de subrooster 
pariteit uitleggen. Hierbij maken we een connectie met eerder gedaan onderzoek.

Voordat we ons daarna gaan bezig houden met de verborgen orde in Luttinger v oei 
stoffen, beschouwen we in hoofdstuk 2 het zogenaamde pseudogap gebied in hoge tern 
peratuur supergeleiders en bestuderen het effect van een enkele verontreiniging, ie a 
dan niet magnetisch van aard is. We voorspellen dat elke depletie van toestanden ron 
het Fermi nivo aanleiding geeft tot het bestaan van resonante toestanden, ongeac t e 
microscopische oorsprong van deze pseudogap toestand. ....

In hoofdstuk 3 vatten we de belangrijkste eigenschappen van een Luttinger v oeisto 
samen. Gebruikmakend van de bosonizatie methode, leiden we resultaten a voor on er 
andere de dichtheids en spin correlatie functies.Verder bosonizeren we ^et en *nJen 
sionale Hubbard model, en geven zo het verband weer tussen het Hubbar mo e en 
Luttinger vloeistoffen. , ,

In hoofdstuk 4 introduceren we de Bethe Ansatz golffunctie voor het u ar mo e 
en gebruiken deze oplossingen voor het berekenen van de spin correlator ( (.*)
in de limiet voor grote Coulomb kracht. .

In hoofdstuk 5 bestuderen we de subrooster pariteits orde in het Hubbar mo e z°a s 
deze volgt uit de Bethe Ansatz oplossing voor grote U. We introduceren e topo ogisc e
correlator O,op(x) = die kan worden g^bruikt voor
het aantonen van de subrooster pariteits orde. Vervolgens laten we zien at in e &r0 
limiet Olop(x) ~ 1 /xKs, wat aangeeft dat de subrooster pariteit in deze lmiet in er 
is geordend. . v-v

In hoofdstuk 6 beschouwen we een andere limiet van het Hubbar mo e , na™ 
het geval van geen interacties (U = 0). De electronen kunnen dan wor en esc 
als spinloze fermionen. We berekenen de topologische correlator 0/0p(x) en a 
dat ook hier de subrooster pariteit is geordend. _ n

Na het vaststellen van de subrooster pariteits orde voor de gev en _anrnnpn 
U, proberen we in hoofdstuk 7 de bosonizatie methode te gebrui en voor e __
van de subrooster pariteits orde voor tussenliggende Coulom a sto mgen. —
blijkt dat bosonizatie niet uitgerust voor het berekenen van met- o a e ope
0'°Om toch ui,slui.se) te krijgen op deze vraag voerde Ian McCulloch zogenaamde I

DMRG berekeningen uit. De resultaten hiervan worden geanalyseerd in M
en laten zien dat de algebraische subrooster pariteit orde oo ge t voor .j
waarden van de Coulomb kracht. !SI

In het laatste hoofdstuk interpreter we alle gevonden resultaten en analyseren we |



130 SAMENVATTING

de subrooster pariteits orde in termen van spinonen en holonen. Ook beschrijven we het 
verband met lokale ijk symmetric.
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Stellingen
behorende bij het proefschrift 

“On Hidden Order in Luttinger Liquids”

1. Het is opmerkelijk dat de verborgen orde beschreven in dit proefschrift zich zo lang 
aan het zicht heeft vveten te onttrekken.

Dit proefschrift.

2. In een spinloos fermion systeem op een rooster met periodieke randvoorwaarden 
geldt voor grote afstanden .v en dichtheden psf = N/V ^ 1, met N het aantal 
femiionen in de totale keten van lengte V,

{(_1)£;=i"sfO)} = A2y/2 cos

Hierbij is nsF(j) de dichtheidsoperator op roosterpunt j en A = 0.645002448.

Dit proefschrift, hoofdstuk 6.

3. Bij de berekening van de niet Iokale operatoren beschreven in dit proefschrift is 
bosonizatie niet te vertrouwen.

Dit proefschrift, hoofdstuk 7.

4. De verborgen orde in de Haldane spin-1 keten beschreven door den Nijs en Rom- 
melse duidt op een Iokale Z2 ijksymmetrie.

Dit proefschrift, hoofdstuk 9.

5. Het feit dat een dimensionale stripes half gevuld zijn leidt tot verscheidene interne 
configuraties, zoals de zogenaamde 2k f en de 4/c/r-ordering. Een mogelijke repre- 
sentatie van de 2kf configuratie zijn Cooper paren in de reele ruimte.

M. Bosch, W. van Saarloos en J. Zaanen, Phys. Rev. B 63, 092501 (2001).

6. Met behulp van een zelf consistente benadering van een zogenaamde entanglement- 
disentanglement overgang, die zowel de actie van de polymeervloeistof op aan de 
wand vastgeketende moleculen, alsook de reactie van deze ketens op de vloeistof 
meeneemt, kan worden aangetoond dat de stress aan de wand een lokaal maximum 
heeft als functie van de stroomsnelheid. Dit leidt tot een oscillerende volume flux, 
de zogenaamde spurtinstabiliteit.

J.L.A. Dubbeldam en J. Molenaar, Phys. Rev. E 67, 011803 (2003).

1. Het niet isotroop zijn van de mobiliteit van de vortices in een type II supergeleider 
kan Ieiden tot een instabiliteit in het front tussen de vortices en anti-vortices.

C. Baggio, M. Howard en W. van Saarloos, nog te publiceren.

8. Frequentie ontaardingen maken het mogelijk om eenvoudig de lengte van een opti- 
sche resonator te kalibreren.

J. Dingjan, proefschrift “Multi-mode optical resonators and wave chaos ” (2003).



9. In veel vvereldsteden ontsieren uitgespuwde stukjes kauwgom de straat. Pogingen 
om de kauwgom in straatputten te deponeren leveren nauwelijks een bijdrage aan 
de oplossing van dil probleem.

http://michiel.mnibase.net/kauwgom/report/

H.V. Kruis 
19juni 2003

http://michiel.mnibase.net/kauwgom/report/
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