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"Do not try to know the truth, for knowledge by the mind is not true knowledge.

But you aan know what is not true - which is enough to liberate you from the

false. The idea that you know what is true is dangerous, for it keeps you

imprisoned in the mind. It is when you do not know, that you. are free to

investigate. And there can be no salvation, without investigation, because

•non-investigation is the main cause of bondage."

Sri Nisavgadatta Maharaj
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CHAPTER I f,-'

INTRODUCTION AHD SUMMARY

V >.
;.!'_'„

' ]•.''• Many phenomena in physics are of an essentially nonlinear nature. For V '•

)'f- centuries most of these phenomena were studied in linear approximation. Only ij'.

; * in recent decades the mathematical methods have begun to be developed,to study |-

, . certain classes of nonlinear systems exactly. A
'•£ i ) ' r'-

f'li In 1955 Fermi, Pasta and Ulam published a paper in which they performed {•'•>•
'.if , '&•

':. '1 1. a numerical investigation of a one-dimensional system of anharmonic oscillators •£,
:„'{: .• described by differential-difference equations of the type ji;̂

'>:_(, 3 2u(n,t) = u(n+1,t) - 2u(n,t) + u(n-1,t) hi'

Si|| + a|(u(n+1,t) - u(n,t))2 - (u(n,t) -u(n-1,t))2J , (1) %

f.i''; where u(n,t) denotes the displacement of the n'th mass point at time t.

'I ; Contrary to what was expected at that time, they found no tendency toward j;-•

': .. equipartition of energy among the degrees of freedom of the system. ' '•-}

& '•,] This discovery was an important stimulus for research on dynamical systems, ?>••?<

,y S which at present has developed two main branches, the study of integrable •- J

\ .' nonlinear systems, by which we mean nonlinear systems that can be solved j .5

;• ] exactly using only linear methods, and the study of nonintegrable systems. , .*,;

;.; jj - In this thesis a study will be presented of classical integrable dynamical • :'<i

Z$ systems in one temporal and one spatial dimension; some general references on pR

v this subject are refs. 2-8. For results on integrable systems in higher i ;;

I' spatial dimensions see e.g. refs. 9 and 10, and for reviews of integrable '':i'

| quantum systems see refs. 11 and 12. A review of nonintegrable systems can be i'-j|
i
j found in ref. 13. „,
' One of the interesting features of integrable nonlinear dynamical systems
; is the fact that, under appropriate boundary conditions, they give rise to

; solitons. Solitons are solitary waves that asymptotically preserve their

; 1
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energy, momentum and amplitude upon collision with other solitary waves.

Some examples of integrable dynamical systems which will be discussed in this

thesis are the Korteweg-de Vries equation, which describes e.g. waves in

shallow water, the nonlinear Schrödinger equation, occurring e.g. in the

theoretical description of plasma waves, the sine-Gordon equation, which

describes a system of coupled pendula, the equations of motion for the

isotropic and the anisotropic Heisenberg spin chain, etc. Of course these

equations also have other physical applications, as different physical

situations can often be described by the same mathematical model. For an

application of soliton systems to field theory see ref. 14, and for an

application to solid state physics see ref. 15.

Of course integrable dynamical systems form a small minority, as most

systems turn out to be nonintegrable. One can, however, hope that soliton

theory can in some sense be regarded as a zero'th order theory , that may be

used as a starting point for perturbation expansions

There are several approaches that have been used to study soliton systems,

using e.g. the inverse scattering transform 2-7) the Riemann-Hilbert

method ' ' , prolongation structures , or bilinearization

One of the most successful of these methods uses the inverse scattering

transform, also called the inverse spectral transform. This method for

solving the initial value problem of integrable nonlinear evolution equations

under suitable boundary conditions at infinity, can be regarded as the non-

linear analogue of the Fourier transform;a thorough treatment of this analogy

is given in ref. 2. A schematic representation of the method is given in the

following diagram

initial datum at t=0

u(x,O) = UQ(X)

direct

spectral problem

scattering data at t=0

s(o)
I

I
I
I time evolution

^ in configuration

I space

I

I

I

time evolution

in spectral

space

solution at t>0

u(x,t)

inverse

spectral problem

scattering data at t>0

S(t)
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The success of the inverse scattering method stems from the fact that the

time evolution of the scattering data is governed by linear equations, in

contrast to the time evolution in configuration space. One of the key steps

in this method is the inverse spectral problem yielding the solution u(x,t)

of the nonlinear evolution equation, in terms of the scattering data S(t).

The solution of this inverse problem is expressed by a so-called Gel'fand-

Levitan equation.

As an example, consider the case that u(x,t) obeys the Korteweg-

de Vries equation
22)

3.u = 33u - 6u3 u ,
"G X X

(2)

which first led to the discovery of the inverse scattering transform by
23)

Gardner, Greene, Kruskal and Miura . The Gel'fand-Levitan equation for

the Korteweg-de Vries equation reads as follows

¥,:•> CO

K(x,y,t) + M(x+y,t) + Jdz K(x,z,t)M(z+y,t) = 0 , y>x (3)

whsre the kernel M is expressed in terms of the scattering data

R(k,t) = R(k,0)exp(-8ik3t) ,

Pn(t) = pn(0) E p n ,

Pn(t) = pn(0)exp(-8p3t)

in the following way:

00

1 f N

M(x,t) = 2^ R(k,t)exp(ikx)dk + £ pn(t)exp(-pn>
^ n—1

(5)

I

Here R(k,O), p Q, and Pn(°) play the role of a reflection coefficient, a

discrete eigenvalue, and a normalization factor, respectively, associated

with a Schrödinger equation in which uQ(x) is the potential. A more

detailed definition of these quantities is given in ref. 2. The Gel'fand-

Levitan equation (3) is a linear equation, and from its solution K(x,y,t),

the solution u(x,t) of the Korteweg-de Vries equation (2) is obtained as

follows

u(x,t) * -23 lim K(x,y,t) . (6)
X y+x

O



A convincing application of the inverse scattering transform to the

analysis of experimental data has been given by A.R. Osborne et al. in ref. 2h.

The treatment of soliton systems that will be presented in this thesis,

however, is not based on the inverse scattering transform or on one of the

other methods mentioned above, but on a new method that has been introduced by

Fokas and Ablowitz, and which we will call the method of direct linearization.

In the method of direct linearization one starts from a singular linear

integral equation, involving an arbitrary contour and measure in the complex

plane. This singular linear integral equation yields not only very general

solutions of the associated nonlinear evolution equations, but also many of

the features of these evolution equations, e.g. Miura transformations,

linear scattering problems, Backlund transformations, and integrable

discretizations. The method has the advantage that different evolution

equations can be treated in a comprehensive and unifying way. (For some

general references on singular integral equations, their connection with

Riemann-Hilbert problems and with inverse spectral problems see refs. 9, 21,

26, 27.)

Very briefly, the content of this thesis is the following. In chapter II

the direct linearizations are given of several nonlinear partial differential

equations, for example the Korteweg-de Vries equation, the modified Korteweg-

de Vries equation, the sine-Gordon equation, the nonlinear Schrö'dinger *

equation, and the equation of motion for the isotropic Heisenberg spin chain;

and we also discuss several relations between these equations. In chapter III

the Backlund transformations of these partial differential equations are

treated on the basis of a singular transformation of the measure (or

equivalently of the plane-wave factor) occurring in the corresponding linear

integral equations, and the Backlund transformations are used to derive the

direct linearization of a chain of so-called modified partial differential

equations; for example, from the Backlund transformation of the nonlinear

SchrSdinger equation the direct linearization of the equation of motion for

the anisotropic Heisenberg spin chain is derived. Finally in chapter IV it is

shown that the singular linear integral equations lead in a natural way to the

direct linearizations of various nonlinear difference-difference equations.

These equations for functions of two discrete variables n and m, reduce to

the partial differential equations mentioned above, after two successive

continuum limits. As an intermediate result we also present the direct

linearizations of the differential-difference equations that obtain after one

single continuum limit, e.g. the equation of motion for the Toda lattice, the

discrete nonlinear SchrSdinger equation, the discrete complex sine-Gordon



equation, etcetera.

As an illustration, we here summarize some of the main steps of the

treatment given in this thesis, using as an example the Korteweg-de Vries

equation and its discrete analogues.

The singular integral equation providing the direct linearization of the

Korteweg-de Vries equation is the following

™ (7)

where C and dX(k) denote an arbitrary contour and measure in the complex

k-plane, and where the plane-wave factor p k is given by

p k = pk(x,t) = (8)

This equation was introduced in ref. 25, where it was shown that if the

solution VL of equation (7) for a given measure dX(k) and contour C is

unique, then the function u which is given by an integration of u. = u, (x,t)

over the same contour and measure, i.e.

-\
djUkhi (9)

obeys the potential Korteweg-de Vries equation

3.u = 33u - 3(3 u ) 2 . (10)
t x x

(Note that v = 3 u obeys the Korteweg-de Vries equation (2).) Explicit

solutions describing N solitons, for example, are obtained by choosing a

measure containing N simple poles, i.e.

1 N ~1dX(k) = ̂ r (11)

where c and k are constants, and a contour C that surrounds the poles

k . For N»2 we obtain e.g.

tt.v*

• ' t
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(kj-k2)
2

° 2 Pk2
Pk2

i C2

(12)

11
't, l
'è ,

where p and p are given by equation (8).Kl k2

If we apply a singular transformation to the plane-wave factor p in

equation (7) of the form

pk ~

q+k

^ Pk '

ü E ü(x,t) = JdX(k)ük ,

(13)

and denote by ü. the solution of equation (7) with pfc instead of pfe, and

define the function

(11*)

h
1 i

then we can derive i,he following Backlund trancformatior. (cf. refs- ?8 and 29)

3 ü = -3 u + iq(ü-u) + s(ü-u)2, (15)

3 ü = -3.U + iq32ü - iq32u + g32(ü-u)2 - 3(3 u ) 2 - 3(3 ü ) 2 . (16)
t t X X X X X

Given an arbitrary solution u of equation (10), the Backlund transformation

enables one to obtain another solution u of equation (10) after solving the

ordinary Riccati differential equation (15). (The integration constant is

determined by eq. (16).) Using equations (13) and (11) it can be shown that

the Backlund transformation transforms an N-soliton solution u into an (N+1)-

soliton solution u. From equations (15) and (16) it also follows that

u~ = u-u obeys the modified Korteweg-de Vries equation

3.u" * dh i ~ 3 u" - - (u")23 u~ .
X JL X

Introducing a second singular transformation of the plane-wave factor

Mk Hk
pk' \ u-* Ü =

(17)

(18)

1 .A'WWJflCl,
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. ' . • :

it is immediately clear that p =p. , hence ü = ü. From this, one can
)

p =p.

derive the following Bianehi-identity
30 31)

ip+iq ü-u-ip+iq

Alternatively,we can say that if p, in equation (7) is given by
it

instead of by equation (8), and if the function u(n,m) is defined by

u(n,m) =

(19)

(20)

(21 ]

P

•\'!>

where u^ = u. (n,m) is the solution of eq. (7) with p. given by (20), then u(n,m)

obeys the following difference-difference equation

- u(n,m)

ip+iq

u(n,m+i) - u(n+1,m)

u(n,m+!) - u(n+1,m) - i p + i q
(22)

Hence the linear integral equation (7), with (20), provides a direct

linearization of equation (22). The N-soliton solution of equation (22) can be

obtained using the measure given in equation (11). The 2-soliton solution e.g.

is again given by equation (12), where we should now insert equation (20) for

p
k l

 a n d pk 2 *

Taking a continuum limit of equation (22) with respect to m, we obtain

3tu(n,t) = -
u(n+1,t) - u(n-1,t)

u(n+1,t) - u(n-1,t) + 2ip
(23)

and taking a second continuum limit, with respect to n, we recover, after

some obvious transformations, the potential Korteweg-de Vries equation (10).

More details and results concerning these and other equations are given in

the following chapters of this thesis.

!••:•
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CHAPTER I I i

r j

v i'

ON SOME LINEAR INTEGRAL EQUATIONS GENERATING
SOLUTIONS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

1. Introduction

The study of nonlinear partial differential equations (PDE's), that are
solvable by means of the inverse-scattering transform (1ST) formalism, has
become of great interest during the last decade. For many integrable PDE's
the various ingredients of this formalism have been established and exact
solutions, such as e.g. soliton solutions, have been found in a systematic
way1). One of the underlying difficulties for this method is the choice of
boundary conditions, which have to be taken into account from the very
beginning. This feature very often obscures the fact that the crucial step of
the inverse problem, i.e., the Gel'fand-Levitan-Marchenko equation, can in
many respects be formulated in a way, which is independent of the choice of
boundary conditions. A common feature of the nonlinear PDE's solvable via
the 1ST is that solutions of these equations can be mapped onto a linear
inhomogeneous integral equation and it is possible to explore these integral
equations from a more general point of view2*3).

Recently, however, a new type of linear integral equation for the lineariza-
tion of the Korteweg-de Vries equation (KdV) was proposed by Fokas and
Ablowitz4), which enables one to extract complete information on the essen-

10



tial nonlinearity of the corresponding PDE, without having to go through the „;

details of the inverse-scattering formalism, such as e.g. the choice of boun-

§ ' The integral equation, which we have proposed in ref. 6 for the linearization
I of the nonlinear Schrödinger equation, has the following form

dA(J) J dX*(I')\k_l^v_l) tf\x, 0 = prt^~k\ (1.1)

11

dary conditions. The important feature is that the integral equation has a
singular kernel and that it contains an integration with an arbitrary measure r
over a complex variable k, over an arbitrary contour in the complex fc-plane. j_
By choosing appropriate measures and contours, the various solutions of the |
KdV can be obtained directly from the integral equation. p

As a first extension to the approach of Fokas and Ablowitz, one can take {'
into consideration a more general inhomogeneous term in the integral equa- '£
tion, leading to a matrix structure, which can be inferred from the solutions.
Taking into account the relations between the matrix elements, it has been
shown that the integral equation of Fokas and Ablowitz provides solutions of
the modified Korteweg-de Vries equation (MKdV) as well3). Secondly, one
can take into consideration different types of integral equations. In refs. 5, 6
we have shown that the solutions of both the nonlinear Schrödinger equation
(NLS) and the equation of motion for the classical Isotropic Heisenberg Spin
Chain (IHSC) in the continuum limit can be found from one and the same
linear integral equation. This has also been shown to be the case for the
Boussinesq equation (BSQ) and the modified Boussinesq equation (MBSQ)7).

A major advantage of this way of treating nonlinear PDE's is that many
relations between different PDE's become apparent in this context. As a first
example, the Miura transformation connecting e.g. the KdV and the MKdV8),
the NLS and the IHSC910), and the BSQ and the MBSQ"), can be derived
systematically as a corollary from the integral equations, without having to rely
on rather ad-hoc methods. Another example is the gauge equivalence between
the Lax representations of the NLS and the IHSC12), which has been derived
in a systematic way from the integral equation, cf. ref. 6. Similar gauge
equivalences have also been discovered in the context of nonlinear cr-
models13). Thirdly, the integral equations lead in a direct way to the associated
linear eigenvalue problems for the PDE's under consideration, in which the
solutions of the integral equation can be identified with the eigenvectors.
Eliminating the potentials, which are the solutions of the PDE's, one can
derive a nonlinear (integrable) PDE for the eigenvectors, cf. ref. 14. In this
way the solutions of the classical Heisenberg spin chain with uniaxial aniso-
tropy (AHSC) can be found from the linear integral equation for the NLS as

„ -.,„ -



& f
O where n is an integer labelling the different solutions. In eq. (1.1) C and C* e..

) \ denote an arbitrary contour and its complex conjugate in the complex fc-plane, |
• •': and dX(fc) and dA*(k') are an arbitrary measure and its complex conjugate. By V
;! choosing different measures and contours we can find different solutions 4>(

k
n>.

1 '\' The choice of measures and contours is restricted by two conditions: ~:

; j (i) The contour C and the measure dA(fc) are to be chosen such that the h;
,'j kernel of the integral equation is properly denned and regular, in the sense "
\\ that the solution tft1?*, for given measure and contour, is unique. This means •
.; e.g. that the homogeneous integral equation, i.e. the integral equation with the ,•
:./' right-hand side replaced by zero, has only the zero solution. ,
\ . (ii) The contour and the measure must be such that the differentiations with 'iy
-^ respect to x and t can be shifted through the integrals. r-

' Taking into account these conditions, it has been possible to derive PDE's for C
?! the functions ;,

f 1 I
<t>n,m(x, t) = I dA(k) ^ itfXx, t), (1.2) #

J K hi

'•'I defined with respect to the same measure and contour as in eq. (1.1). In ;
/) particular we have shown that the function <f>os> satisfies the NLS and that ;

<̂ o.i = <Ai.o and 0i.i satisfy the IHSC6). By making use of the factor Ilk" in the
inhomogeneous term of eq. (1.1), we have been able to obtain solutions of -;
different PDE's from one and the same integral equation.

In eq. (1.1) we have chosen a very specific dispersion relation <i>(Jc) = k2 for ;
the time-dependence occurring in the exponentials. Many of the conclusions,
however, which can be drawn from the integral equation, are independent of ;
the choice of the dispersion relation. Thus an obvious generalization of the •
treatment in ref. 6 is provided, if we choose a more general dispersion. In this
way it is possible to derive from the integral equation a broad class of
nonlinear PDE's, which may have different dispersive behaviour. All the ;
time-independent features, however, will remain the same for the equations of
such a class. '<

The present paper is devoted to the study of two types of linear integral ,
equations, namely

I. 0lM)(x, 0 ± ƒ dAfl) ƒ dA»(f') *** j fe / f ' i ? <t>\n)(x, t) = ~f Mx, 0 (1.3)
C C'

and

II. !>?•(*, t) + ƒ dX(l) ƒ dA(I') ffii'ffi+ff «$"(*, 0 = ̂  ft<*. 0. (1-4)
c c

12

^



Eq. (1.3), which from now on will be denoted as type I, is an obvious
generalization of eq. (1.1), the difference being that the exponentials in (1.1)
are replaced by functions pk(x, t) proportional to eKkx~k'l) with the dispersion
relation <a(k) = kr, r being an integer, and satisfying the linear differential
equations

| P p O , idtPk(x,t) = k'Pk(x,t), (r integer). (1.5) ^

| Eq. (1.4) is a new integral equation (type ID, in which the integrations are
performed twice over the same contour C. For both equations it is understood
that the measure and the contour are chosen such that the conditions (i) and
(ii), mentioned above, are satisfied.

The outline of this paper is as follows. In section 2 we derive a set of
algebraic relations and differential equations for the quantities •'

*,.„(*, 0 = ƒ dA(k) pr 0ir'(x, 0, <fc,.m(x, 0 = ƒ dA(k) -^ tfXx, t), (1.6) j
C C ii.

where '

^"'(x, 0 = ƒ dA*(i') ̂ %i> <M" *(*, 0. (1.7) ;, J

In section 3 the same is done for the integral equation of type II, for which we ' .

have

»B.m(*,0 = /dA(fc)prr(
k"W), »«.M, 0 = ƒ d\(k)-^ w^(xj) (1.8) • .

c c

with

wlT̂ x, 0 = ƒ dA(/) &£p v(,"\x, t). (1.9) > .1

4
In section 4 these relations will be used, both for type I and type II, to give . 5

a general framework in order to derive, for all positive values of r, cf. (1.5),
closed PDE's in terms of <f>0,0 and vo,o only, and we present some explicit •
results for r = 2, 3, 4, 5. In section 5 also PDE's for some other values of
(it, m) are derived, together with the Miura transformations, which connect
the solutions for different values of n and m. For negative values of r, it is '
more difficult to derive closed PDE's; some explicit results for the case -
r = -1 will be presented in section 6. Finally, in section 7 it is discussed how a >
reduction to a class of integral equations with only a single integration can be

13



performed, leading e.g. to a generalization of the integral equation given by
Fokas and Ablowitz4).

The treatment we give here provides a unifying framework for many partial
differential equations. From the variety of equations, that can be described by
one and the same linear integral equation, many conclusions can be drawn.
The recent results on the connection between the conserved densities16'17), and
the Lie-Backlund symmetries1*19) for the MKdV on the one hand, and the
ones for the sine-Gordon equation on the other hand, can be regarded as a
direct consequence of the integral equation. Furthermore, in a forthcoming
publication we will show how Backlund transformations can be derived
immediately from the integral equation by a singular transformation of
measures20). Some of the connections we present here have also been found
by Hirota21), who showed by a different method that several PDE's can be
transformed into one and the same bilinear form. The relation between
Hirota'i method and our approach, however, is yet to be clarified. Moreover,
it is not obvious that bilinearization implies exact integrability, cf. ref. 22.

2. Integral equation of type I; constitutive relations

The integral equation (1.3) can be written as a system of two coupled
integral equations, i.e.,

(2.1a)

(2.1b)

c*

J K I
C*

By taking the complex conjugate of (1.3) and using (2.1b), it is not difficult to
show that the function t/rJT' also obeys an integral equation of type I, but with
a different source term

T, ƒ dX(I) ƒ dX*(l')(fc_P%;,_0 <Mfl) - ƒ d\*(l')(fc^r. (2.2)
c c*

The functions <j>„,m and i/>n,m, which will be investigated in this paper, can be
regarded as elements of the infinite-dimensional matrices $ and • resp., i.e.

(*)«m = <foi,m> (•)n,m = •/'«.«I, (2.3)

where n and m can have all integer values.
These matrices have simple symmetry properties, as can be seen as follows.

11*



a

Eq. (1.6) together with (2.1a) can be rewritten as

*,m = ƒ dA(k)^^A = ƒ dA(k)^(*t*+H ƒ
c c c*

^ ) . (2.4)

Interchanging the integrations over C and C* and using (2.1b), yields the
bilinear expression

(2.5)

(2.6)

ƒ dAflk)**^*--r, ƒ d A * ( l ' ) * ^ - ,
c* ''
ƒ

c c*

and from (2.S) it is immediately clear that

where the superscript T denotes the transposed matrix. In a similar way the
bilinear expression for iftn,m can be derived. From (1.6) and (2.1a) we have

(2.7)ƒ 1̂ 00 / e

Pk V J
c c«

Inserting (2.1b) in the first term of the right-hand side yields

*B,M = ƒ dA(fc) ƒ ÓX^i^^+f**1^,c c*

from which it is obvious that

(2.8)

(2.9)

where ¥ f is the hermitean conjugate of • .
From eqs. (1.3) and (2.2), or equtvalently (2.1a) and (2.1b) one can derive a

set of algebraic relations connecting the different functions Q™ and r̂*°. For
that purpose we consider the functions fc'^|["

)(x, t), where p is an integer.
Multiplying (1.3) by k", we have

>f»+H ƒ dA(J) ƒ

+ t, ƒ dA(J) ƒ

I

(2.10)



For positive p use can be made of the identity

f' kpl"> (knPfkp-l-il'i (p>0) (2.11)f

ij

f, <

in order to rewrite the last term on the left-hand side of (2.10) in the following
way, using also eqs. (2.1b) and (1.6),

n ^ ƒ dA*(f') (fcp-'i/'Wi")* + ƒ

k-/ ƒ dA*(D ri+.ffgf_ iy (2.13)

A similar relation can be derived for ^K Multiplying (2.1b) with k", we
have

fc'tfr» = ƒ dA*(l') (kp - r ) ^ £ + ƒ dW^'ff!*. (2.15)
c c*

Making use of (2.11) in the first term on the right-hand side of (2. IS), and
substituting (2.14) in the second term, eq. (2.15) can be rewritten as

*
ƒ
c*

- ij V f dA*(l') ̂ 7 7 «-j^J!*1""* + •ï,-j*il+I~rt*). (2.16)
c*

-j, jr8 \ "'J "~j J u /v u 'r J + l ~ p (k — l'))' " ' t.
• c* :f:

f* Inserting (2.12) in (2.10) we find ;!

dA(l) I dA*(J)7ï fTtTTT » 19 >fi
J (K — i X' ""') i*̂

C C* fr

1 t»

Thus k^i;"' obeys an integral equation of type I, but with a different source ;;
term. Comparing eq. (2.13) with eqs. (1.3) and (2.2) and using the regularity
condition that the homogeneous integral equation has only the zero solution, -.:

I we find the relation

p-i *

: = <t>(k~P>- V S W,-i^+1~P)+ 4n,-&%*l~Py), (P > 0).



Using (2.1a) and (2.1b), we immediately have

V.

Jt--"A

(p>0).

For p < 0 , we have, instead of (2.11)

k" - 1 " = - (J t - % k-'-'I"+p, (p < 0),

and this yields, by the same line of reasoning

and

< o).

(2.17)

(2.18)

(2.19)

(2.20)

Eqs. (2.14), (2.17), (2.19) and (2.20) can be written in a more compact way,
using the matrices 4» and ¥% cf. (2.3), and introducing the vectors 4>k and iK
with components «̂ jT' and ip^. We have the algebraic relations

k'+k = JT' • * k - T , ¥ * Qp • * k - 1 | * • Qp • ̂ , (2.21a)

k'th = JT' • ifc + * * • Qp • 4>k - t j * • Qp • +k. (2.21b)

Here JT denotes the matrix that lowers the superscript of the components «K"'
and i(f[n) by 1, or equivalently it is the transposed of a matrix J, which is
defined by

(J)-.m = »«.,,+., (JT)*.m = 8njn+l. (2.22)

The matrix Qp in (2.21) is given by

S T " i (2.23a)

(2.23b)

where the matrix O is defined by

(O)B.m = 5.A..0, (2.24)

and where we have identified J~' and JT.
Next we derive differential relations for the <K"' and î i"'. For that purpose

we suppose a linear differential equation for p* of the form

(2.25)

§QP = - § Jp+' • O • J T i ' , (p < 0), 'tat?

• / '•-
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|-i where d can be either dx or — d,, corresponding to p = 1 and p = r, respec-
j;j tively, cf. eq. (1.5). Applying - id to the integral equation (1.3), we find

I - •

% • • •

ƒ dx(i) ƒ

ƒ dA(I) ƒ dA*(n(fc_ftg[,_I)(fc'' - I'p)^iB) = j^p Pk. (2.26)
c c*

Using again (2.11) for p 2*0, and also eq. (2.1b), eq. (2.26) can be rewritten as

-id<t>P+v ƒ dA(O ƒ dA*(*'>(k_?xi',_0(-W))
c c*

- fF? ft " 1 § M.-i^-'W (2-27)
ft*

I From (2.27) we see that - id0 j , n ) obeys an integral equation of type I, and by
I comparing (2.27) with (1.3), and using the regularity condition, we have the
I?" relation sf.;

*,-fj>i+i-p\ (ps=0). (2.28) !

For p < 0 we can again use (2.18), from which it follows in the same way that j."'
? : .

The relations for «/ri"' can be obtained by applying - L <o (2.1b). We find £

J k-I' J
(2.30)

For p 3*0, using (2.11) in the first term and (2.14) and (2.28) in the second term
of the right-hand side of (2.30), we find

'ft-i ƒ
c»

ez.' . . . .
(2.31)

where the last step follows from eq. (2.1a). For p <0 , by similar manipula-



'A

tions, we obtain the result

hl\ (P<O). (2.32)

Using the matrices JT and Qp, cf. (2.22) and (2.23), eqs. (2.28), (2.29), (2.31)
and (2.32) can be rewritten as

Q P • 4>k, (2.33a)

(2.33b)

Taking into account eq. (1.5) with d = dx, p = 1, or d = -d„ p = r, eqs.
(2.33a) and (2.33b) lead to the relations

* id,if>k = J T ' • iftk — Tj'i'* • Q r • 4>k, (2.34a)

id,«to = <&* • Qr • 0 k , (2.34b)

-id,«fo = JT • «fo - T ) * * • O • «fo, (2.34c)

** • O • fa. (2.34d)

Eqs. (2.34aM2.34d) in combination with the algebraic relations (2.21a) and
(2.21b) form the constitutive relations arising from the linear integral equation
(1.3) with (1.5). In fact, (2.21) and (2.34) form the linear problem for the
matrices 4» and ¥ , i.e. we have a set of linear equations for the wave
functions <j>k and tfik, of which the coefficients contain the potentials 4» and ¥ .
Note that the potentials 4» and ¥ can be obtained explicitly from the wave
functions <f>k and •& by an integration over the contour C, cf. (1.6) and (2.3).

Multiplying (2.21) and (2.34) by k~m and integrating over the contour C, we
can derive the algebraic relations and the PDE's containing only the matrices
$ and ¥ . The result is:

Ql>.V! (2.35a)

P . * , (2.35b)

(2.35c)

- i a 1 * = * * - O - * , (2.35d)

id,* = JT' • * - 7j** • Qr • * , (2.35e)

id ,* = ** • Q, • * . (2.35f)

Eqs. (2.35cH2.35f) for fixed r form a system of coupled partial differential
equations, which, in combination with the algebraic relations (2.35a), (2.35b)
for integer p, is completely integrable in the sense that solutions can be found

1 y



from a linear integral equation, cf. (1.3), (1.6), (1.7), (2.3). (The linear integral
equation may be regarded as the spectral decomposition of the associated
linear eigenvalue problem.)

Remark. Instead of eq. (1.5) one can also consider a more general dispersion
relation

*>(*) = 2 A,*',

leading to

In this case (2.35c) and (2.35f) can be rewritten as

Q • <&,

in which the matrix Q is given by

(2.36)

(2.37)

(2.38a)

(2.38b)

(2.39)

3. Integral equation of type II; constitutive relations

The analysis, given in the preceding section for the integral equation of type
I, can be done with only minor modifications for the integral equation of type
II, given in eq. (1.4). As in section 2 we rewrite eq. (1.4) as a system of two
coupled integral equations

(3.1a)

fe

f,:

il-

(3.1b)

Here it is not useful to introduce a quantity 17 = ±1, since a factor 17 in
front of the second term of the left-hand side of (1.4) can be included in the
measure dX(t). The integral equation for the quantity w(

k
N> is again of type II,

but has a different source term

ƒ dX(O ƒ dA(O ( f c + *gg, ƒ dA(l) (3.2)

20
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f-'\

We define matrices V and W by

(V)*», = vH,m, (W)^ = wn,m,

cf. (1.8). These matrices are symmetric, i.e.

V = VT, W = WT,

as follows from the bilinear expressions

vH.m = fdA(k) ± (vïVr + w W )

and

w„.m = J dA(k) J dA(J) V' Vk
 fc

+
+^ W' ,

(3.3)

(3.4)

(3.5)

(3.6)

which can be derived in an analogous way as (2.S) and (2.8).
The algebraic relations for v1?1 and w*0 can be derived as follows. From

(1.4) one has

c c c c

We now use the relations

2
and

Then eq. (3.7) can be rewritten as

c c

(3.7)

(3.8)

(3.9)

(3.10)

-1
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•

for p ^ 0 , and

• I C C

f ( f c ^ t ) (3.11)
C

for p < 0 , cf. eq. (1.8). From eqs. (3.10) and (3.11), we can conclude, on
account of the regularity condition, that

iw!?+l"P)). (P^O), (3.12) p.

and L

"A (3 . 1 3 , j;,
I < Introducing the matrix Rp by k

'"•"• p-l I:

(3.14b) _!'.

I eqs. (3.12) and (3.13) can be combined to "

,*- -
£ for all integer p, where vk and wk are vectors with components tij/0 and wk

B). ^
The algebraic relations for w[n) can be derived multiplying (3.1b) by k", i.e.

j fc'wP = ƒ dX(/) (fcp - ( - 0 p ) f ^ + (-!)"ƒ dX(O^f . (3.16)
c c

Using (3.8) and (3.12) for p 5=0, and (3.9) and (3.13) for p < 0 , we find

ïytü^r1-"»-(-ïyw^wn*1-'»), (P **o),
(3.17)

22



V'

r\

•:$>

and

* v k " > = ( y i r ( D g ( m n , h P r < D
( p < 0 ) . (3.18)

In matrix notation eqs. (3.17) and (3.18) yield

k'wk = (-J1)" • w* + W • Rp • wk - ( - l ) 'V • Rp • vk, (3.19)

for all integer p.
In order to derive differential relations for v{n) and w{"\ we can take again

(2.2S), but now we must assume p to be odd, in order that id(p*pi) contains a
factor (k + ('). Applying - i d to the integral equation (1.4), we have

ƒ dA(l) ƒLI -iat
I: < CC

^ + l")vi!i) = ii=ppk. (3.20)

g (3.2D
and

P i r t ^ y ^ » (podd,p<0), (3.22)

and eqs. (3.21) and (3.22) can be combined to

-idvk = Jv • vk - W • Rp • vk, (p odd), (3.23)

for odd values of p. Applying - id to eq. (3.1b) we can derive an equation for
-idwl

k\ which yields

V • Rp • tfc, (p odd). (3.24)

Taking into account eq. (1.5) for the factors pk(x, t), we have the relations

ia,»k = JT r- i> l k-W-R r-» l k , (rodd), (3.25a)

idtwk=V'R,'Vk, (rodd), (3.25b)

^ - D f c - W - O - e k , (3.25c)

V • O • t>», (3.25d)

23

f; jj For odd values of p , we can use eq. (3.8) or (3.9) in the last term of the
( i left-hand side of (3.20). Applying (3.1b) and the regularity condition for the •• •
/;l integral equation (1.4), we obtain |;



'0'

which, in combination with the algebraic relations (3.15) and (3.19), form the
constitutive relations of the linear problem associated with the integral
equation (1.4).

Multiplying (3.15), (3.19) and (3.25) by k'm and integrating over the contour
C, we obtain the equations

(3.26a)

(3.26b)

(3.26c)

(3.26d)

(3.26e)

(3.26f)

W-JP = (-JT)P W + W R p W - ( - l ) p V R p V,

ia,V = J T ' V - W R r V , (rodd),

i3,W = V-R r-V, (rodd).

Again, a more general dispersion relation can be taken into account.
Choosing,

(3.27)

(3.28)

where w(k) is an odd meromorphic function of k, i.e.

<»(k) = 2 A,kr, (Ar = 0, if r even),
r

we find

ia,V = ü»(JT)-V-WRV,

and

ia,w = v • R • v,

where

R = 2 A r R » (Ar = 0, if r even).
r

4. Partial differential equations

(3.29a)

(3.29b)

(3.30)

In this section we present, for positive values of r, a method for deriving
matrix partial differential equations in terms of only • , in the case of the
integral equation of type I, and in terms of only V, in the case of the integral
equation of type II, without involving the matrices J or JT. From the form of
these matrix PDE's, one immediately has partial differential equations con-
taining only the (0,0) components of the matrices 9 and V, i.e. the functions

and to/).

^ ssraKSSJKKTsasKC;



4.1. Matrix PDE's for type I

In order to get rid of the matrices JT, we first derive a recursive relation for
the quantity

QP-«k, (4.1)

(4.2)

cf. (2.21a), occurring in the right-hand side of (2.33a).
Using (2.34c) and the recursion relation

Qp = J • CL_, + O • J T " = Qp_, • J T + J p l • O ,

cf. (2.23a), (2.23b), which is valid for positive, as well as negative values of p,
we obtain

-' • o + Qp_, • JT) • «fo.
(4.3)

We rewrite eq. (4.3), using also (2.35d), as

p_, • Qp_, •

. Qp., • ( - i a ^ + v** • o

= - iaƒ j r " - T,G"'- | )* • o • <t>k - T,4> • o »

where we have introduced the vector

e ? » - - J T ' • ** + k"*k + t j ^ • Qp • f* = * * • QP

cf. (2.21b), which occurs in (2.34b), and the matrix

G(p) = - J T ' • + • • J" + T , * • Qp • = * * . <j

(4.4)

(4.5)

= 4>* • Op • <I>, (4.6)

cf. (2.35b), (2.35f), which can be obtained from (4.5), after an integration over
the contour C.

Next we express G[p) in terms of F(
k

p). Differentiating (4.5) with respect to x,
we find, using (2.34d) and (2.35d),

-idxG
l
k
py= {kp - JT' + V * • Qp) • tf * • O • fa + t j * * • O • tf • Qp • • * . (4.7)

Inserting in eq. (4.7), eq. (4.1), and the matrix

F*p) = J T ' • 4» — 1)%* • Q #4», (4.8)

which can be obtained from (4.1), after an integration over the contour C, we
find

-idxG
lfy = * * • O • FÜ" - Pp)* O+k. (4.9)

;.'. ;r".:ri';s*TiBWM:>^i^'^
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>f) Eq. (4.9) can be formally solved and inserted in (4.4), which leads to

%

i? ^ [ r \ (4.10)
\ j where the action of the operator il on an arbitrary vector ak, with components
\ ajf\ is defined as

+iTJaj1(*-O-A*-A-O-«&*)-O-<fo, (4.11)

and the elements of the associated matrix A are given by

(A)B.m = an,m, an,m= fdHV-pza?. (4.12)

In eq. (4.11) dj1 denotes an integration over x, in which the integration
constant has yet to be determined. In appendix A, it will be shown that no
undetermined integration constants appear in the right-hand side of (4.10). For
every p > 0, the vector F[p) - -idif>k can be evaluated using

F r = rt"[«h] (4.13)

and no integration constant will occur in the final result.
The linear problem corresponding to (2.21) and (2.33), for positive r, i.e.

w(k) = k', (r >0) and i3,pk = krpk in (1.5), can be expressed as

(4.14a)

id ,* = G(
k'> = !*; ' ( • • • O • /T[«M - n'[*]* - O • * ) , (4.14b)

- i a > k = k^k + r j* • O • ifc, (4.14c)

- i d , * «•*•<>-ft*, (4.14d)

in which the action of the operator il on an arbitrary matrix A is defined as

fl[A] = - id x A-iT,* • O • dj'(tf* • O • A - A* • O • <&)

+ i T , a ; ' ( 4 > O A * - A O - ^ * ) O - ^ . (4.15)

The corresponding PDE can be expressed as

(4.16)

as follows by integrating (4.14a) over the contour C. Furthermore, from the
form of the operator il or from the relations (A.5), (A.6) and (4.4) it is obvious

i that the (0,0) element of the matrix relation (4.16) leads to a closed partial
f- differential equation, containing only <fo.o- The corresponding linear problem is
f given by the n = 0 component of (4.14a)-(4.14d).
ft
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In order to obtain the PDE for ^ » for a specific value of r in an explicit
form, one first has to evaluate the vector Fjf* = fl'[4kL The vectors F(

k
r> and

G(kr>, for positive r, can be found, either by using (4.10) a number of times in
such a way that the "integrations" d*1 can be cancelled in every step, or by
applying the recursion relations (A.5) and (A.6), in combination with (4.4). The
results for r = 1,2,3,4, 5 are presented in appendix B. The PDE's for #o,o for
r = 2,3,4,5 can be found, integrating (B.2MB.5) over the contour C, and
inserting the result in (4.16). We find

r = 2, 1^,0+3^0.0+2111*0/^ = 0, (4.17)

r = 3, 3A.o-a^,o-6i)Ko| 2a^o f l = 0, (4.18)

r = 4, ia,<fc,.o - a X o - •n(8|<kuJ2afro.o+ « W*«fr>.o)2

+ 2 < t ó < « , o + ^ ( ^ « M + 6|<UVo.o = 0, (4.19)

r = 5, X 2 ^ l

(4.20)

[4.18),
for r = 3, may be called the complex modified Korteweg-de Vries equation,
whereas eqs. (4.19) and (4.20), for r = 4 and r = 5, respectively, have to our
knowledge not been given before in the literature.

Remarks

j:fi Eq. (4.17), for r = 2, is the nonlinear Schrödinger equation (NLS); eq. (4.18),

fc (i) By applying the operator Hp to the functions <f>n,m extra factors kp and V
are introduced in the integrands of the bilinear expression (2.5). In fact, using
the property

ƒ dA(k) £ •J 'Vf 0 + ƒ dA*(O ^ r̂>*̂ <!">* = 0, (4.21)
C C'C C'

and eqs. (2.33) and (2.21a), one can show that

(4.22)

and furthermore we have - iö<fr = I2P[*]. Operators /2 were already formulated
in a different context in ref. 23, see also ref. 24.

(ii) As was noted at the end of section 2, it is also possible to choose a more
general dispersion relation o)(k) = 2rArk' in the integral equation, cf. eq.

27
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(2.38). Taking into account only positive powers of k, i.e. A, = 0 for r < 0, we
obtain PDE's of the form

r>0
(4.23)

All PDE's of the form (4.23) are completely integrable in the sense that
solutions can be found from the linear integral equation (1.3) with the
dispersion relation <»(fc) = 2, Ark

r. The (0,0) element of (4.23) leads to a closed
PDE for <£o,o, the solutions of which can be obtained from (1.3) and (1.6) with
n = m = 0. An example of such a PDE is Hirota's equation25), which can be
obtained, taking Ar = 0 for r?* 2,3, i.e.

^o.o. (4.24)

4.2. Matrix PDE's for type II

The elimination of the matrices JT in the case of the integral equation of
type II, proceeds in a similar way as in the previous subsection. We define the
quantities

vk + (-1 Rp • vk = k"vk - V • Rp • wk, (4.25)

and

Z P - k'wk - (-JT)P • wk - W • Rp • wk = - ( -1)" V • Rp • vk, (4.26)

for all integer p, cf. (3.15) and (3.19). Then, for all odd r, we have the
equations

idtvk = Yk
r\ (4.27a)

idtwk = Zir). (4.27b)

In an analogous way as before we can derive the recursion relation

y?'=-ia,F?""+v • o • z?-1 ' - (-ïy-'z*

and the relation

-iaxz{r» = -(- l )"^" ' • o • ̂ +v • o • Yk
p\

where

Y(p) = JT' • V + ( - l ) p W • Rp • V,

and

Z<p> = W • Jp - ( - J T ) P • W - W • Rp • W.

" • o • vk (4.28)

(4.29)

(4.30)

(4.31)
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In the derivation of (4.28) and (4.29) we have made use of the recursion
relation

R,+l = J • Rp + O • (-JT)P = - R p • J
T + J " • O,

and eqs. (3.25c), (3.25d), (3.26d), (4.25), (4.26), (4.30) and (4.31).
From eqs. (4.28) and (4.29) it can be inferred that

0, )_ffl+[V
Yk ' \n-[Y

(peven),
[Yn (p odd),

where

o • a;'(V • o • a* ± A • o
±ia;1(V-O-A±A-O-V)-O-»k,

(4.32)

(4.33)

(4.34)

and, in a similar way as before it can be shown that the integrations 3j' do not
yield undetermined constants in (4.33), cf. appendix A.

The linear problem, corresponding to (3.15), (3.19) and (3.25), can be
expressed as, cf. (4.27a) and (4.27b),

id,vk = Vj?» = (n-n+)(r-ma-[vk], (r odd),

id{wk = zS,r> = ia;'(V • O • YV + Yr)- O • vk), (r odd),

- id.xvk = kvk - V • O • wk,

and we have the matrix PDE

in which

(rodd),

= - i f l ,A + iV • O • d~xXV • O • A ± A • O • V)

(4.35a)

(4.35b)

(4.35c)

(4.35d)

(4.36)

(4.37)±id;'(V-O-A±A-O-V)-O-V,

for an arbitrary A. From the form of the operators il+, fl~, or from the
recursion relations (A.8), (A.9) and (4.29), it is clear that the (0,0) element of
(4.36) yields a closed PDE containing only vo,o. and the n = 0 component of
(4.35aM4.35d) is the associated linear problem.

As an example we write down the PDE's obeyed by vo,o, for the values
r = 3,5. Using the explicit expressions for Y(

k
} and Y(

k
5), given in eqs. (C.2a)

and (C.3a) of appendix C, we find

r = 3, a,»o,o - 3 X o = -6i>o,o3*i>o,o, (4-38)

r = 5, a,»o.o + = lOtt>o,<>aXo + 4vo.o(d1Vo.o)dXo
(4.39)
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Eq. (4.38) is the modified Korteweg-de Vries equation (MKdV) and (4.39) is a £
;.i) higher-order MKdV type of equation. (Note that (4.20) may be regarded as a 1

complex version of (4.39)). As in the previous subsection one may also ;
consider linear combinations of PDE's, corresponding to a dispersion relation
ta(k) = 2 r A,/cr, r > 0, but now <a(k) must be an odd function of k. <e

5. Miura transformations

Taking the (1,0) element of eqs. (2.35c) and (2.35d), with TJ = 1, we can
express 4>o,o in terms of ^l>0 and </»i,0, i.e.

(5.3a)

and eliminating 4>o,o, we find

30

t
In section 4 matrix partial differential equations for positive r were derived,

from which immediately PDE's for the (0,0) element of 4» and V could be
deduced. In this section we will consider the possibility of deriving closed
equations for other elements of the matrices 4> and V. One could attempt to
derive these equations by applying J and JT a number of times to the integral
equation, and solving the matrices O • 4> • O and O * V • O via the relations
(2.35) and (3.26). For general <\>nM, cf. (1.6), or vn_m, cf. (1.8), this procedure is
quite intricate and it is not obvious that a closed PDE containing only one
specific 4>„,m or vn,m can be derived. In this section we shall derive explicit
PDE's for the (0,1), (1,0) and (1,1) elements, restricting ourselves to the
choice of sign TJ = 1 in eq. (1.3). This is relatively easy, because the algebraic |f,
relations (2.35a), (2.35b), or (3.26a), (3.26b), reduce in this case to relations |
containing only two matrix elements, rather than three, which is the usual •)
situation. !

5.1. Partial differential equation for <f>lfi (type I) -A

Taking the (1,1) element of (2.35b) for ij = 1, p = 1, we have ï\

and hence, cf. (2.6) and (2.9), (•

= 1. (5.2) &



j

I

i Differentiating (5.3a) with respect to x and using (5.2), we have
i
s;

I

t- and from (5.3a) and (5.4) we obtain an explicit expression for dx In #0,0 in
terms of #i.o, i.e.

To,

II
•A An explicit expression for d, In #0.0 in terms of #i,0, can be found using the

PDE for #o.o and expressing the terms in the right-hand side in terms of
dx In #oo, as given by (5.6), and of

iï
l4

V'
cf. (5.3a) and (5.2). For #0.0 we may choose any PDE of the type (4.16), but as

I•'/,' a n e x a m p l e w e shall restrict ourse lves t o Hirota's equation 2 3 ) , w i th TJ = 1,
given in eq. (4.24). From (4.24) d, In #0 0 can be expressed as

b id, In #0,0 = - My" + y'2) + iA3(y'"+3y"y' + y'3)

I I + )
rTi'c'i5(-2A2 + 6iA3y% (5.8)

"% l- |#.x, |
:' where we have used the abbreviation y = In #0,0, and the primes denote

differentiations with respect to x.
A'i The function #o.o can be expressed in terms of #i,0, using (5.6M5.8) and the

relation

where F is an arbitrary curve in the (x, ()-plane connecting the points (0,0) i
and (x, t), and (d/,,d/,) is an infinitesimal two-dimensional vector tangent to F v'',
(According to Stokes' theorem the right-hand side of (5.9) is independent of '
the choice of f"). •

The PDE for «£,,<> can be derived, taking the (1,0) element of (4.23) with
Ar = 0 for r* 2,3, and using (B.2a) and (B.3a) with T/ = 1, given in appendix B. L..?'
We have ' f(j

i 2 I|
,.«. (5.10)
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Inserting (S.6) and (5.7), eq. (5.10) can be rewritten as

Eq. (5.11) is an integrable PDE, since its solutions can be obtained from the
linear integral equation (1.3) with the dispersion relation w(k) = A>k2 + A3k\ and
eq. (5.9) provides the Miura transformation mapping an arbitrary solution of
(5.11) on a solution of Hirota's equation (5.8), (4.24).

The special case A3 = 0 of eq. (5.11) has been studied extensively in ref. 6,
where it was also proved that this equation is equivalent to the equation of

I motion for the classical Isotropic Heisenberg Spin Chain (IHSC). Eq. (5.11)
I for A3 ̂  0 has, to our knowledge, not been given before in the literature.
i

i 5.2. Partial differential equation for d>t , (type I)

v
i- We now proceed with the derivation of a P D E for <f>u. From the relations
jrj (2.35c) and (2.35d) with TJ = 1, we have, taking the (1 ,1) element
I'

, (5.12a)
i" -id*«Ai i = | ^ i o | • (5 .12b)
j - i

Eq. (5.12a), together with (5.2), implies that

By differentiating (5.12a) with respect to x, and using (5.4), (5.2) and (5.12a),
we have

-afr,,, - -id - f $

= T ^ ^ ( a x | < M 2 - 3 , l n < M , (5.14)

so that

1 ^ ^ ^ ^ (5.15)

The relation for d, In <̂ i,o, in terms of #,,i, can be inferred from (5.15), (5.13) *
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and

[ ƒ (-2Xjzf + 3iA3z'*(z" + 2Z'2)) + ( 1 l ^ y 3iA3z'*|zf, (5.16)

with zsin<£1 0 , which follows directly from (5.11). The function <f>h0 can be
expressed in terms of <f>\.u using (5.13), (5.15), (5.16) and the relation

Using (5.13), (5.15) and the relation

^ (^1.,)3x|</>..or-|^i.o|2a^I.„ (5.19)

+ iA, [dl<t>u + 6 |3^ , , | 2 ^ u + y i ' ^ y ^ , , , ] . (5.20)

Eq. (5.20) is an integrable PDE in the sense that its solutions can be obtained
from the linear integral equation (1.3) with <o(k) = k2k

2+ A3fc
3 and n = 1.

Introducing a real 3-dimensional vector S = ( S \ S\ S2) with S • S = 1, and
identifying

S+ = S* + iSv = - 2 i ^ , . „ and Sz = +(1 - 4\9x<f>u\2)v\ (5.21)

eq. (5.20) can be differentiated to give

d,S = A2S x dlS + A3axt3
2,S + -2S(3XS) • dxS]. (5.22)

Eq. (5.22) has been given before by Papanicolaou26) and reduces in the case
A3 = 0 to the IHSC. The Miura transformations (5.17) and (5.9) provide a
mapping of the solutions of the Papanicolaou equation (5.22) on solutions of
ihe Hirota equation (4.24). (A related mapping was obtained in ref. 26, by
extending the line of reasoning given in ref. 9 for the special case A, = 0.)
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i

x exp i I {dl, lm dx In <£i,0 + dl, lm d, In <£ii0} , (5.17) f
r i'

cf. also (5.9) for the meaning of F, dlx and dl,. ;|
The T'DE for «^L, can be derived taking the (1,1) element of (4.23), and using

the expressions (B2a), (B.3a), given in appendix B. We have ' t

0*.o]- (5.18) |f

which can be inferred from (5.3a), (5.2), (5.12a) and (5.14), in (5.18), we obtain j |
the PDE for <ƒ>,.,, i.e. \i

id,<t>lA = +A2[(aJ[«,.,)a,(i 2 f i i l 2"2



5.3. Integral equation of type II

So far we only considered Miura transformations that could be derived from
the relations (2.35) for the integral equation of type I. About the integral
equation of type II we can be very short. In fact, taking the (1,0) and (1,1)
elements of (3.26c) and (3.26d), we have

-«dx»i.o = 0 — w,,0)i%). (5.23a)

(5.23b)

(5.23c)

f -idxwu = t>u>, (5.23d)
i

together with the algebraic relation

(l-w I ,o)2+«ï.o=l, (5.24)

cf. (3.26b). From (5.23a) and (5.24), t>0.0 can be solved, giving
«o,o = /i *'il\in = -id*(arcsin u,,0), (5.25)

and from (5.23c) and (5.24) we have

l ^ k 2"2 (5.26)

I Eqs. (5.25) and (5.26) imply that in the case of the integral equation of type II,
the transformations from vuo to vo,o and from vh] to vlfi become trivial, so that
the PDE's for t>i,0 and vu are equivalent to the one for tio,o.

6. Complex stae-Gordon equation

Although the relations (2.35), which were derived in section 2 for the
integral equation of type I, and the relations (3.26), which were derived in
section 3 for the integral equation of type II, are valid for all integer r, the
method for finding partial differential equations containing only 4>o.o. which we
developed in section 4, is restricted to positive values of r. For negative r
values the situation is more complicated. For the special case r = —1,
however, it is possible to derive closed PDE's for the functions <f>Ofl, <f>0A = <j>uo

and 4>u, as will be shown in this section. In appendix D, we shall give a
method to derive three coupled equations in <t>0,0, 4>i.o and ^,.,, which applies to
all negative r values.



6.1. Integral equation of type I ft

In the case r = - 1 , taking into account that CL, = - J T • O • J, cf. eq. (2.23), f
we find from eqs. (2.34a) and (2.34c), taking TJ = 1, ^

O-J-«fo, (6.1) t:;

which, in view of (2.35b) and (2.35d), can be rewritten as t l
f1

dxd,fa = fa + * • O • <I>* • Q-, • fa + 4» • Q-, • «I»* • O • fa. (6.2) |:
From eq. (6.2) we immediately obtain three coupled PDE's containing only &

ana< <£u» viz- fci,
| | 2 , (6.3a) U

rf»o,o^*,o^i.i, (6 .3b) | | i ' I'
- (6.3c) F

'r > Also for other negative r, it is possible to derive three coupled equations, as g:;
, . will be shown in appendix D. For r = -\, it is rather easy to derive closed ij.,

PDE's containing only >̂fl,0, <̂ i,o and ̂ >u. ||;;

\In fact, taking the (0,0) element of (2.35e) f or r = - 1 , we have

i3(̂ o.o = (l-i/'i.o)^i.fl, (6.4)

which, in combination with the algebraic relation (5.2), yields

P = s± \i\ -4|d<k,o|2)"2. (6.5)

I Inserting (6.5) in (6.3a) and differentiating the result with respect to t, we
* obtain

, £

,:\ * = ̂ ' ( ïq?pp (6-6)

with

I, V X ~ 23,̂ 0.0. (6.7)

Eq. (6.6) can be called the complex sine-Gordon equation, since for real ,,
X m sin 0 it reduces to dxd,6 = +sin 0. Eq. (6.6) has been given before in eq.
(3.5) of ref. 27, where it has been inferred from the equations for the reduced
nonlinear O(4) tr-model, derived by Pohlmeyer28) and Lund and Regge29). A
bilinearization of (6.6) was given in ref. 21, while the inverse scattering
scheme was formulated in ref. 30. (In our approach, the Gel'fand-Levitan
equation can be obtained directly from the linear integral equation, as shown
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in appendix A of ref. 6 by a line of reasoning, which is independent of the
value of r.)

Using eq. (5.3a) for 4>M and the equation

T ^ . < 6 8 )

which follows from the (1,0) element of (2.34e) for r = —1, in combination
with the algebraic relation (5.2), eq. (6.3b) leads to

Eq. (6.9) was for the first time given by Getmanov31) and can be shown to be £••
related to the reduced nonlinear O(4) o--model, cf. ref. 27. He

Finally, inserting (5.13) into (6.3c), we obtain :j

which, after differentiating with respect to x, leads to the complex sine- p
Gordon equation (6.6) with \ — 2dx<l>i i, and 3t «-> 3,. |

%:

i (1) From eqs. (2.34) and (2.21), for r = —\, one can derive the Lax •
representations27) for the complex sine-Gordon equation. Some details of the
derivation will be given in appendix E.

(ii) In appendix D, it will be shown, that for all negative values of r, one can
derive three coupled equations in <f>o.o. 4>o.i = <Ko and <£u. 1

6.2. Integral equation of type II

From the integral equation of type II, using R_t = JT • O • J, cf. (3.14), we
find from (3.26a) and (3.26b)

dx8tvk = (J - W • JT • O • J) • (JT • vk - W • O • »t) + i(d,W) • (JT • O • J) • vk,
(6.11)

which, in view of (3.26b) and (3.26d) can be rewritten as

WW = vk - V • O • V • JT • O • J • vk - V • JT • O • J • V • O • vk. (6.12)

Multiplying (6.12) by k~m, and integrating over the contour C, and taking the )
(0,0) element of the resulting matrix equation, we have 1

i>o,o(l-2i>u)). (6.13)
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From the (0,0) element of (3.26e) we have

i3,wo.o = t>,,o(l - w10), (6.14)

which, in combination with the algebraic relation

yields

l 2"2. (6.16)

(5.26) are trivial, so that the PDE's for t>,,0 and vu are equivalent to the
sine-Gordon equation.

Eq. (7.2) can be regarded as a generalization of the integral equation, given by
Fokas and Ablowitz4) for n = 0, cf. also ref. 5.
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(6.15) J-

Inserting (6.16) in (6.13), we obtain a closed PDE for DO,O, viz. |r

+4O,t>0,„)2]"2, (6.17) J

af>

, which, after substituting fc

« = arcsin 2ia,%0» (6.18)

'?? becomes the sine-Gordon equation £$
:: , sjL
"i! dxdtu=+sinu. (6.19) | f

In a similar way as before one may derive closed PDE's for D1I0 and vhl. We fc'.
( shall not write down the result, because the Miura transformations (5.25) and %

t i p

t -i
}• -

7. The Korteweg-de Vries equation and the modified nonlinear
Schrödinger equation

7.1. Reduction of the integral equation of type II

In this section we will show how the integral equation of type II reduces to
another type of integral equation with only one integration, instead of a
two-fold integration. For that purpose we consider eqs. (3.1), cf. eq. (1.4), and f •
introduce the quantity j ?<=:

Then eqs. (3.1a) and (3.1b) can be combined into a single integral equation, i.e.

«ic"' + ip* f dA (I) j^-7 = r ï Pk- (7.2)



The relations for M(
t
n> can be found by combining the relations for the

quantities v[n} and w{"\ which we have given in section 3. From eqs. (3.15) and
(3.19), we find

fc'ii* = JT' • ii* + iU • Rp • uk, (p even), (7.3)

for all even integers p, where uk denotes the vector with components u[n) and
the matrix U is defined by

^ « r , (7.4)
c

and from (7.1) we find

U = V - i W = U T , (7.5)

cf. also (3.4). From eqs. (3.23) and (3.24) we obtain

J T P -» k - iU-R p - tJ k , (podd), (7.6)

for odd integer p. Making use of (3.15) and (3.19), but now for odd p-values,
we have

Rpuk-2\Vfipvk, (podd), (7.7)

leading, in combination with (7.6) to

T
 p-iik , (podd). (7.8)

Taking into account eq. (1.5) for the factors pk(x, t), eq. (7.8) can be
expressed as

O.Hk, (7.9)

Rr-«fc, (rodd). (7.10)

Eqs. (7.3), (7.9) and (7.10) are the constitutive relations associated with the
integral equation and may be also derived directly fro n (7.2). Eq. (7.3) for
p = 2, and eq. (7.9), can be combined in order to eliminate JT and this gives

dxuk = -(dxV)-O-uk, (7.11)

where we have also used the relation

-2iflxU = U J + J T U - i U O U , (7.12)

which can be derived multiplying (7.9) by k~m and integrating over the
contour C.

As an example we consider the special value r = 3, corresponding to the
dispersion relation <o(k) = k3. In that case, eq. (7.10) can be further evaluated,
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t l
I*!

*'$
't:

using eqs. (C.2a) and (C.2b) of appendix C and the identification L
i •

ia,ii* = y{[
3)-iz<

k
3). (7.13) ';

The result is

(S, - d{)uk = - 3 ( a , U ) • O • dxuk, (7.14) v
•ff",

and integrating over C we obtain ""•/

(a, - di)U = -3(axu) • o • a,u. (7.15)

The (0,0) element of (7.15) is given by

(a, - a^MO,o+3(ax«o.o)2 = o, (7.16)

|

m.
Ï
yi The Miura transformation, mapping the solutions vo.o of the MKdV on
f •„ solutions dxu00 of the KdV, can be inferred from the (CO) element of the
•• H matrix relation

which is the potential Korteweg-de Vries equation, i.e. dxu00 satisfies the
KdV.

ri dxv = dxv+vov, an)
which follows from (7.5) and (3.26d).

A PDE for M,,O can be obtained, taking the (1,0) element of (7.15). We have

(d, - ÖJ)M,.„ = -3(dKu,.())(>.vU„,(). (7.18)

The factor dxu010 can be eliminated from (7.18), using the (0,1) element of the
matrix relation

) - o - u , (7.19)

which follows by integrating (7.11) over the contour C. From (7.19) we have

ax«o.o = (i + M..orlax"..o, (7.20)

and (7.18) can be expressed as

fa _

(a, i + «..o ' ;:

Eq. (7.21) is equivalent to (4.38), which is the MKdV, as a consequence of the

relation .

"0,0 "* &x '"•" ' **l,0/) \ I •£,£*) ^ «|

w h i c h c a n be inferred from the (1 , 0) e l ement o f (7.5) , together with the (1 , 0 ) ,.-f,
element of (3.26d). As a result, the solutions of the MKdV can also be i
inferred from the integral equation of Fokas and Ablowitz, i.e. (7.2) with *
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n = 0, using ^

t>o.o = 9x In [i + ƒ dA(fc) « f k " ' ] . (7.23)
c

Also for «I,,, one can derive a PDE, which is equivalent to the MKdV. ,-,

Remark.

For the case r = 5, taking into account the n = 0 components of the vectors
Fk' and Z"' given in eqs. (C.3a) and (C.3b) of appendix C and performing an
integration over the contour C, it can be shown that '

3 ( U o . o = - i ( Y ( 5 ) - i Z ( \ 0 , I

l ^ ^ 2 o.o)3. (7.24) j

Eq. (7.24) is a (potential) higher-order Korteweg-de Vries equation, and the <•
higher-order KdV for v = dxu0,0 has already been given in ref. 32. The (0,0) f

f element of (7.17) provides again the Miura transformation mapping a solution
\?| of (4.39) on a solution of (7.24). Eq. (7.24) may also be derived using the ;
11 constitutive relations associated with the integral equation (7.2). ,7

i,,

7.2. The modified nonlinear Schrödinger equation

f In this subsection we consider the integral equation of type I, (1.3) in the
case that TJ = - 1 . In that case it is possible to express the constitutive :
relations in terms of the vector '

(7.25a)

and the corresponding matrix

P = 4 + i ¥ . (7.25b)

From the algebraic relations (2.21a), (2.21b) and eqs. (2.34aH2.34d) with
TJ = —1, we have

= J 1 • <fo, + iP* • O • <fo, (7.26a)
J ( - k - idx)pk = - i J T • ifo - P • O • fa, (7.26b) i

4
and ]:i

Q,-<!>k. (7.27)

Considering, as an example, the dispersion relation o>(fc) = A2k
2 + A3k

3,

i+o



f'1-

- • /

P.

leading to

eq. (7.27) can be expressed as

(id, + krfl - iA3a2)ft = (3*P*) • O + 3A3(dxP) • O

(7.28)

(7.29)

which can be derived, using eqs. (B.2a), (B.2b), (B.3a) and (B.3b) of appendix
B with ri = - 1 .

From the n = 1 component of (7-26a), (7.26b) with TJ = - 1 , one can solve
<̂ jc* and +f\ in terms of pi0 and pli0. The result is

and

Inserting (7.30a) in (7.29) we obtain

" - ax,

(7.30b)

and from (7.30a), (7.30b) and the' n = 0 component of (2.34d) we have

The relations (7.31a) and (7.31b) form the linear problem associated with the
PDE for Pi.o, which after substituting

q-1-ip. .o

can be expressed as

(a, (M)

(7.32)

(7.33)

The Miura transformation mapping solutions p,,o of (7.33), cf. (7.32), on
solutions of equation (4.24) with TJ = - 1 , can be found integrating (7.30a) over
the contour C.

For A3 = 0, A2 = 1, eq. (7.33) reduces to

' (7-34)
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1

which is the modified nonlinear Schrödinger equation (MNLS). Note in this
connection that the substitution q = V a yields eq. (3.7) of ref. 15 in the
limiting case s -*0, A-*0. In ref. 15 we have also shown that the correspond-
ing potential equation, in terms of one real variable ƒ, i.e.

0, (7.35)

has similarity solutions of the type f = St + F(x/Vt), satisfying Painlevé IV.
For some details on the derivation of (7.35) from (7.34) we refer to appendix
F.

The considerations given above imply in particular that the MNLS and the
potential MNLS are completely integrable, since solutions can be obtained
from the linear integral equations (2.1a), (2.1b). Furthermore, on substituting
s = dx In q, eq. (7.34) for the MNLS can be expressed as

idts + dls = {2flJt|s|2 — djiS2}, (7.36)

which may be regarded as a complex extension of the Burgers equation.
In the special case A2 = 0, A3 = 1, the substitution s = dx In q in (7.33) leads to

d,s - dls = dx[3(dxs)(s - s*) + s3 - 3s*|s|2 + 6|s|2(s* - s)], (7.37)

which is an integrable complex version of the modified Korteweg-de Vries
equation, which differs from the complex MKdV given in (4.18).

Remark.

The vector pk can be solved directly from the integral equation

pf' ~ «ft ƒ dW)YZj, = prPk, (7.38a)

\i

which can be inferred from (2.1a) and (2.1b), or equivalently from the integral
equation

pf - | d A ( l ) ƒ
C C'

1 . t
k" J

c*
(7.38b)

Note that only eq. (7.38b) can be used for a direct derivation of the con-
stitutive relations, since eq. (7.38a) is not of the right type for that purpose.

•Ï
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AppodixA

In order to show that the integration constants drop out in eq. (4.10), we
consider the relation

= - ( J T - Q P - . (A.1)

i

which can be found from (4.5), inserting (4.2). From the algebraic relations
(2.21b) for &** and (2.35b) for • • J, we find

G?» = (JT- i j * • O) • (kp"'4k - J11"1 • *t + i j * • Qp_,

= (JT - 1 | * • O) • GJT ° + * * • O • F?"". (A.2)

Assuming, by induction, that GJT0 can be written in the form

!r" = 2<^**)-O-<#-'•", (A.3)

• • • * • • ;

f 4j

If;

it.'

we have from (A.2) and the complex conjugate of (2.35c)

G$> = i 2 Of1**) • O • Cf"11* + ** • O • F!"""
S

+12 2 (J) (*;•) • o • (a

implying with (2.35d) that indeed

G?> = 2 <«;•*> • O • G?I},
s

with the recursion relation

(A.5)

+ iv 12, 2 (") (* 7 !) O;--1*) • O • («ï"**) • 0 • Gruu). (A.6)

Eqs. (A.5) and (A.6), in combination with (4.4), show that F^ and G[p\ for
positive p, can be evaluated in a recursive way starting from F®} = +k and

ï



•' G*o) = 0. This implies in particular that no undetermined integration constants
will appear in the right-hand side of (4.10).

In a similar way, in the case of the integral equation of type II, we have the
;,] relation

O-Fir l\ (A.7)
from which it can be shown by induction

(A.8)

: ' where Z[p-S> satisfies the recursion relation

't z<p.«>=\z{ru~x)+v • o • v r "

- i t 2 , 2 (?) CI l) Ci-'-'V) • o • (ar'v) • o. zir--. (A.9)

Eq. (A.9), in combination with (A.8) and (4.28) shows that the vectors Y[p) and
Zkp), for positive p, can be evaluated in a recursive way, so that the integration
arising from dj1 will not produce an undetermined constant in (4.33).

Appendix B

In this appendix we give the explicit expressions for the vectors Fj,p) and
Gip), for p = 1,2,3,4,5, defined by (4.1) and (4.5), in the case of the integral
equation of type I. The results are

(B.la)

Gl° = ** • O • **, (B.lb)

p=2„ F ? = - a ^ - 2 i , * O « l » * O «frik, (B.2a)

G? = i(aI#*)-O.*l-»*.o-«^b (B.2b)

p = 3, F(*3) = i a ^ k + 3ir,(ax«l») • O • ** • O • «K
+ 3irj* • O • ** • O • ax^4, (B.3a)

G(
k
3) = -(3ft*) 'O'4>k-**Odl*k+ (dx**) - O • BAk

- 3t>tf* O • * • O • • * O • * t , (B.3b)

p = 4, Ff = 3 > k + T}[4(aJ*) • O • ** • O • <fo + 4 * • O • ** • O

+ 2* • o • oft*) • o - **+2(ax*) • o • (a,**) • o
+ 2* • o • (a,**) • o • ̂ «fc+óo,*). o •**•<>•
+ 6$-O•$*•<)•$•0-4*-O-<K, (B.4a)



fc-i

- • . « * • •

e?»=- i(aï#*) • o • * + i(afr*) • o

- Ka,**) • o • afo + «•* • O •
+ ii|[-4(a,**) • O • * • O • * * • O
+ 2* * • O • (Mfr) • O • * * • O • 4>k

= 5, F i 5 ) = - i - 5 i t j [ ( a » • o • * * • o • <t>k + * • o • * * • o
O • O,**) • O • *k+4» • O • O,**) • O
O • Ofr*) • O • 4>k+tf • o • (a,**) • O
• o • «&* • o • dx4,k+20^*) • o • <&* • o

(B.4b)

(B.5a)

OJ**) • O • ̂ k + * * • O • 9?* - Oï**) • O
- (ax**) • o • a & + (aj**) • o ^

+5tj[(a^*) • o - ^ • o • * * • o •

+* * . o • * • o • * * • o • al+k

+** • o

• o •
o • ** • o

• o • * * • o • 9,61

o • (a,**) • o • *
(B.5b)

Appo^ixC

In this appendix we give the explicit expressions for the vectors Yk
p) and

Zif\ for p = 1,3, S, defined by (4.25) and (4.26) in the case of the integral
equation of type II. The results are

-idxvk, (C.la)

V-0-vk, (C.lb)

1*5
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hi

3, Yk
}> = id3

xvk-3i(dxV)-O'V-O'Vk-3iV'O'V-O'dxvk, (C.2a)

zf=-v • o • ai* -ojv) • o •«+(a,v) • o • a,*
+ 3V • O • V • O • V • O • vk, (C2b)

o • o,v) • o • vk+v • o • (a,V) • o- afo
+ (axv) • o • (dlv) • o • vk + v • o -(a*V) • o • a,»*
+ 2(a*V) • o • v • 0 • dxvk + 2(axV) • o • v • o • ax»k

+ 2(dxV)-0-(dxV)-0'dxvk]
) - 0 - V - O - V - O - V - O - O k

+ V O V O V O V O a x » J ,

(ajv) • o • vk + v • o • dxvk - (ajv) • o • dxvk

(C.3a)

- 5[(dxV) • O • V • O • V • O • t>* + V • O • V • O • V • O • dlvk

+ V • O • (a?V) O V O » k + V O V O - (diV) Ovk

+ (dxV)'O-V'O'(dxV)'O-vk

+ 10V • O • V • O • V • O • V • O • V • O • vk. (C.3b)

The expressions for the vectors Yk
2\ Z(

k\ Yk
4), Zk*\ which have been used in

the derivation of (C.2) and (C.3), respectively, have no direct meaning, in
connection with a PDE, and are not given here.

Appendix D

In this appendix we shall show how three coupled equations for <Ko. <Ko
and 4>I.I can be derived for negative values of r, (i) = 1).

In fact, using (4.2) for p = — 1, we have

J Ó = O J, J T O = Ö J T ,

where

- C L , = J T O J ,

(D.I)

(D.2)



• I *
..?i Inserting (D.2) in (4.2) we obtain a relation connecting p and p + 1, viz. '*-

| QP = QP+, • J - J P + 1 - Ó = JT-QP + I-Ó-JT P + I . (D.3)

\ Hence eq. (4.4), which has been derived using (4.2) and which therefore is
valid for negative values of p as well, together with (4.5) and (4.6), leads to

p

Qp • (4>* • J T - ¥ • Ö • **-<&* • Ö • • * ) • Op

o • ** • Ö • JTP • 6k + $ • Jp • Ó • $* • O • 4k

J + • • O• • ) • Ó• **• Qp • «fop
O • <&* • Ö • (JTP •+„ - • * • Qp

- * • Qp • ** • Ö • (JT ^k - * * • O •

Inserting (2.34c), (2.35c) with the algebraic relation (2.35a), (4.1), (4.8), (4.5)
and (4.6), we have

Fip) = -idjFjf ° - (-id**) • 0 • G(
k

p)- G(p)* • Ó • (-ia,<fo)

Hence, using also (4.9), which again is valid for negative values of p as well,
we finally get

F ( r l ) = ^[F!p)], (D.8)

in which the action of the operator Ó on an arbitrary vector ak is defined by,
cf. (4.12),

(-idx*) • Ö • [id j ' ( $ * • 0 • ak - A* • 0 • <fo)]

- O • A* - A • O • **)] • Ó • (-ifl,<M

• • Ö ' f l k - A ' Ö ' * * O - ^ J . (D.9)

The equation for O, cf. (4.16), in the case of negative r, can be expressed in
the form

(D.10)

1*7

- * ( Q P J - J P Ö)$*O<fo . (D.4)

Next we use (2.35a) for p = - 1 , i.e. '.

< I > . J T = J . < I > + ¥ * . Ö <&+* ö * , (D.5) y

giving fi

F?' = -ia,Fir ° - * • O • (J •** + * • Ö •** + **• Ó • ¥*) • Qp 4

fï:



"'t--I.'.-,

in which the action of the operator il on an arbitrary matrix A is defined by

ö[A] = ia;'[A+(-iax*) • ó • [ia;'(** • o • A - A* • o • *)]

+Ha;'(4> • o • A* - A • o • <&*)] • ó • (-ia,*)
- $ . O $ * Ö A - A Ö . $ * . O < I > ] . (D.ll)

Hence, the right-hand side of (D.10) can be, in principle, evaluated starting
with A = <ï>, and from (D.2) in combination with (2.24), it is clear that (D.10)
will lead to 3 coupled equations containing only <j>00, (j),0 and 4>\.\-

Appendix E

The Lax representations for the complex sine-Gordon equation can be
expressed as

i
V

where x1^, for n = 0,1, is a two-dimensional vector with components

~ e

We shall now evaluate the 2 x 2-matrices U(0), V(0), U(" and V(l). From (2.34c)
and (2.34d), in combination with the n = 0 component of (2.21a), we have

leading with (E.2) to eq. (E.la) with

In order to find V*0', we consider the n = 1 component of the algebraic
relations (2.21a), (2.21b), which can be expressed as

P (E.5a)

(E.5b)

Eqs. (E.Sa) and (E.5b) provide a direct relation between the vectors yi° and

«r. viz.
(E.6)

1*8
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% .

where

(E.7)

which, in combination with (E.2) and (E.7), lead to

orto(E.lb) with

is a unitary matrix. Taking the n = O component of (2.34a) and (2.34b), we
have

(E.8a)

(E.8b)

(E.9)

2^g"'-o-3-g, (E.10)

where <r3 is the Pauli matrix Ca -i)-
Using (6.4) and (6.5), the right-hand side of (E.IO) can be evaluated to be

v<w = — / ^ ' ~4|d,0o,o|) 2i«)l«fo,o \ r F i n

From (2.34c) and (2.34d), taking the n = 1 component we have

(E.12a)

(E.12b)

or

Eq. (E.13) leads to the first equation of (E.I) with

which with (5.12a) and (5.13) can be rewritten as

-41a,*,,,!2)"2

(E.13)

(E.14)

(E.15)

Finally, from (2.34a), (2.34b) and (2.21a) for p = - 1 we have

(E.16a)

£

1*9



(E.l6b)

or

leading to (E. lb) with

The gauge equivalence ) between the Lax representations (E.I), for n = 0
and n = 1, can be formulated in a straightforward way, using (E.6). We have,

leading to

VCI) = i(dfg) • g"1 + g • V(0) • g"', (E.20)

and in a similar way it can be shown that

Appendix F

In order to derive (7.35), one can insert q = K e17, (K > 0, y real) in (7.34).
After taking the imaginary and real part one has

'4 A
% and
\i a
fj 7 = ̂ -2^r-3 7 ' 2 , (R2)

,1j where also dots and primes have been used to denote the differentiations with
\ respect to x and t, respectively.
*' Introducing a real function ƒ, so that

*2 = 2 / \ (F.3)

we have from (F.I)

^ (F.4)

50
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and from (F.2)

If' (F.5)

The potential MNLS (7.35) follows immediately from the compatibility rela-
tion 3,y = d,y'.
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CHAPTER III

LINEAR INTEGRAL EQUATIONS AND BACKLUND TRANSFORMATIONS

52

i

1. Introduction £•'•

Backlund transformations for integrable nonlinear partial differential -|.

equations (PDE's) were discovered in the investigation of the sine-Gordon >-t.

equation in the context of differential geometry, a hundred years ago. For a Js
•;fj

review, see ref. 2. In the past decade many new Backlund transformations ||s
;• (BT's) for PDE's were discovered . In particular in refs. 5-7 BT's were f'.\

Hi i:
>s derived from symmetry properties of the Lax representation. More recently BT's f' <

("I have been investigated using a singular transformation of the reflection l-.-J

Xi coefficient in the Inverse Scattering Transform . '<p

"X Very recently a connection between the Korteweg-de Vries equation (KdV) •;,-:
8* •' <

<•;} and a linear singular integral equation with arbitrary measure and contour was \

t*J discovered by Fokas and Ablowitz . Extending their treatment we have '/
!* investigated the singular integral equations corresponding to the Nonlinear

Schrodinger equation (NLS), the Isotropic Heisenberg Spin Chain, the modified

Korteweg-de Vries equation, the sine-Gordon equation, the Boussinesq equation
. 16)-19) 'M

etc. •

In the present paper we give a systematic method to derive BT's connecting <

two solutions of a given integral equation related by a singular transformation •'•!

of the measure, as introduced in ref. 20, see also ref. 21. From these BT's ^:

for the integral equations, it is straightforward to derive the BT's for the
* •

corresponding PDE's and also to derive new singular integral equations ;

corresponding to so-called modified PDE's. Starting from the integral equation -]

for the modified PDE, the procedure can be repeated again, in principle, to ;

obtain multi-modified PDE's. (For the reflection coefficient in the Inverse •

Scattering Transform similar transformations have been used, but our treatment 1

is more general, due to the fact that the integral equation contains an 1

arbitrary measure and contour.) A different treatment in which the Backlund ;|

transformation is used to obtain the first and second modified KdV equation has

^̂̂



been given within the context of Hirota's method 22).

The outline of the present paper is as follows. In section 2 we derive

the BT for the integral equation corresponding to the class of PDE's containing

the KdV equation and we derive the singular integral equation for the modified

Korteweg-de Vries equation (MKdV). In section 3 the BT for the MKdV, the

modified modified KdV equation and the modified modified modified KdV equation

are discussed. In section h we treat the class of the NLS equation and the

integral equation and BT for the Anisotropic Heisenberg Spin Chain (AHSC). In

section 5 the real and complex versions of the modified sine-Gordon equation

are derived from the BT's for the real and complex sine-Gordon equation.

Finally in section 6 it is shown how we can derive BT's for the wave functions

in the spectral problem, leading e.g. to an alternative form of the BT for

the AHSC.

I?
'•"•i 2. The KdV class

'|. In this section we start from the integral equation defining the KdV class

:.<-, and derive a (matrix) Baeklund transformation using a singular transformation

. •• of the measure in the integral equation. From the (matrix) BT we also obtain

a (matrix) modified PDE with the associated singular integral equation and

linear problem. The integral equation for the (matrix) modified PDE turns out

to be a generalization of the integral equation of type II for the MKdV class

proposed in ref. 18.

2.1. Integral equation and constitutive relations

The integral equation defining the KdV class is

f H4(x,t)
s,t) + ip.(x,t) dX(A) = p.(x,t)c ,k I k+A k ~*

(2.1)

from which the vector function u. (x,t) with components u/n , n integer, ;*

should be solved as a function of the complex variable k. In eq. (2.1) c. is '<"-'\
~ K i ;;4

a vector with components (c, ) « 1/kn, n integer, C is an arbitrary contour
™iC II

in the complex k-plane and dA(H) is an arbitrary measure, p. (x,t) is a plane-

wave factor satisfying the linear differential equations

(2.2)

kpk(x,t), i3tPk(x,t) - w(k)pk(x,t) ,

w(k) - I X k , X * 0 for r even ,
r
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to(k) being the dispersion. The measure and the contour are to be chosen in

such a way that the solution u. (x,t) of eq.. (2.1) is unique, see ref. 18,

cf. also ref. 15.

From eqs. (2.1) and (2.2) one can derive the constitutive relations
18)

(2.3)

(2.1+)

(2.5)

in which the (symmetric) matrix U can te obtained from the dyadic u. c. by an

integration over the same contour that occurs in (2.1):

(2.6)

and in which we have used the following notations

I
j=0

5 6n,06m,0 •

I
r odd

. (2.8)

2.2. Matrix PDE

In this subsection we recapitulate some results from ref. 18.

Differentiating (2.3) with respect to x and using (2.5) we can derive

Integrating (2.3) over the contour C, cf. (2.6), we obtain

2i3xy = -V'g - j
T-y + iy-g-y ,

(2.9)

(2.10)

which will be used in subsection 2.H.

From (2.3)- (2.5) one may derive various PDE's for different choices of

u)(k). Taking as an example (o(k)=k3, we have

which upon integration over the contour C, cf. eq.. (2.6), yields the following

f-l

i
1



% •»*

matrix PDE

(3+-3|)y = -3(3 U)«0-(3 U) .

The (0,0), (1,0) and (1,1) elements of g obey respectively

l+U 1,0

O -33)u = 3 9xUi'1

• 1-23xuli

(2.12)

(2.13)

(2.11*)

(2.15)

ï
and the relations between the different elements are

3xU0,0 (2.16)

(2.17)

Eq. (2.13) is the potential Korteweg-de Vries equation, i.e. 3 u n satisfies

the KdV; eq. (2.1b) is equivalent to the potential codified Korteweg-de Vries

equation, i.e. v = 3 In (i+u- -) satisfies 3.v-33v+6v23 v = 0 , and (2.15)
X I , U "C X X

is equivalent to the MKdV.
The special case u(k)=k will ce discussed ir. section J.

2.3. Singular transformation of the measure

We introduce the singular transformation of the measure, si. ref. 23,

p-k
dX(k) =

p+k
(2.18)

where p is a complex parameter, and consider the corresponding solution

üjjx.t) of the integral equation (2.1) with d.A(&) replaced by dX(ü), i.e.

(- H»
I lc+J

(2.19)

(2.20)
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In eq. (2.18) it is understood that dX(k) is such that the solution of the

integral equation (2.19) is also unique, and the contour should not pass

through p and -p. In appendix A it will be argued that (2.18) increases the

number of solitons by one, and another way of getting the BT will be presented.

Starting from (2.18) one can derive a relation between Ö and U which is a

matrix generalization of the well-known BT for the KdV. In fact, using

(2.18), (2.19) and the decomposition into partial fractions

p-k 1 1

k+Jl p+«.

we obtain

+ ipk

(2.21)

i pk{dxU) -s,

= (p-k)pk£k (2.22)

Taking into account that the homogeneous integral equation (2.1) has only the

zero solution, we obtain the relation

T
- J 'U, + (2.23)

which may be regarded as the basic relation for the BT, and which will be

used in the following subsections. Note that from (2.23) ü, can be expressed

in terms of the vector u. , which is the solution of (2.1) with the measure

dX(k), and various integrals of u. .

2.1*. Matrix BSaklund transformation for U

The inverse transformation of (2.18) can be obtained interchanging p

dX(k) *-*• dX(k). From (2.23) we thus obtain the inverse relation
-p,

T -
-pu. - J -u. + (2.21»)

cf. (2.23) with p •<-+ -p, u. •*-*• Ü. , U -«->• Ü- Multiplying (2.23) by the vector

c, and integrating over the contour C with the measure dX(k), we obtain,

taking into account that (p-k)dX(k) = (p+k)dX(k):

- -2*4 - 4 'ï + (2.25)



* • '

Adding (2.25) and its inverse with p <-+ -p, U •*-*• 0, we find, after

eliminating J and J with eq. (2.10)

+y) = 2p(y-y) + i(y-y)«Q-(y-y) • (2.26)

Eq. (2.26) is the spatial part of the matrix BT associated with the integral

equation (2.1), and is independent of the dispersion &)(k). The time-

dependent part of the matrix BT can be inferred from the matrix PDE and

(2.26). In the special case u(k) = k3, cf. (2.12)

a, (y+y) = •èl [-ip(O-y) + ;Ky-y)«O'(y-y)] - 3(3 u).p_'3 u - 3(3 ü)«o>3 G .
jj — — x •— — — « • • — — X ~ *~ X ~ A~~ •"" A —

(2.2T)

The (0,0) element of (2.26) and (2.27) reduces to the well-known BT for the

(potential) KdV 3>~3'.

2.5. Modified matrix PDE

Introducing

ü" = Ü-U , (2.28)

we have from (2.26)

3 y = -s3 y - + iy~-Q-y~ , (2.29)

and the PDE for the matrix y~ can be derived inserting (2.28) and (2.29) in

eq. (2.12) and its counterpart with U-KJ

[(3iPy~ - I y-.Q. (2.30)

in which the superscript s denotes the symmetrical part of a matrix, i.e.

B S = s(B +B ) for an arbitrary matrix B. Eq. (2.30) is a completely
n,m n,m m,n =

integrable matrix PDE, which we call the modified matrix PDE of (2.12). In

this paper the term modified PDE will be used to denote a.PDE, the solutions

of which are obtained by combining a solution of another PDE and its Backlund

transform. The relation mapping a solution of the modified PDE on a solution
2k)

of the original PDE will be called a Miura transformation . In the case

under consideration eq. (2.29) is a matrix Miura transformation, mapping a

ir ' ;'

ÏË

;••*
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solution U~ of (2.30) on a solution S = 3 U of the matrix KdV

(3^-3^)S = -6(S-O-3 S ) s . In this connection it may be noted that the Miura

transformation (2.29), mapping a solution of (2.30) on the matrix KdV, remains

valid if all the matrices 0 are replaced by arbitrary constant symmetric

matrices P, as can be checked by explicit calculation.

Taking the (0,0) element of (2.30) we have immediately

(3t"3x)uo,0
3 / -
2 0,

3xuö,0 (2.31)

which is equivalent to the MKdV, since the term with p can be transformed

away. For the (1,1) element we have obtained the PDE

1*5

i

h

(3t-3x)z = -i( | P
2(sinh2z)3xz ,

h

z = arsinh [-ip" , - ip~ )] ,
9 '

(2.32)

cf. appendix B for some details. Eq.. (2.32) has been given in ref. 5 and is a

special case of the second modified KdV, cf. eq. (3.21) and refs. 22, 25 and

26.

ft,'•

2.6. Integral equation and constitutive relations for the matrix modified PDE

In subsection 2.5 we have shown that the matrix U = U-U obeys a PDE. In

this subsection we will derive a linear integral equation for this modified

PDE. (This integral equation will be used as a starting point in section 3 to

repeat the procedure and to derive the BT for the modified PDE, as well as the

second and third modified PDE.) For this purpose we need a wave function u7,

which upon integration yields the potential U".

Defining

(2.33)

with inverse

+ -

" K 2(p+k) " K 2(p-k)

and defining the new measure

(2.34)

f'j
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dX(k)

we have

P-k p+k

- g±u .

(2.35)

(2.36)

in agreement with (2.28) for U~. Two integral equations for u^+euT, e=±1,

follow quite directly from (2.1) and its counterpart with u. ->ü., dA(k) -»-dX(k)

expressing the measures dX(k) and dX(k) in terms of dXj(k). The result is

1 "

i(p-ek)pk = 2(p-Ek)p k c k E=±1 (2.37)

tr

Eqs. (2.37) can be rewritten as

i(pz-k2)

i(p2-k2)

r u
k ( l ) - =
J k+Jl

f U -

d M 8 ) - =
J k+*

p2-k

pc - -
K " K k

p
k ^

(2.38)

(2.39)

From (2.38) and (2.39) one can also obtain one single integral equation

containing only n~ which reads

dAjU) d
(P

2+k£')

Pk
pH'UI

Iqj

u-

ldAlU) 7 - l d A l ( r
c {2kQ)

The linear integral equation (2.1*0), together with eq.% (2.36), provides

in a direct way solutions of the matrix EDE given by (2.30).

It is also straightforward to derive the constitutive relations in terms of

the vectors u. and u. . In order to do so, one could start from the integral

equations for u. and u, with an appropriate uniqueness condition, but it is

less laborious to use the constitutive relations corresponding to eq. (2.1),
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(2.33).

cf. (2.3)- (2.5). and the Backlund relation (2.23), in combination with

Multiplying (2.23) by (p+k) and the inverse relation (2.24) by (p-k),

and adding and subtracting the result, with the use of (2.33) one obtains

ku* = -2puT - £T#u£ + siü+*Q«uf - iiU"«Q«uT , (2.1*1)

which can be generalized using the algebraic relation

given in eq.. (7-3) of ref. 18 and in eq. (2.5) of the present paper, and eqs.

(2.33), (2.1*1) and (2.1*2). The result is

(b integer). (2.1*5)

From (2.3), (2.23), (2.33) and (2.36) one finds

2 1 3 ^ = u^ - iy'-g-Ufe • (2.1*6)

Multiplying (2.1*6) by (p+k), and the inverse relation with u, -+Ü. , U~-*-U~,

u. -»-u. by (p-k), and adding and subtracting one obtains

+
i 3 ^ + ^ST-B-i • (2.1*7)

u- - J(tu(k) + u)(Ü ( J T ) ) • u£ - 5i(u+-g-uJ + if-R-u^) , (2.1*9)
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In an analogous way from (2.1*) one derives the relations for the time ;j

derivatives, i.e. y



which in the special case w(k) = k3 reduce to, cf. (2.11), (2.33) and (2.29),

^ f " ^--0-U-).0.3xu± -|O XM")'2-3 X^ - (2.50)

and consider the corresponding solutions ü^+eüT of (2.37) with

Eqs. (2.W*), (2.U5), (2.1*70 and (2.1*8), which are independent of w(k),

together with the two eqs. (2.50), in the case co(k) = k3, form the -.

constitutive relations corresponding to the modified matrix PDE (2.30). $_'/

Remark: For p=0, eqs. (2.38), (2.39) with (2.35) are equivalent to eqs. (3.1a) C_"

and (3.1b) of ref. 18, with v £ n ) = -iu^ ( n ) / k, w £ n ) = + s i \ ( n ) / k, which ':y\

define the integral equation of type II, describing the MKdV class. The '!• ,<

constitutive relations (2.W*), (2.1*5), (2.1*7) - (2.1*9) are generalizations to '&--

the case p#0 of the relations (3.15), (3.19) and (3.25a)- (3.25d) in ref. 18. \\

(The matrices V and g in ref. 18 correspond to -iU and iiU respectively in ^ r

the special case p=0.)

-V- ,
' 1 ' ' •

r
3. The generalized MKdV class and beyond {'•'

V,"

In the preceding section we applied a singular transformation of the ''"

measure (2.18) to the linear integral equation associated with the matrix PDE jr=

(2.11*) for the KdV class. We have shown that the transformation of the measure

leads in a natural way to a Backlund transformation for the matrix PDE, as

well as to a modified matrix PDE (2.30) with corresponding linear integral

equation (2.1*0) and constitutive relations (2.1*1*), (2.1*5), (2.1*7) - (2.1*9). i'

This integral equation, which is equivalent to (2.37) defines the generalized

MKdV class. In the present section the procedure will be applied again, to

derive the BT for the modified matrix PDE, as well as a second modified matrix |

PDE with its linear integral equation and linear problem. At the end of the ' ;'

section ve shall apply the scheme for the third time to derive the BT for the ; '. •

(0,0) element cf the second modified matrix PDE, as well as the PDE for the ;. •£

(0,0) element of the third modified matrix PDE. j ' ;

3.1. Backlund transformation for the modified matrix PDE ; :

We introduce the singular transformation of the measure | -

dXx(k) -> d M k ) - ^ d M k ) , (3.1)
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replaced by clAi (JZ.)» i.e.

(ü%eüT) + i(p-ek)p Id^U) ~l 'l = 2(p-ek)p c , (3.2)
™ ~ ' k+5. •*»•—js.

leading to

(3.3)

Eq.. (3.2) has exactly the same form as eq. (2.19) with u. -> i(u.+euT) and

p. •*• (p-ek)p,. This means that the BT for U and U can be obtained

immediately from (2.23) for the KdV with pr*q.. We thus have

ü.++eü, \ / u, +euT \ m / u, +eu,

- \ 2 /

(3.1*)

which can be expressed as

(3.5)

Eq. (3.5), which is independent of i»(k), may be regarded as the basic relation

of the BT of the modified matrix PDE. Multiplying (3.5) by cfc and integrating

over d X ^ k ) , with the use of (3.1) to evaluate the left-hand side, we obtain

qttf-jf) = -(jT-y?+yT.j) + Ji^-o-if + eiJT-o-y1 . (3.6)

From (3.1)- (3.3), cf. (2.37) and (2.36), it is clear that the inverse

Backlund transformation can be obtained substituting q-<-*--q, u. **u., y~" -«—•• U~

in (3.5) and (3.6). From (3-6) and the inverse relation, in combination with

the expressions

y"«j + JT»u" = -2i3xy~ + 5iy~
<Q»y+ + siy+'Q»y", (3.7)

which follow from (2.1*1), (2.1*2) and (2.1*8) after integration over the contour

C, it can be shown that
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2i3

2p(Ü~+U~) = 2q(Ü+-U+) - 2i

Taking the (0,0) element of (3-10) one can solve

+ Ji(Ö -U )«Q«(O~-U~), (3.9)

Ji(Ü*-g*)-Q*(Ü+-H+ > • (3.10)

Ü0,0

Next from (3.10) and (3.11) one can evaluate the matrices Q»(U -y ) and

(y -y )«0 in terms of U~ and Ü~. Inserting the result in (3-9) one obtains

(3.12)

Eq. (3.12) is the spatial part of the matrix BT for U~, associated vith

the integral equation (2.i»0). Eq. (3.12) again is common to all modified

matrix EDE's which can be derived for various choices of the dispersion iü(k).

(For the special case u(k)=k3 the modified matrix PDE is given by (2.31)).

Taking the (0,0) element of (3.12) we have the BT for (2.31)

' ( 3- 1 3 )

which for p=0 reduces to the well-known BT for the MKdV

3.2. Seeond modified PDE

Introducing the matrices

-+
U E u" + ü" , y

we have from (3.12)

ü" - y~

2i3 U __
2qU

(3.1U)

(3.15)
U0,0

The (0,0) element of y ~ follows from (3.15), i.e. W
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Si:

ï-;! From (3-15) and (3.16) one can solve the matrices U '0 and 0#U in terms

£' of U~+. Inserting the result in (3.15) it follows that

2qU = -kqU + 2qU = 2i3 UU

[ M 2 2 ) ( 2 ) 2 ] *

i

'i U U.

( 0,0 0,0 - - - u,u
'^ (3.17)

of Adding the matrix PDE (2.30) for y~ and its counterpart with U~-»-Ü~ and using

!̂  (3.17) one can derive a matrix PDE for U~ . Eq. (3.17) which is independent

; of u(k), is for q^0 a Miura transformation mapping a solution of the PDE

{,( for U~ on a solution of the PDE for U . Taking as an example u(k) = k3,

V/, we obtain from (2.30) •?/

'•• j' t'

i> O+-3^)y"
+ * \ip [(y"+-Q-3vif

+)s + (y"-o-3 u " ) s ] |:

in which the explicit expression for U «0 must be inserted. The

resulting matrix PDE,in terms of U~ only,can be regarded as the second

modified matrix PDE of (2.12).

For the (0,0) element of (3.18) we obtain, using (3.16),

(3.19)

which in terms of the new variable z, defined by

"ö+o ~ 2 i p = i(q+p)eZ - i(q-p)e"Z , (3.20)

can be written as ,



'-^'"
T

(3t_a3)z = - 1 0 X B ) S + | [ (p+q)Z e2z + (p-q)Z e~2z - 2(p2+q2) ] 3^. (3-21) ^

¥•'•
Eq. (3.21) is a completely integrable PDE, which can be called the second ™
modified KdV and which has been treated in the literature 22'* 25)»26)^ gee j,

*';! also ref. 27, and for q2?^2, eq. (3.21) may be reduced to eq. (2.32). The
v*> •* 22) 25) 26) r~'~'
I" ".•' M i u r a transformation mapping a solution of (3.21) on a solution of (.,',;
^ (2.31) is given by &£;",

V ! u~)0 = 3xz + ii{(q+p)e
Z - (q-p)e~z + 2p } , (3.22) ^

H as follows from (3-16) and (3.20). f̂ -

/ •;, 3-3. Integral equation and linear problem for second modified PDE f?{~

I Defining

• J ^ ~ = (qrk)u^ ± ( q + k ) ^ , a = ± , (3-23)

I';
{"' with inverse

^J 0+ a- a+ a-

!'• < = ̂  ^ , u" = ^ ^ , (3-2U)
^ 2(q-k) "K 2(q+k)

|, I
'|̂< and introducing a new measure dA2(k) by

: , (3.25)
q-k q+k

we have

k = ü
a ± ua. (3.26)

^ ui
|.4 It is now straightforward to derive two coupled linear integral equations F ,I|

I}. for uT and u^~. Inserting (3.24) into (2.U0) and its counterpart with t ;̂

22J[ •*•$][» dAi(k) •* d A ^ k ) , and changing to the new measure (3-25) it is Nigi
straightforward to show that

*•:;
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(p2+k£')(q2+kr)

dXz(J!,) dX2(£')
 pkpi|U£

CC

+ p ip dX2()l)jl
rl (qu7~-ku7+) - q dA 2U) dA2U'^ — — ""Tj j

C C U'+Jl)

f (
dA2(*)- Pd

C C

(3.27)

which are two coupled linear integral equations for u, and u, ~. The

solutions of the PDE for U can be obtained from u, ~ using the

integration (3.26) and for any choice of contours and measure the (0,0)

element ul . is a solution of (3.19).

It is now straightforward to derive the linear problem for u~ , or

'.', equivalently for the function z given by (3.20). From (3.5), using also

|i (2.1*1), (2.1*2), (2.1*8) and the definitions (3.23) and (3.26) we have

u

(3.28)

(3.29)

Multiplying (3.28) and (3.29) by (q+k), and the inverse relations with

uT *-* uT, U~ ** U~ by (q-k), and using (3.23) and (3.26), we have the-K -K = - _+ +_ + +

following relations between u^ , uT , u. ~ and u.

= 2i3xu^
a - Hyf'-O-v^* - iiy""'Q'^a , (3.30)

((q-k) + a(q+k))u^" = 2puj[a - 5iU+"-Q-u^a + siU^-Q-u^01 , (3.31)

where a = ±, and öi = + if a * -, and a = - if a = + . ,'

From (2J47) and (2.1*8) and their Backlund transforms it can be shown that

I
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+o -a . i.„-+.

(3.32)

(3.33)

p

Egs. (3.30) - (3.33) can be simplified using (3.11) (cf. (3.26) ) for UQ" Q.

From (3.31) one can then express Q»u.~ and Q»u, as linear combinations of

O'uT and Q<u~~. Inserting these linear combinations in (3.32) one obtains

with

, (3.31*)
uo,o

u0,0

r

h

V;

I!

(3.35)

and y '0 given by (3.15) and (3.16). Eqs. (3.31*) are constitutive relations

belonging to the linear problem associated with the matrix PDE (3.18) for U

The relations (3.3*0 are independent of the dispersion io(k) and are valid for

any matrix PDE for U which can be derived for various w(k). In addition

to (3.3*0 one may also derive algebraic relations involving the matrices J
T ~

and £ , but we do not go in further details.
For the special case <o(k) = k3, eq.. (2.50) leads to (cf. (2.i*7) )

•I
II

I
(3.36)

The n=0 components of (3.3*0 and (3-36) form the linear problem associated

with the PDE (3.19) for u~ ., when we insert (3.35) and (3.16).
U j U
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3.!». Third modified PDE

using (3.23) - (3.25) in (2.37) we have the integral equations

k+Jt

(3.37)

•f

h

E<is. (3.37) for ei,e2 = ±1 have the same form as eq. (2.1) with

Applying the singular transformation of the measure

dX2(k) = ̂ = | dX2(k) , (3.38)

! * ; •

and introducing the solutions u^ +Elïïv + e 2 ^ u ~
dX,(k) replaced ty dX2(k), we have the relations

(r-k

"I — • ] - M ;

+ i[y +El° ^

o f (3.37) with

(3.39)

in which the four matrices Üa with a=± are given by

öa±

From (3.39) it is straightforward to show that (cf. appendix C for some

details of the derivation)
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which in combination with (3.16) and its inverse with u~~ -*-uQ Q, u Q Q ^ U Q Q

gives the BT for the PDE (3.19). The result can be further simplified

introducing the variable z defined by (3.20). From (3.1*!), taking into

account the relations

u ~ o = - 2 8 x z , [It(q2-p2)_(u-+o-2pi)2]
j - (q+p)eZ + (d-pje"2 , (3.1*2)

(cf. (3.16) ), one obtains after some straightforward algebra

, (3.W)

which is the BT for the second modified KdV (3.21). The BT for the special

case (2.32) has been treated by Hirota's method in ref. 28 and in the context

of prolongation structures in ref. 29.

The third modified KdV can be derived solving (z-z) from (3.^3) and

inserting the result into the right-hand side of (3 -33)(z+z), as given by
~c x(3.21) and its counterpart with

The final result is in terms of the variable y = s(z+z)

r [(^p)2

- -E(3v) r
3. —arsinh
X [

D =
I6(p2-r«)

Eq.. (3.UU) is an integrable equation, since its solutions can be obtained

from-a linear integral equation, such as e.g. (3.27), with measures

3



and dA^dO» taking into account (3.26) and (3.20). In the limit r-*», (D+0),

(3.hk) reduces to the second modified KdV (3.21). A different version of the

third modified KdV, in terms of the variable i(z-z) has been given in ref. 28.

From this point one might continue to derive the integral equation for the

third modified PDE, apply a singular transformation of measures and obtain the

BT for the third modified PDE, as well as the PDE associated with the next

level of modification. The procedure is systematic in terms of (matrix)

functions y with a sequence of superscripts +and- that can be defined in an

analogous way as in the preceding steps, cf. e.g. (2.36) and (3.11*). It is

not obvious, however, that the coupled PDE's for the different matrices U will

lead to interesting closed PDE's in terms of only one function and we shall not

go in further details here.

k. The MLS class

In the preceding sections we have considered the integral equation for the

KdV class and by singular transformations of the measure we have obtained

Backlund transformations and the first-, second-, and third modified KdV

equation. In the present section we start from the integral equation for the

NLS class and in subsection h.'\ we review some results obtained in ref. 18,

which will be used in the following. By a singular transformation of the

measure we shall derive the (matrix) BT for the NLS, as well as the matrix

modified PDE, together with the associated linear integral equation. The PDE

for the (0,0) element of the matrix modified PDE will turn out to be

equivalent to the equation of motion for the classical Heisenberg spin chain with

uniaxial anisotropy,and at the end of the section a BT for the AHSC will be

derived.

U.1. Integral equation and matrix PDE

For the NLS class we have the linear integral equation

(x,t) +, dXU) «U*U')-
Pw(x,t)p*(x,t)

(x.t) = Pk(x,t)c (U.1)

where 4. and c. are vectors with components (•,,)_ * +i » (c. ) * 1/kn,
—K —it —it n K — si n

n being ah integer, C and C are an arbitrary contour and its complex

conjugate in the complex k-plane, dX(A) and dA*U') are an arbitrary measure
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t '

and its complex conjugate, p (x,t) is a plane-wave factor satisfying the

linear differential equations

-i3xPk(x,t) = kpk(x,t) , i = io(k)pk(x,t) ,

where id(k) = | J t (r integer, X real) is the dispersion.

Eq. (U.1) can be rewritten as

f dA*(*')-^-*?, - P./V ,
/.* fc-*')"£ k"K

in which the vector ij», is defined by

o ,

(k.2)

.3a)

and i() satisfies the linear integral equation

fdX(l) fdX*(l') Pj^ # = L
i /,* (k-r )(«'-*) "* L

• e., • (k.k)

From now on the choice of measures and contours will be restricted by the

condition that the solution <j>. of the integral equation (U.1) is unique

From eqs. (4.1) and (U.2), or alternatively from {k.3), (h.k) and {k.2),

taking into account the uniqueness condition one can derive the constitutive

relations

(k.5)

yj

m

(p integer), (k.6)

Ct.7)

(it.8)

<1».9>

71



s!>

m

in which the matrices J and 0 have been defined by (2.7) ,

O

The synmetric matrix |= * and the antihermitean matrix f can be obtained

from the vectors $ and i/i, by an integration over the same contour C

that appears in the integral equation ,

| = JdX(k)i(;kck (it.12)

For dispersion of the type w(k) = J X kr, X =0 for r<0, one can derive

a closed PDE for the matrix *, containing only * and its derivatives and 0,
"" T ~ ~

but not the matrices J and J . Taking as an example

«ir

I

u(k) = X2k
2 + X3k

3

we have e.g.

= " X23x*k "

t.13)

For the (0,0) element of * we obtain

(U.15)

i3t*0,0 " iX33x*O,O 6 i X3

which is Hirota's equation.
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4.2. Singular transformation of the measure

We introduce the singular transformation of the measure, cf. (A.10)-(A.11),

p-k

dX(k) -f dX(k) = — — dX(k) ,
p -k

(4.17)

and consider the solutions of (4.3a) and (4.3b) with the new measure, i.e.

i. = ° • t.19)

i

k

Using (U.18) and (4.19) and a relation similar to (2.21) we have

JdA*U>)

j k - jdA*U')

(4.20)

(4.21)

'C

• ?:•

•Cl

%

in which the matrices $ and f can be obtained from $, , tL by an

integration with the new measure, i.e.

c c

From (4.20) and (4.21) we derive

(p-k)|k fdX*
(k-a1)(*'-*)

*

(p-*)*.

PkPs

k-ü'
$•0- fdX*(Jl') K *' o , + (p-k)p o + p

(4.22)

(4.23)
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Ï.I

(pi-k)* + dAU) I.
pvpc

f * PVPff » * f PlrP(M *
= dA*U') * (p -Jt')c f + ¥-0- dX*(£')

 K x c , - p • 'Q-c -
J ̂ k—Jl! ~ "" ' * k—£ * ~ "~

(U.2J+)

Taking into account that the homogeneous integral equation corresponding to

(4.1) has only the zero solution, we obtain immediately

t-26)

which are the basic relations for the BT (for the KLS class).

Matrix Baaklund transformation

The inverse transformation of ('t. 17) can be obtained interchanging p-*-*-p

. From (^.25) and (h.26) we thus obtain the inverse relations

(p*-k (U.28)

Integrating (U.25) and (h.26) over the contour C with the measure dX(k) and

using the relation (p -k)dX(k) = (p-k)dX(k) to evaluate the integrals on the

left-hand side we have

P*£ - P* = hi - g^'l + ï'2'ï + |*-0-| , (U.29)

(U.30)

The matrices J and J in (^.29) and (U.30) can be eliminated with the

relations

(U.31)

and



'i I'l - JT*1 + l'Q-1 - £*-Q-£ = 0 , (It.32)
• ' • ; - - - - - — _ _ _

; f. which follow from (k.5), (4.7) and (h.6) resp. after integration over C.

1 Using eqs. (4.29), (4.30) and the inverse equations with p-«->-p*, * + + | ,

f++f , in combination with (4.31) and (4.32), we obtain

'j 2(p*|-p|) = -2i3x(4-i) + (i*-|*)-S*(l+|) - (|+|)-Q'(|-|) , (4.33)

r

'• ( P * - P ) ( | - Ï ) = (|*-|*)-Q-(|-|) - (l-l)'Q'(i-ï) . (4.34)
> \

'; From eq.s. (4.33) and (4.34) it is straightforward to derive a relation

p containing only | and $. In fact taking the (0,0) element of (4.34) we

zr, obtain a quadratic equation in ijj - ti „ which can be solved to give
U 5 (J U 5 U

± f0 0 0 0 z'.f f ' 2

in which the left-hand side is imaginary as the matrix f is antihermitean.

From (4.34) one can solve the matrix O'(ï-ï), and inserting the result in

(4.33) we arrive at

2i3 (|-|) + (p*+p!

('t.36)

Eq. (4.36) is the spatial part of the matrix Backlund transformation associated

with the integral equation (4.1). It is independent of the dispersion u(k)

and is common to all matrix PDE's which can be derived for various a>(k). The

time-dependent part of the BT can be inferred from the matrix PDE and (it.36).

4.4. Modified matrix PDE

Introducing

I* = * ± * , (4.37)

we have from the integrated version of (4.14) and its counterpart with * •+ *

i IS
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f

4+>0>$_* + l s

= "="= "=* x= J
(lt.38)

+

From the matrix BT ('t.36) it is straightforward to express * in terms of

$ . From the (0,0) element we have

*0,0

Next one can solve the matrices ($+|)*Q and 0*($+$) from (U.36). Inserting

the result in (4.36) one obtains after some algebra

(p*-p)£+ = (p*-p)*~ + 2(p*-p)$ = -2i3 *" - (p+p*)$*)$"

ji3 (*~*Q'*~) - i(3 In <(i~ _ + ii(p+p*))*~'Q'$"

(P-P*){|P-P*|2 - u|*~ n|
2r*(aT *o,o

f.'

Inserting (U.Uo) in (U. 38) we obtain the modified matrix PDE for |~,and if p#p*

(U.Uo) is the Miura transformation mapping a solution of the PDE for *~ on a

solution of the matrix PDE for *. (in the special case (it. 13) the PDE for *
= =

is the integrated version of (it.ilt), but ('t.1*0) is independent of u(k) ).

As an example we write down the (0,0) element of the matrix PDE in the

case (It. 13). The result is, cf. (It.38) and (It.39),

I
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1
II
' t '.!<

i3t*ö,0

• and (^.39) > with <\>~ Q-QQ O + ̂ O 0 S-'-ves * n e Miura transformation mapping a

solution of (it.̂ i) on a solution of (1).16).

Taking p /p and introducing the new variable

a(x,t) = 2IP-P*!"1 *öj0(x + A2(p+p*)t - ^ 3

x exp [-ii(p+p*)x - |- (p+p*)3X3t + | (p+p*)
2X2t ] ,

X2 = X2 +l(p+p*) ,

eq.. (4.41) can be simplified to

{j|p-p*|
1-lal

+ i (- |iX33„)
3 a i 3 a
X I X (U.U3)

In the special case X3=0, X2=1 eq. (h.k3) is equivalent to the AHSC

(fr

•i
hi

V.

in which the polar angles of the spin vector S , i.e.

S = (sin8 cosa, sin8 sinot, cose) ,

can be expressed as, cf. eqs. (3.19) and (3.20) of ref. 17,
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6 = arcsin |a| , 3 a =
lm 3 In a

8 t«-
lm 3. In a

(k.k6)

The Miura transformation mapping a solution of the AHSC on a solution
U j U

of the NLS has been worked out in ref. 17 and can be regarded as a direct

generalization of the Lakshmanan result for the isotropic case. In the

special case A2=0, A3=1, eq.. ('t.1*3) may be regarded as a complex version of

eq.. (3.19) with p=0.

h.5. Integral equation and linear problem

Defining

$* = (p-k)|k ± (p*-k)*k ,

± (p*-k););k ,

r

7

with inverse

2(p-k)

*4
2(p*-k)

" k 2(p-k) ' " k 2(p*-k)

and introducing a new measure dXj(k) by

dX(k) dX(k)
dAj(k)

p-k

it is easy to show that

p -k

ï*ï

(h.h9)

(it-50)
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From (4.1) and the associated equation with $. •+$, , dX(S.) -+dX(S,)> it
-K -k +

is straightforward to derive two coupled integral equations for $. and $..

In fact, inserting (U.l»8) in (4.1) and the associated equation,and changing

to the new measure (4.4°-), we have

dX*U')
(p*-f)pv

* f
P -k) dX.(

leading to

** + JdX1(Jl)
(|p|

k-A1)(»'-*)
2(p*-k)pkck ,

(4.51)

pk<V A±
(k- V)(V-SL)

• ((p-k) ± (p*-k))pkckc K

I

Eqs. (It.52J are two coupled linear integral equations and $~, i.e. the

solution of the modified matrix PDE,can be obtained from ij>~ integrating over

the contour C, as in (U.50). These equations which were introduced in a

slightly different notation in ref. 20 , give a complete linearization of the

AHSC (eq. (U.ln) with X3=0, X2=1) as well as of other modified PDE's which

may be derived for other choices of <»)(k). (In this context we note that the

bilinearization of the Heisenberg spin chain with orthorhombie anisotropy was

given in ref. 31 , and very recently the Eiemann-Hilbert problem was settled

by Mikhailov 32'.)

It is straightforward to derive the linear problem for <(>" .. From (lf.5) -

(It.7), (^.25), (h.26), (k.hj) and (l*.5O) we have

(4.53)

-tk - t
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Multiplying (U.53) and (k.5k) by (p -k) and using also the inverse relations

* + + ^ ^*~* k' *with p-<-»-p ,

that

(p+p*)*~ - |"*'S**^

and

(U.56)

From (h.j) and (U.8) and their counterparts with <j>,

shown that

etc., it can be

(«t.57)

+* -*
* (U.58)

Using (U.56) one can solve the vectors Q'i|i. as linear combinations of 0»<)>~

and Q«$. • I. ..verting the result into ('t.57) one obtains after some straight-

forward

'0,0

*ö,o - *o,o - *o,o « i v e n

( U )

*"2k

'o.o
)t ('t.59)

with *o.o-*o,o - *ö.o '
(U

, , , . , .

Eq.. (U.59) is independent of u(k). For the special ease (U.13) the time-

dependent part of the linear problem of the AHSC can be inferred from (1*.11|)

and its counterpart with | •*• | , Éjc * 4^ •

We have

s
P
f !

••?
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"+ - -~ - •" ).g»3 $ + («+«o$~ +$~.g«$+ )-Q«3 ij)* . (4.60) *"^- _ — ... _ _ ... — _ .

' j It is also straightforward to derive the remaining constitutive relations for -. '

'?':! the matrix *~ , but the results will not he presented here. >}. ,

V ' '$'
[i k~
'd k.6. Backlund transformation for the AHSC j£;
? i ' u •'

\' From (̂ .51) it is clear that I(i(>. + <fi~) and sU^-k") satisfy an V

;"' integral equation of the form (H.1) with dA(Jl) replaced by dXj(A) and p,

* k i
replaced by (p-k)p and (p -k)p. respectively. Similarly it can be shown that if?

+ + — l$i

5(^1,+ tv) and l(\l),-\f>~) satisfy (4.4) with dA(jl) replaced by dXj(il) ir'j

and p, by (p-k)p. and (p -k)p, . f.-

We now apply the singular transformation of measures .;•

q-k f1
(4.61) h',

V, \ q-k

ii -+ ~_ -+
-| > and introduce the functions l{$.±$.) , g(i|/ +$") that are the solutions of

I ; the integral equations mentioned above with dAjU) replaced by dXi(X.).

'f ! From (4.25) and (4.26) we immediately obtain the basic relations of the BT

K'i viz.
: .!

4» — + mm T* +

, (4.62)

E = ± 1 , (4.63)

in which the matrices |~ and Y~ are defined by
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f (4.64)

From {k.62) and (4.63) one can derive the spatial part of the BT for the

PDE (4.41).

The result is given by

f

,0 Y0,0

it-

(h.65)

Some details of the derivation are presented in appendix D. The BT for the

AHSC is rather complicated and it does not seem to he easy to derive a second

modified NLS equation in terms of only one function.

5. The sine-Gordon equation

In the preceding section we have described a general scheme, independent

of the dispersion u(k), of deriving Backlund transformations and modified

PDE's, on the basis of a singular transformation of the measure in the

integral equation associated with the original PDE's. As specific examples we

have treated <i>(k)«k3 in the case of the integral equation (2.1) for the KdV

class and oo(k) * X2kz + A3k3 in the case of the integral equation (4.1) for

the NLS class. In this section we present some results on Backlund trans-

formations and modified equations for <o(k) = k~ starting from the integral

equations (4.1) and (2.40) with p*0, for the NLS class and the MKdV class

respectively.
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p.
5.1. The NLS class I '

In the special case a>(k) = k~ the function $„ ., defined by (U.1) and I,

by the (0,0) element of (U.12) satisfies the PDE

cf. eqs. (6.3a) and (6.5) of ref. 18. In terms of the variatie xs23.$_ n>
t UjU

i-
•ef. 18. In terms of the variable x = 234.<f'o 0'

eg. (5.1) can be expressed as

(5.2)

which may be regarded as the complex sine-Gordon equation.

The spatial part of the BT of (5.1), cf. also refs. 33 and 31*, is given

by the (0,0) element of (it.36), i.e.

The time-dependent part of the BT can be inferred from (5.1), inserting (5-3)

for 3 ($n n- (f>- n) in order to evaluate 3 3 ($n n - ij> ).
X U j U (JjU X TJ U j U U j U

The modified PDE corresponding to (5-1) can be found inserting (1+.39) into

The result in terms of the variable

2]' • ^̂  [I

a(x,t) E alp-p*!"1*-^ e^i(P+P)x , (p%) , (5.5) . f,

can be expressed as ,' 'i
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ita + f (p+p*)3ta =

[*
JP-PTV

1 -

1 -

•Hp-p*)3.a ï 3.
T* Ti

2M

(5.6)

Eq. (lj.65) is again the spatial part of the BT for the PDE for $T .

5.2. The MMV class

From (2.1»0), in the special case p=0, we have the integral equation

c c (k+Jl1 2k
(5.7)

which is the integral equation of type II of ref. 18. For the (0,0) element

of the matrix

(5-8)

we have, in the special case w the PDE , cf. eq. (6.17) of ref. 18.

(5-9)

Eq. (5-9) can be regarded as the potential sine-Gordon equation, since the

substitution

6 = arcsin 2i3. v. _,
T- U ,U

gives the sine-Gordon equation

3 3. 9 = sin 8 .
X Xi

For the quantity vQ Q = -iu~ Q we have the BT

(5.10)

'M



cf. (3.13) with p=0 and q-*p. For the quantity

- - (~ )

one can derive the modified PDE

r iip-yi r r
ïM3.

(5.12)

(5.13)

ÉW ± p3.w ± i
3xw x-,2

(5.1

II
if i

which, for imaginary p, may be regarded as a real counterpart of (5.6).

Solutions of (5.11).) can be found from the linear integral equation (3.27) with

p=0 and q.-+p, noting that w=-sp~ u~+ .
U j U

Instead of the BT for the potential sine-Gordon equation one can consider

the BT for the SG equation (5.11) itself. From (5.9) and (5.12) one can show

that

ï;v

(5.15)

In terms of the variable 6 , defined by (5-10), eq. (5-15) can be rewritten

using (5-11) as

cos 8(3 6) + cos § (3 §) = + i (sine -sin 6) [p2 + J(3

(sine + sine) [ (3 9) 2 - (3 6) 2 J
2̂ (5.16)

I
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Writing 2ip sin a = 3x(ê+8 ) , eq. (5.16) can be worked out to give

[ t a n a T tan g(§ - 8 ) ] [ ipcosa ± gtan | ( 8 + 9 ) 3 (8 - 8)]coss(è + 6) x

x cos s ( 6 - 6 ) = 0 , (5.17)

whereas eq. (5.12) with (5.10) and (5-9) leads t o

32(9 + 9) = ±ip(cosa) a ( 8 - 6 ) . 15.18)

The only consistent solution of (5.17) and (5-18) is a = ±i(8-6), leading to

3x(8 + 8) = ±2ip sin|(ê-8) . (5-19)

From (5.19) together with (5.11) we have

! 3.(8-8) * T2ip"1 sin 5(6 +8) . (5-20)

f 8 Eqs. (5-19) and (5-20) form the well-known BT 1' for the SG.

\j\ In terms of the variable a«s(8-8) eqs. (5.19) and (5-20) yield the PDE

%
's'\ 3x3ta = [1 +p

2(3 to)
2] s sino , (5.21)

H ; which is the modified sine-Gordon equation (MSG). The solutions of (5.21) can

t* be inferred from the solutions of the linear integral equation (3.27) with p=0

and q-»p. From (3.26) one obtains the function u leading with (3.16) and

the 0,0 element of (3.11») to u" n (=-2v_, „) and ii~ _ (=-2v. . ) , and

o*±2(6-8) is determined by (5-10). Multisoliton solutions were obtained by

bilinearization in ref. 35-

;":. j, Remark

From eq. (5-7) it can be shown that the integral equation (2.1) with

dispersion 0)(k)*k~ yields solutions of the sine-Gordon equation as well t

of a shallow water wave equation. Some details are presented in appendix E.

6. Backlund transformations for the wave functions r~

In the preceding sections we have given a general method to derive Backlund .1
p.

transformations for integrable PDE's using a singular transformation of [A

measures in the corresponding linear integral equation. From this trans-
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<••••

'• formation one immediately obtains the basic Backlund relations containing both

'" potentials and wave functions. Here the term wave functions is used to denote

the solutions of the linear integral equations which depend on the (spectral)
1 parameter k and which appear as eigenfunctions in the associated linear <

problems. The potentials denote the functions, obtained through integration

of the wave functions over the contour C in the complex k-plane.
'-' ivf
I So far we have considered PDE's and BT's containing only the potentials,

/: and which have been obtained after eliminating the wave functions by

! integration over the contour C. In the present section we will investigate

PDE's and BT's in terms of only the wave functions, which in a number of v
• • Vt

cases can be derived by eliminating the potentials from the linear problem and k/

the basic relations of the BT. Examples include e.g. the BT for the potential &

MKdV and the AHSC. |f-

.C 6.1. The KdV class M
i P
/ The linear problem for the KdV is given by the n=0 components of eqs. §|
It' (2.9) and (2.11). From eq. (2.9), writing a = In u/ , we have the relation £••-

! I
> 3 u_ „ = 32a + (3 a) 2 - ik3 a , (6.1) fct
C x 0,0 x x x Jt
-" (0) K't mapping the wave function u; on the potential 3 u. . that satisfies the 'f
',: ' & X U, U j '•
e Korteweg-de Vries equation. Inserting (6.1) in (2.11) it is clear that ; *
Ï-. In) y,

a = In u/ satisfies the PDE !:;'

(3. -3 3 ) a = 3ik(3 a)2 - 2(3 a) 3 , (6.2) i-'
.J u X X X

which is equivalent to the potential MKdV, i.e. the PDE for 3 a is '"':
X f

equivalent to the MKdV. [

> From the basic relation of the BT (2.23), using also (2.3), it follows j ;

that fcV

+ 2i3 u, + i(Ü-U)'0-u, , (6.3)

implying that

/ \ (a—a) „.^ ./• \ 1r 1 \

(p-k)eva a/ = p + k + 2i3 a+i(u. - u o ) . (6.1+)

From (6.1+) and the inverse relation with p-<->--p , a-^-a., u. „-"-u. n , it \:l

can be shown that ''0



2i3 (a+a) = -2k + (p-k)e*a~a^ - (p+k)e""*a~a^ ,

which is the spatial part of the BT for the potential MKdV (6.2).

Substituting z=a-a in (6.5), we have

3 a = -s3 z + gik - 3i(p-k)ez + Ji(p+k)e"Z .
x x

(6.5)

{6.6)

From (6.2) and its counterpart with a+a, and using (6.6), we obtain again

the second modified KdV (3.21), i.e.

2 -2|[(p-k)Vz + (p+k) e (6.7)

6.2. The NLS class

For the function

I

E

U(x,t) E - (6.8)

defined in terms of the wave functions <fc and ijc of the linear problem
K JK

of the NLS, cf. the n=0 components of {k.j), (h.8), (1».11») and ('t.15), in

the special case A2=1> X3=0, one derives the PDE

(3 u — u2 3 u \
— 7 — ) ~ iu23^

I-lul" '

2iu
-5 (3 u-u 23 u*)(3 u*-u*23 u)P X X X

3 u* - u*23 u

1 - |u|'

2(k+k*)u23 u* 2i(k+k*)2u3u*2 2ikkVu*

1 2 ' (6.9)

cf. eq. (2.17) of ref. 17 with a=2, apart from a misprint. In ref. 5 the

invariance of (6.9) under k-<->-k was used to obtain the BT for the NLS.

From the basic relations (U.25), (U.26) of the BT for the NLS, together

with eqs. (k.5) - (U.8) and (6.8) we have, noting that i|)Q Q is imaginary,

;(0) ,(0)

i3xu = (p-k)u -jöy + (p-k)u -J^J - (p -k)u-pu+((iO)O-«(io^ou
2 . (6.10)

*k *k

Solving ï>} I ty) from (6.10) and inserting the result in the inverse



relation with p«->p*, u-«-»-ü, ik; *-+$)
K. K. Uj n, we find

(p*-k)(p-k)(ü+u)2 . (6.11)

From eqs. (h.T) and (̂ .8) one also has the relation

i3 u = -ku + * „ „ - * * „u2 , (6.12)

from which one can express if- „ in terms of u:

^0,0

i3 u + ku - u2(i3 u -k u )

1 - lul1*
(6.13)

t"

\

Inserting (6.13), its complex conjugate, and the inverse relations with

d>_ _ -> è- r-, u~^u% in (6.11), we have
0 . 0 0 , 0

r (i8 u+ku)(-1+ü2u*2) - (i3 u*-kV)(ü2-u2)n

I' v + (p-k)a + p s + — — r i ^ J1 -

f | x i3 u + (p*-

2-*2,

•k)u + pu +
"ü«) - (iSxü*-kV)(u

2-ü2)

= (p*-k)(p-k)(ü+u)z ,

which is the BT for the PDE (6.9).

In the special case p*=k, eq. (6.11) leads to

i 3 x U • *0,0 " *0,0u2 " k* U '

cf. eq.. (2.19) of ref. 17- Eqs. (6.12) and (6.15) lead to

(p-P*)u

(6.11*)

(6.15)

(6.16)

showing that the PDE (6.9) with fc+p is equivalent to eq. (k.k'\) for X2=1,

X3=0, and thus to the AHSC (k.hk), cf. ref. 17- Eq. (6.1U) (cf. eq. (4.65))

is thus an alternative expression for the BT of the AHSC.
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iiü Appendix A

In this appendix we argue that the transformation (2.18) can increase the |;

number of solitons by 1, and we also discuss another way of obtaining the w :

Backlund transformation. c •

f'J N-soliton solutions can be obtained from the integral equation (2.1) to- 'p.

'A gether with (2.6), choosing as a measure a linear combination of N simple -J.

f̂ a 'T"
P poles, i.e. £•}

ffl dX(k) I - ^ - d k , (A.1) 5
2iri a=1 k-k : '

^ j

[,\ and a contour C enclosing k, ,)a,, • • • >kjj. For an analytic function f(k) we i;v„

W. then have •{-

:*' f ?
I J f(k)dA(k) = I gaf(ka) , (A.2) "I

5/i so that (2.1) reduces to a set of N linear algebraic equations, (in view of »••".

I5;! (A.2) dX(k) may also be regarded as a linear combination of delta functions i...

dX(k) = ^=1ga6(k-ka)dk, cf. ref. 15). ;O

Consider now the transformation (2.18) with -p^k , then |{

dX(k) = - E - d k + I — — dk , (A.3) ' •'
2iri k+p 2iri a=1 k-k •-,:

a '.

gp = -2p
a=1 p+k p+k

Eq. (A.3) is a linear combination of N+1 simple poles, so that the new

function 0, which can be found from (2.6) with the measure (A.3) is an (N+1)-

soliton solution.

In order to give a different, but equivalent, way of getting the BT, let

us consider the singular transformation of the plane-wave factor

p-k

Pk ->"Pk Pk • (A.5)

It is clear that p. obeys the differential relations (2.2) as well and by rjf

defining a solution u^Xjt) of (2.1) with p^ instead of p , i.e. n.

i
l
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(A.6)

we obtain a solution

U '• (A.7)

of the matrix PDE (2.12). On the other hand, multiplying (A.6) by

(p+k)(p-k)~ , it is easy to show that u, (p+k)(p-k) satisfies the integral

equation (2.19). As a consequence we have

(p-k)

(p+k)
(A.8)

Inserting (A.8) in (A.7) and using (2.18) and (2.20) we immediately obtain

2 = 3 , (A.9)

implying that the Backlund transformation derived in subsection 2.it can also be

obtained as a result of the transformation (A.5) of the plane-wave factor p. .

A similar result can be derived for the integral equation of the NLS type

treated in section h. One has the relations

H= jdX(k)5kck , = |dA(k)$kck , (A.10)

c c

in which J. and rji are the solutions of {k.2) and ('t.3) with

*
P*-k

(A.11)

Appendix B

Eq. (2.32) is most easily derived using two relations.of the linear problem

in subsection 2.6. From the integrated version of (2.1+8) we have

i3xUï,1 - "Ui,0

i3xUÖ,1 iiuö,0u0,1 '

(B.1)

(B.2)
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from which !•

"0,0

From the integrated version of (2.1*1), using also (B.1) it follows

2pu7 , = si(u. n + 2i)* 1,1 1,0

from which one can solve

, - *2

2
1,0 (u

1,0'

T
1,0

2i

- \2

(B.3)

(B.4)

(B.5)

il
'H

I

Substituting (B.3) and (B.5) in the (1,1) element of (2.30), i.e.

iPUi,0 " lUï,0Uö,0)3xUö,1 '

one obtains

(B.6)

(B.7)

Note that eq. (B.7) can also be derived from the Backlund transformation for

eq. (2.15)

(1-23Ü, J ( 1 - 2 3 U . J = [i+ip(ü. .-u, J ] 2 , (B.8)

t

Hi

i
which can be inferred from the (1,1) element of (2.29), using also (2.17).

It is now easy to show that the quantity

b E 23 lnfuT , - - )
x <• 1,1 p J

obeys the following PDE

(a -
r b ( 8 b ) 2 1 -I

— ï — _ _ b 3

12

and eq. (2.32) is obtained substituting b = 2ip sinh z .
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Appendix C

In this appendix we give the derivation of the Backlund transformation

(3.iH) for the PDE (3.19). As a first step, eq.. (3.39) is rewritten

Ji

(en

(C.2)

Integrating (C.1) over dX2(k), and using the relation

(r+k)dX2(k) ^° evaluate the left-hand side, we have

'X.

Si

p

I

H\ ö++'O-y++ + Ö+~*Q*y+~ + ü~+-Q*y~+ + ö~«o»u"~ . (c.

Using (C.3)j its inverse with r-*-*-r, U -«-+Ü , and the relation

cf. eas. (3.8) and (3.11»), we find

2r(ö++-y++) = 2P(ü"
++y"+) - U

3)

(C.U)

'f'

(C.5)

From (C.2) we obtain after integration over

T -+ —+
-J «U - U 'J

i ö++»o-u~+ + ü+~-o-u + ü"+'O-y++ + ö •o»u+" , (c.6)

and from (C.6), the inverse relation with r+-»--r, JJ ̂ ++y ** , and the

relation
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I,

cf. (3-7) and (3.1't), it can be shown that

2i3x(a"
++u~+) = 2r(u"+-y"+) + Ji[ (ü"+-a"+).Q.(ü++-y+

ö~"y~~)g(ö+~y+~) ] s

(._ +_ »*

In a similar way one can derive two relations for U - U and U - U ,

but we shall not give them here.

From the (0,0) element of (C.8), using (3.16) and (3.35) for i3 u"+

^.^ X UjU

and u. n respectively, one has
U j U

*oo-uoo)+2r = % r - T -T.2(uo,o-uo,o)

(C.9)

and eq. (3-^1) can be derived inserting (C9) and (3.35) in (C5).

Appendix D

In this appendix we derive eq. (It.65). From (**.62) and (h.63) we obtain

the relations

J%

Integrating (D.1) over dXj(k) and using (q-k)dXj(k) = (q*-k)d\!(k) to

evaluate the left-hand side, we find

- (J
— * + -+*
(V -0«* + * •

„+ 1+

(D.3)

From (D.3) and the relation, cf. (U.31) and (U.50)

alt



_2i3

* ± ~+ ± -±
and the inverse relations with q+^q , | «-*|~> ¥«-»•¥ it can te shown

that

2(q*|" - q|") = -2i3x(|"-|") - JK|" + *~)'Q' (|
+- f+) - ^(|++ |+)-Q' (|~-

(D-5)

Integrating (D.2) over we have

i'-.i

From (D.5) and the relation, cf. ('t.32) and (4.50),

in combination with the inverse relations, it can be shown that

-f) = -Ki~-l~)-Q-Cf-i') - i(f-!+)-o.(i+-f)

(D.6)

(D.7)

I
fï

(D.8)

>•''.

Eq. (it.65) can now be derived solving the imaginary quantity

J. Q - * O ( ) + II - 1 from (D.5) and inserting the result, as well as (̂ .35) and

(1K39) in the (0,0) element of (D.8).

Appendix E

In this appendix we discuss the relation between the integral equation

(2.1) in the case u(k)=k~ , and the sine-Gordon equation and a shallow

water wave equation.

Consider the Miura transformation which maps the function v. - defined by
U ) U

(5.7) and (5.8), on the function u. Q defined by (2.1) and (2.6), i.e.

Vo,o = Vo.o + vo,o ' (E.1)
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ef. eq. (2.29) with u -2vQ Q and p=0.

Using eqs. (7 -5) , (3.26b) and (3. iJ+b) for p=-1, and ( 6 . ( 6 ) , with the

minus s ign , of ref . 18, i t can be shown tha t

(E.2)

ï-

l,t

ï

Prom (E.2), together with (5.9), ve have

0,0

3x3tuo,o

1 + 2Vo,o

Solving 3.V- n from (E.2) and using (E.3) one can derive

3x3tuo,o 8 tuo,o

1 + 2 3 t u o , o

Eq. can he expressed as

t 0,U

(E.3)

(E.10

(E.5)

which is equivalent to the sine-Gordon equation (SG).

From (E.5) i t can also be shown that the matrix element u. n , defined
i ,u

by (2.6), satisfies a PDE which is equivalent to the sine-Gordon equation. In
m

fact, integrating (2.!+) with R= J *Q»J, and taking the (0,0) element, we

immediately obtain the relation

2 i 3 t u 0 , 0 = 2 u 1 , 0 " iu1,0 * ( E < 6 )

The same fact can also "be seen in the following way. Using eqs. (7-5) and

(6.15) of ref. 18, we obtain the relation

U . 1 r t " " ^ i n ~ " l " L ' ' " v i n J 9 \E.fj

('•'•

I
•4 i

II

showing that the PDE's for u. . and v, . are equivalent, independent of
i ,u i ,u _j

the dispersion oo(k). For the special case u(k)=k~ , v Q satisfies an

equation equivalent to the sine-Gordon equation, as follows from eq. (6.16)

of ref. 18.

On the other hand, from (E.1) together with (E.3) one has
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£•.

3 3.u„ - \ / 3 3
W ' X U U - U ' 3 x u 0 > Q - ( " »»" ) . ( E . B )

t 0,0 t 0,0

Substituting s = u„ n + | t , eq. (E.8) can be rewritten as

') , (E.9)
.A. V 1/ -A. U ly -A.

which after differentiation with respect to x gives the shallow water wave

equation

"•""' which ar

.,'! „„„„+,•„„ 36,37)

s333,s = (32s)(3+s) + 2(3 3.s)(3 s) . (E.10)
X L X T / X t X

Therefore, from the linear integral equation (2.1) with u(k)=k one

can obtain solutions of the SG (E.5), as well as of the shallow water wave

equation (E.10). This is not surprising, since on general grounds it can be

shown that any solution of the SG leads to a solution of the shallow water wave

equation. For that purpose we consider the equation

3 3tw O tw)O w)

'.' w V1 w

wh-'.re we have included an arbitrary function g(t). For g(t) = O, eq. (E.11)

reduces to the SG eq. (E.5) with w = | + 3, un -, and in the case g(t) = 5,
t u, u

eq. (E.11) is equivalent to the Liouville equation 3 3 p = e .
X X

It is now easy to show that any solution of (E.11) for arbitrary g(t)

leads to a solution of (E.9)- In fact, from (E.11) we have
(3tw)(32w) (Ji,v)3v (3 w)(3 w)
2 ?L_ _S_t x_ + _ t x̂

w 2

t
323 w 2 ?L_ _ _S_t x_ + _ t x̂  =2w3 w
X * w w w 2 x

• : and (E.32) is the compatibility condition for a variable s(x,t) defined by

3ts = w , (E.13)

32w (3 w ) 2

8 8 - J - 5 - - 1 — ï . (E.11»)
x w w 2

Inserting (E.13) in the right-hand side of (E.ih), one immediately obtains

(E.9).
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CHAPTER IV

LINEAR INTEGRAL EQUATIONS AND DIFFERENCE-DIFFERENCE EQUATIONS

I
1

1. Introduction

In the last decade a lot of insight has been gained in the integrability

of nonlinear partial differential equations (PDE's) ~ . One of the most

successful methods has been the inverse-scattering transform formalism, which

provides an exact linearization in the sense that the initial value problem of ;j-.

the nonlinear PDE is reduced to the solution of only linear equations. In jp

fact, for suitable boundary conditions at infinity, the time evolution of K

scattering data is governed by linear relations, so that the solutions of the Q

PDE can be obtained with the help of a Gel'fand-Levitan equation. j-j

1») fr

More recently, Fokas and Ablowitz have proposed a direct method of > t
t .

exact linearization of the Korteweg-de Vries (KdV) equation, based on a \\

singular linear integral equation involving an arbitrary contour and measure.

Since then, other singular linear integral equations have been studied for j;>

various other PDE's as well, including the nonlinear Schrödinger equation, R,i

the (complex and real) sine-Gordon equation, the Boussinesq equation, the "'')

equation of motion for the Heisenberg spin chain etc. , see also ref. 8 f,

for a treatment of the Kadomtsev-Petviashvili equation and the Benjamin-Ono -'j

equation. It has also been shown that Backlund transformations (BT's) for ?,,

PDE's can be generated by an appropriate singular transformation of the j/.'

measure or by an equivalent transformation of the plane-wave factor occurring jT;

in the integral equation ' '. V.

In this chapter we study the problem of discretizing nonlinear PDE's to '.*)

obtain difference-difference equations, while retaining their integrability. ; i

This problem has of late been addressed by several authors using different i-3
11) *

starting points. Ablowitz and Ladik started from a discretized linear
12)

problem, Hirota started from a discretized bilinear differential equation,

and Date et al. used a diseretized bilinear identity , cf. also ref. 11*.

The treatment in the present paper is based on the singular linear integral
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equations associated with the various PDE's mentioned above, and it will be

shown that these same integral equations, after no more than a simple and

straightforward discretization of the plane-wave factor, also yield a direct

linearization of nonlinear difference-difference equations which may be

regarded as the double-discrete analogues of the PDE's

As corollaries the following two results will be given. First of all it is

shown that the integrable nonlinear difference-difference equations we obtain

are equivalent to Bianchi identities expressing the commutativity of Backlund

transformations, cf. refs. 3, 15-21. Secondly we will see that after

applying a suitable continuum limit to the difference-difference equations as

well as to the associated wave factors in the singular integral equations, we

obtain integrable differential-difference equations together with their direct

linearizations. (A relationship between BT's and differential-difference

equations was presented in refs. 22, 23.)

The outline of this chapter is as follows. Sections 2-5 give a treatment

of the difference-difference equation of the KdV type. In particular, section

2 summarizes the main results, and some details of the derivation are

presented in section 3. The continuum limit, as well as the differential-

difference equation that is obtained in this limit, are treated in section It,

along with some interesting special cases, and in section 5 the relation with

Bsckiimrt transformations and Bianchi identities is discussed. The last two

sections are devoted to a treatment of the difference-difference versions of

the nonlinear Schrödinger equation, the sine-Gordon equation and the equation

of motion for the Heisenberg spin chain, with a summary of the main results in

section 6, and a discussion of the continuum limit and a discussion of the

connection with Backlund transformations in section 7. (A preliminary account

of the considerations in this chapter was given in ref. 2k.)

2. The KdV class; results

In this section we present two linear integral equations involving an

arbitrary contour and measure, which linearize a certain class of nonlinear

difference-difference equations and differential-difference equations of the

Korteweg-de Vries type.

Proposition

Let uk(n,m) be a solution of the linear integral equation
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n.m) + ipk(n,m) IdA(£)
u (n,m) p. (n,m)

k+«, k+a
, (2.1)

ij

where C and dX(k) are an arbitrary contour and measure in the complex k-

plane, and

?,qe€ . (2.2)
'fi

Let the contour C and measure dA(k) be such that the homogeneous integral

equation corresponding to (2.1) has only the zero solution. Then the function

u(n,m) = i dX(k) ,

l k+8
n,m€Z, , (2.3)

obeys the following nonlinear difference-difference equation

[(p-a)u(n,m) - (p+$)u(n+1 ,m)

[(q-a)u(n,m) - (q+B)u(n,m+1)

- (p+a)u(n+1

- (q+a)u(n+1
M

for fixed a,B,p and q.

Corollary

Let UL (n,t) be a solution of the linear integral equation

uk(n,t) + ipk(n,t)
uA(n,t)

k+a
n£2, t,k,ae<D , (2.5)

where C and dX(k) are an arbitrary contour and measure in the complex k-

plane, and

(2.6)

Let the contour C and measure dA(k) be such that the homogeneous integral

equation corresponding to (2.5) has only the zero solution. Then the function

u(n,t) = i dX(k) (2.7)
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obeys the following nonlinear differential-difference equation

3 u(n,t) = -[2p-(p+a)(p+0)u(n+1,t) + (p-a)(p-B)u(n-1 ,t)]"1

[u(n+1,t) - u(n-1,t) + 2pu(n+1,t)u(n-1,t) + 2pu2(n,t)

- (2p+a+g)u(n,t)u(n+1,t) - (2p-a-g)u(n,t)u(n-1 (2.8)

for fixed a, B and p.

Remarks

(i) The integral equations (2.1) and (2.5) may be regarded as the double-

discrete and the single-discrete analogues of the integral equation

x.t) + ipk(x,t)
u.(x,t)

k+Jl
Pk(x,t),

where

/ , i(kx-k3t) /. „v
Pk(x,t) = e Pk(0,0) ,

, (2.9)

(2.10)

h)
which was proposed by Fokas and Ablowitz for the linearization of the Korte-

weg-de Vries equation, cf. also refs. 5 and 25.

ii) From the proposition and its corollary it is clear that the difference-

difference equation (2.1|) as well as the differential-difference equation (2.8)

are both also completely integrable, since solutions can be obtained from the

linear integral equations (2.1) and (2.5) respectively.

t 2r
(iii) In the continuum limit with r = n • », p-*00, *• ix, and using

the time scaling -—%•*• it, we obtain from (2.6) the result

pk(n,t) = exp[(r+i) In ̂ - ̂ ] pk(0,,0)

•*• pk(x,t) = e
i(kx-k3t)

P
(0,0) , (2.11!

and from (2.5) we obtain an integral equation generalizing (2.9)-

103

^



I

1

#

3. The KdV class; derivation

In this section we give the derivation of the proposition presented in

section 2. For that purpose, consider the linear integral equation

u.(n,m;a) + ip.(n,m)
pk(n,m)k
— , n,m,i€C, k,a6C,

k+a

with p, (n,m) given by (2.2). Define

u l5^(n,m;a,8) = i dX(k)
C

ur(n,m;a)k

— n,m,i,jeZ,

Then from (3.1) and (3.2), using the relation

(3-D

(3.2)

pk(n+1,m) (3.3)

we can derive

(p-Jl)uJl(n+1,in;a)

k+Jl

(p+k)
pv(n,m)k

k+a
- pk(n,m)u ' (n+1,m;a,0) . (3.!+)

Taking into account that the homogeneous integral equation corresponding

to (3.1) has only the zero solution, we have

u£

Using the relation

u* (n,m;O) = VL~ (n,m;a)

we have, taking i=0 ,

n,m;a) - u >:i(n+1,m;a,0)u (n,m;O) .

(3.5)

(3.6)

, (3.7)

and dividing by (k+g) and integrating over C we obtain, using (3.2),

10U
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l£. '

I;

(p-a)u°'°(n,m;a,$) - (p+B)uO>O(n+1,m;a,B) + 1

= [1 - u1'°(n+1,m;al0)][i - u
1'°(n,m;B,O)] ,

where we have also used the symmetry property

(3.8)

(3.9)

Because eq. (3.3) is invariant under p-*-p, n-»-n+1, n+1->n, we also have a

second relation which can be obtained from (3-8), replacing p by -p and

interchanging n and n+1, i.e.

(-p-ot)u°'O(n+1,m;a,B) - (-p+B)u°'0(n,m;a,B) + 1

= [_ 1 — u * (n,m.ja,O)JLl — u * (n+15m^3jO)J • (3.10)

Finally, in view of (2.2), we also have two relations which can be found from

f3.8) and (3.10), replacing p by q, and (n+1 ,m) and (n,m) by (n,m+i)

and (n,m) respectively, i.e.

(q-a)u°'°(n,m;a,B) - (q+B)u°'°(n,m+1 ;a,B) + 1

= [1 - u1'°(n,m+1;a,0)][i - u1)0(n,m;B,0)] ,

(-q-o)u°'°(n,n+1;a,B) - (-q+B)u°'°(n,m;a,B) + 1

1'

(3.11)

(3.12)

Eq. (2.i() can now be derived directly by eliminating u ' from (3.8) and

(3.10)-(3.12). In fact, dividing eq. (3.8) by (3.11), and eq. (3.12) with

n->-n+1 by eq. (3.10) with m-*-m+1, we obtain equation (2.1»).

I!

fa

k. The KdV class; continuum limit

Eq. (2.1+) is a difference-difference equation which may be regarded as a

discrete analogue of a differential-difference equation. To obtain a

corresponding differential-difference equation we consider a limit

b-K>, (U.D
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in which b is a suitably chosen lattice parameter characterizing the

distance between two successive time-points, i.e. two successive sites m

and m+1, and in which t can be identified with the continuous time

variable.

Rewriting the difference-difference equation (2.'t) as follows

[p - q - (p+a)(p+B)u(n+1,m) + (p-a)(p-B)u(n,m+1)][u(n+1,m+1) - u(n,m)]

+ (p+q)[u(n+1,m) - u(n,m+1) + (p-q)u(ii,m+1 )u(n+1 ,m)

+ (p-q)u(n,m)u(n+1,m+i) - (p-q+a+8)u(n,m)u(n+1,m)

- (p-q-o-g)u(n,m+i)u(n+1,m+1 )] = 0 , (it.2)

it is clear that we can take a continuum limit with b = p+q as lattice

parameter, provided that

u(n+1,m+i) - u(n,m) = 0(p+q) . (if.3)

Eq. ('t.3) can be satisfied by relabeling the sites (n,m) of the two-

dimensional lattice as (n',m), n' = n-m, and by using the relation

a(n',m+i) = a(n',t) + (p+q)3+a(n',t) + 0([p+q]
2) , (if.it)

for an arbitrary function a(n',m), in the continuum limit. Up to the order

(p+q), we then have the relations

u(n,m) •*• u(n' ,t) ,

u(n+1,m) ->• u(n'+1,t) ,

u(n,m+1) -+u(n'-1,t) + (p+q)3.u(n'-1 ,t) ,
(it.5)

(p+q)3tu(n',t) .

Eq. (2.8) can now be obtained inserting (it.5) in (it.2) and taking only the

terms O(p+q), in the limit (p+q)-*0.

To obtain eq. (2.5) we consider the continuum limit of the factor (2.2),

which we rewrite as follows

n' = n-m, (U.6)

i

f

hi

'i
and in the limit (lt.1) with b«p+q, we immediately obtain
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Pk(0.0) • (4.7)

If we now drop the primes, it is clear from the proposition given in

section 2 that the function u(n,t) defined by (2.7) and (2.5) satisfies the

differential-difference equation (2.8), and thus the corollary of the

proposition has been proved, (it is also possible to prove this corollary

directly from (2.5)-(2.7) without using the proposition itself. )

Note that the integral equation (2.5) can also be formulated in terms of

the variable z = (p+k)(p-k) , with the corresponding factor p (n,t) =

z11 exp[^ (z-z'^t], cf. ref. 26. Z

We shall now consider some special cases of eq. (2.8). For that purpose

we first rewrite (2.8) using the substitutions

u(n

a =

,t) -

p - a

2pu(n,t)

(p+a)(p+B)

P-B
, b 5

P+B

Eq. (2.8) then becomes

3tu(n,t) = [i-u(n+1,t) + abu(n-1 ,t)]"'[u(n-1 ,t) - u(n+1,t)

+ (2ab+a+b)u(n,t)u(n-1,t) + (2+a+b)u(n,t)u(n+1,t)

) - (1+a)(1+b)u2(n,t)] . (k.9)

Some special cases of eq. ('t.9) are

(i) a=0, b=0, A(n,t)5-ln[i -u(n,t)] :

3+A(n,t) = 2 - eA(n,t)-A(n-1,t) _ eA(n+1,t)-A(n,t) f (

t

and B(n,t) = A(n-2,t) - A(n,t) obeys the equation of motion for the Toda

lattice 2 T' 2 8 ), i.e.

Note that in passing from (U-10) to (1*.11) the first-order differential

equation (U.10) involving all lattices sites,is decomposed into two identical
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second-order differential equations (1».11) for the even and odd sites

respectively.

(ii) au(n,t) •+• u(n,t), a-w» , b=0 :

3tu(n,t) = [1 - u(n,t) + u(n-1,t)][i - u(n+1,t) + u(n,t)] - 1 . (i*. 12)

Under the substitution C(n,t) = u(n,t) - u(n-1,t), eq. (it. 12) reduces to the

discrete Korteweg-de Vries equation, cf. refs. 29 and 30,

3tC(n,t) = [1 - C(n,t)][c(n-1,t) -

Eq. (U.13) can also be derived from (l*.1O) using the substitution

A(n,t) - A(n-1,t) = ln[i - c(n,t)] .

(iii)a=-1, b=1, D(n,t) = a ln[2u(n,t) - 1] :

3 D(n,t) = tanh[D(n-1,t) - D(n+1,t)] .
t

(iv) au(n,t) •* -u(n,t), a-*», b=1,

E(n,t ) = [u(n,t) - u(n-1,t)J[u(n-1,t) -

3tE(n,t) = [1 - E
2(n,t)][E(n-1,t) - E(n+1,t)] ,

the discrete modified Korteweg-de Vries equation .

From the considerations given above it is clear that all differential-

difference equations (U.10)—(U.15) are integrable, since their solutions can

be obtained from the linear integral equation (2.5).

i-l

I

5- The KdV class; connection with Backlund transformations

* From appendix A of ref. 10 it is clear that the transformation

k k q-k k

induces a Backlund transformation of the singular integral equation

(5.D
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u. + ip. (dXU) -±- = -Js-
k k i, k+a k+a

(5-2)

with a corresponding transformation

. - ƒ dX(k)
k+B

|dX(k) —
I

(5.3)

where ü. is the solution of (5.2) with p"k instead of p.. (Note that it is

also possible to obtain the function u, defined in (5.3),by a singular trans-

formation of the measure dX(k) •+ dX(k) = (q+k)(q-k)~ dX(k) as

ü = LdX(k)i (k+g)~ , where now i is the solution of (5.2) with the measure

dX(k) instead of dX(k), see ref. 10.)

Comparing eq. (5-1) with the relation

Pk(n,m+1) = pk(n,m) g , (5-U)

which follows from (2.2), it is clear that eq. (.2.H) with u(n,m) •* u(n',t),

u(n+1,m) -*• u(n' + 1 ,t), u(n,m+1) -*ü(n'-1,t), u(n+1 ,m+1) ->-ü(n',t) , i.e.

%•}

II

n'+1,t) - (p-a)u(n',t) - i][(p-B)u(n'-1,t) - (p+a)Ü(n',t)

ü(n'-1,t) - (q-a)u(n'.t) - i][(q-B)u(n'+l,t) - (q+a)Ü(n',t)

(5-5)

provides a Backlund transformation of the differential-difference equation

(2.8).

Furthermore introducing a second Backlund transformation n
p+k

pk + pk = p-k
(5.6)

leading to

u •+ ü = dX(k) ,
1 k+8

(5.7) N
where u. is the solution of (5-2) with p. instead of Pj, it is clear that

eq. (2.U) with u(n,m) •+ u, u(n+1,m) •+ ü, u(n,m+1) -* u, u(n+1,m+i) •+ ü, i.e.
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[(p+B)ü - (p-o)u - i][(p-3)ü - (p+a)ü + 1] &~

f1
=[(q+g)ü - (q-a)u - i][(q-B)u - (q+o)ü + i] , (5-8) l

is a Bianchi-identity (see refs. 15, 17 and 18) expressing the eommutativity !..'

of the BT's (5.1) and (5-6). This holds independently of the specific K

dependence of the factor p. on variables or lattice sites. In fact, (5-5) t-j

1-: is a Bianchi-identity for any partial differential equation which can be ' ~

>i derived from the integral equation (5-2) with factor p, = p. (x,t), for any !

.."I differential-difference equation which follows from (5>2) with factor <.'<•'•.

't- p.(n,t) = (s+k)n(s-k)~np (0,t), as well as for any difference-difference j

>', equation which can be derived from (5.2) with arbitrary p. (n,m). fc*-
• •?' K

y'[ On the other hand, as we have shown in the previous sections, a Bianchi- '!*•

Is, identity involving u, u, ü, ü, following from two BT's, as given by (5-1) 'f'

| and (5-6) of the integral equation (5-2) with the replacements u •+ u(n,m), j^'

| j ü •*• u(n+1,m), ü -> u(n,m+1) and ü •+ u(n+1 ,m+1) leads in a natural way to an I;;

fvj integrable difference-difference equation (2.1+) associated with the integral ';._,.

$; equation (2.1), (S.2). j;. ;

I'; The above procedure can be applied to other linear integral equations as !ïf

I ; well (see e.g. refs. 5 and 6 ) . As a first step one derives the Bianchi- Lj;

'|i identity expressing the eommutativity of Backlund transformations of the factor -r.

| I p. in the integral equation. Secondly the Bianchi-identity is interpreted as '{:

j' an (integrable) difference-difference equation which can be derived from the ; ',

j,* integral equation with a factor pfc such as specified in (2.2). Furthermore r'j

^ choosing a small parameter for which one may take a continuum limit of the '4

\\ type (1».1), one can derive an (integrable) differential-difference equation, \\

: the solutions of which can be obtained from the integral equation with a factor [:]

Pk(n,t) = (p+k) (p-k) p (0,t) and the Bianchi-identity immediately leads to a

' -i BT for the differential-difference equation. In the following sections we
••"I iJ
• (;i shall work out the procedure mentioned above for the integral equation of the p
„ ^ NLS type. jOH H
K 'it

] 6. The MLS class; results

In this section we present two linear integral equations involving an

arbitrary contour and measure, which linearize certain nonlinear difference-

difference equations and differential-difference equations of the nonlinear
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Schrödinger type.

i
't

f

Proposition

Let $. (n,m;a) be a solution of the linear integral equation

p. (n,m)p* (n,m)
4>k(n,m;a) + JdXU) |dX*U')

 K

C C*

JdX <j>A(n,m;a)
Pk(n,m)

k+a

(6.1)

where C and dX(k) are an arbitrary contour and measure in the complex k-

plane, and

q-k
p,q,8'e<C, p=-p*s

(6.2)

Let the contour C and the measure dX(k) be such that the homogeneous

integral equation corresponding to (6.1) has only the zero solution, and

define

•v(n,m;o)
dX(k) , n,m€2, . (6.3)

Then the following results hold, for special choices of p, q,« ,B and

6'.

(1) The function

i))(n,m) = 2pi()(n,m;-p,p) (6.1*)

obeys the double-discrete nonlinear Schrödinger equation (ddNLS), i.e.

2|p|2 + 2|q|2 +

et*(q*+p*)(q*-p*)<f1*(n,m)(j>(n,m+i) =

- 6'(q-p)*(n,m)

8'(q.+p)*(n+1,m) - (q*+p*)i()(n,m+1 ]

l,m) - (q*+p*)ij>(n,m+i;

(q*-P*)+(n+1,m+1) - 6'(q-p)*(n,m)
(6.5)
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I

(2) If X = (q+q*)|p||q|"2 , 6' = q V ' . |q-q*|2 |p|2 = M*l*. then the
vector function

(
S (n,m) + S (n,m) S (n,m) - S (n,m) i \

, , [1 - |s+(n,m)|2]s ) ,
9 9-i '

where

S+(n,m) = p*(n+1,m;0,0) - p4>(n,m;0,0) , (6.7)

obeys the double-discrete isotropic Heisenberg spin chain (ddIHSC), i.e.

§(n,ffl) x S(n,m+1)

&. ^(n.m+1) - S(n,m) + X
* 1 + S(n,m)-S(n,m+1)

,4' .̂ _>. f {1 - S(n,m).S(n,m+D} ~\s
J; - [s(n,m) + S(n,m+1)] 1 - sA2

Zf |_ {1 + S(n,m)«g(n,m+1)}2 J

Ï'J = S(n+1 ,m) - S(n+1 ,m+1) + X

1 f {1 -3(n+1,m)-S(n+1,m+0} I 2

1,«H) U - S-X2 T T
j L {1 + S(n+1,m)-5(n+1,m+D}2 J

- S(n+1,«) : 3<ni

| j L {1 + S(n+

S(n,m)-S(n,m) = 1. (6.8)

(3) If X 5 qp~ , 6' = 1, q = -q, then the function

s(n,m) = Jp*(n,m;O,O) (6.9)

obeys the double-discrete complex sine-Gordon equation (ddCSG) , i.e.

X[s(n,m) + s(n,m+i)][i - U|s(n,m+1) - s(n+1,m+1)|2]5

+ A[s(n+1,m) + s(n+1,m+i)][i - »j|s(n,m+1) - s(n+1 ,m+1 ) | 2 ] 5

+ [s(n,m+O - s(n+1,m+O][i - Ux2|s(n,m) + s(n+1 ,m+1) | 2 ] 5

- [s(n,m) - s(n+1,m)][i - 4A2|s(n+1,m) + s(n+1,nH-i)|2]5 = 0 . (6.10)

(6.6) ^;

><^



'M'

Remarks

(i) Various double-discrete versions of the HLS and the IHSC have teen obtained

in the literature with corresponding Gel'fand-Levitan equation

linearization

or bi-

(ii) In appendix B eqs. (6.5), (6.8) and (6.10) are obtained as special

reductions of the two coupled equations

a H - (p*+B)*]

(q+a)$*][6(p+B)<|) - (p*+a)$]

(p*+a)$*- (6.11)

[J - (p*+e)* + (p*

.[9'(q+B)**- (q*+a)$*][e(p+B)* -

[1 - (q*+B)* + (q*+a)ip][i + (p*+ct)ip* (6.12)

where we have used the notations

F = F(n,m;a,B) , F = F(n+1,m;a,g) ,

F = F(n,m+1;a,B) * F = F(n+1,m+1;a,B) ,

F* = [F(n,m;a*,B*)]*> etc., for F = (ji,i|

( ( * pir*T' (n»»»a>
*(n,m;o,p) = dX(k) dX*(J.') -^

in combination with the relations

(6.13)
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- (p+e)$* + (p+a)i|>*][i - (p*+B)$ + (p*+a)ip]

* J * * * * , (6.

cf. (6.17) and (6.13) and (6.3).

(iii) Eq. (6.10) is a double-discrete version of the complex sine-Gordon

equation. A double-discrete version of the sine-Gordon equation (cf. refs. 12

and 32) may be obtained from the integral equation (2.1) in the special case

that

, n i m
/p+k\ /q+k"\ _ _

p. (n,nr) = ( ƒ { r) p,(0,0) , n , i £ £ ,p,q,k£(C. (6.20)
K \p-k/ \q-k~ / K

In fact, in ref. 2k it has been shown that the function

i

- (q*+B)*][e'*(q*+o)<(i* - (q+B)**] , (6.15) |s

I.
and f * -

[1 + (ot-B)i|>*][i + (a-B)*] + (a-B)2*** = 1 . (6.16) Jj

In appendix A, eqs. (6.11), (6.12), (6. il*)-(6.16) are derived from the fj

integral equation (6.1) with !;'

p,<i,0,e'€(C, |e| = |e• I = 1. (6.17) V-,
'r ,

Equations (6.11) and (6.12) may be regarded as Bianchi-identities '^

expressing the commutativity of the two Backlund transformations induced by fi.

! • ' ' '

t , |e| = i , (6.18)



2i ln[-1+iildX(k)uk(n,m)] , (6.21)

where u, (n,m) is the solution of (2.1), with (6.20), and with <x=0,

satisfies

sin[w(n,m) + w(n+1,m) + w(n,m+1) + w(n+1,m+i)]

- pq sin[w(n,m) + w(n+1,m+i) - w(n+1,m) - w(n,m+i)] = 0 ,

which can be regarded as the double-discrete sine-Gordon equation.

(6.22)

Corollary

Let <j>.(n,t;a) be a solution of the linear integral equation

t c p.(n,t)p ,(n,t)
(n,t;ct) + dXU) |dX*(«,' ) -^ - • (n,t;a)

> '* (k-ü.1 )(V-ü)

Pk(n»t)

k+a

, (6.23)

where C and dA(k) are an arbitrary contour and measure in the complex k-

plane. Let the contour C and the measure dX(k) be such that the

homogeneous integral equation corresponding to (6.23) has only the' zero

solution, and define

(n,t;a,B) = I
<f>k(n,t;a)

k+B
dX(k) , , te(R, a,B€(C. (6.2U)

Then the following results hold for special choices of p (n,t), p, a and B-
It

(1) If

[2pk(f*-f) + 2k2(f+f*)]

p2-k2

P,f£<L,

Pk(0,0) ,

p = -p*

then the function

$(n,t) = 2p$(n,t;-p,p)

, (6.25)

(6.26)
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obeys the discrete nonlinear Schrödinger equation (dNLS), i.e.

f

l

i3t*(n,t) = (f+f )*(n,t) -

(2) If pk(n,t) is given by (6.25)> then the vector function

. (6.27)

,S+(n,t) +
S(n,t) = (

S+(n,t) + S+*(n,t) S+(n,t) - S+*(n,t)

2 ' 2i
, [1 - |s+(n,t)|2]2J,

(6.28)

where

S+(n,t) 1,t;0,0) - p.))(n,t;0,0) , (6.29)

obeys the discrete isotropic Heisenberg spin chain (dIHSC), i.e.

„, |~ S(n,t) x s(n+1,t) S(n-1,t) x s(n,t) 1
3 S(n,t) = (f+f*) - ,
1 |_1 + S(n,t)-S(n+1,t) 1 + S(n-1,t)-S(n,t) J

S(n,t)-S(n,t) = 1. (6.30)

(3) If

then the function

s(n,t) = sp+(n,t;0,0)

obeys the discrete complex sine-Gordon equation (dCSG)

3.[s(n,t) - s(n-1,t)] « [s(n,t) + s(n-1,t)][i - h\s

Remarks

>eC, P = -P*. (6.3D

(6.32)

(6.33)

(i) The integral equations (6.1) and (6.22) may be regarded as double-discrete

and single-discrete analogues of the integral equation
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( f *
dXU) dX*

i l*

Pk(x,t)p,,(x,t)
') — 4>.(x,t)

Pk(x,t)

k+a

pk(x,t) = e
i [ k x- M ( k ) t ]p k(O,O), (6.31*) ff-

which gives a direct linearization of e.g. the nonlinear Schrödinger equation,

the equation of motion for the isotropic Heisenberg spin chain, and the

complex sine-Gordon equation, see chapter II of this thesis.

(ii) From the proposition given in this section and from its corollary it is

clear that the difference-difference equations (6.5), (6.8) and (6.10), and

the differential-difference equations (6.27), (6.30) and (6.33) are also

completely integrable, since solutions can be obtained from the linear

integral equations (6.1) and (6.23).

7. The NLS class; continuum limit

In section 6 we have given some difference-difference equations of the NLS

class, i.e. the ddNLS (6.5), the ddlHSC (6.8) and the ddCSG (6.10). To

obtain the corresponding differential-difference equations we consider the

limit (^.1), in which b is a suitably chosen lattice parameter.

From eq. (6.5) it is clear that we can take

q •> -p

e'(q-p) - (a*-p*) + 0

(7.1)

(7.2)

(7.3)

Eq.. (7-1) suggests that we can choose p+q as a small parameter and eq. (7-2)

with p*=-p is automatically satisfied for 9' = q /q.

In eq. (6.8) we can take a limit

\ •*• 0 , |p| , (7.U)

(7.5)

Therefore, in both cases, p+q can be chosen as a small parameter, provided

that (7-3) and (7-5) respectively are satisfied. Accordingly we take

117

fc

1

ê

i

ra^



1

I

p+q •* -2ipf - ,

where f is a phase factor expressing the phase of p+q..

Up to the order (p+q) we then have the following relations

<j>(n,m) n' = n-m

f*3.
t

ii Ïi3-f*3 *(n',t) ,
P <<

(7.6)

(7.7)

1,',

s

and also

S(n,m)

S(n'+1,t)

f*3. S(n'-1 ,t) ,

S(n+1 ,m+1) ->• S(n' ,t) + si ̂ ^ f*3, t(n' ,t
P t

(7.8)

I

Taking (6.5) with p*=-p» 6' = q. /q. and (7-1) and neglecting all terms
we have

1 = [1 + U(n,m)|2]
j- (p+q)<fi(n,m+1

|-)«(n,m) - 2pt«(i(n+1 ,
, (7.9)

and (6.27) follows immediately inserting (7-7) in (7-9)• Analogously eq.

(6.30) follows from (6.8) inserting (7.8) and considering only terms 0(X).

The integral equation (6.23)5 together with eq. (6.25)5 can be derived

from (6.1) taking the continuum limit of the factor p, (n,m) given in (6.2).

We first rewrite p. (n,m) as follows,

(8'pq+p q ) - k(p +q +pe'+qe') + kz(i+e')
1 -

(p*-k)(q*-k)

n ' = n-m, (7.10)

and from p* = -p, 9' =q /q and eq. (7-5) we have
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"•" :-• v^-,rt*v

(6'pq+pV) - k(p*+q*+p8'+qe') + kZ(i+8') 2pki(f*-f) - + 2k2i(f*+f)£

(p*-k)(q*-k)

and from (7.10) we immediately obtain

Pk(n,m) •*• pk(n',t) ,

in which p.(n',t) is given by (6.25).

(7.11)

(7.12)

Finally we can take a limit of eq. (6.10) with \+0, provided that

s(n,m+i) - s(n+1,m+i) - s(n,m) + s(n+1,m) + 0 . (7-13)

t t

Therefore we take

s(n,m) •*• s(n,t) ,

s(n+1,m) -*• s(n+1,t) ,

s(n,m+1) •*• s(n,t) + 2A3 s(n,t) ,

s(n+1,m+i) •+ s(n+1,t) + 2A3.s(n+1,t) ,

(7.11»)

and keeping only the terms of order X , eg.. (6.10) reduces to eq. (6.33)-

The integral equation (6.23), together with eq. (6.31), follows by considering

the continuum limit of (6.2) with q = A p = s p — , 8' = 1. We have

pk(o,o)

in agreement with (6.31).

Remarks

(i) In this section the corollary of the proposition given in section 6 has

been proved by taking a suitably chosen continuum limit of the integral

equation, as well as of the difference-difference equation given in the

proposition. Of course eqs. (6.27), (6.30) and (6.33) can also be derived

directly from (6.23) with (6.25) and (6.31). In fact in ref. 33 the dNLS,

dIHSC and dCSG have been obtained from an (equivalent) integral equation in

terms of the complex variable z • (p-k)/(p+k) and p. (n,m) •+• z e ,

where the dispersion u(z) is given by os(z) * fz + f*z~ - (f+f*) in the

(7.15)

i
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:§ case of the dNLS and the dIHSC and by u>(z) = -i(z+1 )(z-1)~ in the case of |-i

the dCSG.

?;/j (ii) In the dNLS (6.27) we can take f=f* =1 without loss of generality, |'

•• ! as can be seen introducing a new function *(n,t) = f é(n,t)exp[i(f+f -2)tl.

i•.; Taking a continuum limit, however, i.e. ij>(n±1,t) = <|>(x,t) ± a3 <|>(x,t)

'>'r\ + ga232$(x,t) ± - a333d>(x,t), eq. (6.27) after some obvious transformations Ê
?"j x 6 x ?..
'*| changes into the NLS ia^.* = -32((i - 2|<f>|2()> for f=1, and into the CMKdV ^
!A 3 t * = 3|*

 + 6|(j)|23x((. for f=-i. K

gij ;•
;;' (iii) The dIHSC,which was given in refs. 31* and 35 for f=1, reduces in the ^
\.' continuum limit to 3 S = S x 3 2 g 5 which is the well-known IHSC. For f=i, i?r
l~ i

fi eq.. (6.30) is trivial and a higher-order expansion in powers of X is necessary T
',.'; F̂
' '., to obtain a meaningful differential-difference equation. f.'i i
I ^ (iv) In section 5 we discussed the relation between the difference-difference A
{•' equations for the KdV class on the one hand, and the BT for the differential- K'r

!'.'• . r -

|.V difference equations, as well as the Bianchi-identities expressing the ', •,

f'J commutativity of BT's on the other hand. Such relations exist also in p"

^' connection with the difference-difference equations of the NLS class. ;V>

f<j In fact eq. (B.5) of appendix B, with p*=-p, 6 =-1, 2pi(i(-p,p) -»• <j>(n',t), |t

|i| 2p$(-p,p) -> $(n'+l,t), 2p$(-p,p) -+ $(n'-1,t) and 2p$(-p,p) -> $(n',t) is the •';

•"'-'{ BT for the dNLS (6.27) associated with the transformation
pk(n,t) -> pk(n,t)6' f —

q -k

;* whereas eq. (B.5) with parameters r =-r* and s, instead of p = -p and q,

if: expresses the commutativity of the BT's

r-k ,
pk * K = pk9'

for the NLS, the dNLS and ddNLS, independent of the specific dependence of

p. on variables or lattice sites.

Furthermore aq. (B.17)with S-»-S(n',t), f -* S(n' + 1 ,t), 5-> S"(n'-1 ,t),

5-»- ̂ (n'jt) provides a BT for the dIHSC (6.30) under the transformation (7.16)

with 6'=q*/q and eq. (B.19) with ip«J> -»• s(n,t), gp$ •* s(n+1,t),

gp^ •* g(n,t), sp$ •*• 3(n+1,t) is the BT for the dCSG (6.33) corresponding to

(7.16) with e'=1. Eqs. (B.17) and (B.19) can also be regarded as expressing

the commutativity of Backlund transformations.
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Appendix A

In this appendix we derive the coupled equations for the NLS class (6.11),

(6.12) and (6.iU)-(6.16) starting from the following two integral equations

1

k-A' k+a
(A.1)

k ) * k-X,1
(A.2)

or equivalently

j(a) + fdX(t) jdA*(£') V*'
(k-Jl1

k*

k+a
(A.3)

which f o r i=0 w i t h p = p (n,m) r e d u c e s t o ( 6 . 1 ) , and
K. &

if.;-

Define

fdA(O U \*(V) V*- . (A.1»)
H'+a

V f

^ ^ ( O . B J E fdX(k)
k+B

(A.5)

i,3) = dX(k)

C

(A.6)

It is easy to show that

*k + 1 ( 0 ) a*k ( o ) '

Using (A.I) and (A*2) we have

(A.7)

(A.8)

(A.9)

(A.10)
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7

I'
•j(a) + fdX*(t>;

i* k-V

ki+1
 1 .*
- i|; ' (a,O)p, ,

k+a

*K
1>1 (a,O)p ,

k
(A. 12)

K

p

leading to

*j(a) + fdX(l) fdX*(S.'

and

i i* w >(*'-*)

k+a

i*(o,0)Pk - *
i5i(a,0) f

f

dX*U')
k-£'

* a'11 •;* f * p v p 5 ' *' 1 •; f
1'x (a,0)p. + dX*(£') j L i - ^ ^ ( a . O )

i* k-S.' SL'+a >

p v p j

k-J,1

I-
i'| Taking into account that the solutions of the integral equations (A.3) and

(A.h) are unique and using also (A.9) and (A.10), we have

• * 1 1 •

(k+a)<|> (a) = <|> (0) - i> ' (a,0)<(i (o) - § ' (a,O)t|i. (0) , (A.15

Dividing (A.15) and (A.16) for i=0 by k+B, integrating over the contour

C, and using (A.7) and (A.8), we have

- ('1 - *1 ' ,0), (A. 17)

(A.18)

which for 6=a reduces to the identity
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>1'0 (a,O)*1'°(a,O)

Let us now consider the Backlund transformation (6.TÖ) of the integral

equation (A. 3). It is then, straightforward to show that the solutions $£(<*) and

$ (a) of (A.1) and {A.2) with p. replaced by p satisfy the integral relations

£(a> + JdA(JJ) jdA*U')

s
I

8(p-k)p + e*1'1 (a,O)p
K k+a k-A'

and

|dA*U'

C*

-e* (a,O)pk + dA (

(k-d' )U'-S.)

pkp*. lyU'H'
1

k-A' £'+a

f
dA

-L*

and instead of and

(A.20)

PvP^t

(A.21)

where $1)J(a,e) and $1'1'(ci,B) are defined ty (A.5) and (A.6) with ij)̂(

$?{a) instead of ij)̂ (a) and (fi-Kcx).

Comparing with the integral equations (A.3) and (A.I*) and using also (A.9)

and (A-10) we immediately have

*-k)^(a) = 6(p+a)*j(o) -

Hence, after dividing (A.22) and (A.23) for i=0 by k+B, and

integrating over the contour C, we have

(A.22)

(A.23)

- e(p+a)<K<x,B)
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T

ff

t

Si:

8

i

•4i-(p*+B)J(o,3) - <p*+a)*(a,B) = - (i - J1 >0(a,0)) (1 - *1'° (3,0))

- ej 1' 0 (o,0)*1>0(6,0) , (A.25)

where we have omitted the superscripts 0,0 on the left-hand side.

Eqs. (6.11), (6.12) and (6.1U)~(6.16) are most easily derived introducing

the matrix

g(o) =
fi -

t-V'u (a,0)
(A.26)

Then (A.2U) and (A.25) can be cast in matrix notation

e(p+B)+*(a,e) - (p*+a)**(a,B) 1 - (p*+B)$(a,B) + (p*+a)i(.(a,g)

= |"1(a)-|-g(B) , 9 5 (Q °) , (A.27)

where g(a) can be obtained from g(e.) replacing $ ' and iji ' by $ '

and <i> ' .

Considering the Backlund transformation (6.19), we have in a similar way,

omitting the superscripts 0,0 on the left-hand side

- (q+B)**(a,B) 6'(q+o)*(a,B)

1-(q*+B)*(a,B)

8' = Co ?) • ( A- 2 8 )

where •(o.B) - •^(a.B) and $(a,B) = *0'°(as8) are defined by (A.5) and

(A.6) with *^(a) and •j'(a) replaced by the solutions iji£(a) and $,J(a) of

(A. 1) and (A.2) with p. instead of p^, and g(ot) can be obtained from

g(a) replacing +1'0 and * 1 > 0 by $1'0 and "*1>0.

Furthermore eq. (A. 19) implies that

g(a)-gf(a) « 1 , (A.29)

in which the 2 x 2 matrix g*(ct) is defined by
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jr;;; g^(a) = g^ct) = (gqp(a')) . (A.30)

h]
f

p' For the matrices g(ot), g(o), g(a) and the matrix g(a), which can be

-,' obtained from (A.26) replacing <> • and î ' by <j> ' and $ '

f-:' respectively, we have the obvious relations

- "

i = |"1((x)-0-g(B)-(r1(a)-e-g(B))+ = g~1(<x)-e'-g(B)-(g~1(ct)-0'-g(B))t,(A.32)

1 = g"1(a)'g(B)'g"1(B)'g(a) • (A.33)

Inserting the expressions (A.26)-(A.28) we obtain eqs. (6.11) and (6.12)

from eq. (A.31), eqs. (6-11+) and (6.15) from eq. (A.32) and eq. (6.16) from

eq. (A.33). Eq. (6.16) is an algebraic identity relating <f(a,B) and iJi(a,B),

eqs. (6. lU) and (6.15) are relations between i(i(a,B) and i(i(a,B) and their

Backlund transforms under the transformations (6.18) and (6.19), and (6.11) and

(6.12) are Bianchi-identities expressing the commutativity of both BT's. [• ~

. I d e n t i f y i n g ij)(a,B), $ ( a , $ ) , <(i(o,B), ^(01,6)5 '/'(ot.B), 4 i ( a , B ) , i(i(a,B), f,

;̂ / <i(a,B) w i t h t()(n,m;a,B), <(>(n+1 , m ; a , B ) , <))(n,m+1 ; a , g ) , <fi(n+1 ,m+1 ; a , B ) , ^i-

• ̂•; i(i(n,m;a,B), i|i(n+1 ,m;a,B) > ^(n,m+1;a,B) and ^)(n+1 ,m+1 ;a,B) respectively, %:

Jf'] we obtain from (6.11), (6.12) and (6. lU)—(6.16) a set of difference-difference *i

,f 1 equations for the four coupled fields <|>,i|i,if> ,I|I , defined on a'two- ;.,

;?;; dimensional lattice. (Note that for general a and B» <(> (n,m;a,3) = C-

jj" ; [ij>(n,m;a*,3*)] ). This set of equations is completely integrable, since the K';

T-lN solutions follow from (6.1) with the factor p. (n,m) as given in (6.17). In : '

tj the general case the set of equations is rather complicated, but in appendix ,-.*,

,s, B we shall work out the special cases mentioned in the proposition given in -' ;

;• section 6.

Appendix B

In this appendix we derive the ddNLS, the ddlHSC and the ddCSG, as given

by eqs. (6.5), (6.8) and (6.10).

(1) For the ddNLS we take ct=-p, 0*p, p =-p. From (6.11+) and (6.16), with

• = "("(-P.p); • = *(-p,p) etc., using also (A.7) and (A.8), one can derive
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2p$(p,-p)) (1 -

and

1+ 2 p $ ( p , - p )

and from (6 .11 ) we have

M P | 2 M - P . P > I 2 .

(q*-p*)*(-p,p)

1+2p$(p,-p) B(q*+ p*)*(-p,p) + 6'(q+p)?(-p,p)

From (6.15) we obtain

(B.1)

(B.2)

(B.3)

(-p,p) - (d+p)$*(-p,p))

/ q+P 1 + 2 p + ( p , - p ) q-p \ / q + p 1 - 2

^ 2p 1 +2pi))(p,-p) 2p ' * 2p 1 - 2

Using (B.1)-(B.3) to eliminate the i|/'s we have

k l 2 - I P I 2

q*-p

2p ) •

(B.it)

1 +
2|P|2

• (-P,P)*(-P,P)

k+p|2 ,

e'*(q*+p*)(q*-p*)

MPI 2I*(-P.P)I 2)
ee'(q-p)*(-p,p) + (q -P*)*(-P,p)

e(q*+p*)*(-P,p)

k - p | 2 , N e(q*+p*)*(-P,p) + e'(q+p)?(-p,p)

- — - 0 + MPI 2 1»(-P .P) | 2 ) - , w • , , , ,
'•IPI Sö'(q-p)+(-p,p) + (q -P )+(-P»P)

(B .5)

and eq. (6.5) follows from (B.5) using (6.13), (6.10, and 8=-1.

a «8(2) In the case that a»B«a «8 , one can solve •-+ = $(a,a) - i(i(a,a) from

(6.1b) as a function of + = +(a,a). We have
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I

I

ü

P-P
± — ^ — flp*-pl2-

2|p+a|2 21 p+ot j

and in a similar way we have from (6.15)

q-q i
+

!|q+a|:

,a) - (p*+a)$(a,a) | 2 T ,
J

(B.6)

,a) - (q*+a)*(a,a)

(B.7)

Inserting (B.6) and (B.7), eqs. (6.11) and (6.12) can be expressed in terms of

the <j>'s. We now restrict ourselves to the special case p =-p, 8=-1, a=fS=O.

In that case we obtain from (6.11) and (6.12), with <j> s <J>(0,0), i|/ = <|i(0,0),

the following equations

(e«q+(O,O) - - |p|2|+(0,0) - $(0,0)|2]
2 ] 2

± — (e'q?(O,O) - q*$(O,O))[i -
P

2q qT"["
,*_n|2

k*-il2

,0) - q**(0,0)|2]^}

{q+q 3-1<3_| r|q'-qp .» IT)
± _ |9'q$(0,0)-ql(0,0)|

2 H = 0,
2q q L h\al2 J >

and

**(0,0) - **(0,0))(e'q<(1(0,0) - q*$(0,0))

p(*(0,0) - ?(O,0))(e'q|*(O,0) - qV(O.O)

(B.8)

127

vgmm



— [i - IPI2I«(O,O) - i(o,o)|2|S

q+q* i|q| rk*-q|2 , „,. is •)
r |9'q+(0,0) - q%(0,0)|2 f

2q q Mil

• ii ï

± fi - |p|2|+(o,o) - $(o,o)|2]5

p L J
• . 1 1 1 * 1 0 -1

+q ikl rk -ar . „t ,o-\hT - e'q?(O,O) - q <f(0,0) 2 | = 0 . (B.9)
o„ L )i I „ 12 J I

For the IHSC we consider the special case 6'= q*/q, in addition to p = -p.

8 = -1, a = B = O. Introducing real vectors S and U by

„+.„+* „+ Q+*

(S +S S -S , . i\
, , [1 - |s+|2]5) ,

(B.10)

S H p$(0,0) - pij)(O,O) , S«S = 1 ,

and

+ +* + +*
/ U +U U -U

Ü =
2 2i

(B.11)

U + = pijk(O,O) - pi)i(O,O) , Ü«Ö = \i = 5|q-q*|2|p|2/ k l 4 ,

equations (B.8) and (B.9), with the upper signs, can be combined to give the

vector equation

where

|p|(4+q*)

and e is a unit vector in the z direction, (in (B.12) use has been made of

the fact that § and 5 are real vectors, so that the first and second

member vanish independent ƒ.)

From the definitions of S and U we have the obvious relation
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u+ + s+ = s+ + u+ . (B.1U)

From (B.12) we have U'S = U'S. Furthermore, by taking first the outer

product vith S and then the inner product with S, one can show that

(S-S)'(ÏÏ+Ü") = 0. From (B.12) we then have (5x5)•(t-S) = 0. From these two

equations, together with U'U = U*U, we see that S-Ï3 = a(U-Ü). Comparing

with (B.1U) we conclude that we must have o=1, and hence

U + S = S + U .

Using (B.15) to eliminate U from (B.12), we obtain

(S+S) x 5 = sxs -

(B.15)

(B.16)

and from (B.12) and (B.15) with S+S, S-*S, U-+U, 8->U, eliminating Ö", we

also obtain a second relation

(B.17)

Taking into account that U'U = u, one can solve U from (B.16) as well as

from (B.17) to obtain the equation

S+S

1+S-S
~; [2u - t-t

1+S'S"

[2p - (2u+|X2)S'S (B.18)

In the special case y=1, taking the upper signs and using the identifications

^»?(n,m), &+S(n+1,m), sVs(n,m+i) and S->$(n+1 ,m+1), eq. (B.18) immediately

reduces to the ddlHSC given in (6.8).

(3) Finally for the ddCSG we consider the special case p = Ti|p|, 9' = -q*/q,

X = q/p, in addition to 6 * -1, a*$=0. From (B.8) we obtain
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X*(*(0 ,0) + $ ( 0 , 0 ) ) [1 - | p | 2 | $ ( 0 , 0 ) - $ ( 0 , 0 ) | 2 ] 5 i

X*(f(0,0) + J(0,0)) [1 - |p|2|*(0,0) - $(0,0)|

/•X-X* |X| r(X*+X)2 -il-»

($(o,o) - $(o,o)) \ — + — — - |xr|p|2i«(o,o) + jKo.oirn

r x - x * \x\ r (x*+x) 2 , , ~ ,-ijh
- (•(o,o) - ? ( o , o ) H — - | x | 2 | P | 2 | $ ( o , o ) + $ ( o , o ) | 2 [=0 ,

1 2X X L h\\\ J '

which for X real, i.e. g.* = -<l, 6'=1, together with (6.9) and (6.13) £

f f reduces to (6.10). ^
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SAMENVATTING i
l
|i

Solitonen zijn gelokaliseerde golven die na een onderlinge botsing hun

oorspronkelijke vorm en snelheid behouden. Zij treden op in uiteenlopende ge-

bieden van de natuurkunde, zoals de hydrodynamica, optica, plasmafysica,

veldentheorie en vaste-stoffysica.

Lang niet alle fysische systemen vertonen soliton-gedrag. Dit treedt met

„ name op in de zogenaamde integreerbare dynamische systemen, waarmee bedoeld wordt

'ifi niet-lineaire systemen waarvan de oplossing teruggebracht kan worden tot het

l\ oplossen van uitsluitend lineaire problemen. De hoop bestaat dat de eigen-

{Tl schappen van niet-integreerbare systemen, die in de meerderheid zijn, bena- >..„

\'f derd kunnen worden met behulp van integreerbare systemen.

i Een bekende methode om solitonsystemen te bestuderen is de methode van de j

h'^ inverse verstrooiing, ontdekt door Gardner, Greene, Kruskal en Miura. In ]Y,

X,\ dit proefschrift worden solitonen echter bestudeerd met de methode van directe \\
ï I !
• '•'. linearisatie, ingevoerd door Fokas en Ablowitz. Deze methode gaat uit van
<£'>'

{"? een lineaire singuliere integraalvergelijking, met een integraal over een

willekeurige contour en maat in het complexe vlak, en leidt hieruit de oplos- ,jr

singen en eigenschappen van het niet-lineaire solitonsysteem af. De methode | '

heeft het voordeel dat fysisch zeer verschillende solitonsystemen op een uni- ,

ficerende manier behandeld worden.

De inhoud van dit proefschrift is in het kort als volgt. Hoofdstuk I be- >

helst een inleiding tot dit proefschrift en een samenvatting van de belang- .J

rijkste resultaten. In hoofdstuk II wordt de directe linearisatie van ver- ;

schillende partiële differentiaalvergelijkingen gegeven, zoals de Korteweg-

de Vries vergelijking, de gemodificeerde Korteweg-de Vries vergelijking, de

sine-Gordon vergelijking, de niet-lineaire Schrödinger vergelijking en de

bewegingsvergelijking voor de klassieke isotrope Heisenberg spinketen; tevens

worden verscheidene verbanden tussen deze vergelijkingen uitgewerkt.

In hoofdstuk III worden de Backlund transformaties van deze vergelijkingen

behandeld op grond van een singuliere transformatie van de maat die in de

integraalvergelijking voorkomt en de Backlund transformaties worden gebruikt

om de directe linearisatie van een keten van zogenaamde gemodificeerde partiële

differentiaalvergelijkingen af te leiden. Zo wordt bijvoorbeeld uit de trans-

formatie van de maat in de integraalvergelijking voor de niet-lineaire

Schrödinger vergelijking de directe linearisatie van de bewegingsvergelijking '|

voor de klassieke anisotrope Heisenberg spinketen afgeleid.
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Tenslotte wordt in hoofdstuk IV aangetoond hoe singuliere lineaire inte-

graalvergelijkingen op een natuurlijke wijze leiden tot de directe linearisatie

van verscheidene niet-lineaire differentie-differentievergelijkingen. Deze

vergelijkingen voor functies van twee discrete variabelen gaan over in boven-

genoemde partiële differentiaalvergelijkingen na twee opeenvolgende continuum-

limieten. Als tussenresultaat wordt de directe linearisatie afgeleid van de

differentie-differentiaalvergelijkingen die worden verkregen na een enkele

continuum-limiet, bijvoorbeeld de bewegingsvergelijking voor het Toda rooster,

de discrete niet-lineaire Schrödinger vergelijking en de discrete complexe

sine-Gordon vergelijking.
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STELLIHGEN behorend bij het proefschrift "Linear integral equations

and soliton systems" te verdedigen door G.R.W. Quispel, 2 november

1983 om 16.15 uur

n.

1. Alternatieve singuliere integraalvergelijkingen, zoals voorgesteld door

Fokas en Ablowitz, bieden de mogelijkheid nieuwe Miuratransformaties af

te leiden.

A.S. Fokas en M.J. Ablowitz,in Mathematical

Methods in Hydrodynamics and Integvability

in Dynamical Systems, M. Tabor en Ï.M. Treve

eds.

2. De door de Vries e.a. gemeten parameters in de uitdrukking voor de isomere
2+

verschuiving van Eu volgens liet Miedemamodel kunnen afgeleid worden uit

de eerder gevonden parameters voor Gd met behulp van een schalings-

argument.

J.V.C, de Vriest R.C. Thiel en K.S.J.

Euschou, Physica 121B (1983) 100.

\

t

r-
3. De bij lage temperaturen gemeten afwijking in de soortelijke warmtecurve

van o-CuNSal. ten opsichte van de voorspelling voor een homogene lineaire

keten kan verklaard worden door aan te nemen dat in de magnetische ketens

in deze verbinding random defecten aanwezig zijn.

L.J. Azevedo, W.G. Clark, D. tiulin en

E.O. McLean, Phys.Lett. S8A (1976) 2SS.

G. Mcnnenga, L.J. de Jongh, W.J. Huiskamp

en J. Reedijk, wordb gepubliceerd.

h. Het argument dat Muthukumar gebruikt om de effectieve viscositeit van een

suspensie te kunnen vergelijken met die van een poreus medium is onjuist.

M. Muthukumar, J. Chem. Phys. 77_ (1982) 959.
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•1- 5- De berekening door Boiti en Pempinelli van de parametertransformatie beho-

jv rend bij de Backlundtransformatie van de vierde Chazyvergelijking kan wor-

'•: den kortgesloten met behulp van een eenvoudige symmetriebeschouwing.

i U. Boiti en F. Pempinelli, Nuovo Cïm. S9B

]'-. (1980) 40. f"

i ;> G.R.W. Quiapel en H.W. Capel, Physiaa 117A ~j

•; • (1983) 76. '

f

! 6. Het is mogelijk een ijkinvariante beschrijving te geven van "eindstraling" ?

zowel in ^q->-Zo*e e~(y) als in qq'->W™-»-e~ve(Y). In deze beschrijving \, ,

zijn de botsingsdoorsneden voor de eindstraling analoog aan die voor het «
— &

verval van een vrij W of ZQ deeltje. In het bijzonder geldt dit voor de ?|->:

; hierbij optredende infrarooddivergenties. '„;.

£ 7. De opmerking van Tanaka dat het resultaat van de theorie van Rosenstock jf;

- voor het gemiddeld aantal stappen tot vangst in een zelfmijdende stochas- *$'}

•"•• tisc.he vandeling op een rooster met een random verdeling van valpunten dui-

'i delijk fout is, is duidelijk fout. ;

]( F. Tanaka, J. Phys. A16 (1983) L489. f

!, Ü.B. Rosenstock, J. Math. Phys. Sl_ (1980) |lj

ir 1643. 1'
ri

8. Steeb geeft in zijn studie van de Rikitakedynamo een onvolledige beschrij-

ving van de mogelijke bewegingsconstanten. f.

W.-H. Steeb, J. Phys. A1S_ (1982) L389. 'j

t
9. Het bestuderen van Bianchiïdentiteiten die het commuteren van Backlund- 1' ;

transformaties van partiële differentiaalvergelijkingen uitdrukken kan op 0

natuurlijke wijze leiden tot een klasse van integreerbare differentie- f}-

differentievergelijkingen.
Dit proefschrift, hoofdstuk IV.
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10. Evenals de Korteweg-de Vriesvergelijking bezit de bewegingsvergelijking van

Fermi, Pasta en Ulam voor een rooster met kubische interactie een oplos-

sing die uitgedrukt kan worden met behulp van Airyfuncties.

E. Fermi, Collected Works, p. 978.

11. Het is op fysische gronden in te zien dat het thermomagnetisch drukverschil

in de lage-druklimiet niet met de eerste maar met de tweede macht van de

druk evenredig is.

H. Hulsman, G.F. Buising, G.E.J. Egger-

mont, L.J.F. Hermans, J.J.M. Beenakkev,

Physiaa 72_ (1974) 287.

12. Het is in het belang van de wetenschap dat de briefwisseling tussen Pauli

en Jung wordt gepubliceerd.

G. Quispel, Bres Symposium (1977) 7.
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