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CHAPTER I

GENERAL INTRODUCTION
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1. Introduction.

n2(zi .z2>ri2) (i-D
*12 + y 12 - 2Z]2 

2ry=-H

Interfaces appear in a wide variety of physical contexts. An interface forms the separa
tion between two bulk phases and as these can be of all kinds, interfaces may have very dif
ferent properties. From a macroscopic point of view, interfaces are sharp and can be 
regarded as a "sheet" separating the bulk phases. In this sheet acts a "stress", the surface ten
sion, which tries to contract the sheet and therefore minimizes the area of the interface. The 
surface tension stabilizes the interface and the interface disappears when the surface tension 
vanishes. Two different types of interfaces are the solid-fluid and the fluid-fluid interface, 
which are the interfaces studied in this thesis. The solid-fluid interface can be considered as 
an interface imposed on the fluid by the rigid nature of the solid. This rigidity makes the 
interface "stiff, which stiffness is reflected in a large surface tension. The question why a 
fluid separates into two phases is much more subtle. Both phases, having no a priori struc
ture, are alike and not as difficult to match as a solid and a fluid. Therefore, the surface ten
sion of a fluid-fluid interface is in general lower than that of a solid-fluid interface : d as a 
result, the former interface is much more flexible.

These differences are especially well visible at a microscopic level where t!:e interface 
attains a structure and a finite width. The structure of the solid is described by a density pro
file with sharp peaks at the lattice positions. This peaked, oscillatory structure of the micros
copic density propagates into the fluid at a solid-fluid interface as if the first adsorbed fluid 
layers are of a solid nature. The peaks damp out further into the fluid until the density pro
file attains a constant fluid density. Entirely different is the density profile of a fluid-fluid 
interface: it interpolates smoothly between the densities of the fluid phases. The low value of 
the surface tension of a fluid-fluid interface causes the interfacial width to be significantly 
increased by capillary wave fluctuations. In fact, fluid-fluid interfaces are unstable with 
respect to these fluctuations and their width diverges in an infinite, field-free system1). The 
systems encountered in e.g. simulations, however, are finite although the simulated interfaces 
may still be very wide, especially near criticality where the surface tension vanishes.

Quantities like the surface tension are closely connected to the structure of the interface. 
As an example, the surface tension y of a fluid-fluid interface can be expressed2) in the pair
correlation function 02(7*] ,r*2) in the interface and the interaction potential <p(r) between the 
particles:

r . . *12 + Ji2 - zzi2 8<I>('T2)dzt dz2 J dx12dy12-------- -------------------5-------
**12 drl2

where r'12='r1 -r*2 and we employed the planar symmetry by which n2 depends only on the 
z-positions of the particles and their distance r 12 (the z-direction is taken to be perpendicular 
to the interface). Note that the integral vanishes in the bulk fluid phases at z =00 and z = -<» 
where n2 becomes isotropic. In a simulation of a fluid interface by molecular-dynamics or 
Monte Carlo techniques, one can sample the paircorrelation function and evaluate the 
integral. One can thus measure a surface tension directly with an accuracy that is determined 
by the statistical accuracy of the results of the sampling.

Expressions like (1.1) are regularly employed in the simulations described in this thesis. 
This is possible since one can obtain from a simulation the microscopic structure of an inter
face with details that can not be given by theoretical considerations or experimental
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12

Fig. 1. A liquid droplet at a substrate, surrounded by a saturated vapor; 6 is the contact angle.

techniques. Moreover, simulations study a well-defined model system which facilitates the 
comparison with theoretical predictions. In this thesis for example, results of our simulations 
are compared with the results of density functional calculations3^ which are tailored for the 
simulations. The limitations of a computer experiment are related to the limitations on the 
computer capacities. A direct consequence of these limitations is an upper bound on the size 
of the systems that can be simulated. This bound becomes especially crucial in simulations 
of interfacial phenomena because one needs at least two bulk phases to form an interface. In 
the wetting simulations of the capters III-VI, we even encounter three bulk phases and a sub
strate simultaneously in the system. This is beyond the capacity of a usual simulation which 
treats maximally a thousand particles. A second, important limitation of the simulations is 
the limitation on the range of the interactions which is necessary to keep the computing time 
within reasonable limits. Realistic interactions, which are long-ranged, are often modelled by 
truncated Lennard-Jones potentials but it is shown in chapter IIX that the truncation is by no 
means harmless and may have a large effect on the properties of an interface.

Our simulations are carried out on a special purpose computer: the Delft Molecular- 
armies Processor (DMDP)4) which allows systems up to 16,000 particles. The use of this 

computer and its 24 hours per day availability, enabled the large-scale simulations described 
in thesis. As already stated by the name of the DMDP, the simulations are of the 
molecular-dynamics type. All phases in the system are formed by particles with a Lennard- 
Jones 12-6 interaction:

4>(r) = 4e {(a/r)12 - (a/r)6} (1.2)

which is truncated at 2.5 a. The majority of the simulations is devoted to the "wetting" and 
"drying" transition and related phenomena. These transitions will be described in the next 
section.
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2. Wetting and drying.

a

The wetting and drying transition have attracted much interest by

Cahn

(2.3)Yrv y si 

whereas the r.h.s. scales with the exponent |i:

!
=

The terms wetting and drying refer to the adsorption of two coexisting phases at a third 
"spectator" phase5). A model system to discuss these phenomena is the system of a coexist
ing liquid and vapor phase in contact with a wall, which is also the system encountered in 
our simulations. Consider a liquid drop that rests on the substrate and is surrounded by a 
saturated vapor. The liquid-vapor interface makes a well defined angle with the substrate
liquid interface which is called the contact angle 9 (see fig. 1). This angle is related to the 
surface tensions ySb Yrv and that belong to the substrate-liquid, the substrate-vapor and 
the liquid-vapor interface respectively. This relation, called Young’s law, takes the form of a 
condition for mechanical equilibrium if the surface tensions are considered as mechanical 
forces that act on the contact line where the three phases meet. It reads

Yrv = Ysl + Y/v cos9 (2.1)

The contact angle varies with e.g. temperature. If it vanishes, the droplet spr er the
substrate and a liquid layer intrudes between the solid and the vapor phase all . e sub
strate surface. The vanishing of 6 thus implies that a direct contact between the : nite and 
the vapor phase is no longer stable but that a macroscopically thick liquid layer should 
develop in between them. Complementary, a contact angle that is equal to it implies that a 
stable interface between substrate and liquid incorporates an intermediate macroscopic vapor 
layer. The case 0 < 9 < tt/2 is called the partially wet state, the case 9 = 0 the completely 
wet state and similarly are the cases rt/2 < 9 < n called the partially dry and 9 = it the 
completely dry state. The transition from the partially wet to the completely wet state is a 
genuine surface phase transition, called the wetting transition. The drying transition is 
defined analogously. The transition from the partially dry to the partially wet state is not 
phase transition but it is convenient to be able to distinguish between these two states.

an argument of

Y/v - (T - T')* (2.4)
which have the values Pi =0.8 and |1=1.3 in the 3-d Ising universality class, which is the 
appropriate universality class for classical, three dimensional fluids. As Y/v vanishes faster 
that the difference (Yrv-Yr/) according to these scaling assumptions, inequality (2.2) should

Yrv Yr/ < Y/v (2.2)

(with Yjj < y„, otherwise one would be in the partially dry regime) and noticed that as T 
approaches Tc both sides vanish with a critical exponent. The l.h.s. is assumed to scale with 
a surface exponent P ]:

Cahn6) that predicts that, whenever a system is partially wet (dry) at T below Tc, one should 
encounter a wetting (drying) transition as the temperature is raised towards Tc. 
inspected the condition of partial wetting:

~ (T - TC)P'
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the wetting temperature, below Tc where the inequality

x > 1

cos 0 = -1 + c (e - Ej) (2.6)
(where E^ is the drying point and c is positive) the transition is first order. If, on the other 
hand, cos6 merges tangentially with the line cos0 = - 1:

break down at a temperature Tw, 
becomes an equality:

cos 0 = -1 + c (e - Ej)x x > 1 (2.7)

the transition is continuous. Inspecting the contact angles, both simulations predicted a 
first-order drying transition whereas the simulation of Sikkenk et al also gave a first-order 
wetting transition. However, the results of Sikkenk et al for the drying transition turned out 
to be controversial14) because of inaccurate measurements of and y,,.

- Yrf = liv (2.5)
which marks the presence of a wetting transition. This wetting scenario is called "critical 
point wetting" because the wetting transition is expected in the vicinity of the critical point.

Obviously, Cahn’s argument cannot be rigorously correct because, as soon as the wet
ting transition occurs, (2.5) holds and thus, scaling assumption (2.3) is no longer valid. 
Instead, the difference should also scale with p. A careful analysis7) of scaling
functions is needed to understand the flaw in the argument. Nevertheless, the notion of Cahn 
has inspired much research on the wetting transition and many systems have indeed been 
shov. f; .0 exhibit critical point wetting. The status of the drying transition is less clear. 
Ar.' j -'.i the wetting and drying transition appear to be two similar demonstrations of the 

r i ysical mechanism, a drying transition has not been observed experimentally. Ques- 
ard in the research5) on wetting and drying are e.g. on the location and order 

. ansitions and their relation to the molecular interactions. Theoretically, such ques- 
a: . e been studied in lattice models8,9), in variants of Landau’s mean-field theory5) and 
;.:ty functional calculations5,10,11). There is general agreement that in systems with 

.a .Ac interactions, the wetting transition is first order unless the transition takes place very 
close to Tc in which case continuous wetting may occur11).

Intermediate between theory and experiment, simulations of the wetting and drying 
transition have been carried out, both in lattice models and in models of real fluids. Among 
the earliest examples of the latter is a simulation of van Swol and Henderson12) who studied 
the drying transition in a system with square-well interactions. A more extensive simulation 
of wetting and drying in a Lennard-Jones system was carried out on the DMDP by Sikkenk 
et al1^- Instead of by temperature, the transitions are driven in both simulations by changing 
the substrate-fluid interaction strength e. Increasing e, one passes from the completely dry to 
the completely wet state via a drying and, subsequently, a wetting transition. These transi
tions are identified by a measurement of cos0 as a function of E where cos0 is obtained 
from a measurement of surface tensions and the application of Young’s law. The cosine rises 
from -1 in the completely dry state to 1 in the completely wet state. The order of the wet
ting and drying transition can be deduced from the way in which cos0 approaches its limit
ing values. If in the case of e.g. the drying transition, cos0 cuts the line cos0 = - 1 under a 
finite angle:
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Outline

The simulations described in the chapters III-VII are related to the wetting and drying 
transition and contain a liquid phase, a vapor phase and a substrate. The latter is absent in 
he simulations of the chapters VIII and IX which aim at a study of the liquid-vapor inter
face. Before we describe the simulations, we devote a chapter, chapter n, to a discussion of 
relations like (1.1) between macroscopic and microscopic quantities of the interface. As such 
relations are frequently used in the simulations, chapter II provides the formal background 
for those measurements. Special attention is paid to the derivation of an expression for the 
surface tension of an interface between a fluid and a substrate that is modelled by a struc
tured, i.e. periodic, external potential. Such interfaces are encountered in the simulations and 
the appropriate expression for y had not yet been derived. The derivation had been given for 
a structureless substrate but it turned out that as one treats the more realistic sn ed case, 
the derivation becomes much more complicated.

Chapter IB treats a visual measurement of contact angles which circumvc meas
urement of surface tensions that had been so cumbersome in the simulation of k et al. 
A liquid-vapor meniscus is enclosed between two parallel substrates and the ingle is 
obtained from the shape the meniscus attains. The angles display a strongly shifted drying 
transition compared with Sikkenk’s simulation and moreover, they are consistent with both a 
first-order and a continuous character of this transition. The wetting transition has remained 
first-order.

This modified picture of the wetting and drying transitions is confirmed in chapter IV. 
The set-up of the simulations in this chapter is the same as in Sikkenk’s simulation apart 
from the representation of the substrate. Whereas the substrate particles were allowed to 
oscillate around their lattice positions in the simulation of Sikkenk et al, they are frozen in 
at those positions here. Representing the wall thus as an external potential, one obtains a 
series of contact angles with varying e which agrees well with the visually measured angles.

The most accurate determination of the order and location of the drying transition is 
obtained in chapter V. In this chapter, the variation of the contact angle with e is measured. 
The measurements form strong evidence for a continuous transition and, moreover, locate the 
position of the transition an order of magnitude more accurately with respect to the measure
ments of the angle itself.

In chapter VI, a step towards the simulation of a more realistic system is taken. We 
have added the long-ranged tail of the substrate-fluid interaction to the simulations and rein
spected the wetting and drying transitions. It is to be expected that the drying transition will 
be suppressed by the added tail and this is confirmed by the simulations.

Chapter VII inspects a transition which should accompany a first-order wetting transi
tion: the prewetting transition6, *5\ This is a transition between a thin and a thick adsorbed 
film which occurs in the regime of the undersaturated vapor. The existence of this transition 
is predicted on sound theoretical grounds but it has so far only been observed in lattice-gas 
simulations16'17) and in one simulation18) of a Lennard-Jones system. Any experimental 
observation lacks in spite of several attempts19,20). We have inspected the adsorption at the 
wall at a range of vapor densities and values of e but find no clear evidence for a thin-thick 
transition. The region in which the transition occurs must be narrow and we give bounds on 
it
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The last two chapters discuss some properties of liquid-vapor interfaces. Chapter VIII 
discusses simulations in which a pan of the liquid-vapor coexistence line is scanned with 
planar interfaces between the coexisting phases. The values quoted in the literature for the 
liquid-vapor surface tension vary significantly. We have accurately measured this quantity, 
as well as some properties of the liquid and vapor phases. Moreover, we increased the cut
off radius of the Lennard-Jones potentials from 2.5a to 7.33a and observed a significant 
effect on the properties of the interface and the coexisting phases.

The last chapter studies the influence of curvature on the surface tension in a simulation 
of liquid drops. It is assumed21) that the surface tension deviates from its planar value with 
an amount of the order of the inverse droplet radius. We show that this amount can be 
obtained from an analysis of the pressure difference over the interace and this difference is 
evaluated in the simulations. It turns out that the effect of the curvature is small.



CHAPTER II

ABSTRACT

Microscopic expressions 
for the surface and line tension

We consider the change in grand potential of a fluid under a deformation of its containing 
vessel. Thermodynamically, the change is expressed in terms of the pressure, the surface ten
sion and the line tension of the fluid. As the change can also be expressed in the fluid’s 
microscopic properties, one obtains microscopic expressions for thermodynamic quantities. 
We consider two types of such expressions, the first one relating the pressure, surface and 
line tension to the density at the hard walls of the vessel, the second one relating them to the 
pressure tensor. Moreover, we can generalize these two types of expressions to a single 
expression which contains them both. Besides the distinction between surface and line ten
sion, we consider three models of the wall: a "hard" wall, a "structureless, soft wall" and a 
"structured, soft wall". It is shown that the expressions for the surface and line tension are 
similar for all types of walls.
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1. Introduction.

p = kBT n0 (1.1)

where kB denotes Boltzmann’s constant and T the temperature of the system. We call rela
tions of this type between a thermodynamic quantity and the density of the fluid at a wall

The behaviour of fluids near a wall has attracted considerable interest in recent years. 
Especially the question whether a fluid wets a wall or not, has been the subject of many 
investigations'). This question refers to the equilibrium state of the wall-fluid interface 
which is characterized by the surface tension, describing the contribution of the wall-fluid 
interface to the grand potential of whole system. It forms the basis of many theoretical 
descriptions of the interface and can be measured experimentally. There exist formal expres
sions relating it to microscopic properties of the interface. As these properties are accessible 
in a simulation, the surface tension can also be evaluated in a simulation2).

In reality, two thermodynamic phases meet at a wall-fluid interface: the fluid and the 
solid which forms the wall. The atoms of the solid form a lattice, oscillating around their lat
tice positions. In this perspective, a solid-fluid interface is similar to a liquid-vapor interface 
and the same molecular expressions apply. The description of the interface is greatly simpli
fied if the solid atoms are frozen in at their lattice positions. This simplification alters the 

'vs of the interface only marginally in many cases. Such a rigid lattice is no longer a 
p:.n the thermodynamic system but serves as a boundary condition for the fluid. The 
; . dary condition appears as an external potential acting on the fluid particles and prevent
ing then, from escaping from the system. Microscopic expressions have to be adapted for 
such an inert wall.

This paper is addressed to the derivation of formal expressions for the surface tension 
and related quantities of an interface between a fluid and an inert wall. As model for the 
wall we will consider three cases

a) The simplest model is a wall which is only a restriction on the positions of the fluid 
particles. The restriction is represented by an external potential which is zero at one side of 
the wall and infinite at the other side. This representation of a wall will be denoted as a 
"hard wall".

b) The model of a wall becomes more realistic when the potential varies smoothly with 
the distance from the wall. If the potential is still translationally invariant along the wall, 
the model for the wall is denoted as a (structureless) "soft wall".

c) The closest inert representation of a real wall is an external potential field which 
depends not only on the distance from the wall but varies also along the wall. The latter 
variation models the lattice structure of the wall. Since a lattice is periodic, the external 
potential is taken to be periodic along the wall also. This model of the wall is denoted as a 
"structured, soft wall".

An example of a relation between a thermodynamic quantity and a microscopic quantity 
of a fluid is the connection between the density at a hard wall and the fluid’s pressure. 
Approaching a hard wall from inside the fluid, the density of the fluid changes discontinu
ously from a finite value to zero in the wall. The finite, limiting value of the density is 
called the density at the hard wall, ng- It is related to the pressure p of the fluid by3)
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(1.2)

(1.4)

p = kBT nB - J dr r3 0'(r) n2fi(r) 
J o

where nB denotes the density of the bulk fluid, <f>(r) the interpanicle potential for two parti
cles at a distance r and its derivative with respect to r. In this form, the relation holds 
for a three dimensional fluid with central, pairwise additive interactions which is the type of 
fluid we will restrict ourselves to throughout this article. Relations as (1.2), expressing a 
thermodynamic variable in essentially an integral over the pair correlation function, are 
called "virial expressions". Virial expressions can often be formulated in terms of a "pres
sure tensor". As an example, the virial expression for the surface tension of a bard wall, y*. 
located in the plane z = 0 with the fluid at z >0, reads5!

+ V J dz> I ^12 
2 0 -- r12

with 7^2 = 7*j —7*2, n2 the pair correlation function. In terms of a pressure tensor, the rela
tion reads5)

= -J dz (pT(z) - p) 
o

where pT(z) denotes the component of a pressure tensor tangentially to the hard wall at a 
distance z. The pressure tensor is defined in terms of the density and the pair correlation 
function (see below). Substitution of this definition transforms (1.4) back into (1.3). Rela
tions between thermodynamic variables and a pressure tensor are especially useful in simula
tions of fluids where the tensor can be measured explicitly5). We call such relations "pres
sure expressions".

Formal relations between thermodynamic and microscopic quantities such as (1.1)-(1.4) 
can be derived from a deformation of a vessel which contains the fluid and at the same time 
provides the wall-fluid interface. The deformation results in a change in the grand potential 
of the fluid which is thermodynamically expressed in terms of quantities like the pressure 
and surface tension. On the other hand, it is possible to express the change directly in 
microscopic quantities of the fluid. The equivalence of the two expressions leads to micros
copic expressions for the thermodynamic quantities. This technique has been employed in 
various cases. A systematic evaluation of the deformation method has not been given and it 
is the purpose of this paper. We were confronted with this problem when we simulated 
fluids contained by structured, inert walls which require a delicate treatment of the

Ya = ~^BT J dz (n(z) - nB) 
o

yU12+yi2)
0Z(r 12) (^2(z 1 »z2»r 12) “ 'I2fi(r12)) 0-3)

"density expressions".
In this example, the pressure is related to a surface property of the fluid. An example of 

a different kind is the classical relation4) between the pressure and the pair correlation func
tion of the bulk fluid, n2B
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2. The pressure tensor and the change in grand potential.

(2.1)

The concept of a pressure tensor has long been present in phenomenological descrip
tions of inhomogeneous fluids4). The concept has been formalized by Schofield and Hender
son7) who gave a microscopic definition of the tensor which they could link rigorously to 
the change in grand potential of a fluid. For a simple fluid, the microscopic definition reads

microscopic expressions.
We will employ two microscopic expressions for the change in grand potential. The 

first expresses the change in grand potential in, essentially, the density at the hard walls. The 
expression gives rise to density expressions of the type (1.1). The second expresses the 
change in terms of a pressure tensor from which pressure expressions of the type (1.4) can 
be derived. In this paper, we will consider deformations of the vessel which result in an 
increase of the area of the vessel as well as an increase of the length of the edges. Therefore, 
the change in grand potential involves both the surface and the line tension and density and 
pressure expressions will be derived for both these quantities.

The deformation is applied to the three models of a wall we mentioned above. At first, 
a vessel of hard walls is considered. Secondly, one of the hard walls is replaced by a struc
tureless, soft wall and finally, this wall is replaced by a structured, soft wall. We thus obtain 
density and pressure expressions for the surface tension of a hard wall, a structureless soft 
wall and a structured soft wall. We also obtain density and pressure expressions for the line 
tension of the edges in these vessels. We do, however, not consider the edge formed by a 
hard and a structured, soft wall since already the surface tension of the structured wall turns 
out to be a complicated case.

The article is further organized in the following way. We introduce the concept of the 
pressure tensor and the two routes to the change in grand potential in section 2. Before we 
start the actual calculation, we give some comments on the definition of the surface and line 
tension in section 3. The first route to the change in grand potential is then exploited in sec
tion 4 which derives the density expressions. The second route is exploited the sections 5, 6 
and 7 in which the pressure expressions are presented. Section 5 treats the hard wall and the 
edge formed by two hard walls. Sections 6 treats the structureless soft wall and the edge 
formed by a hard and a structureless soft wall. Section 7 treats the case of the structured 
soft wall. Finally, conclusions are drawn in section 8.

P(T) = kBT n(r) I - — J dr! dT2 ----  <t>'(^i2) ”2(^1 .^2) J d/ 8(/-7)
2 — r‘7 C„

=» . . 
where / denotes the unit tensor and C u is a contour from rj to rt. This contour can be 
chosen arbitrarily and therefore, the pressure tensor is not defined uniquely. The most obvi
ous choice for the contour is a straight line from 7*2 to 7*i, a choice which is referred to as 
the Irving and Kirkwood8) (IK) tensor. An alternative choice has been investigated by 
Harasima9) who took the contour to be a straight path from r*; to (X2,y2.zt) followed by a 
straight path to 7*2- Clearly, each expression of a physical quantity in terms of a pressure 
tensor, like (1.4), must be independent of the choice of the tensor. It can furthermore be 
shown that the divergence of all tensors (2.1) satisfies
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(2.2)

(2.3)Z/v =

(2.4)

(2.5)

(2.6)

(2.7)

are

z = e

The grand potential is calculated from Zgr as

J d7\, . .. , drN e 
V

-Pl/»

Q = -kBT log Zgr
The integration volume V in (2.3) defines the position space in which the particles 
allowed to move. If the external potential becomes strongly repulsive near the boundaries of 
V, the available position space is effectively defined by this potential since it prevents parti
cles from intruding up to the boundaries. The volume is then bounded by soft walls and the 
precise location of the boundaries of V does not influence the physical behaviour of the sys
tem. If there is no external potential to prevent the particles from reaching the boundaries of 
V, the volume is bounded by hard walls. In this case, the boundaries of V, i.e. the position of 
the hard walls, can not be changed without changing the physical behaviour of the system. 
In general, the volume can be bounded by a combination of soft and hard walls.

Schofield and Henderson considered the change in the partition function under an infin
itesimal deformation of the integration volume V. The deformation is described by an infini
tesimally small displacement field 17(7*) which shifts the boundaries of V from their original 
positions {7*} to new positions {7* + 77(7*)}. We consider only cases in which is not 
affected by the application of a displacement field which implies that any soft wall remains

1
A3WN!

where A denotes the thermic wavelength, the energy of a configuration of ’ :■‘tides

= -n(7) V<t>“'(?) 

where $“'(7*) denotes the external potential acting on the fluid.
The tensor (2.1) can be used to describe the change in grand potential of a fluid when 

the container of the fluid is deformed. Schofield and Henderson discussed these deformations 
in the canonical ensemble, preserving the amount of particles in the system. It is however 
easy to show that the expression for the change in free energy that they obtain applies 
equally well to the change in grand potential. This thermodynamic potential has to be con
sidered if the deformation is brought about in the grand canonical ensemble under constant 
chemical potential. Instead of considering the canonical partition function Z^ of a system of 
N panicles

Unfit..........7\) = X +
(ij)

one has to consider the grand canonical partition function Zgr given by

ZJr = 1 + £ zN ZN 
N=\

with z the activity, related to the chemical potential p by
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(2.8)

(2.9)

(2.10)

(2.12)

1

dil = -kBT J dSuZCT’) n(7?) 
dv

which expresses dil entirely in terms of the density at the wall. The equation shows that if 
the volume is bounded by soft walls everywhere, the grand potential does not change since

d£2 = j ir {-kBT 
v

in place and the deformation affects the hard walls only. The change in grand potential can, 
up to order u, be described by the one and two-particle correlation function

+ i?(r) V4>"'(r) } n&

d£2 = - J dr" { pfr): VizCr) - nfr) tA/) • Vif)"3 (7*) }
V

+ J d?{ p(r) - kBT n(r) J 
dv

.end integral is over the surface of V. If the surface is shielded by a soft wall, the 
’ the surface will be zero since particles never reach the boundary of V in that case.

I ;• e. for any reasonable choice of contour, the pressure tensor will also be zero at a 
soli and thus, soft walls do not contribute to the surface integral. At a hard wall, the—>_, _.
pressure tensor p(r) becomes equal to kBT n(r) I for a large class of contours. Each con
tour which does not intersect the wall, belongs to this class. Note that the IK and the 
Harasima tensor both fulfill this condition (if the wals are in the x-y, x-z or y-z plane). 
Therefore, for this class of tensors, hard walls also do not contribute to the surface integral 
which then does not contribute to dfl at all. So the change in grand potential is, up to first 
order in u, fully given by

dQ = -/ d7 {
v

if the pressure tensor at a hard wall dV reduces to

p<f, Wk) = kBT n(7, dVk) 7 (2.11)

We will restrict ourselves to tensors satisfying (2.11) in the remaining part of this paper, 
which means that only reasonably simple contours will be considered, typical examples of 
which are the IK and the Harasima contour.

Equation (2.10) is what we referred to as the "pressure route" to dQ. The "density 
route" to dQ is easily obtained from (2.9) if the combination is replaced by -V-^, in 
accordance with (2.2). Partial integration of the resulting term gives

+ | j dri d?2 { <7(n) ~ } — <t>'(''i2) "2^1/2)
2 v r12

However, it can equally well be described7' by the pressure tensor (2.1)
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3. The definition of the surface and line tension.

Q = Q v + fl 5 + Qg (3.1)

Expansion (3.1) could become ambiguous if p and yA depend too strongly on the system 
size, e.g. approach their thermodynamic value inversely proportional to the linear size of the 
system. If, however, p and y* in a finite system are defined in terms of local quantities such 
as in (1.2) and (1.4), it is reasonable to assume that the influence of the size of the system is 
exponentially small. This assumption does probably not hold near criticality where the dis
tinction between pressure and surface tension should be carefully reanalysed, which is 
beyond the scope of this paper.

To be complete, we should have added a term of the order 1 to (3.1) to include the 
contributions of the comers of the box to the grand potential. Such contributions however, 
will not be studied in this article and therefore we neglect them. Qy, and Og define the 
pressure, surface tension and line tension

= -p V (3.2)

— Ya (3.3)
&E = XAA Lhh (3-4)

The geometry of the box is the geometry of the integration volume in (2.3). Changes in the 
volume induce changes in the grand potential. Consequently, the proportionality factors p, Ya 
and are unambiguously defined.

These notions may appear somewhat trivial but more care is needed when soft walls are 
involved. Consider the same box as before with one of the hard walls, taken to be in the 
plane z=0, replaced by a soft wall. Contributions from the hard wall to the grand potential 
must now be distinguished from contributions from the soft wall

the density vanishes at a soft wall. This must be so because in that case the boundaries of V 
can be distorted without changing the physical behaviour of the system. Equation (2.12) 
also shows that d<2 does not depend on the value of 17 in the interior of V. This reflects the 
fact that the deformation is determined by the value of 17 at the boundary of V only. In par
ticular, Q does not change if 17 vanishes at the boundary of V since in that case, the integra
tion volume is not distorted at all. Equations (2.8), (2.10) and (2.12) denote three different 
but equally valid ways to express the change in grand potential under a deformation 17 of the 
boundaries of the fluid.

Consider a fluid in a three dimensional, rectangular box which consists of hard walls. 
The grand potential of the fluid is defined by (2.3)-(2.7) with 0“' (7“) = 0. As we mentioned 
in section 1, the surface tension y* of the hard walls and the line tension Xhh of Jhe edges of 
the box can be defined from the change in the grand potential under a well chc-en deforma
tion of the box. An alternative definition of these quantities is obtained from ■■ decomposi
tion of the grand potential in terms of the order of the volume V, the size of -a face A/,, 
and the length of the edges of the box
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(3.7)= 0,

so

(3.8)

(3.9)

(3.10)

= Y, A, + Y* Ah (3-5)

with y, and As the surface tension and area of the soft wall. Similarly, the contributions 
from the edges formed by two hard walls must be distinguished from the contributions from 
the edges formed by a hard and a soft wall

8Q = (p8z + Sy,) As + (y*8z - 8-c,*) Lsh + 0(1) = 0 (3.11)

In (3.11) we have neglected the term t**8z which is of the order 1. The two terms in (3.11) 
are of a different order of magnitude and must vanish seperately

8y, = -p 5z (3.12)

St,* = Y* Sz (3.13)

These equations demonstrate that the magnitude of y, and t,* depends on the location of the 
lower boundary z=0 of the box. The dependence is trivial in the sense that e.g. y, varies 
linearly with the position of the boundary with a coefficient which is not an intrinsic pro
perty of the surface but can be determined from the bulk state of the fluid alone. Note also 
that in e.g. the study of surface phenomena at a fixed wall the absolute value of the surface 
tension is never of importance but only the difference in surface tension between competing 
interfaces. For instance in the wetting problem, the coexisting liquid and vapor phase, com
peting to wet the wall, both have the same bulk pressure p and thus the difference in surface 
tension is independent of the location of the lower boundary z = 0. Although the dependence 
of y, and t,* on the location of the boundary forces one to treat the boundary carefully, they 
remain central parameters in the description of interfaces and contact lines respectively.

= P 8z A,

s ~ Y* Sz 7.,* 

f,* - 4 t** 8z

= 0

8V = —As 8z, 

87-,*

= ~Lsh Sz,

= t,* Lsh + ihh Lu, (3.6)
with T,* and Lsh the line tension and length of the edges formed by a hard and a soft wall. 
Contrary to the previous case, the lower limit on the z-integrations in (2.3) can be shifted 
without affecting Z*,. The geometry of the box however, does change under such a shift. If 
the lower boundary is shifted from z=0 to z = 8z, the geometric changes in the box are

8Qy

6Qs = 8y, A
= bxsh

Note that p, y* and r** do not change because they were completely specified by the tem
perature and the chemical potential which remain of course unaltered by the shift 8z in the 
boundary of the box. Since ZN does not change, the grand potential of the fluid does not 
change. Adding (3.8), (3.9) and (3.10) gives

SA, = 0, 6A*

87.** = —4 8z
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4. Density expressions.

(4.2)

4.1 Hard wall.

(4.3)

12A. L2,

(4.5)

(4.6)«»( y, z) = n( 0, y, z)

First, we take the wall in the plane 
tial is then given by

z = 0 to be a hard wall. The change in grand poten-

d£2 = -p dV + yA dAh + dLw,

With displacement field (4.1), the changes are

L L
dQ = -3 kBT A. L J dy J dz n( 0, y, z) 

o o
Note that the thermodynamic expression (4.3) consists of different orders of L. The term of 
order L3 determines p, the term of order L2 y* and the term of order L determines t**. We 
decompose (4.5) also in orders of L. The decomposition is obtained from a decomposition of 
the density. Define the density at the wall, nw

Relations between thermodynamic and microscopic quantities of the fluid will be 
obtained from deformations of the box which contains the fluid. The box we will use 
throughout this paper has dimensions 0<x,y,z<L. The wall in the plane z=0 is the wall of 
interest. It will taken to be a hard wall, a structureless soft wall or a structured soft wall. The 
five remaining walls will always taken to be hard walls. The box is deformed according to 
the displacement field

z?(r) = A ( x-L, y-L, z) (4.1)

The parameter A. makes It infinitesimally small. This displacement field trait ■■ for .‘s the box 
from a cube with edge length L to a cube with edge (1 +A.) L. To obtain y expres
sions, expression (2.12) for the change in grand potential is exploited wh'. resses the
change in the density at the walls

dV = 3A. L3, iAh = 12A. L2, dLhh = 12A. L (4.4)

The thermodynamic expression (4.3) for d£2 has to be compared with the microscopic 
expression (4.2). The three walls that contribute to (4.2), give the same contribution. Take 
the wall x = 0 as exemplary

dQ = -kBT J dSll(p) n(y) 
Sv

The product dS-lt vanishes at the planes x=L, y=L, and z=0. Only the t nee remaining 
walls contribute to the integral (4.2).
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(4.8)

(4.10)

comparison with (4.3) shows

(4.12)

(4.13)

(4.14)

no - "»(“,")
■>nly y to infinity, (4.7) gives the definition of An*(z)

d£2 = -1 kBT 3L { L2 n0 + 4L J dz An*(z) + 4 J dy dz An**(y,z) } (4.11)
o o

Anj(z) = nw(~, z) - «o (4-9)

white At;** is defined by (4.7) itself. Substitution of decomposition (4.7) in (4.5) gives

This density has a constant value no far away from the edges and comers at the wall x = 0. 
The density is distorted by the presence of neighboring walls within some microscopic 
length £ of the edges. The distortion near an edge, far away from a comer, is denoted An*. 
The additional distortions near a comer are denoted An**. The decomposition of n„ reads

+ 4 j dy J dz Anhh(y,z) } 
0 0

The factor 2 in front of the integral over An* accounts for the fact that there are two walls 
in both the x-z and x-y plane bordering on the wall at x = 0. The factor 4 in front of the 
integral over An** accounts for the fact that there are four comers at this wall. The sym
metry between the walls implies that the integral over An*(y) gives the same contribution to 
d<2 as the integral over An*(z). Decomposition (4.10) is the decomposition of d£2 in orders 
of L

L oo L oo L

dQ = -X kBT 3L { j dy dz n0 + 2 j dy J dz An*(y) + 2 j dz / dy An*(z) 
o oo oo

x** = -kBT J dy J dz An**(y,z) 
o o

p = kBT n0

7* = — kBT f dz An*(z) 
o

nw(. y, z) = n0 + An*(y) + An*(z) + An**(y,z) (4.7)
where An*(y) denotes the correction near an edge formed with a wall in the x-z plane, 
An*(z) the correction near an edge formed with a wall in the x-y plane. A correction term 
vanishes if its argument, or one of its arguments, is chosen far away from the edges. We 
denote such positions, £« y,z < L/2, as y,z approaching infinity. Taking e.g. y and z to 
infinity, (4.7) gives the definition of no



- 18 -

4.2 Soft wall.

(4.15)

are

(4.17)

(4.19)

= d£21 + dQ2 (4.18)

where d£22 refers to the integral in (4.17). The density at the wall x = 0, nw(y,z), is decom
posed as in (4.7). The influence of the soft wall on the density near the edge with the soft 
wall is denoted as An,, The influence of a comer formed with the soft and a hard wall is 
denoted as An1A. The decomposition of the density in the comer y,z > 0 reads

n0 + L J dz An,(z) 
0

L L
dQ = X { - p L3 + 4yh L2 + 4tAA L -2 kBT L J dy j dz n( 0, y, z) } 

o o

'i»(y,z) = n0 + An,(z) + AnA(y) + AnsA(y,z)
The decomposition of the integral dQ2 becomes

dQ = -p dV + ys dA s + yk dAh + dLsh + xhh dLhh

The change in volume is the same as previously, the other changes in the geometry

+ L J dz Anh(z) + 27, J dy An*(y) 
o o

dA, = 2X T,2, 

dZ,jA = 4X L, 

Expression (4.15) is again compared with

We replace the hard wall in the plane z=0 by a structureless, soft wall and repeat the 
calculation of the previous section. One can now question whether the density at a hard wall, 
bordering at the soft wall at z=0, is still related to e.g. the surface tension of this wall. The 
calculation shows that this is indeed the case.

One has to distinguish between the soft wall with area A, and surface tension ys and 
the hard walls in the calculation. One also has to distinguish between the edges formed by 
the soft and a hard wall, with total length Lsh and line tension T,*, and the edges formed by 
two hard walls. A similar distinction has to be made between the comers Apart from the 
replacement of the hard wall, the box and displacement field are the same as in the previous 
section. The thermodynamic expression for the change in grand potential reals

which are the desired density expressions. The first of these was already quoted in (1.1). It is 
seen to be the first of a hierachy of three which relates the pressure, suface tension and line 
tension to the density at a hard wall.

dAh = 10X L2,
dLhh = 8X 7, (4.16)

(4.2). The three walls that contribute to the 
integral (4.2) no longer contribute equally. The wall at z =L gives the same contribution as 
previously, i.e. one third of (4.3). But the contribution of the walls at x = 0 and y=0 will be 
different since they border at a soft wall now. Their contributions to (4.2) however, will still 
be equal to one another. Take the wall at x =0 as exemplary

dQ2 = -X kBT 27, { 7,2
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(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)-«0

dQ2

-kBT 2L2 J dz A«,(t) - kBT 4L J dy J dz Anrt(y,z) } 
0 0 0

Adding dQj and dl^2> we get

= X {-2p L3 + 6y* A2 + 4tm L

Ans( 0) =

+ 2 J dy J dz AnjA(y,z) + 2 J dy f dz An**(y,z) } 
oo oo

with the aid of the density expressions (4.12)-(4.14)

Ys = ~kBT J dz An,(z)
0

tsh = "W j dy j dz Anjh(y,z) 
o o

The density at a hard wall near an edge formed with a soft wall, is related to the surface ten
sion of the soft wall. The density at a hard wall near a comer formed with a second hard 
wall and a soft wall, is related to the line tension of the edge formed by the soft and the 
hard wall. The structure of (4.23) and (4.24) is exactly the same as the structure of (4.13) 
and (4.14).

In general, we can state that the deviations of the density at a hard wall near an edge 
formed by the hard wall and a second wall are related to the surface tension of that second 
wall. This second wall can be either a hard or a soft wall. The deviations of the density near 
a comer formed by the hard wall and two other walls is related to the line tension of the 
edge formed by the other two walls. This relation has been proven for the case that the other 
two walls are hard and for the case that one of them is hard and the other soft. Using the 
same method, one easily finds that it also holds for the case that the other two walls are both 
soft.

We conclude this section with a consideration of the remark we made in section 3 
about the dependence of ys and Tj* on the lower boundary z=0 assigned to the system. 
The dependence is stated explicitly in equations (3.12) and (3.13). It should be possible to 
recognize the same dependence in the microscopic definitions of and (4.23) and 
(4.24). We have to inspect how these definitions change if the lower boundary z = 0 is 
shifted with an amount 8z. At z=0, the integrands become

d£2 = X {-3p A3 + lOy* L2 + 8taa L }

-X kBT { 2L1 J dz Ans(z) + 4A J dy J dz Anrt (y,z) } 
0 0 0

Comparison with (4.15) gives the density expressions
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(4.26)

(4.27)Sy,

(4.28)

(4.29)(z)

5. Pressure expressions for the surface and line tension: hard wall.

(5.1)

of the previous section. The

0) = -Anh(y)
Therefore, y, and change under the shift 8z

d Q = - J d'rpfr):V 77(7)
v

With displacement field (4.1), the tensor V<7has the simple form

example, 
■ j ccureless,

at a hard wall show that these

In this section, we exploit route (2.10) to the change in grand potential which leads to 
relations between thermodynamic quantities and the pressure tensor of the fluid. The box and 
displacement field are the same as in section 4. The wall in the plane z = 0 is taken to be a 
hard wall in this section.

The thermodynamic expression for dQ is given by (4.3) while on the other hand, equa
tion (2.10) with <t>“'(r) = 0, states

P = ~ J dz «(z) 4- 0“' 
0

since the r.h.s. denotes the force per unit of area which the wall exerts at the fluid.

V17(7) = Z T (5.2)
Our strategy is the same as in the previous section: we split the microscopic expression (5.1) 
in orders of L. On comparison with (4.3), the term of order L2 gives the microscopic defini
tion of y*, the term of order L the definition of T^,. The decomposition of (5.1) in orders of 
L is obtained from a decomposition of the pressure tensor.

This decomposition is similar to the decomposition of 
tensor is translationally invariant and isotropic in the bulk fluid

= -kBT n0 8z

= -kBT 8z f dy Anh(y) 
0

The density expressions (4.12) and (4.13) for the density 
changes are equal to those in (3.12) and (3.13).

Density expressions do not only exist for hard walls. They can be deriv .-g for soft walls 
too from a deformation which also shifts these walls. In that case, the ci- - nent field 
does not only affect the boundaries of V but also the external potential whic1 s the soft 
wall. An extra term must be added to (2.12) to account for this shift and den . . xpressions 
can then be derived from the modified (2.12) in the way demonstrated here, 
one easily notices that the relation between the pressure and the density ncn. 
soft wall is given by
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(5.4)

(5.5)

(5.6)

(5.7)

dQ

(5.8)

(5.9)

=t 
Pb

Pb = P* (5.3)

where p denotes as usual the bulk pressure. Near the walls, within some microscopic length 
£, p deviates from pB. The deviation near a wall, far away from edges and comers, is 
denoted as Sph- The additional deviations near an edge are denoted as Ap**. The influence 
of the comers is denoted as ^p^hh- The decomposition of p in the comer x,y,z > 0 reads

&Phh( y. z)

The definition of tiptwi >s (5.4) itself. The decomposition (5.4) of the pressure tensor 
is inserted in (5.1). This integral splits in an integral involving p*, 6 integrals involving Ap* 
(resulting from the deviations of p near the walls), 12 integrals involving tip>,h (from the 
deviations near the edges) and 8 integrals involving fcphhh (from the deviations near the 
comers). The 6 integrals involving Ap* give the same contribution to dQ by symmetry. We 
take the deviations near the wall z=0 as exemplary. Similarly, we take the deviations near 
the edge formed by the wall at z=0 and y=0 as exemplary for the 12 edges. The comer 
formed by these two walls and the wall at x = 0 is taken as exemplary for the 8 comers. The 
decomposition of (5.1) reads

p(f) = Pb + Ap*(x) + Ap*(y) + Ap*(z)

+ Ap**(x,y) + Ap**(x,z) + Ap**(y,z) + Ap***(x,y,z)

The . . tion terms Ap vanish if one of their arguments is taken far away from the walls.
We ... such positions, £« x,y,z< L/2, as x,y,z approaching infinity. With x, y and z 

■it, (5.4) becomes the definition of p8

=» , .
= P (“,»,“)

and y to infinity, one obtains the definition of Ap*

= P(“, y, z) - 1>B - Ap*( y) - Ap*( z)

Ap*(z) = p(~,oo, z) - Pb

Taking only x to infinity, one obtains the definition of

(5.9) is the expansion of dfl in orders of L. With the definition of p8, (5.3), the first term

L L L L L
-X { J dx J dy J dz pfl: / + 6 J dx j dy f dz Ap*(z): I

ooo ooo

+ 12 J dx J dy J dz Ap**(y,z): I + 8 J dx / dy J dz Ap***(x,y,z): I } 
ooo ooo

= dQfl + + dQ/ji + dQ^
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is easily calculated

(5.11)

} (5.12)

(5.13)

(5.14)

Ap“(z) = Apf’(z) s ApJ(z) (5.15)

and (5.14) simplifies to

(5.16)

In terms of pT and p it reads

(5.17)

dQ/, = -61 L2 J dz { Ap^(z) + Ap)?(z) + Ap”(z) } 
o

which is of the order L2. The third term, dila,, reads

Y* = - J dz ( pr(~,~,z) - p) 
o

This form is the usual expression4) for Ya- It was already mentioned, in a slightly different

Y* = 4- J dz { ApJ’(z) + Ap)?(z) + Ap”(z) } 
z 0

This expression can be simplified. It can be shown that the term Ap” vanishes (see (A.l) in 
appendix A) while ApJx(z) = Ap^(z) by symmetry. We define

y* = -f dz ApJ(z) 
0

= -8X J dx j dy J dz { ApS>.(x,y,z) + Apfti(x,y,z) 
ooo

+ ApJ^Cr.y.z) }
which is of the order L°. First, we will discuss the term d£2* to extract the definition of y*.

Comparison of dQ* with the term of order L2 in the thermodynamic expression for 
dQ, (4.3), gives for the microscopic definition of Ya

dQfl = -X p L3 (5.10)

Compared with the term of order L3 in (4.3), (5.10) shows that the constant p which defines 
Pb is indeed equal to the pressure of the fluid. The second term, dfl/,, reads

= -121 L J dy J dz { ApS(y.z) + Ap)&(y,z) + Ap> . 
0 o

which is of order L. The last term, dfl^. reads
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Y^(j) = (5.18)

The integrand of (5.18) reads

Apr(z) (5.19)

(5.20)

(5.21)

(5.22)

(5.23)

- J dz { Apffz) + ApS(y.z) } 
0

+ Ap$(y,z) = p»(oo,y,z) - p

-.2) of appendix A shows that

= - J dy J dz { ApS(y,z) + Ap&,(x,y,z) } 
o o

<(y) = Ya

for all distances y. At y large, the term Ap$ vanishes and (5.18) reduces to (5.16). At the 
hard wall y=0, pyy is equal to kBT times the density at the wall, c.f. (2.11), and (5.18) 
becomes the density expression (4.13). Expression (5.18) is a generalisation which contains 
both the pressure expression (5.17), at y =oo, and the density expression (4.13), aty = 0.

We proceed with the term of order L in (5.9), d<2^ given by (5.12). Comparison with 
the term of order L in the thermodynamic expression for the change in grand potential, (4.3), 
gives the microscopic definition of xBh

notation, in (1.4). Before we proceed to the term of order L in dQ, we will derive an exten
sion of (5.16) or (5.17).

The path of integration in (5.16) and (5.17) must be taken far away from the edges of 
the system. The deviation of pT from its bulk value p results from the presence of the wall 
at z = 0 only. We ask the question what happens if the path of integration is chosen close to 
an edge and the influence of the edge on p is taken into account. Consider as example the 
edge formed by the walls at y = 0 and z=0. Define

^hh = - J dy J dz { Ap&(y,z) + + ApJ&Cy.z) }
o o

The second and third term in the integral vanish (see (A.2)) and the definition of Taa simpli
fies to

*aa = -j dy J dz Ap^(y.z) 
o o

which has precisely the same structure as the definition (5.16) of y*.
The plane of integration in (5.22) is taken far away from a comer: the integrand is 

determined by the presence of the edge alone. Analogous to the case of the surface tension, 
the plane of integration in (5.22) can be taken close to a comer. One can show this by defin
ing
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6. Pressure expressions for the surface and line tension: soft wall.

(6.1)

(6.2)(z)

p(?) = Pb + Ap*(x) + Ap*(y) + Aps(z)

+ Apw,(x,y) + Aprt(x,z) + A^jh (y,z) + Apshh (x.y.z) (6.3)

The local density must also be decomposed. It turns out to be most convenient to decompose 
it slightly different from (6.3)

and demonstrating (see (A.3)) that tj), (x) is independent of x:

thhW = (5.24)
In the limit that x is large, ApSj, vanishes and (5.23) reduces to (5.22). At the wall x=0, 
pa satisfies (2.11) and (5.23) reduces to density expression (4.14). tj), plays the same role 
for the line tension as played for the surface tension. It can be regarded as an expression 
that interpolates between the density expression (4.14), at x=0, and the pressure expression 
(5.22), at x=<x>.

Finally, we consider the term of order L°, dQ^j,, in (5.9) which is defined in (5.12).
Identity (A.3) tells that the integral over each term in the integrand of (5.12) vanishes

In this section, we replace the hard wall in the plane z=0 by a structureless, soft wall 
and repeat the calculation of the previous section. The microscopic expression (2.10) for the 
change in grand potential contains the extra term n as compared to (5.1). Using
that the soft wall is structureless, i.e.

<t>“(r) = ~ = odx dy
this term reads with displacement field (4.1),

7?(7)V<t>“(7) = X z A <]>“ 
dz

The pressure tensor is decomposed in the same fashion as in (5.4) in the previous section but 
one has to distinguish between distortions of p near the hard walls and distortions near the 
soft wall. The distortions near the soft wall, far away from the comers and edges, are 
denoted tips- The distortions near an edge formed by the soft and a hard wall are denoted 
tip5h- The distortions near a comer formed by two hard walls and the soft wall are denoted 
tip shh- Decomposition (5.4) is replaced by

— 0 (5.25)

in accordance with the fact that no terms of the order L° appears in ti nodynatnic 
expression for the change in grand potential, (4.3). These terms are a' .'ecause the 
comers are not deformed by displacement field (4.1).
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(6.7)

} (6.8)dx

L

(6.9)an* -5

(6.10)dO,* = — 4
0

(6.11)anAA =

,«< } (6.12)d^shh - -4
0

(6.13)diiwiA = -4

We verify that all terms in the decomposition of p and

ns(z) = n(«o,oo, z) (6.5)

An;, is the correction we have to add to ns if the density is evaluated close to a hard wall, 
far away from the edges and comers. Taking y and z to infinity yields

n(x,y,z) = ns(z) + An*(x) + An*(y)

+ AnhA(x,y) + An^(x,z) + Ans*(y,z) + &nM (x.y.z) (6.4)

where ns(z) denotes the density at a distance z from the soft wall, not influenced by the 
hard walls. Taking x and y to infinity, (6.4) gives the definition

J
0

'p —1 n appear in (6.8)-(6.13). The first 
term Pb in the decomposition of p is included in d£2g. There is one correction term Ap,

with dfij

dfi = dnB + dfij + dfi* + dQ,* + dQ^i + dClshh + 

as in (5.8) and

Now that we have decomposed the density and the pressure tensor, we use them to 
decompose the change in the grand potential in orders L".

0
L
j dx f dy j dz { Ap- ( An* + &nsh ) 1Z-V04 
0

-8 J
0

L 

dn, = -j 
0

Anh(x) = ^(x.oo.oo) - nB (6.6)

since ns becomes equal to the bulk fluid density nB far away from the soft wall. The 
remi’.min?, terms in (6.4) are defined similarly. An^ denotes the correction near an edge 
. m .by a hard and a soft wall, AnAA the correction near an edge formed by two hard 
w.:i the correction near a corner formed by two hard walls and the soft wall.

; n 1 . ihere exists the correction An^ in a comer formed by three hard walls. Note that 
in .. ion terms An as defined here should not be confused with the terms An of section 
4.

0

dx J dy J dz ^hhh\Vlt 
o o

o 
L

dx J dy J dz 
o o

J dx J dy J dz { XpshhyH - ( Ahaa + &nshh ) 7?-V0* 
o

}

ns
L oo

J dy J dz { -
o o

J dx J dy J dz 
o o
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=4

which can be integrated and

(6.15)

From (5.14) we find

(6.17)

(6.18)

(6.16)

Therefore, the definition
dQ* = X yh 10L2

which also occurs in the thermodynamic expression (4.15) for dQ.
of ys is indeed included in dQs. (6.8) gives for dQ,

J dz { Apf(z) + Ap”(z) - z ns{z) 
o

Comparison with (4.15) yields the microscopic definition of ys

dQA = -A. 5L2 J dy { ApJ'(y) + Ap^(y) + Ap^(y) } 
o

dQ, = -A L2

wall becomes infinitely repulsive at small values of 
general not integrable over small values of 
integrated. The term An^ is defined as

Y, = - J dz { ApT(z) + Ap?(z) - z n,(z) A <t>“(z) } 
0 dz

>ex: is therefore in
n can be

An,*(y,z) = n(<x>,y,z) - n(oo,oo,z) - An*(y) (6.14)

The products n(°o,y,z) and n(oo,oo,z) will both be integrable over small
distances of z. The combination An*(y) ~u-70“' however, will not be integrable. Therefore, 
the term An,*)7-can in general not be integrated over z whereas the combination 
(An* + An,*) zZ-V<j>“r is integrable.

Similarly, it is the combination (An** + An,**) icV<f>“ 
not the seperate terms.

Decomposition (6.7) is the expansion of dQ in orders of L. The term dflj is of the 
order L3, dQ, and dQ* are of the order L2, dQ,* and dQ** are of the order L and dQ,** 
and dQ*** of the order L°. dQj is the same as in the previous section. First, we analyse 
the terms of order L2 to extract the microscopic definition of y, from them. (6.9) yields

which is combined with ns in dQ,. There are five terms Ap*, from the five hard walls. 
They contribute equally to dQ and we took the plane y=0 as exemple to represent dQ*. 
There are also five terms An*. The product An* vanishes however along the wall
at z=L since vanishes there. The four remaining terms An* are combined with the four 
terms An,* and the four terms Ap,* in dQ,* taking the edge formed by the walls at z=0 
and y=0 as exemplary. There are eight terms Ap** which are included in dQ** with the 
edge formed by the walls at x=0 and y =0 as exemplary. There are also eight terms An** 
but the product An** i7-V0“' vanishes along the four edges formed by the wall at z=L. 
The four remaining terms are combined with the four terms An,** and the four terms Ap,**. 
Together, they form dQ,**. The last terms, the four terms &phhh- form dQ***.

Note that it is necessary to take the combination (An* + An,*) in (6.10). The soft 
The product 17-V0' 

Only the combination

d
dz
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(6.19)

(6.20)Yj

In terms of pT and p, it reads

dz { pr(oo,oo, z) - p } (6.21)

Yj

(6.23)

(6.25)

= - J dz Apl(z) 
o

7ysy(y) = “J dz { Ap*7(z) + }
o

where the integrand is given by (5.19), it follows from (B.3) that

= - J dz ApJ'Cz) - Iv
o

which differs from the microscopic expression (5.16) for y* by an extra integral /]. One can 
however show that this integral vanishes (see (B.l) in appendix B). The microscopic expres
sion for ys thus becomes

= -X 8L J dy J dz { &p1fi,(z,y') + Ap$(z.>) + Apg,(z,y) } 
0 0

7sy(y) = Yj (6.24)
for all distances y. Expression (6.23) reduces to (6.20) at large y where Ap$ vanishes and 
becomes equal to density expression (4.23) at y = 0 where pyy satisfies (2.11). As yf (y), 
yyy (y) can be regarded as an expression for y, that interpolates between the density expres
sion and the pressure expression for ys.

We proceed with the terms of order L in decomposition (6.7) of the change in grand 
potential. We start with the term dfl*/,, (6.11).

7 T 5-J dz { p' (00,00, z) - pzz(oo,oo, z) + z n(oo,oo, z) — <()“'(z) } (6.22) 

0 °z
Expressions (6.22) and (6.21) for the surface tension of a soft wall are frequently used6X 
They can be extended in the same way as in the previous section. The path of integration in 
(6.20) is to be taken far away from the edges where the soft wall borders at a hard wall. As 
in the case of y*, one can show that the path of integration can as well be taken close to the 
edge. The distortions of pT due to the neighborhood of the edge have no influence on the 
integral (5.17). If one defines analogous to (5.18)

Yj = -J
o

An alternative form is obtained if —/j in (6.19) is replaced by /j, since /i is zero, and Apf, 
Ap;z and ns are expressed in pT, pzz, p and n
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From (5.21)-(5.22) one has

(6.27)- ( An*(y) + Anjh(y,z) ) z — 0'

=
0

(6.28)z

(6.29)

(6.30)

(6.31)

and one finds from (B.4)

Like

= -X 4L / dy f dz { ApS(y.z) + Ap$(y,z) + Ap^(y.z) 
0 0

_ / Am./ -1- Am / .. — \ \ —
x — ’-n\j/ ■ ‘-‘l,sn

The integral over ApJJJ vanishes, c.f. (B.3). Comparison with (4.15) gives the microscopic 
expression for

= — J dy J dz Ap5(y,z) - I2 
0 0

The structure of (6.29) differs from the definition of t**, (5.22), in 
can show again that 12 is zero 
to

= - J dy J dz { Apg( y, z) + Ap^a( x, y, z) } 
0 0

•“(z) }

an,*

dQ** = X 8L (6.26)
This contribution to dQ occurs also in (4.15). The microscopic expression for t5a is there
fore contained in dQp, given by (6.10).

xsh = - J dy J dz ApS( z) 
0 0

As in the case of the surface tensions, the expression for turns out to be of the same 
structure as the expression for (5.22). Finally, we ask once more the question what hap
pens with the integral in (6.30) if the plane of integration is shifted towards a corner formed 
by a third hard wall and the influence of the comer on the tensor is taken into account. 
Define analogous to (5.23)

wall x = 0, p**

the extra term I2. One 
(see (B.2)) and the microscopic expression for ish simplifies

= xsh (6.32)
for all distances x. At large distances x, ApJSa vanishes and (6.31) reduces to (6.30). At the 

" satisfies (2.11) and (6.31) becomes the density expression (4.24).

-J dy J dz Ap5(y,z) 
o

- J dy j dz {ApS(y,z) - ( An*(z) + An5>1(y,z) ) 
o o

<j>“'(z) }a
3z
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(6.33)

(6.34)

(6.36)( x, y,~) - p }

= y^W 8z (6.37)

which equals with the use of (5.20)

(6.38)7h 8zSt,*

This is the result (3.13).

Sy, = -p 8z
which is equal to (3.12). The integrand in (6.31) becomes at z = 0

= X J dx J dy J dz { Ap^(x.y.z) 
ooo

•“'(z) }

= -8z J dy { p 
0

tjjJCt), tJJ(x) includes both the density expression and the pressure expression for t5*.
Finally, we have to evaluate the terms of order L° in (6.7). The term dQ^j vanishes 

according to (A.3). The term dd^j,, (6.12), is more cumbersome. With (B.4), this term 
simplifies to

St,*

- ( AnWl( x, y) + AnjW1(x,y,z) ) z 0"

This integral is the third in a hierachy of which the first and second are the integrals (B.l) 
and (B.2). In the same way as it is shown that these integrals vanish, it can be proven that 
this integral vanishes, i.e. <iClshh vanishes. This means that there is no term of order L° in 
the change of grand potential, in accordance with the fact that this term is also absent in the 
thermodynamic expression (4.15) for dQ.

We conclude this section with a consideration of the dependence of ys and Tj* on the 
lower boundary z=0 assigned to the system. This dependence was discussed in section 3 
where it is made explicit in equations (3.12) and (3.13). The same dependence must be 
appear in the microscopic definitions of ys, (6.23), and (6.31). The integrand that 
appears in (6.23) takes the value -p at z =0, c.f. (5.19). If we shift the lower boundary with 
an amount 8z, the integral changes with an amount

Note that p^lx.y.oo) is the xx component of p in an edge formed by two hard walls. The 
integral is recognized as y^(x), the symmetric equivalent of yR(y) defined in (5.18)-(5.19)

ApSCP.O) + ApS>,(x,y,0) = -{ pXI(x,y,~) - p } (6.35)

If we shift the lower boundary z=0 of integral (6.31) over a distance 8z, the integral 
changes with an amount
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7. Surface tension of a structured wall.

a

O(L°) (7.3)= 2a L +

(7.4)2 
adL'

and the surface tension of the structured wall reads

Up till now, we have restricted ourselves to hard and structureless, soft walls. The case 
of a structured, soft wall will be treated in this section in which we focus on the pressure 
expressions. Density expressions also exist but are far less elegant than in the structureless 
case, as we discuss below. Moreover, the discussion will be restricted to the level of the sur
face tension alone since already at this level, the calculation is much more complicated than 
for the structureless wall.

The box and displacement field are the same as in the previous sections with the wall 
at z = 0 replaced by a structured, soft wall. Such a wall is periodic and we denote the length 
of the period in the x-direction as ax, the length in the y-direction as ay. The change in 
grand potential upon the deformation equals

Ysr — 'T’7 J dL
l

using that dQjZ = 2A, yJf(L') L'2 
thermodynamic limit.

If we try to obtain a density expression for the surface tension of a structured wall, we 
readily find that the density at the hard walls is related to yJZ(L). Therefore, a density 
expression for ysl also incorporates a shift of the walls over a complete periodic length. In 
other words, the density expression incorporates an average over all possible locations of the 
hard wall within a period a as in (7.4). This average makes the density expression far less 
elegant than the density expressions (4.13) and (4.23) for a structureless wall. This is the

j dL' 7j,(L') + O(A.-‘) 
L

and dL' = X L'. The term of order L-1 vanishes in the

dQ = -p dV + yfl(L) dAa + yK dAh + O(L) (7.1)

= dQB + dQa + dQ* + O(L) (7.2)

Asl denotes the surface of a structured wall, ya its surface tension (the index "st’ stands for 
"structured"). The increase dA „ is the same as the increase dAs in (4.16). Terms of the 
order L are neglected since we restrict the discussion to the level of the surface tension.

Because of the structure of the wall, the change in grand potential under an infini
tesimal shift of the boundary planes at x,y=0 will depend on the location of these planes. 
The walls at x=L and y =L remain in place under displacement field (4.1). The shift defines 
a "partial surface tension" yst(L). To obtain the "full” surface tension ysl of the structured 
wall, one should consider an increase of Ast with an integer number of units of area axxay. 
This increase is most easily visualised if ax=ay=a in which case one can simply increase L 
with a periodic length a. For simplicity, we consider this case; the case a,*ay presents no 
conceptual difficulties. From time to time, we will again distinguish in the notation between 
ax and ay to show what the result is for the general case.

Considering an increase of L with one period, the increase of Asl equals
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77(7’)-V^ (?)

=4=», =»

(7.6)

(7.7)

(7.8)

(7.9)}dx

reason that we do not consider them further.
In the case of a structured, soft wall -following route (2.10) to the change in grand 

potential- (6.2) is replaced by

L
J dy J dz { tips:Vlt - 
o o

sec-

p(x,y,z) = pB + ApA(x) + Aph(y) + Aps(x,y,z)

= X{ (x-L) ^(T) + (y—L) <t>“'(r) + Z

d£i„

Ap,(x,y,z) = p(x,y,z) - pB

The periodicity of <{>'“' is reflected in Apf: it is a periodic funtion with, in the general case 
ax*ay, a period ax in the x and ay in the y-direction.

Inserting the decomposition of p in (2.10), we obtain decomposition (7.2) of dQ with 
dQfl given by (5.8), dQ* by (6.9) and

L

= -J
0

Note that we did not use the decomposition of the density but included the term n 
completely in d£2B which differs therefore from the term (6.8) for d(l, in the previous 
tion,.

The factor iZ Vtj)"’ in df2jr consists of three terms: besides the term involving z3z, the 
structured character of the wall has introduced a term involving (x-L)3;t and (y-L)3y 
(see (7.5)). The integral over n z is easily evaluated. This integrand is periodic far 
away from the hard walls. Therefore, all units of area far away from the hard walls contri
bute equally to the integral which is thus of the order L2. Similarly, all units of area far 
away from the hard walls contribute equally to the integral over ^px:^u which is therefore

+ ApAA(x,y) + AplA (x,y,z) + Apjfl (x,y,z) + ApjW1(x,y,z) 

n(x,y,z) = nJ(x,y,z) + An*(x) + Anh(y)
+ AnAA(x,y) + An^i)(x,y,z) + Anjjp (x,y,z) + (x,y,z)

Note th ;he correction terms An and Ap involving the soft wall are a function of all three 
coordinates ^y.z due to the periodicity of the wall. Therefore, we have to di^jnguish 
between txpsh referring to the edge formed by the walls at z=0 and x=0 and Aprt refer
ring to the edge formed by the walls at z = 0 and y =0. A similar distinction exists for An^) 
and Anjjp. The correction terms vanish far away from the walls, at positions 
£ < x,y,z < Z./2 which we denote as ~r. Taking e.g. x and y far away from the hard walls,
(7.6) gives the definition of Apz

9 -art , > 3v v/lv v v/ ... A <j>“'(r) } (7.5) 
dx dy dz

The pressure tensor and density are decomposed as in the previous section. The decomposi
tions in the corner x,y,z > 0 read, c.f. (6.3) and (6.4)
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(7.10)

}= -

+ O(L-1) (7.11)

1 } (7.12)

(7.13)Y« = - J dx dy J dz { ApJ*(x,y,z) + ^p^(x,y,z) } 
cell 0

__ 1
2axa
L

dQfl

1
2axay

— j dx dy j dz { Ap7 + Ap>7 + Ap" - z n, 4~Qe3“ 
'■y cell 0 c'z

£ OO

+ yk- J dx J dy J dz n { (x-L) + (y-L) ~ } 0“
2L 0 0 0 °x dy

To obtain ysl, yB(Z/) has to be averaged over all values of L' between L and L+a as indi
cated in (7.4). The first integral in (7.11) does not depend on the location of the hard walls 
but is entirely given by the properties of the fluid in the middle of the soft wall. The average 
(7.4) of this integral over different locations of the wall is therefore trivial. The second 
integral however, does depend on the location of the hard walls since the density in the 
edges, which contribute to the order L°, depends on it. Some knowledge about the density in 
the edges is necessary to be able to perform the average. In appendix D we show, by using 
an expansion of the density in the activity, that average (7.4) over the second term in (7.11) 
vanishes. Thus we find

also of the order L2.
The integrals over n (x— L) 9x<f>ta and n (y—L) 3y<t>eM are more difficult to evalu

ate. These integrands are not periodic and moreover, they become of the order L near the 
walls at x=0 and y =0 respectively. Therefore, it seems as if the integrals are of the order 
L3. This is, however, not the case: one can proof that although the integrands are not 
periodic, each unit of area far away from the hard walls still gives the same contribution to 
the integral. This follows immediately from the fact that the integrals of n dxtf1' ant^ 
n dyfy"1 over a unit of area in the middle of the soft wall vanish (see (C.l)). As all units of 
area far away from the hard walls contribute equally to the integrals over n (x-L) 0x0 
and n (y-L) these integrals are of the order L2. The fact that the integrand
becomes of the order L gives these integrals a remarkable feature: the deviations of the den
sity near the walls at x=0 and y=0 contribute to the order L2. We therefore split dOfl in 
two terms

= -L2 —J dx dy J dz { A^(r):Vi? - Xz n,(r) -^“’(r) } 
axay cell 0

L Z. ~
+ A. f dx J dy J dz n(7) { (x -L) — + (y - A) — }<)>“' (r) + O(L) ( 

ooo °x °y
where a cell stands for an area axxay far away from the hard walls. Dividing (7.10) by
2X L2, we obtain from (7.1)

y„ = - —----- J dx dy J dz { Apf + Ap» + Ap" - z n,
2axay „u 0 oz

As in the previous section, the integral over Ap” cancels against the integral over
z ns 3Z4,C“ (see (C.2)) and the expression for y„ simplifies to
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Y« =

(7.14)

8. Summary and conclusions.

(8.1)

(8.2)

Instead of displacement field (4.1) we could have used a displacement field that shifts the 
wall at x =0 or y =0 only. In that case, we would have obtained

We have derived microscopic expressions for the surface and line tension of solid-fluid 
interfaces. They were obtained from a careful analysis of the change in grand potential 
under a deformation of the fluid’s vessel. These expressions fall into two classes: density 
expressions and pressure expressions. The density expressions relate thermodynamic quanti
ties to the density at a hard wall, the pressure expressions relate them to the pressure tensor.

Density expression (1.1) for the pressure was already well known3! and it is shown in 
this paper that it is the first in a hierachy of three expressions, the second involving the sur
face tension, the third the line tension. Density expressions for the surface tension relate the 
density at a hard wall near an edge, to the surface tension of the wall which forms the edge 
with the hard wall. The second wall can be either a hard or a structureless soft wall, the den
sity expression reads in both cases

T = -kBT j dy j dz An(y,z) 
o o

c.f. (4.14) and (4.24). The validity of (8.2) has been proven in the cases that the edge is 
formed by two hard walls and by a hard and a soft wall. One can demonstrate that it also

Y = -kBT J dz An(z) 
0

c.f. (4.13) and (4.23). The second wall can also be a structured, soft wall in which case 
An(z) depends on the location of the hard wall in the elementary area which is defined by 
the structured wall. If e.g. the hard wall is placed in the y-z plane, the r.h.s. of (8.1) should 
be averaged over all locations of the hard wall within the periodic length in the ^-direction 
to obtain the density expression for the structured, soft wall.

Density expressions for the line tension have precisely the same form as (8.1). They 
relate the density at a hard wall near a comer, to the line tension of the edge which stands 
tangential to the hard wall and terminates in the comer. The expression reads

----- — J dr dy J dz Ap°(x,y,z) 
axay cell 0

=----- -— J dr dy J dz ApJy(.x,y,z)
axay cell 0

which shows that the integrals over a unit of area of ApJ“ and Ap^ are equal. This expres
sion for ysl is a direct generalisation of (6.20).
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(8.3)

(8.4)

holds in case of an edge between two structureless, soft walls. We did not consider edges 
which involve a structured wall. However, we have no reason to assume that anything else 
but the same averaging as in the case of the surface tension has to be applied to (8.2) in that 
case. In general, density expressions also exist near soft walls as discussed at the end of sec
tion 4, but we did not pursue them in this paper.

The pressure equation for the surface tension is also well known5). It reads

T = - J dy J dz Ap^Cy.z) 
0 0

which is proven for an edge formed by two hard walls and an edge formed by a hard and a 
soft wall, c.f. (5.22) and (6.30). Again, one easily proves that it holds also for an edge 
formed by two structureless soft walls and we expect its validity, with the usual averaging 
procedure, for an edge which involves a structured soft wall, too. The latter assumption how
ever, is probably hard to prove rigorously.

TSurprisingly, it turns out to be possible to generalize (8.3). One can evaluate p at an 
arbitrary distance from an edge formed with a hard wall and show that the influence of the 
edge on pT does not alter the integral, c.f. (5.20) and (6.24). This generalized expression 
reduces to the density expression (8.1) if the distance to the wall is taken to vanish since the 
diagonal components of the pressure tensor become equal to k^T times the density at a hard 
wall, c.f. (2.11). The same generalisation is possible for (8.4) where it can be shown that the 
influence of a comer on p11 leaves the integral unaltered. Reducing the distance to the 
comer, formed with a hard wall, transforms the generalized expressions to the density 
expression (8.2).

We have seen various expressions for the surface and line tension, all related to the 
routes (2.10) and (2.12) to the change in grand potential. The expressions are very sym
metric: they are the same for all the models of a wall we have considered and furthermore, 
each expression for the surface tension has its counterpan at the level of the line tension. 
The density expressions reveal that the density at a hard wall is related to thermodynamic 
quantities, a surprising fact. Probably of more practical use are the pressure equations since 
they are well suited to measure surface and line tensions in a simulation. Especially the pres
sure equation for the structured soft wall is of immediate interest in view of the many

Y = - J dz Apr(z) 
o

which holds for both a hard and a structureless soft wall, see (5.16) and (6.20). The deriva
tion of a pressure equation for the structured, soft wall is much more complicated but the 
result is a straightforward extension of (8.3). In the case of a structured v Apr depends 
also on the position along the wall and we have shown that the r.h.s. of (8 .■ h?.s to be aver
aged over a unit of area to obtain the pressure equation for the structured v

Pressure equations for the line tension have again the same form as : .nation (8.3)
for the surface tension. Whereas (8.3) expresses the surface tension of a w . .the com
ponent of p along the wall, the pressure equation for the line tension expr his quantity 
in the component of p along the edge, i.e. p“. The expression is given by
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investigations of the solid-fluid surface nowadays. If, however, simulations will ever deal 
with edges or contact lines, the expressions for the line tension will certainly prove to be 
equally useful.
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Appendix A.

the hard wall in the plane

(A.l)ApJ’(z) = 0

(A.2)

(A.3)

(A.4)

P°P(oo,oo,z) (A.5)a * p0

(A.6)

stated by

(A.7)ApftCX.z) = pW'(~,y,z) - p^oo.oo.z)

(2.2) reads in this case

(A.8)

(A.9)

J dz Ap$(y,z) = 0 
o

We proof the following properties of a pressure tensor near 
z =0

near hard

j dy j dz = 0
o o

These properties all follow from the condition that the tensor is divergenceless 
walls, (2.2) with 0°* =0.

First, we proof (A.l). In terms of p” and p, &p™ reads

in which case condition (2.2) on the divergence of p reads

The term p*7(oo,y,<») denotes an off-diagonal component of p near a hard wall, far away

Ap* (z) = p“(oo,oo,z) - p

The off-diagonal components of p vanish near a hard wall, far away from edges and comers

-t" ApJHy-2) = --T- Po(“,y.z) dy dz
There appears no derivative with respect to x since the tensor is translationally invariant in 
the jr-direction in the edge formed by the walls at y = 0 and z = 0, far away from the plane at 
x=0. From (A.8), we find

--V- J dz Apgi(y,z) = pz>(~,y,oo) - pz>(»o,y,0) = 0
o

4“ Ap£(z) = 0 
oz

Since Ap” vanishes in the bulk fluid, at z=°o, it has to vanish at any distance z as 
(A.l).

Secondly, we proof (A.2). In terms of p37, Apgi reads
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(A. 10)

{ p>*(x,y,z) - P>x(x,y,~) } -^- { p“(x,y,z) - p“(x,«,z) } (A.ll)

(A.12)

Appendix B.

(B.l)

J dy J dz { ApJ(y,z) - ( AnA(y) + AnjA(y,z) ) 
o o

r _VXz.. _VX/„ .. \ 1

This yields for the derivative of the integral (A.3)

oo oo OO 00

-3- J dy J dz Ap^,(x,y,z) = J dz p>x(x,oo,z) + J dy p“(x,y,oo) (A.13)
°x 0 0 0 0

The arguments, based on the microscopic definition of p, (2.1), and the symmetry in the pair 
correlation function, that lead to (A.5) also show that these terms vanish. Thus, the deriva
tive (A.13) vanishes and since the integral vanishes atx=oo, the integral vanishes at any dis
tance x, yielding (A.3).

We proof the following properties of the tensor near the structureless soft wall in the 
plane z = 0

--- J dy j dz Apg;A(x,y,z) = j dz [ p*x(x,y,z) - pyx(x,y,oo) ]~=0 

dx o o o

+ J dy [ p“(x,y,z) - /^(x.oo.z) ]7=0 
o

The off-diagonal components vanish at and near a hard wall due to (2.11) and (A.5) respec
tively. The only remaining terms are the terms in the edges

r) r)
3- ApS*(x,y,z) = 3- { p°(x,yz) - px'(x,y,~) - p°(x,o«,z) } 
dx dx

With (2.2), the derivative is rewritten as

ApSw.(x,y,z) = dx

J dz { Ap”(z) - z rij(z) <|>“'(z) } = 0 
0 dz

z ^(z) } = 0 (B.2) 
dz

from the edges and vanishes due to (A.5). The second term denotes an off-diagonal com
ponent at a hard wall which also vanishes, c.f. (2.11). Therefore, the derivative (A.8) van
ishes. Since the integral vanishes at y =», where the integrand vanishes, the integral has to 
vanish at any distance y which implies (A.2).

Finally, we proof (A.3). The derivative of Apjw, with respect to x reads
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(B.3)

(B.4)

(B.5)(z)

(B.6)

(B.9)(z) }

(B.10)

<2 = J dy J dz ~ { 
0 0 dz

(B.7)
(B.8)

J dz Apg(y,z) = 0 
0

ApSCx.z) =
{ P!!(“.J.z) - p } - { pzz(~,y,~) - p } - { p22 (oo ,oo ,z) - p } 

Anh(y) + = n(~,y,z) - n(oo,oo,z)

so the integral, called I2, reads in terms of p22, p and n

J dy J dz Ap^Oc.y.z) = 0 
0 0

z Apzz(z) }

z (pzz(~,y,z) - pzz(~,y,oo)) }

-n(~,y,z) 0'
dz

Substitution of these identitities in the first integral of (B.9) gives

V" P>z(~,y.z) + { pzz(~,y,z) - pzz(oo,y,«>) } =
dy dz

Il = j dz { 
0 dz

since Apf (z) vanishes at large distances z, 11 vanishes as stated by (B.l).
Secondly, we proof (B.2). The integrands that appear in the integral read in terms of

, p and nP”

>“'(z) }

'“(z)

V- Ap"(z) = -ns(z) y- 0"“ 
dz dz

Insert this identity in the integral (B.l), called / and one obtains

First, we proof (B.l). The correction term Apzz is defined as in (A.4) with the hard wall 
in the plane z=0 replaced by a soft wall. Identity (A.5) still holds. Condition (2.2) reads 
now

>2 = J dy / dz { pzz(«,y,z) - p21 (~,y,00) - z n(~,y,z) 0'
00 dz

- J dy dz { pzz(=o,~,z) - p - z n(»o,oo,z) 0“ 
0 dz

The last integral vanishes due to (B.l). Condition (2.2) on the divergence of the pressure 
tensor reads in this case
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(B.ll)

(B.12)

Appendix C.

(C.1)

(C.2)

.y* (C.3)

]7=o (C.4)

V/e proof the following properties of the density and pressure tensor near the structured, 
soft wall in the plane z = 0

/2 = J dz Z { pyz (oo ,oo ,z) - pyZ(oo,0,z) } 

0

The first term of the integrand denotes an off-diagonal component of p near a soft wall 
which vanishes. The second term denotes an off-diagonal component at a hard wall which 
also vanishes, c.f. (2.11). Therefore, I2 vanishes.

The 'roofs of (B.3) and (B.4) are the same as the proofs of (A.2) and (A.3). One 
should ir. 'iy keep in mind that the hard wall in the plane z=0 has been replaced by a soft, 
struciu c’. one for which (6.3) holds.

1X”' + J dx J dz [ 
aM 0

J dx dy f dz /!,(?) ~ 0“’(7) = 0 
«« 0 dx

J dx dy J dz { Ap"(r) - 
cell 0

where a cell denotes a unit of area far away from the hard walls. Both identities follow from 
condition (2.2) on the divergence ofp.

First, we proof (C.l). Condition (2.2) reads

-^1 = J dy J 
0

z ns(r) <t>au(rf) } = 0 
dz

dz [ p"

+ J dx dy [
celt

where xo and yo denote the lower boundaries of the cell. The periodicity of the tensor 
makes the first two terms vanish. The fact that the tensor vanishes completely at z=0 and 
that its off-diagonal components vanish in the bulk fluid shows that the third term also

+ f dy J dz z p’"(<»,y,z) 
00 dy

Integration with respect to z shows that the first integral of the r.h.s. vanish. The integration 
with respect to y in the second integral gives

y- k + y- Pyx + y- = ~n, 0“dx dy dz dx
since n equals ns far awy from the hard walls. Substituting the l.h.s. in the integral in (C.l), 
denoted by 11, one obtains

333 P
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(C.5),y*

(C.6)

(C.7)}

Appendix D.

We proof that average (7.4) of the integrals

L L
dQx = X J dx f dy f dz n(r) (x-L) -^-^“(T) 

ooo °x
(D.l)

and
L L

(D.2)

(D.3)

= Z <w(7t) ZN
N = 1

(D.4)

vanishes, which proves (C.l).

The proof of (C.2) goes similarly. Condition (2.2) reads

n<71)

d
+ 5- P dy

L L 00
dQx = J dx’ J dy' j dz' n(7) x' -A-<t>CI'(r*) 

000 °x
To be strict, we should have replaced n by n' with n'(7) = n(P) (and similarly for $“') 
but since the properties of n' and n are essentially the same, we drop the prime. The density 
at a position 7 is evaluated in an expansion in the activity z, defined in (2.6) (the activity z 
should not be confused with the position z).

I2 = J dx dy J dz A { z Apzz 
«u 0 3z

Since Apzz vanishes in the bulk fluid at z=<x>, l2 vanishes.

dQ,,

d gjti

= -n’ d7 <"

A <)>«' 
dz

= k J dx J dy J dz n(r) (y-L) 
000 °y

vanish. It will be proven explicitly for d£2x whereupon it follows for d£2^ by symmetry.
At first, we find it more convenient to shift the origin x,y =0 to x,y =L. Denoting the

new coordinates as 7*, df2x becomes

J dx dy J dz A Apzz = - J dx dy J dz n
cell 0 °2 cell 0

and thus the integral in (C.2), denoted as I2, can be written as

A p“ + A p>z + A Apzz 
dx dy dz

Integrating (C.5) over a unit of area and using the periodicity of p, we obtain
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where the coefficients are of the form10)

Ju) + 1 } Fn(?i (D.5)

with

F-i (7*1 ,7*2,A)

(D.9)

(D.ll)

dA/ FN(y!

(D.14)

(D.7)

(D.8)

Cn(7*i) = J dr*2,...,d7*N { F'N(?X 
v

Fl = 1

7*2 (7*1 .7*2) = A''12)

(D.12)

Due to the short ranged character of FN and the fact that Ffa vanishes if all the z, are large, 
the integration over the z-coordinates can as well be taken from 0 to 00

dQx 
dL’

L
d£lN = X J djc 1 dyi J dzi J d7*2, 

0 0 v

= y { /(ri2) /(ns) /('-23) + /(n2) /(rn) + 

/(rI2) /(r23) + /(rt3> ^23) }
where/(r;;) denotes the Mayer f-function

Ffc(7*i,...,7*N) = e”pl9 - 1 (D.6)

and Fpj(P}, . . . ,7\) a function which depends only on the relative distances r,j and is 
short ranged, i.e. vanishes when one of the r,y becomes large, except for N = 1. Furthermore, 
F/v is symmetric under permutations of its arguments. For N = 1,2,3 we have

dQx = X dQN zN
N=\

with, dropping the prime of the arguments,

FN&\

3
d£2w = X / dxt.....dyN J dz!..... dzN FN(?iXi F^(7*!(D.13)

The average (7.4) reads

I dL'

/(nj) = e P0(r'') - 1 (D.10)

and <(> stands for the interpanicle potential. Inserting expansion (D.5) in d(2x results in the 
expansion
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Expansion (D.l 1) gives

(D.15)

with

(D.16)

(D.19)

+ O(L°) (D.18)

Finally, we use the periodicity of Ffj to remove the presence of L in the integration boun- 
dary of y i

+ O(L°)

One would also like to remove the presence of L from the integration boundaries of /2- 
If it were not for the factor Xi, the integrand of 12 would be periodic in X\ and y 1 and the 
presence of L could be removed by restricting the integral over xt and y] to one unit of area

,dyiW j dzi,...,dzw [ FN F‘N ]X1=l 
0

J dyi f dx12.... dx1N J dy12
00

= /i + I2 (DI?)
The presence of L in the integration boundaries of I \ can be removed. If one changes the 
integration variables x-, to x1; (i =2.... N, Xi, =Xi -X,), the Xj; can be taken to range from 0
to 00 because of the short ranged character of FN. The same substitution can be made for the 
y; with yi, ranging from -«<> to ». This range neglects the presence of the corner: at posi
tions Xj =L and yi ,zi >0, the y; should be restricted to y; >0. This restriction however, only 
adds a correction of the order L° to the integral which itself is of the order L. We obtain

dnN 
dL

-z!

/1 = -7- J dyj J dx12,...,dxiN J dyj2„..,dy 1N J dzi,...,dzN [ FN FeN ]X,=L 
ay a, 0 -00 0

L+a r
AQN = ^7- f dL'

2aL dL'

We will show that all terms AQW vanish.
To do so, we have to calculate the derivative dilfj/dL and integrate it over the increase 

of L. The derivative is simply calculated by dividing dflN by dL with dL - The integra
tion is most easily performed if the dependence of the derivative on L can be brought front 
the integration boundary to the integrand. The first step to do this is partial . ition

L L
-- J dyj J dx2,...,dyN J dz1,...,dzN [ FN F‘N 
00 0

dx).....dyN f dzi,...,dzN F‘N { FN + Xi 3^- FN }
0 °xi

AQX = £ AJ2N zn
N = \
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(D.20)

(D.21)

(D.22)

the r.h.s. of (D.20) is equal to

(D.23)

(D.24)

(D.25)

(D.26)

(D.27)

can indeed be made.
Under integral 12, the term X] 8X1 F N can be replaced by

If F is taken to be 
written as

N = z _■ 
i = 2 j = i + l

N 

= S . _+i

, a a , c , a 3 . _
( JC1/ 3xi; + X'J dxu ) N ( Xil dxu Xj' dxjt 5 N

a „ 1 " a 
97? Fn N £ Xi Fn

a function of the relative coordinates 7*,y, the r.h.s. of (D.21) can be

and changing the integration variables x, and y; to Xj; and y^. The restriction on the 
integration over X] and yi would be compensated for by multiplying the integral with a fac
tor L2/(axay). The integration over the x1( and yu would range from -00 to ■». This range 
neglects the presence of edges but they only give a correction of order L°.

The periodicity of the integrand in Xi is restored if the absolute coordinate X] can be 
replaced by a relative coordinate such as Xj,-. We show that such a substitution, namely

a F 1 £ a PX1 al? Fn n £ Xli al? Fn

N d N
Z xij FN - L

N d
— Z xij FN 

i = l J=i + 1 °xij

N N N 3
? x‘i F" - £ .£ 3^7 F»

v r r 3 + r 3 ' p 
? ( Xli 3777 + 377" } Fn

N 7\ N N 7)

£Xli Fn = £ Xli z- — Fn

N
5 3 E _ LI

i = l j=i+l axij 1=2
N 3 NN
E xij Fn - E E *ti L— fn 

i=2 j=2 dxlj 
i*‘

N 3 N N 3

x‘ al? x‘ Z 3^ F^
d

3X;
N

= E a
axy

a
dxij

d
8xu

a
dxij

a
dxij

a
dxij

a
Sxi,- 

a
8X1,-

a . a
1=2 j=i + i ^X1J 1 dXli

Under the integral, the integration variables Xi and X; in the second term and Xi and xj in 
the third term can be interchanged

a
a*i ,=2 j=2

The difference between the r.h.s. of (D.22) and (D.23) equals
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(D.28)

(D.30)

(D.31)

A/] = -

AQn =

+ o(£-1)
the factor UN compensates for the fact that each particle in the integral (D.33) 
largest x-coordinate whereas this is always particle 1 in (D.32). Adding A/i I 
larly defined A/2, A/2=/2/2, we obtain

f dxi 
cell

J d-ti dyt J dx12.... dy1A/ j dzj.....dzNFNF'N
1 0

dji f dx12.....dy,N J dz!.....dzN F‘N { FN
00 N

1 N
+ T7 E -r~ Fn } + O(L~') (D.34)

zv • _ 2 OX 1

(D.33)

1 can have the 
and the simi-

= Fn

Therefore we find that over S vanishes under the integral.

1

1
2axa,

S = 0 (D.29)

This proves that the r.h.s. of (D.20) and (D.21) are the same under integral 12- Because 
(D.21) is an allowed substitution, (D.20) must be so. With this substitution, the integrand of
12 becomes periodic in X! and I2 can be written as

1 1 -
N 2M, eeU

L + a
A/, = ^7- J dZ/ /,(£')

+ O(£-1) (D-32>

Characteristic of the integral is that all x-positions x,-, i = 2,...,N should be below Xj. This 
restriction is easily removed

L + a,
J dxj J dy! J dx!2,...,dx1N J dy 12,...,dy 1A/ j dzi,...,dzN Fn F‘N
L a, 0 0

I 00 00
12 = —— J d*i j dxi2,...,dyiN f dzlt...,dzN Ffr { FN 

axay cell -- 0
1 N

’ 77 si? 1 * mL >
Note that apart from the prefactor L, 12 is independent of L.

We have now brought the derivative diifj/dL in such a form that we can perform the 
integration (D.16). The derivative is the sum of/] and 12, c.f. (D.17). The integral over/| 
reads
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A£2;v =

AQW =

(D.38)Ally = 0

N-l
N

1
2axay

The term of order L~* vanishes in the thermodynamic limit. All the terms in the sum will 
give the same contribution to the integral. We can take the term with x12 as exemplary and 
write the integral as

(D.35)

One has to apply one more partial integration with respect to X] to see that this contribution 
vanishes

(D.36)

where x0 denotes the lower boundary of the unit cell. The first integral vanishes because of 
the periodicity of F^. Changing the order of integration in the second integral gives

dyi J dx12,...,dy1N J dzi 
0

N—\
N

Mln = -

1

OO OO

J dx12.....dy]N J dzj...... dzNxnFN / dxi dyr 3—F'N
-«o 0 cell

(D.37)

which shows that the periodicity of F% also makes this integral vanish. Therefore, we have 
obtained the desired result

J dxi dyi J dx12,...,dy1N J dzi.....dzN F‘N {x12 FN}
cell 0 <’xl

2axay

---------  N-~~ J dyj J dxi2.....dy1JV J dz!..... dzN x12 FN [ F‘N ]£*£ 
2axay N.................................................. 0

J dxj dyj / dx12,...,dy1NJdz1.....dzN x12 FN F‘N
N cell 0



CHAPTER III

A visual measurement of contact angles

ABSTRACT

We have simulated a liquid-vapor interface which is confined by two parallel walls. Initially, 
a liquid slab is positioned perpendicular to the walls. The liquid-vapor interface deforms to a 
cylindrical surface which makes a definite contact angle with the walls. The angle could be 
varied between 0 and it by changing the solid-fluid interaction strength, showing the pres
ence of both a wetting and a drying transition. The angle is related to the strengths of the 
wall-liquid, wall-vapor and liquid-vapor surface tensions via Young's law. A previous simu
lation positioned the liquid parallel to the walls and measured the surface tensions. Com
pared with the contact angles deduced from those measurements, the visually measured 
angles in this experiment give a different location of the drying transition.
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1. Introduction

Yr/ = Yrv + Y/v (1-3)

The system is called "partially wet" if 9 is between 0 and rr/2 and "partially dry" in the 
complementary case. By varying e.g. the temperature or the solid-fluid interaction, as is pos
sible in a molecular-dynamics simulation, one can achieve a transition from a partial to a 
complete wet or dry state. These are genuine phase transitions, known as the "wetting" and 
"drying" transition respectively.

Yrv = Yr/ + Yfc (1-2)

Similarly will the vapor phase intrude between the solid and liquid phase if the solid is com
pletely dry:

A capillary partially filled with liquid, provides a typical example of a system in which 
three phases are in contact. The contact takes place along the line where the meniscus, 
formed by the liquid-vapor interface, ends at the surface of the capillary. The three coexist
ing phases are the liquid, the vapor above the liquid and the solid of which the capillary 
consists. The meniscus meets the solid surface under a well-defined angle, the contact angle. 
The law of Young holds in this special case of three-phase contact where two of the phases 
are fluid-like and the third is rigid with a plane interface1). It relates the contact angle to the 
relative magnitudes of the three surface tensions involved:

Yrv = Yr/ + Y/v cos 9 (1.1)
with ylv tin. solid-vapor, the solid-liquid and y/„ the liquid-vapor surface tension; 9 
denotes the ntact angle. The angle is measured between the solid-liquid and the liquid
vapor interface.

Y law is most easily understood as a condition for mechanical equilibrium. Its 
validity -.en checked by Saville in a molecular dynamics simulation2). That simulation 
treated the ■ all as an external potential with a variable solid-fluid interaction strength. 
Saville measured y„ and ysi as a function of the interaction strength. Variation of it does 
not affect which is a property of the free liquid-vapor interface. Young’s law enabled 
Saville to calculate 9 from the surface tensions. He also measured the contact angle directly. 
For this purpose, Saville enclosed the liquid and its coexisting vapor between two parallel 
walls. The meniscus is defined as a surface of constant density which value is between the 
densities of the vapor and liquid phase. Inspection of the meniscus enabled Saville to meas
ure the contact angle directly. The simulation however, gave no satisfactory agreement 
between the two ways to measure 9.

The contact angle is a well suited parameter to describe the "wetting" behavior of two 
coexisting fluids in contact with a wall3). The wall is said to be "completely wet" if 9 
equals 0 and "completely dry" if 9 equals rt. If the wall is completely wet the solid-vapor 
interface is unstable and a liquid layer will intrude between the solid and the vapor. The sur
face tension of a solid-vapor interface equals the surface tension of a solid-liquid plus a 
liquid-vapor interface:
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2. Description of the system

Our simulations mimick a system in which three phases are present: a liquid, a vapor 
and a solid phase. Two types of particles are needed to form this system. One type is used to 
build the solid wall, the other forms the fluid. A particle of type A interacts with a particle 
of type B via the Lennard-Jones potential where A and B must be replaced by either s 
for a solid or/for a fluid particle. It reads

Sikkenk et aP> also investigated the wetting of a wall by a fluid at liquid-vapor coex
istence in a molecular-dynamics simulation. Unlike the previous simulation, the wall consists 
of particles that oscillate around their lattice position. The wall resembles a thermodynamic 
phase instead of an external potential. The authors measured ysi and y^ as a function of the 
strength of the solid-fluid interaction. They calculated cos 0 from the surface tensions for 
different interaction strengths. Cos 6 was found to grow from - 1 to 1 as the attraction 
between wall and fluid particles grew stronger. A wetting and a drying transition have been 
determined rather accurately, both of first order. The position of the drying transition how
ever, is at variance with the observed behavior of the density profile. One observed that, for 
a range of solid-fluid attractions at which the wall was dry according to the cos 6 data, a 
liquid layer spontaneously intruded at a solid-vapor interface. The reverse process occurred 
at lower attractions: a vapor layer settled itself between the wall and the liquid. The behavior 
of the density profiles suggested a drying transition at a lower value of the so id-fluid attrac
tion than the contact angle data. The authors remarked that it is difficult asure ysi and 
Yjv reliably if the wall is built from strongly coupled particles. This dif a? might be a 
source of error in their calculation of cos 0.

The purpose of the simulations we present is to check the contact a>\ calculated in 
the latter work against a direct measurement of them. Saville’s method used to perform 
this direct measurement. The conditions, e.g. temperature, interaction potentials and type of 
the wall, under which the angles are measured are the same as in Sikkenk’s experiment to 
make a comparison possible. These conditions are discussed in the next section. Section 3 
contains a calculation of the expected form of the liquid-vapor interface. The same section 
describes how the knowledge of this form is exploited to obtain the contact angles from the 
simulations. The results are discussed and related to those of Saville and Sikkenk et al in 
the last section.

= 4 £ab{(Oab/'')12 - (Oxfi/r)6} (2.1)
where r is the distance between the particles, sets the energy scale and gab the length 
scale of the potential. The potentials are cut off at 2.5oxb- This cut-off is necessary to keep 
the computation time within reasonable limits. The particles are enclosed in a three dimen
sional, cubic computational box. The box has a linear size L = 29. la^ and periodic boun
dary conditions in all the three directions.

The solid substrate consists of three layers of a close-packed FCC lattice. The formation 
of the three layers requires 2904 solid panicles. The layers belong to the (100) planes of the 
solid, they are placed in the x— y plane of the computational box. Due to the periodic boun
dary conditions, the fluid is enclosed in the z -direction between the first and the third layer. 
The solid particles are strongly coupled, £„ = 50 Ejy, and more massive than their fluid 
counterparts, ms = 3 my, which ensures a rigid substrate wall. The lattice spacing,
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3. Calculation of the contact angles

We want to extract a contact angle from the density profiles. Knowledge about the 
shape of the liquid-vapor interface will facilitate the determination of the angle. The shape 
results from a minimization of the free energy of the system. The minimization is performed 
under the assumption that the interface has a negligible width. This implies that its position 
is a measurable physical quantity. It is the position as it would be seen in a macroscopic 
observation. The geometry only allows surfaces that are translationally invariant in the x- 
direction and display an inversion symmetry in the x-axis. We can therefore restrict our 
attention to y-positions larger than zero.

The minimization of the free energy is performed in two steps. The first step deter
mines the optimal shape of the interface at a fixed height of the contact line. The height is 
varied in the second step. The variation we consider first is therefore a fluctuation of the 
liquid-vapor surface that does not shift the contact line. The change of free energy under 
this variation is equal to

determined by = 0.847Ojy results in a mismatch between solid and fluid. This 
mismatch prevents solidification of the first adsorbed fluid layers.

The interaction between solid and fluid is characterized by <3sf = 0.9210^ which is 
close to the mean of and <5/f. The interaction strength e,/ is varied during the simula
tions. The contact angle is determined as a function of the ratio er = The tempera
ture of the system, the size of the box and the number of solid and fluid particles are kept 
fixed. The box is filled with a number of 8064 fluid particles. This amount of particles 
guarantees the presence of both a liquid and a vapor phase. The temperature of the system 
T* = kijTItfl = 0.9 is between the triple point temperature T* - 0.7 and the critical tem
perature T* - 1.26.

The simulations we performed are of the molecular dynamics type. It was possible to 
follow such a rather large system for long times because of the availability of a special pur
pose computer: the Delft Molecular Dynamics Processor (DMDP)4\ The system described 
above is apart from a somewhat different amount of fluid particles, the same as in ref. 3. But 
instead of parallel, we place the liquid slab perpendicular to the substrate. The slab is posi
tioned in the x-z plane. It is bounded in the z-direction by two solid-fluid interfaces where 
it meets the substrate. The layer is translationally invariant in the x -direction due to the 
periodic boundaries. Figures 1 to 5 show this situation. They indicate where the reduced den
sity n'(r) - averaged over the x-direction is equal to either 0.2 or 0.4. The den
sities of the bulk vapor phase and the bulk liquid phase at this temperature are n” = 0.046 
and n’i = 0.66 respectively3), if the liquid-vapor interface that separates them is planar. The 
liquid layer resides around the plane y = y/Gff = 0. The upper and lower parts of the fig
ures contain the vapor phase. The form of the liquid-vapor interface is seen to change with 
varying er. The figures were obtained by averaging over 2000 configurations, each confi
guration taken 10 timesteps after the previous one. The reduced timestep 
Ai‘ = Ar^/ejy/(ayy-^my) was chosen to be 0.01. To obtain a system with a new value of 
er, we took a previous particle configuration and adjusted e,y in the molecular dynamics 
scheme. We did not measure the density profile of this newly formed system before an 
equilibration period of approximately 20,000 timesteps had passed. No systematic evolution 
of the profile was observed afterwards.
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Fig. 2. As fig. 1 but at er = 0.4.
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8F = -Ap 6V/ + y/v 8A/v (3.1)

where F is the free energy, Ap stands short for p / — p v and p denotes the pressure, Vi is 
the volume occupied by the liquid and A /v is the area of the liquid-vapor surface. All exten
sive quantities are taken per unit of length in the x-direction. Only the upper half of the

Fig. 1. Interfacial shape for a liquid slab perpendicular to the wall at er = 0.3. The outer curve is the line of 
density n‘ = 0.2. The inner curve is at n = 0.4.



- 51 -

y*

8

0

Fig. 3. As fig. 1 but at er = 0.5.
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Fig. 4. As fig. 1 but at er = 0.6.

8F = 0 (3.2)

o

system, y >0, contributes to them. The first term on the right hand side of (3.1) is typical for 
a curved surface The pressure difference over the interface gives the interface its mechan
ical stability. The free energy must be stationary in its minimum:
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0

which leads with (3.1) to a relation that gives the form of the interface:

(3.4)= Ap

with

(3.5)

and

(3.6)

(3.4) becomes

(3.7)
'/>

y*

8

0

Fig. 5. As fig. 1 but at e, = 0.7. This profile is unstable: continuing the simulation, the liquid slab will break 
after about 5000 timesteps.

9
9z

=
Y/v

8V, 
8/t(z)

SA iv 
8A(z)

Y/v SA/V = &P 8Vi (3-3)

If the interface is denoted by the function A(z) with z ranging from —LI2 to LI2, (3.3) reads 
under a change in h

LU
= J dz ( 1 + 

-L/2

L/2
V/[h] = f dz h(z)

-L/2

dh
9z
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(3.8)

(3.9)

(3.10)

(3.11)V, = h{-

so that

(3.12)

(3.13)

(3.14)

(3.15)

The solution of (3.7) gives that h is part of a circle. The radius R of the circle is related to 
the pressure difference over the interface and the surface tension by

dA si 
dR

1

4J?3

This derivative must vanish in equilibrium which yields

L
RdR

R =

= 2/?arcsin——-

= 2/1(_|) = |{V,-/?2arcsin^ + f(l-^}

With the derivatives with respect to R

)(Y/v - (isi ~ Yrv) —)

A si

4R . L -------arcsin —— +
L 2R

= 2arcsin —— - 
27?

3F . L■s— = (2 arcsin—— -dR 2R

5F — Y/v 5A iv + (ysi Yjv) dA si
and Asi can be read from fig. 6 which shows the case Ap < 0The dependence of A iv

lb
Ap

This definition gives the radius a sign equal to the sign of Ap. The sign tells whether the 
curvature of the interface is positive or negative.

Secondly, we vary the free energy with respect to this radius. The variation is per
formed under the constraint that V; is a constant since any equilibrium liquid-vapor interface 
must enclose the amount of liquid in the system. A variation of the radius is therefore 
equivalent to a variation in the height of the contact line The constraint neglects the depen
dence of the liquid density on the curvature of the surface. It is assumed that this depen
dence is very weak. The change in free energy upon a variation in R reads

)*
L ____
R (1 -

1

U 4R2 2 

2

U 4J?2 '

Equations (3.10) - (3.14) hold in the case Ap > 0 as well as Ap <0 provided that R has
the sign given by (3.8). The variation (3.9) becomes

LA,* 2R

L + /?2arcsin-^- - -^-(1— 
2 2R 2 4R2
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h(z)

L/2z

(3.16)

o 
-L/2

yt

= cos0

Fig. 6. The meniscus of a liquid-vapor interface confined between two walls. The walls are at z = -L/2 and 
z = L/2. The meniscus is denoted by the function h(z) and is a part of a circle with radius R. The liquid re
sides below the meniscus, the vapor above. The contact angle is 0. The absence of a scale in the y-direction is 
due to the arbitrariness of the amount of liquid in the system.

Yxv “ Isl L_ 
Y/v 2R

in which one recognizes Young’s law. Note that the first factor of the right hand side of 
(3.15) is dAivl<)R which is unequal to zero for all finite radii. We conclude that the calcula
tion shows that the shape of the liquid-vapor interface is a part of a circle with a radius 
given by (3.8) and that the contact angle satisfies Young’s law.

The shape of the simulated interface is taken to be the shape of the equidensity lines. 
Fortunately, the lines are mostly parallel. The shape of the interface is therefore independent 
of the choice of a specific equidensity line in the majority of the systems. Obviously, the 
density profiles of figs. 1 till 5 do not show the full symmetry implied by the geometry of 
the system. The centre of mass of the liquid slab is not in the middle of the system in most 
cases. It is a result of the finiteness of the time that each system is followed. The number of 
timesteps appears to be too small to average out the fluctuations. But although the asym
metries prevent the full equidensity lines to be of a circular shape, parts of the lines do 
display this shape.

A fit of an equidensity line with a circle allows one to obtain a contact angle. Its cosine 
is calculated directly from the radius via (3.16). We take the equidensity line n' - 0.4 for 
this purpose. In most cases, the asymmetries did not allow a reasonable fit of the complete 
line with only one segment of a circle. In that case, we assume that a local equilibrium has 
established itself near each wall. The two regions of local equilibrium are fitted with a dif
ferent segment Both the centre and the radius of the circles are free parameters in the fit. 
The distance L/2 in (3.16) is taken to be the distance between the centre of the circle and
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the position of the solid-fluid interface. There is some ambiguity in this distance since the 
interface’s position is not sharply defined. This introduces an uncertainty of the order SIR in 
cos0, 8 being approximately one in reduced units. The solid-fluid interface is always 
located between the outer layer of solid particles and the first absorbed fluid layer. Remark 
that the disturbances in the density profile caused by the fluid’s layering near the wall, form 
no part of the macroscopic profile of the liquid-vapor interface. This disturbed region plays 
therefore no role in the determination of the best fitting circle.

Saville used a different method to obtain a contact angle. He determined the tangent to 
the equidensity line at a position close to the wall. The angle between the tangent and the 
planar solid-fluid interface gave him the contact angle. The disadvantages of that method are 
twofold. Namely, it is difficult to determine a tangent accurately and, secondly, the tangent 
must be determined asymptotically close to the wall. The disturbance of the equidensity lines 
near the wall make the latter condition a non-trivial one. The method we use is therefore 
more accurate. It allows one to use a much larger part of the equidensity line in the determi
nation of the best fit. Moreover, the form of a circle excludes the use of the disturbed region 
in this procedure.

Our method yields at most four different values of cos0 per density profile, namely one 
for each cont:; line. We obtained two density profiles for almost all values of er, each pro
file being an average over 20,000 timesteps. The mean of all cosines we measured at a given 
er determines the equilibrium cosine. The uncertainty in this value is set equal to the stan
dard deviation obtained from the subresults. Figure 7 shows the results, together with the 
results of Sikkenk et al.

The pressure difference Ap has not been measured. An accurate measurement would 
require the calculation of a local pressure tensor5) which dependence on both y and z- 
direction would have to be known. Such an involved computation is beyond the capacities of 
the available hardware. We did however inspect the bulk densities of the liquid and vapor 
phase. They are shown in fig. 8 for various values of e,.
The figure shows a systematically decreasing vapor density. This decrease implies a sys
tematic decrease of the vapor pressure. The pressure difference Ap must change its sign from 
positive for small values of e, to negative close to the wetting transition. A systematic 
decrease of the vapor pressure can therefore only be explained by an even faster decrease of 
the pressure in the liquid. In that case, the average pressure in the system would decrease 
with increasing er. The liquid density scatters too much to tell anything specific about the 
liquid’s pressure. Besides, the densities might be affected by the size of the bulk phases. The 
size varies with er. Especially near its extremal values, either the liquid or the vapor phase 
becomes very thin. It seems therefore not possible to draw a conclusion about the pressure 
difference from the measurement of the bulk densities. Like this difference, the liquid-vapor 
surface tension will depend on the curvature of the surface. Although one can take the value 
for a planar surface as a first approximation, a significant correction could occur due to the 
curvature. A direct measurement of the tension however, is hindered by the lack of a well 
established, virial theory of the curved surface7). These difficulties in the determination of 
both Ap and yZv prevented a verification of (3.8).
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Fig. 7. The cosine of the contact angle versus er from our measurements (+) and from Sikkenk et al (x). The 
error bars of their data are omitted. They are of the order A cosQ = 0.1.

"i
I

. 1

»•

We have simulated a curved liquid-vapor interface enclosed between two walls. A 
visual inspection of the obtained density profiles enabled us to measure the contact angle as 
a function of the strength of the solid-fluid attraction. The measurements are not very accu
rate: the density profiles do not fully satisfy the system’s geometry and the angle is deter
mined from a fit to the equidensity lines. The fit incorporates three free parameters, the 
optimal choice of which was judged by the eye. Despite this subjective criterium, the global 
dependence of the angle on the interaction strength is clear. Its cosine increases monotoni
cally from — 1 to 1 as er grows from 0.2 to 0.7. The system proved to be unstable at the 
extremal values 0.2 and 0.7. At er = 0.2, the liquid slab detached from both sides of the 
wall after some 10,000 timesteps. It transformed into a layer in between and parallel to the 
sides of the wall. Both sides were completely covered with vapor in the final state. The 
opposite state appeared at er = 0.7. The liquid slab lasted for about 20,000 timesteps but 
broke in the middle then. All the liquid was sucked against the wall such that both sides 
were covered with a liquid layer in the end.

Our simulations show the presence of a wetting and a drying transition. The wetting 
transition is estimated at ew = 0.68±0.03, the drying transition at = 0.24±0.04. These 
values might be influenced by the curvature dependence of the liquid-vapor surface tension. 
A quantitative estimate of this influence is hard to make8). The wetting transition is first 
order. The drying transition appears to be of the same kind. The angle however, with which 
our data intersects the line cos 6 = -1 in fig. 7, is much smaller than the corresponding 
angle at the wetting transition. The first order character of the drying transition is therefore 
less prominent than that of the wetting transition.
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Fig. 8. The reduced liquid density n] and vapor density n’ in systems with different er. The data are averages 
over 40.000 timesteps. The error bars are the standard deviation of 10 subaverages over 4000 timesteps each.

Sikkenk et al deduced the contact angles from a measurement of the surface tensions. 
Figure 7 shows an appreciable discrepancy between their result and ours. They located the 
wetting transition at e„ = 0.78±0.03 which is not too far from our estimate. But the drying 
transition occurred at £.j = 0.54±0.03, a situation which is still partially wet according to 
our data. A straightforward comparison of the two curves in fig. 7 neglects the fact that 
Sikkenk’s cosines were calculated with the liquid-vapor surface tension of a planar surface. 
Nevertheless, the difference between the curves can not be ascribed completely to a differ
ence in the liquid-vapor surface tensions. Around er = 0.5 namely, the curvature of the 
liquid-vapor interface is approximately zero while the difference between the two curves is 
at its maximum. A location of the drying transition at ed = 0.20 furthermore agrees with 
the behavior of the density profiles observed in Sikkenk’s simulations.

This agreement combined with the difficulties in the measurement of and 
strongly plead for the correctness of the visual measurements. The drying transition takes 
place around er = 0.24 rather than around er = 0.54. The presence of stress in the wall 
appears to prevent a reliable measurement of a solid-fluid surface tension and hence a reli
able calculation of the contact angle. The equality of a contact angle calculated from the sur
face tensions and a directly measured angle remains unestablished.

Saville tried to verify the equality of the two routes but in his simulation too, they led 
to different results. These differences might be ascribed to the system size which was rather
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small. The size of the box was no more than 5 in the x-direction. The surface radii he 
encountered became approximately as small as 10 aff. Curvature effects could play an 
important role in that situation. Note furthermore that the two routes do give the same result 
in Saville s simulation. around 9 — 70°, where the curvature of the surface is small. The 
reduced temperature T = 0.70 is low and implies a "stiff' liquid-vapor interface with a 
large surface tension. These conditions could hamper one to obtain accurate results. Saville 
observed neither a wetting, nor a drying transition. His data however, leaves open the possi
bility that the transitions occur at vanishingly small c.q. very strong solid-fluid attraction.

At present, we reexamine the calculation of the contact angle via Young’s law. By 
treating the wall as an external potential, the solid-fluid surface tensions can be calculated 
with greater reliability and accuracy than in case of a "living" wall. The results obtained so 
far show a good agreement between the contact angles calculated from the tensions and the 
directly measured angles we presented here. They will be published later.



CHAPTER IV

Wetting and drying of an inert wall by a fluid

ABSTRACT

The contact angle in a wall-fluid system can be obtained directly from a visual inspection of 
the liquid-vapor meniscus or it can be calculated from the solid-liquid, solid-vapor and 
liquid-vapor surface tensions. These routes were exploited in two previous simulations in 
which the wetting of a wall was studied. Both simulations showed the existence of a wetting 
and a drying transition with changing wall-fluid interaction but the location of especially the 
drying transition was not consistent. It was suggested that the discrepancy was due to the use 
of a "live" wall in the measurements of the surface tensions. We have replaced the live wall 
by an inert wall and measured the surface tensions again, treating the wall as an external 
field now. The contact angles that are calculated from these measurements agree with the 
visual observations.
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1. Introduction.

A typical situation in which wetting phenomena are discussed is the situation of a fluid 
at liquid-vapor coexistence in contact with a wall. The extent to which the wall is wetted by 
the liquid is measured by the contact angle 0 which is defined as the angle between the wall 
and the interface between the liquid and vapor phase. The angle can vary between 0 and K. 
A contact angle equal to 0 means that the wall is preferably covered with liquid, the wall is 
called to be "completely wet". A contact angle of n means the opposite case: the wall is

Yjv = ysi + Y/v cos 0
with Yjv, ysi and y/v the surface tensions of the solid-vapor, the solid-liquid and the liquid
vapor interface respectively. In case of a completely wet wall, ysv = ysi + Y/v 
means that a solid-vapor interface is unstable with respect to a solid-liquid plus a

which 
liquid

vapor interface: a liquid layer will always intrude between the wall and the vapor. In case of 
a partially wet wall, y^ < ysl + y/v, the wall would still like to be covered with the liquid 
but the cost of the additional liquid-vapor interface prevents a liquid layer from intruding. 
Similarly, a vapor layer will intrude between the wall and the liquid if the wall is completely 
dry whereas the cost of the liquid-vapor interface prevents this intrusion in the partially dry 
state.

Surface tensions change with e.g. temperature or strength of the solid-fluid interaction; 
so a transition from the partially dry to the completely dry or from the partially wet to the 
completely wet state is possible. These transitions are genuine phase transitions, called the 
"drying" and "wetting" transition and their nature and location have attracted much attention 
in recent years.

The contact angle can be measured in a system where the meniscus actually meets the 
wall such as in a capillary, partially filled with liquid. The angle with which the meniscus 
borders at the wall can be obtained from a visual inspection of such a system. Young’s law 
gives a second route to this angle: it can be calculated from a measurement of the surface 
tensions. Both routes were exploited in a molecular dynamics simulation by Saville^) in a 
study of Young’s law. Saville enclosed a liquid and a coexisting vapor phase between two 
parallel walls, represented as external potentials with a variable interaction strength. The 
meniscus was defined as a plane of constant density, in between the liquid and the vapor 
density. By placing the liquid slab perpendicular to the walls, Saville obtained a meniscus 
that meets the wall and thus, he could measure the contact angle visually. With the slab 
parallel to the walls, he obtained a common geometry to measure surface tensions and from 
the latter, Saville calculated the contact angles. Unfortunately, the two routes did not agree 
upon the value of the angle.

The confrontation of a visually measured contact angle with a calculated one also 
appeared in the comparison of two other, closely related simulations3,4), the first one by 
Sikkenk et al, the second by the present authors. The type of wall and fluid, the temperature 
etc., were the same in both simulations. As in Saville’s simulations, the liquid and vapor

preferably covered with vapor and is called "completely dry". The intermediate cases 
O<0<k/2 and n/2<0<n are called "partially wet" and "partially dry" respectively. The 
contact angle is related to the three surface tensions that act on the contact line -where the 
meniscus meets the wall- by Young’s law1)
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2. Description of the simulations.

The system is the same as described before3) apart from the fact that we fix the solid 
particles at the positions of a perfect lattice. The fluid particles move in a three dimensional,

phase were enclosed between two parallel walls but in Sikkenk’s and our simulations, the 
walls were formed by a lattice of solid panicles which were allowed to oscillate around their 
lattice positions. Therefore, the walls represented a thermodynamic phase rather than an 
external potential. The wetting properties of the system were varied by changing the interac
tion strength between the solid and the fluid. The liquid slab was placed parallel to the walls 
in the first series of simulations3) and the contact angles were calculated from measurements 
of the surface tensions. Starting from the completely dry state and increasing the interaction 
strength, a drying transition and subsequently a wetting transition were encountered, both of 
first order. The location of the drying transition however, was at variance with the 
behaviour of the density profiles. Whereas the contact angles predicted a completely dry wall 
for a certain range of attractive strengths, it was observed in the same range that a liquid 
layer, placed between the walls, was eventualy adsorbed at one of them. This spontaneous 
transition from a completely dry to a partially dry state indicated that the latter state was 
preferred by the system although the contact angles implied the reverse. Van Swol5) 
remarked that the calculation of the solid-fluid surface tensions could be a source of errors. 
The presence of stress in a "live" wall could have influenced the measurement of these sur
face tensions and in this way have affected the contact angle.

This hypothesis was tested in the second series of simulations4). We placed the liquid 
slab perpendicular to the walls and measured the contact angle visually. Thus circumventing 
the calculation of a solid-fluid surface tension, we obtained once more a series of contact 
angles which showed a drying and a wetting transition under variation of the wall-fluid 
interaction. The location of the wetting transition was not too far from the result of the first 
experiment but the drying transition was strongly shifted. Fortunately, it was now located at 
a position consistent with the behaviour of the density profiles in the previous experiment.

The simulations of Sikkenk et al initiated a density functional calculation6) of the wet
ting properties of the same wall-fluid system. With a non-local density functional combined 
with an "effective attractive interaction" and including the effects of substrate roughness, 
Velasco and Tarazona obtained a drying transition which was much closer to the result later 
on given by the second experiment. The wetting transition was again found to be in the 
region predicted by both simulations. Moreover, the calculation yielded a stronger first order 
character in case of the wetting, than in case of the drying transition. The same difference in 
character had been observed in the visual measurements of the contact angle.

This paper is addressed to a third measurement of contact angles in a wall-fluid system 
which is the same as before apart from the representation of the wall. By taking an inert 
wall, the difficulties of determining ysi and y„ should be diminished since such a wall is not 
subject to the effects of stress. Thereby, we hope to achieve consistency between surface ten
sion measurements on the one hand and direct measurements of the contact angle on the 
other hand. For that purpose, the conditions of the simulations were taken exactly the same 
as in the previous study3) except for the treatment of the wall particles. Earlier simulations 
have indicated that the motion of the wall particles is not important for the behaviour of the 
fluid.
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z/Ojjr. This situation is the completely dry case, it has a

Yw< = Yri + Y/» + Y,v (23)

c) Finally, for large er, both sides of the wall prefer to be covered with liquid, see fig- 
3. This is the completely wet case with a total surface tension

Yr« = 2y„ + 2y/v (2-2)

b) Increasing er, the liquid is adsorbed at one side of the wall, see fig. 2. This asym
metric configuration is the partially dry or partially wet case. The total surface tension equals

Y>« = 2yjZ + 2y/v (2.4)
Comparing the total surface tension of a and b, one recognizes that the transition from a to b 
takes place at the drying point, i.e. 0 = n in (1.1). The transition from b to c takes place at

cubic box with periodic boundary conditions in all directions. The interaction potential 
between a particle of type A and a particle of type B is of the Lennard-Jones 12-6 form:

<t>Aa(r) = 4eAa {(oAS/r)12 - (aAfl/r)6} (21)
where A and B stand for either "solid" or "fluid", r denotes the distance between the pani
cles, eab sets the energy scale and the length scale of the potential. The interaction 
potentials are cut off at 2.5aAB. The length of the box equals L = 29.1

The solid substrate is built of three layers of a FCC lattice which requires 2904 solid 
panicles. The layers form the (100) planes of the solid and are placed in the x-y plane of the 
computational box. The panicles are fixed at their lattice positions and not allowed to move. 
The lattice spacing is determined by achosen as = 0.847 c, This mismatch 
between aJS and ay prevents a solidification of the first adsorbed fluid layers.

Due to the periodic boundary conditions, the fluid is enclosed in the direction between 
the third and the first layer of the lattice. Therefore, there are two soli;i-i:uid interfaces 
present in the computational box: one at each side of the wall. The sy<.:n contains some 
8500 fluid particles, an amount which ensures the presence of both a liquid and a vapor 
phase. The interaction strength e,y between solid and fluid is varied in the simulations and 
the wetting behaviour is studied as a function of the relative interaction strength 
Er ~ The length scale asf of this interaction is close to the mean of and Off'-

= 0.941 The temperature of the system is kept fixed at T* = kBT!e.ff = 0.9 
which is in between the fluid’s triple point temperature T, =0.7 and the critical tempera
ture T* = 1.26. The reduced timestep Ar* = ArVe^/(ayV"7) in the simulations was set 
to 0.01 where my denotes the mass of a fluid particle. The simulations were carried out on a 
special purpose computer: the Delft Molecular Dynamics Processor (DMDP).

We place a liquid slab in between and parallel to the two sides of the wall. It has been 
discussed before2^) that the following three cases can occur.

a) For low values of er, the liquid layer resides in the middle of the system and both 
sides of the wall are covered with vapor, see fig. 1 which shows the reduced fluid density 
n = no} as a function of z* = r'~ --- -■•••■ ... ■. >... .
total surface tension of
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Fig. 2. Asymmetric density profile at er = 0.5 as averaged over 2400 particle configurations generated in 
31,200 timesteps. Further as fig. 1.

Fig. 1. Symmetric dry density profile at er - 0.1 obtained from an average over 3200 particle configurations 
generated in a run of 41,600 timesteps. The dotted lines denote the positions of the outer layers of the wall. For 
convenience, the origin z* = 0 has been placed in the middle.
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n*
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Z*

(2.5)

(2.6)

0.8

0.4

where the sum is 
location of the origin

o 
-16

I

over all lattice positions <?/. Note that the surface tension depends on the 
z=0. A shift of this integration boundary with 6z changes the surface

Yj/ - — J dx dy J dz { p^f?) - Pt(?) ~ n(r) z

Fig. 3. Symmetric wet density profile at er = 0.8, further as fig. 1.

the wetting point 6 = 0.
The solid-fluid surface tensions are measured differently from the previous procedure^ 

where the wall was treated as a thermodynamic phase and the surface tension was measured 
in a way appropriate for an interface between two thermodynamic phases. In the present 
experiment, where the wall is represented by a rigid lattice of particles, one encounters the 
following difficulty in calculating the wall-fluid surface tensions. The standard way to meas
ure the surface tensions runs via an integral over components of the pressure tensor which 
can be measured directly in a simulation. This expression is well known for a wall potential 
that has no lateral structure but it has not been extended to the case of a structured wall such 
as we encounter by placing individual wall particles on a lattice. This extension is nontrivial 
and presented in a separate paper9). It turns out that the expression for the wall-fluid surface 
tension of a structured wall is equal to the expression for a structureless wall. With the wall 
located at z = 0 and the fluid at z >0, it is given by:

j j ~ PTW) ~ n\r) * (/) IA A 0 dz

with A the area of the surface, p^ the component of the pressure tensor normal to the sur
face, pt the component tangential to the surface, n the local density of the fluid and the 
external potential that forms the wall. In our case, the external potential is given by
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(2.7)

4>j9r'(ri/)hot —

(2.8)

(2.9)

<!>/('•■/•) 8(z-z,-) (2.10)

1
L2

y (xj+y?;) - z?j
r‘j

tension with an amount -pbz with p the pressure in the fluid. Since the pressure is the 
same in the liquid and the vapor phase, the arbitrariness has no influence on the difference 

which determines 0. We locate the boundary z=0 at the middle layer of the wall 
which is at equal distance from the solid-fluid interface at the left hand and the solid-fluid 
interface at the right-hand side. The surface tension of the whole system reads in our case

5 Considering e.g. pN, the contribution of a pair of particles (ij) to the integral over pN is 
given by tfjtyffXr ^Ir as can be seen from (2.9). We have attributed half of this contribution 
to the z-coordinate of particle i and half of the contribution to the z-coordinate of particle j to 
obtain a local pN. According to the general definition10), one should draw a contour between 
particles i and j and distribute the contribution of the pair over the contour in a well-specified 
manner. Different choices of contour correspond to different microscopic definitions of p^. The 
spatial distribution of the contribution of the pair (f,J) however, is irrelevant for the integral 
over pN. In other words: the integral over pN is independent of its microscopic definition.

<T'(7) } az

z2.
E 5(z-z,)
i*j rij

pr(z) = kBT n(z) - -iy < X -- ----------------
22- rij

with n(z) the density nCr) averaged over the x-y plane. One easily verifies that the substitu
tion of (2.9) and (2.10) in (2.7) gives (2.8). The definitions (2.9) and (2.10) do not strictly 
conform to the general definition of Schofield and Henderson10) but this modification does 
not affect the surface tensions. A strict computation of the tensor according to their scheme 
would require a much more involved calculation 5.

Since the integrand in (2.7) vanishes in a bulk phase where pp and p-j- both become 
equal to the pressure p and <t>“' vanishes, the integral consists of a number of separate con
tributions, one from each interface in the system. This is clearly seen in fig. 4 which shows 
the "surface tension density" y(z)

1 La
hot = 7T J dx dy dz { Pn(j) - PtC?) - n(r) z 

L — L/2

Inserting the microscopic definition10) of p^ and pr, it reads

< E

77 ♦"«>
with 'rij = ~ri — the derivative of with respect to r and < > a canonical
ensemble average. The first summation in (2.8) is over all pairs of fluid particles (t,y), the 
second summation over single fluid panicles i. We measure a pp(z) and Pr(z) defined by

Putz') = kBT n(z) - ~-y <
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(2.11)

3. Results.

2 0“'(T)dz

individual interface is the

Fig. 4. "Surface tension density" profile at er = 0.5 as averaged over 2400 particle configurations generated in 
31,200 timesteps. Further as fig. 1. The reduced surface tension density Y* (z) is defined as Y*(2)-Y(2)<J#/e#-

1 L/2 
Y(z) = Pn(z) ~ Pr(z) - yy j dx dy n(r) 

L -LU

of the asymmetric system of fig. 2. The contribution of an 
interface’s surface tension which is therefore obtained by restricting the integration over z in 
(2.7) to an integration over the surface alone.

As before3^, we simulated a series of asymmetric systems and symmetric dry and wet 
systems at various er. A symmetric dry starting configuration at e,=0.1 was obtained by 
melting a strip of fluid particles, placed between the walls on a lattice with approximately 
the appropriate liquid density. An asymmetric starting configuration was obtained by choos
ing er = 0.5 whereupon the same initial strip was adsorbed at one of the sides of the wall 
during the melting process. A symmetric wet starting configuration resulted from the use of 
two strips, each one placed near one of the sides of the wall with er = 0.8. Systems at dif
ferent er were obtained by changing er. A newly formed system was equilibrated for 
approximately 15,600 timesteps before the measurements started. This equilibration time was 
sufficient to stabilize the particle density profile, the energy of the system and other quanti
ties in most cases. The particle density and surface tension density profiles were sampled 
each 13'* or 15'* timestep until an average over some 3200 configurations was obtained. 
Error bars in the data denote the standard deviation as calculated from subaverages over 400 
configurations.

The properties of the bulk liquid and bulk vapor phase and the properties of the liquid
vapor interface should be independent of er. It has been verified that this independence
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Fig. 5. Reduced pressure p*=poj-/e^ as a function of er. Circles denote the symmetric systems, crosses the 
asymmetric systems.
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holds for the reduced bulk densities n* and n* and the reduced liquid-vapor surface tension 
Y/„ where the latter is listed in table 1. These quantities fluctuate with varying er but show 
no systematic dependence. Averaged over all er, their mean values are n; =0.6640±0.0006, 

=0.0456±0.0006 and y*v = 0.225±0.005, which corresponds with results obtained in a 
simulation") of a free liquid-vapor interface. Another check on the influence of er is a 
measurement of the pressure in the system which should also be unaffected by er. The pres
sure p can be calculated from^)

1 L'2
P = yy J dx dy dz { pN(z) - n(r) z 

L -L/2

The result is plotted in fig. 5 which shows a pressure that does not vary systematically with 
er but fluctuates around an average value of p*=0.0308±0.0002.

The completely dry state with the liquid slab in the middle of the system remains stable 
at e, =0.1, see fig.l. Increasing er to 0.2, one observes a transition to the asymmetric sys
tem of fig. 6, the liquid layer being adsorbed at one of the sides of the wall. Before the state 
of fig. 6 was obtained, the liquid slab, which was initially in the middle of the system, had 
first collided with the wall at the right whereupon it reflected back and was adsorbed at the 
left wall. The whole transition from a symmetric dry to the asymmetric system took about 
60,000 timesteps. The liquid layer remained adsorbed at the left side of the wall during the 
57,000 timesteps we followed it. The precise location of the symmetric-asymmetric transi
tion is hard to tell since it is difficult to determine whether the solid-liquid interface one 
obtains at er = 0.2 is indeed a stable solid-liquid interface or should be regarded as a meta
stable state in which the system is easily trapped due to the limited space between the walls 
while the completely dry state is the true equilibrium state.

0.8
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Fig. 6. Asymmetric density profile at er = 0.2, further as fig. 1.

n"

-8 0 8

Fig. 7. Asymmetric density profile at Er = 0.3, further as fig. 1.

0.8

The state at er = 0.3 is far less controversial. Starting with a symmetric dry system, one 
obtains an asymmetric system with a solid-liquid interface which clearly differs from the 
solid-vapor interface, c.f. fig 7. The transition from a symmetric dry to an asymmetric sys
tem took about 30.000 timesteps in the case er = 0.3.

If we start with an asymmetric system at er>0.2 and lower er, we observe the inverse 
transition. At er=0.2, the asymmetric system evolves again to a system similar to the one of

o 
-16

o *-*— 
-16
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fig. 6. Decreasing er to 0.1, we obtain a system with two solid-vapor interfaces although 
even in this case, the liquid phase remains near the wall it just detached from and stays 
slightly off center during at least 60,000 timesteps.

The behavior of the density profiles thus shows the existence of a drying transition at 
£r~0.2. We can not observe any hysteresis in the location of the transition which indicates 
that it is possibly second, at least not strongly first order. The situation is quite different at 
the wetting transition. If we start with an asymmetric configuration and increase £r, we 
never observe a transition to a symmetric wet state, not even at er > 1 which

0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.240(3) 
0.219(7) 
0.207(11) 
0.234(10) 
0.241(15) 
0.214(11) 
0.223(9)

0.263(7)
0.207(10)
0.101(8)

-0.066(11)
-0.280(10)
-0.541(7)
-0.827(14)

0.0298(7) 
0.0177(8) 

-0.0067(6) 
-0.0400(16) 
-0.0990(26) 
-0.1653(43) 
-0.2747(45)

0.533(6)
0.444(15)
0.302(16)
0.128(18) 

-0.138(20) 
-0.492(10) 
-0.879(16)

-1.04(3)
-0.84(5)
-0.48(4)

0.12(5)
0.80(3)
1.67(3)
2.45(6)

*

Table 1. Reduced surface tensions of the liquid-vapor, solid-liquid and solid-vapor interface, reduced total sur
face tension and the cosine of the contact angle in the asymmetric systems. The figures between parentheses 
denote the uncertainty (one standard deviation) in the last or last two digits. The reported at er = 0.7 and 
0.8 are the surface tensions of the metastable solid-vapor interfaces encountered in the asymmetric systems 
whereas one has y’y = yL+Y/1 in equilibrium since the wall is completely wet The cos 0 of this metastable 
branch are larger than 1. Most results are obtained from an average over 32,000 configurations.

Fig. 8. Reduced total surface tension as a function of er. Circles denote the symmetric systems, crosses the 
asymmetric ones. The symmetric value at er = 0.2 is constructed (see text). The experimental uncertainty is of 
the order of the symbol size.
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yioie.

0.1
0.4
0.5
0.6
0.7
0.8

0.534(8)
0.612(8)
0.287(16) 

-0.121(12) 
-0.620(14) 
-1.199(17)

Table 2. Reduced total surface tension in the symmetric dry system at er = 0.1 and the symmetric wet systems 
from er = 0.4 till er=0.8. The figures between parentheses denote the uncertainty in the last or last two digits. 
Most results are obtained from an average over 32,000 configurations.

is well above the wetting transition^-4). Reversively, if we start with a symr wet state 
and decrease er, we do not observe the transition to the asymmetric state, ev ' >t at E, as 
low as 0.4. This hysteresis in the density profiles reveals the presence of a fir r wetting 
transition but prevents an accurate location of the transition from the behav. . f the pro
files.

The second route to the location of the transitions is the measurement of ihe total sur
face tension in the various systems, the results of which are shown in fig. 8 and listed in the 
tables 1 and 2. The results are most clear at the wetting side where the strong hysteresis 
allows one to measure the surface tension of both the symmetric and the asymmetric state 
over a wide range of Er. The two curves intersect at er=0.6, below which the partially wet 
state is thermodynamically favorable, above which the completely wet state is preferred. The 
intersection point locates the wetting transition. One could argue that the total surface ten
sion of the completely wet state is not well described by (2.4) since the liquid phases in 
these states are very small and the solid-liquid and liquid-vapor interfaces are not well 
separated. In that case, the location of the wetting transition as the intersection point in fig. 8 
would be incorrect. The effect of the finite size can be checked by calculating the total sur
face tension of a well developed, symmetric state from (2.4) with ys, as obtained in an 
asymmetric system and y;v =0.225. It turns out that y,OI calculated in this way does not sig
nificantly differ from y,o, as we measure it in the completely wet systems. Therefore, the 
restriction on the size of the symmetric wet systems turns out to have no significant effect 
on the location of the wetting transition.

There is no hysteresis at the drying side. At er=0.2 however, we can once more 
address the question of the stability of the system of fig. 6 by comparing its total surface 
tension with the total surface tension of a completely dry system. The latter can be con
structed from (2.2) with y„ measured in the asymmetric system of fig. 6 and y(v =0.225. 
As shown in fig. 8, the two surface tensions can not be distinguished, showing that the 
solid-liquid interface of fig. 6 has the same thermodynamic probability as a solid-vapor plus 
a liquid-vapor interface. The same comparison at er = 0.3 (not included in fig. 8) shows that 
the total surface tension of the system of fig. 7 is slightly below the constructed surface ten
sion of a hypothetical, symmetric dry state. We stress once more that the total surface ten
sion in fig. 8 depends on the choice of origin z=0 but that the location of the intersection 
point is unaffected by this choice.

The last route to the wetting and drying transition is the calculation of the contact
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Fig. 9. Cosine of the contact angle versus er. The crosses x are the results as calculated from Young’s law in 
these simulations, the errors are of the order of the symbol size, c.f. table 1. The crosses + are the visual obser
vations4!, the length of the vertical bar gives the error.

0.8 e

angles from the surface tensions. The angles are measured in the asymmetric systems which 
provide at the same time a solid-liquid and a solid-vapor interface while we used a fixed 
value of yZv = 0.225 in the calculation of cos9. Fig. 9 shows the results together with the 
contact angles obtained from the visual measurements4!. The wetting transition is given by 
cos 9 = 1, the drying transition by cos 9 = -1. The location of these points is the same as 
given by the total surface tensions. The fact that the cosine as a function of er crosses the 
line cos 9 = 1 with a finite slope once more supports the first order character of the transi
tion. A cosine larger than one shows that we have been measuring in a metastable state, a 
fact we also observed in the total surface tensions. If a curve would be drawn through the 
measured angles, its derivative with respect to er would be small at the drying transition and 
should be zero if the transition were to be second order. It is difficult to tell whether the 
derivative is indeed zero or has a finite value but we can be sure that the drying transition 
has at most a weakly first order character.

The compare: . of the calculated contact angles with the visual observations in fig. 9 
shows that th. . :de but that the calculated angles can be determined with greater accu
racy. The co: . . >n is especially good near the drying transition while the calculated 
angles rise si:.: , ore steeply near the wetting transition.

The visually r. .asured angles differ marginally from the angles presented in the original 
paper4). The angles were obtained by fitting a circle to the liquid-vapor meniscus, a fit 
which was performed manually in the original work but which we have done presently 
numerically to exclude the possibility of uncontrolled errors which is inherent to a manual 
procedure. The numerical method, a least square fit, gives angles that vary a little bit 
smoother with er but does not shift the curve as a whole. In particular, our estimates4) of the 
position of the wetting and drying transition are not altered.
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4. Conclusions.
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CHAPTER V

ABSTRACT

Accurate determination of the location and order 
of the drying transition

The wetting transition is mostly found to be first-order but the nature of the drying transition 
in realistic systems is debated. We have simulated the wetting and drying of a wall and, by a 
careful inspection of the variation of the contact angle on the approach of the transition, find 
strong evidence for a continuous drying transition. Moreover, the drying point is located an 
order of magnitude more accurately with respect to previous attempts.
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Accurate determination of the location and order of the drying transition.

Wetting and drying phase transitions have drawn a substantial interest in the past 
decade1) not only for their importance in technical applications but also as demonstrations of 
genuine surface phase transitions. After their discovery by Cahn2) and by Ebner and Saam 
on theoretical grounds and the experimental demonstration by Moldover and Cahn , most of 
the theoretical studies have taken place in the context of lattice models^), on a mesoscopic 
level as variants of Landau’s mean-field theory1’**) or in the framework of density functional 
theories2’^). None of these theories is capable of making an accurate prediction for the 
nature of the wetting and drying transitions for realistic systems. The lattice gas models 
involve interactions which are too much simplified to describe the delicate balance between 
the driving forces in the wetting or drying of a real substrate. In its simplest form, the basic 
symmetry between particles and holes makes wetting and drying two mirror images of the 
same physical mechanism. The Landau type mean field theories help to classify the possible 
scenarios for wetting and drying but cannot make contact with a microscopic Hamiltonian. 
Density functional theory should in principle be able to yield information on the phase 
diagram of realistic syH.ems and some impressive results have indeed been obtained e.g. by 
Velasco and Tarazona^' The strength and weakness of the density functional theory have 
recently been reviewed by van Swol and Henderson2). A basic difficulty is an adequate den
sity functional for the iiquid-vapor coexistence region which is vital for the description of 
wetting and drying.

In this situation, computer simulations^’1®’11,12) are most welcome but so far rare 
because a large system is needed to accomodate the various phases involved and large fluc
tuations occur near the phase transitions which slow down the approach to equilibrium. 
Simulations are especially useful as density functionals can be tailored to study the system 
that is simulated and the results of the calculation and the computer experiment can be com
pared directly. There is general agreement about the wetting transition. All simulations point 
at a first-order phase transition, which is supported in one case by the observation1 of the 
accompanying prewetting phenomenon. Also the agreement between density functional 
theory and the simulation on the location of the wetting point is satisfactory. The situation 
about the drying point is less clear. The simulation^) of van Swol and Henderson indicates a 
first-order drying transition. They argue that this is to be expected since the fluid s structure 
has to interpolate smoothly, even at positions close to the substrate, between a substrate
liquid and a substrate-vapor interface in case of a continuous transition. They consider such 
a smooth interpolation to be unlikely. Nevertheless, the density functional calculation they 
carried out subsequently, predicts a continuous (second order) drying transition which is also 
located rather far from the simulation result. Whether this is due to insufficient or inaccu
rate simulation data is a point of debate1^). As their simulations and density functional 
theory apply to square-well molecules, their conclusions cannot be easily transferred to more 
realistically interacting particles. Velasco and Tarazona earned out a density functional cal
culation on a Lennard-Jones system and found the drying transition to be weakly first-order. 
Their location of the transition was initially inconsistent with the results of the simulation 
of Sikkenk et al but this discrepancy has been removed by improved simulations 
While these simulations conformed the result of Velasco and Tarazona on the location of the 
drying transition, they could not decide on its order but were consistent with a continuous as 
well as a weakly first-order transition. In this letter, we describe a simulation experiment 
which improves the accuracy by an
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Fig. 1. The fluid’s density n averaged over the x-y plane as a function of the position z between the outer layers 
of the wall. The density and position are expressed in reduced units: n’ equals nl<5ff and z* denotes zlQg- The 
dotted lines give the positions of the outer wall layers. The profile is calculated as an average over 5200 parti
cle configurations, obtained in a run of 67,600 timesteps at £//=0.25ej(y.

Fig. 2. cos0 as a function of er. The bars denote the measured cos 0, the curve is obtained by integrating the 
3cos0/3e,y data (see fig. 3). The lengths of the bars denote the uncertainty in the measurement. They are calcu
lated as the standard deviation in subaverages over 5200 timesteps each. The data points comprise 5 to 25 
subaverages.

0.8
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(1)cos 0 =

(2)ilf/ = 4 7 dx dy J dz
3e,/ L2 _[/2 o eV

Here, n(~?) is the fluid density, L the box size and zc the cut-off in the substrate-fluid 
interaction which is in our case 2.5 asf away from the outer layers of the wall. From (2) we 
see that only an accurate determination of the fluid density inside the potential of the

L/2 zc
= -Jy j dr dy J dz n(r)

L -L/2 0

order of magnitude thereby clarifying the simulation results on the drying point.
The simulated system consists of a three-dimensional cubic box with periodic 

boundary conditions in which a substrate is constructed by three layers of a FCC lattice of 
substrate particles. The remaining volume is occupied by a Lennard-Jones fluid consisting of 
a liquid and a vapor phase at a fixed temperature. By the boundary conditions, the fluid can 
wet or dry both sides of the substrate wall (see fig. 1). The Lennard-Jones interactions 
between particles of type A and B, where A and B stand for 5 in case of a solid and/in case 
of a fluid particle, are characterized by an energy scale E^b and*a length scale They are 
truncated at 2.50^#. The reduced temperature T*, defined as T =kgTIZff kept at 0.9 and 
the system contains about 8500 fluid particles in a box with a linear dimension L of 29.1 a^-. 
We are able to simulate such large systems for long simulation runs because of the availabil
ity of a special purpose computer: the Delft Molecular-Dynamics Processor (DMDP)15). The 
phase transitions are driven by varying the strength £5y of the interaction wall and fluid par
ticles. Our set-up is particularly suited to study the partially wet (or dry) situation where 

with and ew the values of E,y where the drying and the wetting transition 
take place. In this situation of partial wetting and drying, the free energy favors one of the 
substrate sides to be co. ered by the liquid phase and the other by the vapor phase. Thus we 
have simultaneously realised a substrate-liquid, a substrate-vapor and a liquid-vapor interface 
and we can obtain their surface tensions y5/, y^ and y/v as integrals over pressure tensor 
components12). This situation is analoguous to a liquid droplet adsorbed at a substrate mak
ing a contact angle 9 with the substrate. The simulation data are thus interpreted in terms of 
a contact angle through Young’s relation1)

Ysv Ysl
Y/v

It turns out11*12) that the difference (Yjv-Yjz) is obtained most accurately when the wall par
ticles are frozen in at their lattice positions. So we use an inert wall representation, where 
the wall can be viewed as an external potential acting on the fluid, in the present simu
lations. The results for cos9 as a function of the ratio Er=E.sf/E.ff are shown in fig. 2. The 
drying transition, i.e. the point Ej where cos9 =—1, is difficult to locate while the wetting 
point is fairly accurately given by the cos9 data. The reason is that cos 9 cuts the line
cos9 = 1 at a steep angle while it joins the line cos9 =—1 much more smoothly. This is 
related to the nature of the phase transitions: cos9 being essentially a free energy, the 
behaviour of its derivative with respect to Zsf gives the order of the phase transition. On the 
basis of these cos9 measurements, the wetting and drying transitions were estimated at 
£w=0.62±0.01 and £d = 0.20±0.05 respectively (with £w and expressed in units of £#).

The key to a more accurate analysis is a direct evaluation of the derivative dYj//^Ej/« 
For an inert wall, the derivative is given by the simple expression
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Fig. 3. The measured derivative of cos 0 wr.L e,/ as a function of er. The error bars are of the order of the 
symbol size. The vertical dotted lines denote the positions of the drying and wetting transition.

i

0.24 
r

1...........
0.12

d cos 0

d e.f 6-

Fig. 4. The derivative of cos 0 wj.l e,z as a function of er around the drying transition. The crosses are die 
same points as in the previous figure, they are obtained by decreasing er. The circles are obtained by increasing 
er from er = 0.1 onwards. If error bars are omitted, they are of the order of the symbol size. The two vertical 
dotted lines give the estimated bounds on the location of the drying transition.
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cos 8 = -1 + c (esy-erf)2 e.Sf 2 ed (3)

with c an arbitrary, positive constant. The consistency between the directly measured cos0 
and the measurements of its derivative can be seen in fig. 2 which shows that the cosines 
can be reconstructed by integrating the 3cos0/9ej/ data with respect to e,f. To obtain an 
accurate integration, a cubic spline was fitted to the 9cos0/9ej/ data, which fit was then 
integrated from the point cos0 = —1 at er=0.1 onwards. The so obtained wetting point 
Eh, =0.62 is the same as deduced from a directly measured cos0 plot.

The points in fig. 2 and 3 are obtained by decreasing er. We also tested on the 
occurrence of hystheresis, which should not appear at a continuous transition, by increasing 

from a completely dry system at er=0.10 onwards. The two branches of ScosO/Se,/- 
are shown in fig. 4 zooming in on the drying transition. The branch of increasing er remains 
a little longer in the completely dry state, resulting in a difference in ScosO/Se,/ of the 
increasing and decreasing branch at er =0.175. The small differences at er=0.19 and 0.22 
seem not significant in view of the large fluctuations included in the averages. The fluctua
tions around the drying transition result primarily from small movements of the liquid slab. 
As the slab moves somewhat closer to the wall, the number of fluid particles in the first 
adsorbed layer increases significantly and drops while the opposite effect occurs
when the slab moves a little bit further away from the wall. Compared with the fluctuations 
in the derivative of ysi, the derivative of y„ is virtually constant. We followed many of 
these systems till we had obtained 20 subaverages over 5200 timesteps but we sometimes 
also noticed an apparent correlation between 3 to 5 consecutive subaverages. The circles in 
fig. 4 give values of 3cos0/9e,y which point at an Ej =0.174 whereas the crosses point at 
Ea=0.163 The total surface free energy of the two branches does not differ significantly, 
also not at e, =0.175, and therefore, we can not decide which of the two branches is thermo
dynamically most stable. Thus, the occurrence of two branches can hardly be viewed as 
representing a hystheresis loop indicative of a first order transition but we attribute it to the

substrate is necessary to find the derivative of ysf. The derivative of cos0 is obtained from 
Young’s law. Equation (2) follows from a direct differentiation of the partition function?).

As already indicated in fig. 2, we simulated a series of partially wet (or dry) systems 
over a range of t.r varying from 0.1 to 0.8. Typical runs involve 16,000 timesteps for equili
bration and some 100,000 timesteps during which the system is sampled for accurate statis
tics. The longest emulation runs occurred around the drying transition where the fluctuations 
turned out to trge. Error bars in the data denote the standard deviation as calculated from 
subaverages . ■ ci 400 configurations.

For e5y-<e,, the liquid slab is pushed to the middle of the volume and both sides of the 
substrate are co . red with vapor. For esf>e.d, the liquid slab is attracted to one of the sides 
of the substrate .. :<i this remains so even beyond eJy=ew where it is more favorable that the 
liquid slab splits in two parts, both covering a side of the substrate with a vapor layer in 
between. Thus the partially wet state can be continued easily as a metastable state into the 
wet region (the reverse is also true for wet states in the partially wet region). These features 
can be recognized in fig. 3 in which the dcos$/de.sf data is plotted as a function of e,y. 
Whereas the derivative reaches a plateau near the wetting point Ew, it drops sharply to zero 
near ed. This means that the drying transition is continuous while the wetting transition is 
first order. The data are compatible with a second order drying transition which is character
ized by a behaviour of cos 9 as
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We must pay some attention to the centre of mass motion, i.e. the "drift", that is gen
erated in the system by the finite numerical accuracy of the molecular-dynamics calculation. 
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(once every 5200 timesteps in our case) to prevent the drift from getting a chance to become 
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of any drift correction changes the motion of the liquid slab in systems around the drying 
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other hand is still an open question.
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CHAPTER VI

ABSTRACT

Wetting and drying of a wall with a 
long-ranged wall-fluid interaction

We have studied the influence of a long-ranged force between a wall and a fluid on the wet
ting properties of the wall-fluid system. The system with short range forces, i.e. cut-off 
Lennard-Jones potentials only, has been studied extensively in previous simulations, reveal
ing the presence of a wetting and a drying transition. We have added the attractive tail of the 
wall-fluid potential to the simulations and reinspected these transitions. The wetting transi
tion turns out to be not much affected by the long-ranged potential. The occurence of a com
pletely dry wall is no longer expected but the tail appears to be too weak to observe the dry
ing transition to vanish completely.
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1. Introduction.

are long-ranged and their tails are usually 
; -1/r6 where r denotes the intermolecular

The intermolecular forces in simple fluids < 
described by attractive potentials which decay as 
distance. Although weak, this tail can have a significant influence on the properties of the 
fluid, especially near an interface. This has been demonstrated explicitly in a simulation1' of 
a "free" liquid-vapor interface which showed that an increase of the interaction range 
between the fluid particles drastically alters the properties of the coexisting liquid and vapor 
phase and of the interface between them. It must be expected that similar changes will 
appear at the interface between a fluid and a wall upon an increase of the interparticle 
interaction range2). The influence of the tails of the potentials on a wall-fluid interface is of 
a special interest in the vicinity of a surface phase transition like the wetting or drying tran
sition^). Such transitions may be sensitive to small perturbations of the interaction potentials 
and although a quantitative estimate of the effect of the attractive tails is hard to give, sim
ple mean field theories4) indeed predict them to have a dominant influence on the transi
tions.

The long-ranged fluid-fluid interactions play a subtle role in the properties of a wetting 
or a drying trai:but the influence of the long-ranged wall-fluid interaction can be 
understood more easif The attractive long-ranged tail will facilitate the occurence of a wet
ting transition while ;‘ie drying transition is expected to disappear completely. Namely, in 
the absence of the tail, a liquid slab which is adsorbed at the wall can wander away freely 
when it detaches. So a vapor layer near the wall of arbitrary thickness is possible. In the 
presence of the tail, the slab will be attracted to the wall at all distances. The slab may be 
repelled from the wall by the short-ranged wall-fluid interactions but since it will no longer 
experience these if it is far enough from the wall, the attractive tail will always tend to keep 
the slab at a finite distance. So only a microscopically thin layer of vapor near the wall is 
possible and thus, the system can not be completely dry.

Simulations have difficulties in treating the long-ranged, attractive tails. An increase of 
the interaction range strongly increases the number of interactions that has to be evaluated in 
the calculation. The simulation is slowed down considerably, the number of interactions 
being proportional to in three dimensions, where rc is the interaction range. Further
more, the boundary conditions, e.g. periodic boundaries, may lead to pathological interac
tions if the range gets larger than the system size. Therefore, the potentials used in simula
tions are usually either short-ranged by definition, e.g. hard-sphere potentials, or truncated. 
In the case of the Lennard-Jones potential, given by

0(r) = 4 e {(a/r)12 - (cr/r)6} (M)

a cut-off length rc = 2.5 a is often used (a is the length scale, e the energy scale of the 
interaction).

This is the cut-off length used in a series of simulations^-7) which studied the wetting 
of a wall built of a lattice of solid particles. The simulations employed truncated Lennard- 
Jones potentials only. They differed in the way they treated the wall and measured the con
tact angles. The first simulation5) allowed the wall particles to oscillate around their lattice 
positions and, measuring the solid-fluid surface tensions, calculated the contact angles via 
Young’s law. The second simulation^) also used a "live" wall but measured the contact
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2. Description of the system.

which represents the solid-fluid interaction consists of two

angle visually. The measurement procedure of the first simulation was repeated in the last 
one apart from the treatment of the wall. The solid particles were fixed at their lattice posi
tions now, thus forming an external potential instead of a thermodynamic phase. Starting 
from a completely dry wall and increasing e5y, the strength of the solid-fluid interaction, a 
drying and a wetting transition were observed in all the three simulations. It became 
apparent that the drying transition is weakly first or second order v. ■ i cas 'he wetting transi
tion exhibits a strongly first order character. These wetting properties may vary considerably 
when rc grows larger. When all interaction ranges increase, the input; og time goes up 
prohibitively. In this paper, we therefore allow only a larger wall-fluid interaction range. If 
the solid particles are fixed at their lattice positions, thus forming an i.ici; wall, and the lat
tice structure is neglected at distances z larger than rc from the wait, the influence of the 
wall beyond rc is described by a structureless external potential. Such a relatively simple 
external potential can be added to the simulations without a dramatic increase of computing 
time and it is a step closer to the situation encountered in reality.

Since the last of the three previous simulations7) also used an inert wall and moreover, 
gave the most accurate results for the location and order of the wetting and drying transition, 
we use the same measurement procedure, while adding the long-ranged potential. The simu
lation follows a series of symmetric dry, asymmetric and symmetric wet configurations and 
measures the surface tension of the various interfaces in the system. The systems are studied 
at varying wall-fluid affinity whereas the temperature is kept fixed. From the behaviour of 
the density profiles, the total surface tension and the contact angles, calculated with Young’s 
law, the occurrence of a wetting and a drying transition are inspected.

This paper is further arranged in the following way: section 2 describes the technicali
ties of the simulation; the influence of the long-ranged potential on the bulk phases and the 
interfaces is discussed in section 3; section 4 treats the effect of the limitation of the bulk 
phases and of the range of the wall-fluid potential; the location of a wetting and a drying 
transition is discussed in section 5 and finally, conclusions are drawn in section 6.

The simulations are set up in the same way as before7) apart from the fact that a long- 
ranged potential has been added. We summarize the main features and refer to Nijmeijer et 
al for a more elaborate description. The fluid is enclosed in a three dimensional box with 
periodic boundary conditions in all directions. The wall is built from three layers of an FCC 
lattice, placed in the x-y plane. The interaction between fluid particles is of the Lennard- 
Jones 12-6 type, characterized by and and truncated at 2.5(3 ff. The system contains 
2904 solid particles and some 8500 fluid particles, the box has a length L = 29.1a^. The 
temperature is kept fixed at T = kgT/Zff = 0.9 and the main parameter in the simulations 
is er defined by er = tsfltjf- The simulations are carried out on the Delft Molecular 
Dynamics Processor (DMDP)^ which is specially designed for molecular dynamics calcula
tions.

The external potential 0“’ 
parts in these simulations:
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(2.1)

(2.2)

z < zm
(2.3)<t>g“(z) =

acts

0

3]9

<t>“'(7) = <t>“'(7) + 4>5F'(z) 
with the short-ranged part as previously defined?);

(2.4)
-zi + 2.5 (5 sf < z < zm

<t>hz)

<t£(z) =

where the outer layers are located at z = — z/ and z = z/ (with Z/ = 13.89Oj/ in our simula
tions). Note that the long-ranged part acts at distances larger than 2.5a,/ away from the 
wall only. The potential 0* acts at the right of the system and attracts the fluid to the right 
outer layer but is furthermore defined analogously to The long ranged part of the exter- 
nal potential does not connect smoothly to the short ranged part but the mismatch is small ' 
and can e.g. not be recognized in the density profiles. The update of the particle velocities 
that incorporates the long-ranged force, can not be done on the DMDP since this computer 
was not designed to handle such forces. The DMDP however, is connected to an array
processor on which the velocity update is performed and the pressure tensor (see below) is 
measured at the same time. By this construction, the long-ranged potential could not

L
z" < z < 2

< z < -zt + 2.5a,/

(Z)

with the turning point zm chosen at zm = 0 unless stated otherwise. The potential <t>/r 
on the left of the system and attracts the particles to the left outer layer

<t#'(7) = L Ml" - ^|) 
I

where 0,/ denote: the Lennard-Jones 12-6 interaction between a solid and a fluid particle 
which is truncate d at 2.5a,/ and the sum is over all solid particles, <?/ being the lattice posi
tion of solid particle /. The lattice structure of the wall is neglected in the additional long- 
ranged potenti ii o// which acts at distances larger than 2.5a,/ away from the wall only. It 
is constructed by smearing out the wall particles homogeneously over the wall with density 
n{, which equals for our FCC lattice n, = 1.05/a„ (this implies a reduced density 
n,=n,a}= 1.73). The long-ranged potential thus becomes the Lennard-Jones 9-3 potential 
between a fluid particle and a half infinite solid continuum. The fluid is enclosed in the z- 
direction between the outer layers of the wall and is therefore attracted to one outer layer 
within a certain distance from it and to the other one in the remaining part of the box. If we 
place the origin z = 0 in the middle of the fluid between the outer layers of the wall such that 
Z ranges from -L/2 to L/2 (as in figs.l and 5), then we have for the long-ranged pan of the 
potential



- 86 -

(2.5)

(2.6)

2
(2.7)Ay,/ =

3. The density profiles.

-tt nsa^ nBzsf

in which we neglected the contribution of the term -l/(z + (L/2))9 in 0“. It is noticed by 
comparing table 2 and 3 that the correction is usually small and of the order of the statistical 
error in ysf. In the case of e.g. ysi, it rises from approximately one third of the uncertainty in 
Yj/ at er=0.15 to twice the uncertainty in ysi at er=0.7.

As starting configurations in the simulations we either used a configuration of our pre
vious simulations7’ with the same er and applied the long-ranged potential to it or we took a 
configuration at different e, for which the external potential had been applied and then 
changed er. Most systems were equilibrated in some 15,600 timesteps whereupon no sys
tematic evolution in the potential energy, the density profile or the pressure tensor profile

i L'2 '* a
YV = 7T I d;t dY J dz { Pn(z) - Pr(z) - n(r) z — 0“'(r)}

2- ~Ll2 0 dz

where the origin z=0 is placed at the middle wall-layer and the fluid is imagined to be at 
z >0; pp denotes the component of the pressure tensor normal to the surface, p; the tangen
tial component, n stands for the local density of the fluid. In principle, the e .ration over 
z should range from 0 to oo but in the finite geometry of the box, the integi to be trun
cated at a position zj which is a position in the bulk of the fluid. In the abs- of 0“”, th6
precise location of zb does not matter since the integrand of (2.5) vanishes bulk fluid. 
Including however 0“, the integrand vanishes only at zj,=oo, even if the fi. ■ of a bulk
character already at a finite distance from the wall, because 0“' itself vani only infin
itely far away from the wall. The solid-fluid surface tension depends therefo: the choice
of zfc. The effect of the truncation of the integral at zb can be estimated if one assumes that 
the fluid is of a bulk character at distances from the wall larger than zj,, an assumption 
which is reasonable for our simulations. In that case, the difference (.Pn~Pt) vanishes and 
the local density is equal to the bulk density ng of the fluid at z >zb- Extending the integral 
over z to infinity, one then adds a correction Ay,/ to ysf given by

n(r) z

,2/2 - ,
Ay,/ = -nB J dx dy f dz z — 

L -L/2 z> dz

In the case of the Lennard-Jones 9-3 potential, the correction takes the explicit form (since 
zj is always chosen further than 2.5asf away from the outer wall layer so that 0°“ is given 
by 0“'):

easily be applied each timestep. Instead, the fluid was subject to the long-ranged force each 
13'* timestep with the force 13 times as large as it would be if it were applied each 
timestep.

The solid-fluid surface tensions ysj are measured in the same way as before7’:
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y,o.yiv per

IO

y„ COS0

0.15
0.2
0.25
0.3
0.4
0.5
0.6
0.7

0 15
0.2
0.25
0.3
0.4
0.5
0.6
0.7

0.211(10)
0.222(7)
0.204(10)
0.212(8)
0.207(14)
0.215(10)
0.214(5)
0.214(11)

0.269(9)
0.238(8)
0.216(6)
0.159(8)
0.024(11)

-0.145(11) 
-0.403(9) 
-0.653(13)

0.0318(4)
0.0304(4)
0.0305(5)
0.0312(5)
0.0302(4)
0.0305(6)
0.0310(4)
0.0308(3)

0.0366(11)
0.0290(5)
0.0205(9)
0.0140(7)

-0.0129(18)
-0.0453(16)
-0.1259(23)
-0.2138(31)

-1.03(4)
-0.93(4)
-0.87(3)
-0.65(4)
-0.16(4)

0.44(5)
1.23(4)
1.95(7)

0.52(2)
0.49(1)
0.45(1)
0.39(1)
0.23(1)
0.04(1)

-0.30(1)
-0.63(1)

Table 1. Liquid-vapor surface tension, pressure and total surface tension in the asymmetric systems. AU quanti
ties are in reduced units. The figures between parentheses denote the uncertainty (one standard deviation) in the 
last one or two digits. The r.-.ults at er = 0.15 are taken from the system obtained by decreasing er from 0..2 
0.15. Most results arc obc.ined from an average over 32,000 configurations.

Table 2. Solid-liquid and solid-vapor surface tension and the cosine of the contact angle in the asymmetric sys
tems. All quantities are in reduced units. The figures between parentheses denote the uncertainty (one standard 
deviation) in the last one or two digits. The results at er = 0.15 are taken from the system obtained by decreas
ing e, from 0.2 to 0.15. The reported y„ al e,=0.6 and 0.7 are the surface tensions of the metastable solid
vapor interfaces encountered in the asymmetric systems whereas one has = Yh + Vi, in equilibrium since the 
wall is completely wet. The cos 9 of this metastable branch are larger than 1. Most results are obtained from an 
average over 32,000 configurations.

was observed. After this equilibration, we sampled some 3200 configurations of each system 
to determine the particle density and pressure tensor profile where the configurations were 
sampled each 13'" timestep. Error bars in the data denote the standard deviation as calcu
lated from subaverages over 400 configurations each. Figure 1 shows an asymmetric particle 
density profile at er = 0.5.

A first question is whether the bulk phases and the liquid-vapor interface are affected 
by the wall-fluid interaction or not. Compared with the previous case7\ this question is now 
more stringent since the fluid moves in an external field everywhere. A first criterion for the 
bulk character of a phase is the presence of a homogeneous density. As previously7^, the 
local density fluctuates around a mean value in the region where we locate the liquid and 
vapor phase (see fig.l). The size of these regions is approximately the same as previously7^ 
and the mean density around which the local density fluctuates does not vary systematically 
with er. Averaged over all er, the liquid and vapor density are ni =0.6638±0.0004
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Yri.r Yjv.fe. cosG,

(3.1)

0.15
0.2
0.25
0.3
0.4
0.5
0.6
0.7

0.266
0.232
0.208
0.149
0.009

-0.163
-0.422
-0.683

0.0366
0.0280
0.0192
0.0124

-0.0143
-0.0471
-0.1275
-0.2156

-1.02 I 
-0.91 ■ 
-0.84 i 
-0.60 : 
-0.10 | 

0.51 : 
1.31 j 
2.07 |

and nv —0.0462+0.0004 (with n = nojr) which coincides with the values quoted previ- 
ously?). A second criterion for the presence of a bulk phase is the vanishing of 
{P/vCr) ~ Fig- 2 shows this difference Ap in the asymmetric system at er=0.5
from which it is seen that Ap vanishes in the liquid and vapor phase. The liquid-vapor sur
face tension Y/v, defined as the integral of Ap(z) over the liquid-vapor interface, is listed in 
table 1 for the asymmetric systems. It does not vary systematically with and 
Y/v = 0.213±0.002 averaged over all Er. This is some 5% below the previous result?) 
which could be an effect of the external field acting on the interface. Finally, we consider 
the pressure which is measured in the same way as before?). Its value in the various sys
tems is listed in the tables 1 and 4 which again show no significant variation of p* with £r. 
When averaged over all Er, it equals p* =0.0309±0.0002; it is the same as quoted previ
ously . Therefore, we conclude that also in the presence of the long-ranged external field it 
is possible to identify a liquid and vapor phase with properties which can not be dis
tinguished from the field-free case. The interface between these phases may be more sensi
tive to the external field since its surface tension has slightly dropped.

The solid-fluid interfaces experience the presence of the long-ranged potential much 
stronger. The amount of particles adsorbed at the wall is increased by this potential as can 
be seen in the figs. 3 and 4 which show the coverage of the solid-vapor and solid-liquid 
interface for the systems?) without and the systems discussed here with the long-ranged 
wall-fluid potential. The coverage T of a solid-fluid interface is defined as

r = J dz ( n(z) - nB)
0

with n(z) the density averaged over the x-y plane and nB the density of the bulk fluid. The 
coverage depends on the location of the origin z=0 which is chosen at the middle layer of 
the wall in our case.

In case of the solid-vapor interface (fig. 3), the difference in coverage between the two 
types of system grows with increasing er, reflecting the growing stength of the attractive, 
long-ranged potential. The difference however, becomes significant only beyond er=0.5

Table 3. Solid-liquid and solid-vapor surface tension and the cosine of the contact angle of the systems listed 
in table 2, with the tail correction added. The errors are the same as in the corresponding entries without the tail 
correction in table 2.



- 89 -

n"

0.8

0.4

o.i

0

0
z’

Fig. 2. Pressure difference profile Ap* = ApOp/ep at e, = 0.5, averaged over 26,000 timesteps.

which is already close to the wetting transition 7)- Above the transition, the solid-vapor 
interface is tnetastable and a liquid layer should intrude between the wall and the vapor. The 
simulations give some indication of this intrusion since we observe a slow drift in the solid
vapor coverage towards larger coverages at er = 0.6 and 0.7 in the system with a long-ranged 
potential. The same effect takes place at er=0.8 in the system with short-ranged interactions

Fig. 1. Asymmetric density profile at er = 0.5 obtained from an average over 4000 particle configurations 
generated in a run of 52,000 timesteps. The dotted lines denote the positions of the outer layers of the wall.
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4. Effects of the finite system size.

0.1 
0.15
0.4
0.5
0.6
0.7

0.0315(3)
0.0298(3)
0.0303(3)
0.0302(3)
0.0311(4)
0.0316(5)

0.52(1)
0.49(1)
0.50(2)
0.13(1) 

-0.32(1) 
-0.88(1)

Ytor

only.
The situation is reversed at the solid-liquid interface (fig. 4): the difference in coverage 

grows for decreasing er. This is due to the approach of the drying transition. Near the transi
tion, the liquid layer becomes weakly bound to the wall and is sensitive to small changes in 
the external field. At large er, the liquid layer is tightly bound to the wall and the interface’s 
structure is apparently determined by fluid-fluid and relatively strong wall-fluid interactions. 
The addition of a weak long-ranged interaction turns out to have little effect on the structure 
of the interface.

We also inspected the effect of the finite system size on the solid-fluid interfaces. Com
pared with the limit of a very large system, our simulations suffer from two obvious 
shortcomings: the fluid phase adjacent to the wall terminates at a liquid-vapor interface at a 
finite distance from the wall and, secondly, the attractive range of the external potential is 
also finite. One can question whether a further increase of the wall-fluid interaction range 
and of the size of the adsorbed fluid phases still changes the properties of the solid-fluid 
interfaces significantly. We estimated this change in three simulations of an asymmetric 
system in which one of the fluid phases was enlarged and the separation point zm was 
shifted such that the entire phase was attracted to the side of the wall it was adsorbed at. 
The simulations inspected the solid-liquid interface at er=0.5 and 0.2 and the solid-vapor 
interface at er=0.6 respectively. The liquid phase was enlarged by the insertion of about 
1800 extra fluid particles in the system, whereas the extraction of about 3000 fluid particles 
resulted in a larger vapor phase.

The first of the simulations inspected the solid-liquid interface at e,=0.5. By the extra 
fluid particles, the midpoint of the liquid-vapor interface (where the local density n(z) equals 
(n/ + nv)/2) shifted from z = — 0.66 to z = — 3.56 (with the liquid phase adsorbed at the 
ri^ht hand.side such as in fig. 1). The turning point zm was replaced from the usual choice 
zm=0 to zm = ~ 10. It turns out that the thus obtained density profile of the solid-liquid inter
face can not. be distinguished from the profile of the previous case with the smaller liquid 
phase and zm=0. The interface has a coverage T* =-0.910±0.012 and a surface tension 
YrZ = -0.17±0.01 which should be compared with the values T* =-0.918±0.006 and

Table 4. Reduced total surface tension in the symmetric dry system at e, = 0.1 and 0.15 and the symmetnc wet 
systems from c, = 0.4 till e, = 0.7. The figures between parentheses denote the uncertainty ■■ the last one or two 
digits. The results at e,=0.15 arc obtained from the system formed by increasing e, from 0.1 to 0.15. Mos 
results arc obtained from an average over 32,000 configurations.
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Fig. 4. Reduced coverage for the solid-liquid interfaces. Further as fig. 3.

Yj/ = ~0. 14±0.01 for the system with the smaller liquid phase. The comparison of the sur
face tensions becomes more fair if the tail correction (2.7) is added to make ysi less depen
dent on the choice of z^. Including this correction, the comparison reads ysitl =—0.18±0.01 
for the enlarged system and y*/ z =-0.16±0.01 for the original one.

Fig. 3. Reduced coverage r’-ToJ for the solid-vapor interfaces as a function of £r. Crosses were obtained 
from the systems without a long-ranged wall-fluid potential7), circles are obtained in this work with the long- 
ranged potential. When the error bars are omitted, they are of the order of the symbol size.
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Fig. 5. Density profile at er = 0.1, averaged over 2800 configurations generated in a run of 36,400, further as 
fig. 1.

The second simulation inspected the solid-liquid interface at er = 0.2. Fig. 4 shows that 
the tail of the external potential has the largest effect on the solid-liquid interface at low er 
and therefore, the effect of the increase of the liquid phase and the shift of zm could be 
larger than at £r=0.5. The midpoint of the liquid-vapor interface shifted from z* = — 2.44 to 
2 =-5.08 and zm was chosen at -10. The thus obtained solid-liquid interface had a cover
age T = -1.81±0.02 and a surface tension y*z = 0.233±0.015, to be compared with 
r =—1.86±0.04 and ysl = 0.238±0.008 for the previous system. Including the tail correc
tion, ysl of the system with the enlarged liquid phase becomes y,/r =0.226±0.015 whereas 
Ysi.t =0.230±0.008 for the case with the smaller phase.

The last simulation inspected the solid-vapor interface at er=0.6. A rati>cr large Er was 
chosen because fig. 3 shows that the largest influence of the tail on the solid-vapor interface 
is at high Er.* By the extraction of fluid particles, the midpoint of liquid-vapor interface 
shifted from z =-0.13 to z* =5.77. The turning point was located at z*m = 10. We found in 
this system a solid-vapor interface with coverage T* =0.314±0.006 and surface tension 
y^ =-0.126±0.002, to be compared with T* =0.322±0.011 and precisely the same surface 
tension y^ = —0.126±0.002 for the system with the smaller vapor phase and z*m=0. The 
comparison reads y^tl = -0.127±0.002 against y^j = ~0.128±0.002 when the tail correc
tions are included.

We therefore conclude that an increase of the fluid phase adjacent to the wall and a 
shift of zm such that the entire phase is attracted to the side of the wall at which it is 
adsorbed, hardly affects the structure or surface tension of the solid-fluid interface. The 
increase of the range of the wall-fluid potential from 2.5Ojy, as in our previous simulation7), 
to 13.89(7^, as in the present case with zm=0, away from the outer wall layer, should cap
ture most of the effects of the attractive tail of the potential.
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5. The wetting and drying transition.

The behaviour of the density profiles as a function of Er is nearly the same as previ
ously7). The density profile at £r=0.1 resembles a symmetric dry profile with the liquid 
phase close to one of the sides of the wall (see fig. 5). The liquid phase remained near this 
wall during the time we followed it which was some 52,000 timesteps. Increasing £r to 0.2, 
the liquid phase gets closer to the wall and forms a solid-liquid interface. The reverse tran
sition, from an asymmetric to an alleged symmetric dry profile, occurs when £r is reduced 
from 0.2 to 0.1. Since, as we shall see, the system at Er =0.2 turns out to be still partially 
dry, we have also inspected the intermediate case £r=0.15. One observes some hysteresis at 
this value of £r. Starting from the £r = 0.1 system and increasing £r to 0.15, one obtains a 
solid-liquid interface which resembles a symmetric dry profile with the liquid phase close to 
the wall just as the £,. = 0.1 situation. For the coverage and surface tension of this "solid
liquid" interface we find T*=-3.3±0.1 and y*/ = 0.248 ±0.009. Starting from the £,.=0.2 
system and decreasing £r, one obtains a system which shows more convincingly a genuine 
solid-liquid interface, like in the £r=0.2 case. It has a coverage T* =-2.19±0.03 and a sur
face tension y*/=0.269 ±0.009 as listed in table 2. This hysteresis is not observed at £r=0.2, 
it thus occurs in a limited range of Er only.

We did a separate test of the tendency of the liquid phase to remain near the wall at 
£r = 0.1. Taking a particle configuration of a system like fig. 5 as starting configuration, we 
shifted the turning point zm from z*m=0 to z^ = 10. Thereby, the liquid phase was suddenly 
attracted to the other side of the wall, i.e. to the left-hand side in fig. 5. As a result, this 
phase started to travel towards the middle of the system but instead of travelling on to the 
other side of the wall, it stopped and remained almost in the middle during the 67,000 
timesteps we followed it afterwards. All the time, zm was kept at 10 so the entire liquid 
phase remained attracted to the left.

The density profiles exhibit a large hysteresis around the wetting transition. It is possi
ble to maintain both a symmetric wet and an asymmetric system for all Er ranging from 0.4 
to 0.7, in which interval the transition should certainly take place7). The transition appears 
clearly from the behaviour of the total surface tension of the various states. The total sur
face tension is measured as previously7) and the results are shown in fig. 6. The figure 
shows the symmetric wet branch to be stable for Er >0.6 whereas the asymmetric systems 
have the lower surface free energy for smaller £r. The intersection point locates the wetting 
transition but one should be aware of the influence of possible finite-size effects on it. For 
example, the ylol in fig. 6 contain a y/v as encountered in the simulations, which may be 
affected by the external field. We found the y/v of the asymmetric systems to be some 5% 
lower than previously7) while it is difficult to determine y/v in the symmetric wet systems 
where the solid-liquid and liquid-vapor interfaces are not well separated.

Furthermore, y/v is given by the integral of {p/v(z)-pr(z)} over interface. We 
have defined the total surface tension ytot as the integral of 
{PN(z)-Pr(z)-n(z)zdz0CT'(/)} over the entire system7). The contribution of the liquid
vapor interfaces contains therefore the extra term n(z) z3z(|)cx/(7*), integrated over the inter
face. This contribution can be determined in the asymmetric systems where it is small, 
ranging from approximately —0.003 at £r=0.1 to —0.02 at £r = 0.7 in the reduced units of 
fig. 6. The contribution appears twice in the symmetric systems since they contain two 
liquid-vapor interfaces and moreover, it is larger in these systems
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Fig. 6. Reduced total surface tension yWf as a function of er. Circles denote the symmetric systems, crosses the 
asymmetric ones. The symmetric value at er = 0.15 is taken from the system formed by increasing er from 0.1 
to 0.15. The asymmetric value was measured in the system formed by decreasing er from 0.2 to 0.15. The ex
perimental uncertainty is of the order of the symbol size.

because these interfaces are closer to the wall. Like Y/v however, the contribution is difficult 
to determine precisely in the symmetric wet systems. For the same reasons, the contribution 
of the term n(z) zd2<pex/ (^) to Yj/ is different in the two types of system.

On the other hand, if one compares y/oZ_ as measured in the symmetric wet systems with 
a 7tot calculated as Ytoz =2Yj/ + 2y/v with Y/v =0.225 and ysi as measured in an asymmetric 
system, one notices that the difference between the two numbers is within or close to the 
errors in the measurement (except for the case er=0.4). This shows that ylol obtained in our 
small sized, symmetric wet system is a reasonable representation of the total surface tension 
of a symmetric wet system with a well developed liquid phase. Thus, in spite of the objec
tions mentioned above, the intersection point in fig. 6 appears to be a reasonable estimate of 
the location of the wetting transition. It is however, difficult to determine the transition accu
rately since the partially and the completely wet branches of the surface free energy are 
rather parallel and for this reason, the transition is also sensitive to small shifts of the 
branches. We will therefore rely on the contact angle measurements for a more accurate 
location of the wetting transition. The total surface tension does not show the presence of a 
drying transition but it varies smoothly with er at low er.

Finally, we have calculated the contact angles from Young’s law with Y/v = 0.225. This 
value was also used in our previous work?) and is closer to the result obtained at a free 
liquid-vapor interface1) than the average Y/v of these simulations. The cosines of the angle 
are shown in fig. 7 which reveals a first order wetting transition at ew =0.57 ±0.02. They 
locate a drying transition at = 0.15±0.05. From this figure, it is difficult to tell whether a 
curve through the points intersects the line cos 0 = -l with a finite or with zero angle, i.c. 
whether the drying transition is weakly first or second order.
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6. Conclusions.

Fig. 7. Cosine of the contact angle versus Er. The crosses + are the results without the long-ranged wall-fluid 
potential . The crosses x are obtained in this work, they shift to the circles O when the tail correction is ap
plied. The error in the cosines is of the order of the symbol size, c.f. tables 2 and 3.
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We have also calculated the contact angles from the "corrected" solid-fluid surface ten
sions, with y*v =0.225 as previously, to estimate the effect of the omitted part of the liquid
vapor interaction on the wetting and drying transition. As we discussed above, this estimate 
is reliable if the properties of the solid-fluid interface do not change significantly when the 
extent of the fluid phase and the range of the wall-fluid interface are increased and if the 
fluid is of a sufficient bulk character at z >z$. These assumptions were found to be valid in 
the simulations. The "corrected" cos0 are shown in fig.7 and listed in table 3. They are 
larger than the "bare" results but the difference, growing linear with £r, becomes significant 
beyond tr~0.6 only. The wetting transition shifts to £*, =0.56 ±0.02, which is a marginal 
correction. The correction of cos 0 a posteriori does not shift the alledged drying transition 
since the correction is still small at small er.

We have applied the long-ranged wall-fluid interaction to a system thoroughly studied 
in previous simulations. The effect of this interaction is especially interesting in connection 
with the presence of a wetting and drying transition which were shown to be present in the 
system with short-ranged forces only. It is expected that the long-ranged force facilitates the 
wetting and prevents a drying transition. We could increase the range of the wall-fluid 
interaction from 2.5o^ to 13.89away from the outer layer of the wall. The potential was 
treated in an approximate way: it was taken to be a Lennard-Jones 9-3 potential from 2.5<Jjr 
away from the wall onwards and applied each 13/A instead of each timestep but it can rea
sonably be assumed that these approximations have little effect on the solid-fluid interface.

The long-ranged part is so weak that the bulk character of the liquid and vapor phase is

0
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compared with the estimate7) of genuine transition at = 0.20±0.05.

We have checked the dependence of coverages and surface tensions on the size of the 
bulk phases and the cut-off of the long-ranged potential. Three simulations in which one of 
the fluid phases adjacent to the wall was increased and zm was shifted such that the entire 
phase was attracted to the side of the wall it was adsorbed at, showed no significant varia
tion of the properties of the wall-fluid interface. Therefore, we expect no considerable 
changes in the wetting transition in a system with fully extended fluid phases and wall-fluid 
potentials. Since the theoretical evidence for the vanishing of the drying transition seems 
inescapable, one would nevertheless expect that a much larger system and much longer 
simulation times demonstrate the alledged disappearance of the drying transition more 
clearly. Such simulations could be capable to observe the slab’s character of a bound state 
even at very low £r.
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CHAPTER VII

A search for prewetting

ABSTRACT

A first-order wetting transition should be accompanied by a prewetting transition. Although 
many of such transitions have been reported, clear observations of prewetting are rare. We 
report on a search for prewetting in a wall-fluid system which was shown previously to exhi
bit a first-order wetting transition. The fluid consists of a vapor phase which density is 
increased towards the coexistence density while the coverage of the wall-vapor interface is 
monitored. This approach of coexistence is studied as a function of the interaction strength 
between the wall and the fluid. Although we do recognize the presence of a wetting transi
tion in the adsorption curves, the more subtle effects associated with prewetting cannot 
unambiguously be observed.
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1. Introduction.

Wetting, as a branch of adsorption phenomena, has enjoyed an active interest in recent 
years1). Generally, wetting phenomena occur when two thermodynamic phases compete to 
be adsorbed at a third phase. A model system to describe these phenomena is that of a fluid 
at liquid-vapor coexistence in contact with a wall. This model displays a particular form of 
wetting when the coverage of the substrate is considered as a function of the affinity of the 
wetting fluid to the substrate which is measured by the interaction strength £. If the wall is 
covered by the vapor phase at a low affinity, a liquid layer will form at the solid-vapor inter
face when e is increased. The formation of a liquid phase at the substrate may occur via a 
continuous or a first-order phase transition. In the continuous case, the wetting layer grows 
from microscopic (or finite) at low values of £ to macroscopic (or infinite) at the wetting 
point £w. When the welting transition is first-order, the coverage jumps at £w from micros
copic to macroscopic.

Such a first-order wetting transition is accompanied by a prewetting transition in the 
undersaturated vapor regime. If the adsorbed vapor is not in coexistence with its liquid, 
never a macroscopically thick liquid layer can be formed on the substrate but only a micros
copically thin layer. Close to saturation there will be a transition from a thin to a thick cov
erage upon increasing £.

The phase diagram of prewetting is sketched in fig. 1 in terms of the parameter Ap, 
controlling the distance of the fluid from liquid-vapor coexistence with the undersaturated 
vapor at Ap<0, and £, the affinity of the fluid to the wall. The prewetting line starts at 
Ap=0 (liquid-vapor coexistence) and £ = EW and terminates in a critical point at Ap. = Apcpw 
and £=€CpW. The nature of a prewetting line is quite similar to the liquid-vapor coexistence 
line in a bulk fluid. This is born out when we plot the coverage T as a function of the vapor 
density (see fig. 2). Lines of equal £ show a behaviour similar to the isotherms in an ordi
nary phase diagram of liquid-vapor coexistence. For large £, (high temperature isotherms) 
the coverage T increases continuously from a finite value to infinity at the saturated vapor 
density nc. For £w<£<£c;>w, the coverage jumps from thin to thick at a vapor density n 
between the prewetting critical density ncpw and the saturated density nc. The jump 
increases to infinity and moves to nc when £ reaches £w. For £<£w the coverage rises with 
n to a finite value at nc.

The interest in prewetting is amongst others triggered by the fact that it is a genuine 
two-dimensional realisation of a first-order transition ending in a critical point and thus one 
believes the prewetting critical point to be in the universality class of the d — 2 Ising 
model2). The prewetting phenomenon is however difficult to observe. This may have to do 
with the two-dimensional character of the system where critical fluctuations are large and 
consequently the prewetting line short. In our language this means that ncpw is close to nc 
and ^cpw close to £w. Moreover, the prewetting line can be shown to merge tangentially with 
the liauid-vapor coexistence line^. Prewetting was predicted together with the wetting tran
sition4). Its existence is supported by density functional calculations^) and also many lat
tice gas models2,7*8) can be shown to demonstrate the prewetting transition.

Recently, a prewetting line was scanned in a simulation of a Lennard-Jones 12-6 fluid 
in contact with a wall by Finn and Monson9). The wall was taken to be a half-infinite, 
smeared-out Lennard-Jones wall and thus was represented by the Lennard-Jones 9-3 poten
tial. They studied the adsorption at the wall as a function of the fluid s pressure and
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Fig. 2. Prewelting phase diagram at a fixed temperature. T denotes the coverage of the wall-vapor interface, nb 
the bulk vapor density; ne is the saturated vapor density and nepw the density at the prewetting critical point. 
The curve A is a typical adsorption curve for E>£epw, curve B is at tcpw <e<ew and C at e<ew.

Fig. 1. Schematic wetting phase diagram at a fixed temperature. The attractive wall-fluid strength is measured 
by e: a larger s denotes a stronger attraction; Ap denotes the difference between the chemical potential p and its 
value at liquid-vapor coexistence pc. The unsaturated vapor phase is located at Ap<0. The line that deviates 
from the coexistence line Ap=0 is the prewetting line. It ends in a critical point at tcpw and Apc/7W.
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2. Description of the system.

(2.2)r =

The system encountered in these simulations is almost the same as the one studied by 
Sikkenk et al^. We recall its main features but refer to Sikkenk et al for an elaborate 
description. The system consists of a three dimensional, cubic box in which a wall and a 
fluid are contained. The box has periodic boundary conditions in all directions. The particles 
interact via a Lennard-Jones 12-6 potential

temperature instead of the fluid’s density and the wall-fluid affinity but this difference 
should not change the qualitative nature of the phase diagrams of fig. 1 and 2. The simula
tion showed jumps in the coverage that neatly behave according to the phase diagram of fig. 
- (with e replaced by the temperature) and thus forms a convincing observation of prewet- 
ting. Any experimental report of prewetting still seems to lack although several prewetting
like phenomena have been observed1®’11).

In the present paper, we report on a search for the prewetting phenomenon in 
molecular-dynamics simulations of a previously studied wall-fluid system121These 
simulations have examined the system with the fluid at liquid-vapor coexistence as a func
tion of the wall-fluid affinity e. They revealed the presence of a strongly first-order wetting 
transition, so this system seems a good candidate for the observation of prewetting. More
over, the location of both the wetting transition and the saturated vapor density nc are 
known rather accurately so the main prerequisites for a directed search are fulfilled. The 
paper is organized in the following way. Section 2 describes the measurement procedure and 
the technicalities of the simulation, the results are presented in section 3 and the paper is 
closed with a discussion in section 4.

L/2 u
/ dx dy J dz ( n(r) - nb)

L -ui o

•W') = 4Eaj { (a^/r)12 - (Oxa/'')6} (2-D

where A and B denote the type of the two interacting particles, i.e. they stand for either 5 in 
case of a solid or f in case of a fluid particle. The interparticle distance is r, E45 denotes 
the energy scale and aAB the length scale of the A-B interaction. The potentials are truncated 
at* 2.50^#. The reduced boxlength L*—L/q^ is L =29.1, the reduced temperature 
T -k^TlZff kept fixed at T* =0.9. The simulations are carried out on a special purpose 
computer: the Delft Molecular Dynamics Processor1^) (DMDP).

The wall is built of three layers of an FCC-lattice which require 2904 wall particles. 
The wall particles are strongly interacting, ew = 50ejr, and have a larger mass than the fluid 
particles: ms = 3mf. This choice of parameters guarantees a stable wall, i.e. the lattice posi
tions around which the wall particles oscillate, remain in place during the simulations. The 
wall layers are placed in the x-y plane and the fluid is in contact with both outer layers due 
to the periodic boundaries.

The difference with the previous work12) is that the number of fluid particles Ny is 
varied in these simulations to control the vapor density. The second parameter in the simu
lations is the interaction strength zsf between the wall and the fluid particles. It is expressed 
as the ratio Zr = tsflZff which we see as a measure for the affinity of the fluid for the sub
strate wall. The coverage r is measured as a function of these two parameters via
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with a sufficiently deep position in the bulk vapor, nfr*) the density of the fluid at posi
tion 7* and nb the density in the bulk vapor. The fluid is taken to be located at z>0. The 
bulk vapor density nb is measured directly in the system. The coverage depends on the loca
tion of the origin z=0 which we chose to place at the middle wall layer. Note that we can
not fix nb directly using the number of fluid particles as our control parameter but only the 
sum 

Nf = L3 nb + L2 (Ti + rr) (2-3)

where T / denotes the coverage of one of the sides of the wall, say the left one, and Tr the 
coverage of the other side. Particles are added to or subtracted from the region of the box 
where the fluid has bulk vapor properties.

Gradually changing the amount of fluid particles at a fixed value of we expect to 
observe a prewetting transition as follows. Starting with a system with er the wetting 
threshold ew and a low density vapor, we add particles so the vapor dens.. nd the cover
age at both sides of the wall gradually increases. The coverage should be . same at both 
sides of the wall at all vapor densities and it should still be finite at coexisi '.ce. as indicated 
in fig 2. When the saturation density has been reached and one continues t add particles, a 
liquid layer should grow at one of the sides of the wall, forming a partially wet system in 
which one side is covered with liquid, the other with vapor12\

This growth behaviour should be different for er between ew and Ecpw. In that case, 
one expects the density and the coverage to grow with the addition of fluid particles until 
the density at which the prewetting transition takes place, has been reached. Till that 
moment, the coverage should be the same at both sides of the wall. From that moment on, 
the added panicles are used to form a thick film at one of the sides of the wall. The area 
covered with the thick film forms an "island" on the wall which borders at the area covered 
by the thin film along a contact line. The line tension of this contact line will minimize the 
total length of the line and therefore, all of the thick film should ideally be present in one 
island. The average coverage of the side of the wall at which the thick film has formed, 
grows as the size of this island increases by the addition of fluid particles. The average cov
erage of the other side of the wall should not change since this side should be covered 
entirely with the thin film. Thus, there appears a difference in the coverage at the two sides 
which reaches a maximum when one side has become covered entirely with the thick film 
while the other side is still completely covered with the thin film. From that moment on, 
the difference decreases because the thick film is also formed at the other side and finally, it 
vanishes when both sides of the wall are covered with the thick film. Continuing to add par
ticles, one has passed the prewetting transition and the vapor density increases again while 
the coverage grows with the same rate at both sides of the wall. The coverage diverges as 
coexistence is approached since a liquid layer is formed at both walls for er above £w.

The growth behaviour is again much simpler for er>ecpw. In that case, one does not 
pass a prewetting transition and both the vapor density and the coverage should grow con
tinuously under the addition of fluid particles. The coverage should remain the same at both 
walls and diverge at the approach of the saturation density.

Thus we expect the presence of a prewetting transition to be signaled by two main 
characteristics: a difference in the coverage at the two sides of the wall and, secondly, no 
change in the vapor density under the addition or subtraction of fluid particles but only a
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(2.3)

(2.4)

This was the 
was however

b

N,
<f>“'(7;A....?N<) = X <t>v(I'*-'*-■!)

1 = 1 

where y, denotes the position of the i-th wall particle and Ns the number of wall particles 
(#,=2904 in our case).

An accurate knowledge of the location of the wetting transition is of great help in the 
investigation of the prewetting transition. The wetting transition was located in the three pre
vious simulations12-*3’14) which differed apart from the treatment of the wall in the measure
ment of the "contact angles". The first of these measured the contact angles via Young s

change in the coverage at one of the sides of the wall.
In some cases, we also measured the surface tension of the wall-vapor interface. The 

measurement of the surface tensions is a delicate problem. In principle, the wall with wall 
particles that are free to move, represents a thermodynamic phase and the surface tension 
should be measured in a way appropriate to an interface between two thermodynamic phases.

way originally employed12) in the wall-fluid surface tension measurements. It 
suggested !6) that the thickness of only 3 layers and the possibility of the wall 

to support stress, caused the thus obtained surface tensions to be unreliable. This suggestion 
was confirmed by two subsequent simulations13,14). In the last of these14), the wall particles 
were frozen in at the lattice positions and, consequently, the surface tension was measured in 
a way appropriate to the interface of a fluid in an external potential. These measurements 
turned out to give far more reliable results.

In these prewetting simulations, we again employ a "live" wall but do however, not 
measure the surface tensions as they should be measured formally since this way has proven 
to be too inaccurate Instead, we treat the fluid as moving in an external field and measure 
the wall-vapor surface tension accordingly. Such a measurement14) probes only the state of 
the fluid and neglects the contribution of the solid-solid interactions to the surface tension y. 
These interactions probei i dominate y but, since we are only interested in differences in 
surface tension, we can neglect them if we assume that the solid-solid contributions to y are 
the same for the interfaces that are compared. In view of the success of the measurements at 
a fixed wall and the observarion that the effect of the oscillations of the wall particles on the 
adsorbed fluid is small, we expect that it is indeed sufficient to evaluate only the state of the 
fluid to compare solid-vapor surface tensions. The original expression for the wall-vapor 
surface tension of a fixed wall is averaged over the degrees of freedom of the wall particles 
when it is applied to the live wall case:

1 L'2 d
Y = —y J dx dy J dz <p/v(^) ~ Pr(?) ~ z ST 

L -LU o °
with p^ and py the components of the fluid’s pressure tensor normal c.q. tangential to the 
wall. The origin z=0 is placed at the middle wall layer and the average < > denotes the 
ensemble average over the positions of the wall particles. The quantities p^, Pt* n ancl 0 
depend also on the configuration of the wall but this dependence has been suppressed in the 
notation of (2.3). A description of the measurement of p# andpr can be found in a previous 
paper14). The definition of 0^ has been described there as well, apart from the fact that the 
positions of the wall particles are no longer fixed at lattice positions:
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Fig. 4. Density profile at er=0.85 obtained as an average over 2000 configurations. The two wall-vapor inter
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3. Results

law, the second series of simulations measured the angles visually whereas the last series 
used again Young’s law. The first simulations gave a wetting transition at £w = 0.78+0.03 
but this value has turned out to be not so accurate because of the difficulties in obtaining the 
wall-fluid surface tensions. The second and third series of simulations gave £w = 0.68+0.03 
and £w=0.62±0.01 respectively, which results agree rather well. The difference between 
them could be due to the difference in the representation of the wall and the fact that curved 
liquid-vapor interfaces were employed in the second simulation whereas planar interfaces 
were used in the last one. We thus know the wetting transition to be in the range between 
Er~0.62 and Er=0.68. All the three simulations agree on a value of the saturation vapor 
density nc =0.046±0.0005 at the temperature T* =0.9.

The most complete adsorption curve was obtained for Er = 0.85. It is shown in fig. 3. A 
typical density profile fro*-.'. which the coverages and the bulk density are obtained is shown 
in fig. 4. For this £,., the number of fluid particles varies between 271 for the systems with 
the lowest vapor density and 6034 for the system with the largest density and coverages. 
Almost all points in this curve are formed by the addition of fluid particles but in general, 

or subtraction of fluid particles or they origin from 
a previous system with the same number of particles but a different £r. In all cases, an 
equilibration time was taken into account after the formation of a new system before the 
actual measurements started. The equilibration time is taken as long as necessary to obtain 
stable density profiles which can vary between 2000 and 78,000 timesteps. The length of

A measurement takes at least 26,000 timesteps but it may 
------- r  _..o J .3 are typically run for systems close 

to coexistence where the fluctuations are large and indications of prewetting are to be 
expected. The density and pressure tensor profiles are sampled every 13^ timestep. Error 
bars in the data denote the standard deviation calculated from subaverages over 5200 
timesteps each.

The case Er=0.85 was expected to be well above the wetting transition and this is con
firmed by fig. 3 in which the coverage diverges as coexistence is approached. The dotted 
line is at the saturation density n* =0.046. The coverages at the left-hand and right-hand 
side of the system are usually equal although small but significant differences appear at vari
ous densities, especially around n'b =0.043. We do however not believe them to be related to 
prewetting, as will become clear later on. The fluctuations in the systems close to equili
brium are huge. The subaverages of the density may spread over a range larger than 0.01 in 
those systems.

A very different adsorption curve is obtained at Er=0.65, as shown in fig. 5. These 
points are all obtained by decreasing £r in a previous system at £r = 0.70 except for the sys
tem with the lowest density which was made by subtracting particles from the next system 
with higher density. The curve is far less complete than fig. 3 but it shows that the coverage 
seems not to diverge near coexistence, i.e. the system is partially wet. Note that the figure 
shows one bulk density that is clearly above the coexistence density. The subaverages of this 
result show densities that range from below the coexistence density to values larger than 
0.05 and it is very hard to tell when equilibrium has been achieved. Apparently, the equili
brium state is not reached at the timescale of the simulations (the system has been followed

curve are 
points are either obtained by the addition

, vl.e same i-------- — r--------  ,
taken into account after the formation of a new system before the

actual measurements started. The equilibration time is taken as long as necessary u -

the actual measurement time also varies, depending on the size^°f^t e uctuatio^s_  
desired accuracy of the results. 2. ...—--------------------
become up to eight times as long. Such long simulations
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zrfor 130,000 timesteps). If the system is partially wet, it should form a liquid phase at one of 
the sides of the wall from the moment coexistence has been reached while it maintains a 

=solid-vapor interface at the other side. This does not occur: the coverages of the left-hand 
and the right-hand side both increase and the system remains approximately symmetric. On



- 107 -

2

1 —t-

0-0450.0400.035
n"

b

0*-----
0-030

3

r"

Fig. 7. Adsorption curve at er=0.75, further as fig. 3.

the other hand, we verified that if one startes with an asymmetric system at coexistence with 
a difference in coverage AT*~1, this difference turns out to be stable as well. Extracting 
particles from the vapor phase then, the coverage decreases at both walls while the system 
remains at coexistence although the successive differences in coverage become smaller.

The adsorption curve at £,.=0.70 is given in fig. 6. Some of the points in this figure 
are obtained by changing the amount of particles in a previous system at the same £r, some 
are obtained by changing £r while leaving the amount of particles unaltered. The curve is 
less conclusive as to whether we have passed the wetting transition or not: it shows a steep 
rise in coverage of which it is hard to determine whether it occurs at or just before coex
istence. The two systems just before coexistence and the one next to them at coexistence 
have been followed for 208,000 timesteps after the equilibration time, which is longer than 
any other system. We wanted to locate these points so accurately because the occurence of 
such a rise at a density lower than the saturation density would imply the presence of a 
prewetting transition. The points however, are too close to the coexistence line to interprete 
them as a clear prewetting phenomenon.

At £r equal to 0.75, the adsorption curve of fig. 7 is obtained. As in the previous fig
ure, some of the systems are obtained by changing £r while others result from a change in 
the amount of fluid particles. This curve looks like the adsorption curve at £,.=0.85. a gra
dually diverging coverage, characteristic for a completely wet wall. Little differences in the 
coverage at the left and the right-hand side of the wall appear at various densities. We have 
also measured the adsorption curves at £r equal to 0.80 and 0.90 and found them to be qual
itatively the same as the curves at £r equal to 0.75 and 0.85.

We expected the appearence of asymmetric coverages to be a sign of prewetting but 
this turns out to be an unreliable criterion: significant differences in coverage appear in 
many cases. This implies that one is easily trapped in metastable configurations which 
appear to be stable on the timescale of the simulations. We tried to shed more light on this
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Fig. 8. Evolution of the difference AT between the left-hand and the right-hand side of the wall in case of an 
asymmetric system at er = 0.70. N, denotes the number of timesteps. The points arc averages over 26,000 con
secutive timesteps.

metastability by surface tension measurements. Starting with a system in which the fluid par
ticles were placed on a lattice with more lattice layers near the l.h.s. of the wall than near 
the r.h.s., we formed a system that was strongly asymmetric. The wall-fluid affinity was set 
at £,.=0.70. This system was followed for an extremely long time and fig. 8 shows the evo
lution of the difference in coverage Ar = T/-rr. It can be seen from the figure that the 
difference gets smaller but so slowly that the determination of the final equilibrium state is 
probably beyond the reach of these simulations. We have both extracted particles from and 
added particles to the gas phase to obtain strongly asymmetric systems at other vapor densi
ties. All these states are listed in table 1 in which the data are averages over the last few 
subruns of the slowly evolving systems. The coverages in this table are roughly at the 
adsorption curve of fig. 6.

If the system does exhibit a prewetting transition, it is expected that the side of the wall 
with the lowest coverage has the lowest surface tension at vapor densities below the transi
tion whereas the side with the largest coverage has the lowest surface tension above the tran
sition. Table 1 lists the surface tensions of the two sides, measured in the way explained in 
section 3. The table shows that the left-hand side of the wall, which has the largest coverage, 
has the lowest surface tension at all vapor densities. It does therefore not point at the pres
ence of a prewetting transition.

We have increased the £r of these systems to 0.75 to inspect whether these large asym
metries can also be maintained at larger er. This is indeed the case: one obtains asymmetric 
systems with vapor densities between n^=0.04 and the coexisting density which seem to 
relax very slowly towards a symmetric state. The surface tension of the side of the wall with 
the largest coverage is always the lowest. So the phenomena are essentially the same as in 
the £r =0.70 case.

3
Nt/105
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4. Conclusions.

0.0411(4)
0.0431(4)
0.0450(5)
0.0454(4)

0.643(9)
1.043(7)
1.298(8)
1.685(6)

0.522(4)
0.654(6)
0.934(9)
1.132(8)

-0.240(3)
-0.280(3)
-0.303(3)
-0.311(4)

pass the prewetting transition, 
true discontinuity in the coverage

-0.218(3)
-0.243(2)
-0.278(3)
-0.292(2)

parentheses denote the error in the last decimal.

We have careful:’.' examined the adsorption curves of a wall-vapor interface at several 
values of the wall-fluid -nity er. Previous simulations 12-13’14) have revealed the presence 
of a strongly first-c- • -’ting transition in this system and thus, a prewetting transition is 
to be expected. The actsoiption curves also show the presence of a wetting transition: the 
coverage remains finite c-n. the approach of coexistence at er=0.65 while it seems to diverge 
3t =0.75. It can be disputed whether the coverage diverges or not in the intermediate case 
£r = 0.70. We thus estimate the wetting transition to occur at ew =0.70±0.05, in agreement 
with the previous estimates.

The more subtle effects associated with prewetting cannot unambiguously be observed 
in our simulations. The simulations suffer from a number of disadvantages. At first, we 
have seen that the fluctuations and the relaxation times in the system are very large and 
could mask the signals of a prewetting transition. Secondly, we expected that the use of 
effectively two walls, which are in fact the two sides of the same wall, enables one to 
observe a prewetting transition as a difference in the coverage at the two sides. However, the 
sides turn out to be "decoupled" on the timescale of the simulations in the sense that local 
equilibria are reached at both sides of the wall but a global equilibrium of the entire system 
is not obtained. This is e.g. clearly demonstrated by the systems at coexistence at er=0.65. 
They are partially wet according to the fact that the coverage remains finite on the approach 
of coexistence. Nevertheless, the liquid condenses at both walls at coexistence whereas the 
equilibrium configuration is one with the entire liquid phase adsorbed at one side and the 
vapor phase adsorbed at the other side of the wall12). The coupling between the walls is 
poor because they have to communicate via the dilute vapor phase. The only way to provide 
transport of particles between the two sides of the wall is via diffusion through the vapor 
phase which is a slow mechanism. The coupling via the vapor phase is therefore not effi
cient. When the walls are decoupled, the subtle growth behaviour of the coverage on the 
passage of the prewetting transition as sketched in section 2, will not occur. Therefore, we 
have no advantage of the use of "two" walls.

As a third disadvantage, our simulations with a fixed temperature and volume may be 
less suited to observe prewetting than the isobaric simulations of Finn and Monson Gra
dually changing the amount of particles, we should encounter walls that are partially covered 
with the thick and partially covered with the thin film as we 
On the contrary, the prewetting transition is observed as a

Table 1. Reduced bulk vapor density n’b, reduced coverages f/ and Tr and the reduced surface tensions Y/ and

approximately 8000 configurations. Numbers between
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as the transition is passed in the isobaric simulations. Such a discontinuity may be more easy 
to observe. Furthermore, the distance to coexistence can be tuned exacdy, i.e. in terms of 
the pressure, in the isobaric simulations whereas the vapor density cannot be fixed directly in 
our canonical simulations.

In spite of these objections, we would expect that a prewetting transition with an appre
ciable difference in coverage between the coexisting films which occurs not too close to 
coexistence, would be observable. Compared with the simulations of Finn and Monson, our 
simulations differ apart from the simulation techniques, isobaric Monte-Carlo versus canoni
cal molecular-dynamics simulations, from theirs in two respects. Namely, the representation 
of the wall is different and we scan a range of wall-fluid affinities £, at a fixed temperature 
whereas Finn and Monson scan a range of temperatures at a fixed wall-fluid interaction. 
These differences should not affect the qualitative character of the prewetting transition but 
the quantitative differences may be considerable.

From the estimate of ew as ew =0.70+0.05 and the absence of any sign of prewetting 
at £,. = 0.75, our simulations indicate the critical wall-fluid interact: of the prewetting tran
sition £Cpw to be within 0. l£jjr of the wetting threshold £w. The ad/' iption curves seem to 
exclude the possibility of prewetting effects at densities of 0.003/oy ! elow nc so we esti
mate the critical vapor density within 0.003/gJt of the saturation . density. These esti
mates agree with a density functional calculation of Velasco and T. razona'7). Previously, 
they have carried out a calculation^) of the location of the wetting and drying transition in 
this particular wall-fluid system, a calculation which they have extended to investigate the 
prewetting line. They locate the wetting transition at ew =0.75 and the coexistence density at 
nc =0.042 but of more importance with regard to the present work is that they predict the 
prewetting line to be very smaU. The difference between ecpw and ew is estimated to be 0.1 
and the difference between n’ and n‘pM only 0.005. Especially the latter is very small, 
implying that the whole prewetting line remains very close to the coexistence line and that it 
will be hard to observe it with the accuracy of our simulations.
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CHAPTER VIII

The Lennard-Jones liquid-vapour interface

ABSTRACT

The surface tension of a Lennard-Jones liquid-vapour interface has been determined 
accurately in a molecular dynamics simulation. Our values tend to be smaller than 
those from previous simulations. It is shown that the usually truncated tail of the 
potential strongly increases the surface tension if taken into account.
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1. Introduction

- (CT/r)6 } (1.2)<t>c(r) =

-

cal systems, 
shall see below, 
for an 
such < 
be brought

4>(r) = 4e {(a/r)12-(a/r)6} G-D
where r is the interparticle distance, e the well of the potential and a the length scale. A spe
cial difficulty presents the tail of the Lennard-Jones potential. In order to keep the computer 
simulations within an acceptable time, the interaction has to be cut off beyond some distance 
rc- Such a truncated Lennard-Jones potential reads

4e {(a/r)12 
0 r>rc

The surface tension y of a Lennard-Jones fluid with a truncated potential is believed to be 
rather strongly dependent on rc. Some theories^ predict a change in y varying from about 
40% at the triple point temperature until 90% at the critical temperature as rc grows from 
2.5a to oo.

A number of simulations of a 3-dimensional Lennard-Jones liquid in equilibrium with 
its vapour have been carried out since 1974. These include both molecular dynamics and 
Monte Carlo simulations of different systems: various numbers of particles, boundary condi
tions and ways to cut off the Lennard-Jones potential are reported. The attention in these 
simulations has been focussed on the form of the interface profile and the surface tension. 
An outline of the resulting values of the surface tension (without any tail correction) is given 
in figure 1 where the reduced surface tension y*=yo2/£ is plotted against the reduced tem
perature T* = IcbT/e (kB is Boltzmann’s constant). Comparing the various values one sees a 
large variation in results. We present accurate values of the surface tension for four dif
ferent temperatures as found in molecular dynamics simulations of large systems with a

The thermodynamic description of an interface goes back to Gibbs1). In a thermo
dynamic language, the properties of a fluid change stepwise between those of the coexisting 
bulk phases. Van der Waals was the first to recognize that the bulk phases connect 
smoothly in the interface. He expressed the free energy as an integral over a local free 
energy density which includes the contributions due to the inhomogeneity of the system 
through a squared gradient term of the density profile2). It took until around 1950 before 
two exact expressions^) appeared for the surface tension in terms of molecular distribution 
functions. Up to now no first principle theory exists for the calculation of these correlation 
functions. However, plausible assumptions (density functionals) have led to fairly succesful 
descriptions of interfacial profiles.

For a long tim ■ th heories could only be checked against measurements of real physi- 
e.g. ar. trg liquid-vapour interface^). The surface tension is however, as we 

a g function of the potential. Thus computer simulations can provide 
important test theories as the molecular interactions are completely specified in 

experiments. aver, possible discrepancies between model systems and reality can 
w t to focus unambiguously. By computer simulations, the molecular correlations 

needed for a compulation of the surface tension can be determined with an accuracy limited 
only by statistics.

A typical fluid potential used is the Lennard-Jones 12-6 potential
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2. Description of the system

truncated potential. In addition, a simulation of a smaller system with a three times larger 
cut-off distance was carried out to measure the effect of the truncation.

x
0.8 +

Fig. 1. Reduced surface tension of a Lennard-Jones fluid versus reduced temperature as found in previous simu
lations. The following simulations are included: + Chapela el aft, x Rao and Levesque8!, O Rao and Berne91. 
O Liu101, A Opilz111. * Lee el a/121, X van Swol and Henderson13!. The result of van Swol and Henderson 
regards a square-well fluid.

Apart from those in the smaller system, our measurements have been carried out on the 
Delft Molecular-Dynamics Processor (DMDP)7\ which is specially designed for molecular 
dynamics simulations of simple fluids. The use of this computer enabled us to simulate large 
systems .

A 3-dimensional system of coexisting liquid and vapour was simulated on the DMDP at 
four different temperatures: T* =0.72, 7* =0.80, 7’=0.90 and 7*=1.00. These temperatures 
scan the range between the triple point temperature 7,’ =0.70 and the critical temperature 
77=1.25. For the two lowest temperatures, our system contains 10,390 panicles while for 
7’=0.90 and 7*=1.00 it has 7968 resp. 7619 particles. For all these temperatures, the parti
cles are enclosed in a computational box of dimensions Lx x Ly x Z,z =29. let x 
29.1 a x 29.10 with periodic boundary conditions. The particles interact via a Lennard-Jones 
12-6 potential truncated at 2.5o. Initially, a fluid strip with a width of ~16g was placed in 
the box parallel to the x-y plane and the remaining space was filled with vapour. There was 
no external potential applied: the system proved to be stable by itself. We allowed the sys
tem to equilibrate during lOxlO3 timesteps which was long enough to obtain a steady den
sity profile, internal energy and surface tension. The reduced timestep I (G^Tin)
(where m is the mass of the particle) we used in our algorithm, was chosen to be 0.01. 
After the equilibration period, the density and pressure profiles (see next section) were
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Fig. 3. Density profiles of liquid-vapour interfaces at coexistence for systems with a cut-off radius of 2.5a (a) 
and 7.33a (b) respectively, as simulated with the IBM. The profiles are obtained from simulations of 12x10 
limesteps each.

Fig. 2. Density profiles of liquid-vapour interfaces at coexistence for the reduced temperatures 1.00 (a), 0.90 
(b), 0.80 (c) and 0.72 (d) as simulated with the DMDP. The profiles are obtained from simulations of 20.8xl03 
umesteps each.
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3. Calculation of the surface tension

(3.1)

(3.2)

The surface tension is calculated as the integral over the interface of the difference 
between the normal and tangential components of the pressure tensor1)

Y = J dz{ pN(z) - pT(z)}

where bulk liquid is assumed to be at the left of the interface and bulk vapour at the right, 
z; is an arbitrary position in the bulk liquid, z, an arbitrary position in the bulk vapour. The 
normal component pjv(z) and tangential component Pr(z) are equal to the thermodynamic 
pressure p in the bulk phases. The components differ from each other in the interface zone. 
In the case of our system with two interfaces the surface tension is calculated as

y = y J dz{ pN(z) - Pr(z)} 
z o

measured each thirteenth timestep. We sampled 1600 profiles for each temperature. In order 
to estimate the statistical errors, we calculated the average bulk densities and the average 
surface tensions of subsets of 400 configurations. In this way we obtained for each tempera
ture 4 measurements of the bulk densities and the surface tension, which we took as 
independent. From these 4 measurements we calculated the standard deviation. Each timestep 
costed about 2.5 s computing time. Figure 2 shows the density profiles.

The same type of system, i.e. a system with 2 liquid-vapour interfaces and no external 
boundary conditions was used in the simulations of Rao and Levesque8) and Rao and 
Berne’). Rao and Beme took a system of 2048 particles in a periodic box of dimensions 
14.66a x 14.66a x 25.10a at T* =0.922 and used a Monte Carlo procedure to generate the 
configurations. The system was of Lennard-Jones type with a cut-off distar c rc=2.5a. Our 
DMDP results are at variance with both of these simulations, as will be see : . r on. There
fore, we have repeated the Rao and Beme experiment with a general pin • omputer, an 
IBM 3083-JX1. We simulated a system of 2048 particles in a periodic dimensions 
14.66a x 14.66a x 25.10a at T* =0.92 but used the molecular dynan :ead of the 
Monte Carlo technique. The reduced timestep was 0.01. This system rowed over 
12xl03 timesteps after an equilibration of 4xl03 timesteps. The pressure , density pro
files were measured each timestep. Errors are estimated by averaging o- subsets of 
1.2xl03 timesteps. This gives us 10 measurements which we used to calculate standard 
deviations.

To study the effect of the attractive tail of the interparticle potential, the cut-off radius 
in this system was increased to rc=7.33a. Other features of the system, e.g. the temperature 
T’=0.92, remained the same. As a starting configuration for this simulation, a particle confi
guration obtained by the previous simulation with rc=2.5a was used. After 1.68x10 
timesteps of equilibration, the system was followed during 11.97xl03 timesteps. Sixteen 
subsets of O.63X1O3 profiles were considered to calculate standard deviations. The comput
ing time increased from 1.6 s per timestep for the system with rc= 2.5a to 22 s for the sys
tem with rc= 7.33a. Figure 3 shows the density profile of the smaller system with rc=2.5a 
together with the density profile of this system with the extended cut-off radius.
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sions1)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)Y(*) = 0

divide the box into slabs of length LZINS parallel to the x-y 
We calculate pp(k) and prW, the local normal and

Y(*) = PnW - PtW}

SL

= - 
N, '

1 
LxLy 

Besides the necessity of a 
well defined bulk liquid or

y (^)
(i.y)

K( 4
ra

LxLyL2/Ns is the volume of a slab,

1 N’
Y = v L Y(*) 

2 4=1

where y(&) is the "local surface tension" in slab k

PnW = < n(k) >kBT - -7- 
y si

z?.

riJ

-^T^y) >

To evaluate this integral, we 
plane. Ns was taken to be 512. 
tangential pressures in slab k, k = \,...,Ns, according to the statistical mechanical expres-

w + 4)—40,(r ) >
(.j) ru

constant bulk density, a second condition for the presence of a 
bulk vapour in a slab k becomes

PtW = < n(k) >kBT - —1—< ^ (*’ 
vs‘ (i.J)

where n(k') is the particle density in slab k, Vs[ =
xi/» yij> Zy and are the inter-'. icle distances, 0' is the derivative of the full interparticle 
potential, it is truncated beyond rc, and < > denotes a canonical ensemble average. The 
summation y means that ;h.: mmation runs over all pairs of particles of which at

(ij)
least one of the particles ; .. situated in slab k. It furthermore means that, if only one 
particle, either i or /, was itu <. in slab k we attributed half of the contribution of pair 
(*»/) to slab k while when both p .rtides were situated in slab k we attributed the total con
tribution to that slab. The contribution of pair (i,/) is zj<|>'(ry)/ry *n case 
(xij + in the case of pt as expressed in (3.3) and (3.4).

We should remark that definition (3.3) of the local pressure p^{k) is used for computa
tional efficiency but formally not correct. To obtain a correct definition of p^{k), the contri
bution of a pair (i,J) should not be distributed among the strips in which the particles i and/ 
reside but among all the strips in between. With this change in (3.3) and (3.4) unaltered, the 
pressure tensor is in the form derived by Kirkwood and Buff^X Clearly, the surface tension 
is as an integration over the total volume not affected by the choice of the distribution. The 
same holds for Putk) in the bulk phases. For both choices it equals the thermodynamic pres
sure p there.

Integral (3.2) now becomes
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01
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-16 -8 0 168

T* y’ Pt p’

2.5g

DMDP

0.92 0.24±0.02 0.649±0.003 0.063+0.003 2.5a
IBM

0.92 0.6310.02 0.740+0.002 0.01810.001 7.33a

4. Comparison with other results and conclusion

Fig. 4. Profile of the "local surface tension" for a liquid-vapour interface at coexistence for 7 '=0.90 as simulat
ed with the DMDP. The profile is obtained from a simulation of 20.8X103 timcstcps.

Table 1. Reduced surface tension and bulk densities for the investigated temperatures, the fifth and sixth 
column specify to which system the data pertains (see also text).

0.72
0.80
0.90
1.00

0.55 ±0.01
0.39 10.01
0.22410.009
0.08810.007

0.776410.0002
0.731510.0003
0.662 ±0.001
0.565 ±0.001

0.0093±0.0002
0.019510.0007
0.043910.0009
0.103 ±0.001

The outline given in fig 1 shows rather widely varying results. Some of these were 
obtained in systems that were rather small (e.g. 129 particles used by Liu10\ 300 particles 
used by Opitz11)),

As an example, figure 4 shows the profile of the local surface tension of the system at 
T*=0.90. The reduced surface tensions, reduced bulk liquid densities p* = P/O3 and the 
reduced bulk vapour densities p* = pva3 resulting from our simulations are listed in table 1.
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CHAPTER IX

Measurement of the surface tension of a drop

ABSTRACT

The curvature dependence of the liquid-vapor surface tension is described in the limit of 
small curvatures by Tolman’s length. Knowledge about this length, both experimentally and 
theoretically, is scarce. From an analysis of the pressure difference over the interface, we 
obtain an expression for Tolman’s length in terms of the pressure tensor which is indepen
dent of the choice of the tensor. This pressure difference is studied in a simulation of liquid— 
drops, leading to an estimate of Tolman’s length. This length appears to be small and we= 
give bounds on it.
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1. Introduction.

(1-1)Ap

= 1 " + O(R-e2) (1.2)

Curved interfaces appear in many contexts but the influence of the curvature on e.g. the 
surface tension is still poorly understood. The curvature is not only reflected in the proper
ties of the interface but also in the state of the bulk phases that are separated by the inter
face. This was already understood by Laplace who considered a liquid droplet "floating'' in a 
vapor phase and noticed that the surface tension of the liquid-vapor interface, which he 
viewed as a mechanical force, tries to contract the spherical surface of the droplet. The dro
plet must therefore be stabilized by a pressure difference over the interface that balances the 
contraction. This condition for mechanical equilibrium is expressed by Laplace’s law') which 
reads for a three-dimensional fluid

=
R

where Ap is the pressure in the liquid minus the pressure in the vapot phase, y the surface 
tension and R the radius of the droplet. The question of the effect of the curvature on the 
properties of the interface, however, is more subtle. The argument behind (1.1) does not tell 
anything about the value of y : one can only say that it will become equal to that of a planar 
surface as the radius of the droplet grows larger. In practical applications, the influence of 
the curvature on y is usually neglected as giving rise to small corrections, an assumption 
which can be justified if the radii of curvature are large. However, in cases like the nuclea
tion of droplets in a supersaturated vapor, where small radii necessarily occur, it has been 
noticed that, depending on the sensitivity of y on the curvature, the so called "critical radius 
of nucleation" may be changed significantly2'. The curvature dependence also appears in the 
capillary wave theory2' of the liquid-vapor interface in which the interface is viewed as an 
"intrinsic" interface with a fluctuating position. The statistical weight of the fluctuations 
depends on the surface tension of the intrinsic interface and since short-wavelength fluctua
tions display large curvatures, they may be suppressed if the surface tension increases with 
curvature or amplified otherwise.

From a macroscopic point of view such as taken by Laplace, the interface between the 
droplet and the surrounding vapor is sharp and therefore, the radius of the drop is well 
defined. Microscopically however, the interface has a finite width and there is some freedom 
in the choice of the droplet radius R. Moreover, as will be discussed in the next section, the 
surface tension attributed to the surface depends on the choice of R and the Laplace equation 
(1.1) has to be modified to account for this dependence. A convenient radius to measure the 
size of the droplet is the "equimolar dividing radius" Re. The surface tension associated 
with the choice for Re as the droplet radius is denoted ye (see the next section).

Since the surface tension ye(Re) of a spherical interface with radius R c approaches the 
planar limit y_ for large radii, it seems reasonable to expand it in powers of l/Re:

f«(Ke) _ , 25
Y~ ' * Re

The coefficient 5 is called Tolman’s length after Tolman4' who derived expansion (1.2) on 
the basis of thermodynamic arguments thereby obtaining an identity for 5 which reads
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(1.4)

further be calculated9) explicitly in the

J dz (ze-z) (p^(z)-Pr(^))5 = —
Y-

where p% me p? are the tensor components for a planar interface. The above defined 3, 
however, depends^ on the choice of the pressure tensor which is unacceptable if ye(^e) is 
to represent a physical quantity.

Further work has been done in various directions. Expressions of the type (1.4) relate 8 
via the pressure tensor to the paircorrelation function of the fluid. The ambiguities in this so 
called "virial route" has directed the attention to the "compressibility route" in which the 
correlations are described by the direct correlation function. One has obtained7) expressions 
for y and 8 in terms of this function which are certainly of a theoretical importance but have 
little practical implications since the direct correlation function cannot be evaluated easily. 
Curved surfaces have also been studied^) in the framework of the Landau-van der Waals 
theory in which Tolman’s length can be expressed entirely in terms of the density profile of 
the planar interface. The behaviour of 8 as the temperature approaches the critical tempera
ture Tc can also be studied in this context and the theory predicts 8 to diverge with an expli
citly given critical exponent. Tolman’s length can further be calculated9) explicitly in the 
model of penetrable spheres.

An extensive effort to obtain Tolman’s length for a realistic system has been made in a 
molecular-dynamics simulation of Thompson et al^\ They have simulated liquid drops of 
Lennard-Jones particles immersed in a coexisting vapor phase at various temperatures. These 
systems consist of a maximum of 2048 particles. For two temperatures, they scan a range of 
droplet radii from 3 to 6o (where a determines the core of the Lennard-Jones potential) 
while at several other temperatures, they simulate only one or two drop sizes. Their results 
for 8 show large statistical uncertainties and vary, for those two temperatures for which a 
range of droplet sizes has been studied, with the droplet radius. Nevertheless, the values they 
obtain for 8 are nearly all positive and therefore they conclude that it seems clear that 8 is 
positive which would imply that ye decreases with increasing curvature according to (1.2).

We have carried out simulations of the same type but try to scan an as large as possible 
range of droplet sizes at one teperature. By the use of a special-purpose computer, we can 
simulate droplets with a radius up to 13a which turns out to be already so large that the 
effect of the curvature on y can no longer be detected. Before we describe the simulations in 
section 3, we will recapture the thermodynamics of curved interfaces in the next section. We 
show that 8 can be obtained from a measurement of the pressure difference Ap as a function

8 = ze - z5 (1.3)

where ze denotes the equimolar dividing surface of the planar interface and zs a special 
choice of dividing surface which we will discus in the next section. All knowledge about 8 
has been obtained from theoretical considerations and simulations as there is no reliable 
experimental estimate of this length. A statistical-mechanical theory should try to connect 8 
or, if possible, the full ye(J?c) to the microscopic properties of the interface. Such relations 
have indeed been derived from a combination of mechanical and thermodynamic arguments 
and express yc and 8 in terms of the normal and tangential component p^ and pr of a pres
sure tensor1’5). The relation between yM and the pressure tensor of a planar interface is well 
understood but the extension to finite curvatures is not free from ambiguities. The proposed 
expression for 8 for example, reads**)
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2. Thermodynamics.

(2.1)V, + Vv = V
and

(2.5)

where the numerical constant coy depends 
is attributed an area A equal to

developed. The surface tension 
tern as

of the droplet radius Re. Moreover, the same analysis shows that (1.4) can be replaced by an 
expression which is independent of the choice of the tensor. The simulations are described 
in sections 3 and 4 and finally, conclusions are drawn is section 5.

N — n/Vj + nvVv + PA

Solving (2.4) for y one finds with the aid of (2.1)-(2.3) and (2.5)

F = (.~Pl + (in/) Vt + (-p, + pnv) Vv + ( y + gP) A (2.4)
where g denotes the chemical potential of the system and the coverage T is the number of 
particles attributed to the interface:

__

Consider a d-dimensional volume V in which a droplet, surrounded by a coexisting 
vapor phase, is contained. We do not specify the dimensionality to generalize the discussion 
although the case d = 3 will be the one we are finally interested in. The volume V is con
sidered to be a volume with periodic boundaries in which a fixed number of N particles are 
enclosed at a fixed temperature T, such as encountered in the simulations. On a microscopic 
level, the liquid-vapor interface is not sharp but has a finite width so the radius of the drop 
is not uniquely defined. We have to choose a "dividing surface" with "dividing radius" R 
which represents the interface. This choice is in principle free but <• location of the 
dividing surface within the physical interface makes sense. The divi. jrface separates
the volume in a volume V/ attributed to the liquid phase and a volume attributed to the
vapor phase with

V/ = cov Rd (2.2)

on the dimensionality. The liquid-vapor interface

A = Rd~l (2.3)

The surface tension y is defined as an excess free energy. This excess can only be well 
defined if the liquid and vapor phase are so large that they exhibit the properties of a bulk 
phase, in spite of the fact that they should be of a finite size for the drop to be stable. In 
particular, one should be able to attribute a bulk density m and pressure pi to the liquid 
phase and density nv and pressure pv to the vapor phase. These requirements turn out to be 
satisfied in the simulations except for very small drops where the liquid phase is not well 
J ’ \ -— -—> can then be defined from the free energy F of the entire sys-
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Y

0
0

R

(2.6)Y [«]

(2.7)

van-

1 + O({t,IRs)2) (2.8)Y [7?, + ^] 
Is 

where E, denotes a distance of the order of the zeroth power of Rs, R®.

Ys

on the choice of dividing radius R. TheFig. 1. Schematic plot of the dependence of the surface tension y 
minimum of the curve is at

1

Rs

. (d-l)y 3y [7?]

Y satisfies the original Laplace equation (1.1) exactly at Rs where the derivative dy/dR 
ishes. Since y obtains a minimum in Rs, it depends only weakly on the choice of R:

F-pN+pvV 1 Ap 
cox + d

also used that the ratio co^/tuv equals d. Equation (2.5) shows the unfortunatewhere we also used that the ratio cox/cov equals d. Equation (2.5) shows the unfortunate 
feature that y depends on the choice of R. As introduced by previous authors we denote 
such a dependence by square brackets to stress the difference with a dependence on the phy
sical size of the droplet. Note that Ap is positive because of the arguments of Laplace. For 
physical reasons, it is to be expected that the sum (F-pN + pvV) is also positive because 
otherwise y can be made negative and arbitrarily large for very unphysical, namely very 
small, choices of R whereas one would expect an unphysical choice of R to be paid for by a 
large surface tension. Assuming the sum to be positive, the variation of y with R is depicted 
in fig. 1. The choice of R that minimizes y is called the "radius of tension" Rs and it is 
expected to be within the physical location of the interface. The corresponding minimum in 
the surface tension is denoted y,. From (2.6) one finds that y satisfies the generalized 
Laplace equation
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(2.9)dR (T constant)

in the droplet radius, one finds from

(2.10)

= 1 + + O(R-2) (2.11)

= 1 + ~ + O(R-2) (2.12)

Evaluating (2.7) at R =RS and

Ap (2.13)• ■ • )Y.

(2.14)• • • )

Y» 
Y- ' ' 

provided that the difference S=RC-Rs is of the order R°. 
substituting (2.11) one expresses Ap in a and Rs

d-1 - ■ '•
R, " R2

Evaluating (2.7) at R =Rt one finds with (2.10) and (2.12)

dYe 
dRe

dy [/?] 
dR

ables Ap, y~ and Re. The comparison of (2.13) and (2.14) implies a condition on a. Substi
tution of Re=Rs+S in (2.14) gives

Y- ' ‘ ' Rs
with a yet undetermined expansion coefficient a. However, because of (2.8), a does not 
depend on the choice of dividing surface and we can write with equal validity

k J R=R,

Returning to the question of the dependence of y on the droplet size, we pursue again the 
idea of an expansion of y in powers of the inverse droplet radius, especially since the defini
tion of y makes sense for not too small drops only. The expansion for ys is written as

The problem is now in which way the surface tension depends on the physical size of 
the droplet. The natural measure of the drop radius as it emerged from these thermodynamic 
considerations is Rs but the definition of this radius is only conceptual and Rs is not yet 
related to any observable quantity. The natural measure of the drop radius as it is deduced 
from the simulations is the equimolar dividing radius Re which is the choice of radius for 
which the coverage T vanishes. The surface tension belonging to the equimolar dividing sur
face is denoted ye. Just as the derivative dy/37? vanishes at Rs, it satisfies a special pro
perty at Re which is readily apparent from the Gibbs adsorption equation for the curved sur
face. This equation readsin the absence of temperature changes

dY + r du =
OK

If one considers the change dye under a change d/?
(2.9) evaluated at R = Rt where T = 0

(d-l + a(d-V) +

=7. +

The latter equation is especially useful since it relates the unknown quantity a to the observ-
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(2.15)• )

(2.16)

(Pn ~ Pt) (2.20)

(2.21)

+ O(.R-2) (2.22)Pn(t-R'< R') = PN^-^e) +

dPN  (rf-1)
dr r

Note that pN and pT both become equal to the bulk pressure p in a bulk phase. Integrating 
(2.20) from r = 0 to a position Rv sufficiently deep in the vapor phase gives the pressure 
difference Ap

pV^z-z,)

where we

a , d-\&P = (-^—

have replaced 8 by its planar limit 8, 

8 = lim 8 =

in the term of order /?J2. Comparison of (2.13) and (2.15) gives the Tolman4) result

p(7; R') = PN(.r; Re) rr + pr(r; Ke) (7- rr) (2.19)

with r a unit vector in the direction ~r and r the distance from the origin; the parameter Re 
denotes the dependence of the tensor on the size of the droplet (2.18) transforms to

Rv 1
Ap = (rf-1) J dr — (p^(r; Re) - pT(r\ Re\) 

o r
We expand (2.21) in powers of \/Re which is most easily done if we keep r at a fixed dis
tance from R e and expand the dependence of the tensor on the droplet size:

Vp(7) = 0 (2.18)

in the absence of an external field. Furthermore, all tensors become isotropic in a bulk phase 
with diagonal components p, the pressure in the bulk. In a spherical symmetry, the tensor 
has only two independent components

t a(d-2) - 8(d-l) J 
R2,

a = - (d- 1)8 (2.17)
In fact, Tolman’s analysis is stronger: Tolman showed that, provided the limit in (2.16) 
exists, the expansion in (2.11) holds. That this condition is not trivial can be seen in d=2 
where exp " ion (2.14) implies that Ap has no term of order R^2 in this particular dimen
sion. It I been suggested") that the leading correction on the r.h.s. of (2.12) should be of 
order lor A’. Re instead of \/Re for d = 2, thereby retaining the term of order R~2 in (2.14).

The coefficient a is readily related to the components of a local pressure tensor p(7). 
Such a tensor can be defined5' in terms of the pair correlation function of the fluid and 
although this definition is not unique, all tensors have in common that they satisfy the condi
tion
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J dz {py(z) - pr(z)}Ap =

(2.23)

8 (2.24)

3. Description of the simulations.

6]12

4>(r) = 4e (3.1)o
r

<5 
r

J dz {(z —z,) (Pn(z)-p“(z)) - (pW\z -p', ;(z))}

J dz {(z-ze) (py(z)-p“(z)) - (pjv1)(z)-p^I)(z))}

(d-D 
Rt

(d-1) 
Re

The first integral on the r.h.s. gives1-5) 
integral gives

We have simulated three-dimensional droplets enclosed in a cubic box with periodic 
boundary conditions. The fluid particles that are enclosed in the box interact through the 
Lennard-Jones 12-6 potential <j>(r),

on comparison with (2.14) and (2.17) the second

where z, is the position of the equimolar dividing surface of a planar interface. The expan
sion for pT is analoguous . Inserting this expansion in (2.21) we obtain

with r the interparticle distance, e the energy scale and a the length scale of the potential. 
The potential is truncated at 2.5 a. The simulations are of the molecular-dynamics type and 
are carried out on a special purpose computer, the Delft Molecular-Dynamics Processor 
(DMDP)12), which enables us to study large systems for long times. The reduced timestep 
Ar* =ArVe/(oVrn), where m is the mass of the particles, equals 0.01 in the simulations. 
The number of particles N, the length L of the box and the temperature T of the system are 
fixed in a simulation run. The sizes of the systems are listed in table 1. The table shows that 
the boxlength L is chosen smaller for smaller drops to avoid large vapor phases. Large vapor 
phases cause long equilibration times and, since one needs more particles to form the vapor 
phase, slow down the simulations. The temperature is chosen to be at a reduced value 
T* = kgTIz of 0.9 throughout the simulations, which is in between the triple point

2_
(d-2)y>

Contrary to (1.4), this expression for 8 is independent for the choice o. '.sor since it is
derived from (2.18) which holds for all tensors. Unfortunately, 8 is pressed in the
pressure tensor of the planar interface alone but one needs to k; ' >w the tensor 
approaches its planar limit. It also shows that, unless the integral 7. or expansion 
(2.22) is not correct, 8 diverges in d=2 which implies that leading order in 12) should be 
log/?,//?, instead of 1//?,. The notion that the integrand of (2.21) can be expanded in 
inverse powers of the droplet radius has already been made by Schofield and Henderson51 
but, since they neither invoke the pressure tensor, nor connect the coefficient of the second 
order term to 8, they do not obtain the result (2.24).
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77 *7 NcN

2299
5165
6131
9295

10,420
12,138

31
42
43
50
50
50

5.63(2)
6.87(2)
8.73(2)

10.15(1)
11.53(1)
13.03(1)

44,000 
24,000 
16,800 
10,000 
8,000 
8,000

Tabic 1. The sizes of the simulated systems. N denotes the number of particles, L" the reduced boxlength, R", 
the reduced equimolar radius and Nc the number of equilibrated particle configurations we have sampled to cal
culate the density and pressure tensor profiles. The values between parantheses denote the error in the last de
cimal of R.

temper. 7’" =0.7 and the critical temperature 7^ = 1.26. It is kept fixed in a way which is
standard constant temperature molecular-dynamics simulations, namely by regularly res
caling : elocities of all the particles to keep the average kinetic energy of the system at
the value that corresponds with the desired temperature. The velocities are rescaled each 
150z" time ..ep in our simulations which limits the temperature fluctuations to the order of 
0.5% to 1% of the average temperature T* =0.9.

Special attention was paid to the preparation and equilibration of the droplets because 
extremely long equilibration times are encountered if the system is not prepared carefully. 
We obtained reasonable, although still long, equilibration times by starting from initial confi
gurations in which part of the fluid particles are placed in the centre of the box at a "crystal" 
of an FCC lattice. This "crystal" has a cubic shape and a density which is approximately the 
liquid density. The remaining part of the box is filled with a FCC lattice of particles at 
approximately the vapor density. The particles are ^iven random velocities, drawn from a 
normal distribution appropriate to the temperature T =0.9. Starting the simulations, the lat
tices begin to melt and and a droplet and a vapor begin to form. We observed however, that 
the temperature of the "drop" almost always rapidly started to differ from the temperature of 
the "vapor" during the melting process. Although the difference vanished during the equili
bration afterwards, it took such a long time that we sped up 
the equilibration by adjusting the temperature of the drop and the vapor separately. This is 
simply done by calculating the kinetic energy of all particles in a volume attributed to the 
drop separately from the kinetic energy of the particles in the remaining volume, which is 
attributed to the vapor. The velocities of the particles in the drop volume are then scaled 
independently from the velocities of the vapor particles to bring both kinetic energies at the 
appropriate value. As soon as thermal equilibration had been obtained, we no longer dis
tinguished between a temperature of the drop and a temperature of the vapor but scaled the 
velocity of each particle with the same factor to keep the kinetic energy of the entire system 
fixed. The equilibration takes approximately 60,000 timesteps (for the system with N = 5165) 
to 120,000 timesteps (A = 2299) for systems prepared this way but may become 260,000 
(A = 12,138) or even 500,000 (A = 9295) timesteps in case of a less careful preparation. The 
equilibration is monitored most sensitively by the potential energy of the system and the 
density profile and we took care that they had stabilized before the measurements started. 
The number of configurations sampled in the equilibrated systems is also listed in table 1.



- 130 -

8 12 18

0.675 -

0.670 -

0.660
0 0.05 0.10

Fig. 3. The liquid density versus the inverse equimolar radius, all in reduced units.
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Fig. 2. Density profiles for three different system sizes: N = 5165, N = 9295 and N = 12,138. The : :duced densi
ty n‘ is defined as no3. Vertical lines denote the equimolar radii of the droplets. The num: r of configurations 
included in the averages are listed in table 1.

The configurations are sampled each 15,A timestep. Error bars in the data denote the stan
dard deviation as calculated from subaverages over 200 particle configurations each.

The droplet is kept in the middle of the box by keeping the centre of mass of the drop 
in the middle. The centre of mass of the drop is determined as the centre of mass of the

o o

n*

0-665 - :
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4. Results

(4.1)+ n v (L

fluid in a cubic volume which just encloses the droplet. This centre of mass is evaluated reg
ularly and, since it is never precisely at the origin of the computational box, the entire sys
tem is translated after each evaluation such that the centre of mass is placed back at the ori
gin. The frequency with which the centre of mass is shifted back ranges from each 500'* 
timestep for the large drops to each 75'* timestep for the smallest. For large drops, it would 
suffice to take as the centre of mass of the droplet the centre of mass of the entire fluid 
since nearly all the mass is concentrated in the drop. Moreover, since the centre of mass of 
the entire system is a conserved quantity of the equations of motion and all centre of mass 
motion thus results from rounding off errors in the molecular-dynamics scheme, large dro
plets remain almost in place by themselves. However, this does not hold for the smallest 
drops we encounter: the restriction on the centre of mass of the entire fluid is not sufficient 
to keep the droplet in place if there is not enough mass concentrated in it. As a result, the 
position of the small drops fluctuates strongly and we have to calculate the centre of mass 
from the drop and its immediate surrounding itself to fix the drop in the middle of the box.

From the sampled particle configurations, we calculate the local density n(r) and the 
pressure tensor components pn/tr) and pj-fr) as a function of the distance r from the centre 
of the box. The density at a distance r from the centre is measured as the average number of 
particles in a spherical shell with a small width w around the radius r (the width w equals 
VTz,/1024 in our simulations) divided by the volume of the shell. Figs. 2 shows some typi
cal density profiles for droplets of different sizes. In general, the noise on these profiles 
increases near the origin since the volumes of the shells become smaller and therefore, the 
fluctuations in the average number of particles in the shell grow. These increasing fluctua
tions are suppressed in fig. 2 by averaging over a varying number of shells near the origin 
which explains why the resolution in the figure is less near r=0. From these profiles, we 
obtain the liquid and vapor bulk densities ni and nv as the average number of particles per 
volume within respectively outside a sensibly chosen radius R. The equimolar dividing 
radius is calculated from (2.5) with the condition T = 0 which leads to the following equation 
for Re:

N = n, R3 + nv (L3 - ^R3)

The reduced droplet radii R'e =Rela are listed in table 1. They range from R*e = 13.03±0.01 
for the largest system we could study to R‘e =6.87±0.02 below which the drops became 
unstable. We tried to form a droplet in a system with 1977 fluid particles and a boxlength 
L =30 but the droplet evaporated and the box became filled with a homogeneous vapor 
phase.

The reduced bulk densities n* and n* are shown in fig. 3 and 4 as a function of 1/Re. 
The density of the bulk vapor can be determined very accurately since the vapor phase is 
always large but to calculate ±e density of the liquid, we have to choose R, the radius 
within which the average density is determined, rather small when the droplet becomes 
small. For example, the radius R is chosen at R* =2 for the droplet with 7?e=5.63 so the 
region in which bulk liquid conditions are assumed becomes very small (see fig. 5). It is 
clearly seen that the bulk phases are off their planar coexistence states: both the liquid and
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Fig. 4. The vapor density versus the inverse equimolar radius, all in reduced units. Error tars re smaller than 
the symbol sizes.

Fig. 5. Density profile for the system with TV = 5165. The horizontal dotted line denotes the liquid density, 
determined as the average density in a sphere with radius R‘ =2 (vertical dotted line). The number of configura
tions included in the average is listed in table 1.

the vapor phase are compressed. The vapor density strongly increases with decreasing dro
plet size, showing that small drops are only stable in a surroundings of a high pressure vapor 
phase. The liquid density appears to be constant in the range of droplet radii we can access, 
although it is well above its planar value and should decrease for larger drops. Note that
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Fig. 7. Pressure in the liquid ( + ) and vapor phase (x) versus the inverse equimolar radius, all in reduced units. 
The planar limit is the same for both phases.

16
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Fig. 6. Normal component of the pressure tensor in reduced units p^=p/<a3/e for the system with N = 9295. 
Upper two horizontal dotted lines show the estimated bounds on the pressure of the liquid, lower horizontal dot
ted line shows the pressure of the vapor. The vertical dotted line denotes the position of the equimolar radius. 
The number of configurations included in the average is listed in table 1.
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interaction

even for drops with a radius as large as R'e 
sities approach their planar limit as l/Re. 
tions in which the coexisting phases are separated by planar interfaces.

The pressure tensor components consist of an ideal pan kBT n(R) and an 
pan p,v(r) and py (r) respectively:

= 13, we are not in a regime where the bulk den- 
These planar limits are obtained13^ from Simula-

Pp(r) = + pp(r) (4-2)
and similarly for py. The interaction part is not defined uniquely and we chose to measure it 
as it is defined by Irving and Kirkwood14)' The algorithm of Thompson et ali0^ was 
employed to calculate p£ and pj. For identical reasons as in the case of the density n(r), 
the fluctuations in the pp and py profiles increase near the origin. An example of a pp pro
file is given in fig. 6. We verified that the measured profiles are consistent with (2.20) but 
the fluctuations on the profiles are too large for this test on the consistency to be very strict.

The pressures in the liquid and vapor phases are most accurately obtained from the pp 
profile since the fluctuations on py are much more severe. The bulk pressures are deter
mined in the same way as the bulk densities and listed in fig. 7. Just as the liquid density, 
the pressure in the liquid becomes hard to determine when the droplet becomes small. The 
planar limit is obtained from previous measurements in a planar system1

The pressure difference Ap can be obtained in two ways: by subtracting the pressures 
Pl and pv from each other as they are determined from the plateaux in the pp profile or 
from (2.21) with d = 3. As an example, fig. 8 shows the difference (p.v(r) - py(r)) that 
appears in the integrand of (2.21) for the droplet with Re = W.15. Both ways to Ap are 
independent in the sense that the first of them extracts Ap from the tensor in the bulk phases 
while the second monitors the tensor in the interface where the integrand of (2.21) does not 
vanish. The two routes should of coures give the same result but it is not clear a priori 
which is the most accurate. On the one hand, one expects the integration (2.21) to be a more 
sensitive method to measure Ap than the subtraction of pv from pz, especially since the 
latter two should become equal in the limit of large drops. On the other hand, (2.21) 
involves the py profile, which contains large fluctuations, whereas the determination of p; 
and pv can be done from the pp profile alone. As discussed above, the first route, 
Ap = Pi-Pv becomes inaccurate for small drops but the same holds for the second. This is 
because we can not choose the lower limit of integration Ri at r=0 as in (2.21) since the 
difference (pp(r)-py(r)) does not neatly vanish in the bulk liquid but fluctuates around 
zero with fluctuations that diverge near the centre of the drop. The fluctuations are even 
amplified by the factor 1/r in the integrand so if one chooses /?; at or close to r = 0, the 
integral, if not diverging, will be dominated by the fluctuations around the centre of the 
drop. The lower limit should therefore be chosen at a position not too close to r=0 but still 
in the bulk liquid where the average difference (pp(r)-py(r)) has vanished. The upper 
limit Rv gives no such problems since (pp(r)-py(r)) smoothly vanishes in the bulk vapor 
phase where the statistics are much better.

The results for both routes are shown in fig. 9 which demonstrates that the two routes 
give, within the error bars, the same result. The increasing difficulties in the determination 
of Ap when the drop becomes small are reflected in the increasing error bars at small Re. 
The pressure difference is well described by the asymptotic result Ap =2y„//?e for the larg
est drops but deviations seem to occur when the drops become smaller. Unfortunately, these
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Fig. 8. Difference between the normal and tangential component of the pressure tensor for the system with 
N = 9295. The vertical dotted line denotes the position of the equimolar radius. The number of configurations 
included in the average is listed in table 1.
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- 2 = -^- + O(R-2) (4.3)

5. Conclusions.

Fig. 10. The l.h.s. of equation (4.3) versus the inverse equimolar radius. The outer Jotted iines give the es
timated bounds on the coefficient a.

By a thermodynamic analysis of the pressure difference over the interface of the drop, 
one obtains an expression for the Tolman4) length 5 in terms of a pressure tensor which 
differs from the classical result (1.4). The expression we propose is independent of the 
choice of the tensor but, unfortunately, it does not express 8 in the tensor of a planar inter
face alone but one also needs to know how the tensor approaches its planar limit.

The same procedure we followed to obtain the statistical mechanical expression (2.24)

0.15

deviations occur only for the smallest two drops we can study, in which cases the determina
tion of Ap already becomes ambiguous (see fig. 9). On the other hand, both ways to measure 
Ap indicate that it is below the asymptotic result Ap=2y„//?e for drops with a radius Re 
smaller than approximately 7 a. The fact that deviations from the asymptotic result occur 
only for relatively small droplet radii shows that Tolman’s length is small. To estimate this 
length, we write (2.14) for d = 3 as

Re£p_2 
Yoo

/?<• Ap
Y_ " Re

and plot the l.h.s., with Ap obtained as p/-p„ as a function of 1/Re in fig. 10. We do not 
find a well defined asymptotic behaviour as Re—but instead, the quantity 
((7?,Ap/y_) -2) scatters around zero for the largest drops we can simulate. From the loca
tion of these scattering points, we estimate bounds on the coefficient a as |a 1 < 1.4a. Since 
a equals two times the Tolman length 8 (see equation (2.17) with d = 3) our estimate for 8 
reads |8| < 0.7a.
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SAMENV ATTING

SIMULATIES VAN VLOEISTOF OPPERVLAKKEN

In dit proefschrift worden grootschalige computersimulaties besproken van systemen 
waarin een vloeistoffase, een gasfase en eventueel een substraat aanwezig zijn. De 
oppervlakken tussen deze fasen zijn het onderwerp van studie. Deze systemen vereisen een 
groot aantal deeltjes en dientengevolge een grote rekencapaciteit. Het gebruik van een "spe
cial purpose" computer, de Delft Molecular-Dynamics Processor (DMDP), die een sy- 
steem ; .tte tot en met 16.000 deeltjes toelaat en daarbij de rekentijden binnen acceptable 
grenzen ,'.oudt, maakt deze simulaties mogelijk.

Simulaties geven een gedetailleerd inzicht in de microscopische structuur van een 
oppei Hierdoor kunnen exacte, statistisch-mechanische uitdrukkingen die een verband 
leggei . sen macroscopische en microscopische grootheden, geevalueerd worden. Een voor- 
beeld is de uitdrukking voor de oppervlaktespanning als een integraal over de paarkorrela- 
tiefunctie, een uitdrukking die in de simulaties veelvuldig gebruikt wordt om de oppervlak
tespanning te meten. Deze grootheid bepaald namelijk de thermodynamische toestand van 
het oppervlak en speelt daarom dezelfde centrale rol voor een oppervlak als de druk voor een 
bulkfase.

De verschillende fasen worden in de DMDP gerepresenteerd door Lennard-Jones 
deeltjes met een afgekapte wisselwerking. De simulaties zijn van het moleculaire-dynamica 
type zoals de afkorting DMDP al aangeeft. Belangrijke beperkingen aan de simulaties zijn de 
beperking aan systeemgrootte en de beperking aan de dracht van de interakties tussen de 
deeltjes. Beide beperkingen hebben in het algemeen een aanzienlijke invloed op de gesimu- 
leerde oppervlakken maar desalniettemin vormen deze een niet onredelijke beschrijving van 
een oppervlak zoals dat bijvoorbeeld door een edelgas gevormd wordt. De simulaties vallen 
uiteen in twee klassen. De meerderheid, beschreven in de hoofdstukken III-VII, is gerelateerd 
aan de zogenaamde "wetting" en "drying" overgang, de laatste twee hoofdstukken zijn 
gewijd aan het vloeistof-gas oppervlak. Deze twee klassen zijn niet onafhankelijk daar vrije 
vloeistof-gas oppervlakken ook een rol spelen in wetting en drying verschijnselen maar ze 
zijn beide interessant genoeg om een aparte studie te rechtvaardigen.

In het geval van de hier beschreven simulaties refereren de termen "wetting" en "dry
ing" aan de adsorptie van een systeem bestaande uit een coexisterende vloeistof- en gasfase 
aan een substraat. De wetting overgang is gedefinieerd als de overgang waarbij een 
substraat-gas oppervlak spontaan vervangen wordt door een substraat-vloeistof en een 
vloeistof-gas oppervlak. De overgang vindt plaats op het moment dat de substraat-vloeistof 
plus de vloeistof-gas oppervlaktespanning lager wordt dan de substraat-gas oppervlaktespan
ning. De drying overgang is de complementaire overgang, waarbij een substraat-vloeistof 
oppervlak vervangen wordt een substraat-gas en een vloeistof-gas oppervlak. In een experi
ment wordt de wetting overgang vaak bestudeerd aan de hand van een druppel die op het 
substraat rust en omgeven is door een verzadigde damp. De wetting overgang vindt plaats 
op het moment dat de druppel over het substraat uitspreidt en deze geheel met een macros- 
copisch vloeistoflaagje bedekt. Ze wordt dus gekarakteriseerd door het nul worden van de 
kontakthoek tussen de meniscus van de drupppel en het substraat-vloeistof oppervlak.
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Analoog hieraan vindt de drying overgang plaats op het moment dat de kontakthoek gelijk 
wordt aan rt maar deze overgang is nog niet experimenteel waargenomen. De kontakthoek is 
op een eenvoudige wijze gerelateerd aan de substraat-vloeistof, substraat-gas en de 
vloeistof-gas oppervlaktespanning via de wet van Young. De manier waarop de kontakthoek 
zijn extreme waarden 0 en rt bereikt geeft de orde van de wetting c.q. drying overgang aan.

De eerste simulaties van de wetting en drying overgang op de DMDP werden uit- 
gevoerd door Sikkenk et al. De overgangen werden bewerkstelligd door de interaktiesterkte 
e tussen de substraatdeeltjes en de deeltjes die de vloeistof- en gasfase vormen, te varieren. 
Bij toenemende e vindt een drying overgang plaats, gevolgd door een wetting overgang. Uit 
metingen van de oppervlaktespanningen en de daaruitvolgende kontakthoek werd het 
optreden van deze overgangen aangetoond en gekonkludeerd dat beide van een eerste orde 
karakter zijn. De metingen van de substraat-gas en substraat-vloeistof oppervlaktespanning 
bleken echter controversieel te zijn ten gevolge van het optreden van spanningen in de wand. 
Daarmee werden in het bijzonder de konklusies aangaande de lokatie en orde van de drying 
overgang op losse schroeven gezet.

Alvorens de simulaties beschreven worden, wordt in hoofdstuk I een : inleiding
gegeven en worden in hoofdstuk II relaties tussen grootheden zoals de opp. n '.espanning 
en de microscopische eigenschappen van het systeem afgeleid. Deze relatii .den in de
simulaties veelvuldig gebruikt en hoofdstuk II legt daarmee de basis voor d ..ingen in de
volgende hoofdstukken.

Hoofdstuk III beschrijft een aantal simulaties waarin de kontakthoek visueel gemeten 
wordt, daarmee een meting van de oppervlaktespanningen omzeilende. Wederom wordt, als 
in de simulatie van Sikkenk et al, de kontakthoek als funktie van e gemeten en deze hoeken 
vertonen een grote verschuiving van de positie van de drying overgang vergeleken met 
Sikkenks simulatie. Bovendien zijn de nieuwe data consistent met zowel een eerste-orde als 
een continue drying overgang. De wetting overgang daarentegen blijft sterk eerste orde.

Dit gewijzigde beeld wordt bevestigd in de simulaties van hoofdstuk IV. De opzet van 
deze simulaties is gelijk aan die van Sikkenk et al uitgezonderd de representatie van het 
substraat. Terwijl in Sikkenk’s simulatie de wanddeeltjes vrij waren te bewegen en het sub- 
straat daarom leek op een thermodynamische fase, worden in deze simulaties de 
wanddeeltjes ingevroren op hun roosterposities. Hiermee wordt het effekt van spanningen in 
de wand geelimineerd en is een veel nauwkeuriger bepaling van de substraat-vloeistof en 
substraat-gas oppervlaktespanningen mogelijk. De kontakthoeken die hieruit worden bere- 
kend stemmen goed overeen met de visuele metingen uit het vorige hoofdstuk.

Een veel scherpere bepaling van de orde en de lokatie van de drying overgang wordt 
gegeven in hoofdstuk V. In plaats van de kontakthoek, wordt hierin de variatie van de kon
takthoek met E gemeten. De metingen duiden er sterk op dat de drying overgang een continu 
karakter heeft en de onzekerheid in de lokatie van de overgang wordt er een orde van grootte 
door verkleind.

In hoofdstuk VI wordt de invloed van een lange-drachtskracht op de wetting en drying 
overgang bestudeerd. De lange-drachtskracht die aan de simulaties wordt toegevoegd, is die 
tussen de deeltjes die de wand vormen en de deeltjes die het gas en de vloeistof vormen. De 
lange-drachtskrachten tussen de wanddeeltjes onderling en tussen de vloeistof- en gasdeeltjes 
onderling kunnen niet in de simulaties meegenomen worden omdat de rekentijd hierdoor 
dramatisch zou toenemen. Naar verwachting wordt de drying overgang onderdrukt door de 
toegevoegde lange-drachtskracht en de simulaties bevestigen dit.
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Een eerste orde wetting overgang dient vergezeld te gaan van een zogenaamde prewet
ting overgang. Deze behelst een overgang tussen een dunne geadsorbeerde film en een 
dikkere geadsorbeerde film die plaatsvindt in het regime van de onderverzadigde damp. Deze 
overgang is nog niet experimenteel waargenomen maar alleen in simulaties van rooster 
gassen en in een simulatie van een Lennard-Jones systeem. In onze simulaties wordt de 
adsorptie aan het substraat gemeten als funktie van de gasdichtheid en de waarde van e maar 
we kunnen de prewetting overgang niet overtuigend waamemen, wel vinden we tekenen die 
op de overgang wijzen.

De hoofdstukken VIII en IX zijn niet gewijd aan wetting-achtige verschijnselen maar 
aan het vloeistof-gas oppervlak. In hoofdstuk VIU worden simulaties van planaire vloeistof- 
gas oppc. vlakken besproken. In de literatuur worden verschillende, vaak uiteenlopende waar- 
den > o. : de oppervlaktespanning van dit oppervlak (voor een systeem met afgekapte 
Lenn: nes wisselwerkingen) genoemd. We hebben de oppervlaktespanning alsmede de
eigeiv ; pen van de coexisterende fasen nauwkeurig gemeten bij verschillende tempera
ture? :rnaast hebben we het effekt van de afkapstraal bestudeerd door deze drie maal te 
vergr De toename in het bereik van de wisselwerking blijkt grote gevolgen te hebben.

it laatste hoofdstuk wordt de invloed van een kromming van het oppervlak bespro
ken aan de hand van simulaties van druppeltjes. Aangenomen wordt dat de oppervlaktespan
ning van een gekromd oppervlak afwijkt van die van een vlak oppervlak met een bedrag van 
de orde van de inverse kromtestraal. De afwijking kan bepaald worden uit een meting van 
het drukverschil over het oppervlak maar blijkt uit de simulaties klein te zijn.
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Nawoord

Tenslotte rest mij de plezierige taak enkele mensen te bedanken die een bijdrage hebben 
geleverd aan de totstandkoming van dit proefschrift. Allereerst zijn dit mijn ouders. Ze heb
ben er nooit op aangedrongen om toch timmerman te worden maar, integendeel, mijn 
verwoede pogingen om iets te begrijpen van een zo’n moeilijk vak als natuurkunde, van 
harte ondersteund. Bijzondere dank ben ik ook verschuldigd aan sgt. J. Larners voor zijn 
suggestie om iedere morgen met een natte vinger over de s van het woordje drs op mijn 
naamplaatje te wrijven, in de verwachting dat deze letter na vier jaar wel weggepoetst zal 
zijn. Een serieuzere bijdrage aan de verwijdering van deze letter was de voortdurende aan- 
dacht van mijn promotor voor de Delftse simulaties. Ook zijn vermogen • .n hele korte met- 
ten te maken van alle door mij aangedragen onzin, heeft het gehalte van C:: proefschrift aan- 
zienlijk verhoogd. Daamaast heb ik met plezier zijn "skating academ;. gevolgd waar ik 
echter al spoedig ontdekte dat het behalen van een titel in deze branche iet is weg-
gelegd. Niet minder was de betrokkenheid van mijn co-promotor die ik . kennen als
iemand die een grote zorgvuldigheid aan de dag legt bij het uitvoeren van ne simulaties. Ik 
hoop dat hij zijn grijze haren niet te danken heeft aan de begeleiding van aanstormende, 
immer eigenwijze promovendi.

De bijdrage van A. van Woerkom (each day is a PFILE day) verdient een eervolle ver
melding. Zuchtend liet hij zich overhalen om de assembler programma's voor de meting van 
de dmktensor te schrijven. De aldus gekweekte familie DTSOR programma’s heeft niettemin 
in hem een goede vader; ze vormt een betrouwbare hoeksteen onder deze simulaties. Ook 
F. Lange kampte met een enigszins haperend startmechanisme. Eenmaal aangeduwd heeft hij 
me echter veel werk uit handen genomen door een deel van de dagelijkse routine van de 
simulaties op zich te nemen. Een bijzonder genoegen heb ik beleefd aan de inspanningen van 
E. Hirshowitz op wiens conto de numerieke aanpassingen aan de menisci van hoofdstuk III 
staan. De overeenkomst tussen zijn resultaten en het handwerk dat ik enkele maanden daar- 
voor m.b.v een passer en een bloedige ijver volbracht had, vervulde mij van een diepe 
tevredenheid. Dat de apparatuur gedurende de afgelopen vier jaar niet is ingestort is vnl. te 
danken aan D. van Delft en F. Berwald. Gewapend met fohn, spuitbus en het wonder van de 
magische handoplegging, hebben zij de onwillige hardware op enkele kritieke momenten tot 
de orde geroepen. De kennis van Y. Fonk omtrent de tekstverwerker vindt u terug in de 
lay-out van dit boekje. ledereen die me tot steun is geweest ben ik erkentelijk voor zijn of 
haar vaak onzichtbare bijdragen aan het welslagen van deze promotie.
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L.-F. Ko en M.E. Fisher, J. Stat. Phys. 58, 249 (1990).

5)

De vorm van een Ising druppel geadsorbeerd aan een substraat zoals berekend door 
L.-F. Ko en M.E. Fisher dient ook te volgen uit een berekening die gestoeld is op de 
minimalisatie van de oppervlakte-vrije-energie.

De door J.R. Henderson en F. van Swol waargenomen fluctuaties in de bedekking bij 
de drying overgang duiden eerder op een continu dan op een eerste-orde karakter van 
deze overgang.

G. Langle en J.O. Indekeu, Phys. Rev. B 40, 417 (1989). 
S. Dietrich, in Phase Transitions and Critical Phenomena, edited by 
C. Domb and J.L. Lebowitz (Academic, London, 1988), Vol. 12.

M. Baus en R. Lovett, preprint. 
Hoofdstuk IX van dit proefschrift.

De enorme verscheidenheid aan wetting en drying verschijnselen en de gevoeligheid 
ervan voor de keuze van het oppervlakteveld zoals volgt uit mean-field berekeningen, 
stemt niet overeen met het veel uniformere beeld dat door experimentele waamemingen 
vertoond wordt.

Hoewel het opleggen van "Saint-Venant’s strain compatibility conditions" aan de druk
tensor de ambiguiteit in de mechanische definitie van het "surface of tension" 
verwijdert, betekent dit niet dat het aldus gedefinieerde "surface of tension" Tolmans 
lengte bepaald.

De Van der Waals theorie geeft voor de in dit proefschrift beschreven simulaties een 
zeer onrealistisch beeld van de prewetting overgang.
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6)

F. Mallezie, Phys. Rev. B 41, 4475 (1990).

7)
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9)

10)

H. Reiss, A. Tabazadeh en J. Talbot, J. Chem. Phys. 92, 1266 (1990).

MJ.P. Nijmeijer, juli 1990

Po'.'tus

Het is onwaarschijnlijk dat de behandeling van de partitiefunktie in termen van clusters 
omgeven door een ideaal gas, een adequate beschrijving geeft van de nucleatie in een 
oververzadigde damp.

De commode rond het onderzoek van Swaab aan de hersenen van homosexuele mannen 
toont aan hoezeer men zich verzet tegen een mechanisch beeld van de menselijke aard, 
daar waar we aan het beeld van het lichaam als een geavanceerd bouwpakket al lang 
gewend zijn.

In de figuur van de pleegmoeder van Tomek laat Kieslowski zien dat de verschillen 
tussen de gevestigde normen en waarden en het onaangepaste gedrag van haar pleeg- 
zoon, kleiner zijn dan op het eerste gezicht lijkt.

De aanwezigheid van een groot aantal schaalfactoren in de programmatuur voor de 
DMDP is een niet te onderschatten nadeel van de "fixed point" rekenwijze van deze 
machine.

Voor het quantumroostergas met uitsluiting van 3 buren concludeert F. Mallezie ten 
onrechte tot een eerste orde faseovergang.

A short film about love, de speelfilmversie van het zesde deel van de 
Dekalog, geregisseerd door K. Kieslowski (1988).

R.A Le^en9506 - 7300


	/Users/carlo/Desktop/scan13.jpg

