s S = S

NL Fac e pb 37

INIS=mf-~9027

LINEAR INTEGRAL EQUATIONS
AND SOLITON SYSTEMS

G.R.W. QUISPEL

A




LINEAR INTEGRAL EQUATIONS

- PROEFSCHRIFT

o

’ r TER YERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE
5 WISKUNDE EN NATUURWETENSCHAPPEN

i AAN DE RIJKSUNIVERSITEIT TE LEIDEN,

I OP GEZAG VAN DE RECTOR MAGNIFICUS DR. A.A.H. KASSENAAR,
P ) HOOGLERAAR IN DE FACULTEIT DER GENEESKUNDE,
g VOLGENS BESLUIT VAN HET

i f COLLEGE VAN DEKANEN TE VERDEDIGEN OP

s WOENSDAG 2 NOVEMBER 1983 TE KLOKKE 16.15 UUR
1 door

e, GILLES REINOUT WILLEM QUISPEL

2 geboren te Bilthoven in 1953

o

WA

P
g’
p
v&’
KAl
€
o
f
3
L
»

e e et . e
RS Bt L0 L



e TR i . 7 D T e it s s et mep s .
R v < SO I L e L T SR T T N T e

s H
: b
y
§
y
N '3
i !
i it
®
&
y
£
" 3
|
L 1

ae e,

) @ ﬂ
c %
) g€ 8 3.35%
8 5 £§5%%§
5 W .W W.MWH =
; I ¢ aaf3
: § 2 5588
: e 2 B985
: £ &5 ££&88&

Leden vande
promotiecommissie

Promotor
Referent

N e g e o P
P L . ~ e AT ant e - P e e
e T L T L TR S % ; .
- A SR N E L IIIURNGTTLTRE




.,,ki L Co ,.w./.,, Yy
R N

R T L T ST U e e e e
A PRI DY - * . ; RN
R S : FT L - . " A sy T

P

SR

RSN

7] M
N i3
OQw “
= w
=
on |
s > M :
23
GE
~d B :
=0 : :
r 7] W.
xo /
Z . w
e ; V
=
=

s TR LTI i SR e W e ST T LA T .'ﬂ




. 3
j L4
N . L
& "Do not try to know the truth, for knowledge by the mind is not true knowledge. 3
But you can know what is not true - which is enough to liberate you from the i
i false. The idea that you know what is true is dangerous, for it keeps you b
} imprisoned in the mind. It ie when you do not know, that you ave free to .
imvestigate. And there can be no salvation, without investigation, because ’:f
4 non-itmvestigation is the main cause of bowndage." &
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INTRODUCTION AND SUMMARY

A
L RLL L

For [
Only

Many phenomena in physics are of an essentially nonlinear nature.
S centuries most of these phenomena were studied in linear approximation.
in recent decades the mathematical methods have begun to be developed,to study

. certain classes of nonlinear systems exactly.
L . . . .
IH In 1955 Fermi, Pasta and Ulam 1 published a paper in which they performed

a numerical investigation of a one-dimensional system of anharmonic oscillators

described by differential-difference equations of the type

u{n+1,t} - 2u(n,t) + uln-1,t)

3§u(n,t)

+ u{(u(n+1,t) - u(n,t)]2 - (u(n,t) - u(n-l,t))z} R (1)

denotes the displacement of the n'th mass point at time t.
they found no tendency toward

where u(n,t)
Contrary to what was expected at that time,
equipartition of energy among the degrees of freedom of the system.

This discovery was an important stimulus for research on dynamical systems,

vwhich at present has developed two main branches, the study of integrable

by which we mean nonlinear systems that can be solved
and the study of nonintegrable systems.

nonlinear systems,
exactly using only linear methods,
In this thesis a study will be presented of classical integrable dynamical

systems in one temporal and one spatial dimension; some general references on

For results on integrable systems in higher
and for reviews of integrable

this subject are refs. 2-8.

spatial dimensions see e.g. refs. 9 and 10,

quantum systems see refs. 11 and 12, A review of noninteérable systems can be

found in ref. 13.
One of the interesting features of integrable nonlinear dynamical systems

is the fact that, under appropriate boundary conditions, they give rise to

solitons. Solitons are solitary waves that asymptotically preserve their
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energy, momentum and amplitude upon collisicn with other solitary waves.
Some examples of integrable dynamical systems which will be discussed in this
thesis are the Korteweg-de Vries equation, which describes e.g. waves in
shallow water, the nonlinear Schr8dinger equation, occurring e.g. in the
theoretical description of plasma waves, the sine-Gordon equation, which
describes a system of coupled pendula, the equations of motion for the
isotropic and the anisotropic Heisenberg spin chain, etc. Of course these
equations also have other physical applications, as different physical
situations can often be described by the same mathematical model. For an
application of soliton systems to field theory see ref. 1L, and for an
application to solid state physics see ref. 15.

Of course integrable dynamical systems form & smell minority, as most
systems turn out to be nonintegrable. One can, however, hope that soliton
theory can in some sense be regarded as a zero'th order theory 8), that may be
used as a starting point for perturbation expansions L ).

There are several approaches that have been used to study soliton systems,

using e.g. the inverse scattering transform 2-7), the Riemann-Hilbert

8,9,17) » prolongation structures 18-20), or bilinearization 217,

method
One of the most successful of these methods uses the inverse scattering
transform, also called the inverse spectral transform. This method for
solving the initial value problem of integrable nonlinear evolution equations
under suitable boundary conditions at infinity, can be regarded as the non-
linear analogue of the Fourier transform; a thorough treatment of this analogy
is given in ref. 2. A schematic representation of the method is given in the

following diagram

initial datum at t=0 direct scattering data at t=0
uf{x,0) = ug(x) spectral problem s(o0)
T
I
' - = I3
| time evolution time evolution
1’in configuration in spectral 4
| spece space
I
1
I
solution at t>0 inverse scattering data at t>0
u{x,t) spectral problem s(t)
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The success of the inverse scattering method stems from the fact that the

piace

-

time evolution of the scattering - data is governed by linear equations, in

L

contrast to the time evolution in configuration space. One of the key steps ;
. . . . . . . A
in this method is the inverse spectral problem yielding the solution u(x,t) &
of the nonlinear evolution equation, in terms of the scattering data 8S(t). g{
[

The solution of this inverse problem is expressed by a so-called Gel'fand-
Levitan equation.

As an example, consider the case that wu(x,t)} obeys the Korteweg-

~

. . 22 .
de Vries equation s 1.e4

N
ECLER e o

R

N

= 93y -
atu axu 6uaxu ,

B 5 which first led to the discovery of the inverse scattering transform by
o 23)

o Gardner, OCreene, Kruskal and Miura The Gel'fand-Levitan equation for

e

the Korteweg-de Vries equation reads as follows

i

<o

K(x,y,t) + M(xty,t) + sz K(x,2,6)M(z+y,t) = 0 , vx , (3)
X

where the kernel M is expressed in terms of the scattering data

R(k,t) = R(k,0)exp(-8ik3t) ,
s (%)

pn(t) pn(O) =p

n

8.3
p,(t) = p (0)exp(-8pit) s
in the following way:

-]

M(x,t) = 5%- JR(k,t)exp(ikx)dk + §1 pn(t)exp(-pnx) . (5)
n=
—»

Here R(k,0), p,» and pn(O) play the role of a reflection coefficient, a
discrete eigenvalue, and a normalization factor, respectively, associated
with a Schrédinger equation in which uo(x) is the potential. A more
detailed definition of these quantities is given in ref. 2. The Gel'fand~
Levitan equation (3) is a linear equation, and from its solution K(x,y,t),
the solution u(x,t) of the Korteweg-de Vries equation (2) is obtained as

follows

u(x,t) = -23_ 1lim K(x,y,t) . (6)
X
yix
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A convincing application of the inverse scattering transform tb the
analysis of experimental data has been given by A.R. Osborne et al. in ref. 2h.
The treatment of soliton systems that will be presented in this thesis,

however, is not based on the inverse scattering transform or on one of the

other methods mentioned above, but on a new method that has been introduced by

i Fokas and Ablowitz, and which we will call the method of direet linearization.

b In the method of direct linearization one starts from a singular linear

integral equation, involving an arbitrary contour and measure in the complex

plane. This singular linear integral equation yields not only very general

’ solutions of the associated nonlinear evolution equations, but also many of

; the features of these evolution equations, e.g. Miura transformations,
linear scattering problems, Bicklund transformations, and integrable

B discretizations. The method has the advantage that different evolution

equations can be treated in a comprehensive and unifying way. (For some

general references on singular integral equations, their connection with

Sy o - e -

Riemann-Hilbert problems and with inverse spectral problems see refs. 9, 21,

26, 27.)
Very briefly, the content of this thesis is the following. In chapter II

o -

: the direct linearizations are given of several nonlinear partial differential

f equations, for example the Korteweg-de Vries equation, the modified Korteweg-

v de Vries equation, the sine-Gordon equation, the nonlinear Schrédinger

equation, and the equation of motion for the isotropic Heisenberg spin chain;

and we also discuss several relations between these equations. In chapter IIT

H the Bdcklund transformations of these partial differential equations are

treated on the basis of a singular transformation of the measure (or

equivalently of the plane-wave factor) occurring in the corresponding linear

j integral equations, and the Bdcklund transformations are used to derive the

§' direct linearization of a chain of so-called modified partial differential

E equations; for example, from the Bdcklund transformation of the nonlinear
Schrédinger equation the direct linearization of the equation of motion for

P the anisotropic Heisenberg spin chain is derived. Finally in chapter IV it is

shown that the singular linear integral equations lead in a natural way to the

direct linearizations of various nonlinear difference-difference equations.

These equations for functions of two discrete variables n and m, reduce to

the partial differential equations mentioned above, after two successive
continuum limits. As an intermediate result we also present the direct

1 linearizations of the differential-difference equations that obtain after one
¥ single continuum limit, e.g. the equation of motion for the Toda lattice, the

discrete nonlinear Schr&dinger equation, the discrete complex sine-Gordon

4
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equation, etcetera.
As an illustration, we here summarize some of the main steps of the

treatment given in this thesis, using as an example the Korteweg-de Vries
equation and its discrete analogues.
The singular integral equation providing the direct linearization of the

Korteweg-de Vries equation is the fullowing

Yy
u + iqk JdX(z) ;:: ll (1)
C

where C and di(k) denote an arbitrary contour and measure in the complex
k-plane, and where the plane-wave factor Py is given by

i(kx—k3

Hixked, 0,0) ()

P = P (x,t) = e

This equation was introduced in ref. 25, where it was shown that if the
solution u of equation (7) for a given measure dA(k) and contour € is
unique, then the function u which is given by an integration of uk==uk(x,t)

over the same contour and measure, i.e.

n = ulx, k) = }[d}\(k)uk (9)
[

obeys the potential Korteweg-de Vries equation

= 83, 2
,u = 33u 3(axu) . (10)

(Note that v = 3 u obeys the Korteweg-de Vries equation (2).) Explicit

solutions describing N solitons, for example, are obtained by choosing a

measure containing N simple poles, i.e.

c

. F en
arx(k) = s n£1 Kk dk , (11)

where cn and kn are constants, and a contour ‘C that surrounds the poles

kn. For N=2 we obtain e.g.
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(kl—kz)z
” + + 3 ——re———
v lpk]_ czpkz lClCzpklpkz 2k1k2(k1+k2)
] u= (12)
Picy Pkz (ky-k5)2
+ier — 4 ten —2 _\mm=2)m
V+dey gt %2 Bk, T C1°2Pk, Py, Tk, (kg thp)

L
’ vhere Py and Prs are given by equation (8).
If we apply a singular transformetion to the plane-wave factor G in
equation (7) of the form
e
0 ~ q.+k
s pk+pk—q_k Pk » (13)
L . ) . o
i’ and denote by u the solution of equation (T7) with Py instead of p,, and 5
. define the function 1
i’ i
b oA 1 = ~ s
¥ u = u(x,t) Idl(k)uk s (1) ?1
; ¢ z‘x
f then we can derive the following Dicklund trancformetion (ef. refs. 28 and 29) ?_
i i
3 .
; = ta(3e 15y )2 g
] 3 u 3u+ iq(n 1-1) + 3(u~u)e, (15) fZZ‘Z
i S oo u o+ 10328 - 3032y + 352(5eu)? - 2 _ 52
. atu atu 1qaxu 1qaxu zax(u u) 3(axu) 3(axu) (16) ;f(
* ]
,‘ Given an arbitrary solution u of equation (10), the Bdcklund transformation f’-"‘;ﬁ
IS . : ‘
e enables one to obtain another solution u of equation (10) after solving the i(
ordinary Riccati differential equation (15). (The integration constant is 'E

determined by eq. (16).) Using equations (13) and (11) it can be shown that &

Ey

the Bicklund transformation transforms an N-soliton solution u into an (N+1)-

JUE

soliton solution u. From equations (15) and (16) it also follows that

u~ = u-u obeys the modified Korteweg-de Vries equation

e ampne
Kot Sl

- 3, _ aic=a = _ 3 (=y24 .~ :
3 u =37 3iqu d u 2(u)axu . 1)

Introducing a second singular transformetion of the plane-wave factor

. _ Ptk . . .
P TP T P YT u~lE ar(k)d, , (18)
c
6
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it is immediately clear that 6k=5k, hence {=u. From this, one can

derive the following Bianchi-identity 30,31)
f-u -G f‘
= - . (19) o
iptiq U-l-ip+iq -
‘)- .
‘ >
Alternatively,we can say that if Py in equation (7) is given by {'
e
_ _ (2*EY (kY =
o = oylmm) = (Z5) (22) 5, 0,0) (20)
instead of by equation (8), and if the function u{n,m) is defined by S
%
u(n,m) = Idk(k)u.k . ) (21) “j.}

c

where uk=uk(n,m) is the solution of eq. (7) with Py given by (20), then u(n,m)

obeys the following difference-difference equation

u(n+1,m+1) - uln,m) u({n,m+1) - u(n+1,m) .
= - . (22) ,»

ipt+iq u{n,m+1) - u{n+i,m) - ip + iq [

' i

sk

Hence the linear integral equation (7), with (20), provides a direct '
linearization of equation (22). The N-soliton solution of equation (22) can be i
obtained using the measure given in equation (11). The 2-soliton solution e.g. 1

is again given by equation (12}, where we should now insert equation (20) for

pk] and pk2 .

Taking a continuum 1limit of equation (22) with respect to m, we obtair

u(n+1,t) -~ u(n-1,t) i
(23) .

atu(n,t) = - R )
u{n+1,t) - u{n-1,t) + 2ip
and taking a second continuum limit, with respect to n, we recover, after
some obvious transformations, the potential Korteweg-de Vries equation (10).
More details and results concerning these and other equations are given in

the following chapters of this thesis.
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ON SOME LINEAR INTEGRAL EQUATIONS GENERATING k
ff'if SOLUTIONS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS Z:
L

i A
5 3
A i
bl
L 1. Imtroduction £
i I
? The study of nonlinear partial differential equations (PDE’s), that are )f
solvable by means of the inverse-scattering transform (IST) formalism, has
. become of great interest during the last decade. For many integrable PDE’s w
}5 the various ingredients of this formalism have been established and exact LL
[; solutions, such as e.g. soliton solutions, have been found in a systematic Jz
; way'). One of the underlying difficulties for this method is the choice of
boundary conditions, which have to be taken into account from the very !
beginning. This feature very often obscures the fact that the crucial step of f
e the inverse problem, i.e., the Gel'fand-Levitan-Marchenko equation, can in E“
‘ many respects be formulated in a way, which is independent of the choice of ;"
boundary conditions. A common feature of the nonlinear PDE’s solvable via @

the IST is that solutions of these equations can be mapped onto a linear %

KN
i

inhomogeneous integral equation and it is possible to explore these integral
cquations from a more general point of view>?).

Recently, however, a new type of linear integral equation for the lineariza-
tion of the Korteweg—de Vries equation (KdV) was proposed by Fokas and
Ablowitz*), which enables one to extract complete information on the essen-

e f

10
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tial nonlinearity of the corresponding PDE, without having to go through the
details of the inverse-scattering formalism, such as e.g. the choice of boun-
dary conditions. The important feature is that the integral equation has a
singular kernel and that it contains an integration with an arbitrary measure
over a complex variable k, over an arbitrary contour in the complex k-plane.
By choosing appropriate measures and contours, the various solutions of the
KdV can be obtained directly from the integral equation.

As a first extension to the approach of Fokas and Ablowitz, one can take
into consideration a more general inhomogeneous term in the integral equa-
tion, leading to a matrix structure, which can be inferred from the solutions.
Taking into account the relations between the matrix elements, it has been
shown that the integral equation of Fokas and Ablowitz provides solutions of
the modified Korteweg—de Vries equation (MKdV) as well’). Secondly, one
can take into consideration different types of integral equations. In refs. 5, 6
we have shown that the solutions of both the nonlinear Schrodinger equation
(NLS) and the equation of motion for the classical Isotropic Heisenberg Spin
Chain (IHSC) in the continuum limit can be found from one and the same
linear integral equation. This has also been shown to be the case for the
Boussinesq equation (BSQ) and the modified Boussinesq equation (MBSQ)’).

A major advantage of this way of treating nonlinear PDE’s is that many
relations between different PDE’s become apparent in this context. As a first
example, the Miura transformation connecting e.g. the KdV and the MKdV®),
the NLS and the IHSC*'), and the BSQ and the MBSQ'"), can be derived
systematically as a corollary from the integral equations, without having to raly
on rather ad-hoc methods. Another example is the gauge equivalence between
the Lax representations of the NLS and the IHSC'), which has been derived
in a systematic way from the integral equation, cf. ref. 6. Similar gauge
equivalences have also been discovered in the context of nonlinear o-
models™). Thirdly, the integral equations lead in a direct way to the associated
linear eigenvalue problems for the PDE's under consideration, in which the
solutions of the integral equation can be identified with the eigenvectors.
Eliminating the potentials, which are the solutions of the PDE’s, one can
derive a nonlinear (integrable) PDE for the eigenvectors, cf. ref. 14. In this
way the solutions of the classical Heisenberg spin chain with uniaxial aniso-
tropy (AHSC) can be found from the linear integral equation for the NLS as
well®).

The integral equation, which we have proposed in ref. 6 for the linearization
of the nonlinear Schrédinger equation, has the following form

itkx—k21) o —il'x-12t) ,
w0+ [ ) [ a0 ey 75 D= g e, (L)
C c*
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where n is an integer labelling the different solutions. In eq. (1.1) C and C*
denote an arbitrary contour and its complex conjugate in the complex k-plane,
and dA(k) and dA*(k’) are an arbitrary measure and its complex conjugate. By
choosing different measures and contours we can find different solutions ¢{.

The choice of measures and contours is restricted by two conditions:

(i) The contour C and the measure dA(k) are to be chosen such that the
kernel of the integral equation is properly defined and regular, in the sense
that the solution ¢{”, for given measure and contour, is unique. This means
e.g. that the homogeneous integral equation, i.e. the integral equation with the
right-hand side replaced by zero, has only the zero solution.

(ii) The contour and the measure must be such that the differentiations with
respect to x and t can be shifted through the integrals.

Taking into account these conditions, it has been possible to derive PDE’s for

the functions

bune, 0= [ A0 x5, 1), (1.2)
c

defined with respect to the same measure and contour as in eq. (1.1). In
particular we have shown that the function ¢,y satisfies the NLS and that
do. = ¢10 and @, satisfy the IHSC®). By making use of the factor 1/k" in the
inhomogeneous term of eq. (1.1), we have been able to obtain solutions of
different PDE’s from one and the same integral equation.

In eq. (1.1) we have chosen a very specific dispersion relation w(k) = k? for
the time-dependence occurring in the exponentials. Many of the conclusions,
however, which can be drawn from the integral equation, are independent of
the choice of the dispersion relation. Thus an obvious generalization of the
treatment in ref. 6 is provided, if we choose a more general dispersion. In this
way it is possible to derive from the integral equation a broad class of
nonlinear PDE’s, which may have different dispersive behaviour. All the
time-independent features, however, will remain the same for the equations of
such a class.

The present paper is devoted to the study of two types of linear integral
equations, namely

*
L o0z [a@ [ave e yme - Loy a3
c c*

and
IL o(x, )+ j dA(D) ! d,\(l')fi";‘(—fi‘,l)d,(%',‘))o;"(

c

)=maEn. (14
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Eq. (1.3), which from now on will be denoted as type I, is an obvious
generalization of eq. (1.1), the difference being that the exponentials in (1.1)
are replaced by functions pi(x, t) proportional to ¢*** with the dispersion
relation w(k)=k', r being an integer, and satisfying the linear differential
equations

—idp(x, ) = kpy(x, 1), 13,p(x, 1) =k'p(x, 1), (r integer). (1.5)

Eq. (1.4) is a new integral equation (type II), in which the integrations are
performed twice over the same contour C. For both equations it is understood
that the measure and the contour are chosen such that the conditions (i) and
(i), mentioned above, are satisfied.

The outline of this paper is as follows. In section 2 we derive a set of
algebraic relations and differential equations for the quantities

Sun(t D)= [ AR T 6Px D, Y= [ AR =900 0,  (16)
[ [
where
W, 1) = f arr@) D ion, o), RE)

In section 3 the same is done for the integral equation of ty]:e I1, for which we
have

Dan, 1) = f AN T o805, 1), Wauns, ) = f AW r WD (18)
with

Wi 0= [ BED oo, o), 19)
(o

In section 4 these relations will be used, both for type I and type II, to give
a general framework in order to derive, for all positive values of r, cf. (1.5),
closed PDE’s in terms of ¢,y and vy only, and we present some explicit
results for r=2, 3, 4, 5. In section 5 also PDE’s for some other values of
(n, m) are derived, together with the Miura transformations, which connect
the solutions for different values of n and m. For negative values of r, it is
more difficult to derive closed PDE’s; some explicit results for the case
r = —1 will be presented in section 6. Finally, in section 7 it is discussed how a
reduction to a class of integral equations with only a single integration can be

T A YR RS T PR R AT ,ﬁm RO Wt R i S e RS T T S AR A S E D 1 L T L
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performed, leading e.g. to a generalization of the integral equation given by
Fokas and Ablowitz?).

The treatment we give here provides a unifying framework for many partial
differential equations. From the variety of equations, that can be described by
one and the same linear integral equation, many conclusions can be drawn.
The recent results on the connection between the conserved densities'®'”), and
the Lie-Biicklund symmetries''®) for the MKdV on the one hand, and the
ones for the sine-Gordon equation on the other hand, can be regarded as a
direct consequence of the integral equation. Furthermore, in a forthcoming
publication we will show how Bicklund transformations can be derived
immediately from the integral equation by a singular transformation of
measures”). Some of the connections we present here have also been found
by Hirota?"), who showed bty a different method that several PDE’s can be
transformed into one and the same bilinear form. The relation between
Hirota’s method and our approach, however, is yet to be clarified. Moreover,
it is not obvious that bilinearization implies exact integrability, cf. ref. 22,

2. Integral equation of type I; constitutive relations

The integral equation (1.3) can be written as a system of two coupled
integral equations, i.e.,

Y%

(
o+ f BT L (=21), 2.1a)

(M)
G- I dA*(l')p—,:Q_'_“,T =0. (2.1b)
C.

By taking the complex conjugate of (1.3) and usirg (2.1b), it is not difficult to
show that the function ¢{” also obeys an integral cguation of type I, but with
a different source term

*

G *(]! _L k() P Pr
+n j dA (D) j AN G i Cj A G @)
The functions ¢,,, and ¢, ,, which will be investigated in this paper, can be
regarded as elements of the infinite-dimensional matrices @ and ¥ resp., i.c.

®Prm = bms  (¥hom = Ym, 2.3)

where n and m can have all integer values.
These matrices have simple symmetry properties, as can be seen as follows.

e 1*Mﬂk;rh PO



Eq. (1.6) together with (2.1a) can be rewritten as

i " 1 & gl

; = [0 Lo = [ L (44 [ arvBETD). 4
4 b Cf "p.k"*cf“p.("’* né[ (o Ry eX)
4 , Interchanging the integrations over C and C* and using (2.1b), yields the
B bilinear expression

i {n) 4 (m) W g ()

bun= [ RGTEE_y [ aren¥ Y @5
A m p r

o c c

,;« ; and from (2.5) it is immediately clear that

P

2 ®=9" (2.6)
?‘ where the superscript T denotes the transposed matrix. In a similar way the
Iy bilinear expression for ,,, can be derived. From (1.6) and (2.1a) we have
g;f' ) (m)e
b bnn = [ AL (31747 [ arvarBET), @
by ¢ ¢
53‘ Inserting (2.1b) in the first term of the right-hand side yiclds
2.
3 (n) g (m) (m) ¢ ()

tnm = [arG) [ arryIEEL O @9
c c*

from which it is obvious that

P R e

¥ = - 2.9

where ¥' is the hermitean conjugate of W.
From eqs. (1.3) and (2.2), or equivalently (2.1a) and (2.1b) one can derive a

set of algebraic relations connecting the different functions ¢{” and . For
that purpose we consider the functions k’¢{"(x,t), where p is an integer.
Multiplying (1.3) by k?, we have .

L
o+ [ 0) [ anva) g RE g
c* c*

oo | dx*(n(T:',!f,)f(—f:,—)[(k'-t")+(1'f—t')1¢%"= e
© T | | 2.10)
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For positive p use can be made of the identity
p-1
kP=1"=(k-1) ; kP~ (p>0), 2.11)
=0

in order to rewrite the last term on the left-hand side of (2.10) in the following
way, using also egs. (2.1b) and (1.6),

p_l . . . *’
K ,2-;» f dA™(D) ("p_'_""Pk'Pf-"’*+ I dA() 177 P 4,;..))
c* c

= g (92" lpx + f da*(l )——.P*{;k——)) @.12)
Inserting (2.12) in (2.10) we find
E
n I; Pxpr (n)
Ko+ [r0) [ drea) G o
c c*
=1 - "2':‘ Vo S b I A BB (213)
k"‘P P K 1=0 m P K j=0 B c* l”+ 'P(k - l’). )

Thus k”¢{” obeys an integral equation of type I, but with a different source
term. Comparing eq. (2.13) with egs. (1.3) and (2.2) and using the regularity
condition that the homogeneous integral equation has only the zero solution,
we find the relation

-1
kP = ¢ —n :,Zo WA+ i), (p>0). (2.19

A similar relation can be derived for (. Multiplying (2.1b) with k?, we
have
(n)*

kP = f () (K - 1"’)!’*—4’—'—+ f drw(e el @.15)
Making use of (2.11) in the first term on the right-hand side of (2.15), and

substituting (2.14) in the second term, eq. (2.15) can be rewritten as

p-1

(n—p):
kp‘pi-) = f da *(l')% +; ¢:._jkp-—l—jpk
c* =0
p-l ) .
-n ]% f dh*(l') _.&.k = ,' (*,.,-,-4’9“_”* + ¢ﬁ',j¢¥+l—p)*). (2.16)
C‘
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Using (2.1a) and (2.1b), we immediately have

| KO0 = 9P+ 3 (@ = mi ), (>0 @.17)
i For p <0, we have, instead of (2.11)
%‘; kP ~1"=—(k-1) _gl ki (p <0), (2.18)
and this yields, by the same line of reasoning
kPo =i+ 7 12;' Wb+ by, (p<0), (.19
J and
ﬂ kP = P — ',,Eo, (835508 — 9", (p <0). (2.20)

Eqgs. (2.14), (2.17), (2.19) and (2.20) can be written in a more compact way,
using the matrices ® and ¥, cf. (2.3), and introducing the vectors ¢, and #,
with components ¢{” and ¢{”. We have the algebraic relations

K =" - - n¥*-Q, -~ n®-Q, - W, (2.21a) i
Ky =7 o + %2 Q, -~ ¥ - Q- . (2:21b) P

Here J" denotes the matrix that lowers the superscript of the components ¢
and ¢{” by 1, or equivalently it is the transposed of a matrix J, which is

defined by xv
Dam = Bmarts @ nim = oo 222 &
The matrix Q, in (2.21) is given by : .
5} g L
Q,-=34-0.4"", @=0, (2:23a) <4

1= i\::;

2! j T-i-1 ) ’i

Q,=- 3 #7-0-9"", (p<o0), (2.23b) st

J= {“}

where the matrix O is defined by /

(o)ll.ll = 8n.08m.09 . (2’24) .

and where we have identified J~' and J".
Next we derive diffcrential relations for the ¢{” and y{". For that purpose
we suppose a linear differential equation for py of the form

—idpy = kPpy, (2.25)
17

iR e e

e LR T IR T T L TR L T T S RITLE BeBalMEER 230 e SRR



S g ey s L
RN

4
,f\u‘
in
,f:

where 8 can be either 3, or —4,, corresponding to p =1 and p =r, respec-
tively, cf. eq. (1.5). Applying —id to the integral equation (1.3), we find

*

—iad™+ 7 f aa(l) f dx*(lqﬁh(—ia¢§"b
C Cc*

+ f da(l) J’ d)\*(l')Wl—)(k"—!"’)‘ﬁ""— k,,_,,pk (2.26)

Using again (2.11) for p =0, and also eq. (2.1b), eq. (2.26) can be rewritten as

*
~ia¢P+n [ ar C] (1) Gy o)

(o
1 S p-1-j
= 122; Ph-k" pe. (2.27)

From (2.27) we see that —id¢{” obeys an integral equation of type I, and by
comparing (2.27) with (1.3), and using the regularity condition, we have the

relation
p-l .
~ia6E =¥ - WL (0 =0, (2.28)

For j» <0 we can again use (2.18), from which it follows in the same way that

—IB¢(") = ¢(n—-p)+ 7 2 lVﬁ * i p¢0+l), (p <0)_ (2.29)
The relations for ¢£" can be obtained by applying —i.* 0 (2.1b). We find
—iogy = J' dA*(l') (k° ~ z"’)”""" f dA*(l‘)—E—(— I +i9)i™™.

(2.30)

For p =0, using (2.11) in the first term and (2.14) and (2.28) in the second term
of the right-hand side of (2.30), we find

—184«"‘) 2‘(,(4’* ,k”—_pk .,,IdA*(l') 4,* _’¢0+l-v)*)

p-1

-5 o0t =0, @3
2

where the last step follows from eq. (2.1a). For p <0, by similar manipula-

18
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tions, we obtain the result
-p~1 .
g == > ¢t 6, (p<0). 232)
1=0
Using the matrices JT and Q,, cf. (2.22) and (2.23), egs. (2.28), (2.29), (2.31)
and (2.32) can be rewritten as
—id, =J7 - —¥*-Q, - &y, (2.33a)
—idfy =®*-Q, - ¢y (2.33b)

Taking into account eq. (1.5) with a=a, p=1, or 3=—-9, p=r, eqgs.
(2.33a) and (2.33b) lead to the relations

0 =7 - b — n¥*-Q, - By, (2.342)
o, = ®*-Q, - ¢y, (2.34b)
—iad =JT - P —¥*- O s, (2.34c)
—id = D*- 0 &, (2.34d)

Eqgs. (2.34a)-(2.34d) in combination with the algebraic relations (2.21a) and
(2.21b) form the constitutive relations arising from the linear integral equation
(1.3) with (1.5). In fact, (2.21) and (2.34) form the linear problem for the
matrices ® and ¥, i.e. we have a set of linear equations for the wave
functions ¢ and s, of which the coefficients contain the potentials ® and ¥.
Note that the potentials ® and W can be obtained explicitly from the wave
functions ¢, and ¢4, by an integration over the contour C, cf. (1.6) and (2.3).

Multiplying (2.21) and (2.34* by k™™ and integrating over the contour C, we
can derive the algebraic relations and the PDE’s containing only the matrices
® and ¥. The result is:

O F=J" - Dd-q¥*.Q, - P-nD-Q,- V¥, (2.35a)
¥ F=J"-¥+d*.Q,- ®—n¥-Q, ¥, (2.35b)
- ®=J"-®-—n¥*.0 P, (2.35¢)
-id,W=0*-0-®, (2.35d)
i ®=J"-®-n¥*.Q, -, (2.35¢)
ia¥=0*-Q, . P, A (2.35)

Eqgs. (2.35¢)—(2.35f) for fixed r form a system of coupled partial differential
equations, which, in combination with the algebraic relations (2.35a), (2.35b)
for integer p, is completely integrable in the sense that solutions can be found

19
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from a linear integral equation, cf. (1.3), (1.6), (1.7), (2.3). (The linear integral
equation may be regarded as the spectral decomposition of the associated

linear eigenvalue problem.)

Remark. Instead of eq. (1.5) one can also consider a more general dispersion
relation

w(k)= Zr Ak, (2.36)

leading to

i3 = w(k)ps. (2.37)

In this case (2.35¢) and (2.35f) can be rewritten as

i3®=0wl") - &-n¥*-Q-d, (2.38a)

i¥=0*-Q- -, (2.38b)
in which the matrix Q is given by

Q= 2 A.Q. (2.39)

3. Integral equation of type II; copstitutive relations

The analysis, given in the preceding section for the integral equation of type
I, can be done with only minor modifications for the integral equation of type
II, given in eq. (1.4). As in section 2 we rewrite eq. (1.4) as a system of two
coupled integral equations

(n)
N f dx(l)!z—‘fr=k—1,,pk, G.1a)
(o

(n)
m_ [ 10 -
we ! A 2L =, (.1b)

Here it is not useful to introduce a quantity n = +1, since a factor i in
front of the second term of the left-hand side of (1.4) can be included in the
measure dA(I). The integral equation for the quantity w{" is again of type II,
but has a different source term

w4 ! dA(D) ! dA(l") (‘kT%)'(hTiT) wim = ! () Bl G.2)
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o We define matrices V and W by 7
2‘ (v)ll.ll = Upms (w)n.m = Wams (3-3) lr! '
:”‘!’ -: ;
cf. (1.8). These matrices are symmetric, i.c. :

y V=V, W=W, G.4)
\( as follows from the bilinear expressions e
‘ Vpm = I da(k) 1 WM™ + wPwi™) (3.5) "“
LA c P b
and v
(myyOm) 4 () o) i
e wan = [ ar00) [ arq 2R 3.6)

K+ g

~ C C
ff which can be derived in an analogous way as (2.5) and (2.8). gz,;f
L The algebraic relations for v{” and w{” can be derived as follows. From g
o (1.4) one has o
= Py ’ opr P, () J' J' / Py '
g Ko+ [ A [ @) s o+ [ vy [ aao) g it
£ c c c c i
&

X[(k" = (=P)+ (=) - 1")]of” = k.l-p Pr. 3.7

We now use the relations

kP = (=1Y = (k +1) ’2_:,: keI 1Y, (p>0), G.8)
£

and

b K- =—(k+1) 'g' k-Y(=1)*°, (p <0), (.9) i

Then eq. (3.7) can be rewritten as

kPol® + f arQ) f AN G s 1o
C [od

= k.l-. o — g - l)"(wu.-,-k"'""pu

+(=1)0,; f dx(l)m%%ﬁq). ‘ (3.10)
C
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for p 320, and
k%m+jduufdumaaﬁ§%rﬁwﬂ”
[og [og
-p-l . .
= At 1 5 (kT
+(=1Pon iy f dA(!)(k—f*ng), G.11)
[og

for p <0, cf. eq. (1.8). From eqs. (3.10) and (3.11), we can conclude, on
account of the regularity condition, that

Ko = o= 5 (w0l P+ 1P W), 20, (1)

j=0
and
-p-1
kPol = o' P+ (~1)° 2 1Y (Wi ejpod P+ (= 1)P0, W), (p <0).
(3.13)
Introducing the matrix R, by
Pl .
R,= 59 :0-Iy™", (p=0), (3.14a)
=
and
71 )
R,=-— 20 JP .0 (=N (p<0), (3.14b)
=
eqs. (3.12) and (3.13) can be combined to
ko, =" c o +(-1)’W-R, 0, +V R, - w, (3.15)

for all integer p, where v, and w, are vectors with components v{” and w{".
The algebraic relations for wi” can be derived multiplying (3.1b) by k°, i.e.

(n) P,y (n)
kewl = [ a6 -0 B4 -1y [ar 2L (3.16)
C C

Using (3.8) and (3.12) for p =0, and (3.9) and (3.13) for p <0, we find

kPw = (- 1)"w"“"’+2( Y (-0 = (=1Pw,_;wi"), (p=0),
(3.17)
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and
kPW = (—1)P Wi+ (—1)7 'g' 1Yo s 080+ (1w W)
(p <0). (3.18)

In matrix notation egs. (3.17) and (3.18) yield
kPwi =(—J"Y - w, +W-R, - w,—(=1’V R, - 1, (3.19

for all integer p.

In order to derive differential relations for »{® and wi”, we can take again
(2.25), but now we must assume p to be odd, in order that i3(pypy) contains a
factor (k +1’). Applying —id to the integral equation (1.4), we have

—ian® + j dad) j dA(l’)ik—_'_%(—iavf")
C C

! M » n) __
+ j da(l) I AN G P 7 + 1Yo = k,._, P (3.20)
Cc Cc

For odd values of p, we can use eq. (3.8) or (3.9) in the last term of the
left-hand side of (3.20). Applying (3.1b) and the regularity condition for the
integral equation (1.4), we obtain

p=l .
—:au"" =p{" P~ z 1w, P, (p odd, p >0), (3.21)
Jj=0
and
—p-1
—iav(kn) = U(kn—”— g (_lywn —l—pv(l!.ﬂ)’ (p Odd’ p <0), (3'22)

and eqs. (3.21) and (3.22) can be combined to
—iao. = JT' i -W-. Rp * Ok (p Odd), (3.23)

for odd values of p. Applying —id to eq. (3.1b) we can derive an equation for
~iaw™, which yields

—idw,=V-R, -5, (p odd). (3.24)
Tz_tking’ into account eq. (1.5) for the factors p(x, t), we have the relations
90 =J" -0, ~W-R, -0, (rodd), . - (3.259)
idwy=V-R,- % (rodd), o ‘ (3.25b)
i =J" 0, -W-0- 0, | (3.25¢)
—idw =V-0-y, (3.25d)
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which. in combination with the algebraic relations (3.15) and (3.19), form the
constitutive relations of the linear problem associated with the integral
equation (1.4).

Multiplying (3.15), (3.19) and (3.25) by k™™ and integrating over the contour
C, we obtain the equations

V.0 =J" .V+(-1’W-R,-V+V-R, - W, (3.263)

: W0 =(-J" -W+W-R,-W—(~1)’V-R, -V, (3.26b)
-i,V=J"-V-W-.0-V, (3.26¢)
-i,W=V-:0-V, (3.26d)
iV=J" -V-W-R, -V, (rodd), (3.26e)

| iaW=V-R, -V, (rodd). (3.26f)

~ Again, a more general dispersion relation can be taken into account.

¥ Choosing,

) 00 = 0(K)pre 327

}/ where w(k) is an odd meromorphic function of k, i.e.

"%i‘ w(k) = Z Ak', (A, =0, if r even), (3.28)

; we find

i3V =0W") V-W-R-V, (3.29a)

i and

{ igW=V-R-V, (3.29b)

}‘ where

‘ R= Z AR, (A, =0,if r even). (3.30)

4. Partial differential equations

In this section we present, for positive values of r, a method for deriving
matrix partial differential equations in terms of only @, in the case of the
integral equation of type I, and in terms of only V, in the case of the integral
equation of type II, without involving the matrices J or J*. From the form of
these matrix PDE’s, one immediately has partial differential equations con-
taining only the (0, 0) components of the matrices ® and V, i.e. the functions
oo and voy.

2k

RIECARIIR, A2 TR D T ARl I =

T A B N o R AR TSI G RS
i



4.1. Matrix PDE’s for type I

In order to get rid of the matrice: J", we first derive a recursive relation for
the quantity

Fi’)-"p"k_ﬂ*"op'¢k=kp¢k+ﬂ¢'°p'*b @.n
cf. (2.21a), occurring in the right-hand side of (2.33a). o
Using (2.34c) and the recursion relation s
Q,=4-Q,,+0-d""'=Q, -d"+J4°'. 0, 4.2)
cf. (2.23a), (2.23b), which is valid for positive, as well as negative values of p,
we obtain
FP = Jr. (—idypy +¥* -0 - Pp)—n¥*-(J*'- 0+ Q- 37 s
4.3)

We rewrite eq. (4.3), using also (2.35d), as
F(kp) == iax(‘lTp-l : ¢k - "I‘I’* ° op—l * ¢k)_ i"lax(** * Qp—l ¢ ¢k)
+@™ W - 9.0 @,
~nW* Q- (—id,dh + 7 W* -0 )
= —igFP -G *.0- ¢~ ®-0-GL", 4.9
where we have introduced the vector
GP=—d" - +kP + ¥ - Q, - =D*-Q, - &y, 4.5)
cf. (2.21b), which occurs in (2.34b), and the matrix
G‘"’!—JT'-\I'+\I'-J’+n\l'-Qp'\l'=¢*-0p'd>, 4.6)

cf. (2.35b), (2.35f), which can be obtained from (4.5), after an integration over

the contour C.
Next we express G in terms of F{. Differentiating (4.5) with respect to x, Ly

we find, using (2.34d) and (2.35d),
-3, GP=(k? —Jd"” + n¥ - Q) ®*-0:¢,+0P*-0-®:Q,-¥,. (4.7)

Inserting in eq. (4.7), eq. (4.1), and the matrix

FP=J" . ®-n¥*-Q,  ®, (4.8)
which can be obtained from (4.1), after an integration over the contour C, we
find
-GV =®*-0-F -F*.0. ¢, 4.9
25
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Eq. (4.9) can be formally solved and inserted in (4.4), which leads to
FP=0IFy™), . (4.10)

where the action of the operator £2 on an arbitrary vector a;, with components
as®, is defined as
Qlal=-ida—in®-0-3;'@®*-0-a,—A*-0-,)
+ind; (®-O-A*—A-0:-9%)-0- ¢, @4.11)

and the elements of the associated matrix A are given by

W = Gams nn = [ AAK) £ 0 @12
c

In eq. (4.11) 3;' denotes an integration over x, in which the integration
constant has yet to be determined. In appendix A, it will be shown that no
undetermined integration constants appear in the right-hand side of (4.10). For
every p >0, the vector F{’ = —ia¢, can be evaluated using

FP = 0°[dy] (4.13)

and no integration constant will occur in the final result.
The linear problem corresponding to (2.21) and (2.33), for positive r, i.e.
w(k)=k", (r>0) and id,p, = k'p; in (1.5), can be expressed as

o = F = Q'[ ], (4.142)
oy = G =i3;'(®* - 0 - '[d:] - Q' [®]*-O- y), (4.14b)
—iapx = kb + P - O - s, (4.14c)
- = ®* - 0+ oy, (4.14d)

in which the action of the operator {2 on an arbitrary matrix A is defined as

Q[A] = —id,A—in®-0-3;'(®*-O-A—A*-0 - P)

+ind;'(®-0O-A*-A-0-9*%).0-P . 4.15)
The corresponding PDE can be expressed as
i9,® = N2'[P], (4.16)

as follows by integrating (4.14a) over the contour C. Furthermore, from the
form of the operator {2 or from the relations (A.5), (A.6) and (4.4) it is obvious
that the (0,0) element of the matrix relation (4.16) leads to a closed partial
differential equation, containing only ¢o. The corresponding linear problem is
given by the n =0 component of (4.14a)—(4.14d).
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In order to obtain the PDE for ¢, for a specific value of r in an explicit
form, one first has to evaluate the vector F{? = 2'[¢y). The vectors F{” and
G, for positive 7, can be found, either by using (4.10) a number of times in
such a way that the “integrations” ;' can be cancelled in every step, or by
applying the recursion relations (A.5) and (A.6), in combination with (4.4). The
results for r = 1,2, 3,4, 5 are presented in appendix B. The PDE’s for ¢, for

r=2,3,4,5 can be found, integrating (B.2)-(B.5) over the contour C, and i3
inserting the result in (4.16). We find ,
r=2 iodeo+ dboo+2nldodd0s =0, @17
: # r=3, 80— 33Poo—6m|Pod d:P0s=0, (4.18)
r=4, iddoo— diboo— (Bldoddib0s+ 662(duber)’ ;
i + 24253208 0 + 48, b0 Po0) + 6|0l P00 =0, (4.19) :: N
51 i r=5, duboo+ 3o+ 10mlldool’didboo+ (33030 ) dboo
f + ool 3268 N 3xbog) + 268 L2:b0) 3300 + |9:Soof d:bo] o
+ 30} dol* 8,00 = 0. (4.20) ko
b, o o
!1: ? Eq. (4.17), for r =2, is the nonlinear Schriodinger equation (NLS); eq. (4.18), .
( i for r =3, may be called the complex modified Korteweg—de Vries equation, C.
whereas eqgs. (4.19) and (4.20), for r =4 and r =5, respectively, have to our ;,
knowledge not been given before in the literature. o
Remarks
(i) By applying the operator £2° to the functions ¢, ,, extra factors k” and [*
are introduced in the integrands of the bilinear expression (2.5). In fact, using ,
the property
f dA(K) L gyl + f dA*() L wimrgime = o, @21
2 [ o e L

and eqgs. (2.33) and (2.21a), one can show that
—idbn = [ AWK L0900 [arrarnr Suneie, @)
c c* r

and furthermore we have — i@ = 2°[®]. Operators 2 were already formulated
in a different context in ref. 23, see also ref. 24.

(ii) As was noted at the end of section 2, it is also possible to choose a more
general dispersion relation w(k)=2,Ak’ in the integral equation, cf. eq.
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(2.38). Taking into account only positive powers of k, i.e. A, =0 for r <0, we
obtain PDE’s of the form

; io®= 20 A [P (4.23)

All PDE’s of the form (4.23) are completely integrable in the sense that
solutions can be found from the linear integral equation (1.3) with the
o dispersion relation w(k) =Z, A,k". The (0, 0) element of (4.23) leads to a closed
PDE for ¢, the solutions of which can be obtained from (1.3) and (1.6) with
n =m =0. An example of such a PDE is Hirota’s equation®), which can be

obtained, taking A, =0 for r#2,3, i.e.

e

LRI

i i8ipog + 2930 — iX39 300 = —2mAs| ool b0 + 6iAs7|bof* Bibos- 4.24)
4.2. Matrix PDE’s for type I1

The elimination of the matrices J” in the case of the integral equation of
1? type II, proceeds in a similar way as in the previous subsection. We define the
3}“" quantities

¢ Y =J" 0 +(-1’W-R, -0, = k"0, =V R, * W, (4.25)
: and

= Z;(p)’ kak - (—'JT)p c W -W- H,, * W= —(—l)"V . H,, * Ok, (4.26)
for all integer p, cf. (3.15) and (3.19). Then, for all odd r, we have the
:‘ equations

0o = Y, (4.272)

i
‘ iow, = Z{. (4.27b)

In an analogous way as before we can derive the recursion relation

YP =i, Y "+V- 0. ZF '~ (~1)"'Z¢ . 0 - 9, (4.28)

and the relation

—i0,ZP = —(-1)’Y?. 0.9, +V -0 - Y, (4.29)
where '
YO =y .V+(~1’W-R, -V, (4.30)
and
Z0=W.- /- (-JV -W-W-R, - W. 4.31)
28
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In the derivation of (4.28) and (4.29) we have made use of the recursion
relation

R,.,=J:R,+0-(-J"Y=-R,-JT+J° 0, 4.32)

and eqs. (3.25¢), (3.25d), (3.26d), (4.25), (4.26), (4.30) and (4.31).
From egs. (4.28) and (4.29) it can be inferred that

+ (.39
- (GREL 5
where ’
2*(a]=—ida +iV-0:3;'(V-0-a,+A-0-v,)

+id;'(V-0-A£A-0:-V):0 -9, 4.34)

and, in a similar way as before it can be shown that the integrations ;' do not
yieid undetermined constants in (4.33), cf. appendix A.

The linear problem, corresponding to (3.15), (3.19) and (3.25), can be
expressed as, cf. (4.27a) and (4.27b),

ido, =YL =@ 0H" "0 [n], (r odd), (4.35a)

idwm =2Z"=i3;'V-0- Y +Y?.0-9p), (rodd), (4.35b)

—idw =koy—V-0-w, (4.35¢)

— 0w =V-0-19, (4.35d)
and we have the matrix PDE

i V=22 "Q V], (r odd), (4.36)
in which

D*[A]=-idA+iV-0-3;'(V-O-A+xA-0:V)

+i3;'(V-0-AxA-0-¥)- 0.V, 4.37)

for an arbitrary A. From the form of the operators 2%, 2~, or from the
recursion relations (A.8), (A.9) and (4.29), it is clear that the (0, 0) element of
(4.36) yields a closed PDE containing only vy, and the n =0 component of
(4.35a)(4.35d) is the associated linear problem.

As an example we write down the PDE’s obeyed by voo, for the valucs
r=3,5. Using the explicit expressions for Y and Y{, given in egs. (C.2a)
and (C.3a) of appendix C, we find

r=3, 3vgo— dwoe=—6V50d,V00, (4.38)
r=5, oo+ diveo= 10[034d3v00+ 4000(d,000)33000
+ (3,000’1 — 300509000 (4.39)
29

D e R R S L T L SR T S L RS T K G AR SNSRI RIS S SRS R L S




Sooas e e

A i

Eq. (4.38) is the modified Korteweg—de Vries equation (MKdV) and (4.39) is a
higher-order MKdV type of equation. (Note that (4.20) may be regarded as a
complex version of (4.39)). As in the previous subsection one may also

I
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i N
} consider linear combinations of PDE’s, corresponding to a dispersion relation ,
. w(k)=Z,Ak", r>0, but now w(k) must be an odd function of k. “
5. Miura transformations

In section 4 matrix partial differential equations for positive r were derived, ,
from which immediately PDE’s for the (0, 0) element of ® and V could be !
: deduced. In this section we will consider the possibility of deriving closed :
equations for other elements of the matrices @ and V. One could attempt to 2
derive these equations by applying J and J™ a number of times to the integral ‘

’ equation, and solving the matrices O-® -0 and O-V -0 via the relations
(2.35) and (3.26). For general ¢,,,, cf. (1.6), or v,,,, cf. (1.8), this procedure is ‘r
i quite intricate and it is not obvious that a closed PDE containing only one L;
U specific ¢,.. or v,, can be derived. In this section we shall derive explicit {
' PDE’s for the (0,1), (1,0) and (1, 1) elements, restricting ourselves to the '.;-f.
choice of sign n =1 in eq. (1.3). This is relatively easy, because the algebraic iy
i relations (2.35a), (2.35b), or (3.26a), (3.26b), reduce in this case to relations ﬁ
containing only two matrix elements, rather than three, which is the usual i
;" ‘ situation. t
1 o
I ¢
5.1. Partial differential equation for ¢,q (type I) A
: 4
51 Taking the (1, 1) element of (2.35b) for n =1, p = 1, we have ”
Y10 = Yo+ & oo — Yr oo, (5.1) E
: and hence, cf. (2.6) and (2.9), f
- : 1=+ ol = 1. (.2) F
; Taking the (1,0) element of egs. (2.35c) and (2.35d), with n =1, we can ?
express ¢ in terms of ¢, and ¢, i.e. £
=id:10= (1 — ¢ oo, (5.3a) f‘
—id,P10= &% oP00s (5.3b)
and eliminating ¢,,, we find
(- 103t o= d10d:dT . (L))
30
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Differentiating (5.3a) with respect to x and using (5.2), we have

An explicit expression for 3, In ¢y in terms of ¢,,, can be found using the
PDE for ¢os and expressing the terms in the right-hand side in terms of

—aia= DM o g+ (1- Podud-i Indod.  55)

and from (5.3a) and (5.4) we obtain an explicit expression for 8, In ¢dgp in

terms of ¢, i.c. e
_334'10 D109:0% o ‘
I $n= oo " 1= [l G6)

2

9, In ¢g0, as given by (5.6), and of

Pacn g, 14

3 . -
¢ |oof” = %{-,z, 67

| 1 I
;\ cf. (5.3a) and (5.2). For ¢,y we may choose any PDE of the type (4.16), but as :“ :
i an example we shall restrict ourselves to Hirota’s equation™), with =1, o
%"f given in eq. (4.24). From (4.24) 3, In ¢, can be expressed as

i3, In doo = —ALy" +y?) +idiy" +3y"y' +")
2
+ i“i‘—‘,’;‘a:-’!)—',(—zxz +6iA3y"), (5.8)

where we have used the abbreviation y =In¢oo, and the primes denote

differentiations with respect to x.
The function ¢, can be expressed in terms of ¢,o, using (5.6)~(5.8) and the

relation

boo= ﬁ%—m exp [i ! {dt, 3, Im In dgo+dl, 3, Im In ¢0_0}], .9)

where T is an arbitrary curve in the (x, t)-plane connecting the points (0, 0)
and (x, t), and (dl,, dl,) is an infinitesimal two-dimensional vector tangent to I"
(According to Stokes’ theorem the right-hand side of (5.9) is independent of
the choice of I').

The PDE for ¢,, can be derived, taking the (1,0) element of (4.23) with
A, =0 for r# 2,3, and using (B.2a)/and (B.3a) with = 1, given in appendix B.

R A o

We have
i910=— 2710 +iA303b10— 2N doold 1o + 3ik 11 008 00,00
+ 3iA | dool’d:d1 0. (5.10)
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Inserting (5.6) and (5.7), eq. (5.10) can be rewritten as

1910 = —A282010+10:03010
—2)*24’10 3@ 1of” + 3ir;]3 xd’mI axlf"|0+3lk3¢lo(ax 10310
- 4’10

3“34’1,0[ x¢l,(l! 341 o
R P P G0

Eq. (5.11) is an integrable PDE, since its solutions can be obtained from the
linear integral equation (1.3) with the dispersion relation w(k) = A:k* + Ask*, and
eq. (5.9) provides the Miura transformation mapping an arbitrary solution of
(5.11) on a solution of Hirota’s equation (5.8), (4.24).

The special case A; =0 of eq. (5.11) has been studied extensively in ref. 6,
where it was also proved that this equation is equivalent to the equation of
motion for the classical Isotropic Heisenberg Spin Chain (IHSC). Eq. (5.11)
for A, = 0 has, to our knowledge, not been given before in the literature.

5.2. Partial differential equation for ¢, (type I)

We now proceed with the derivation of a PDE for ¢,,. From the relations
(2.35¢) and (2.35d) with » = 1, we have, taking the (1, 1) element

—idbr =~ ¢t b0, (5.12a)

—iaxl‘l“ = |¢|‘0|2. (5]2b)
Eq. (5.12a), together with (5.2), implies that

o = 3% 3(1— 4|o.1, D" 5.13)

By differentiating (5.12a) with respect to x, and using (5.4), (5.2) and (5.12a),
we have

—i(1 = ¢} )5, 0+14’|oa ldLQL—l"bl‘gljxd’m

_ax =
) — Y
xiz,l_:d (axld?|.0|2 - 8, lﬂ ¢|‘o), (5 14)
so that
2

a1 =3;[1F(1-4l5 1”2 x¢“—JAMML§m-
n ¢0=3[15( acb1.1) J—_Lx¢|| =40, (5.15)
The relation for 3, In ¢4, in terms of ¢,,;, can be inferred from (5.15), (5.13)
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and

id, In ¢.0 = —Az(z"+ %) +iky(z" + 32"2' + 2°)

‘ ,
+3 (=2A)z' PP+ 3insz™*(2" + 22 2)) + A-Iﬂd—;)j 3z, (5.16)
|¢ o = |1l

with z =In ¢,4, which follows directly from (5.11). The function ¢, can be
expressed in terms of ¢, ,, using (5.13), (5.15), (5.16) and the relation

dro=Lx31— 48,0,

X exp [i f {dl, Im &, In ¢, +dl, Im 3, In ¢,‘0}], (.17
I

cf. also (5.9) for the meaning of I, di, and di,.
The 7*DE for ¢, can be derived taking the (1,1) element of (4.23), and using
the expressions (B2a), (B.3a), given in appendix B. We have

0011 = —A(211 + 207 00% o) +iA[321.1 + 6(3, In B0} odF ol. (5.18)
Using (5.13), (5.15) and the relation
Dladto=(2:81)3|d 1o — D10 330 1.- (5.19)

which can be inferred from (5.3a), (5.2), (5.12a) and (5.14), in (5.18), we obtain
the PDE for ¢, ,, i.e.

13011 = FAA(3:1.0)3:(1 — 4|3, )" — (331 )(1 — 4|31, )"

+iks [ai¢1.l +6(0%, [ aub1, + —"JMULT ax¢,,.]. (5.20)

—4]0,0,

Eq. (5.20) is an integrable PDE in the sense that its solutions can be obtained
from the linear integral equation (1.3) with w(k) = A,k>+ Ask* and n = 1.

Introducing a real 3-dimensional vector § =(S*, §*, §°) with §:§=1, and
identifying

S*=S*+iS' = —2i3,¢,,, and §* = F(1 — 43,0, ", (5.21)
eq. (5.20) can be differentiated to give
3,8 = A>S X 328 + 1;8,[928 +38(3,8) - 3,S]. (5.22)

Eq. (5.22) has been given before by Papanicolaou®) and reduces in the case
A;=0 to the ITHSC. The Miura transformations (5.17) and (5.9) provide a
mapping of the solutions of the Papanicolaou equation (5.22) on solutions of
the Hirota equation (4.24). (A related mapping was obtained in ref. 26, by
extending the line of reasoning given in ref. 9 for the special case A;=0.)
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5.3. Integral equation of type II

So far we only considered Miura transformations that could be derived from
the relations (2.35) for the integral equation of type I. About the integral
equation of type I1 we can be very short. In fact, taking the (1,0) and (1, 1)
elements of (3.26¢) and (3.26d), we have

—idw10=(1—w,gvgq, (5.23a)
—id,W10= v)0000, (5.23b)
=801 = (1= wi v, (5.23¢c)
—ig,wi, = vig, (5.23d)

together with the algebraic relation
(A-w+vi=1, (5.24)
cf. (3.26b). From (5.23a) and (5.24), ve, can be solved, giving

la,v.o

and from (5.23c) and (5.24) we have
2! 31+ 43,0, )" (5.26)

= —id (arcsin v, ), (5.25)

Egs. (5.25) and (5.26) imply that in the case of the integral equation of type II,
the transformations from v, to voo and from v, to v,o become trivial, so that
the PDE's for v, and v, are equivalent to the one for vg,.

6. Complex sine-Gordon equation

Although the relations (2.35), which were derived in section 2 for the
integral equation of type I, and the relations (3.26), which were derived in
section 3 for the integral equation of type II, are valid for all integer r, the
method for finding partial differential equations containing only ¢,,, which we
developed in section 4, is restricted to positive values of r. For negative r
values the situation is more complicated. For the special case r=-—1,
however, it is possible to derive closed PDE’s for the functions ¢q0, ¢o; = @0
and ¢;,, as will be shown in this section. In appendix D, we shall give a
method to derive three coupled equations in ¢q, ¢1o and ¢,,, which applies to
all negative r values.
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6.1. Integral equation of type I

In the case r = —1, taking into account that Q_,=—dJ"7- 0 - J, cf. eq. (2.23),
we find from egqs. (2.34a) and (2.34¢), taking n =1,

3 =W +¥*-J7-0-J) (T —¥*-0- )

— (8, ¥*) JT-0-d- oy, (6.1)
which, in view of (2.35b) and (2.35d), can be rewritten as
3.0, =P, +P-0-*-Q_,- P+ P-Q_, - P*-0- ;. (6.2)

From eq. (6.2) we immediately obtain three coupled PDE’s containing only
dog, 910 and @, viz.

33100 = (1 — 2|1 oD oo (6.3a)
3,81 0=(1— |¢|.0|2)¢|.0 - ¢(),0¢T.o¢l.h (6.3b)
3311 =(1=2d1P\.. (6.3¢)

Also for other negative r, it is possible to derive three coupled equations, as
will be shown in appendix D. For r = —1, it is rather easy to derive closed

PDE’s containing only ¢, ¢10 and ¢ ,.
In fact, taking the (0, 0) element of (2.35¢) for r = —1, we have

iard’o.o =(1- ll’l.o)d’l.o, 6.4)
which, in combination with the algebraic relation (5.2), yields
1ol = 22 31— 4 aidool)"”. (6.5)

Inserting (6.5) in (6.3a) and differentiating the result with respect to ¢t, we
obtain

=F a-‘
X= T T ™ 6.6)

with
X = 28,00 6.7)

Eq. (6.6) can be called the complex sine-Gordon equation, since for real
x =sin @ it reduces to 3,9,6 = Fsin 6. Eq. (6.6) has been given before in eq.
(3.5) of ref. 27, where it has been inferred from the equations for the reduced
nonlinear O(4) o-model, derived by Pohlmeyer™) and Lund and Regge®). A
bilinearization of (6.6) was given in ref. 21, while the inverse scattering
scheme was formulated in ref. 30. (In our approach, the Gel'fand-Levitan
equation can be obtained directly from the linear integral equation, as shown

g r"?ﬁ;‘:"""‘ .
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in appendix A of ref. 6 by a line of reasoning, which is independent of the

value of r.)
Using eq. (5.3a) for ¢y and the equation

_ 19,
b= Ty 6.8)

which follows from the (1,0) element of (2.34e) for r=—1, in combination
with the algebraic relation (5.2), eq. (6.3b) leads to

0x0:pr0+ m‘?%ﬁ%l&z dto=(1—|d1H 10 6.9

Eq. (6.9) was for the first time given by Getmanov®') and can be shown to be
related to the reduced nonlinear O(4) o-model, cf. ref. 27.
Finally, inserting (5.13) into (6.3c), we obtain

Bddr= F(1—4a.0, )" 1. (6.10)
which, after differentiating with respect to x, leads to the complex sine-
Gordon equation (6.6) with y =23,¢,,, and 3, < 3,

Remarks

(1) From eqs. (2.34) and (2.21), for r=-1, one can derive the Lax
representations”) for the complex sine-Gordon equation. Some details of the

derivation will be given in appendix E.
(ii) In appendix D, it will be shown, that for all negative values of 7, one can
derive three coupled equations in ¢gg, dg1 = P10 and ¢, ;.

6.2. Integral equation of type II

From the integral equation of type II, using R_,=J7- 0:J, cf. (3.14), we
find from (3.26a) and (3.26b)

300, =W-W-J:0:9) - 0T, —-W-0-0)+i(dW)-WT-0-J) - 1,
(6.11)

which, in view of (3.26b) and (3.26d) can be rewritten as
300, =0, —V-0:VJT-0:-d-5,-V-JT-0:4:V-0-p, (6.12)

Multiplying (6.12) by k™, and integrating over the contour C, and taking the
(0, 0) element of the resulting matrix equation, we have

3xdv00 = Vo1 — 20} ). (6.13)

- g

aal

ey v

&1

T

SRR

s
¢

[ SN X AN

o
P

TR e
p N

pp—

i

S

A



V
[ NN
NEE s e

A I S
v . 3

g
‘: From the (0, 0) element of (3.26e) we have i
:‘ 13900 = v1(1 — W), (6.14) ;i"
! ;
.: which, in combination with the algebraic relation o
vt (- wif=1, €19
(‘/ yields ?,
o v =3£3[1+ 43001 ©.16) *
% Inserting (6.16) in (6.13), we obtain a closed PDE for vy, viz. l
: 3:drv0 = Fogell +4(3,000)1"7, (6.17) g
: which, after substituting ia
h | u = arcsin 2i9,v,,, (6.18)
7 becomes the sine-Gordon equation
; BB = Fsin u. (6.19)
Ry

In a similar way as before one may derive closed PDE’s for v, and v;,. We
< shall not write down the result, because the Miura transformations (5.25) and
(5.26) are trivial, so that the PDE’s for v,, and v,, are equivalent to the
sine-Gordon equation.

7. The Korteweg—de Vries equation and the modified nonlinear

x Schridinger equation Pl
vu i Jo
¥ e
g 7.1. Reduction of the integral equation of type II
. |

f : In this section we will show how the integral equation of type II reduces to .i
i another type of integral equation with only one integration, instead of a
two-fold integration. For that purpose we consider egs. (3.1), cf. eq. (1.4), and """jj

introduce the quantity
Y—iwf?, 7.1

Then egs. (3.1a) and (3.1b) can be combined into a single integral equation, i.e.

a3 R
ORI Y

u}(n) - vs:l

&

(n)
1 +ip, f a2 = ki e (1.2)
C

Eq. (7.2) can be regarded as a generalization of the integral equation, given by
Fokas and Ablowitz*) for n =0, cf. also ref. 5.
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The relations for u{™ can be found by combining the relations for the
quantities v{” and w{", which we have given in section 3. From egs. (3.15) and
(3.19), we find

kPu, =J” -, +iU-R, - w, (p even), (7.3)

for all even integers p, where u, denotes the vector with components u{” and
the matrix U is defined by

O = th i = [ INC) gm0, (1.4)
c
and from (7.1) we find
U=V-iw=U", 7.5)
cf. also (3.4). From egs. (3.23) and (3.24) we obtain
—idu, =JdT -0, ~iU-R, - v, (p odd), (7.6)

for odd integer p. Making use of (3.15) and (3.19), but now for odd p-values,
we have

ku =207 -0, ~Jd7 - +iU-R, <5, —2iU R, - v,, (p odd), a.n
leading, in combination with (7.6) to

(k? +2id)u, =—J7 <w,+iU-R, -, (p odd). (7.8)

Taking into account eq. (1.5) for the factors p(x,t), eq. (7.8) can be

expressed as

(k+2id ) =—d" u +iU-0-u, (7.9

2idu =k'u +97 - u, —iU R, - u, (r odd). (7.10)

Eqgs. (7.3), (7.9) and (7.10) are the constitutive relations associated with the
integral equation and may be also derived directly fromn (7.2). Eq. (7.3) for
p =2, and eq. (7.9), can be combined in order to eliminate J” and this gives

(k +18,)idu = —(3,U) - O - u, (7.11)
where we have also used the relation

-2i3,U=U-J4+J"-U-iv-0-U, (7.12)
which can be derived multiplying (7.9) by k™™ and integrating over the
contour C.

As an example we consider the special value r =3, corresponding to the
dispersion relation w(k) = k°. In that case, eq. (7.10) can be further evaluated,
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using egs. (C.2a) and (C.2b) of appendix C and the identification

i =YY -izQ. (7.13)
The result is

3 — 3w =—3(3,U) - 0 - 3,m, (7.19)
and integrating over C we obtain

(3, -3 =-33,V)-0-4,V. (7.15)
The (0, 0) element of (7.15) is given by

(3 — 3Dugo + 3(3,u00)* = 0, (7.16)

which is the potential Korteweg-de Vries equation, i.e. d,u,, satisfies the

KdV.
The Miura transformation, mapping the solutions vy, of the MKdV on

solutions a,uy of the KdV, can be inferred from the (C.0) element of the
matrix relation

dU=95V+V-0-V, (7.17

which follows from (7.5) and (3.26d).
A PDE for u,, can be obtained, taking the (1, 0) element of (7.15). We have

(3, — 3DU 1 = —3(BU 1 0)d:Hog- (7.18)

The factor 3.u, can be eliminated from (7.18), using the (0, 1) element of the
matrix relation

=i U-Jd+(3,U)-0-U, (7.19)
which follows by integrating (7.11) over the contour C. From (7.19) we have
Aty = (i + uy )" 33Uy 0, (7.20)
and (7.18) can be expressed as
_ 2
(8 — 0y = —20idilig (7.21)

i+ U0

Eq. (7.21) is equivalent to (4.38), which is the MKdV, as a consequence of the

relation

Voo = a, In (i + u|'g), (7.22)

which can be inferred from the (1, 0) element of (7.5), together with the (1, 0)
clement of (3.26d). As a result, the solutions of the MKdV can also be
inferred from the integral equation of Fokas and Ablowitz, i.e. (7.2) with
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n =0, using F ,

voo= 2, In [i+ [ drciy ufk ] (7.23) |
c
Also for u,;, one can derive a PDE, which is equivalent to the MKdV. /3
Remark.
: For the case r = 5, taking into account the n = 0 components of the vectors
5 Y and Z given in egs. (C.3a) and (C.3b) of appendix C and performing an
{ integration over the contour C, it can be shown that
ij dtoo = —i(Y? —iZD)4 .
" = =300+ 1003100 ditto + S(35u00)” — 10(3to”. (7.24) |
Eq. (7.24) is a (potential) higher-order Korteweg-de Vries equation, and the i
§: higher-order KdV for v = d,u,, has already been given in ref. 32. The (0, 0) S
i element of (7.17) provides again the Miura transformation mapping a solution
% of (4.39) on a solution of (7.24). Eq. (7.24) may also be derived using the _
‘ constitutive relations associated with the integral equation (7.2). (5
§1’ 7.2. The modified nonlinear Schrodinger equation ’
}J In this subsection we consider the integral equation of type I, (1.3) in the
% case that n =—1. In that case it is possible to express the constitutive
i relations in terms of the vector -
P = b + i (7.25a)
7 and the corresponding matrix A
¢ P=0+iV. (7.25b) B
N
?’;: From the algebraic relations (2.21a), (2.21b) and egs. (2.34a)-(2.34d) with -
g‘, n = -1, we have ;
fr: —id g =Jd" by +iP*- O &y, (7.26a)
) 3 (—k=id)p=—id" -4 ~P -0 - th, (7.26b) 1«
‘ and ,‘
g i
iop =d" - & +iP*- Q, - & (1.27) i

Considering, as an example, the dispersion relation w(k)= A,kZ+ Ak,

ko
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5
leading to [
) iaﬁ = (Azkz + A;k’)pk, D= - 2A2 + 3iA38,, ' (7.28) ﬁ ‘
eq. (7.27) can be expressed as g
Ga, + Azai'— i)‘aai)h =(aP*-0- D, + 30(0,P):-O- Wi, (7.29) ’
which can be derived, using eqs. (B.2a), (B.2b), (B.3a) and (B.3b) of appendix Jf .
B with n =—1. e
From the n =1 component of (7.26a), (7.26b) with n = —1, one can solve
& and ¢, in terms of p{’ and p,,. The result is
o _ —iapl’
¢k 1+ ipl*,o’ (7.303)
and
o _ i(—k —ia )p(l) 7.30b ’
$i'= 1-ipyp ° (7.300) o
Inserting (7.30a) in (7.29) we obtain b
_ m_ (3.p% o)axpk)
(@19, + 2,32 —ir:0)p " = 2iA, 1 +ipt,
(M ) .
P k _O0Pio 3xp [
+3ir(0.p1 0)[ i9, (1 +ip%} o) 1—ipio1 +1P|o] (7.31a) 7
and from (7.30a), (7.30b) and the n = 0 component of (2.34d) we have :
(—k—ia)p"\ _ (3,pt o)3£ ‘
8,( I—ipqo ) |1_1P|0| (7.310) i -
The relations (7.31a) and (7.31b) form the linear problem associated with the "
PDE for p,,, which after substituting
a=1-ip (7.32)
can be expressed as
(3, + As32—ir,00q = 2424l _ 3iA;(a,q*)(a (—ﬂ) +@ay ) (7.33)
q laf* E
The Miura transformation mapping solutions p;, of (7.33), cf. (7.32), on
solutions of equation (4.24) with n = —1, can be found integrating (7.30a) over
the contour C. .
For A,=0, A, =1, eq. (7.33) reduces to '
2 » i
(i, +9)q = A';L."l, (7.34)
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which is the modified nonlinear Schrédinger equation (MNLS). Note in this
connection that the substitution g =Va vyields eq. (3.7) of ref. 15 in the
limiting case s -0, A—0. In ref. 15 we have also shown that the correspond-
ing potential equation, in terms of one real variable f, i.e.

2 (,L) +va (5 —%f—zﬁf—z) =0, (7.35)

has similarity solutions of the type f = 5t + F(x/V'1), satisfying Painlevé IV. .

For some details on the derivation of (7.35) from (7.34) we refer to appendix

F.
The considerations given above imply in particular that the MNLS and the

potential MNLS are completely integrable, since solutions can be. obtained
from the linear integral equations (2.1a), (2.1b). Furthermore, on substituting
s = 3 In g, eq. (7.34) for the MNLS can be expressed as

10,5 + 325 = {29,)s) — 3,57, (7.36)

which may be regarded as a complex extension of the Burgers equation.
In the special case A, =0, A3 = 1, the substitution s = 9, In g in (7.33) leads to

38 — 935 = 3,[3(3,5)(s — s*) + 5° = 355> + 6|s[(s* — 5)), (7.37)

which is an integrable complex version of the modified Korteweg~de Vries
equation, which differs from the complex MKdV given in (4.18).

Remark.

The vector p, can be solved directly from the integral equation

(n)x
p?) - ipk I dA*(l’)f_l__ I = % Pxs (7.383)
c*

which can be inferred from (2.1a) and (2.1b), or equivalently from the integral
equation

x *

" ’ m=l i ’ ’

piy_!d;\(l)cf dx*(l')—-&—(k_,,xi._,)l)f Y=ot I dA"'(k)k"'(k—kk')'
. C‘

(7.38b)

Note that only eq. (7.38b) can be used for a direct derivation of the con-
stitutive relations, since eq. (7.38a) is not of the right type for that purpose.
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Appendix A

;

l;:::; In order to show that the integration constants drop out in eq. (4.10), we L
= consider the relation 7 ;
2y N 3
wnd CP=—"-q¥-0)-J" " -+ kP + ¥ - J-Q,_, - ¢, (A1) -
5
which can be found from (4.5), inserting (4.2). From the algebraic relations t
5 (2:21b) for ke, and (2.35b) for ¥ -J, we find b
/;: G?® = (JT— n¥-0)- (k’_l*k —Jrt. w+n¥- °P-| ‘) g;
+3*.0-(k"'¢ +7#-Q, - ¥,) .
L —(WT-n¥-0)-G¢ ™"+ #*-0-FP™. A2)
" Assuming, by induction, that G " can be written in the form i
¥ : G =3 (3:9%-0- Gy, (A.3) ;
} s PN
4 ;f

G SR T
Qe

we have from (A.2) and the complex conjugate of (2.35¢)

i

[n

)

b
B

GP=iY (3;"'®%-0- G+ ®*-0-FF™

+133 () @®-0-ren-0-cp, (A4

v =1
implying with (2.35d) that indeed

G = z (3:8%-0-GF*, (A.5)
with the recursion relation

G =iGYL ™" + FPP5,,

+in 3 3 ('t‘)(‘; ') (@) 0- (349 -0 GP . (A6)

Egs. (A.S) and (A.6), in combination with (4.4), show that F{? and G{, for
positive p, can be evaluated in a recursive way starting from F{¥ = ¢, and

L e S0 IS eV AR I T s, I T I T




G{” = 0. This implies in particular that no undetermined integration constants
will appear in the right-hand side of (4.10).

In a similar way, in the case of the integral equation of type II, we have the
relation

ZP=-W -W-0)-ZP"+V-0-YP, (A7)

from which it can be shown by induction that
z9=3 (3:V)-0-ZP, (A8)

where Z{* satisfies the recursion relation
ZPO =iz "4+ v-0- ¥

-i 3 s () )erw-0.erw-0-zpte. a9

Eq. (A.9), in combination with (A.8) and (4.28) shows that the vectors Y{’ and
ZP, for posmve p, can be evaluated in a recursive way, so that the integration
arising from 8;' will not produce an undetermined constant in (4.33).

Appendix B

In this appendix we give the explicit expressions for the vectors F{’ and
G, for p=1,2,3,4,5, defined by (4.1) and (4.5), in the case of the integral
equation of type I. The resuits are

P= 1’ F(D_ —iax¢k’ (B-la)
G=0*-0-:¢, (B.1b)
p=2, FP=-0ip—2n®-0-®*-0-¢,, (B.2a)
G?=i(3,%) -0 ¢, —iD*-O- a.¢:, (B.2b)

p=3, F{=i0id;+3in(3,P)- o ®*-0- ¢
+3ind -0 - P*. ,¢k, ' (B.3a)

GY=—(370%) -0 ¢ —D*- 032, +(3,8*) -0 4,0,

-3n®*-0-P-0:-9*.0- ¢, (B.3b)

p=4, FP=203i+n[4®) 0O-®*.0-¢,+40-0-B*.0- 3¢,
+20:0-(320*) 0 ¢, +2(3,D)- 0 (3, 5% -0 ¢,
+20:0-(3,9*) - 0+ 5.+ 6(3,0)-0-D*- O 3,¢,]
+60-0:®*-0-®-0-9*-0: ¢, (B.4a)
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: G =~i(9:9%)-0- &, +i(3:8%)- O - 3.,

P ~i(3,0*): 0 - 3%y +i®*- 0 - 3},

v +in[~4(3,8%) -0 - ®-0-d*-0- $,

| +20%-0-(5,8)-0-D*-0- &,

—20*.0-®-0-(3,9%) -0,

+48*.0-®-0-0*-0- 2,4, (B.4b)

p=5 FP=-idld—5in[(3}®)-0-®*-0-¢,+D-0-®*-0-23¢,

| +(3%9):0-(3,8*)- 0§ +®- 0 (3,8%) -0 3%,

+(3,0)- 0-(330*) -0 - +®:0-(3:0% -0 3,

+23%P)- O - B* - O - d,py +2(3,B)- O - B*- 0 - 32,

+2(3,9) - 0+ (3,9%) - 0 - o,y

~ 10i[(3,®)-O - ®*- 0 -®-0-B*-0- ¢,

X +®-0-®*-0-®-0-3*-0- 3,

i +®-0-0*-0-(3,0):0-9*-0- ],

GP=(310%)-0- ¢y +®* - O 31 — (3]8%) - 0 - 3,4,
~(3,9*) - 0 - 3 +(37B*) - O - 33
+5n[(8f¢*)-0'¢'0'¢*'0'¢k
+®*.0-®-0-*-0- 32,
+@*.0-(3%)-0-0*-0- ¢,
+@*-0-®-0-(3%0*-0- ¢,
+(3,8%)-0-®-0-(3,% -0 &,
+®*.0-(3,D)-0-®*-0- 4,
-(3®%-0:-®-0-3*-0- 3.4,
+®*.0-(3,®) -0 (3,8%) - 0- &,]
+lo[q)*.o.(p.o.q)*.o-q).o.q)*.o.¢k1_

(B.5a)

(B.5b)

Appendix C

In this appendix we give the explicit expressions for the vectors Y{ and
Z®, for p=1,3,5, defined by (4.25) and (4.26) in the case of the integral
equation of type II. The results are

(C.1a)
(C.1b)

p=1 Y{=-idn,

Z¥)=V-O-vk,
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p=3, Y{=idd0—-3i(V):'0-V-0:0,-3iV-0:V:0:-3,0, (C.22)
ZO0=-N.0:3%0, (V)0 -0, +(8,V) - O- 5,0
+3V:0:V:-0:V:0-0p, (C.2b)
p=5, YP=-idlo, +5i[(3V):0:V-0:9,+V-0:V-0-3’n,
+(N)-0:(3,V)-0:0,+V-0-(3,V)-0- 3,
+(3,V)-0-(3N)-0-1,+V-0-(3V)-0- 3,00

4 +2(3V):0:V:0:3,0,+2(3,¥)-0-V-0- 3%,
+203.V)-0:(3V) -0+ 3.]
~10i{(3,V)-0-V-0-V-0-V-0-1p,

: +V:0:V:0:(3,V):0:V-0-1
+V-0:V-0:-V-0:-V-0-3,45], (C.3a)
3 ZP=(0N) 00, +V-0: 3%, —(3V)-C- a1,
) (@3, V)-0-dlv, +(3V)- O - a2,

A ~5[(3V)-0-V-0-V-0-5,+V:0-V-0-V.0- aly,
H +V-0-(3V)-0-V-0-5,+V-0-V-0-(s}V)- 0 -,
é +(@V):0:-V-0:(3,V):0-0,

| +V:0-(3,V)-0-V-0-9,0

by ~(3,V)-0-V-0:V-0- i,

b +V-0-(3V):0-(3,¥)-0 - n,]

E +10V-0:V-0-V-0:V-0:V-0-1, (C.3b)
The expressions for the vectors Y2, Z?, Y, Z{®, which have been used in
‘ the derivation of (C.2) and (C.3), respectively, have no direct meaning, in

connection with a PDE, and are not given here.

3 Appendix D

In this appendix we shall show how three coupled equations for dog, &0
and ¢,, can be derived for negative values of r, (n =1).
In fact, using (4.2) for p = —1, we have

J:0=0.4, J"-0=0-J", (D.1)
where
0=-0.,=0"-0:J, O)nr=35m8u. D.2)
46
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Inserting (D.2) in (4.2) we obtain a relation connecting p and p + 1, viz.
Q,=Q,,-J-J*"-0=4"-Q,,-0-37". (D.3)

Hence eq. (4.4), which has been derived using (4.2) and which therefore is
valid for negative values of p as well, together with (4.5) and (4.6), leads to

FP=—iaF¢"~@-0-0*-(7-Q,~0-47)- ¢,

-®:(Q,:'J-J°:0)-D*-0- ¢, (D.4)
Next we use (2.35a) for p =—1, i.e.
O I =D+ .-0-2+D:-0-¥, (D.5)
giving

FP=—idF"-®.-0-(J-O*+¥-0-0*+®*-0.9* -Q, - P,
~®-Q, - (®* - J'-¥-0-0*-*- 0. ¥*-0- ¢,
+®.0:9*-0-J" . p+®-9-0-0*.0- ¢,

=—i3Ff " —(®-J+P-0-¥)-0-0*-Q, - ¢,
+9.-0-®*-0-(J" -6, —¥*-Q, - b))
-9-Q,-0*-0-JUT-$,—¥*-0-¢))
+(@-S+9-Q,-¥)-0-0*.0- ¢, (D.6)
Inserting (2.34c), (2.35¢) with the algebraic relation (2.35a), (4.1), (4.8), (4.5)
and (4.6), we have ‘

FP=—idF¢ ™"~ (~ia,®)- 0+ G -G - 0 - (~id.h)

+®-0:9*.0-FP+F”-0-®*-0- ¢, (D.7)
chéc, using also (4.9), which again is valid for negative values of p as well,
we finally get

FP"=0Q[FP], (D.8)

in which the action of the operator £ on an arbitrary vector a, is defined by,
cf. (4.12),

0[a] = i3;'[a, +(~i0,®)- O - [19;'@*- 0 - a, —A*- 0 - §,)]
+[-id;(®-O-A*—A-0:-9%)]-0-(—idd))
-9:0:9*-0-0,-A-0-9*-0-4]. - (DY)

The equation for ®, cf. (4.16), in the case of negative r, can be expressed in
the form i

i3, = (A" ®), (D.10)
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in which the action of the operator £} on an arbitrary matrix A is defined by
G(A]=i3[A+(—i3,®)- O - [i3]'(@*-O-A—A*-O - D)]
+[-id;'@-O-A*—A-0-9%)]-0-(-is,®)
-®-0:9*-0-A-A-0-9*.0-0]. (D.11)

Hence, the right-hand side of (D.10) can be, in principle, evaluated starting
with A = ®, and from (D.2) in combination with (2.24), it is clear that (D.10)
will lead to 3 coupled equations containing only ¢4, ¢ and ¢,,.

Appendix E
The Lax representations for the complex sine-Gordon equation can be
expressed as
—iox® =U" - x{", (E.1a)
X =Vv".x (n=0,1), (E.1b)

where x{", for n =0, 1, is a two-dimensional vector with components

(n) [ (n)
= () - )

We shall now evaluate the 2 X 2-matrices U®, V@, U and V. From (2.34c)
and (2.34d), in combination with the n =0 component of (2.21a), we have

—ia 6 = kp0+ oot

~i0 = ¢106, (E.3
leading with (E.2) to eq. (E.1a) with
lk d’
{2 00
= (g5, 25%) (E.4)

In order to find V®, we consider the n =1 component of the algebraic
relations (2.21a), (2.21b), which can be expressed as

kdi =(1 =yt ) — b1 00, (E.5a)

kil = ¢% o + (1 - ¢ 0. (E.5b)
Egs. (E.5a) and (E.5b) provide a direct relation between the vectors yi" and
x9, viz.

kxi’ =g x¢, (E.6)
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: =(1-¥o —dio
i is a unitary matrix. Taking the n =0 component of (2.34a) and (2.34b), we -
; . have ‘
K 08 = (1—d10P, (E.82) %’
S awee-ener, am G
o which, in combination with (E.2) and (E.7), lead to o
(2k lan)x£°’= (1__¢'fl,’;° :,’)xa", (E.9)
or to (E.1b) with
A —_—— l wlo 0
i Vo= { ( -t 0) 9- 1} 3k 559 038, (E.10)

where o is the Pauli matrix (¢ °,
Using (6.4) and (6.5), the right-hand side of (E.10) can be evaluated to be

..‘ ) ;'.:
i

Yo _ 1 (0 ~4adod?  2Ziados
RO o2k ( iagte’ - daged) 1D
; _ From (2.34c) and (2.34d), taking the n = 1 component we have
i -ia gl = (1-¥toel, (E.122)
1. ~i0,4{" = $100?, (E.12b)
or
¢k —iaxt = " ;;‘f o o)xp. (E.13)
: Eq. (E.13) leads to the first equation of (E.1) with
o ~gto) Oy
o v =i (Gt 0)-a7 -1} =lkg- 007, (E.19)
which with (5.12a) and (5.13) can be rewritten as
o _ 1 ((1— 43,0, P —2id. ¢
U= i( 2iogt,  —(1-4lad,, d’)"’) (E.15)
Finally, from (2.34a), (2.34b) and (2.21a) for p = —1 we have
ia.¢£"=%¢£"-¢.,;¢i", . (E.163)
L9

SRS SR -

~
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~ < K Lo L e
ol = —o1.1065", (E.16b) z
I
i or }
f{ _ i‘fv\
d 1., u)_( k™! —¢|.|) m -
Gt o) =gy, ~o")at" ED
y leading to (E.1b) with 3
: voo(d! —bu) TR
Iy ~o¥. -3k (E.18) =
G v
;,‘ The gauge equivalence') between the Lax representations (E.1), for n =0 ?4‘
i{i“' and n = 1, can be formulated in a straightforward way, using (E.6). We have,
g,:.} e.g. Z"
n . ) £
5 iax{’ = k~lid(g - xM =109 - g7 - x{"+g - V- g7 - x{", (E.19) ®
‘ leading to ‘,
: i
= VP=i(ag)-97'+g-V®-g7, (E.20) i
- and in a similar way it can be shown that £
G ) - -
g UP=-i5,9)-g7' +g-U®-g". (E21)
i
5 Appendix F !
1 In order to derive (7.35), one can insert q = x ", (x >0, y real) in (7.34).
After taking the imaginary and real part one has
i !
F Yo = —ia,(x%y), (F.1 b
B iy
B and
i . h
o KK a2 3
Y= 2-;2' 3y, (F.2) i@j
g
where also dots and primes have been used to denote the differentiations with i;
respect to x and ¢, respectively. !
Introducing a real function f, so that ﬁf
i
k*=2f", (F.3) f

we have from (F.1)

F9

v.= %f[
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and from (F.2)
- _ ﬂ_ 2 fn2 + f2
) The potential MNLS (7.35) follows immediately from the compatibility rela-

tion 3,y = 3y'.
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LINEAR INTEGRAL EQUATIONS AND BACKLUND TRANSFORMATIONS
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& 1. Introduction »

e i‘j'.:
i

<_‘Y‘ g

Bécklund transformetions 1) for integrable nonlinear partial differential

.

equations (PDE's) were discovered in the investigation of the sine-Gordon

;T, equation in the context of differential geometry, a2 hundred years ago. For a

A,

In the past decade many new Bicklund transformations

R gy

N review, see ref. 2.
g (BT's) for PDE's were discovered 3)—1h). In particular in refs. 5=T BT's were
More recently BT's

I ATLE
PRIV 4 n

derived from symmetry properties of the Lax representation.

I W,

have been investigated using a singular transformation of the reflection
8)-11)

5
e e

coefficient in the Inverse Scattering Transform
Very recently a connection between the Korteweg~de Vries equation (KdV)

o s,

5

S

and a linear singular integral equation with arbitrary measure and contour was

e Y
o SN el

27

discovered by Fokas and Ablowitz 15). Extending their treatment we have "l
investigated the singular integral equations corresponding to the Nonlinear .

Schrédinger equation (NLS), +the Isotropic Heisenberg Spin Chain, the modified .

R AR (TR

Korteweg-de Vries equation, the sine-Gordon equation, the Boussinesq equation .
16)-19) »,

In the present paper we give a systematic method to derive BT's connecting

ete.

two solutions of a given integral equation related by a singular transformation

of the measure, as introduced in ref. 20, see also ref. 21. From these BT's

for the integral equations, it is straightforward to derive the BT's for the
corresponding PDE's and also to derive new singular integrsl equations
corresponding to so-called modified PDE's. Starting from the integral equation .
for the modified PDE, the procedure can be repeated again, in principle, to :
obtain multi-modified PDE's. (For the reflection coefficient in the Inverse %
Scattering Transform similar transformations have been used, but our treatment
is more general, due to the fact that the integral equation contains an
arbitrary measure and contour.) A different treatment in which the Béicklund
transformation is used to obtain the first and second modified KdV equation has
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been given within the context of Hirota's method 22),
The outline of the present paper is as follows. In section 2 we derive

WG IR N s e T
AL .

the BT for the integral equation corresponding to the class of PDE's containing
. the K4V equation and we derive the singular integral equation for the modified
?. Korteweg-de Vries equation (MKdV). In section 3 the BT for the MKdV, the

o modified modified KAV equation and the modified modified modified KdV equation

& are discussed. In section 4 we treat the class of the NLS equation and the

RN

'/} integral equation and BT for the Anisotropic Heisenberg Spin Chain (AHSC). In
section 5 the real and complex versions of the modified sine-Gordon equation
are derived from the BT's for the real and complex sine-Gordon equation.
Finally in section 6 it is shown how we can derive BT's for the wave functions

in the spectral problem, leading e.g. to en alternative form of the BT for

v the 'AHSC.

2. The KdV class

In this section we start from the integral equation defining the KdV class
and derive a (matrix) BHcklund transformation using a singular transformation
of the measure in the integral equation. From the (matrix) BT we also obtain
a (matrix) modified PDE with the associated singular integral equation and
linear problem. The integral equation for the (matrix) modified PDE turns out
to be a generalization of the integral equation of type II for the MKAV class

proposed in ref. 18.

2.1. Integral equation and constitutive relations
The integral equation defining the KdV class is
) gz(x,t)
w (x,t) + dp, (x,t) Idx(z) —_
k+82
C
from which the vector function gk(x,t) with components uén), n integer,
should be solved as a function of the complex variable k. In eq. (2.1) S is
8 vector with components (gk)n = 1/k®, n integer, C is an arbitrary contour
in the complex k-plane and dA(%) is an arbitrary measure. pk(x,t) is & plane-

wave factor satisfying the linear differential equations

= pk(x’t)sk s (2'1)

-id o, (x,t) = ko, (x,t), id.p, (x,t) = w(k)p, (x,t) ,
(2.2)

wik) = z Arkr s A_=0 for r even ,
r

T
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w(k) being the dispersion. The measure and the contour are to be chosen in
such a way that the solution Ek(x,t) of eq. (2.1) is unique, see ref. 18,

cf. also ref. 15.

From egs. (2.1) and (2.2) one can derive the constitutive relations 18)
. T .

21ax1_1k = _kEk -d e + 12.2.Ek , (2.3)
1 = T L] - 1 - .

213w = wlky + w(f )y - iRy » (2.1)

kPu = JTP- + iU-R * (p even) (2.5)
L Te "% UBly » P s .

in which the (symmetric) matrix U can be obtained from the dyadic w.c, by an

integration over the same contour that occurs in (2.1):

U= Jd)(k)gkgk s (2.6)
¢
and in which we have used the following notations
= T = =
(i)n,m myn+1 ° (g')n,m = Sp,m1 (Q)n,m = %,0%,0 (2.7)
'r -1 ., 1. 3 el

R_= (senr) grimdlrl o (Tyimmrdlel gy a5 L (a8

£ j - - a Z roda T

2.2. Matrix PDE

In this subsection we recapitulate some results from ref. 18.

Differentiating (2.3) with respect to x and using (2.5) we can derive
(k+18x)13x2k = ~(3 g)'Q'Ek . (2.9)

Integrating (2.3) over the contour C, cf. (2.6), we obtain

(2.10)

nc

2

213 U = -Urg - goU + iU-0-

X = = = =
which will be used in subsection 2.4,
From (2.3)~ (2.5) one may derive various PDE's for different choices of

w(k). Teking as an example w(k)=k3, we have 18

(3g-03)u, = -3(3,0)+Q°3,u > (2.11)

which upon integration over the contour C, cf. eq. (2.6), yields the following

sk
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matrix PDE
33U = - Os
(a,-32)U = -3(3,U)-0-(3,1) . (2.12)

The (0,0), (1,0) and (1,1) elements of U obey respectively

_33 = _ 2
(0,-35)ug o = -3(3,u5 )% (2.13)
(o_u, .)o2u
(3,-33)u o= -3 __x__?_,_o__:g_u_g , (2.14)
ity
(32u, 1)2
(3,-33)u, , =3 . (2.15)
’ 1-23 u,

and the relations between the different elements are

= (3 Y
axuo’o = (1+u1’0) Bxu1’o R (2.16)
: 3
Uy g =it [23xu1’1— 112 ., (2.17)
Eq. (2.13) is the potential Korieweg-de Vries eguation, i.e. Bxuo 0 satisfies
k]

the KdV; eq. (2.14) is equivalent tc the potential modified Korteweg-de Vries

equation, i.e. v=9_ 1n (i+u, ) satisfies 3.v-083v+6v2 v=0, and (2.15)
x 1,0 t x X

is equivalent to the MKAV.

1

The special case w(k)=k = will te discussed in section 5.

2.3. Singular transformation of the measure
We introduce the singular transformation of the measure, o2, rel. 23,
-k

p
da(k) » di(k) = — da(k) , {
ptk

%)
oy
-~

where p is a complex parameter, and consider the corresponding solution
gk(x,t) of the integral equation (2.1) with dA(2) replaced by di(e), i.e.

u
~ . by —g =
& + i idh(l) o PyCy > . (2.19)
g= idi(l)glsl . : (2.20)
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In eq. (2.18) it is understood that dX(k) is such that the solution of the
integral equation (2.19) is also unique, and the contour should not pass
through p and -p. In appendix A it will be argued that (2.18) increases the
number of solitons by one, and another way of getting the BT will be presented.

Starting from (2.18) one can derive a relation between g and U which is a
matrix generalization of the well-known BT for the KdV. In fact, using
(2.18), (2.19) and the decomposition into partial fractions

p-k 1 1
_ (2.21)

(pre)(k+2)  k+2 D2

we obtain
. (p-2)u ] (p-2)u,
(p-k)u + ip, de(z) " = (p-klp,c, + ip, JdA(Z) _:z—— =
C C P
= (p—k)pkgk +ip, U-Qec, - (2.22)

Taking into account that the homogeneous integral equation (2.1) has only the
zero solution, we obtain the relation

(oK), = pw_- £'vw + if-Qw (2.23)

which may be regarded as the basic relation for the BT, and which will be
used in the following subsections. Note .that from (2.23) gk can be expressed
in terms of .the vector W vwhich is the solution of (2.1) with the measure

dr{k), and various integrals of Y-

2.4. Matriz Bdeklund transformation for U

The inverse transformation of (2.18) can be obtained interchanging p +> -p,

dr(k) «> di(k). From (2.23) we thus obtain the inverse relation

(-p-k)u, = -pu, -~ gT-ik + ieQ-w (2.2k)
ef. (2.23) with p <+ -p, w <+ gk, U «+ §. Multiplying (2.23) by the vector
¢ and integrating over the contour C with the measure di(k), we obtain,
teking into account that (p-k)ar(k) = {p+k)ai(k):

(@Y = g - £g+ifoy (2.25)
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Adding (2.25) and its inverse with p <+ -p, U+ g, we find, after
eliminating J and gT with eq. (2.10)

213 _(0+Y) = 2p(3-0) + i(3-U)-0-(L-U) - (2.26)

(2.26) is the spatial part of the matrix BT associated with the integral
equation (2.1), and is independent of the dispersion w(k). The time-

dependent part of the matrix BT can be inferred from the matrix PDE and

ff . (2.26). 1In the special case uw(k) = k3, cf. (2.12)

3, (0+U) = 82 [-ip(F-y) + 2(T-1)-Q-(T-U)] - 3(5,U)-0+5.U ~ 3(3,0)-0-3. 7 .

§ (2.27)

The (0,0) element of (2.26) and (2.27) reduces to the well-known BT for the
(potential) Kav 3)“5).

2.5. Modified matrix FDE

Introducing

U =gu, (2.28)
we have from (2.26)

3. U = -3 U - 3pU + U0 , (2.29)

and the PDE for the matrix U~ can be derived inserting (2.28) and (2.29) in

(2.12) and its counterpart with g+g
(3,-00)0" = [(3ip0” - 2 y™o0-uT)e00 U1 (2.30)

ir. which the superscript s denotes the symmetrical part of a matrix, 1i.e.
B:,m = i(Bn m+ - n) for an arbitrary matrix B. Eg. (2.30) is a completely
integrable matrix PDE, which we call the modified matrix PDE of (2.12). In
this paper the term modified PDE will be used to denote a PDE, the solutions
of which are obtained by combining a solution of another PDE and its Biécklund
transform. The relation mapping a solution of the modified PDE on a solution
of the original FDE will be called a Miura transformation 2h). In the case

under consideration eq. (2.29) is a matrix Miura transformation, mapping a
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transformation (2.29), mapping a solution of (2.30) on the matrix KdV, remains
Q0 are replaced by arbitrary constant symmetric

g- of (2.30) on a solution g = Bxg of the matrix Kav
= -6(§-g-ax§)s. In this connection it may be noted that the Miura

valid if all the matrices
matrices P, as can be checked by explicit calculation.
Taking the (0,0) element of (2.30) we have immediately

)23 u, (2.31)

33 -3 (=
(3 ax)u 311@’“0 0%x" o 0~ 3 (¥ o) % 0,0 °

which is equivalent to the MKAV, since the term with p can be transformed

away. For the {(1,1) element we have obtained the PDE

3 .
(at-a;)z = —%(axz)3 + 35 p2(51nhzz)3xz .

. . - - e =l
arsinh [-ip ! axln(u1 ;- ip 3, (2.32)

3]
m

Eq. (2.32) has been given in ref. 5 and is a

cf. appendix B for some details.
ef. eq. (3.21) and refs. 22, 25 and

special case of the second modified Kav,

26.

2.6. Integral equation and constitutive relations for the matrix modified PDE

In subsection 2.5 we have shown that the matrix g-==g-g obeys a PDE. In

this subsection we will derive a linear integral equation for this modified

(This integral equation will be used as a starting point in section 3 to

PDE.
as well as the

repeat the procedure and to derive the BT for the modified PDE,

second and third modified PDE.) For this purpose we need a wave function g;,

which upon integration yields the potential g—.

Defining
w = (p-k)& * (p+k)y, , (2.33)
with inverse
- U Bty
uk=—- . ékg; , (2.34)
2(p+k) 2(p-k)

and defining the new measure
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di(k) aa(x)

TR e

drp (k) = = s (2.35) :
p-k ptk
we have
Eth(k)t_xﬁgk =g:u, (2.36) g
c ap-
™
in agreement with (2.28) for U . Two integral equations for E;+EE;, e=t1, L%
, follow quite directly from (2.1) and its counterpart with u -, dr(k)»ai(k), "
- expressing the measures di(k) and dX(k) in terms of dA;(k). The result is £/
A &=
X + 3
R u +Eu2 by
iJ; (uk+euk) + 1(p—ek)pk del(l) = 2(p- ek)pk A (2.37) %&
f k+8 53
i c 3
Egs. (2.37) can be rewritten as
: S (22 + 2 12
: i(p?-k?) u 2(p*-k?2) p
, w +——— p, del(z) =t Py -~ g; s (2.38)
! k ¢ k+& k k
: )
! . i(p?-k?) uy P _
wyl W+ —— o, Id () —=--— . (2.39)
ok - k+2 k=
& Cc

From (2.38) and (2.39) one can also obtain one single integral equation

L

it 2 dy
R oy Rt

containing only E; which reads

ST

(p2+k2')

PiPgrle

u + Idkl(z) Idxl(z')

C C (k+2')(8'42)

o ppraeea - -

u, P,el, P
ot i
+p 1ip [dr;(8) =2 p? arxy(e) jdaa(e') S L = ~2kp, C, . f**
k tlo1 k=k [
¢ 2 c o IANEARY D) ] (2.40) 3
2.40 i

i

The linear integral equation (2.40), together with eq, (2.36), provides
in a direct way solutions of the matrix PDE given by (2.30).

It is also straightforward to derive the constitutive relations in terms of
the vectors uk and uk In order to do so, one could start froﬁ the integral
equations for uk and uk with an approprlate uniqueness condition, but it is

less laborious to use the constitutive relations corresponding to eg. (2.1),
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ef. (2.3)~-(2.5), and the Bécklund relation (2.23), in combination with
(2.33).

Multiplying (2.23) by (p+k) and the inverse relation (2.24) by (p-k),
and adding and subtracting the result, with the use of (2.33) one obtains

kuy = -2pu - glews + 3igT-Qewy - 3UT-Quy (2.41)
ki = I euy + HPTQeuy - gy (2.52)

which can be generalized using the algebraic relation

b
kbEk = gT w + ig-gb-gk » (b even) , (2.43)

given in eg. (7.3) of ref. 18 and in eq. (2.5) of the present paper, and egs.
(2.33), (2.41) and (2.42). The result is

X h = (’gT)b.E; + %ig+.§b.-+ + %i(—'l) [é] .g'b.gl-{

p(1- (-1)P) (&"Nar - BiTeRewr) (2.h4)
b
kbE; = gT cur + 51(-1)bg+-gb-_‘ + glg‘-gb-_+ - 3ip(1 -(-1)b)g'-5b_1-g£ ,

(b integer). (2.45)
From (2.3), (2.23), (2.33) and (2.36) one finds

2iax5k = E}_{ - ig—-g-gk . (2.46)

Multiplying (2.46) by (p+k), and the inverse relation with Ek_+§k’ u~>-u,
E;"E; by (p-k), and adding and subtracting one obtains

. + - - -
13w = pu + Uy (2.47)
19, = —kuy + HUT-Qeuy - (2.18)

In an analogous way from {2.4) one derives the relations for the time

derivatives, i.e.

iabgﬁ = Hulk) + w(gh) - gﬁ - 5i[g+-§-gi + g‘-gogz] , (2.49)
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which in the special case w(k)=k3 reduce to, cf. (2.11), (2.33) and (2.29),

3t = 3 (ipUm - ITe0-U")e008 uE -2 (3 UT)0003 u
(3,-33)w = 3 (ipl" - 3 -QU )-0-du -5(3,U0 )03 w - (2.50)
Eqs. (2.44), (2.45), (2.47) and (2.48), which are independent of w(k),

together with the two egs. (2.50), in the case w(k) = k3, form the

constitutive relations corresponding to the modified matrix PDE (2.30).

Remark: For p=0, egs. (2.38), (2.39) with (2.35) are equivalent toegs. (3.1a)
. - . +(n) .

and (3.1b) of ref. 18, with vk“) = -%uk(n)/k, "1(gn) = +u "' /k, which

define the integral equation of type II, describing the MKAV class. The

constitutive relations (2.44), (2.45), (2.47) - (2.49) are generalizations to

the case p#0 of the relations (3.15), (3.19) and (3.25a) - (3.25d) in ref. 18.

N . - P . .
(The matrices ¥ and ¥ in ref. 18 correspond to -3l and %12 respectively in

~

the special case p=0.)

3. The generalized MKAV class and beyond

In the preceding section we applied a singular transformation of the
measure (2.18) to the linear integral equation associated with the matrix PDE
(2.14) for the KAV class. We have shown that the transformation of the measure
leads in a natural way to a Bécklund transformation for the matrix PDE, as
well as to a modified matrix PDE (2.30) with corresponding linear integral
equation (2.40) and constitutive relations (2.4k4), (2.45), (2.47) - (2.49),
This integral equation, which is equivalent to (2.37) defines the generalized
MKAV class. In the present section the procedure will be applied again, to

derive the BT for the modified matrix PDE, as well as a second modified matrix

PDE with its linear integral equation and linear problem. At the end of the
section we shall apply the scheme for the third time to derive the BT for the
(0,0) element of the second modified matrix PDE, as well as the PDE for the
(0,0) element of the third modified matrix FDE.

3.1. Bdeklund transformation for the modified matrixz PDE

We introduce the singular transformation of the measure

() > dhy (k) = £ an () (3.1)

and consider the corresponding solutions g;d-egi of (2.37) with dx;(2)
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replaced by dil(z), i.e.
~t ~ -
ot e . - upteu,
(el ) + i(p-ek)py del(z) = 2(p-eklo,c, (3.2)
c k+8
leading to
~t s og~d
U = Jdkl(k)gkgk . (3.3)

C

Eq. (3.2) has exactly the same form as eq. (2.19) with §k+%(§;+e§]:) and
oy (p-ek)pk- This means that the BT for U' and U™ can be obtained

immediately from (2.23) for the KAV with p*q. We thus have

o Pend + - + - e L + -
Sty St LA " (2 e "
(qk) [ E—E) = g F=) | T (k) g (=)ol (k)
¢ ( 2 ) q( 2 ) = ( 2 ) l( 2 ) = ( 2 )
(3.4)
which can be expressed as
(@-k)o = au - goow + 3 0w + HI-uwl . (3.5)

Eq. (3.5), which is independent of w(k), may be regarded as the basic relation
of the BT of the modified matrix PDE. Multiplying (3.5) by ¢, and integrating
over dkl(k), with the use of (3.1) to evaluate the left-hand side, we obtain

D (3.6)

=}

5 F T ~F N
Q@0 = gy - gy v H
From (3.1)-(3.3), cf. (2.37) and (2.36), it is clear that the inverse

+ ~t + ~t
Bécklund transformation can be obtained substituting q++-gq, E]:H‘_“]_;’ Uy
in (3.5) and {3.6). From (3.6) and the inverse relation, in combination with

the expressions

Ueg+ Iy = -2ia U+ HyToer ¢ HyToU, (3.7)
PR SIS R e (3.8)

which follow from {(2.L41), (2.42) and (2.48) after integration over the contour

C, it can be shown that
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2id (7™+7) = 2a(T7-U") + H(F-U)e0+(T'-g") + 3 (@-UN) 0 (E -0, (3.9)

2p(T+07) = 2q(F -U") - J(FTT) - (@47 + 31T -uH)-0-(@Tuh) - (3.10)

[[{es]

Teking the (0,0) element of (3.10) one can solve

~+

i _ +
0,0~ ¢

.
+\272
0,0 -2pi)¢]? . (3.11)

= 2ai F i[b(g2-p2) - (3= -
2qi ¥ i[k(q?-p2) (u0,0i-u0,0

Next from (3.10) and (3.11) one can evaluate the matrices g-(g+-g+) and

(g+—g+)‘g in terms of U~ and g-. Inserting the result in (3.9) one obtains

219 (U +U ) = g g-)

B 2(‘1"t %[h<q2'P2)"(aa,o+“5,o’api)2]%)(ﬁ5,o+“5,o)-1[(Q-‘Q—)‘9'<Q-+E—)]s-
(3.12)

Eq. (3.12) is the spatial part of the matrix BT for g—, associated with
the integral equation (2.%0). Eg. (3.12) again is common to all modified
matrix PDE's which can be derived for various choices of the dispersion w(k).
(For the special case w(k)=k3 the modified matrix PDE is given by (2.31)).
Teking the (0,0) element of (3.12) we have the BT for (2.31)

2ia_(3; ,0 —i(flo,o-u(-)’o‘) [ 4(q2-p?) - (flg,o+u6’o-2pi)2 ]% , (3.13)

0, o*

which for p=0 reduces to the well-known BT for the MKAV 5).

3.2. Second modified FDE
Introducing the matrices

-+

v, U =U-U, (3.11)

| [[e=])
I

\
2(a ¥ 3[4(q2-p?) - (u " -2pi)21%)
213 U™ = 2y - ————0:0 (@™ . (315
Y9,0
The (0,0) element of J ~ follows from (3.15), i.e.
63

T Tt LRI R i SN S S PDIRR T s T iy Wi T e BTt ATy BRI S T DO IS = TR Ty X pe
AR

ol ] R e 4 etk

TSR, QAT




,,5';,:;':E:w;;ﬂ;&w;zgx_§mmmmmﬁ,¢ i T TR T R TRE, M&WW{“ @. :‘ 'C,?; 3, 2 1}53{.1 TrmRTe

: an ¥ - ~een ~ o ~. }
5 :
: .
¥ ]
i
== = 1 2i[L(q2-p2) - - 3, -~ B
{:\g ugo =t 2i[4(q2-p?) (u 2pi)2]™? a 0.0 ° (3.16) ;I
8 i
5.‘[! ~— — ﬁé
; From (3.15) and (3.16) one can solve the matrices U +0 and Q-J  in terms

", of g-+. Inserting the result in (3.15) it follows that

I

-t . 3
_ - —+ e aF i[M(a2p?) - (uo,o-2p1)2]2
2qU = -hqg +2qU = 218xg +  x

= -+ .
X q * HM(a?-p?) - (ug” ) -2pi)2]?
% . 4 2 1213 :
A 2ia (U™ -0u™")  bi(o u- ) (aF 3[u(a2-p )-(u o - 2pi)2J%) ;
g x[ e 2 = 7 U’+-0-U_+] :
P - - -t = = = * o
3 ) - - o5i)2]2 £y
{ “0,0 %0,0 [4(a®-) (uo,o 2pi)?] v
P (3.17) ?
- - e P
ot Adding the matrix PDE (2.30) for U end its counterpart with U +U  and using &y
f (3.17) one can derive a matrix PDE for g—+. Eq. (3.17) which is independent [:
L of w(k), is for q#0 a Miura transformation mapping s solution of the PDE
H}j for g-+ on & solution of the PDE for g_. Taking as an example w(k)=k3, ‘:
‘! we obtein from (2.30) :
,.; ‘-A',‘
o 3 ~+ —+¢ . ~+y8 T e (e ~=18
(0,-03y™" = Fip [(Ug-a,0™)° + (P02, 0% ] ;
X ik
IR 3 -+ - f— - -—15 i3
';’;;; - Py T gy ] '
\a’ 3 -t -+ - - -+ 1S
: - 3 [(g gy + Yy -0-y )-g-3 U 1° . (3.18) ‘
i )
, —
) in which the explicit expression for U <0 must be inserted. The ,'3
f‘; resulting matrix PDE,in terms of Igl—f only,can be regarded as the second x,
modified matrix PDE of (2.12).
‘ For the (0,0) element of (3.18) we obtain, using (3.16), i
5
(ug* 219)(8 u )2 1 '
3 4
(33355 = iax[ - DL 17 (g, 2ip) - phug o] i
4(q2-p2?) - (u-* - 2ip)2 i
0,0 y
(3.19) i
L4
which in terms of the new veriable z, defined by §
- : - iﬁ
ug'o - 2ip = ilgtple” - i(g-ple”® , (3.20) {;3
> %
can be written as ;
6k
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3
i

(3,-03)z = -3(d_z)3 + §[ (p+a)2 7% + (p-q)2 ™22 - 2(p24q2) ]3x2- (3.21)

Eq. (3.21) is a completely integrable PDE, which can be called the second
22), 25),26)
L]

modified KAV and which has been treated in the literature see

also ref. 27, and for q2#p?, ‘eq. (3.21) may be reduced to eq. (2.32). The

Y

Miura transformation 22),25),26) mapping a solution of (3.21) on a solution of Qd
i
B

(2.31) is given by

o
[

R ans

v

0,0 = 3E* 3i{(a*ple® - (q-p)e™® + 2p} , (3.22) ff?

~ as follows from (3.16) and (3.20).

o 3.3. Integral equation and linear problem for second modified PDE
> d

% Defining

w2 (B)E £ (gl , =%, (3.23)

with inverse

e o ‘
% :“ == ‘_’; === B (3.24)
S\:,; " 2(q-k) 2(q+k)
) .
% and introducing a new measure dis{k) by .
§ akp(k) dxp(k) )
g; arg(k) =———= — (3.25)
f q-k qtk
B
[ we have [
- at _ at _ ~a a '
: u = Jdkz(k)gk e =0 U (3.26)
<l £
]
!

It is now straightforward to derive two coupled linear integral equations

g

for E;+ and E;-' Inserting (3.24) into (2.40) and its counterpart with
E; -+ g; , drxp(k) + aX;(k), and changing to the new measure (3.25) it is
straightforward to show that

65




?‘1
o
»

TR LT S TR e SN Ol

LR Sl S v S SlES A

(p2+k2" ) (q2+ke')
u dez(z) dez(z') pkpz,}_l;i {
c C »

1
I+
+

(k+2)(2'+2)

(p%+ke')p
. -] -t -F 4 = N
+ pk[ ip dez(g)g'l (qu, —kl_lz") -q dez(z) deg(z') —_ _,f
] »
C C c (2'+2) i‘,
-t ~-F ’
G {(q2+k9.')1_12 - q(k+9.')1_§2+} N
- p? dez(z) dez(z') ]
1 1 '
c ) 2t{(e'+2)
= -2p, ¢,k [(a=k) % (a+k) ] , (3.27)
which are two coupled linear integral equations for E;+ and Ei-' The l1
solutions of the PDE for g_+ can be obtained from Ek-+ using the %1

integration (3.26) and for any choice of contours and measure the (0,0) i

element u5+o is a solution of (3.19).
*

It is now straightforward to derive the linear problem for u0+0’ or
?

equivalently for the function 2z given by (3.20). From (3.5), using also ;;
(2.41), (2.42), (2.48) and the definitions (3.23) and (3.26) we have

w” = 210w+ HUTTegeuT + HUTTgeur (3.28)
" = 2pu + HUTTegewy 4 HUTTeQeur (3.29) !

Multiplying (3.28) and (3.29) by (a+k), and the inverse relations with !

+ ~E .
y < g, I < U by (q~k), and using (3.23) and (3.26), we have the

following relations between E;-’ E£+’ E;- and E;+

((a=k) + alatk))w ™ = 210 w® - 3y -Quw® - 3y -0uw® , (3.30) !

A

- R

+- - -+ P ;

((a-k) + uz(q+k))1_1k = 2p1_1ka - HU TeQew ™+ HUTegew (3.31)
where o =%, and x =+ if a=-, and a =~ if o=+, ?
From (2.47) and (2.48) and their Bicklund traensforms it can be shown that ﬁ

%
A
1
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(-k—le)Ek = - 51 0 wo - Elg 0 . (3.32)

(3.33)

Egs. (3.30) - (3.33) can be simplified using (3.11) (ef. (3.26) ) for u;-o.

. - + . . .
From (3.31) one can then express 2-3; and Q'Ek+ as linear combinations of

Q'E;+ and g-g;-. Inserting these linear combinations in (3.32) one obtains

L Giwgtoen) 0 (hiug 0w
(~k-1d Ju ™ = - 2 Ueoen T - — » (3.3b)
Y0,0 9,0
with
1
- - 2
u;’o = 2qi ¥ i[ L(q2-p2) ~ (uo+O -2pi)? ] R ) (3.35)

and U *Q given by (3.15) and (3.16). Egs. (3.3L4) are constitutive relations
belonging to the linear problem associated with the matrix PDE (3.18) for g_+.
The relations (3.34) are independent of the dispersion w(k) and are valid for
any matrix PDE for g—+ which can be derived for various w(k). In addition
to (3.34) one may also derive algebraic relations involving the matrices J
and gT, but we do not go in further details.

For the special case m(k)==k3, eq. (2.50) leads to (cf. (2.47) )

50 = 3p | U e00s w4 Ume0ey uml ) e0ey™® =Ygl
(a0 = Hip| U005 0+ (U0 00T |
R T T 00, - (0, U 0 U
3 - —— —— -t - 3 — - < a
e (U7 e Qe+ U DU )04 d - = Qe Qe 2+ U0
15(= = = = = = ) K= ls(ax= )Q ([=J g_ +[=J gu.k )-

(3.36)

The n=0 components of (3.34) and (3.36) form the linear problem associated
with the PDE (3.19) for u

0.0° when we irsert (3.35) and (3.16).
3 i
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3.4. Third modified PDE
Using (3.23) ~ (3.25) in (2.37) we have the integral equations

{ e wh) + { *ey )
Y Y6 % €2\ TE Y

++ -+ e —
gy veryy ) + e (yvey, )}

+ i(p-e k) (g-¢,k)p, dez(z)

c k+8
= b(p-e,k)(q-e ko e, » (e ,e,=21) . (3.37)
Egs. (3.37) for €1,6e3=%1 have the same form as eq. {2.1) with
- -
w > E[(g;++elgk+) + ey (u e ug )1, P ¥ (p-g,k)(a-€ K)oy -
Applying the singular transformation of the measure
Ik (3.38)

d,(k) = 0 dry(k) ,

. . . " ~te wem )
and introducing the solutions w "+eju ~ + ez(gk +e u ) of (3.37) with
dA,(k) replaced by dX,(k), we have the relations

By eyl e (B re i)
2o

++

N EEItAI )
In

++

e ey (uy e
[ 1 1‘2 1 ] _

=r

ey

-

et et e - ++ -+ + —_—

U +e, U +e,(U +e,U ) + +e, (0 + )

+i[= €= e2,_ €12 ]-Q-[Ek g1 TeE\ e u ] ,
h - h

(3.39)

~oat

in which the four matrices U with a=t are given by

i = Jdiz(k)f_zfgk . (3.%0)
C

From (3.39) it is straightforward to show that (cf. appendix C for some

details of the derivation)
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1 1 2
[ gt g o) ™ ([4aP-p )5 2ot )21+ T (a2-2)- (i yr2pi 212

1 2
= [na2?)- (g o2t )21 - Dua2op?)- (g et )21

e 4us )2 & (52 eust _hip)2 2_,.2
+ (u0’0+u0’0) + (uo,0+u0’0 kip)2 + 16(p2-r2) , (3.41)

.. .. . e s . _— e e b
which in combination with (3.16) and its inverse with 0,0"Y%,0° Uo,0% V0,0 =2

gives the BT for the PDE (3.19). The result can be further simplified ’
introducing the variable z defined by (3.20). From (3.41), taking into

account the relations

1 s

- = 202y - (u=F _opi)212 z _ple~Z o
Ug,0 = ~20%s [4(q2-p?) (“o,o 2pi)2]® = (g+ple” +(g-ple s (3.h42) l
{ef. (3.16) ), one obtains after some straightforward algebra }f
b",

~ . - P ~3(z+2)V? P
[ax(z+z))2 = (snth%(z_z)] [16(p2_r2)_{(q+P)e;(Z+Z) - (g-p)e 3(z Z)} ]’ (3.43) b
which is the BT for the second modified KAV (3.21). The BT for the special gi

SRR

case (2.32) has been treated by Hirota's method in ref. 28 and in the context
of prolongation structures in ref. 29.

The third modified KdV can be derived solving (z-z) from (3.43) and
inserting the result into the right-hand side of (3t-3;)(z+2), as given by

ez

e AT

(3.21) and its counterpart with z-z. b

The final result is in terms of the variable y= 3(z+z)

(3,-33)y = -%(3xy)3 + %{(cﬁp)zeey + (g-p)2e™® - 2(q2+P2)}axy

30 [[(q+p)2e2y - (q—p)ze"ayl(ary)2 ]
.32 :
2%l g Cpliarp)e” - (g-ple 1
1 25 axy B 2 1 ;
- 2D(axy) L [— arsinh - 3)] » DE————
2 %] [1 - p{(g+p)e’ - (g-p)e™¥}?] 16(p2-r2) i
- (3.44)

Eg. (3.4%) is an integrable equation, since its solutions can be obtained

from-a linear integral equation, such as e.g. (3.27), with measures d@z(k)
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and diz(k), taking into-account (3.26) and (3.20).: In the limit row, (D+0),
f? (3.4k) reduces to the second modified KdV (3.21). A different version of the
i third modified KAV, in terms of the variable 3(Z-z) has been given in ref. 28.
53 From this point one might continue to derive the integral equation for the
third modified PDE, apply a singular transformation of measures and obtain the

3 BT for the third modified PDE, as well as the PDE associated with the next

< level of modification. The procedure is systematic in terms of (matrix)

b functions U with a sequence of superscripts +and - that can be defined in an
analogous way &S in the preceding steps, cf. e.g. (2.36) and (3.1k). It is

that the coupled FDE's for the different matrices U will

not obvious, however,
:'/J 3 . -
lead to interesting closed PDE's in terms of only one function and we shall not

go in further details here.

o -
ey SN

4. The NLS class

e

ii In the'précéding sections we have considered the integral equation for the ﬁf
%ﬁ KdV class and by singular transformations of the measure we have obtained %é
3 Bécklund transformations and the first-, second-, and third modified KdV by
;&; equation. In éhé presentlsection we start from the integral equation for the E
j; NLS class and in subsection 4.1 we review some results obtained in ref. 18, %
g%“ which will be used in the following. By a singular transformation of the :
?%“ measure we shall derive the (matrix) BT for the NLS, as well as the matrix A
. modified PDE, together with the associated linear integral equation. The FDE

ég for the (0,0) element of the matrix modified PDE will turn out to be

‘; equivalent to the equation of motion fortheclassicalHeisenbergspin chain with

i uniaxial anisotropy,and at the end of the section a BT for the AHSC will be

§ derived. ’

' . Y.1. Integral equation and matrix PDE

For the NLS class we have the linear integral equation

, o, (x,t)pT, (x,t)
$, (x,8) + Ida(z) Jda*(z')-k-———"— 9, (xst) = p, (x,t)e (k.7)

R (-2')(2'-2)

. (n) n
where ¢, and ¢, are vect:rs with components (gk)n =4 s (Sk)n = 1/k,
n being an integer, C and C are an arbitrary contour and its complex
conjugate in the complex k-plane, dA(2) and dA*(2') are an arbitrary measure

70

0 AR5, . e




o

R T BRI A AT S R RTER SE (e .  BER

4

and its complex conjugate, pk(x,t) is a plane-wave factor satisfying the

linear differential equations

-1d,0, (x,8) = ko (x,t) , 3,0, (x,t) = w(klp, (x,t) , (4.2)

vhere w(k) = Y Ak (r integer, A_ real) is the dispersion.
r''r g r

Eq. (4.1) can be rewritten as

3 b * f dk*(z')—ﬂ‘—w* =p.r (k.3a)
. Ik C* (k-2') LA k-k -

L in which the vector y  is defined by

¥ - de*(z') z—pl‘——; 7 =0, (k.3b)
c* k-2!

and ¥ satisfies the linear integral equation

Pty e - e

4. 0.0 0P
c v * Jam) de*(z') k& , = de*(z') =L oL (b
- c o* (k-2')(n'-2) ~ o* (k-2') ~

fa IR N

From now on the choice of measures and contours will be restricted by the

3

condition that the solution $ of the integral equation (4.1) is unique
From egs. (4.1) and (4.2), or alternatively from (4.3), (4.%) and (L4.2),

taking into account the uniqueness condition one cen derive the constitutive

A T or! W T
et P oy M AL A

relations
: *
, kng = ng’Qk -¥ .Qp.?-k - g.gp.yk . (4.5)
}r: kp!k = ng-i;k + g*-gp-ik - 1-%-2]{ s (p integer), (k.6)
‘)
%x -i3 ¢, = k¢, + Q¥ (4.7)
. *
-18x£k =309 > (4.8)
139, = w(d) g -5 e8 (4.9)
T1
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. *
13, =2 @8 » (%.10)
in which the matrices QT and Q have been defined by (2.7) ,
Ipl-1 .1 1 ~i-1+ip+iipl
g, = (sgn p) ) gJ+2P‘ZIPI-Q-QT , ge=lxrg. - (h.11)
= j=o - == = oy rT

. . T . . .
The symmetric matrix ¢$=2  and the antihermitean matrix ¥ can be obtained
from the vectors -ik and Ek by an integration over the same contour C

that appears in the integral equation ,

¢ = de(k)gkgk s Y= de(k)gksk . (4.12)
c C

For dispersion of the type uw(k) = Zrkrkr, Ar=0 for r<0, one can derive
a closed PDE for the matrix 2, containing only ¢ and its derivatives and 0,

but not the matrices J and It . Taking as an example

w{k) = Agk? + Agk3 (4.13)
we have e.g.
$ * 3
10y = - Mgy m 2ApE0008 00 + IABd,
. * . * 1' 1'

+ 3iA,(2,8)°0°2 +Q+9, + 3iA2°0°2 -0 9 (b.1%)
i9 =ir (3¢ A8 +000 (32 *
19,9, = ry(0,2 )09y ~ 1r,8 <00, - A,(828 )-0v0y

* 2 ( *) 3 * * ll.
- Ag8 Qa2 + 2,(2,0 )00 4, + A 0 0808 +Q'g - (4.15)

For the (0,0) element of ¢ we obtain
] 2 -1 3 = - 2 > 2
13,80 o *+ 1,930 0 = $A33300 0 = 2,100 o120 o * 61Agleg (120,04 o (4.16)

which is Hirota's equation.
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k.2. Singular transformation of the measure

We introduce the singular transformation of the measure, cf. (A.10)-(A.11),

. P
drlk) + di(k) = — da(k) , (4.17)
P —k

and consider the solutions of (4.3a) and (4.3b) with the new measure, i.e.

3 ¥ g pk a*

&y * de (2") ;_;T Yor = 08 > (k.18)
o -
de (or) —%- §;, =0. (4.19)
C* k-2"

Using (4.18) and (4.19) and a relation similar to (2.21) we have

- e ~ -
(p-k)gy + de*(z') —E- (p*2)iy, = (pkleye, * 0 F00ey (4.20)
b2 \ ¥ b5 £ "2°%
C* k-2
x * Py ok
(p-i)P, - |aa*(er) —E= (p*-21)3%, = —p, 8%-0c, (k.21)
tk \ Ze k= = -k
C* k-2
in which the matrices é and 2 can be obtained from ik’ @k by an
integration with the new measure, i.e.
$ = Idx(k)gkgk , ¥= Idx(k)ykgk s (k.22)
Cc c
From (4.20) and (4.21) we derive
[ D*
. kP! -
(p-k)§, + de(n) de*(z') < (p-2)¢,
¢ * {k-2")(2'-)
C
P.0,4
30 o *; 0 k"L B oE oL
= §e0 de (2') -cg t (p-k)oye, + o *Qoc (k.23)
* k-2
c
T3
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*
) PPyt .
(p-k)§, + fdx(z) fdx*(z') L (p-2)3,
. Ix (k-2')(2'-2)
o 0 PPy
= farten) R rane v Bg- farten) KR g o,
* k-2' - T k-2' -
C C
(4.24)

Taking into account that the homogeneous integral equation corresponding to

(4.1) has only the zero solution, we obtain immediately

(p_k)ék = ng - gT.gk + 2*.2.21{ + é-g.gk . (k.25)
s - * T. ~. - - -*. .
(p-k)d = Py = LY + 20y - 87008 » (4.26)

which are the basic relations for the BT (for the NLS class).

k.3, Matrix Bidcklund transformation

. . . . . *
The inverse transformation of (4.17) can be obtained interchanging p<>p ,

dr(k) <> di(k). From (4.25) and (4.26) we thus obtain the inverse relations

(p*-k)g = D'y - I by + X0+ 20h - (h.27)
(p*k)y = oy - Iy + 0R - 250, - (4.28)

Integrating (4.25) and (4.26) over the contour C with the measure di(k) and
using the relation (p*-k)di(k) = (p-k)ar(k) to evaluate the integrals on the

left-hand side we have

2’3 -pg =80 - 252+ Boy+¥r0e (4.29)
pHEY) = Fg - g By - o (4.30)

The matrices J and gT in (4.29) and (4.30) can be eliminated with the

relations
213 @.= J7eg + §J + §-0-¥ - ¥*-0-8 (4.31)
x= s = = =z = = ? °
and
T
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y-geptpoy-ghge=o, (4.32)
which follow from (4.5), (4.7) and (4.6) resp. after integration over C.
Using egs. (4.29), (4.30) and the inverse equations with p*ﬂ-p*, g4ﬂ-§ ,

g**-z , in combination with (4.31) and (4.32), we obtain

|
—
112

+2)'2'(

(B

2(p*§-pp) = -2id (3-) + (¥*-¥*)-0-(B+2) -8) . (4.33)

(p¥-p)(E-¥) = (§%-2%)+0-(3-2) - (F-¥)-0-(¥-¥) . (4.34)

From eqs. (4.33) and (4.34) it is straightforward to derive a relation
containing only ¢ and é. In fact taking the (0,0) element of (4.3L4) we

obtain a quadratic equation in %0 o~ Ys.0 which can be solved to give
2 b

lI'0,0 - lpO,O = %(P-P*) * ;— /lp—P*Iz - hla;o,o - ¢0,0|2 ’ (4.35)

in which the left-hand side is imaginary as the matrix ¥ is antihermitean.
From (4.34) one can solve the matrix g-(g-g), and inserting the result in

(4.33) we arrive at

2id (3-2) + (P™p)(8-2) = -(p"-p)(3+2)

-2 (30" = 3/ 1op"17 - HlEg o b, o) By 0= 8,00 [(B-0)-0- (Bs0)F° .

Eq. (4.36) is the spatial part of the matrix B#cklund transformation associated
with the integral equation (4.1). It is independent of the dispersion w(k)
and is common to all matrix PDE's which can be derived for various w(k). The

time-dependent part of the BT can be inferred from the matrix PDE and (L4.36).

L.k, Modified matrix PDE

Introducing
+ -
gt =3sxg, (L4.37)
we have from the integrated version of (4.14) and its counterpert with ¢ - §
T3

e
3.
I
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: - 246~ - 3 3s~
(13,2 + 2,328 - ix 3307)
- - * - - * -
= _%Az(g Q-9 * 4 2+.2.2+ ).9.2 - %Az(g .g.g"’ + g"’.g.g *).g.g"
20 [ (eme0ee™ 4 gte0eg )00 0 |
51 3 = = = 2 = = X=
+ 2| 0™ + 0t e0ee ) 000 0" ° (L.38)
El 3 = == = == = “x= ° *
From the matrix BT (4.36) it is straightforward to express g+ in terms of
$ . From the (0,0) element we have
bo.0 = F2(3,85 o - H(p+p")eg )//lp-p"‘l2 - log 0% (eE") . (8.39)
0,0 x70,0 0,0 0,0 ? * :
Next one can solve the matrices (§+g)~g and Q-(§+g) from (4.36). Inserting
the result in (L4.36) one obtains after some algebra
* + * - * e = *, -
(p-p)2" = (p-p)2” +2(p-p)g = -2i3, ¢ - (p+p )2
- - 21-1 * . *)2 - 212
v2feg 145,07 {3e0") = 35/ 1oe*17 - 4105 o7} =
x {ia (27+097) - if6_ 1n ¢ . + 3i(p+p™))e 00"
XxX's == x 0,0 = ==
]
- * * - =3 - . *\) .= -
F (e-p"{Ip-p"|2 - blog 012177 (3, 1 o o - ilp+p™))e 702 ;-
(L4.ko)
Inserting (4.40) in (L4.38) we obtain the modified matrix PDE for g—,a.nd if p#p*
(4.40) is the Miura transformation mapping a solution of the PDE for g- on a
solution of the matrix PDE for g. (In the special case (k.13) the PDE for ]
is the integrated version of (4.14), but (L.40O) is independent of w(k) ).
As an example we write down the (0,0) element of the matrix PDE in the
case (4.13). The result is, cf. (4.38) and (4.39),
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} i
! sn ™ 2,7 _ iy o34 NG
;%1 134%0,0 * 22%%0,0 ~ **3%%,0 {
% ,
i - - 2 .
20 ¢ o -ilp+p*)ey 4l i
s _ _1 3, - - 2 | x'0,0 0,0 e
, = ((=3r,+302,0, )45 o) (I‘t’o,oI * 2 Ll |2 )
|[p-p%[" - 4l4g ol :
1
1 - . *, - - 2 Y
i yoads 234%0,0= Pt )40 0 28,195 0! i
rj + 1 (B, +5irge) JToFZ - ule 12 x JTo* 2 oble 2 i
by - - - - ™
4 lo-p™|% - bleg ol lp-p7[" - 4l4g o ;
oy (4.41) -
‘4!,3 5 ;
:" . + - . . .
< -and (b4.39), with %9.0=%0.0% 2%y o &lves the Miura transformation mapping a A
N L] 3 b i
%i solution of (4.41) on a solution of (4.16). -
'}‘ Teking p*#p and introducing the new variable
. a(x,t) = 2[p-p*|" 67 (x + X (p+p*)t - oA, (ptp)t,t) x
;:l ? P P 0,0 2 P P N 3 P P E]

. i 3 i 2- C
x exp [-3i(p+p*)x - % (p+p") Agt +% (p+p™) At ], e

X = Ay +§ (p+p*) (4.42) 0
i

eq. (4.41) can be simplified to K

2
. = a2 . 3 1T 3. 1 *]2 2 |3x8.l

(i3, + X,82 - 1A33x)a = {(- 2, + ElAaax)a} x 1% |p-p*]|“ [2]° + 1_|a|2 :
{ s 3.8 Bx!a|2 -
+4(= 3, + 220 )) —— } x (4.43) It
{ 2273 S22 ) Ni-la)? :
4 In the special case A3=0, X,=1 eq. (4.43) is equivalent to the AHSC "ﬁf
* : §
2,8 =8 028+ 8« (p-p’2%+0)E,  Fd=a, (4.h1) o
¢

in which the polar angles of the spin vector 3 s 1.e. ‘
3 = (sing cosa, sin® sinw, cos@) , (L4.45) éf

can be expressed as, cf. egs. (3.19) and (3.20) of ref. 1T,
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B ST b L
2 2
. Im3 1na , laxal 'l'lp p*|2 (2-1a]%) (4.46)
% ° 3 - 3f2 ~ gl¥” - :
[1-]a]®]) [1-[al?] [1-]al?]?

The Miura transformation mepping a solution of the AHSC on a solution ¢0 0
L]

of the NLS has been worked out in ref. 17 and can be regarded as a direct
generalization of the Lakshmanan result 30) for the isotropic case. In the

special case 1,=0, Az=1, eq. (4.43) may be regarded as a complex version of

eq. (3.19) with p=0.

4.5, Integral equation and linear problem

Defining
+ ~ *
6 = (p-K)i, * (p*-K)gy >
+ ~ *
b = (k)Y + (p7-k)Y, » (b.47)
with inverse
+. - + -
- fk+fk fk'fk
fk = —, gk = T N
2(p-k) 2(p%-k)
+ - + -
. ety by~ ¥
¥, = =k ko v, = _ka— , (4.48)
2(p-k) 2(p -k)
and introducing a new measure di;(k) by
da(k) aa(k)
ar (k) = = — > (4.49)
p~k p -k
it is easy to show that
+ =
¢ = [ar (gpe, = 22,
Cc
t o
= Idkl(k)iﬂkgk = E+¥ . (k.50)
Cc
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From (4.1) and the associated equation with Qk'*ék’ ar(e)+ai(e), it
is straightforward to derive two coupled integral equations for Q; and g;.
In fact, inserting (4.48) in (L4.1) and the associated equation,and changing

to the new measure (4.49), we have

(2*-2")o, 07
(g +6) + (o) [, (0) fi‘?‘“" s e =2k
c c
. (p-l')p p*l
(-850 + 70 Jon (0 [ T (6o 6) = 2"l
c c
(4.51)
leading to
(Ipl® + (e-p-p"12")0 0,
o + del(z) de’;(z') T
¢ o* (k=27)(8"-2)
* pkav I RV I T
- fdh(%) del(z') 5 [ 3(™p)g, + 2(p-p")¢} ]
c c* 2=
- *
= ((p-k) £ (p"K))o,e, - (h.52)

Egs. (4.52) are two coupled linear integral equations and 27, i.e. the
solution of the modified metrix PDE,can be obtained from 2; integrating over
the contour C, as in (4.50). These equations which were introduced in a
slightly different notation in ref, 20, give a complete linearization of the
AHSC {eq. (4.h1) with A3=0, Ap=1) as well as of other modified PDE's which
mey be derived for other choices of w{k). {In this context we note that the
bilinearization of the Heisenberg spin chain with orthorhombic anisotropy was
given in ref. 31, and very recently the Riemann-Hilbert problem was settléd
by Mikhailov 32).)

It is straightforward to derive the linear problem for ¢5’0. From (4.5) -
(4.7), (h4.25), (Lk.26), (L.47) and (4.50) we have

Q; = 2iax2k + (p+p*)2k + !-*'Q'Qk + 2+.9.Ek . (L4.53)
Y= - €0 - (b.5%)
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L
e Multiplying (4.53) and (4.54) by (p*—k) and using also the inverse relations
. with p*—rp*, -?k *"ik’ 21{4—7' Qk’ g*—ri g*—ri , it can easily be shown ; )
L that
* ot .- *, - % + + - =
(p-p )ik = 2i3 ¢ *+ (ptp )fk ol S S N SR
ol i)
L * s in ot - v e0eem + ote0eut g
o -2k¢, = 213, ¢ - % Q9 + 2 0% (4.55) i
o -
: and &y
e !
v - _* - na
i (p-p )‘bk =¥ 0y -2 0t “
Y ;
L - TR *
" -2ky, = ¥ 0y, - @ 09, - (PP )Y, - (4.56) gw

From (4.7) and (4.8) and their counterparts with Qk*i’k ete., it can be
shown that

. Fo_oaat.a. F 1a™onent
(k=13 )¢, = 387 +0¥y + 327009 > (4.57)
* ¥ =
-1, = i’ 09, *+ 22 'Q'Qf; . (4.58)

¥ -
Using (4.56) one can solve the vectors 0y, as linear combinations of Q¢
and g-g; r..serting the result into (4.57) one obtains after some straight-

forward algecora

7 o[ Y0 (-p™) 15
(-k—lax)ik = ![—’-——_——-—— ]2 .g.gk
%0,0
‘1’6 0 .+ p+p*-2k ¥ -
* %[—’—_ g+ (—)¢ ]-g-gk , (4.59)
%0,0 %0,0

with lpo’o = wo’o - \bo’o given by (4.35) with ¢0’0-¢0,0 = ¢0,0 .

Eq. (4.59) is independent of w(k). For the special case (4.13) the time-
dependent part of the linear problem of the AHSC can be inferred from (k.1k)
and its counterpart with $-+§ , 9 > §k .

We have
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(i3, + 2,82 - irg32)¢,

It is also straightforward to derive the remaining constitutive relations for

the matrix g_ , but the results will not be presented here.

4.6. Bdeklund transformation for the AHSC

From (4.51) it is clear that %(Q;-Pgi) and %(g;-—g;) satisfy an
integral equation of the form (4.1} with dA(R) replaced by dAr;(2) and Py
replaced by (p-k)pk and (p*-k)pk respectively. Similarly it can be shown that
%(E;*'ﬂi) and 5(2;"2;) satisfy (4.%4) with dA(R) replaced by dry(%)
and p, by (p-k)p, and (p*~k)pk-

We now apply the singular transformetion of measures

q-k
drp (k) + daiy(x) = - k), (4.61)
q -k

and introduce the functions %(i;:té;) , %(@;:t@;) that are the solutions of
the integral equations mentioned above with dA1(%) replaced by dii(g).
From (4.25) and (4.26) we immediately obtain the basic relations of the BT

viz.
$ak) (Fy + ed7) = da(gy +egn) - 32"+ (o) +egy)
+ 1‘;(2+*+ 52'*)‘9‘(1’;* edy) + 1T+ €;§f)'9°(2£+ evp) » (4.52)

$(a-k) (§y + ) =3a™(yy + eup) = 3L (yy + ewy)

+ ,(~+*

-~ ~o - ~ % -
+ HE eE) gty v e T) - HE e )0 (g ety)

. . =t ~d .
in which the matrices § and ¥ are defined by
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RNy Tl fr e RN

5 (3t ot PRy~
= Jdll(k)iksk » ¥ = Jdkl(k)ilkgk . (4.64) b
c c

fen?

pevy

g S e
e

From {4.62) and (4.63) one can derive the spatial part of the BT for the
PDE (L.h41). .
The result is given by

:j Bx$5,0_ %i(P+P*)$8,O Bx¢8,0- %i(P+P*)¢5;O !

,: - *)2 N b 12]% - [I *IZ L - 2 % - o x .
i Llp-p"[" - 4185 o p-p |“ - 4oy 1] #5.,0% %0 g
i L \
T %12 g q7- (2713 *2 - 1243 x  # (%0,0%,0\1? e
H x ([lp-p 1*- 4185 o171+ []p-p™| - 4eg o ]2) +i(p+p —q—q)(:?'__’")}

%:6 %0,0"%0,0

P s
pe
=

y

1
(%002 + 155 o= 65 012 + H[Io2*2 - 4155 o121 = [lp-p*12 - 4145 1]

&

e i YN

e

~e- 1 Ky T - _ 1= * -
8x¢0,0-21(p+p )¢0,0 ) 3.%0.0 zi(p+p )¢Lo1

%2 o= 1213 *)2 213
[lo-p*|2 - 4135 o2 [lp-p*12- s, ol%]

57y

(4.65) ,

A A
T el

Some details of the derivation are presented in appendix D. The BT for the

AHSC is rather complicated and it does not seem to be easy to derive a second

2

modified NLS equation in terms of only one function. ;

.

NI R AT

7

5. The sine-Gordon eguation 5

In the preceding section we have described a general scheme, independent il

of the dispersion w(k), of deriving Bicklund transformations and modified
PDE's, on the basis of a singular transformation of the measure in the
integral equation associated with the original PDE's. As specific examples we
have treated w(k)=k3 in the case of the integral equation (2.1) for the KdV
class and m(k)l=A2k2i-A3k3 in the case of the integral equation (4.1) for
the NLS class. In this section we present some results on BHcklund trans-

1

formations and modified equations for w(k) = k™  starting from the integral

equations (4.1) and (2.40) with p=0, for the NLS class and the MKAV class

respectively.
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5.1. The NLS class

In the special case m(k)=k"'1 the function ¢ o, defined by (4.1) and
t]

by the (0,0) element of (4.12) satisfies the PDE

" 1
- <z 2
3,9490,0 = 99,0 [ 1-412,05 ol" 1% » (5.1)

ef. eqs. (6.3a) and (6.5) of ref. 18. In terms of the variable X=23¢4 o>
L]

eq. (5.1) can be expressed as

a.X
=9 | —F—=) , (5.2)
(e

which may be regarded as the complex sine-Gordon equation.
The spatial part of the BT of (5.1), cf. also refs. 33 and 34, is given
by the (0,0) element of (k.36), i.e.

. ~ - * 3 .
2lax(¢o’0— ¢o,o) = -(p +p)(¢0’0- ¢o,o)

- - 1
T (B ot dgo) [lp-p*I2=4ldy o= 0 oI*17 . (5.3)

The time-dependent part of the BT can be inferred from (5.1), inserting (5.3)
for ax(¢0,0_ ¢0,0) in order to evaluate 8x3t(¢0’o- ¢0,0)'
The modified PDE corresponding to (5.1) can be found inserting (%.39) into

- 1+ - + - 243
9x%%0,0 Hog o+ 99,00 [1 - 13,085 o+ 05 0)[7]
1,7+ - + - 243
- §(¢0’o_¢0’o) [‘I - |at(¢o’o_¢o’o)| ] . (5-)4')
The result in terms of the variable

1s *
a(x,t) 2|P-P*|-1¢5’0 e"él(P"'P )x » (P*#P) ’ (5.5)

can be expressed as

83

M R T D WS T T T A £ T TR R ol e T e N 2 R i

fpe - EF

[
e

#
i
o
{.




o ¥
“some WA TN R Yy
s e SRR o PR R R R - B - R e R T R s
g . Ji
i i * = {
l,j axata + 3 (p+p )ata !;‘f,‘
128, i
Kl i
[ - *)=1 - = 211 1
8 [p-p*[" 2,8 ‘ . 3.8 3 i
£ = {ja ¥ ———1 1- |3p-p)aa¥2d (——‘_1') P
o] [1-1a21® | L KA A PV R B e
X 4
r lp-p*|"t2.a 1 [ 3a 273 i
5 + | la 2 — T = 1- ‘%(p-p*)ata + at(————.-x > _) (5.6) .
% 2 o
& [1-1=°]F | L Lr-Jel* P70 -
:‘{ Eq. (4.65) is again the spatial part of the BT for the PDE for ¢a o ¢
B ’ o
i )
F| 5.2. The MKAV class 5
P *® -
®
& From (2.40), in the special case p=0, we have the integral equation :
i |
PP,y u L
8 vt Idx(z) Idx(z') =2 Vo =P8 > Yy Eo- =% > (5.7 ¢
£y ¢ ¢ (k+2')(2'+2) 2k :
i z
fj which is the integral equation of type II of ref. 18. For the (0,0) element .
%‘:f of the matrix 1§
:
:
& V= Id““‘.’zsz , (5.8)
% c
‘.g we have, in the special case w(k)=k~!, the PDE , cf. eq. {6.17) of ref.18,
2l N [
5 ,
J = 212 1;
% 3,2:V0,0 = 0,0 [1+ h(atvo,o) J (5.9) ﬁ
é Eq. (5.9) can be regarded as the potential sine-Gordon equation, since the -1
,‘ substitution }
6 = arcsin 2i3,v, | (5.10) o
> !
gives the sine-Gordon equation 3
)
axate = sing@ . (5.11) j
. o i
For the gquantity VO,O- EuO,O we have the BT ;

8k
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- “ 2 2 % E.‘r
i + =7F - - (¥ f
13, (Vo,0* Y0,0) = F(¥0,07¥0,0'[P* = (7 o+ v )21 (5.12) .

ef. (3.13) with p=0 and g¢+p. For the quantity

W= ("o,0+"0,0) (5.13)

1
P
one can derive the modified PDE i

. %ip"laxw' R 27z =
b8, v = [IwF ——2 1+ [patw ¥ iat(————r)] ;
[1-w2]? ] [1-w2]2 ] ,

oW 2
s —% 1 11+ [patw + iat(——x——f)] . (5.14)
[1-w2]27d ]

[1-w2]* |

+
| ————|
[T
=
o]
]
—
@
]
1
1
[
v

e

which, for imaginary p, may be regarded as a real counterpart of (5.6).

oy

Solutions of (5.14) can be found from the linear integral equation (3.27) with
p=0 and g°p, noting that w=-%p-1u5+0 . -

Instead of the BT for the potential,sine-Gordon equation one can consider
the BT for the SG equation (5.11) itself. From (5.9) and (5.12) one can show

that -

1 1
. 212 . ~ 213
lv0,0[1 + h(Btvo’o) 1% + lv0,0[1 + h(atv0,0) ]

~2 2 [
-V [
29 . —0,0770,0 )
0 2~
[p% - (¥ 4*v0,0

- yd 2 _ (o
=% (3%, 0 vo,00 2%~y o+ ¥y

£

)?; t(v0,0+ VO,O) .

(5.15)

In terms of the variable 6, defined by (5.10), eq. (5.15) can be rewritten 2

using (5.11) as N

1
cos 8 (3,8) + cos B (3.8) = £ 1| (sind -sin 0) [p? + }(3, (3+0))?]?

(sind + sine)[ (3x§)2 - (3x9)2]

A[p2+ (o (5 +0)) 2]

+ (5.16)

PRGNSR

85

L Wk T L ETRR Pt M P Il el Sl

.



TR AL DT T T A R R Y ST R N RO

Writing 2ip sina = ax(6+e ) eq. (5.16) can be worked out to give
[tana Ftan 3(8-0)][ipcosa + Ztan 2(F+ e)ax(é-e)]cosi(é+e) x .

x cos 3(6-06) =0, (5.17)

whereas eq. (5.12) with (5.10) and (5.9) 1leads to

N\
RN

Yo,

?2(8+0) = tip(cosa) ax(é-e) . (5.18)

The only consistent solution of (5.17) and (5.18) is a=23(8-2), leading to '

3,(8+0) = +2ip sin }(6-0) . (5.19) s
From (5.19) together with (5.11) we have L
3,(8-0) = Foip~! sin }(8 +0) . (5.20)

Egs. (5.19) and (5.20) form the well-known BT ) for the SG. f
In terms of the variable a=3(8-6) egs. (5.19) and (5.20) yield the PDE

1
3 3@ = [1+ pz(ata)Z]é sine , (5.21) .

which is the modified sine-Gordon equation (MSG). The solutions of (5.21) can
be inferred from the solutions of the linear integral equation (3.27) with p=0

and g*p. From (3.26) one obtains the function u(-)+o leading with (3.16) and
bl

——

the O,E) element of (3.14) to Y50 (=-2v0’0) and U0,0 (=-2v0’o), and
a=+3(8-6) is determined by (5.10). Multisoliton solutions were obtained by .

. . . -
bilinearization in ref. 35.
Remark
From eq. (5.7) it can be shown that the integral equation (2.1) with N
dispersion w(k) =% ! yields solutions of the sine-Gordon equation as well as ne
of a shallow water wave equation. Some details are presented in appendix E. [
6. Bicklund transformations for the wave functions =
In the preceding sections we have given a general method to derive Bi#cklund ;{

transformations for integrable PDE's using & singular transformation of

measures in the corresponding linear integral equation. From this trans-
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formation one immediately obtains the basic Bicklund relations containing both

o potentials and wave functions. Here the term wave functions is used to denote
the solutions of the linear integral equations which depend on the (spectral)

i parameter k and which appear as eigenfunctions in the associated linear

problems. The potentials denote the functions, obtained through integration

of the wave functions over the contour C in the complex k-plane.

i So far we have considered PDE's and BT's containing only the potentials,

“ and which have been obtained after eliminating the wave functions by

integration over the contour C. In the present section we will investigate

PDE's and BT's in terms of only the wave functions, which in a number of

oS iy Sallel® an

o

cases can be derived by eliminating the potentials from the linear problem and

-
At 55
¥,

the basic relations of the BT. Examples include e.g. the BT for the potential
g MKdV and the AHSC.

ot
(o
o —..

; 6.1. The KAV class
v -
4 The linear problem for the K3V is given by the n=0 components of egs.
¥ (2.9) and (2.11). From eq. (2.9), writing a=1ln uﬁo), we have the relation :
¢ #
v axuo,o = aia + (axa)2 - ikaxa , (6.1) %§
(0) i
¢ mapping the wave function w on the potential axuo g that satisfies the ;?
v : ’ [
E Korteweg-de Vries equation. Inserting (6.1) in (2.11) it is clear that ¢
i L
W a =1n uio) satisfies the PDE v
f >
B — a3 = 34 2 _ 3 o
¥ (3t 3x)a 31k(axa) 2(3xa) . (6.2) :
which is equivalent to the potential MKAdV, i.e. the PDE for axa is )
equivalent to the MKav. {f
» From the basic relation of the BT (2.23), using also (2.3), it follows E‘
[
. that F’"
¢ - =
' L o= 1 1 {U=U)eD~ s o6
. (p-k)gk = (p+k)gk +2i3 u + i(U-u)-g o oo (6.3) %
i
; implying that N,
(p-k)e(g‘-a) = p+k+2id a+i(u, -u ). (6.4)
x 0,0 0,0

From (6.4) and the inverse relation with p<+-p , a<+>a, Uy 0% o it
L] bl

can be shown that

T T T,
: KA
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2iax(a+£) = -2k + (p-k)e(a—a) - (p+k)e_(a_a) , {6.5)

which is the spatial part of the BT for the potential MKaV (6.2).

R

B T e X

e ra e A

Substituting z=a-a in (6.5), we have

a8 =-30z + }ik - 1i(p-k)e? + ti(ptk)e™® . (6.6)

o
¥

(%7

From (6.2) and its counterpart with a»a, and using (6.6), we obtain egain -

the second modified K4V (3.21), 1i.e. F;
(3, -92)z = -3(2.2)° + 2[(p-1)%e®® + (prk)2e™®% - 2(p"+x%)]o 2 . (6.7) E??,‘
X X 8 X &
%‘l'ﬁ
or
6.2. The NLS class 'Fh
For the function ::i
1
u(x,) = -0{0 00800 (%) (6.8)
defined in terms of the wave functions ¢1((0) and d.ll(io) of the linear problem

of the NLS, cf. the n=0 components of (k.T7), (4.8), (L4.1L4) and (k.15), in

the special case Ay=1, *3=0, one derives the PDE

3. u-u?s u’.I au*—u*zau
5 u =13 (_z;____ga__) - iu2s (_z_______z_)
X 1-|u|" X 1 - Iulu

ot

+ 2 (3 23 w*)(5_u*-u**s_u)
m xu—u xu xu -1u xu

2(k+k*)u23xu* 21 (k+k*)2udu*?  2ikk™uu*

+ + > (6-9)
(1- hul?)? (- [ul®? (14 [ul)?

cef. eq. (2.17) of ref. 1T with a=2, apart from a migprint. In ref. 5 the

invariance of (6.9) under k<+k” was used to obtain the BT for the NLS.
From the basic relations (4.25), (4.26) of the BT for the NLS, together

with egs. (4.5)-(4.8) and (6.8) we have, noting that Y9 o is imaginary,
?

-(0) -(0)
¥ v . .
is u = (p-k)i ﬁ + (p-k)u % - (p*-k)u—pu+¢0’0-¢;,ou2 . (6.10)
k k

Solving i&ko) / wl(tO) from (6.10) and inserting the result in the inverse

88




- -e—-r.,-«,-v,»—..w-‘q=~'viwvx-:;g,f‘v‘"-P'?,'PJ ol i

i
¢
£
!

o,

reiation with p<rp*, u<«+i, UJIEO)*—*J:IEO), %0 0*—*60 g» ¥e find
> 2>

- ) * ~o o k) (s o x ko
[1axu + (p-k)u ¢0,0+ ¢0,0u + ™) [1Bxu + (p -k)u ¢0,0+ ¢0’ou +pu)

= (p*-k)(p-k)(@+u)? . (6.11)

From egs. (4.7) and (4.8) one also has the relation

s - _ _ * 2
is u ku + ¢0,0 ¢0,0u , (6.12)

from which one can express in terms of u:

90,0

inu + ku - uz(iaxu*-k*u*
¢ = R (6.13)

Inserting (6.13), its complex conjugate, and the inverse relations with

¢0,0->¢0’0, u-u, in (6.11), we have

. R (inu+ku)(—1+ﬁ2u*2) - (inu*-k*u*)(ﬁz-uz)
[i3u+(P-k)u+pu+ ]
X y
1= |u
. (10 k) (- 14u?G*?) - (18 &%-k*5") (u2-u?)
X[iau+(p-k)u+pu+ ]
x y
1= |yl
= (p*k)(p-k) (T+u)? (6.14)

which is the BT for the PDE (6.9).
In the special case p*=k, egq. (6.11) leads to

~ ~ %

i w2 - K, (6.15)

ef. eq. (2.19) of ref. 17. Egs. (6.12) and (6.15) lead to

(p-p*1u

90,0 = (6.16)

‘|+|'|_1l2

showing that the PDE (6.9) with k+p* is equivalent to eq. (L.41) for Ap=1,
23=0, and thus to the AHSC (L.bL), cf. ref. 17. Eq. (6.14) (cf. eq. (4.65))

is thus an alternative expression for the BT of the AHSC.
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f}\’! Appendix A
%; In this appendix we argue that the transformation (2.i8} can increase the 2,
% number of solitons by 1, and we also discuss another way of obtaining the ;;
Bécklund transformation. i
4 N-soliton solutions can be obtained from the integral equation (2.1) to- ;ﬁ

gether with (2.6), choosing as a measure a linear combination of N simple

poles, 1i.e.

5
i
i 1N g :
Bx) = — ® TR
}2\ omi o=1 k-k P
e a .
f* 1y
Qf and a contour C enclosing k;,k,,...,ky. For an analytic function (k) we ﬁ~
S
@“ then have £,
e =
4 N

J fk)an(k) = } g flk ), (a.2)

) a=1

so that (2.1) reduces to a set of N linear algebraic equations. (In view of

S

big

(A.2) dA(k) may also be regarded as a linear combination of delta functions

_¢oN
aMk) =} _.8,8(k-k )dk, cf. ref. 15).
Consider now the transformation (2.18) with -p#ka, then

P

'

L L 2

LR - T B~ ratiastdnion oV PEEIR

e . 1 1 N g

‘5;.? dX(k) e — ¥ 2 gk , (A.3)
Eg 271 k+p 211 =1 k-ka -
T .
i ,
Ok ) N g . &J(p=k) ‘
=-2p | —, =4 (a.1) ;
P « !

a=1 p+ku p+ka

Eq. (A.3) is a linear combination of N+1 simple poles, so that the new
function Q, which can be found from (2.6) with the measure (A.3) is an (N+1)-

Vi
=

soliton solution.
In order to give a different, but equivalent, way of getting the BT, let

ol e

us consider the singular transformation of the plane-wave factor

p-k
P * B, =
kT %k oy Tk

(a.5)

It is clear that Bk obeys the differential relations (2.2) as well and by
defining a solution Ek(x,t) of (2.1) with Bk instead of L i.e.

5
2
i
i
e
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8, + if, Id}\(ﬂ.) = o b, (4.6)

we obtain a solution

[[=}3

- [antge, (a.7)
C

of the matrix PDE (2.12). On the other hand, multiplying (A.6) by
(p+k)(P-k)-l, it is easy to show that i_‘zk(p+k)(p—k)-1 satisfies the integral

equation (2.19). As a consequence we have

—

p-k)
L (4.8)

i=10, (.9)

implying that the Bicklund transformation derived in subsection 2.4 can also be
obtained as a result of the transformation (A.5) of the plane-wave factor Py
A similar result can be derived for the integral equation of the NLS type

treated in section 4. One has the relations

= Idx(k)§kgk , ¥ = Idx(k)ﬁkgk , (A.10)
c c

in which §k and @k are the solutions of (4.2) and (4.3) with

- p_k
Pp > P = T P - (A.11)
p =k

Appendix B

Eq. (2.32) is most easily derived using two relations.of the linear problem

in subsection 2.6. From the integrated version of (2.48) we have

2 - - 1. = +
:|.':)xu1’1 = —u1’0 + ;1u1’ouo’1 . (B.1)
igu. . = -u. .+ 3u. u .

X 0,1 0,0 0,070,1

b

TR ST et
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oy

T
o T

from which

3 (u; 0)2
BRI S L (B.3)
Y0,0
’ 29 u1

From the integrated version of (2.%1), using also (B.1) it follows

- + 2 -2 2iuy )2,
S FTOLPE S L P T s S A T (B.4)
1,1 1,0 1,0 (= )2 1,0
u, )
1,0
from which one can solve
- .2 213
3 + .
(u,l’o) 2+ 21pu1 - 2[(1+1pu1 1) + (3 u1 ) 21 . (B.5)

Substituting (B.3) and (B.5) in the (1,1) element of (2.30), 1i.e.

33T, = 30T -
(3, -82)uy 1 = (3ipuy o - 3uy gug 03,85 1 » (8.6)
one obtains
(0, -230y = - 20,07 7o L0y 02+ oy 2B - 2om
£ %M, 200,17 % 1,1 x%1,1 Y9
(2.7)

Note that eq. (B.7) can also be derived from the Bécklund transformation for

(2.15)

= [1+ip(a um)]2 s (B.8)

(1-23xu1’1)(1-23xu1 1 17
which can be inferred from the (1,1) element of (2.29), using also (2.17).

It is now easy to show that the quantity

o'
m

20, (o] ,-1) (B.9)

obeys the following PDE

. 3 b(axb)2 1 .
9, -32)b=-23 — - — b B.
( t x) 2 X[ ’-I-pz—bz 12 ] ? ( 10)

and eq. (2.32) is obtained substituting b=2ip sinhz.
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Appendix C
In this appendix we give the derivation of the Bicklund transformation
(3.%1) for the PDE (3.19). As a first step, eq. (3.39) is rewritten

(41

(r-k)ﬁ;a = rl_l';" - ';T'E].: + ,’;1{ ++.g.1_,;a + [;I -0

nce

-t
U .

+

w o+ g“-g-_'a] , (c.1)

Ho

sma _ -0 T =0 , 1. [

ncie

++-g-1_11:°‘ + 'Q"_’]—;
P o | (c.2)

Integrating (C.1) over dip(k), and using the relation {r-k)dip(k) =
(r+k)dis(k) to evaluate the left-hand side, we have

I‘(Q++'g++) = _gT.g++ _ ;++‘§
R T S N p— -
+ 11{U++’Q‘t_l + g .g.g + g .g.g + g .g.g ] . (c.3)
A“«—rﬁ)\“ ,» and the relation

Using (C.3), its inverse with r<>-r, U

gt e gty s e k[0 U0

- U-+'2°U-+ - g"".g.g“] , (c.4)

ef. eqs. (3.8) and (3.14), we find

2r(g++_g++) - 2P(g—++U—+) _2 (;++-[=I++)'9 (g++_[=]++)
(A A B (T A (A IR S g DY S ( S o
+,’;i(g"+g")-9-(g"+g") . (c.5)

From (C.2) we obtain after integration over dix(k)

r@T-g =g - T
pa[gheut e §r s Fer el ] L 6

and from (C.6), the inverse relation with r<>-r, QMHQM , and the

relation
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ef. (3.7) and (3.1k4), it can be shown that

~ s ~ - P _ ~ s
2ia (§"+u™) = 2@ U + b [ (@ - +)-g-(t=1++-=++)]

~—— e S |
sul @@y | (c.8)
.. . . o e
In a similar way one can derive two relations for U 9} and U -,
but we shall not give them here.
From the (0,0) element of (C.8), using {3.16) and (3.35) for iaxu8+0
L]

+e .
and uo 0 respectively, one has
>

(a5 +uy )
~++ 0,0 0,0
gl(uo O o O) + 2r (~-+ —+ x

2 u0,0_uQ,O)
{[h(q ~5?) - (g% - 2p1)2]° + [4(a?-p?) - (ugjo-zpﬁzl?},
(c.9)

and eq. (3.41) can be derived inserting (C.9) and (3.35) in (C.5).

Appendix D

In this appendix we derive eq. (4.65). From (4.62) and (4.63) we obtain

the relations

- P F ~ .- F
(@K)F = aty =~ 3¢y + 3E ey + T o0gy + Fr0oyy + E700w) 5 (D.1)
~% * + - - T ~ X + ~o X T
(a-kl = o'y - -3 -w + HE gyl + ¥ 0y - & Q¢ -8 -0v¢) . (D.2)

Integrating (D.1) over dij(k) and using (g-k)dxr;(k) = (q*-

evaluate the left~-hand side, we find

CF - T = - @ - AT T+ Fet 4

From (D.3) and the relation, ec¢f. (4.31) and (L4.50)
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g7+ gg = i g - Moy o) + BT gt 80 gD 0
. . . * + ~t + ~t
and the inverse relations with q++q , 3 <@, ¥y ¥ it can be shown
that
Ko - L em o o - ~+ o+ ~ + -
2(q ¢ -ag) = -219x(g —27) - H(EHET)eQ (¥ -Y) - %($++2 )0+ (¥ -¥7)
ok _k e * . ~ 5
FHET o ") + HET - (E 42T . (DL5) g
7
Integrating (D.2) over di;(k) we have gi
[
* - e I L o 4k k.
Q(F g = (g T ¢ HETg Ty - HE e+ E gD .
B¢ (p.6) é}
SRR . ¥
2 From (D.5) and the relation, cf. (4.32) and (4.50), i
! - - % - * ;
? ARE R A (S AR A DA I TC T S s B A (p.7) }
§) :
o in combination with the inverse relations, it can be shown that B
i
£ O o ~n ~+ 4 ~
A () (E - ) = HF -¥)eg (F ) - HE -0 - )
3
L P AEF a0 (Fo8T) + 3E™ ™0 (B -eh) . (0.B)
i :
“i, Eq. (4.65) can now be derived solving the imaginary quantity i
r ~ , . Dy
%‘.4 ‘JJ; O-w; O+q*-q from (D.5) and inserting the result, as well as (4.35) and
by » s
%j (4.39) in the (0,0) element of (D.8).
‘e
f

[FpN——

Appendix E %Q ¢
In this appendix we discuss the relation between the integral equation A
{2.1) in the case w(k) =k-1, and the sine-~Gordon equation and a shallow

water wave equation.

Consider the Miura transformation which maps the function V5.0 defined by
>
(5.7) and (5.8), on the function L defined by (2.1) and (2.6), i.e.
3
- 2

3990,0 = 3V0,0 * V0,0 * (E.1)
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Ty

. ef. eq. (2.29) with u0,0="2v0,0 and p=0.

Using eqs. (7.5), (3.26b) and (3.14b) for p=-1, =and (6.16), with the

minus sign, of ref. 18, it can be shown that

W 1
" = 1 1 212
P B¥5,0 = ¥%Vo,0 " 2 * 31 +h(atvo’o) 17 . (E.2)
;Q From (E.2), together with (5.9), we have
};‘f
I 93440, 0
i Vo0 = _xt 0,0 . (E.3)
A >
$ 1425, o '
! 3
i Solving 9.V, o from (E.2) and using (E.3) one can derive gf
p ? £
i 2 &
I 3,880 0 \ _ (B4l0,0)% * 8445 o 5
g By = . (E.b) B
4 142315 0 1A, '-
. &
i i
;{ Bq. (E.4) can be expressed as Lj
Fi 5
§$ 1 P
o . =[1+ - . ;
g{ ' 23,3, n[1 23tuo,o] [1 Qat“o,o] 1o ] (E.5) 8
60,0 ;!
ga which is equivalent to the sine~Gordon equation (SG). i
ﬁ? From (E.5) it can also be shown that the matrix element L P defined ;
4 . . . . . ? . v
# by (2.6), satisfies a PDE which is equivalent to the sine-~Gordon equation. In 3
%‘ fact, integrating (2.4) with §==gT°g-g, and taking the (0,0) element, we j
= immediately obtain the relation L
ksl
. = _ a2 . i
213tuo,o 2u1,0 iuf (E.6) E
The same fact can also be seen in the following way. Using egs. (7.5) and ,é
(6.15) of ref. 18, we obtain the relation Ei
2 1 ‘
- -7 3 - !:}:’
Uy 0= V0 - B+ il1-v] 1%, (E.T) :

showing that the PDE's for U, and v, o &re equivalent, independent of
L ]
the dispersion w(k). For the special case m(k)==k-1, v, o satisfies an
9’

equation equivalent to the sine-Gordon equation, as follows from eq. (6.16)

of ref. 18.
On the other hand, from (E.1) together with (E.3) one has
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3.3,.u 3.3, u 2
ax(__:_c_ic_%o_)= S . - (_xﬂ,o_) . (£.8)

x 0,0
T+23uq T+23u4 4
Substituting SE110,O+ it, eq. (E.8) cen be rewritten as
1(82 =1 2 2
3(223,5)(3,5) = #(2,0,5)2 + (3,5)2(ds) , (£.9)

which after differentiation with respect to x gives the shallow water wave

equation 36,37)
1~3 = (a2 Y
2023, (3x5)(3t5) + 2(3x3t5)(3x5) . (E.10)
Therefore, from the linear integral equation (2.1) with m(k)==k_1 one

can obtain solutions of the SG (E.5), as well as of the shallow water wave
equation (E.10). This is not surprising, since on general grounds it can be
shown that any solution of the SG leads to a solution of the shallow water wave

equation. For that purpose we consider the equation

Bxatw } (Btw)(axw) s ue glt) -2 , (5.11)

w Wz w

vwhere we have included an arbitrary function g(t). For g{t)=0, eq. (E.11)
reduces to the SG eq. (E.5) with w = %-+3tu0’0, and in the case g(t)=31,
eq. (E.11) is equivalent to the Liouville equation axatp==ep.

It is now easy to show that any solution of (E.11) for arbitrary g(t)
leads to a solution of (E.9). In fact, from (E.11) we have

(3, w)(52w) (3.9, w)o_w (3, w){a_w)?
2w - —— X _ Xt x bt x =2uwd_ W , (E.12)
Xt 2 X
w w W

and (E.12) is the compatibility condition for a variable s({x,t) defined by

s = v , (E.13)
52y (axw)2

axs=%-—-?;—. (E.14)
w Wz

Inserting (E.13) in the right-hand side of (E.1l4), one immediately obtains
(E.9).
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CHAPTER IV

LINEAR INTEGRAL EQUATIONS AND DIFFERENCE-DIFFERENCE EQUATIONS

1. Introduction

In the last decade a lot of insight has been gained in the integrability
of nonlinear partial differential equations (PDE's) 1-3). One of the most
successful methods has been the inverse-scattering transform formalism, which
provides an exact linearization in the sense that the initial value problem of
the nonlinear PDE is reduced to the solution of only linear equations. In
fact, for suitable boundary conditions at infinity, the time evolution of
scattering data is governed by linear relations, so that the solutions of the
PDE can be obtained with the help of a Gel'fand-Levitan equation.

More recently, Fokas and Ablowitz 4) have proposed a direct method of
exact linearization of the Korteweg-de Vries (KdV) equation, based on a
singular linear integral equation involving an arbitrary contour and measure.
Since then, other singular linear integral equations have been studied for
various other PDE's as well, including the nonlinear Schrddinger equation,
the (complex and real) sine-Gordon equation, the Boussinisq equation, the
5-T

»

equation of motion for the Heisenberg spin chain ete. see also ref. 8

for a treatment of the Kadomtsev-Petviashvili equation and the Benjamin-Ono
equation. It has also been shown that Bicklund transformations (BT's) for
PDE's can be generated by an appropriate singular transformation of the
measure or by an equivalent transformation of the plane-wave factor occurring
in the integral equation 9’10).

In this chapter we study the problem of discretizing nonlinear PDE's to
obtain difference-difference equations, while retaining their integrability.
This problem has of late been addressed by several authors using different
starting points. Ablowitz and Ladik " started from a discretized linear
problem, Hirota 12) started from a discretized bilinear differential equation,

13), cf.

and Date et al. used a discretized bilinear identity also ref. 1k,

The treatment in the present paper is based on the singular linear integral
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equations associated with the various PDE's mentioned above, and it will be
shown that these same integral equations, after no more than a simple and
straightforward discretization of the plane-wave factor, also yield a direct
linearization of nonlinear difference-difference equations which may be
regarded as the double-discrete analogues of the PDE's

As corollaries the following two results will be given. First of all it is
shown that the integrable nonlinear difference-difference equations we obtain
are equivalent to Bianchi identities expressing the commutativity of Bédcklund
transformations, cf. refs. 3, 15-21. Secondly we will see that after
applying a suitable continuum limit to the difference-difference equations as
well as to the associated wave factors in the singular integral equations, we
obtain integrable differential-difference equations together with their direct
linearizations. (A relationship between BT's and differential-difference
equations was presented in refs. 22, 23.)

The outline of this chapter is as follows. Sections 2-5 give a treatment
of the difference-difference equation of the KAV type. In particular, section
2 summarizes the main results, and some details of the derivation are
presented in section 3. The continuum limit, as well as the differential-
difference equation that is obtained in this 1limit, are treated in section 4,
along with some interesting special cases, and in section 5 the relation with
Rickinnd transformations and Bianchi identities is discussed. The last two
sections are devoted to a treatment of the difference-difference versions of
the nonlinear Schr&dinger equation, the sine-Gordon equation and the equation
of motion for the Heisenberg spin chain, with a summary of the main results in
section 6, and a discussion of the continuum limit and a discussion of the
connection with B#cklund transformations in section 7. (A preliminary account

of the considerations in this chapter was given in ref. 2k.)

2. The K4V class; results

In this section we present two linear integral equations involving an
arbitrary contour and measure, which linearize a certain class of nonlinear
difference-difference enuations and differential-difference equations of the
Korteweg-de Vries type.

Proposition

Let uk(n,m) be a solution of the linear integral equation
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u, (n,m) o) (n,m)
u, (n,m) + ip, (n,m) Jam) - ,  nm€Z, ke, (2.1)

+ +
) k+g k+a

e

[

where C and di(k) are an arbitrary contour and measure in the complex k-

plane, and

n m
pk(n,m) = (ﬁ (—g% pk(0,0) > p.a€€ . (2.2)

S Let the contour € &and measure dA(k) be such that the homogen=ous integral

equation corresponding to (2.1) has only the zero solution. Then the function

(n,m)
u{n,m) = i Jﬁ ar(k) , nmed, pged , (2.3)

a k+8

obeys the following nonlinear difference-difference equation

[(p-a)uln,m) - (p+B)uln+1,m)+ 1][(p-Blu(n,m+1) - (p+a)uln+i,m+1)+ 1]

= [(g-a)u(n,m) - (q+Blu(n,m+1)+ 1][(a-Blul(n+1,m) - (gta)u(n+1,m+1)+1] ,(2.4)

- el

SRR

for fixed a,B,p and q.

e ST
TR

S
A<

Corollary

L

R

Let uk(n,t) be a solution of the linear integral equation

P, (0

S,
Snl e

(n,t) {(n,t)
u (n,t) + dpy (n,t) J‘“(l) Dt . , neZ, tk,a €l , (2.5)

k+2
o k+a

S84

BN

where C and di(k) are an arbitrary contour and measure in the complex k-

plane, and

pk(n,t) = (:l:L]}:)n exp(%) pk(0,0) , rel€ . (2.6)

Let the contour C and measure dA(k) be such that the homogeneous integral

equation corresponding to (2.5) has only the zero solution. Then the function

uln,t) = i fﬂk}({’:Tt) ak) , ned, t,8¢C , (2.7)
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obeys the following nonlinear differential-difference equation

a,u(n,t) = -[2p - (p+a) (p+Bu(n+1,8) + (p-a)(p-Buln-1,8)]7" x

[uln+1,t) - u(n-1,t) + 2pu(n+1,t)u(n-1,t) + 2pu(n,t)

- (2p+a+p)uln,t)uln+1,t) - (2p-a-p)uln,t)uln-1,t)] , (2.8)
for fixed o, B and p.

Remarks

(i) The integral equations (2.1) and (2.5) mey be regarded as the double-

discrete and the single-discrete analogues of the integral equation

un(x,t)
w (rat) + i (i) [an(e) 2= = 0 e, kxte€,  (2.9)
c k+4
vhere
b, (x,t) = LK) o (0.0, (2.10)

L)

veg-de Vries equation, c¢f. also refs. 5 and 25.

which was proposed by Fokas and Ablowitz for the linearization of the Korte-

ii) From the proposition and its corollary it is clear that the difference-
difference equation (2.4) as well as the differential-difference equation (2.8)
are both also completely integrable, since solutions can be obtained from the

linear integral equations (2.1) and (2.5) respectively.

(iii) In the continuum 1limit with »r = n - L, ©, P, er, ix, and using

the time scaling g ﬁ% + it, we obtain from (2.6) the result

t +k 2kt
pk(n,t) = exp[(r+-§) 1in };%k - ';2'_?2] pk(0,0)

{kex~k3t)

+p, (x,t) = of p, (0,0) (2.11)

and from (2.5) we obtain en integral equation generalizing (2.9).
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é 3. [The KAV class; derivation e
T
g In this section we give the derivation of the proposition presented in '
Of . . . . .

g section 2. For that purpose, consider the linear integral equation !

i' u? (n,m;a) b, (n,m)Kt £

=y : 5105 Rl '

ull{(n,m;u) + ipk(n,m) Jdk(ﬂ.) L = X , n,mi€d, k,a e, i

o k+ k+a &

(3.1) B

with pk(n,m) given by (2.2). Define -
J v )it .

s s ) uk(n,m,a)k o ;
uwd(n,m;a,8) = i Jdk(k) -, n,mi,j€Z, a,8€@. (3.2) o
k+g e

c

Then from (3.1) and (3.2), using the relation

+k

Py (n+1,m) = (ﬁ:f oy (nom) (3.3) (o

[

we can derive B
iy

i . (p-E)ui(n+1,m;a) .
(p-k)uk(n+1,m;a) + 1pk(n,m) JdA(E) fx

K+ b

c {

pk(n,m)kl 1.3 E

= (p+k) —— - p, (n,m)u *"(n+1,m;3a,0) . (3.4) S

k+a “;

N

Tsking into account that the homogeneous integral equation corresponding i

to (3.1) has only the zero solution, we have /é
( i - i i+1 1,5_ 1 .
P—k)uk(n+1,m;a) = puk(n,m;a) +u (n,m;a) ~ u (n+1,m;u,0)uk(n,m;0) . -
(3.5) .

Using the relation :
i+1 _ i+ i R

w. (n,m30) = w " (n,m3a) + ou (n,msa) , (3.6) a}

we have, taking i=0, &
B

(p-k) O(nt1,m5a) = (p-a) O(n,m;a) +[1 - w9 (a1 m;a,0)] N(n,m30) , (3.7) Kg

uk uk s uk s » y

and dividing by (k+8) and integrating over C we obtain, using (3.2), &
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(p—a)uo’o(n,m;a,8)>— (p+B)u0’0(n+1,m;a,B) +1

= [1 - u1,0(n+19m§°~.0)][1 - ull,o(nam;sso)] s (3-8)

where we have also used the symmetry property

ui’j(n,m;a,B) = uj’i(n,M;B,a) . (3.9)

Because eq. {3.3) is invariant under p->-p, n->n+l, n+l>n, we also have a
second relation which can be obtained from (3.8), replacing p by -p and

interchanging n and n+l1, 1i.e.
(-p-0)u??%(n+1,m30,8) - (~p+8)u’*%(n,m5a,8) + 1

=[1- u1’0(n,m;a,0)][1 - u1’o(n+1,m;8,0)] . (3.10)

Finally, in view of (2.2), we also have two relations which can be found from
(3.8) and (3.10), replacing p by gq, and (n+i,m) and (n,m) by (n,m+1)

and (n,m) respectively, i.e.

0

(q—a)uo’o(n,m;a,e) - (g+e)’° (n,mtij0,8) + 1

1,0

W
.
—_
-
~

=[1- u1’0(n,m+1;a,0)][1 -u *“(n,m38,0)] , (
(~g-2)u®*C(n,m+130,8) = (~q+8)u®>%(n,m;a,8) + 1

=[1-u"%,ma,0)][1 - v n,m+1;8,0)] . (3.12)

Eq. (2.4) can now be derived directly by eliminating u1’0 from (3.8) and
(3.10)~(3.12). In fact, dividing eq. (3.8) by (3.11), and eq. (3.12) with
n+n+1 by eq. (3.10) with m->mt+i, we obtain equation (2.4).

L, The KAV class; continuum limit

Eq. (2.4) is a difference-difference equation which may be regarded as a
discrete analogue of a differential-difference equation. To obtain a

corresponding differential-difference equation we consider a limit

m, b0, mb=t , {4.1)
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in which b is a suitably chosen lattice parameter characterizing the

distance between two successive time-points, i.e., two successive sites m

and m+1, and in which t can be identified with the continuous time

variable.
Rewriting the difference-difference equation (2.4) as follows

[p - a ~ (p+a)(p+B)uln+i,m) + (p-a)(p-Blul(n,m+1)][u(n+1,m+1) ~ u(n,m)]
+ (prq)[ul{n+1,m) - u(n,m+1) + (p-qlu(a,m+1)u(n+1,m)

+ (p-q)u(n,m)u{n+i,m+1) - (p-q+a+8)uln,m)u(n+i,m)

- (p-g-a-p)u(n,m+1)uln+1,m+1)] = 0 , (k.2)
it is clear that we can take a continuum limit with b=p+q as lattice
parameter, provided that

u(n+1,m+1) - u(n,m) = O(p+q) . (%.3)
Eq. (4.3) can be satisfied by relabeling the sites (n,m) of the two-~
dimensional lattice as (n',m), n' = n-m, and by using the relation
(h.h4)

a(n',m*1) = a(n',t) + (p+q)d,aln',t) + o([p+ql?) ,
for an arbitrary function a(n',m), in the continuum limit. Up to the order

(ptq), we then have the relations

u(n,m) > u(n'at) >
u(n+1,m) + u(n'+1,t) ,

(%.5)
u(n,m+1) + u(n'-1,t) + (p+q)3tu(n'—1,t) >

u{n+1,m+1) » u(n',t) + (p+q)atu(n',1-,) .

Eq. (2.8) can now be obtained inserting (4.5) in (4.2) and taking only the

terms O(p+q), in the limit (p+q)~+o0.
To obtain eq. (2.5) we consider the continuum limit cf the factor (2.2),

which we rewrite as follows

n' m
pk(n,m) = (ﬁ;ﬁ) (1 + T§¥%§%§E%7) pk(0,0), n' = n-m, (L4.6)

and in the 1limit (4.1) with b=p+q, we immediately obtain
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pylmm) > ey larst) = (25) ep(2B8E7) o, (0,0) (4.7)

If we now drop the primes, it is clear from the proposition given in
section 2 that the function u(n,t) defined by (2.7) and (2.5) satisfies the
differential-difference equation (2.8), and thus the corollary of the
proposition has been proved. (It is also possible to prove this corollary
directly from (2.5)-(2.7) without using the proposition itself.)

Note that the integral equation (2.5) can also be formulated in terms of
the variable z= (p+k)(p—k)-1, with the corresponding factor pz(n,t) =
20 exp[é% (z-z_l)t], cf. ref. 26.

We shall now consider some special cases of eq. (2.8). For that purpose

we first rewrite (2.8) using the substitutions

2pu(n,t) £
u(n,t) » ———— p 7t
(p+a)(p+B)
(4.8)
p-o p-B
az—, bz— .
pta p+B
Eq. (2.8) then becomes
atu(n,t) = [1-ulntit) + abu(n-1,t)]—1[u(n—1,t) - u{n+1,t)
+ (2ab+a+b)ul{n,t)uln-1,t) + (2+at+b)ul(n,t)uln+i,t)
- (1+a)(1+b)uln=-1,t)uln+1,t) - (1+a){1+b)u(n,t)] . (4.9)
Some special cases of eg. (L.9) are
(i) a=0, =0, A(n,t)=-1n[1 - uln,t)] :
o . Alst)-A(n=T,8) _ Aln+1,8)-Aln,t) (4.10)

BtA(n,t)

and B(n,t) = A(n-2,t) - A{n,t) obeys the equation of motion for the Toda

lattice 27’28), i.e.

BgB(n,t) = 2e"B(n’t) - e'B(n+2’t) - e'B(n'2’t) . (k.11)

Note that in passing from (4.10) to (%.11) the first-order differential

equation (4.10) involving all lattices sites,is decomposed into two identical
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g' second-order differential equations (L.11) for the even and odd sites 4%
IT respectively. ?:
9} 3
% K
gg (ii) aul(n,t) »+ u(n,t), a*> , b=0 : fi
g. atu(n,t) = [1 - u(n,t) + uln=1,£)][1 - ulnt1,t) + u(n,t)] - 1 . (k.12) £§}
k! e
o Under the substitution C(n,t) = u(n,t) -~ u(n-1,t), eq. (4.12) reduces to the “y
discrete Korteweg-de Vries equation, cf. refs. 29 and 30, ,:E
z
3,Cn,t) = [1 - c(n,t)][Cn=1,8) - cln+1,8)] . (k.13) T
i
i Eq. (4.13) can also be derived from (4.10) using the substitution e
A i
& Aln,t) - Aln-1,t) = 1n[1 - c(n,t)] .
v i
Pl %
(iii) a=-1, b=1, D(n,t) = } 1n[2u(n,t) - 1] : £y
d BtD(n,t) = tanh[D(n-1,t) - D(n+1,t)] . (L.1k)
‘ 11 4
K{] )
i (iv) au(n,t) + -u(n,t), avre, b=1, B

E(n,t ) = [u(n,t) - u(n=1,t)]J[u(n-1,t) - 1]‘1 :

9, E(n,t) = [1 - E2(n,t)])[E(n-1,t) - E(n+1,t)] , (4.15)

the discrete modified Korteweg-de Vries equation 31). O

From the considerations given above it is clear that all differential-

difference equations (4.10)-(L.15) are integrable, since their solutions can i

emnm

be obtained from the linear integral equation (2.5).

v S

5. The KAV class; connection with Bicklund transformations

*  PFrom appendix A of ref. 10 it is clear that the transformation

S T O S

5 o= IX (5.1)
Py, TPy = P .
kK Pk ok Pk

induces a Bdcklund transformation of the singular integral equation
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u o
w + ip, Jaa(z) 2 .k, (5.2)
z k+2 k+a

with a corresponding transformation

u= Jdk(k) —-ul >0 = Jdk(k) 'S s (5.3)
¢ k+8 k+8

where ﬁk is the solution of (5.2) with Bk instead of p,. (Note that it is
also possible to obtain the function u, defined in (5.3),by a singular trans-
formation of the measure dA(k) -+ di(k) = (q+k)(q—k)-1dk(k) as

u = jédi(k)ﬁk(k+8)_1, where now ﬁk is the solution of (5.2) with the measure

ax(k) instead of dA(k), see ref. 10.)

Comparing eq. (5.1) with the relation

+k
pk(n,m+1) = pk(n,m) %:E . (5.4)

which follows from (2.2), it is clear that eq. (2.4) with u(n,m) + u(n',t),

u(n+1,m) + u(n'+1,t), u(n,m+1) + u{n'-1,t), ul{n+i,m+1) + u{n',t) , i.e.

[(ptB)u(n'+1,t) - (p-a)uln',t) - 1][(p-p)a(n'~1,t) - (pradu(n',t) + 1]

= [(g+B)a(n'-1,t) = (g-a)u(n',t) - 1][(g-Bu(n'+1,t) - (g+a)u(n’,t) + 1],
(5.5)

provides a Bicklund transformation of the differential-difference equation

(2.8).

Furthermore introducing a second Bicklund transformation

s o PE
Pk 7Pk T px Pk (5.6)

leading to

u+ﬁ=Jd.x(k)—uIL , (5.7)
C k+8

where ﬁk is the solution of (5.2) with Bk instead of Pl it is clefr that

eq. {2.4) with u(n,m) +u, uln+l,m) + @, uln,m+1) + 1, uln+ti,m+1) + 4, i.e.
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[(p+8) - (p-a)u - 1][(p-8)d - (pra)i + 1]

=[(a+8)3 - (a-o)u - 1][(a=B)& - (qra)d + 1] , (5.8)

is a Bianchi-identity (see refs. 15, 17 and 18) expressing the commutativity
of the BT's (5.1) and (5.6). This holds independently of the specific
dependence of the factor Py on variables or lattice sites. 1In fact, (5.5)
is a Bianchi-identity for any partial differential equation which can be
derived from the integral equation (5.2) with factor pk==pk(x,t), for any
differential-difference equation which follows from (5.2) with factor
pk(n,t) = (s+k)n(s—k)—npk(0,t), as well as for any difference-difference
equation which can be derived from (5.2) with arbitrary pk(n,m).

On the other hand, as we have shown in the previous sections, a Bianchi-
identity involving u, @i, u, ﬁ, following from two BT's, =as given by (5.1)
and (5.6) of the integral equation (5.2) with the replacements u -+ u(n,m),

4 - u(n+ti,m), u-> u(n,m+1) and ﬁ + u(n+1,m+1) leads in a natural way to an
integrable difference-difference equation (2.4) associated with the integral
equation (2.1}, (2.2).

The above procedure can be applied to other linear integral equations as
well (see e.g. refs. 5 and 6). As a first step one derives the Bianchi-
identity expressing the commutativity of B#cklund transformations of the factor
Py in the integral equation. Secondly the Bianchi-identity is interpreted as
an (integrable) difference-difference equation which can be derived from the
integral equation with a factor P, such as specified in (2.2). Furthermore
choosing & small parameter for which one may take a continuum limit of the
type (4.1), one can derive an (integrable) differential-difference equation,
the solutions of which can be obtained from the integral equation with a factor
pk(n,t) = (p+k)n(p—k)-npk(0,t) and the Bianchi-identity immediately leads to =
BT for the differential-difference equation. 1In the following sections we

shall work out the procedure mentioned above for the integral equation of the

NLS type.

6. The NLS class; results

In this section we present two linear integral equations involving an
arbitrary contour and measure, which linearize certain nonlinear difference-

difference equations and differential-difference equations of the nonlinear
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Schrddinger type.

Proposition
a Let ¢k(n,m;a) be a solution of the linear integral equation
. *
A . oy (n,m)o,, (n,m) o, (n,m)
¢k(n,m;u) + Jdk(l) Jdk (2') —m——— ¢Z(n,m;a) ==,
* (k-2")(2'-2) kta

[ C
n,mEZ,k,aEC ’ (6.1)

where C and dA(k) ar® en arbitrary contour and measure in the complex k~

plane, eand

e p-k n a-k m
i : *
K pk(nam) = ('ka') (e'ﬂ) pk(O,O) 3 Psq’e'€¢9 P=-D » |9'| =1.
2. (6.2)
r Let the contour C and the measure di(k) be such that the homogeneous
é integral equation corresponding to (6.1) has only the zero solution, and
& .
? define
LS
f. ¢, (n,m3a)
g ¢(n,m;a,8) = IJ‘———— ar(x) , nme&, ge€ . (6.3)
2 k+8
gl C
'ig
rg Then the following results hold, for special choices of p, g,a ,8 and
73 (1) The funetion
gé ¢(n,m) = 2p¢(n,m;-p,p) (6.4)
: , obeys the double-discrete nonlinear Schrddinger equation (4dNLS), i.e.
2|p|2 + 2{q|? + 8’ (a+p)(g~p)¢(n,m)¢*(n,m+1)
+ 8 *(g™p*)(a*p")¢*(n,m)¢(n,mH1) =
(@*-p*)¢(n+1,m+1) - 6'(q~p)¢(n,m)
latp|2(1+ |¢(n,m1)]2) —
8'(atp)¢(n+1,m) ~ (a*+p*)¢(n,m+1)
8'(q+p)d(n+1,m) ~ (a®p*)¢(n,m+1)
+ la-p[2(1+ [¢(n,m) |2} —— . (6.5)
(q*-p*)¢(n+1,m+1) - 8'(a~p)¢(n,m)
111
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(2) £ A = (ava®(pllal™®, o' =a*"', |a-a*|2|p|2 = b]q|*, then tne

vector function

g (m.m) + £ (@,m)  s'@.m) - 87 (m,m) 1
Bnm) = S - S 2R )

2 2i

(6.6)

where

+
S (nsm) = P¢(l’.l.+1 sm;oso) - p¢(n,m;0,0) > (6-7)
obeys the double-discrete isotropic Heisenberg spin chain (d4dTHSC), i.e.

$(n,m) x 3(n,m+1)

%(n,u+1) - S(n,m) + 2 —— =
1 + S(n,m)S(n,m+1)

, {1 - %(n,m)*3(n,m+1)} r

3(n,m) + B(n,m+1)] |1 - Ir -
[ n,m n,m ] [ 2 {1 + g(n’m).g(n’m_,_.l)}z

§(n+1,m) x S(n+1,m+1)

B(n+ >I) - B(n+ ,m+1) + A

1+ '§(n+1,m)-§(n+1,m+1)

-

, {1~ Z(n+1,m)-8(n+1,m+1)} -lz

{1 = ¥(n+1,m)-8(n+1,m+1)}2 |

-

I_ 1
L‘!vz,“

-S)(n,m)--f':(n,m) =1. (6.8)

(3) I A = qp-l, 6' =1, q"l = —q, then the function

s(n,m) = 2p$(n,m;0,0) A (6-9)

obeys the double-discrete complex sine-Gordon equation (ddCSG) , i.e.
1
Als(n,m) + s(n,m+1)][1 - 4]s(n,m+1) - s(n+1,m+1)]2]?
1
+ A[s(n+1,m) + s(a+1,m#1)][1 - 4|s(n,m+1) - s(n+1,m+1)]2)2
3
+ [s{n,m*+1) - s(n+1 at1)}][1 - Ba2]s(n,m) + s(n+1,m+1)]|2]?

- [s(n,m) - s(n+1,m)J[1 - bA2]s(n+1,m) + s(n+1,m+1)lz]% =0. (6.10)

12

TR IR, T AR TSR L

T TN wnpey i -

T

PRI NAN

-
s
A




el l\

o R A A 1
N B " T FeR

Remarks

(i) Various double-discrete versions of the NLS and the IHSC have been obtained
in the literature with corresponding Gel'fand-Levitan equation ) or bi-
linearization 13).

(ii) In appendix B egs. (6.5), (6.8) and (6.10) are obtained as special

reductions of the two coupled equations

o[1 - (p+B)Y + (pra)F*T[07 (a+8)0 - (a*+ald]
+ [1+ (*a)§* - (a*+B)w*][o(p+a)d - (p*+e)3]
= 0'[1 - (q+B)i*+ (a+a)*][0(p+B)6 - (p*+a)3]

w1+ (%a)* - (pRe)0*[0" (a+a)d- (a*8)6]

[6(p+8)* - (p*+a)3*][6" (a+B)d - (a*+a)}]
+[1- (p%+8)§ + (p*a)g[1 + (™ )p* - (g*+8)p*]
= [0 (q+8)8* - (a**a)3*][6(p+B)¢ - (p*+a)F]

#[1 = (805 + (@*a)B][1 + (p™a)B* - (p™8)u*] ,

where we have used the notations

F(n+1,m3a,8) ,

F= F(n:miaas) 3 ﬁ

F(n+i,m+1;a,8) ,

F(n,m+130,8) , F

-]
n

= [F(n,m;a*,g*)]*, etc., for F = ¢,¥,

*
P b,,(n,msa)
¥(n,m3a,B) = de(k) Jax*(zv) A A

A o (k+g)(k-2')

in combination with the relations

T NS o g e ey
o T e L EREN ) ok SR et

SN

T L T AT e I IR R SO IR 2S5 T

(6.11)

(6.12)

(6.13)
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1= [1 - (p+8)3* + (p+a)y*][1 ~ (p™B)F + (p*+a)¥]
+ [o(pra)e - (p*8)3][6%(p™ra)e™ - (p+8)3*] , (6.14)
1= [1 - (@8)P* + (qra)p™I[1 ~ (a™B)¥ + (q™a)y]
+ [6"(a*a)s - (a*+8)§][6" *(a™+a)e* - (a+8)F*] (6.15)
and
[1 + (a-80*][1 + (a~B)¥] + (a-B)249™ =1 . (6.16)

In appendix A, egs. (6.11), (6.12), (6.14)-(6.16) are derived from the
integral equation (6.1) with

pk(n,m) = (e :;fk)n (e. Q;kk)mpk(o,o),

q —
p,a.8,0' €C, [8] = |o'] = 1. (6.17)

Equetions (6.11) and (6.12) may be regarded as Bianchi-identities

expressing the commutativity of the two Bécklund transformations induced by

~ p-k

P * By = G(P*—_k) P > le| =1 , (6.18)
- q-k

P TPk T e'(';*—_;) Py » le'] =1, (6.19)

ef. (6.17) and (6.13) and (6.3).

(iii) Bq. (6.10) is a double-discrete version of the complex sine-Gordon
equation. A double-discrete version of the sine-Gordon equation (ef. refs. 12
and 32) may be obtained from the integral equation (2.1) in the special case

that

n

ptk atk\"
oy (n,m) = (5-_1:) (;—k—-l-) 0, (0,0) , nm€& ,p,a.ke@. (6.20)

In fact, in ref. 24 it has been shown that the function
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w(n,m) =;—i In[-1 +iIdA(k)u_k(n,m)] s (6.21)
c

where uk(n,m) is the solution of (2.1), with (6.20), and with a=0,

satisfies o
sin[w(n,m) + w(n+1,m) + w(n,m+1) + w(n+1,m+1)]
- pq sin[w(n,m) + w(n+1,m+1) - w(n+ti,m) - win,m+1)] =0 , (6.22)

which can be regarded as the double-discrete sine-Gordon equation.

Corollary

Let ¢k(n,t;a) be a solution of the linear integral equation

o, (n,t)pr,(n,t) p. (n,t) :
¢k(n,t;a) + de(z) de*(z') - S TR ¢l(n,t;a) S A s ‘
B o* (k=27)(2'-2) k+a

neZ, teR, k,ael ., (6.23)

where C and di(k) are an arbitrary contour and measure in the complex k-
plane. Tet the contour C and the measure di(k) be such that the
homogeneous integral equation corresponding to (6.23) has only the' zero

solution, and define

¢, (n,t;a)
b Slinddeld ar(x) , neZ, teR, o,pe. (6.2)

¢(n,t;a,8) = j
k+8 _3

c

Then the following results hold for special choices of pk(n,t), p, @ and B.
(1) 1f . #

_k)n [ [epk(£*-£) + 2k2(r+£¥)] :
exp |1t

N, A

p
[ (nst) = (_— P (0,0) E)
k Pk, pz_kg k

*
p.t€@, p=-p*, [£] =1, (6.25)
then the function g

$(n,t) = 2pé(n,t;-p,p) (6.26)
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5 . . ns . . ¥
K% obeys the discrete nonlinear Schrddinger equation (dNLS), i.e. ;{
£ G
. i3,.6(n,t) = (24 )¢(n,t) = [1 + [¢(n,t)[2][£(n+1,8) + £ ¢(n-1,¢)] . (6.27) i
‘.
i >
f; (2) 1 pk(n,t) is given by (6.25), then the vector function i
L% + +¥ + +¥ a;
i > 8 (n,t) + 8 (n,t) 8'(n,t) -8 (n,t) . »ed &
0 S(n,t) = ( ’ > [1 - |S (nst)l ] ) ’ ¢
2 2i i
(6.28)
;h where
5% (n,t) = p(n+1,£30,0) - po(n,t;0,0) , (6.29)

obeys the discrete isotropic Heisenberg spin chain (4IHSC), i.e.

NS

FRNS

g(n,t) x §(n+1,t) g(n—1,t) x g(n,t)

3,8(n,t) = (£+£%) [ — -— S
1 + 3(n,t)+3(n+1,t) 1 + S(n-1,t)+3(n,t)

B(n,t)-8(n,t) = 1. (6.30)

e ————— zﬁi-..ﬁ-‘.}iz_h'i',;gq;;, Av-.-rhu;?_m. Bk

3 (3) ¢
) X n t =

! P- P * i
3 pk(n,t) = (p—'H;) exp("'?) pk(oao) ] P€¢9 P=-P » (6'31) ’u’
: |

. then the function fﬁ
g

s(n,t) = 3pé(n,t30,0) (6.32) {

obeys the discrete complex sine-Gordon equation (dCSG)
h )
3 [s(n,t) - s(n-1,£)] = [s(n,t) + s(n=1,£)][1 - 4]s(n,t) - s(n-1,t)]|2]° .

(6.33)

Remarks

(i) The integral equations (6.1) and (6.22) may be regarded as double-discrete

and single-discrete analogues of the integral equation
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pk(x,t)p;,(X,t) o (x.8) = Py (x5t)
L k+a

o (x,t) + Jar(e) |ar*(e")
K l l* (k-2')(2'-2)

o (%,8) = ei[k"'“’(k)t]pk(o,o), ~telR, xel, (6.34)

which gives a direct linearization of e.g. the nonlinear Schr8dinger equation,
the equation of motion for the isotropic Heisenberg spin chain, and the

complex sine-Gordon equation, see chapter II of this thesis.

(ii) From the proposition given in this section and from its corollary it is
clear that the difference-difference equations (6.5), (6.8) and (6.10), and
the differential-difference equations (6.27), (6.30) and (6.33) are also
completely integrable, since solutions can be obtained from the linear

integral equations (6.1) and (6.23).

T. The NLS class; continuum limit

In section 6 we have given some difference-difference equations of the NLS
class, i.e. the ddNLS (6.5), the ddIHSC (6.8) and the 44CSG (6.10). To
obtain the corresponding differential-difference equations we consider the
1imit (4.1), in which b is a suitably chosen lattice parameter.

From eq. (6.5) it is clear that we can take

(7.1)

q * -p s
o'(a-p) - (a*p*) » 0 . (1.2)
¢{(n+1,m*13-p,p) + ¢(n,m;-p,p) . (7.3)

Eq. (7.1) suggests that we can choose p+tq as a small parameter and eq. (7.2)
with p¥*=-p is autometically satisfied for e'=qf/q.
Tn eq. (6.8) we can take a limit

A>0, ol > Ipl (7.4)
§(n+1,m+1) + g(n,m) . (7.5)
Therefore, in both cases, p+q can be chosen as & small parameter, provided

that (7.3) and (7.5) respectively are satisfied. Accordingly we take
"7
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“ff ptq > -2ipf£ s (7.6)
&1
i
Fi where f is a phase factor expressing the phase of p+q.
i Up to the order (p+q) we then have the following relations
¢,
[ e
; ¢(n,m) » ¢(n',t) , n' = n-m » Dl
X
¢(n+1,m) + $(n'+1,t) s b
(7.7) i
o(n,m+1) » ¢(n'-1,t) + 3i P;‘l £%3,4(n'-1,) , K
ploet,me1) > p(n',t) + 31 B 1% g(n't) e
P 7“
and also :,
3(n,m) » B(n',t) , J
.
B(n+1,m) » 3(n'+1,t) . i{‘
{
(7.8) '
Blnumt1) > B(nr-1,¢) + 31 B % Bnr-nye) .
Z(n+1,m+1) > S(n',t) + M E}? %3, 8(n',8) . N
Taking (6.5) with p*=-p, 0'=q%*/q and (7.1) and neglecting all terms W
O(ptq), we have
*
(p+a)¢(n+1,m) + %- (p+q)é (n,m+1) i
=[1+ |¢(n,m)|?] T s (7.9)
(pta) (1+ 3 )¢(n,m) - 2p[é(n+1,m+1) - ¢(n,m)] K
i
and (6.27) follows immediately inserting (7.7) in (7.9). Analogously eq. !

(6.30) follows from (6.8) inserting (7.8) and considering only terms O(A). A
The integral equation (6.23), together with eq. (6.25), can be derived

from (6.1) taking the continuum limit of the factor pk(n,m) given in (6.2). 4?
We first rewrite pk(n,m) as follows, f
4

m o

p-k\n' (0'pa*p*a™) - k(p™+q*+pot+qet) + xk2(1+0") g

p, (n,m) = (—-) 1 - ’ .

k * * J

Ptk (p -k)(q -k) 1

n' =n-m, (7.10)

E 3
and from p*=-p, 8'=q /a and eq. (7.5) we have
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(8'pa+p*a®) - k(p*rq*+pot+q') + K2(1+46')  2pki(f*-f) % + 2k2i(f*+f)£

+* k]
(p*-k){q*k) [p]? + x?
(7.11)
and from (7.10) we immediately obtain
py (n,m) > p, (n',%) , (1.12)

in which pk(n',t) is given by (6.25).
Finally we can take a limit of eq. (6.10) with A+0, provided that

s(n,m+1) - s(n+1,m+1) - s(n,m) + s(n+i,m) > 0 . (7.13)

Therefore we take

s(n,m) + s(n,t) )
s(n+1,m) + s(n+1,t) s

(7.14)
s(n,m+1) + s(n,t) + 2Aats(n,t) .

s(n+1,m+1) + s(n+1,t) + 2A8ts(n+1,t) .

and keeping only the terms of order A, ea. (6.10) reduces to eq. (6.33).
The integral equation (6.23), together with eq. (6.31), follows by considering

the continuum limit of (6.2) with q=Ap= %p%, 8'=1. We have
o (n,t) p-ky" %p% - k\" p-ky" -pt
S G G - Q) =50 (7-12)
Ok(O,O) ptk -%PE -k +k k

in agreement with (6.31).

Remarks

(i) In this section the corollary of the proposition given in section 6 has
been proved by taking a suitably chosen continuum limit of the integral
equation, as well as of the difference-difference equation given in the
proposition. Of course eqs. (6.27), (6.30) and (6.33) can also be derived
directly from (6.23) with (6.25) and (6.31). In fact in ref. 33 the ANLS,
dIHSC and dCSC have been obtained from an (equivalent) integral equation in
terms of the complex variable z = (p-k)/{p+k) and pk(n,m) +> zn'eim(z)t,

where the dispersion w(z) is given by w(z) = fz + 2t - (£+£*) 1in the
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in the case of

ST A e o

~aT

et L e o

case of the dNLS and the AIHSC and by w(z) = -i(z+1)(z2-1)"
the dCSG.

£

e,
e

Y

e,

11 n e . we can take = = without loss of generality,
(ii) In the dNLS (6.2T) r=f* =1 wit f 1it
o(n,t) = £ ¢(n,t)exp[i(f+£¥-2)t].

Taking a continuum limit, however, i.e. ¢(n#1,t) = ¢(x,t) = aax¢(x,t)
+h%?h¢)t%§ﬁﬂmﬂ,em(&ﬂ)ﬁmrmmowmmtmmmmﬂbm
changes into the NLS 13,4 = -32¢ - 2|¢|2¢ for f=1, and into the CMKAV

= 53 + 2 =
3,6 = 93¢ 6]e| 3.6 for f=-i.

as can be seen introducing a new function

)
]

1R

PRVEES A

AENE g - e

"
T A )
RCTSNN €1, 75 TN

v
o1

s
.
PO

Y

(iii) The AIHSC,which was given in refs. 34 and 35 for f=1, reduces in the
3 x ai%, which is the well-known IHSC. For f=i,

Y

continuum 1limit to at§ =
(6.30) is trivial and a higher-order expansion in powers of A 1is necessary

PR A

o
- I3

to obtain a meaningful differential-difference equation. ¥

TSI

5

(iv) In section 5 we discussed the relation between the difference-difference

equations for the KAV class on the one hand, and the BT for the differential-

as well as the Bianchi-identities expressing the

Y

g

difference equations,
commutativity of BT's on the other hand. Such relations exist also in

connection with the difference~difference equations of the NLS class.

In fact eq. (B.5) of appendix B, with p*=-p, e=:1, 2pp{-p,p) * ¢(n',t),
2p$(-p,p) + ¢{n'+1,t), 2p¢{-p,p) > ¢(n'~1,t) and 2p§{-p,p) + §(n',t)} is the
BT for the dNLS (6.27) associated with the transformation

Ctirs

e

Gy MR
AR~

i

I - -k

o3 p,{n,t) + p (n,t)o' {—— ) (7.16) .
k k * N
Iye q -~k i
3 T
Ef whereas eq. (B.5) with parameters r=-r* and s, instead of p= -p* and q, ‘
gﬁ expresses the commutativity of the BT's ,g
?; ar =g s~k a5 =8 r-k (7.17) i
1 ° TPk TPk ek Pk TPRTTPRT L 717

for the NLS, the dNLS and ddNLS, independent of the specific dependence of 3
on variables or lattice sites. ,3
Furthermore =q. (B.17) with § » S(n' ,t), § > B(nr+1 ,t)s § g(n ~1,t),
§ §(n',t) provides a BT for the dAIHSC (6.30) under the tramsformation (T.16)
with 8'=¢%/q and eq. (B.19) with 23p¢ » s(n,t), ip$ » s(n+1,t),

ipé + 8&(n,t), %pg + &(n+1,t) is the BT for the dCSG (6.33) corresponding to
(7.16) with ©'=1. Egs. (B.17) and (B.19) can also be regarded as expressing

Px

the commutativity of Bicklund transformations.
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Appendix A
In this appendix we derive the coupled equations for the NLS class (6.11),
(6.12) and (6.14)-(6.16) starting from the following two integral equations

- p <k ki
opa) + [ar*an) = wilta) = oy — (a.1)
c* k-2' k+a &
. p e -
C* k-% 4-
or equivalently :; I*
* i .
. PP, . k
.‘ i) + fance) fanetar) L yha) =, — (8.3) b
¢ o* (k-2')(2'-2) k+a }/
"E which for i=0 with P = pk(n,m) reduces to (6.1), and %3
¥4 1.
r:ft F~
%’ri * * Jl.'i :
: PPy . PP gy =
"jf} \p;(a) + Id)\(f.) de*(z') k& \p;:(u) = de*(z') R (A
4 ¢ o* (k=2')(2'-2) o* k-2' 2'+a
Define
.. o3 ()i N
o ¢1"’(a,s)s[dk(k) e (a.5)
3 c ket i~
i’;:\l ;- \Jx'j(ot)ki ‘~
'}%: v (a,8) = Jdk(k) ., (.6) &
& c kg
¥ It is easy to show that
$"79(a,8) = ¢9°*(8,a) , (a.7)
PR PR
¥ (a,8) = 92t (Bm) (A.8)
10 = ¢ (0) + agl(a) , (A.9)
v 0) = i (a) + avl(a) . (A.10)
Using (A.1) and (A?Z) we have ’
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. O3
F ¥
[
i
Faly i+
g‘ . p %k k 1 ok
i Koy (a) + Jaa*(z-) —Ewryg(a) = o, —— = 0" (0,000, (a.11)
gz * k=-2' kta
c
5. . p ok Lk E
2, 1 iy
kg (@) - de*(z') —E et (a) = ¢ (a,0)p, > (A.12)
Kk , % k :
c* k-% {
b
iz leading to e
2 =
1 * .
e . PPy 3
k¢;(a) + de(z) de*(z') —kL ”;11(")
iyt c c* (k-2')(2'=2)
53
by 41
1+ *
g k . * : PPy
5 1 1 * k™8
: =Py -yt (a;0)p, - ¢ **(a,0) Jdk (e') ——, (A4.13)
il, k+a * k-1
. c
b and
o o o¥ i
L N . ' . 1
2 k¥ (o) + de(z) de*(z') L ayi(a)
—ot 1_
- c o* (k-2')(2'-2) S
g Ay
;‘; '+1 * ;:',
4 * p.p¥ gt . PP a?
i ‘ 1] t H
$ = 4" (a,00p, + jax*(z') k 2 - 4" a,0) de*(n') LR &
2 ' * k-2' 2'+o * k~2! s
$ g c [ w
| (a.14)
Taking into account that the solutions of the integral equations (A.3) and 43
(A.4) areunique and using also (A.9) and (4.10), we have ;g

S R
S

. . %k .
(era)g(a) = 6.7 1(0) = 1ot (0,0081(0) = ¢ (a,000)(0) , (8.15)

Y

o

AT

- - . oK
(kra)y}(a) = 2*7(0) - 0" (a@,00](0) + ¢7*% (a,0)8.(0) . (.16)

Dividing (A.15) and (A.16) for i=0 by k+B, integrating over the contour
C, and using (A.7) and (A.8), we have

* . *
(a-8)6220(c,8) = (1-9"0 (2,0))4"2%(8,0) = (1-9"% (8,0))6"°%a,0), (A.17)

’
3
4
i
4
i
:
.
,

)

o . * * ;

1+ (a-8)9%°%a,8) = (1-9"7%a,0)) (1= (8,0} + 6" (a,00"(p,0) , i;

L

(4.18)
which for B=a reduces to the identity
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w,,

*
(1=9"%0,00) (147797 (a,0)) + 070 (0,0)6"°%(a,0) = 1 . (A.19)

Let us now consider the Bicklund trensformation (6.18) of the integral v
equation (A.3). It is then straightforward to show that-the solutions $:'{(u) and

iﬁ;(u) of (A.1) and (A.2) with p, Teplaced by Bk satisfy the integral relations &
P D*
~1 ' ~3
(e*0dEe) + [ar() farttar) —EE— (% 0)fhca)

) o* (k-2')(2'~2) w
ki o 3% aq s * o p*, i’
= o(p-k)o, — + 69" (a,0)0, + ' (a,0) jcn (ar) £, (.20)
k ) !

k+a * k-4
¢ :
and -

Ve

(a.21)

o *

H g Py P s

¥ (%K) (a) + de(z) de*(z') —E&  (p*)ii(a)

k . o (k-2')(2'-1) L

5,

N * * 1 *
1 e~y 1% p,0,, (B -2")R' o P, 0
i’fé = -0"*1 (a,0)p, + Idx*(z') L + 312 (a,0) jdA*(z')—k—i‘—',

v ko Js k-2' L'+ * k-t

f ¢ o

Wi
S

where ﬁ;i’j(a,s) and Ei"j(a,B) are defined by (A.5) and (A.6) with ﬁl‘z(u)

,f, end ¢ﬂ(a) instead of wﬂ(a) and ¢i(a). ’
Comparing with the integral equations (A.3) and (A.4) and using also (4.9) !
,‘E and (A.10) we immediately have
| i i i+1 1,i* 1 1,i 1
! (p*-k)é; (a) = B(pra)e(a) = 8o (0) + 8% " (0,04, (0) + §'°M(a,0)u, (0) ,
£ k k k k k
g (a.22)
f . . . . <k
3 (p*K)F1(a) = (P*a)yi(a) = i '(0) + §"°1 (2,009 (0) - 0§"°1 (2,008, (0) .
’ (4.23)
Hence, after dividing (A.22) and (A.23) for i=0 by k+8, and
integrating over the contour C, we have
- * -
(p*+8)3(a,8) - o(p+a)e(a,8) = (19" (8,0))3"*%(e,0)
*
-e(1-3" (0,0))8"%s,0) , (a.24)
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B

x{{"
G2

J R - * i
a Ar (p*+8)3(e,8) - (p™a)¥(e,8) = = (1-9""%a,0) (1-4"2% (8,0)) ?‘
by H
& ay ¥ g
3 830 (a,000"°%8,0) , (A.25) L.
ﬁ{ where we have omitted the superscripts 0,0 on the left-hand side.
élj Egs. (6.11), (6.12) and (6.14)-(6.16) are most easily derived introducing
6' the matrix .
3
2 1-9"%,0)  ¢"%a,0) bt
:";j gla) = * . (a.26) Ly,
. = 1,0* 1,0 i
?; ! = (090) 1T -9 (090) .
J Then (A.24) and (A.25) can be cast in matrix notation ";
B - - o
g\ 8(1- (p+8)¥*(a,8) + (p+adv*(a,8)) -(p™8)$(a,B) + 0(p+a)é(a,B) gg
;; 8(p+8)8*(a,B) - (p*+a)9*(a,8) 1- (p™+8)¥(a,8) + (p*+a)y(a,B) £
= 27 (a)-0- =30
%i =2 (a)-g-g(8) e= (g 1) > (a.27)
%; vhere g(a) can be obtained from g(c) replacing ¢1’0 and |p1’0 by $1’0
;ﬁ? and 31’0. .
IN’ Considering the Bicklund transformation (6.19), we have in a similar way, K
He' omitting the superscripts 0,0 on the left-hand side ;
5 o' (1- (a*8)i*(a,8) + (arady™(a,8))  -(a*+B)3(a,8) + €'(a*a)é(a,B)
3
¥ -
5 0'(a+8)§*(a,8) - (a*+a)¢*(a,8) 1= (g*8)¥(a,B) + (q*a)¥(a,B)

= & (a)0"g(B)s o= (9, (a.28)

vwhere ¢{a,B) = Jio’o(a,ﬁ)_ and ${a,B) = 60’0(6,5) are defined by (A.5) and
(A.6) with wﬂ(a) and ¢]']((a) replaced by the solutions fﬁi(a) and $]'J<(a) of
(A.1) and (A.2) with p, dinstead of p,, and g(a) can be obtained from

1,0 k 1,0 ~1k0 *1,0
gla) replacing ¢ °° and ¢ * by ¢ * amd ¥ ' .’
=

Furthermore eq. (A.19) implies that
gla)ghla) =1, (a.29)

in vhich the 2x2 matrix gf(a) is defined by
=

12h
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gy (8) = g5 (@) = (gqp<a*))* . (A.30)

For the matrices g(a), g(a), g(a) and the matrix g(a), which can be *
obtained from (A.26) replacing ¢1’0 and wl,O by $'2° ana @1’0 4
I

respectively, we have the obvious relations

2 & (a)e0+5(8)-5 ' (B)-0"+gla) = & '(a)-e'-§(B)+E (B)-0gla) , (2.31)

( 1= 87 (a)-0:g(8) (87 (a)-0-g(8))" = g7 (a)-0"-g(8)+ (57" (0) 0" -g(R)]F (A 32) %
1= g ' (o)eglr)g ' (8)-gla) (a.33)
f: Inserting the expressions (A.26)-(A.28) we obtain egs. (6.11) and (6.12) g’:
3 from eq. (A.31), eas. (6.14) and (6.15) from eq. (A.32) and eq. (6.16) from b

eq. (A.33). Eq. (6.16) is an algebraic identity relating ¢{a,B) and ¢{a,B),
eqs. (6.14) and (6.15) are relations between ¢(a,B) and y(a,B) and their
Bidcklund transforms under the transformations (6.18) and (6.19), and (6.11) and
(6.12) are Bianchi-identities expressing theAcommutativity of both BI's.
Identifying ¢(a,8), &(a,8), &(a,8), &(as8), w(a,8), #(a,B), #(a,B),
i(a,B) vith ¢(n,m;a,8), ¢(n+1,m;a,B8), ¢{n,m+13a,8), ¢(n+1,m+1;a,8),
¢(n,m;a,8), ¢(n+1,m;a,8), ¢(n,m13a,8) and ¢P(n+l,m+l1ja,8) respectively,
we obtain from (6.11), (6.12) and (6.14)-(6.16) a set of difference-difference

equations for the four coupled fields ¢,w,¢*,w* N defined on a ‘two- -
dimensional lattice. (Note that for general a and B8, ¢*(n,m;a,s) =

* . . . .
[¢(n,m;a*,s*)] ). This set of equations is completely integrable, since the

solutions follow from (6.1) with the factor pk(n,m) as given in (6.17). In
the general case the set of equations is rather complicated, but in appendix
B we shall work out the special cases mentioned in the proposition given in

section 6.

Appendix B
In this appendix we derive the ddNLS, the ddIHSC and the 4dCSG, as given
by eqs. (6.5), (6.8) and (6.10).

(1) For the ddNLS we take o=-p, B=p, p =-p. From (6.1%) and (6.16), With
¥ = ¥{-p,0); ¢ = ¢(-p,p) etc., using also (A.T) and (A.B), one can derive
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& 1= (1 + 2p#(p,-p)) (1 - 2p¥(-p>p)) (B.1)
é:r md
1+ 2p¥(p,-p)
" ———————— = 1 + U|p|2|s(-p,p)|%2 , (B.2) gt
L 1+ 2p§(p,-p)
i, and from (6.11) we have ?
- 1+2p5(p,-p) 00" (a-p)é(-p,p) + (a*p*)$(~p,p) ' 2
; = P (B.3) .
: 1+2p¥(p,-p) 6(q + p )é(-p,p) + 8" (g+p)$(-p,p) 3
é‘ From (6.15) we obtain j
1 - (8" (a-p)#(-p>p) - (a*-p*)3(-p,p)) (6" *(¢*+p*)9*(-p,p) - (a+p)3*(-p,D))
3 1+ 4|p|2|¢(-p,p)|?
1] . .
(Q"‘P 1+ 2p¥(p,-p) q-p) (q*+p 1-2p¥(-p,p) q*-p) (5.
; ep 1+2py(p,-p) 2p 2p 1-2p¥(-p,p) 2p
y:
Eé Using (B.1)-(B.3) to eliminate the ¥'s we have
fal2 - |p|? -
1+ —W— + 8" (a+p)(a-p)#(-p.p)3" (-p,p) + 8 *(p")(a*-p") x
2|p

x ¢ (-p.p)#(-p,p)

£
bt 4
&
X
i)
3.
e
X
E.
*;f :
b
Y."‘
>
:

la+p|? i 80" (a-p)¢(-p»p) + (a*-p*)3(~p,p)
= (1 + 4|p|2|4(-p,p)|?) - —
4|p|2 8(a*+p*)#(-p,p) + 8'(a+p)#(-p,p)
{a-p|? 8(a*+p*)§(-p,p) + 0'(a+p)d(-p,p)
+ (1 + hIP|2|¢("P1P)|2) g * %2 ’
k|p|? 86" (a-p)#(-p,p) + (a"~p™)#(-p,p)

(B.5)

and eq. (6.5) follows from (B.5) using (6.13), (6.4), and 6=-1.

(2) In the case that u-B-a*-B*, one can solve ¥-y = $(a,a) - y(a,a) from
(6.14) as a function of ¢ = ¢(a,a). We have

oy
;

&
]
e

i
&l

S
oSy

R

5
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Pla,a) - pla,a)

* 1
P-pP 1 3
= * [lp*—Pl2 - Lfp+al?|e(pta)s(a,a) - (p*+a)$(a,a)|2] ,
2|pta|?  2[pta]?
(B.6)
and in a similar way we have from (6.15)
$(a,a) - ¥lo,a)
* ; 1
a-q i . . - 2
= * [|q -q]2 - k|q+a|?|6' (ata)é(a,a) - (q +a)¢(a,a)|2] .
2|q+a|?  2|q+a]?
(B.7)

Inserting (B.6) and (B.T), egs. (6.11) and (6.12) can be expressed in terms of
the ¢'s. We now restrict ourselves to the special case p*=—p, 6=-1, a=g=0.
In that case we obtain from (6.11) and (6.12), with ¢=4(0,0), ¢=¢(0,0),
the following equations

1Pl - . - 1
—— (8'a¢(0,0) - a*3(0,0))[1 - |p|2|$(0,0) - §(0,0)|2]*

B Y
i I{P | *= 3
+ —— (6'93(0,0) - q $(0,0))[1 - |p|2|$(0,0) - 3(0,0)]2]
p

ata*  ilq} [lq*-q|2
I

p(3(0,0) - i(o,on{ AT
q

1
- |e'q$(0,0) - q*&(o,o)lz]z}
2q q

atg*  ilq| [lq*-qlz
+

' - + - [ - *> 2]%} =
+ 0'p(4(0,0) $“””{ea =+ unar | 6'a$(0,0) qumlJ 0,
(B.8)
and
p(5%(0,0) - §%(0,0)) (6"a4(0,0) - a*$(0,0))
+ p($(0,0) - $(0,0)) (8"a4*(0,0) - a*3*(0,0))
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3

B

Rl S e )

ilp| . - !
F—[1 - |pl?|4(0,0) - ;(o,o)lz]z
P

* . *
ata’ _ ila] rlqd*-q]2 :
¥ - [67q$(0,0) - q*§(0,0)(2
{ o N [‘*Ifﬂz fe'as a4 l ] }

1

ilp|
[1 - |p|?[#(0,0) - $(o,o)|2]z

+

* *
atq.  ila| pla’-ql? - ]
{ ¥ [ - |e'a§(0,0) - q*&(o,o)lzr} =0 . (.9)
2q a - bql?

For the IHSC we consider the special case 6's= q*/q, in addition to p*=—p.

6=-1, a=Bg=0. Introducing real vectors $ ana U by

* *
stest sts* 243
§ = ( ] . > [1 - IS l ] ) ?
2 21 (B.10)
s* = p$(0,0) - p#(0,0) , g8=1,
and
t 3 t 3
N et vt 1213
5= ( , —— . - WP),
2 21
(B.11)
+ -
U = P¢(0:0) - P¢(an) s ﬁ'ﬁ =y = 113|Q-<1*|2|p|2/ |Q_|" >

equations (B.8) and (B.9), with the upper signs, can be combined to give the

vector equation

Ext + 3x0 + 1(ED) = ST - f?-§)'éz =0, (B.12)
where
Ip] (g+a*)
A S —, (B.13)
la]?

and & is & unit vector in the z direction. (In (B.12) use has been made of
the fact that § and ﬁ are real vectors, so that the first and second

member vanish independenily.)
e eL s + + .
From the definitions of S and U we have the obvious relation
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>3 3 . .
From (B.12) we have U+S = U-g. Furthermore, by Ea.klng first the outer

product with 3 and then the inner product with §, one can show that

T (§-§)°(ﬁ+ﬁ) = 0. From (B.12) we then have (ﬁXﬁ)-(§—§) = 0. From these two

. . . 33 o 3> > 3 > .

L equations, together with U«U = UeU, we see that S-S5 = ¢(U-U). Comparing

‘{Cf:.‘ with (B.14) we conclude that we must have o=1, and hence

ot

o > 3> > 3

: U+S=5S+7. (B.15) p,',

¥ Using (B.15) to eliminate U from (B.12), we obtain {}

; R

P @) x T =53 - hED (B.16) 5'

| and from (B.12) and (B.15) with —»S-)-_S’, §+§, ﬁ-ﬁ]’, f]’-ﬂ-J’, eliminating ﬁ, we :'x“

é also obtain a second relation ’;

% (343) x U = 88 - 33 . (B.17)

P R £

o . . > > 3 B
Taking into account that U+U = u, one can solve U from (B.16) as well as FE

from (B.17) to obtain the eguation

A TN

¥, 3 % i
% B8 23 3ol 3 53
i ¥ < [2u - 32 - 1+ (2peia2)85 + (38)2)2 + 38 + A — i
L 143.3 1483 2
Eﬂr %"’é 3 :': 3 = 2 1 k3 Ed gxg 9;
j‘% = F—x[2p- 121+ (2u+22)55+ (552 + 88+ 2 —= . (B.18) i
e 148-8 1438 (3
; ‘ In the special case u=1, taking the upper signs and using the identifications ‘
N i

, %3(n,m), §->§(n+1 JI) §->S(n,m+1 ) and §+§(n+1 ,m+1), eq. (B.18) immediately -

reduces to the dAIHSC given in (6.8). .

(3) Finally for the ddCSG we consider the special case p = ¥i|p|, 8' = -g¥/g, ::»;—;

A = a/p, in addition to 6 = -1, a=g=0. From (B.8) we obtain
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;' o 3 ]

i A*((0,0) + $(0,0)) [1 - |p|?]3(0,0) - §(0,0)|2]? i

b N 2 A

L + 2%(8(0,0) + $(0,0)) [1 - |p|?|#(0,0) - §(0,0)|?]® fj

i N - A=2F ] p(a*)2 - - 213 %S

! + (3(0,0) - ¢(o,o)){ +— |——5 - [2|%Ip]"le(0,0) + ¢(0,0)] ]} i

i 22 AL oua]

A-A* A r(a%a)2 - ]

- (#(0,0) - $(o,o)){ -— [——2— - [2%[pI*]3(0,0) + $(o,o)|2]2}=0,

e A by

(B.19) b

0 %;'1
0

N which for A real, i.e. q%=-gq, 6'=1, together with (6.9) and (6.13) g

}f reduces to (6.10). %%

e o F
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SAMENVATTING

Solitonen zijn gelokaliseerde golven die na een onderlinge botsing hun

oorspronkelijke vorm en snelheid behouden. Zij treden op in uiteenlopende ge-

bieden van de natuurkunde, 3zoals de hydrodynamica, optica, plasmafysica,

veldentheorie en vaste-stoffysica.

Lang niet alle fysische systemen vertonen soliton-gedrag. Dit treedt met
zogenaamde integreerbare dynamische systemen, waarmee bedoeld wordt
systemen waarvan de oplossing teruggebracht kan worden tot het

De hoop bestaat dat de eigen-

name op in de
niet-lineaire
oplossen van uitsluitend lineaire problemen.
schappen van niet-integreerbare systemen, die in de meerderheid zijn, bena-
derd kunnen worden met behulp van integreerbare systemen.

Een bekende methode om solitonsystemen te bestuderen is de methode van de

inverse verstrooiing, ontdekt door Gardner, Greene, Kruskal en Miura. 1In

dit proefschrift worden solitonen echter bestudeerd met de methode van directe

linearisatie, ingevoerd door Fokas en Ablowitz. Deze methode gaat uit van

een lineaire singuliere integraalvergelijking, met een integraal over een

en leidt hieruit de oplos-
De methode

willekeurige contour en maat in het complexe viak,
singen en eigenschappen van het niet-lineaire solitonsysteem af.
heeft het voordeel dat fysisch zeer verschillende solitonsystemen op een uni-
ficerende manier behandeld worden.

De inhoud van dit proefschrift is in het kort als volgt.
helst een inleiding tot dit proefschrift en een samenvatting van de belang-

In hoofdstuk II wordt de directe linearisatie van ver-
zoals de Korteweg-

Hoofdstuk I be-

rijkste resultaten.
schillende parti&le differentiaalvergelijkingen gegeven,

de Vries vergelijking, de gemodificeerde Korteweg-de Vries vergelijking, de

de niet-lineaire Schrddinger vergelijking en de
tevens

sine-Gordon vergelijking,
bewegingsvergelijking voor de klassieke isotrope Heisenberg spinketen;

worden verscheidene verbanden tussen deze vergelijkingen uitgewerkt.

In hoofdstuk III worden de Bicklund transformaties van deze vergelijkingen
behandeld op grond van een singuliere transformatie van de maat die in de
integraalvergelijking voorkomt en de Bédcklund transformaties worden gebruikt

om de directe linearisatie van een keten van zogenaamde gemodificeerde parti&le

differentiaalvergelijkingen af te leiden. Zo wordt bijvoorbeeld uit de trans-

formatie van de maat in de integraalvergelijking voor de niet-lineaire

Schrddinger vergelijking de directe linearisatie van de bewegingsvergelijking

voor de klassieke anisotrope Heisenberg spinketen afgeleid.

132

ol
Ao

- )-:?..« N

@ T,

N

R A




el .
S,

R TR

Tenslotte wordt in hoofdstuk IV aangetoond hoe singuliere lineaire inte-

graalvergelijkingen op een natuurlijke wijze leiden tot de directe linearisatie

J

van verscheidene niet-lineaire differentie-differentievergelijkingen. Deze

o

vergelijkingen voor functies van twee discrete variabelen gaan over in boven-

genoemde partiéle differentiaélvergelijkingen na twee opeenvolgende continuum-
limieten. Als tussenresultaat wordt de directe linearisatie afgeleid van de
differentie-differentiaalvergelijkingen die worden verkregen na een enkele

continuum-limiet, bijvoorbeeld de bewegingsvergelijking voor het Toda rooster,

Bt s Al

A trgd

de discrete niet-lineaire Schrddinger vergelijking en de discrete complexe
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SN

sine~Gordon vergelijking.
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STELLINGEN behorend bij het proefschrift "Linear integral equations

and soliton systems" te verdedigen door G.R.W. Quispel, 2 november
1983 om 16.15 uur

Alternatieve singuliere integraalvergelijkingen, zoals voorgesteld door

Fokas en Ablowitz, bieden de mogelijkheid nieuwe Miuratransformaties af

te leiden.

A.S. Fokas en M.J. Ablowitz,in Mathematical
Methods in Hydrodynamies and Integrability
in Dynamical Systems, M. Tcbor en Y.M. Treve
eds.

De door de Vries e.a. gemeten parameters in de uitdrukking voor de isomere
e s + . . -
verschulving van E‘u2 volgens net Miedememodel kunnen afgeleid worden uit
+ .
de eerder gevonden parameters voor Gd3 met behulp van een schalings-

argument.

J.W.C. de Vries, R.C. Thiel en K.H.J.
Buschow, Physica 121B (1983) 100.

De bij lage temperaturen gemeten afwijking in de soortelijke warmtecurve
van ‘a~-CuliSal. ten opzichte van de voorspelling voor een homogene lineaire
keten kan verklaard worden door aan te nemen dat in de magnetische ketens

in deze verbinding random defecten aanwezig zijn.

L.J. Azevedo, W.G. Clark, D. RHulin en
E.O. McLean, Fhys.Lett. 584 (1976) 255.

G. Mcvnmenga, L.J. de Jongh, W.J. Huiskamp
en J. Reedijk, wordt gepubliceerd.

Het argument dat Muthukumar gebruikt om de effectieve viscositeit van een

suspensie te kunnen vergelijken met die van een poreus medium is onjuist.

M. Muthukumar, J. Chem. Phys. 77 (1982) 959.
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De berekening door Boiti en Pempinelli van de parametertransformetie beho-
rend bij de Bicklundtransformatie van de vierde Chazyvergelijking kan wor-

den kortgesloten met behulp van een eenvoudige symmetriebeschouwing.

M. Boiti en F. Pempinelli, Nuovo Cim. 59B

(1980) 40.
G.R.W. Quispel en H.W. Capel, Physica 1174
(1883) 76.

Het is mogelijk een ijkinvariante beschrijving te geven van "eindstraling"
zowel in q§+Zg+e+e-(y) als in qq'+W -+ e-Ge(y)‘ In deze beschrijving
zijn de botsingsdoorsneden voor de eindstraling analoog aan die voor het

verval van een vrij W of Zg deeltje. In het bijzonder geldt dit voor de

hierbij optredende infrarooddivergenties.

De opmerking van Tanaka dat het resultaat van de theorie van Rosenstock
voor het gemiddeld aantal stappen tot vangst in een zelfmijdende stochas-
tische wandeling op een rooster met een random verdeling van valpunten dui-
delijk fout is, is duidelijk fout.

F. Tanaka, J. Phys. Al6 (1983) L489.

H.B. Rosenstock, J. Math. Phys. 21 (1980)

1643.

Steeb geeft in zijn studie van de Rikitakedynamo een onvolledige beschrij-
ving van de mogelijke bewegingsconstanten.

W.-H. Steeb, J. Phys. Al5 (1982) L389.

Het bestuderen van Bianchildentiteiten die het commuteren van Bécklund-
transformaties ven partig€le differentiaalvergelijkingen uitdrukken kan op
natuurlijke wijze leiden tot een klasse van integreerbare differentie-

differentievergelijkingen.

Dit proefsehrift, hoofdstuk IV.
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10. Evenals de Korteweg-de Vriesvergelijking bezit de bewegingsvergelijking van
Fermi, Pasta en Ulam voor een rooster met kubische interactie een oplos-

sing die uitgedrukt kan worden met behulp van Airyfuncties.

E. Fermi, Collected Works, p. 978.

11. Het is op fysische gronden in te zien dat het thermomagnetisch drukverschil
in de lage-druklimiet niet met de eerste maar met de tweede macht van de
druk evenredig is.

H. Hulsman, G.F. Bulsing, G.E.J. Egger—
mont, L.J.F. Hermans, J.J.M. Beenakker,
Physica 72 (197¢4) 287.

12. Het is in het belang van de wetenschap dat de briefwisseling tussen Pauli

en Jung wordt gepubliceerd.

G. Quispel, Bres Symposium (1977) 7.




