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CHAPTER I

INTRODUCTION

1. Preliminary remarks

In this section we sketch the way in which the topics of this thesis should

be seen in the context of elementary particle physics. In this field one

encounters for instance the following problems:

How can one establish the existence of a particle? What properties do these

particles have?

Is it possible to decide whether such a particle is elementary or composite?

A part of these problems is how to extract information from experimental data,

or in other words, how to translate this information into theoretical relevant

quantities.

When one knows more about the existence and properties of certain

particles and when one can decide whether those particles are elementary or

composite, one can try to develop theories that describe these particles or

predict their existence.

In this thesis two topics will be studied. The first topic is concerned

with the extraction of information from the experimental data, the second one

has to do with the construction of theories that describe massive or massless

particles with spin.

We first sketch both problems more specifically. Later in sections 2 and 3

they will be discussed in more detail.

In elementary particle physics most of the information is obtained from

scattering experiments. The quantities which one measures, such as the

differential cross section and the polarization both are functions that depend

on the energy and scattering angle. On the other hand these observables are

also related to theoretically more relevant quantities like scattering

amplitudes. These scattering amplitudes are complex valued functions which in

quadratic combinations give rise to a differential cross section and

polarization.

There exists a procedure, called phase-shift analysis or amplitude-

analysis, which aims to determine the scattering amplitudes from the

experimental data. From the properties of the amplitude one can for instance
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establish the existence of a particle or deduce what the interaction between

the scattered particles has been. When an unstable particle, a so-called

.-'j resonance, is produced, its mass, lifetime and spin also follow from the

'i phase-shift analysis. Thus a large number of unstable particles were

.' discovered by these analyses.

.: One may now ask, whether the amplitudes which are obtained from the

experimental data are unique. Some ambiguity is expected, since these data

necessarily have statistical errors. But even when these data are supposed to

be exact, the mathematical question can be raised if the amplitudes are

determined unambiguously.

A negative answer could mean that certain resonances do not exist and

others have been overlooked. Because of this possibility it is interesting to

study the mathematical question of the existence of so-called phase-shift

ambiguities. In section 2 we shall discuss this problem in more detail.

-*• The other topic has to do with the construction of theories with which

certain particles can be described. Once the existence of particles with a

specific mass and spin is known, one wants to set up a theory that describes

them. One will most often try to develop a quantum field theory. In such a

{ theory the various particles are represented by fields. The different

i properties of these particles are carried by the so-called Lagrangian, a

quantity that depends on these fields and their derivatives. One part of this

Lagrangian describes the free particles and another part the interactions

between them.

•, The commonly used and accepted theories contain massive or massles

\ particles with spin 0, 1 or 1. However, when one wants to construct theories

for higher spins one runs into problems. Even if only free particles with

spin higher than 1 are considered,peculiarities arise in the field theory. In

;• this thesis the origin and characteristics of these phenomena will be traced.

In section 3 this problem will be discussed in more detail.

2. The scattering amplitude, its physical meaning and possible ambiguities

Much of the knowledge about elementary particles and their interactions

has been obtained by means of scattering experiments. In such experiments one

measures quantities like the cross section — and, when spin is involved,

observables like the polarization.

In general, when the interaction between the particles is known, one can,

within the framework of quantum theory, calculate a complex valued quantity,

the so-called scattering amplitude F(k,x) where x - cos 9, 9 the scattering
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angle and k the centre of mass momentum. This complex valued function is

related to the differential cross section in the well known way

k*g= |F(k,x)P . (2.D

With this relation one can, of course, calculate the differential cross

section. And thus one is able to predict and to check the results of a

scattering experiment.

On the other hand, when knowledge about the interaction between the

scattered particles is absent, one must reverse this procedure. First one

tries to find the scattering amplitude from experimental quantities like the

differential cross section. Because the differential cross section only

involves the modulus of F(k,x), one has to determine its phase. This problem

would be solved if experimental methods were available to obtain this phase.

Goldberger et al [1] proved that it is possible to determine the phase of

F(k,x) by measuring intensity correlations of particles, scattered at

different space time points. However, such experiments, especially in

elementary particle physics are extremely difficult to perform.

Thus the phase of the scattering amplitude may be regarded as a quantity

that cannot in general be measured. Therefore one must try to find the phase

by means of additional principles such as the constraints of unitarity, which

will be discussed more explicitly in the next chapter. When the amplitude is

known one can deduce knowledge about the interaction from it and in particular

one can establish the formation of a resonance.

The construction of the scattering amplitude from the differential cross

section and 'Che constraints of unitarity gives rise to some rather general

questions. In particular, one may ask under which conditions the solution is

unique. This question has been answered only partially [2 ] . It is well known

that the solution is not always unique i.e. that there exist so-called phase-

shift ambiguities. One may then ask how many unitary amplitudes correspond to

the same differential cross section, and how these amplitudes can be

explicitly constructed.

In this thesis we shall consider several aspects of the existence and

construction of phase-shift ambiguities.

The outline of this part of the thesis is as follows. Before we start our

discussion of phase-shift ambiguities, we want to introduce the subject by j.

making a few remarks about scattering theory. We shall also summarize the i ~

main results that have been obtained in connection with the questions raised jf•,;

above. This will be presented in chapter II. In the same chapter we shall i )

discuss the mathematical restrictions by which we are able to present our

9 **
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problems more clearly.

In chapter III we consider the construction of different unitary

amplitudes, which correspond to the same differential cross section.

Examples of such phase-shift ambiguities have been found only for rather

special cases. We shall show that these results can be considerably

generalized. Moreover this generalization reveals properties of phase-shift

ambiguities that were absent in the previously known examples. These

properties will be discussed in detail.

So far we mentioned only scattering of spinless particles. In case spin

is involved, more experimental quantities, like for instance the polarization

play a role.

In chapter IV we discuss the possibility of constructing different

amplitudesj which give the same differential cross-section and polarization.

Again we shall generalize the results that have been obtained for the case of

spin-0 spin-i scattering.

3. Field theories for particles with higher spin

As was noted in the previous section, much knowledge about the existence

and properties of particles, elementary or composite, has been obtained from

scattering experiments. On the other hand, when the existence of these

particles is known, one wants to develop theories that describe the properties

of the various particles and the interactions between them. Such theories are

called quantum field theories.

'In a quantum field theory each particle is associated with a so-called

operator field. The fields satisfy differential equations or field equations

which contain the dynamics of the system of particles.

In many cases one can in first instance forget about the operator

character of the field. One then speaks about a classical field theory. The

transition from a classical field theory to a quantum field theory is called

quantization. For the various ways in which a quantization can be performed

we refer to'the textbooks [31- *•

Perhaps one of the main problems in field theory is the construction of y

field equations describing a system of interacting particles. So far, the ;'

only acceptable interacting field theories exist for particles with spin 0, '"
t"

§ and 1.

If one does not consider the interactions between the particles one speaks

of free field theories and free field equations.
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In this thesis we shall restrict ourselves to the construction of free

field theories within the framework of classical field theory- The

construction of a free field equation for a particle with mass m and spin s

must be done in several steps. First we must make a choice for the field

function. In case of a particle with integer spin s we choose a symmetric s

rank tensor field é (x), or shortly <J> (x), where U> represents the set

of indices p1...us. Half integer spin particles can be represented by a

symmetric tensor-spinor * , (x). Then we must construct the field

equation which should be satisfied by the field <{> (x).

Here we are restricted by several requirements:

i) According to the special theory of relativity physical laws should be the

same in every inerfcial system. Since different inertial systems are

connected by a Lorentz transformation, the field equation should be

Lorentz covariant.

ii) I* is well known that a massive particle with spin s gives rise to 2s+1

independent spin states s, s-1, ..., -s. Consequently the fieia $

should have 2s+1 independent components. In case of massless particles

this number of components is even reduced to two, according to the two

different spin states ±s for a massless particle.

As we shall see in more detail in chapter V, the field d> turns out to
to

have a number of superfluous degrees of freedom. These superfluous

components are eliminated by a set of subsidiary conditions.

This fact can also be understood from a different viewpoint. According to

the theory of representations, the irreducible representation of the

inhomogeneous Lorentz group can be labeled by two numbers m and s

interpreted as the mass and the spin of the particle. Such a representation

is carried by some field function 4» . Since a symmetric rank s tensor

field does not carry in general an irreducible representation of the

inhomogeneous Loientz group, a set of subsidiary conditons is required to

eliminate superfluous components of this field function. Then the

remaining components carry the irreducible representation.

As is well known, massive particles with integer spin s are described by a

symmetric tensor field <|> (x), which satisfies the Klein-Gordon
Wl-'-Vs

11



equation

(x) = 0 , (3-1)

and tbs subsidiary conditions

*Uj>3...u
 ( x ) = ° '

and (3.2)

For half-integer spin particles the symmetric tensor-spinor &

satisfies the Dirac equations
l>1 •

(x)

and the subsidiary condition

and

The requirements mentioned before are satisfied in both cases.

On the other hand, Fierz and Pauli lh] and Dirac [5] investigated the

possibility to construct a field equation, equivalent to (3.1) and (3.2). For

instance, a spin-1 particle can be described by the Proca-equation

\x v v v \i

By contraction with 3 we get the subsidiary condition

a * = o

and the Proca-equation reduces to the Klein-Gordon equation

gmJL _ vn2 J,
Uu) — ID (p >

(3.5)

(3-2)

(3-D

This shows (3.5) to be equivalent to (3.1) and (3.2).

For higher spins, however, the construction of the field equation becomes

much more difficult. In this thesis we shall use the root method with which

higher-spin field equations can be constructed.

Once we have a field equation it is useful to try to derive it from a more

general principle which is called the principle of least action. The main

facts concerning this principle can be found in the textbooks 13]. A central

role is played by the Lagrangian £ s a Lorentz covariant scalar function,

12



depending on the field and its derivatives

£- 4tu(x). 3p*u(x)) . (3-6)

From the action principle follow the field equations, or the Euler-Lagrange

equations

3JC / 3JC x

- 3{ J = 0. (3-7)
(I) u (d

Although the principle of least action leads to the same field equation,

knowledge of the Lagrangian is very valuable for various theoretical

considerations like invariances, quantization and inclusion of interactions.

It is difficult to introduce interactions in the system of equations (3.1)

and (3-2), but in the Lagrangian .an interaction can be introduced explicitly.

The outline of the remaining part of this thesis is organized as follows.

In chapter V we explain the main characteristics of the root method. In

particular we shall show that the root method leads to the free field equations

(3-1) and the subsidiary conditions (3.2). Furthermore, we shall discuss the

relation between the field equations of massive and massless particles.

In chapter VI the root method will be applied explicitly for the case of

spin 1,2 and 3. We shall construct a field equation and Lagrangian for

massive particles. We shall also show how a massless field equation and

Lagrangian can be obtained from massive field equation.

In chapter VII the relation between massive and massless field equations

is investigated in more detail. In particular we shall compare the expression

for the amplitude, describing exchange of a particle between two external

sources, in both the massive and massless case. It will be shown that the m-K)

limit leads to various problems.
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CHAPTER II

PHASE-SHIFT AMBIGUITIES, SUMMARY OF THE MAIN RESULTS

1. Some remarks about scattering theory

We first introduce some quantities with which we shall deal throughout this

part of the thesis.

In a scattering experiment a target is bombarded with a beam of particles.

One measures the number of particles, scattered in a given direction. This

direction can be specified by two angles e and $. Let NQ be the number of

incident particles per unit area and per unit time, and H the number of

scattering centres present in the target. Then one finds the following

expression for the number of scattered particles per solid angle dfl and per

unit time:

N(e,<f.) = N O N | | dfl, (1.1)

where the factor — is called the differential cross section. The total
dfl

cross section a. . can be calculated by integrating over the whole solid
"tot

angle

f /An\
dflj(£)

I

In the framework of scattering theory, the differential cross section is ï

closely related to the interaction between the incident particles and the >,

scattering centres. For instance in the case of non relativistic elastic *'

scattering between spinless uncharged particles, where the interaction is jj

described by a spherically symmetric or central potential V(r), the |

asymptotic solution of the Schrödinger equation takes the form I-

ikr f
*(r,9) = e l k r + F(k,e) ̂  . (1.3) fe~I

This solution contains a part describing the incident particle and another f

part describing the scattered particle. The scattering amplitude F(k,6) :"

depends on the potential V(r). In the centre of mass system (c.m.s.) the |

incident particle has a reduced mass p, a kinetic energy E and momentum p

k = /2pE. |i



It was mentioned in the introduction that the dimensionless amplitude

F(k,6) is related to the differential cross section as follows:

k2 |j^ (k,e) = |F(k,6)|2 . (1.U)

The question of determining the potential that describes the interaction

between the particles can be thought of as consisting of two parts. First

one has to obtain the scattering amplitude from the differential cross section.

Then one may try to determine the potential V(r) from the amplitude F(k,6). In

this thesis we only discuss how F(k,6) can be obtained from the differential

cross section.

Of course, as (1.U) shows, — only determines the modulus of F(k,6).

However, F(k,6) must satisfy another relation. This relation results from an

important principle in the theory of scattering, which is called conservation

of flux or conservation of probability. In case one describes scattering

within the framework of S-matrix theory rather than in terms of potential

scattering this principle is equivalent to the unitarity of the S-matrix. In

both cases, but only for purely elastic scattering, we get a relation for

the scattering amplitude, which may be represented in integral form

Im F(k,612) = •Ĵ  j dP-3 F(e13)F*(e23) (1.5)

where the integration has to be carried out over all values of the solid

angle ft3 and where 1 and 2 denote the unit vectors in the initial and final

direction, whereas 612 denotes the angle between those vectors.

When we evaluate (1.5) for 9i 2=0, we obtain a simple relation between

the total differential cross section (1,2) and the imaginary part of the

scattering amplitude in the forward direction

k V .(k) = kv Im F(k,O), (1.6)
tot

showing that in the forward direction the phase of the scattering amplitude

can be determined by an experiment.

The problem we shall discuss in this thesis can be formulated as follows:

is it possible to determine the phase of F(k,8) by using the unitarity _

constraint (1.5)» when one has perfect knowledge of the differential cross :'

;'v section, or, equivalently, of the modulus of F(k,8)?

'f . It should be stressed here that this problem is formulated for an ideal

f-' . situation, because a perfect knowledge of |F(k,6)| is supposed here. In any

:ƒ-• actual experiment, this is not possible because every measurement of

j.' |F(k,6)| is accompanied by experimental uncertainties.
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For our purposes it will be convenient to reformulate slightly the -"

problem of determining the phase of F(k,6). Due to the spherical symmetry of

the scattering potential V(r) one also can express F(k,6) in terms of Legendre f

polynomials or, equivalently, in angular momentum eigenfunctions. '-

Putting x = cos e

00

F(k,e) = I (2ft+1)f,(k)P_(x) , (1.7)

a=o * *

where the f. are the so-called partial waves.

It now is possible to rephrase the unitarity condition (1.5) in terms of

the partial waves t . For all i, = 0,1,2,...

= Im f,(k) . (1.8)

Consequently, it is possible to show that f. is determined by only one real i

parameter 6. which is called the £-th phase-shift

1
 2 i

V
k )

 r

a 2i ^

One easily verifies that (1.8) is satisfied h.r (1.9).

Thus we can restate our problem in terms of the phase-shifts S : find all

different sets (6Q> $I» •••) °f phase-shifts, each 6, being defined by (1.9), "

giving the same modulus |F(k,6)| of the scattering amplitude F(k,6). 1

A remark should be made about the case of inelastic scattering, which

will not be discussed in this thesis. When the energy exceeds the first

inelastic threshold, scattering experiments are specified by a different

number of particles in the initial and final state. In this case the unitarity i

constraint for the scattering amplitude takes a different form. ?•

In terms of the partial waves and phase-shifts, this condition reads

. 2iS (k) i

f^(k) = ^Γ- (n
£
 e - 1 ) (1.10) i

with 0 < n. < 1, for all £.-values.

For purely elastic scattering n.=1 for all fc-values. In general, however,

f is determined by two real parameters: the inelasticity n. and the phase-

shift 6
r
 ^

Finally we want to discuss the polynomial expansion (1.7) of F(k.e). In ft'-

the case of elastic scattering and in the presence of a central scattering j-

potential one can prove quite generally that the higher partial waves behave p

exponentially as iĵ

f
£
~e~

a
*. (Lu) a
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A condition for this property is a sufficiently fast decrease of the potential

with the radial distance r, which is for instance the case for the Yukawa

potential.

The most important contribution therefore comes from the lower partial waves.

In practical phase-shift analysis, i.e. the procedure to extract partial

wave amplitudes from the experimental data, one usually assumes, that the

partial waves are zero for values of I greater than some L. Then the amplitude

is a polynomial in x = cos 6 of degree L.

L
F(k,e) = I (2*+1)f (k)P,(x) . (1.12)

This expression is clearly an approximation of the exact behaviour of the

partial waves mentioned above. Nevertheless one may expect it to be reasonably

good in practice, particularly if a is sufficiently large (cf. equation

(1.11) ). Moreover it has the great practical advantage of reducing the

number of parameters in a phase-shift analysis from an infinite to a finite

number.

In this so-called "polynomial case" one may study the construction of

phase-shift ambiguities for small L-values. Once one has obtained more

insight in these lower L cases one may try to generalize these results to

arbitrary L. However, it should be stressed again, that the case of a

polynomial amplitude is only an approximation of the exact situation, where

one has an analytical amplitude and therefore an infinite number of partial

waves.

2. Existence and uniqueness of solutions

The problem of determining different amplitudes with the same modulus that

: satisfy the unitarity condition (1.5) has one trivial solution. Once an

-", amplitude F(k,8) is given, it is clear that both F(k,6) and F(k,6) have the

same modulus and obey the condition (1.5) due to unitarity. This example is

; _ called the trivial ambiguity and it can be obtained by reversing the signs of

s; all the phase-shifts 6fc •*• - 6̂  (cf. eq. (1.9) )• This ambiguity can be

>;• removed by using analiticity with respect to energy, which will not be die-
s':
s.f cussed here.
.!-V

p ;. We are only interested in non-trivial ambiguities. Therefore all our

'f:J: statements will be modulo the trivial ambiguity.

4 We consider again the unitarity condition in integral form (1.5)

•: IT



F(x13)F*(x32)

with Xj2 = cos 6j2 •

Let i(i(xi2) t e the argument of F(xi2) . Thus (1.5) takes a different form:

s in j dn 3 |F(x 1 3)-F(x32) |co S («(x 1 3)-*(x3 2 ) ) - (2-1)

This equation defines a non-linear mapping of a function space onto itself. In

fact it can be written as follows

A*, (2.2)

where the non-linear mapping A is defined by the inverse sine of the right-

hand side of (2.1).

When the modulus of the scattering amplitude is known, one would like to

answer the following questions:

1) Under which conditions does equation (2.1) have a solution?

2) When is this solution unique?

3) Furthermore, if there is more than one solution or a phase-shift ambiguity,

how many different solutions do exist?

It has already been noticed in the introduction that the first two questions

have only partially been answered.

By introducing the quantity

1 i

= sup dn3|F(xi3)F(x32) | (2.3)

J |
sin

WJF(x12)|

and by using convenient sets of functions and techniques from non-linear

analysis, like Schauder'stheorem and the contraction mapping principle, it is

possible to prove the following results (Newton, Martin, Atkinson et all [ 1] ).

(i) There exists at least one solution of (2.1) , if sin v < 1

(ii) Equation (2.1) has a unique solution, if sin \i <0.79-

(2.U)

(2.5)

It must be stressed that the inequality (2.U) is very restrictive, because it

implies for the phase-shifts

< -| , for all (2.6)

Therefore this result may only be of interest in the case of purely elastic

scattering at very low energies.

18
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3. Phase-shift ambiguities in the -polynomial case

In the last section existence and uniqueness of the solution of equation

(2.1) were discussed. Here we want to list a number of results concerning

the situation where the scattering amplitude is approximated by a polynomial

of degree L.

It has been shown in this case that besides the trivial ambiguity also less

trivial examples of ambiguities exist (see refs. [2] and [3])-' Their

existence was proved, however, only for the very special case L = 2,3-

It was also proved that for the polynomial case conditions exist under

which the phase-shifts are uniquely determined by the differential cross

section.

We summarize these results as follows:

(i) A non-trivial ambiguity was first discovered by Crichton for the

polynomial case [2] .

He considered the case L=2 and he showed that the two sets of

phase-shifts

<S0 = -23°20' 6X = -Jt3°27' S2 = 20° ( 3 1 )

6' = 98°50' 6' = -26°33' 6! = 20°
1 2

give exactly the same differential cross section.

Moreover two sets (60,61) and (6J,5J) correspond to any 62-
value in * n e

interval [12 32', 2k 9' 1 > varying continuously with 62» that still give

different scattering amplitudes F and F' with the same modulus.

(ii) A method for constructing phase-shift ambiguities for higher L-values

was given by Berends and Ruijsenaars [3] . With this method they were

able to construct all the different phase-shift ambiguities for the

L=3 case.

Again they found two different sets of phase-shifts (60,6i,62563) and

(6',6!,6^,6'), each phase-shift 6. or 5' being a continuous function of

only one parameter p, which can take values in some interval.

When p varies in this interval (60,61,62563) and (6^,S|,6£,6^) both form

curves in a U-dimensional space, which are closed (mod IT). A similar

property holds for the Crichton ambiguity as well.



(iii) Moreover it was observed (see also ref. [3]), that there were never

more than two solutions in the case L=2,3.

In the L=U case too it was shown by Cornille and Drouffe | UJ that the

maximum number of solutions is again 2.

(iv) Finally it was shown by Martin [5J, that the amplitude is uniquely

determined by its modulus, if

(3.2)sin u < 1

or if

(3.3)

U. Spin-0 - spin-g elastic scattering. Summary of the main results

In high energy physics much attention has been given to scattering

experiments involving mesons with spin 0 and nucleons with spin i- In this

case, one can measure besides the differential cross section different

experimental observables such as the recoil nucleon polarization P.

Since we consider the strong interactions between those particles, parity

is conserved. Therefore we have to specify an eigenstate by two quantum

numbers: j for total angular momentum, and

I for angular momentum.

We denote an angular momentum eigenstate with £±, when j = £±J.

In terms of these .quantum numbers both differential cross section and

polarization can be described by two complex functions of x= cos 6 and k where

e is the cm.-scattering angle and k is the cm. momentum. These two functions

are in turn given by the following expansion

f(x) = ïo {(

dx

The so-called partial waves f satisfy

with 6 real and 0 < n < 1 .

(U.3)

When one only considers elastic scattering, the unitarity condition simply

20



implies that n = 1.

Differential cross section and polarization are then given by

k2 d R = 'f(x)|2 + lg(x)'2 '

P ( 5 )

|f(x)|2+jg(x)|2

The problem is to investigate how many different pairs of amplitudes f(x) and

g(x), satisfying the unitarity condition, correspond to the same differential

cross section and polarization.

Here we shall restrict ourselves again to the case where f(x) and g(x) are

given by finite partial wave decompositions

f(x) = I (U-H)f + it. )P.(X) , (h.6)

L , dP (x)

g(x) = ii (fi+ - v
( 1- x 2 ) 5-dT~ • (̂.7)

If we have a finite number of phase-shifts, one may ask the question

whether different sets of phase-shifts (6Q»^I> »*T) an^ (6Q,6J ,.. .6') exist,

which give the same differential cross section and polarization.

There exist three well-known examples of ambiguities for arbitrary I». They

are characterized by the following transformations

(i) Reflection. 6! = -6 , or

f'(x) = -f (x)i g(x)' = g (x).

(ii) Minami [6]. 6^+ = « U + 1 ) _ , 6^_ = e ^ , ) + , or

f'(x) = xf(x) + i(1-x2)5y(x) (k.9)

g'(x) = -i(i-x2)^f(x) - xg(x).

£, l^) "Sr . and P' = -P.

|. From these observations it is clear that only simultaneous application of the

21

f_:Vl Minami ambiguity and reflection leaves both differential cross section and

r
(iii) Yang Ï7] • f'(x) = f(x) g'(x) = -g(x). (l*.1O) ^

if;- Only the reflection and the Minami ambiguity satisfy the unitarity

j£: condition |cj + | = 1- And therefore only these are of interest.

|;*: Furthermore, as one easily verifies, the experimental quantities transfoim

|;f: in each of these cases in the following way:



polarization invariant [7]. This combination is called the modified Minami

ambiguity.

The modified Minami ambiguity is given by the following transformation:

6l± = - 6U +1)+>
 o r

f1ljt) = -Off (x) + i f i — 3 c 2 ) 5 f f ( v ) (h* l l )

g'(x) = -xg*(x) + i f i - x 2 ) ^ ) .

Besides this ambiguity less obvious examples have been constructed by

Berends and Ruijsenaars [8], In fact they found all possible ambiguities,

giving the same cross section and polarization, for the case of S and P waves

only.
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CHAPTER III

1
ij;

PHASE-SHIFT AMBIGUITIES FOR SPINLESS ELASTIC SCATTERING

1. Introduction

;."*,'. As was mentioned in the previous chapter phase-shift ambiguities have
'ilk
:.t? been constructed for the cases L=2,3 [1 J . In particular for the case L=3

two sets of phase-shifts (So,6},62^3) an(i ^^o»^l»^2»*3^ n a v e t e e n found, both

V' giving two amplitudes F and F' with the same modulus. Moreover these phase-

shifts 6 and 6' are continuous functions on some real interval and at the

j endpoints of this interval 6. and 5' become equal. Thus both sets {<$«} and

r {<S!} form a curve in a U-dimensional real space. Since at the endpoints 6f equals

•':' 5.' for all I, the corresponding pair of curves forms one closed curve (mod TT).

ï
Of course an obvious question is, whether it is possible to construct

phase-shift ambiguities for arbitrary values of L. Before discussing this

problem, we first present a method by which, at least in principle, all

,> different sets of phase-shifts can be obtained.

If the amplitude F(cos e) = F(x) is approximated by a polynomial of L-th

degree
L

F(x) = I (2*+i)f P (x) , (1.1)
onemayalso express F(x) in terms of its L complex roots ZjjZj,... ,2. :

L /x-z \
F(x) = F(1) n ( T - ^ 1 . (1.2)

It was observed by Gersten [2], that all different amplitudes with the same

modulus can be obtained by two types of transformations or by products of

them

(i) T. : z. ->• z.
1 1 1 ( 1 > 3 )

(ii) S : B e P ( i ) + -Re F(1) .

Two such transformations A and B are called equivalent, if their product equals
*

either the identity transform, or the trivial, transformation F(x) -• -F(x) .

This trivial transformation amounts to reversing all signs of the phase-shifts:

ï'C 23
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if

6. •*• -S for all I. Therefore all non equivalent sets of phase-shifts can be

obtained for instance by considering only the transformations T.. For

completeness we mention the unitarity condition again. According to this

condition and in the case of elastic scattering the coefficients f. in

equation (1.1) are of the form

This expression differs from the one in the previous chapters by a factor 2i.

However, by a convenient redefinition this factor can be absorbed in the

amplitude F(x).

Summarizing, the problem of constructing phase-shift ambiguities can be

stated as follows:

(i) All different sets of phase-shifts ( 6 Q , 6 1 9 . . . , 6 ) giving different

amplitudes with the same modulus can be generated by complex conjugation

of one or more roots of F(x).

(ii) It must be checked, whether in all these cases, the partial wave

amplitudes f. have the form given by (1. h).

In the next section we consider the case of conjugation of only one root. A

method will there be discussed with which it is, at least in principle,

possible to construct all phase-shift ambiguities in case one root is

conjugated. This method also suggests generalization to the case of

conjugation of more than one root. However, the equations that define the

ambiguities become partly by the increase of L and partly hy conjugation of

more roots, much more involved. In spite of this complexity it can be shown

that rather simple examples exist for arbitrary L if only one root is

conjugated.

Again the different sets of phase-shifts (ö„,5i,...,6 ) and (S^,6J,... ,6')

will form curves in an L+1 dimensional real space. These curves are

parametrized by only one real variable, which can take values m some closed

interval. However, these curves do not have the property of being closed

(mod IT) at the endpoints of this interval, as was noticed in ref. [1] .

It can be shown, however, that they will meet other curves which are

again defined by different phase-shift ambiguities. At least one of these

curves will appear to be closed. Therefore, in this extended sense, the

examples constructed here will still form closed curves (mod ir).
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2. Formalism for the construction of ambiguities

In the case of complex conjugation of one root we first want to derive

expressions for the coefficients f, or, equivalently, c , which explicitly

depend on the conjugated root z. Therefore we will write the amplitude F(x)

as follows:

ft

F(x) = f f P(x),

P(x) being a polynomial of degree L-1.

Of course the transformed amplitude is given by

(2.1)

1-z
(2.2)

Obviously we have )F(X)| = JF'(x)| and the forward scattering amplitude F(1)

is unchanged.

Both F(X) and P(x) may be expanded in Legendre polynomials

L
F(x) = J (2W-1)f P (x)

l=0 *• "•

P(x) = I (2*+1)(a-i)F,(x) .
£=0 * l

Using the property

(2.3)

(2.U)

we find

IF(x) = 7=^ P(x) = f=^ l (2fc+i)(a.-i)P.(x) =
1-2 '~Z l=0 * *

1 L

1"Z A=0

where a„ = 1 for i. > L and i. < 0 .

(2.6)

(2.7)

According to the equations (2.6) and (2.3) we express the coefficients f

in terms of the coefficients a^ and the root z:

f. 1 ( frH a , t ,
l ~ 1-z V2A+1 i+1 2A+1 i-1 "

From (2.8) we get for the coefficients = f +1:

( 2 > 8 )

(2-9)



The coefficients C,(z) and the transformed ones r, (z ) "both have to obey the

unitarity constraints:

Ut(z)| = Ut(z*)| (2.10)

\x,%{7.)\ = 1 . (2.11)

First we impose (2.10) and then (2-11). Equation (2.10) is satisfied, if,

for all Jt:

The coefficients o can be parametrized in such a way that this condition is

automatically satisfied for all I.

As we shall see many different parametrizations are possible. These lead

to different representations for the £ .

We start with 2L+2 parameters: z,a(j,aj,...,a .. There are L equations

(2.12) ., and if they are satisfied for t=1,2,...,L, then (2.12) is

automatically satisfied for t=0.

Therefore, by imposing these L conditions, the number of 2L+2 parameters

will reduce to L+2. These L+2 remaining parameters can be solved in terms of

one real parameter by using the L+1 conditions (2.11). We shall now indicate

how the representations in terms of the L+2 parameters are obtained.

We first consider (2.12) for t=L. In this case (2.12) reads

Im W^ = 0 . (2.13)

Since o = 1, we have either a is real or a .j = 0. Obviously (2.12) for

S, = L-1 reduces to

If in the former step two parameters were eliminated by choosing a. . = 0, then

this last equation (2.1U) is satisfied for « T O comPlex. However, if we

choose otj_I 'fco & e real, this equation implies either OL. „ is real or «L = 0.

Continuing in this way and by using successively the equations (2.12) one

can eliminate one parameter in each step. Suppose in this way (2.12) is

satisfied for i. = L,L-1,... ,k+1 by choosing a-_^ , aL-2»'** «"Sr+i r e a l»

a.=0. In case £=k equation (2.12) reads

Obviously this equation is satisfied because 0^=0. Therefore there is no
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restriction on o. . .

In case l = k-1 we nave

V i fefcr
or (2.16)

** V1V2 = ° *

This equation is satisfied if either OL „ = 0 or OL „ is complex vith OL _ =

Xα, . and A real or if a = 0. If ve choose a,
 1
= 0, however, we eliminate

two parameters by using only one equation. Therefore only the possibilities

a. = 0 or a. = Aα. . with A real and a. - complex are allowed.

Consequently, it is impossible to have two subsequent a's, that both equal

zero. Moreover two or more subsequent complex a's will always have the same

argument.

It should be noted that, when finally (2.12) is satisfied for fc=L,L-1,

...,1, then it is automatically satisfied for l=0. This fact forbids us to

choose a
o
=O. It must be stressed too, that at least one of the coefficients

a. has to be complex. If all the coefficients a are real, we simply get
I Jb

the trivial ambiguity.

These arguments together with (2.12) give us a set of rules which enable

us at each step to decide whether some coefficient a is either complex or real

or zero. Thus many different representations of the £., depending on L+2

parameters, are obtained.

After imposing unitarity, |c | = 1, all the partial waves will depend on

only one parameter for which we will choose [z|. We first shall list the

rules.

(1) a. = Oj.
+1
 = 1, therefore either a. . is real or a = 0.

(2) If for some I, a is real,then either a. , is real or o. , = 0.

(3) If for some I, a = 0, then a. , is complex.

(k) If for some I, a^ is complex, then either a. . = 0 or a is complex.

In case of a complex a. ., both a
0
 and a. have equal arguments.

(5) OQ is complex.

It is convenient to use diagrams to distinguish between the different

representations of the 5 . These diagrams will be built up by means of three

different arrows . Each arrow will be associated with one out of the

three possibilities for some coefficient a,. Explicitly for the *-th arrow



real complex
l «

£
- 0

By using the rules (i)- (5) one can write down all the different

representations for i;
0
,^

1
,...,5 . Below we list all the different

possibilities up to L=5.

l 2 52 = ̂ " (f + | ax-z)

^0 = 7T^ («l -
 z a
o) •

Representation: α-y = 0,a
0
 complex

(2.17)

(2.18)

L=3 General equations

= Ŷ - (f
 +
 f

(2.19)

a) 02 = 0; Cj,a
0
 complex; -5- Op = Xaj, X real.

(2.20)

-' i-'--h- •
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t>) a2 real, 04 = 0,a0 comp.
1 ex

= T^ f 1 a2 + I
(2.21)

Xr=k General equations

[IJ (y + Y a2 -

= JZÏ (f a3 + | ax - za2)

1 f 2 1

(2.22)

a) 03 = 0, 2
ccmplex; T

2 1
— a0

ii (f--)

(2.23)

29
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b) e 3 real; a 2 = O; ao,ai complex; T ao

1_z «. 9 9 3

- i (y+ «s)

Tb f f f (2.21*)

c) a3,o2 real, 04 = 0,a0 complex

i (7 + 7
^ (f 03 - (2.25)

3 3

7^" (-zao) •

d) = a3 = 0;

J»-—»»»-

(2'26)

From these examples it is clear that the representations of the

coefficients r, are determined by the following general structure for the ? .
* Si

The first set of o^ : a j j .
a
L _ 1 »• • '>\+i

 are r e a l (1 - k - L-1). Then ô  = 0.

Finally we get blocks of complex coefficients a. which all have the same

arguments. These blocks alternate by coefficients a which equal zero.

We like to conclude this section with some remarks.
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(i) The L=2 case gives only one representation. Ety imposing |?2l = l?ll =

I Co I = '» o n e will find the ambiguity, that originally was found "by

Crichton 13 ]•

(ii) In a similar way one can solve the case L=3- Then one gets some of the

ambiguities constructed by Berends and Ruijsenaars [1].

(iii) Consdering the li=h case one immediately observes an increasing number of

representations. Although the equations |c | = 1, will become more

involved for increasing L, the problem of conjugating one root can in

principle be solved.

(iv) In spite of the complexity of the equations, the representation (2.26)

will appear to be relatively simple. In the next section we shall show,

that it is possible to solve the unitarity relations |c.| = 1 for this

representation and for all L>h and L even. If L is odd, this

representation has to be slightly modified to be able to prove, at least

locally, the existence of an ambiguity.

3. Existence of ambiguities for arbitrary h> h

The oase of even L

In this part of this section we consider for L even the coefficients £ ,

which in general are given by

1 i JH*1 Jt

The two sets {co(z)} and {co(z )} both give different scattering amplitudes
At Xr

with the same modulus.

As was stressed earlier the ?0(z) and C.(z ) have to obey the unitarity

straints. In partipular for the coeffi

stated as follows: for all SL = 0,1,...,L

constraints. In partipular for the coefficients C. these constraints can be

|?jl(z)| = \KZU*)\ , (3.2)

U t M = 1 • (3.3)

We shall impose these conditions on the particular representation of the £

that was given for the case L=U by equation (2.26) in the previous section.

This representation can be generalized to arbitrary, even L by the following

three conditions on the a :



(i) a = a = 1
I • IS* I

(ii) a..., = 0, for £ = 0,1 IL-! (3-1»)

(iii) a_ complex, for i. = 0,1,..., jL-7.

This representation is characterized by

the following diagram.

From now on we shall often refer to the

corresponding ambiguity as the "staircase"

ambiguity, as is suggested by its

diagrammatic representation.

The equations for the 5 read explicitly:

( +
-z V2L-1 2L-1

a + Vi

In the previous section it was shown that the unitarity constraint (3-2) is

satisfied by the staircase representation (3-5). We have still to impose,

however, the second unitarity constraint (3-3): |c«| = 1.

According to the four different forms in (3-5) this unitarity condition

gives four types of equations which we will treat successsively. As was

remarked earlier, we choose |z| as a parameter.

A. The case £=L.

Imposing |s | = 1, we get

L+1 I I1-zI, from which we find
2L+1

x=.Re a«jg=f . (3.6)

Obviously from (3.6) a lower bound for |z| follows.

(3.7)

J
j Moreover one can now write |i-z| as a function, that depends only on |z|

'J
h-z|2=M2-2ijr. (3.8)
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B. The case SL even.

Defining o^ = |a£|e * , (3.9)

we get from |i; | = 1:

KI = h-z|/hl . (3.10)

C. The case S. odd.

Imposing |? | = 1 for S. odd, we get

(2£+i)2|z|2 = U+1)2 + 2*U+1 )cos(<j>t+1 - * j ^ ) + I2 , or

One otviously has to require:

-1 < cos(<j.Jl+1 - ^ > < +1 . (3.12)

From the right-hand side of this inequality we get

|z | < 1 , (3.13)

whereas the left-hand side of (3.12) defines another lower bound for the
i

allowed |z|-region:

Of course the inequality (3-8) remains more restrictive than (3.1*0, for

any Jl-value.

Therefore the only allowed values | z | can take are given by

D. The case % = L-1.

\ In this case we find from (3.3) an expression for the argument $ L „ of

aL-2

(2L-1)2|1-Z|2 - L2 - (L-D2|aL_2|
2

cos * =
L" 2 2L(L-D|aL_2|

s;-j' or, with (3.10)

I:
W n< . _ (2L-1)2|1-2|

2UI2 - L2lzl2 - (L-1)2h-z|2 .
J, COS *L-2 - 1|||| (3

Again we have to require

-1 < cos ((.L_2 < +1 . (3.17)
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This inequality is obviously satisfied for |z| = 1. But for |zj :

cos $T p turns out to be less than -1. Therefore with respect to the

lower bound of the allowed |z|-region (3.17) turns out to be more

restrictive than (3-7) or (3-15).

The left-hand side of (3.17) defines another, L-dependent, lower bound

ao(L) for |z|.

This lower bound can be determined for arbitrary L by the equation

cos * L_ 2OI = ao(L)) = -1 . (3-18)

This equation is equivalent to a polynomial equation of fourth degree in

a0:

ii a "> 2 i 2

- Vi " Va° -
= 0 , (3.19)

L+1
where

2L+1

It can be shown that there always exists a solution of (3-19), which lies

in the interval defined by (3.15). In particular for L=J» we found ao(k) =

0.836. Furthermore ao(L) decreases for increasing L: if L-*", then

ao(L) -> O.7693.

Summarizing we conclude that for arbitrary but even L phase-shift

ambiguities can be constructed. Moreover we can, at least in principle, find

expressions for both ?D(z) and S.(z ), as functions of only one real parameter
Xr Me

|z|. Modulus and argument of the os are given by (3.10), (3.11) and (3.16).

The coefficients ? are in turn given by (3-5) and the amplitudes F(x) and v

F'(x) are defined by (1.1) and (1.U) in the previous section.

The case of odd L /

To complete the proof that phase-shift ambiguities exist for arbitrary V4.

L>1+, we still have to consider the case of odd L. is

In order to show the existence of ambiguities for odd L, we slightly ^

modify the staircase representation, vhich was treated in the previous section.

This so-called modified staircase representation is specified by the following

conditions on the a : j

•i

f 3*t



(i) V ] = aL = 1 ,

(ii) a =0 for I = 1,2,...,s(L-1),

(iii) a_. . is complex for X, = 1,2,... ,5(L-1 )•

(iv) eg is complex.

The diagram by which this representation is characterized, is:

for I/=5 and in general

(3.20)

Most of the coefficients resemble exactly the ones given by (3-5)- Only

for l= 0,1,2 their expressions are different:

— (3.21)

Co =T^ 0-3X8)0! -

Here, we used

a0 = 3X04; X real . (3.22)

Equation (3.22) guarantees |c (z)| = |?0(z*)| for £ = 0,1.

After imposing |co| - 1» we get the same equations for a as in the

previous case of even L. Only for I = 0,1,2 the condition |c | = 1, will

give rise to some additional complications, which we will discuss in a few

steps.

A. The case I = 0,1.

Imposing |c | = 1 for I = 0,1, we get

1-z
X-z

; o0 = 3Xoi, X real

|X-z| = |i-3Xz| .

(3.23)

(3.21*)

From (3-21+) o ne observes that X can be solved from an equation of second

degree in X:

35



_ |z|2) = 0
• * ! *

where x = Re z.

Defining t = |z|2, ve find

X+(t)

In particular

- 10t + 1 + l*xz| J . (3.26)

(3-27)

First we study the case X = X (t).

Then one can easily verify the following properties.

(i) The square root part of X+(t) is well defined for all t, because its

argument is positive definite for x = 3L+2AL+2.

(ii) For the derivative with respect to t:

(3.28)

B. The case l=2.

When we require the modulus of £2
 = "i— ( c a3 ~ T °l) *° equal 1, it

follows

or

COS
25 | i -z | 2 - 9 |a3 l2 - M«xl2

1 2 | « 3 I M

where

When we use: |«3| = 1-z 1-z
X-z

we get for cos

_ 9|X-z|2 -

cos

or, with t = |z|2

cos <f>i3(t)

12|X-z||z|

25t(t-2xX+X2) - 9(t-2xA+X2) - Ut

12/t(t-2xX+Xid)

How we put X(t) = X_(t).

Of course the inequalities

(3.29)

(3.30)

36



-1 < cos $ 1 3 < +1 (3.31)

prescribe which t-values are allowed. Therefore by means of the two

inequalities defined by (3-30) and (3.31) we have to determine the boundary

points of the allowed t-interval. Since these equations are rather

complicated it is a priori not clear, whether they are more restrictive

with respect to the allowed t-valuer from equations (3-19) and (3-13).

Nevertheless it is possible to show the existence of this particular

ambiguity in a neighbourhood of t=1.

We first like to remark that in t=1

X = 0

|<»l| = |i-z| = 2(1-X) (3.32)

l«ol = 0 .
Thus we get from (3.32) and (3-30)

cos <j>l3(t)|t=1 = 1 . (3.33)

Obviously the right-hand side of the inequality (3.31) is satisfied and

the modified staircase ambiguity exists in |z|2 = t = 1.

However, we like to show its existence in a neighbourhood of t=1. There-

fore we mention another property of cos 4i3(t):

1 . (3.3U)

Since one of the properties of X (t) which we mentioned in (3-28) was

we get *

£cos *l3(t)|t=1 = §> 0 . (3.35) |;

Because cos <j>i3(t) is an increasing function of t in t=1 and since it rV

equals 1 in t=1, there exists a neighbourhood (1-E,1 ] in which «•""

-1 < cos $!3(t) < +1 holds. {'-'

In this neighbourhood the unitarity constraints for £=0,1,2 are consistent

with the constraints for other Jl-values which were discussed in the < :

previous section and which also hold for the case of odd L. Thus we have

shown this ambiguity, defined by the representation given by (3-20), to I

exist in a neighbourhood of t=1. ;' '

Finally one remark should be made about the choice X=X+. For this choice ,;N

' I
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too one can prove the existence of the corresponding ambiguity in a neigh-

bourhood (i-e,1] of t=1. Here the condition (3-31) is automatically-

satisfied.

However, the choice A=A is more interesting for us with respect to

problems which we deal with in the next chapter.

h. Discussion and conclusions

In the previous sections it has been shown that for arbitrary L > k phase-

shift ambiguities can be constructed. Moreover some pecularities of these

ambiguities can be noticed.

(i) In the allowed parameter region from the equations (3-10) and (3-16)

Iα. I and <f>
T
 _ are known. By iteration (see (3-11) ) the arguments $ of

a can be calculated. Then the coefficients ? are given by (3-5) and the

two amplitudes F(x) and F'(x) are determined by (1.1) and (1.U).

At the boundary |z| = 1 of the parameter interval all the expressions

simplify:

)

2 Re (1-z) (it.1)

8. = 0,2,4, ,L-« . (4.2)

For the amplitude we get

F(x) = - - j — - ((a
o
-i) • P' (x) - P'(x)) . (̂ .3)

(ii) From the last equation (U.3) we notice that the amplitude becomes

infinite for L-*••». This occurs for all values of x= cos Q. In realistic

situations, however, the amplitude is an analytic function in some

ellipse. Therefore the different amplitudes constructed here do not

elucidate the real situation, because they are divergent for L->•<».

(iii) For even L and for all values of |z| the differences of the phase-shifts

6 -6' are equal for «. = 0,2,U,... ,L-2, and similarly for X, = 1,3,5,...,

L-1, whereas 6 = -6'.

For ]zI = 1 we even have:

6
0
 = 6

2
 = ... =

6\ — 63= ... =

Similar results, but slightly different, hold for odd L.
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Fig. 1. The phase-shifts 6. (solid line) and 6' (dashed line) for the

allowed range of |a|-values in the case L=k.
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(iv) In contrast to the known examples in the case Ir=2,3 [1] the two sets of

phase-shift do not form a closed curve (mod jr) in an LM dimensional real

space, since not all 6 and 6' become equal at the boundary points of

the IzI-interval.
In the next section we shall show, that the curves constructed here,

will intersect curves that correspond to different ambiguities-. One

of these curves will nonetheless be closed.

(v) Finally at the boundary point |z| = 1 all the coefficients o , £ < L-2,

will have the same argument. Therefore in this point the staircase

ambiguity is a special case of the representation in which all the a ,

S, < L-2 are complex numbers with the same argument.

Many of the properties mentioned here are illustrated for the case \j=h in

figure 1.

5. On the intersection of curves

In the previous section we showed that it is possible to construct a

phase-shift ambiguity for arbitrary L. This ambiguity was obtained by choosing

a particular representation for the coefficients t, and it was called the

staircase ambiguity. The phase-shifts 6 and 6' both appeared to depend on

only one parameter |z|. Thus both sets ( 6 Q > 6 I , — , 6 L ) and (6Q,ÖI,...,6')

form two curves in a L+1-dimensional real space, when |z| varies in some

interval. All the ambiguities, which were found for the case L=2,3 [1],

have the property that at the endpoints of this interval for all $.: <5 = 6*.

In such a case the two curves defined by the sets {& } and {6'} form one

closed curve (mod ir). In contrast to the ambiguities for L=2,3, the

examples constructed here, do not have this property. For the staircase

ambiguity we find a pair of curves that will not form one closed curve.

It is, however, possible that this pair of curves will intersect different

pairs of curves of which at least one will form a closed curve. In fact it is

suggested that this may happen, because for |z| = 1 the arguments of the

coefficients a. become equal. A different ambiguity that can be constructed

by choosing a complex for A < L-2 and a, - = 0, also has the property that

the coefficients a. all have the sane argument. Therefore in jz| = 1 the

staircase ambiguity is a special case of the former kind of ambiguity and

the corresponding two pairs of curves probably intersect each other in |z | = 1.

In this section we shall answer the question whether the curves defined



by the staircase ambiguity will intersect curves corresponding to different

ambiguities. We shall also consider the question, which of these curves are

closed (mod TT). We restrict ourselves to the case of even L and h> k.

The representations in which we are interested can be obtained by replacing

in the staircase diagram the subdiagram

means that in the staircase representation we choose ac

zero. Therefore a_

"la toy t h e subdiagram |a
2k+1. This

complex instead of
2k+1

and ao. will have the same argument. This substitution

can be performed for all a_, , except for aT . In this way 2s different

representations, including the staircase representation, are obtained.

We shall show that in a half-open interval 1-e < |z| < 1, each of these

representations defines two sets of phase-shifts (60,6j, ,6^) and

(ög,6j,...,6'), both giving the same differential cross section and depending

on only one parameter | z |. Then we will demonstrate that all the curves

defined by these sets {&„} and {61} will intersect the curves belonging to the

staircase ambiguity in |z| = 1.

For any L-value, we also find only one representation that gives two sets

of phase-shifts which may become equal (mod ir) at the endpoints of their

parameter interval. All the other ambiguities will give curves -that are not

closed.

Below we list for the cases L=4,6,8 the ambiguities that intersect each

other in |z| = 1.

c

Ï

S {

L=6

L=8

1 J.
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In particular it can be proved, that the representation, given by β-r,
 =
 °

o. complex, for all ï.<L-2, defines an ambiguity for 1-e < |z| < 1+e.

Moreover this ambiguity forms a closed curve, e.g. the two curves defined by

the sets {6.} and {6'} become equal (mod u) at the endpoints of the

corresponding |z|-interval.

In order to prove the existence of the ambiguities discussed above, in a

neighbourhood of |z| = 1, we shall apply the implicit function theorem.

Implicit flotation theorem:

Let U be an open subset of E 2 and let F(x,y) be continuously differentiate

with respect to x and y on U. If for (xQ,yo)GU F(xo,yo) = 0, and

— F(xo,yo) f 0, then there exist an e>0 such that for xg-e < x < Xg+e

we have a continuously differentiable function y = f(x) with the following

properties:

(i) yo = y(xo).

(ii) F(x,f(x)) = 0 for all x: xo-e < x < xo+e,
F

(iü) the derivative f' of _' is given by f'(x) = - •=— .
Fy

Instead of studying all possible kinds of 2 s representations, it is

sufficient to apply this theorem to only one, rather general, kind of

representation. Let L be even and L>i+. Let kg and &Q be odd numbers

satisfying L-1 > k^ > IQ > 1. Then we shall investigate the following

modification of the staircase representation: a. .. ,a, _, ,a. ., are complex.
K.Q-1 K-Q—d X.0 + 1

(The case, where k(j = L-1 and £Q+1 = 0, will be discussed in more detail at

the end of this section.)

Consequently, as was noticed before, all these coefficients will have the

same arguments, e.g.

We noticed that the staircase representation also has this property in |z| = 1.

Therefore, for |z| = 1, the staircase ambiguity is a special case of some of

these modified staircase ambiguities. We shall show this in more detail below.

The representation under consideration can be characterized with the

following diagram:

k2
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aO

It is convenient to introduce the numbers

; C% = U \ = 2ÏÏÏ ' (5-2

Imposing unitarity, e.g. |? | = |?'| = 1 , we distinguish between the cases

A SL > ko+1 .

Case A: The unitarity constraints in this case will be called the staircase

equations, since this part of the representations equals exactly the staircase

representation. Because these equations have been studied before we only list the

results
e l n , i. even , (5-3)1-z

- 1
, I odd , (5.1

v.

Re(i-z) = 1-x = \cT ,

z
1-z

1-z

Case B: In this case we have for the coefficients ? :

where $ is the argument of a. ., a 2, ..., a, +. .

(5.5)

(5.6

(5.7)

1*3



i
• t

Obviously we have: |c (x)| = |e (z*)|

-•'•? define:

1-z

Then we get from (5-7) and (5.8)

= h-zl (b JJ + c _ zy ) ei*

The coefficients must also obey: \x,.\ = 1.

From this constraint it follows that

where E = ± 1.

The choice e. = (-1)* , (i.e. e. = -1)

(5-8)

(5-9)

(5.10)

(5.11)

guarantees, as we shall see, that this representation equals the staircase

representation in |z| = 1.

Introducing the parameter t = |z| 2, the coefficients u are given by

for SL = IQ+1, X.Q+2,. .. ,ko-1,

and with

(5.13)

Case C:

In this case we get from the unitarity constraints relations for

1-z
When we use from (5.5) |«k + 1| = j<^ _1| = , we get:

t 2 -

cos(<(i.
ko+1

,) =
0 o-1

2b, c,
=! Cj(t) , (5.11»)

(5.15)

«•0

Of course in aecceptable cases the functions Cj(t) and C2(t) must obey

|cz(t)| < 1 .
(5.16)

kk



Next we study the equations (5.12) and (5.13) in more detail. If all the

square root parts in (5-12) are well defined, it is possible to express

successively, starting with i. = £0+1» every y , SL = J.Q+2,...,ko in terms of

only two variables v = v. 1 and t = |z|
2. t.v

Moreover the y,(y,t) are then differentiable functions with respect to Jf-

both p and t. Furthermore we must have p. (p,t) = 0 according to the choice Ï-
0 . . &

of the representation. From this equation one can, at least in principle, i-

obtain y as a function of t. In general this cannot be done explicitly. As *,-

will be shown below, one can solve p as a function of t from (5.13) only in ^

a neighbourhood of t=1, by applying the implicit function theorem.

However, due to the choice (5.11), and by using an induction argument, ;iv

it can easily be proved that, if p = t= 1,
I

0, 8, = ao+2, lo+h ..., ko-2, k0 ?
(5.17)

.., ko-3

',:• More explicitly, in order to prove that all the coefficients p ,

1 • . .
i- ' including y, are continuously differentiable functions of t on some neighbour-

hood of t=1, we study equation (5.12) successsively for SL - Jto+1, AQ+2, ,

k(j-1. From the first equation, J, = X,Q+1, we solve \t - as a continuously

; differentiable function of u and t. From the second one, I = Ao+2, we find

as a continuously differentiable function of y _, p and t. Since

depends only on u and t, vi. ._ also does, and, moreover it is

continuously differentiable with respect to these variables.

By studying all the equations (5-12) up to X. = ko~1> w e finally can

solve |j as a function of u and t alone.

Since in the representation under consideration we choose ot = o we still

have to put w, = 0 (5>13). From this equation it is, at least in principle,

possible to obtain u as a function of t. In fact, however, this problemturns out to be too complicated. Because, p. = 0 , for u = t = 1 , we shall j
K0

/

p. = 0 for u = t=1 we shallK0

instead apply the implicit function theorem. By using this theorem we shall

demonstrate that an e>0 exist, such that for 1-e < t < 1+e v = y(t) is a

continuously differentiable function of t and that also u. = u. (u(t),t)
^o ko

for these t-values.
According to this theorem we have to show that the partial derivative

ft
-r- Uĵ  (u,t) does not vanish for y = t= 1. In order to prove this we study
again the equation (5-12). Obviously this equation gives in a natural way a

relation between the partial derivatives T - M.(M,t).
w 3u.

If y = t = 1, the partial derivatives h. satisfy for £= to+2>..-, k



ï~ tr
even

Z odd

(5.18)

For I = 2>0+2, X.0+3,...ko>
 v e define the real numbers a.:

even; = 1

(5.19)

From this definition, and from equation (3.18) the following inequalities for

the a. can easily be proved:
X,

•a. , = 1 . (5.20)

Proof

This statement can fce proved by induction.

(i) S.= A0+1.

From equat ion (5-18)

x x

According to the definition (5-19):

( i i) a= H+2.

From ( 5 - I β ) we g e t :

C
£

0 +
2

Sμ Sμ

According to the definition (5«
1
9):

Jlo+3
= 1 .



%
since X+2 + c = 1

(iii) By repeating this argument for IQ+3 < A < kg we get

* ViSuppose we proved > 1 , then consequently > 1 and the
aSL~ aeinequality (5.20) is proved.

In particular for % = kg we have:

the derivatives -TT- (t) in t=1.
CL*C

Again equation (5-12) gives in a natural way relations between the partial

r

5V

(5'22) ;"'

Then from the implicit function theorem it follows immediately: there exist a \]

real e>0, such that u = jj(t) is a continuously differentiatie function of t , }_

if \

1-e < t < 1+E , (5-23) r:

and, moreover: y (v(t),t) = 0 . '
0 ••

This last statement (5.23) shows, that a solution of (5.12) exists not only

in t=1, hut also in some open neighbourhood of t=1. >'{
f."

In order to show the existence of an ambiguity, defined by the

representation under consideration we still have to verify, whether the

constraints (5-16) from case C^ are satisfied. Due to the constraints from tf

case A it only makes sense to consider t-values in the half open interval

(1—e,1]- It was mentioned that for t=1 both cj(t) and C2(t) equal 1. There-

fore we have to determine whether these functions are less than 1 and greater

than -1 for t-values in (1-E,1].

We shall prove this by showing that the Cj(t) and c2(t) are increasing

functions of t for t=1. Because the derivatives of these functions with
&V9

respect to t are determined by the derivatives -rp (t), we shall first study



fe

derivatives -rr— (u,t) for X, = X.Q+2,. .. ,ko and p=t=1

at cn 3t

x -rr- I even
ot

odd

whereas

at

For SL = JLQ+1, J-o+2,... ,ko ve define the r e a l numbers p

lodd -

even (5.25)

P„ ̂ .1 = 0 •

Then from (5.2^) and (5.25) we obtain the following set of inequalities:

pk > pk„ 1 > *'• > p»-^o > 1; P..i.i = 0 • (5-26)

Proof

(i)

(ii)

From (5.2^)

x,0+i at

According to

ViP*0« =

l.= X.o+2.

From (5-2^)

V at

the definition

1 - p*0+2 -
 bi

h 7

(5.25):

-1

V
at + CSL0+2 at = x at

and by using definition (5.25) we find



= 1 .
£0

+2

Since *>Zg+2
 < 1> w e h a v e P» ^ / P » . ^ > 1-

( i i i ) In general we can prove: for S.Q+3 < £ < k0

Consequently

'£+1

* P.
+ c

* P«
> 1 .

(5-27)

> 1 . Since b + c = 1 andSuppose it has been proved that -
n P n t

pn ./p„ < 1, we find —&±1 > 1 , " and the inequality (5-26) is
x.-^ Jt p

proved.

Now we shall study the total derivatives — for £

Of course we have

d^ _ /^\/dP\ ^

dt \ 3p AdV 3 t (5.28)

According to the definitions (5.19) and (5.25) for u=t=1 these total

xpr<

-1

derivatives can be expressed in terms of the numbers a and p :

x" (aa-y'(t)|t=1 + p j , I odd ,

(5-29)

, £ even •

In particular for £=k« we must impose p = 0 for all t, because in our
«O

representation we have a. = 0 . This in turn implies
K0

dt
(t) = 0, for 1-e < t < 1+e . (5.30)

Therefore equations (5.29) for £=k0 and (5-30) imply:

Proposition 1.

For £ = £()+1,£o+2 kg» the coefficients u. are continuously differentiable

functions of t for 1-e < t < 1+e. Their derivatives with respect to t at t=1

are given by



< o , for I = Jlo+1,

An

O

( 0
P - ~ — — Q

o d d »

even«

(5.3T)

-IJ

All these derivatives can be proved to be less than zero. In order to show

this, we use the following lemma:

Lemma: The coefficients p. and a. satisfy the following inequality:

Pj O

—— > -~ I = fc+3 (5.32)

Proof: by induction.

It was shown that the p and a for ao+3 < ü < k are given by

(5.27)

(5.21)

Therefore we find:

(i)

SinCe

"i0+2

And consequently

1s

< 0 .

> 0

l>0,

( i i ) For some fixed n, JIQ+3 < n < k0 we have
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n \ o Ö / nV p o J ~
x *n n ' x n n '

Suppose t h e lemma i s proved f o r SLQ+3 < $• < n:

pn an „ ^ pn-1 an-1
> 0 then - ^ - - ^ < 0 ,

p . o , p o
Kn-1 n-1 n n

and consequently - > 0 .
pn °n

Thus the lemma is proved.

The following proposition is an obvious consequence of the last lemma and

proposition 1.

Proposition 2.

For all i. = £o+1> &o+2>'••»k0 ' t n e total derivatives — - (t) satisfy in t=1

-jjT (1) < 0 . (5.33)

Proof: From (5-31) one can see that it is sufficient to show that

Po - ao 7,— < °> f o r * =

For Jl < k0, we have, according to the lemma

, therefore:

ak0-1 p p pk0-1 p
= ^ = _JL_

°k0 V i V 2 " " % ' V i PJl+2 ' " pk0 " pk0

From this we get p. - p < 0 . •
*• k° ak 0

Finally, we must consider the constraints (5-16) from case (?.

|ci(t)| < 1 and |c2(t)| < 1.

It was noticed, that for t=1

cj(t) = c2(t) = 1.
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From the expressions (5«1^) and (5.15) for cj(t) and C2(t), it easily can

"be proved that:

dTC2(t)|t=i = \~~T~ ' ft (t)|t=i

(5.3H)

Moreover the two curves associated with this ambiguity, intersect the

pair of curves defined by the staircase ambiguity at t=1.

(ii) In fact this can also be proved for different modifications of the

staircase representation by using similar arguments. In this way

2s ambiguities, including the staircase ambiguity, are obtained.

(iii) The representation, defined by a. .. = 0, and o complex for I < L-2,

needs special attention.

Modulus invariance:

IcJ = kil
and unitarity

imply in this case

*t~ \i-*\v% e1*, (see (5.8) )

V t + i + C ^J I - I = x t iJi" (~1)fc Ux2-t)vl + 1F ' ( s e e

and

52

t
Because, according to the last proposition, both M' 1 and \i' are less than J

jzero if t=1, we get from (5-3*0: jj.

£ cx(t)|t=1 > 0 and 4 c2(t)|t=1 > 0 . (5-35)

Since ci(t)| , = c2(t)| . = 1 ,

we obviously have:

there exist a 6>0 such that, if 1-6 < t < 1: (5.36)

|cj(t)| < 1 and |cz(t)| < 1 .

Summarizing we conclude:

(i) An e>0 exists, for which the representation under consideration gives

San ambiguity, if 1-e < t < 1 .



C O S <J>

(iv)

One eas i ly shows t h a t , i f | z | 2 = t = 1

I c o s <|>| < 1 .

(5.37)

(5.38)

Since cos <(> is a continuous function of t, this inequality will also be

satisfied in a neighbourhood of t=1.

There exist an e > 0 , such that

|cos 4>| < 1, for 1-e < t < 1+e . (5.39)

Because the square root parts in (5.12) are well defined in a neighbour-

hood of t=1, this representation gives an ambiguity for a 1-e < t < 1+e.

In this case t=1 is not an endpoint of the ambiguity. Such an endpoint

is determined in this case by the following types of conditions.

(a) cos <|> = +1, or (5-^0)

t = x2 = (Re z) 2. (5.M)

(b) (x2-t)v2 + 1 = 0 , and
Jo

In the first case either the a^ all become real (if cos $ = ±1), or z

becomes real, (if |z[ = Re z). Then all the phase-shifts 6. and 5J are
Xt Xr

equal (mod IT) and both sets (&„} and (S'} will form one closed curve.

In all other representations, with o. = 0 for at least two £-values,

this situation does not occur. Therefore the sets {6.} and (6J) do not
Xt At

form one closed curve.

However, if only OL. .. = 0, it is not a priori clear, whether we get a

closed curve. Since we have also the second type of condition (5-^2),

it is also possible that this constraint determines both end points of

the ambiguity. A closed curve will only occur, if the inequality (5.U0)

or (5-^1) is more restrictive than (5.^2).

In a straightforward way one can generalize these results for L odd.

Instead of the staircase representation we must modify then the

representation, discussed in section 3 (B).

I
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CHAPTER IV

PHASE-SHIFT AMBIGUITIES FOR SPIN-0 - SPIN-s ELASTIC SCATTERING

1. Introduction

In this chapter we discuss the scattering of spinless particles and spin-i

particles at energies below the first inelastic threshold.

As was mentioned hefore, more experimental observahles besides the

differential cross section -gr can be measured, when spin is involved. Such

a quantity is for instance the recoil polarization P of the spin-g particle.

As is well known, these experimental quanties can be specified by two

complex valued functions f(6) and g(ö), 0 < e < ir

| + fg(e}[2 =H|f(e) + g(e)|2 + |f(e) - g(e)|2} (1.1)

*
r ( 0 ) _ 2Ref(e) g(e) = lf(e) + g(e)[2 - |f(e)-g(e)[2 (1 2 )

|f(e)|2+|g(e)|
2 |f(e) + g(e)|2 + |f(e)-g(e)|2

In principle we have the following partial wave decomposition for f(9) and

g(e):

f(e) = I (U+i)f + if )P (cos 6)

1 0 (1.3)
00 dP.(cos e)

where the f are the partial wave amplitudes corresponding with orbital

angular momentum % and total angular momentum t f 5 .

In practical phase-shift analysis, however, one approximates the functions

f(e) and g(e) by

L

f(e) = I (U+Of.+ - it. )P.(COS e) (1.U)

dP (cos e)g(e) = i £ ( V - f a ) s i n e P (

In this case of purely elastic scattering the partial wave amplitudes f

are given by
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2 i

where,according to the unitarity constraints, the parameters 6_+ are real.

i Using the implications of unitarity our problem can be stated as follows:

j Is it possible to construct for arbitrary L different sets of phase-shifts

I (ö|j'^ +s...,6 +) and (6J,6' ,...,6' ) giving the same, differential cross

section and polarization?

It should be mentioned that, due to the optical theorem, Im f(o) is

connected with the total cross section, according to:

(1.7)

. ' From (1.1) and (1.2) it follows that cross section and polarization do not

% change when 6 are changed into ó' , if and only if |f(8) + g(6)| and

* |f(6) - g(e)| do not transform.

Moreover f(9) + g(9) and f(6) - g(6) are simply connected by

r.i f(e) - g(e) = f(-e) + g(-e) (1.8)

>"-• Therefore, as was first observed by Gersten [1], knowledge of •— and P is

equivalent to knowledge of |f(e) + g(e)| .

We follow Gersten by introducing the new variable

.: t = tan § 6 . (1.9)

Therefore:

...! 2t 1-t2

., sin e = o a n d c o s e = 1 j.j-2 • (1.10)

In terms of this new variable t, the expression

G(t) = f(t) + g(t) (1.11)

V-" turns out to be a rational function of t:

J'?- f(0) 2L

nT v ' T
h (i+t2r k=i

Prom this expression we can easily find all the transformations that leave

G(t) invariant. By means of these transformations we can in principle

construct all different ambiguities for any L. We can indicate the three

different classes of transformations:

(i) S:Bef(O) +-Bef(O) . (1.13)

Recall that Im f(0) is determined by an experiment, since it is related

to o t o t (see (1.7) )•

56



(ii) V z k . z * ; (l'iU>

(iii) A special case of (ii) occurs, when G(t) has pairs of roots +i, and -i.

In this case the value of L changes. If one of these roots (either +i

or -i) is conjugated

R± : ±i •* Ti , (1.15)

G (t) changes into G , (t), L'=L+1, according to

GL,(t) = e
± i 6 GL(t) . (1.16)

In terms of the partial waves this transformation is given by the

following relations.

In case R= R+,

) J '
(1.17)

As one can easily verify, this change of the partial waves correspond

to successsive application of the Yang and the Minami transformations, '

both mentioned in section h of chapter II. ;-•
r

In case R = R , '_

(1.18)

It can be shown that this case is equivalent to successsive application

of the Minami and the Yang transformation.

It should also be noted that repeated application of either R or R , in

case more pairs of roots ±i of G(t) occur, will increase the number of

partial waves of the transformed amplitudes f'(t) and g'(t).

Of course also combinations of the three different types of transformation

are allowed.

Since differential cross section and polarization in terms of G(t) are

given by

and
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g ( | 2 - |G(_t)|2) , (1.20) f'

• • • I
it is obvious that both observables remain unchanged, when one of the 'J^
transformations (i), (ii), (iii) or a combination of them is performed.

2L
Such a combination is for instance S n T, . Under this transformation

k=1 k

the amplitudes f(e) and g(Ö) change according to ,.".

f(e) =-f(e)* and g'(e) =-g(e)* , (1.21) \

If we combine this transformation with a class (iii) type transformation J~

G_,(t) = e" i 9G T(t) (see (1.16) ) , £'

we get the modified Minami-ambiguity (section k, chapter II). This ambiguity -j

B
is defined by the following transformation property of the amplitudes:

f(e) = -cos e«f(e)* + i sin e • g(e)* , |r

I g'(e) = -cos e«g(e) + + i sin e • f(e)* . (1.22) |-

i" ' In terms of the partial vaves this gives •"

' f i * ( 1 2 3> IIn the remaining part of this chapter we exclude the special case of \

pairs of roots +i of G(t). Therefore we shall only consider the \

transformations of class (i) and (ii). 'i.

In principle all different sets of partial waves £ and cj + can be t

constructed. First one has to establish the connection between the quantities f

r , the roots z, and the forward amplitude f(0).

A different set of partial waves ?' can then be found by performing one

of the transformations of class (i) and (ii) or by a combination of them.

Both sets will give the same differential cross section and polarization.

Due to elastic unitarity, the quantities 5 and c' must also obey:

In the next section we shall show that ambiguities can he constructed

according to this program. In particular we shall construct ambiguities that
2L

arise from the transformation T = UT. .
' J k=1
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2. Existence and construction of ambiguities

In the previous section we have seen how in principle different amplitudes f

f(6) and g(9) can be constructed, both giving the same differential cross ~v

section and polarization. It was also stressed there that we shall restrict

ourselves to transformations that do not change the number of partial waves.

In this section we discuss one particular transformation

2L !
T = n T . (2.1) V:

k=1 K

This transformation changes f(6) and g(e) into f'(0) and g'(8) such that ^

|f(e) + g(e)j = |f(e) + g'(e)| . (2.2) \

We want also to express the partial wave amplitudes f in terms of quantities, -

related to the roots z15z2,...,z„L of f(6) + g(6), in order to be able to

write down the transformed amplitudes explicitly.

It is easy to see that the set of amplitudes (f(6),g(6)) transforms |

under T into a different set (f'(6),g'(8)) according to

fl(9) = f(o)_ f ( e )* t gI(e) = fLoL g (e)* . (2.3)
f(o) f(o)

Defining new coefficients

A = f(0) ,

&l = A ((il+i)f<t+ + lttJ for * - ° • (2-U)

\ = t (f»+ - f J for £ > 1 ,

we get much simpler expressions for the amplitudes:

L
f(e) = A I a P (cos 6) ,

d=0 l * (2.5) f
L dP (cos e) t-

I
P (

g(6) = A I b sin e —
Jl=1 d cos e

From (2.3) we see that the coefficients a. and b. transform under T according

to

From the definitions (1.6) and (2.U) we can express the coefficients £«. in

terms of a. and b.:

• 1
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'V - I
and (2.7)

 {
3

as can be seen from (2.5) by putting 6=0 the coefficients a satisfy

I a^ = 1 . (2.8)

Our problem can now be stated as follows:

The coefficients £.
+
 are given by (2.7). The substitution (2.6) transform

t, into c ' = C
0
.(a*,b*). Both sets give still the same differential cross

section and polarization. Then we have to find coefficients a, and b. such

that for all I:

and (2.9)

• x._
j

Using the expressions (2.7) for the coefficients C„
+
» one easily derives from

the unitarity constraints (2.9) a set of conditions in terms of the quantities

A, a and b . Defining

A = X + iY , (2.10)

we get for each Si:

Xlm &% = 0 , (2.11)

Imb A ( |A | 2 Re a^ - i(2Jl+1)Y) - | A | 2 TΜ a^ Re b^ = 0 , (2.12)

| A | 2 | b J 2 - (22+i)XBebt = 0 , (2.13)

l A | 2 ( l a j j | 2 + * U + i ) | b A | 2 ) - (2H+i)YReaJl = 0 . (2.U)

The possible ambiguities can be classified as follows:
j

A. X=0

From (2.12), (2.13) and (2.1U) we get for each I :

\ = 0 ,

a
t
 = |aje * , with (2.15)

cos

2.'
Y

* i. 2M-1 ^V •

Of course | cos i|>„ | < 1 implies
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( 2- l 6 )

Since b =0 for each H, we get, according to (2.7):

which in turn implies that the polarization P vanishes. Moreover changing

a. into a0 corresponds in this case to the trivial ambiguity,'where 6! = -6J.

Therefore this possibility is not of any interest for us and it will be

omitted in the rest of this section.

The remaining possible classes of ambiguities are then

il. X^O, a real

This condition gives four different classes of ambiguities, which result

from the remaining set of equations (2.12), (2.13) and (2.i^). In all

these cases a. and b. will be parametrized in terms of X and s=Y/X.

Case 1: b complex

Defining

we get

cos <(. = — S , (2.18)

Obviously the condition |cos 4>. | < 1 implies

(2.19)

Case 2: b real

In t h i s case we find:

211+1
bl ' X(1+sz) '

(2.20)

Here a will be well defined, if:

6l



This case consists of two subclasses according to the ± sign in a..

"J
•i i Finally we have two subclasses according to the choice b =0.

Case

Case

3:

4:

b

b

I = (

. = a.

24+1

= 0 .

s
X(1+s2)

(2.22)

(2.23)

We see that only in the first two cases we have restrictions on the

possible values s can take. Moreover we observe that for any it-values the

two cases 1 and 2 become equivalent, if s = 2 / 2(it+1). At this value of s

all the parameters a , b. and <f0
 a r e the same, in particular $„=0.

Xr Xl Xr " iL

An ambiguity can be obtained by choosing one of the four possibilities,

successively for each u=0,1,...,L. We shall specify any ambiguity by a row

of L+1 numbers (nn,ni,...,nT). For each H n. = either 1, ±2, 3 or k,
XJ X,

according to the choice of the possibility one has made in the Jl-th step.

Here we denote the two subclasses of case 2 by the ± sign.

Not every row, however, will give an ambiguity. Several restrictions

determine all the possible allowed rows. We list these restrictions below.

(i) In order to ensure that the transformation T is not the identity, at

least one of the coefficients a. or b has to be complex. Therfore:
n0 = 1 for at least one fc-value . {2.2k)

(ii) Because for l=0 we have bg = O, we have

n0 equals either 3 or h. (2.25)

(iii) For different J. and k we have the possibility n, = 1; rL =+2. In both

cases s has to satisfy different constraints (see (2.19) and (2.21) ),

which have to be compatible with each other. Therefore:

If for some i,k (J#k) n = 1 and tu =+2, then k<£ . (2.26)

Keeping these restrictions in mind all the different ambiguities, due to

conjugation T of all the roots, can be obtained. Thus we can list the

possible forms which ? can take.
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Case 1: e = •γ^r-

(2.27)

Here the change t>. -»• b
0
 is expressed by the ± sign; the upper sign

corresponds to £ , whereas the lower sign corresponds to c' .

(2.28)

Here the ± sign corresponds to the two subclasses n = ±2.
36

Again it should be noticed here, that for any Z case 1 and 2 are equivalent if

s = 2/jl(Jt.+1). In

for this s-value.

s = 2/jl(Jt.+1). In particular we observe that in case 1 we have also C^
+
 = £'

C,
+
 = C'

+
 = 1 . (2.30) jt;

.1

Notice that all these expressions depend on one single parameter s only. ;

The remaining equation (2.8) is automatically satisfied, as one can easily f—,
t

show. By using this equation one is able to determine X as a function of s. 'r

In the following s is assumed to be positive. Exactly the same results can [*
p

be obtained for negative s-values. Obviously Y is positive, since it \.

determines the total cross section. Therefore positivity of s implies

positivity of X.

Thus all possible ambiguities due to transformation T have been

constructed for arbitrary L. It is clear that the number of different

ambiguities becomes larger with increasing L. In case L=1, we find two

different representations, according to the rules (2.2M, (2.25) and (2.26).

For Jl=0, ng equals either 3 or h and for J,=1, the only possibility is nj=1.

Therefore the two possible representations for the L=1 case can be

represented by the rows (3»1) and (k,i). These examples were already

constructed by Berends and Ruijsenaars [ 2 ].

As was observed before this coefficients ?.
+
 and the transformed ones

C' are analytical expressions in terms of only one parameter s. Consequently t^

the two sets of phase-shifts (6
n
,6..,..., 6

T
.) and (6' 6' ,..., 6

T
.) form both
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a curve in a 2L+1-dimensional real space. However, in contrast to the

examples discussed in [2 J, these pairs of curves do not necessarily form

one closed curve (mod ir).

In the next section the endpoints of the different representations will be

determined. There we shall show that some of these curves are not closed

(mod it ) in these endpoints. Moreover it will be shown that all the

ambiguities, constructed here, are connected with each other. In fact each

ambiguity appears to belong to some chain of connected ambiguities. Such a

chain of ambiguities again forms a curve which is closed ( mod v ).

3- Chains of ambiguities

In the previous section it was shown that all the ambiguities, due to the

transformation T, conjugation of all the roots of G(t), can be constructed.

For all I the different phase-shifts 6 and 6' are functions of only one

real-parameter s. We noticed also in the last section that the two sets of

phase-shifts did not necessarily become equal (mod JT) at the endpoints of the

corresponding parameter interval.

In this section we shall study this pecularity in more detail. Some

rules are given, in order to determine the endpoints of the various

parameter intervals, for which the different ambiguities are defined. These

points will be called "endpoints of an ambiguity". It will be discussed too,

whether the different sets of phase-shifts {̂ j,} and {ó' } will become equal

in these endpoints. As we shall see, the following pattern will be observed.

There exists an ambiguity of which the different sets of phase-shifts are

equal at its first endpoint s=0. If at its second endpoint s^ this is not the

case, a second ambiguity can be found that is continuously connected to the

first. The different sets of phase-shifts of this second ambiguity may differ :i

in its second endpoint S2- In this case a third ambiguity appears to be •_ }

connected to the second one, and so on. f-

Continuing in this way one finally will obtain an ambiguity where the sets """•*•'

{6 } and [&' } become equal at its final endpoint Sj,, as is illustrated by

fig. 2.
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Fig. 2. The general pattern of a chain of ambiguities in terms

of 6 (solid line) and 61 (dashed line).

Thus a so-called chain of ambiguities is obtained. All these ambiguities are

successively connected in their endpoints in a continuous way. To this chain

correspond two different sets {&*+} and {<5J+} of phase-shifts which become

equal at the first endpoint s=0 of the first ambiguity and at the second end-

point s=s of the last ambiguity.

We first list the different rules, by which the endpoints of the various

ambiguities can be determined. As was noticed before an ambiguity can be

specified by some n-tuple (n.,n ,...,n ).. It was also shown that only a
u 1 Jj

choice n=1 or ± 2 gives rise to constraints on the allowed parameter values,x>
(a1) If for some I no=1» w e have according to (2.19) an upper bound

I

If an ambiguity is characterized by n=1 for more than one «.-value, this

ambiguity has an upper endpoint

, (3.1)s =
where i> j is the lowest £-value, for which n = 1 holds.

Kt

(a2) If for some d-value n =±2, we get according to (3.1) a lower bound for
x>

the allowed t-values e.g. s > s . = 2/Jt(£+1). If an ambiguity is

specified by a choice n =±2 for different H-values, then this ambiguity



ambiguity has a lower endpoint

s = 2/Jl2(£2+i) i (3.2)
11

where Ho is t n e highest Jl-value, for which we have n =±2.

1 ̂  (a3) If no n =±2 case occurs in an ambiguity it has a lower endpoint

s=0. (3.3)

For instance the possible ambiguities, starting with n =3, are in the

case

(3,1,1), which is defined for 0 < s <

(3, 2,1), which is defined for 2^2 < s < 2/6" ,

(3,3,1), which is defined for 0 < s < 2/S .

As a next step we investigate whether different sets of phase-shifts

become equal in the endpoints discussed above.

(b1) Suppose for some Jl n = 1 . As we noticed before we have 5 , = Cj., only
Jo x— X>£

if the parameter value s = 2/n(x+1).

Therefore, if an ambiguity has n=1 for only one Jl-value, both sets of

partial waves (c„,C,.,.••,CT. ) and (cl,C!. ,... , l^) become equal at
I) 1Ï XJ— U 1 1 Li—

the upper endpoint s = 2/Jo (Jl+1) of the parameter interval.

An ambiguity which has n =2 for different Jl-values will not have this

property anymore.
(b2) If an ambiguity contains no n =2 type partial waves then both sets

(?n»C, J.»- • • »Cm.) and (?',?',... ,c' ) are equal only at the lower end-
0 1 — J0Ï U i X lj_

point s=0.

We illustrate these two rules for the L=2 case. ,-

When we consider, for instance the representation (3,1,1), we have at the

lower endpoint of this ambiguity s=0 C.+ = C j + for all Jo. At the upper

endpoint s = 2»^, however, we have Z2+£ ?2+' ^

- The representation (3,±2,1) has two endpoints s = 2>/2~ and s = 2V*6". Here

5 = c' , only if s = 2 ^ . In its lower endpoint s = 2^2~ r + and C' ë

are different. f£

The representation (3,3,1) shows the property ? = c' in both its end- j
JCX At—

points s=0 and s = 2</6. \.

As we showed, the endpoints of all different ambiguities can be determined

in this way. Moreover, we can decide whether or not the two sets {c.+} and

{?' } become equal in these endpoints.

We shall discuss now the way in which the various ambiguities can be
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connected with each other. Consider for some L a representation in which &

is the smallest fc-value for which n = 1 occurs. Then the upper endpoint of

/(2-1+1) , according to rule (a1). Atthe corresponding ambiguity is s =

V It was noted before, that forthis s-value we have also

s = 2/£i(X-2+1) the partial waves corresponding with n =1 and n. =±2 are

equal. Consequently two ambiguities which only differ in the choice of n^

one ambiguity with n =1 and the other with n. =±2 - will be .equal in

s = 2/JÏ]TJ£i+1) . Thus two ambiguities are continuously connected with each

other in such an endpoint.

In this way a chain of ambiguities can be obtained. We shall illustrate

this idea with an example.

Consider for instance the representation given by the L+1 row (3,1,1,..., 1 ).

To this representation corresponds an ambiguity which is defined for

0 < s < 2/2". According to the rules (a3) and (b2) we have SQ+ = 6' (mod ir}

61±=6I± whereas for a l l other fc-valuesat s=0. In s = 2/2 we have 5-= 61

In the same point, s = 2/5^, this ambiguity is connected with two other

ambiguities, given by the L+1-tuple (3,±2,1,...,1). Both ambiguities are

defined for 2^2~ < s < 2/1T . For all s-values these ambiguities have the

property 6Q = <5' , 6
 = ö' • In its upper endpoint s = 2/6 we have also

< 52+ = ö2+' b u t a 1 1 t h e o t n e r phase-shifts 6 and 6' are different, for a>3and 6'

Let us consider one of these two ambiguities, say the one with n =+2. Then

the first ambiguity given by (3,1,1,•••,1) is at s=2/2 continuously connected

with a second ambiguity (3,+2,1,...,1). Of course all partial waves but the

first for i=0,1, maintain the same representation, whereas 6 •* $l+ and

6'1+ •* 6 . By using the same arguments, it can be shown that at s = 2-/6 the

second representation (3,+2,1,1,...,1) is connected with a third one:

(3,+2,-2,1,...,1) or (3,+2,+2,1,...,1). It should be stressed here that these

transitions from one ambiguity to another are continuous, but not necessarily

differentiable. Only transitions 6 ->• 6 and 6' •+ S~ are differentiable.

Continuing in this way the starting representation (3,1,1,...,1) gives

rise to 2 chains, each chain consisting of L different ambiguities which

are continuously connected. Such a chain is for instance:

(3,1,1,...,1); (3,+2,1,...,1); (3,+2,-2,1,...,1 ); ...;

1

Fig. 2 shows the general structure of the way in which L different ambiguities

form a chain.
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-30 h

-60 h

-90h

Fig. 3A and B. The phase-shift «0+
=<5J+ (dashed-dotted line),

6>1± (when
1±

'0+
dashed line), 62± (solid line),

6 + (solid line),

6' (dashed line)

of a chain consisting of two ambiguities. The

± sign according to the choice nj= ±2.
e are narked by a
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2/5 2/\2 2/L(L-1) 2/LÏLÏT)

n2

113

1

t

3 or It

1

1

1

1

•

1

1

1

3or It

±2

1

1

1

•

t

1

1

3 or il

±2

+2

1

1

1

1

1

1

3 or k

±2

• ±2

±2

1

1

±2

1

Table 1. The different possible choices for n are listed for the

allowed range of s-values.

Starting at s=0 the coefficients b.,bo,

become zero for increasing s. Each time when a

,bT , and bT successively will

equals zero (at s = 2/£.(t+1))

we have to choose between either n =+2 or n.=-2. Therefore the starting
L—1

representation (3,1,1,—,1) is the first ambiguity of 2 chains.

If n = 1 , b is complex and we have two phase-shifts & and 61 which are
Jo Xr )L SL

represented by a solid line (<5.) and a dashed line (6')- At the boundary

points s = 2/£(Jt+1) b is zero, and consequently 6.=61• In this point we

notice a continuous transition from the case n =2 into either n =+2 or n =-2.
Xr ]L Xr

The other representations do not change at this point . It should be

stressed that we always have 60=60 (according to the choices nQ=3,U),

whereas for the highest phase-shift we get 6 #6'.

In table 1 the different possible choices for n. are listed for all

possible chains.

Figs. 3A and 3B show two chains of two ambiguities (3,1,1) and (3, 2,1).

These ambiguities are represented by the phase-shifts 6^=6J (dashed dotted),

6 + (solid) and 6' (dashed if 6'?S61+). The solid lines 6 are marked with

a ± sign, according to the choice nj=±2.



U. Discussion and conclusions

In this chapter we discussed techniques by which it is possible to i

construct, at least in principle, all different sets of phase-shift ambiguities L

in the case of elastic spin-0 - spin-5 scattering.

As was pointed out by Gersten, knowledge of the differential cross seciton

and polarization is equivalent with knowledge of some rational function G(t).

It was also shown that a special class of ambiguities could be obtained by r

conjugating one or more roots of G(t).

Here we restricted ourselves to the particular class of ambiguities due to

the conjugation of all the roots of G(t). This transfonnation changed the

partial wave amplitudes f into new amplitudes f' . These coefficients have

also to obey the constraints due to unitarity. By imposing these constraints

the amplitudes were solved in terms of one single parameter s.

Thus all the ambiguities due to complex conjugation of all the roots of

G(t) have been constructed. In a similar way one can, in principle, find

other ambiguities, corresponding to conjugation of an arbitrary number of roots

of G(t).

The class of ambiguities constructed here has some remarkable properties.

First and in contrast to the examples found by Berends and Ruijsenaars, we

noticed that the phase-shifts <S and 6! are not equal (mod TT) at the end-

points of the corresponding ambiguity. However, we showed that it is possible

to indicate a number of L ambiguities, which are continuously connected with

each other at their endpoints. In this way this set of ambiguities together

do form a chain. The most interesting point is probably that at the

remaining endpoints of the first and the last ambiguity the phase-shifts 6 •-

and 6' are equal (mod ir).

Of course, when one only considers S- and P-waves (L=1) one will find •
i

chains consisting of one ambiguity : in this case the concepts of ambiguity ^

and chain are clearly equivalent. ],-•

Secondly, we noticed that the number of different ambiguities and the j-

number of chains increases for higher L-values, even if one considers only li
I

conjugation of all the L+1 roots of G(t). Obviously the number of trans- f-

formations,- leaving the modulus of G(t) invariant, will also increase for ?

higher L-values. Therefore the examples that occur in an actual phase-shift

analysis become probably more numerous. " ;

Finally we mention an important difference between ambiguities in the spin- <•'

less case and in spin-0 - spin-g scattering. In case of spinless elastic t>

scattering it was found that the phase-shifts 6. are uniquely determined, if •'|
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/Jt for all A, j < 7 . In spin-0 - spin-i elastic scattering we don't have such

[ a region of uniqueness. There we solved the partial wave amplitudes f in

i terms of one real parameter s and for same L-value ambiguities were

?j constructed for s2 < 1*L(]>1).

' • However, for s-K) all phase-shifts 6 become zero and consequently

differential cross-section and polarization vanish. Therefore we still can

•; have phase-shift ambiguities for arbitrary small values of all' 6 . This fact

" could be of interest for realistic scattering, since phase-shifts always grow

from zero if the energy increases.
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•"* CHAPTER V

FIELD THEORIES FOR PARTICLES WITH ARBITRARY SPIN

.-si 1. Introduction

As was noticed in the last chapters, extraction of information from

experimental data and translation of this information into theoretically

relevant quantities lead to various kinds of problems. Some of these problems

have been discussed.

j On the other hand one can be concerned with the construction of theories,

which describe particles with a certain mass and spin and from which

.y- experimental quantities can be predicted.

In the following chapters we shall discuss some problems which are connected

,; with the construction of those theories.
K"i \ The various elementary particles and their properties are described within

.;- the framework of quantum field theory. In this theory the physical particles

are associated with so-called operator fields. To each kind of particle there

- j ' corresponds such a field.

j. These fields satisfy differential equations, or field equations, which

•.;: describe the dynamics of such a system of particles. These field equations may

;. i\ contain non-linear terms which give rise to self interactions of the same

{•''•• particles or to interactions between different particles. In absence of these

f ' non-linear terms, there are no interactions. In this case we have a free field

; .. theory, describing free particles.

: In many cases one considers field functions instead of operator fields. One ~i

:'-• ' then speaks of classical fields, satisfying classical field equations. The

•", _•', transition from a classical theory to a quantum field theory is called

-;J-- . quantization. Various quantization procedures are known, and can be found in

-_«-';.-; the textbooks [1] .

;|?S;* , The simplest example of a free classical field is given by $(x) = $(r,t),

*S»,v' and it satisfies the Klein Gordon equation

(o-m2H(x) = 0 , (1.1)

where O = V2- — y .
3t ,'

The general solution of this equation is given by è
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*(x) = ~~TTz \ ~~ ( a ( ï ) elk'X + a*(ï) e" ik*X) (1>2)

ij

where

k>x = -kot + k«r and k0 = 5
2 + m2.

This solution is clearly a superposition of infinitely many plane waves.

After quantization the classical field 4>(x) is replaced by an operator

field <J(x) which describes spinless particles with mass m.

The coefficients a(k) and a*(k) in eq. (1.2) are then also operators,

acting on a Hubert space. They satisfy the following commutation

relations

[a(k), a(£')] = [S*(k), !*(£')] = 0 ,

[a(k), a*(k')] = 6(t-P) . (1.3)

The element |o> of the Hubert space represents the vacuum state. By repeated

application of the operator a*(k), the following set of basis vectors can be

obtained

= fi*(f1)...a*(Jn)|0> , etc. (1.U)= fi

where [k1,...,k > represents a state with n particles with momenta k.,...,k .

Since these states cannot be normalized,they are strictly speaking not

Hubert space vectors. It is, however, not necessary here to use the proper

"smeared-out" version.

From ('\ .h) it can be seen, that the number of particles increases by

repeated application of a (k). From the commutation rules (1.3) it follows

that application of a(k) decreases the number of particles represented by a

state. For this reason the operators a (k) and a(k) are called creation and J*1

annihilation operators. .

In this way one may understand how the operator field $(x) is associated 5T*

with a system of particles. 'i ;

Although we shall only discuss classical fields, it is important to keep .•".

in mind that the coefficients a*(S) and a(k) of the plane wave expansion ',- :

(1.2) create or annihilate the many particle states in the quantum theory. :7 ")

In this example no spin was present. The creation and annihilation jf.'i?

operators only depend on the momentum variable k.

If we consider particles with spin, the coefficients of the plane waves
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must also contain information about the spin. In the corresponding quantum

field theory we then have creation and annihilation operators for particles

with momentum k and a specific spin component along some prescribed direction.

The spin component along the direction of the momentum k is called helicity.

For instance, in the case of massive particles with spin 1, the coefficients

of the plane wave solution consist for each k value of three independent

C coefficients. After quantization they can be combined to creation and

.-' annihilation operators for particles with momentum k and spin components +1,

0 and -1. If the particles are massless., however, the plane wave solution

should have only two coefficients corresponding to the two helicity states ±1.

In the general ease of massive particles with spin s for each k we should

have 2s+l independent coefficients of the plane waves associated with the spin

components s, s-1, s-2, ...9 -s. In case of massless particles there are

always two helicity states ±s, and therefore we should only have two independent

-• coefficients.
; The construction of a theory for interacting particles with arbitrary

spin s can be done by the following four steps:

j 1. Choose a field which describes the particular spin s under consideration.

.'. 2. Construct the free field equation.

3. Construct additional terms in the field equation which are responsible for

interactions between different particles and/or particles of the same kind.

7 k. Use a quantization procedure to obtain a quantum field theory.

In the following we shall discuss only the steps 1 and 2. Moreover we

shall investigate the relation between theories in the massive and massless

case.

In taking the first two steps one is restricted by the following facts:

1. The field equation has to be Lorentz covariant. According to the special

^ theory of relativity physical laws are the same in every inertial system.

Since inertial frames are connected by a Lorentz transformation, the

r' field equation should take the same form after application of such a trans-

:'• formation.

;• 2. Since we consider free fields only the field equation is required to be

$ linear in the field and its derivatives.

l> Moreover we restrict ourselves to field equations which are at most second

'v order differential equations. This is a reasonable restriction since
.--
jv second order wave equations for spin 0 and spin 1 are known to give
f' satisfactory physical theories. We want to treat higher spin field
'<•'•

theories on the same footing.
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3. In case of arbitrary spin the field has to describe more degrees of freedom

then the spinless field <|>(x) (1.2). Therefore we have to deal with fields

which have more components. If the number of components turns out to be

greater than the number of degrees of freedom, the field has to satisfy,

besid.es the field equation, a set of subsidiary conditions. These

subsidiary conditions eliminate the superfluous degrees of freedom of the

field.

In order to satisfy the first requirement we choose for the description of

massive particles with spin s a symmetric tensor field of rank s, * (x).

By using the operator 3 and a we can get a Lorentz covariant field equation.

If it is assumed that $ satisfies the Klein Gordon equation

(α-m
2
)^ ^ (x) = 0 , (1.5)

the requirements 1 and 2 are satisfied and, moreover, the general solution

f ( it\ ik'X * ,t\ -ik«x\ ,, r\
<|> = — — - a (k) e + a (k) e I (1.6)

is again a superposition of plane waves and the relativistic energy momentum

relation

k
2
 = k*

2
+m

2
 (1.7)

0

holds.

Note, that the plane wave coefficients a (k) are complex functions

of k.

However, for the simplest case of spin 1, the corresponding vector field

<j> (x) has more components, h, than required for the three helicity states. In

case of higher spin this problem becomes even more serious. It can be shown

that a symmetric tensor field of rank s in U-dimensional space has ( , )

components, whereas the spin s case only gives rise to 2s+1 helicities.

Therefore we need a set of subsidiary conditions in order to eliminate these

superfluous degrees of freedom. These subsidiary conditions turn out to be

6 .)> (x) = 0

and (1.8)

a 4> (x) = o .
Ul U l P

2
P

The meaning of these conditions can be understood in terms of the

representations of the Poincarê group. We shall show that a field, satisfying
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(1.5) and (1.8) transforms according to an irreducible representation'of the

Poincarê group [2]. All different irreducible representations can be obtained

with the general theory of induced representations [2,3) and they are

characterized by the two quantities m and s. -

Evidently 4> (x) and therefore a carries a representation

of the Poincarê group. We shall show that this representation is irreducible,

if the plane wave coefficients a satisfy the following set of Lorentz T'

covariant subsidiary conditions

v (k) = 0 ,

and (1.9) |.

k.a, (k) = 0 ,
X AP2...Us

which, of course, follows directly from eqs. (1.6) and (1.8). If we restrict ^

ourselves to the proper Lorentz group £Q, the transformation of the k

coefficients a (k) is given by ,̂

a 00 = A . ...A , a,. . (A-1k) , (1.10) f:

where A is an element of JEQ.

For each fixed four-momentum k the elements of £0, leaving k invariant

form a subgroup called the little group, associated with k .

According to the theory of induced representations, the irreducible

unitary representations of the Poincarê group are uniquely determined by the

irreducible unitary representation of its little group [3]. If we choose

k = (0,0,0,im) the corresponding little group is S0(3), the group of

rotations in 3-dimensional space. Thus the question is whether or not

a (k), satisfying conditions (1.9)> carries an irreducible

representation of S0(3). From

kxax (k) = 0

it follows for k = (0,0,0,im)

i; which corresponds to (s_ ) equations. As a consequence of (1.11) the original

S U-dimensional tensor a is reduced to the 3-dimensional a. . with
£, /s+2t "l"'"s Jl'".Js
\ I „ j independent components.

Such a tensor still carries a reducible representation D of S0(3)> Since
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i t contains spin s, s-2, s-U, etc. i t transforms according to

*D(s-2)« . . . «D(0) seven,

~ I D(s)
(1.12)

»D(s-2)« . . . »D(1) s odd,

where D(k) denotes the irreducible representation of dimension 2k+1 of S0(3)>
fc-

However, the second condition (1.9) i..

takes, as a consequence of (1.11), the following form:

a.-. (k) = 0 . (1.13)
JJ*3 *

The last equation (1.13) corresponds with L ) equations. Obviously the number

of ( ) components in a is reduced to 2s+1 by the last („) equations p-

(1.13). s ;.

Moreover it is a well-known fact that a traceless 3-dimensional symmetric ^

rank s tensor is associated with an (2s+1)-dimensional irreducible C

representation of S0(3). .k

All the facts mentioned above can be summarized as follows: The original "

representation (1.10) of the Poincarê groups is irreducible, since, as a j«-

consequence of the subsidiary conditions (1.9) it corresponds to an irreducible |'

representation of its little group S0(3). In configuration space the field I

if) (x) satisfying (1.5) and (1.8) transforms also according to an "

irreducible representation of the Poincarê group.

For completeness we give the field equations plus subsidiary conditions for S

massive particles with half integer spin s+g (s=0,1,2,...). Such particles can -. •

be represented by a symmetric tensor-spinor ty (x) satisfying the Dirac :

equation |"

A A

and the subsidiary conditions r'

The main issue now is, whether it is possible to construct a field equation

for a field $ which is equivalent to (1.5) and (1.9). In order to do

this we shall use the so-called root method which we shall discuss in the next

section.

Once we have such a field equation we require it to follow from a principle

77



of least action. In classical field theory this is a special kind of

•>{ variational principle, which is postulated for a Lagrangian (density) X. The

Lagrangian is a Lorentz invariant expression depending on both the fields 4> (x)

and their partial derivatives 8 $ (x).
]} ID

From the principle of least action the following relativistically

invariant field equations - usually called the Euler-Lagrange equations - are

obtained

3 3JC , 3JC
(1.16)

A more detailed treatment of the least action principle can be found in [1].

For instance the Lagrangian for the spin-0 field reads

Z= I(OU*)
2 +*2*2) (1.17)

In this case it can easily be verified that the Euler-Lagrange equations (I.i6)

give the usual Klein-Gordon equation

(D-m2)4>(x) = 0 . I

Although we get the same field equation as before (1.1), knowledge of the

Lagrangian is valuable for various theoretical considerations like invariances,

quantization and construction of theories with interaction. Therefore it is

useful to construct a field equation which is equivalent to (1.5) and (1.9)

and which is derivable from a Lagrangian.

In the following we shall also check a condition on the propagator. When

a free field equation for arbitrary spin is obtained

0$ = 0 , (1.18)

we can introduce an interaction with an external source t. Then the field

equation becomes an inhomogeneous second order differential equation "

0* = t . (1.19) H

Here 0 denotes a second order differential operator. ^

The propagator is a Green function of eq. (1.19) and can - for our v.

purposes - be defined in a heuristic way as an inverse of 0. The propagator

plays a very important role in quantum field theory; it enables us to ;

calculate the probability amplitudes of the various processes. -i

In particular when the field is coupled to an external source we shall U

consider the amplitude for the exchange of a particle between two sources '̂

tirt, where IT is the propagator. This quantity is required to have only a |
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single pole at the mass and the corresponding residue should be positive

• • definite. This last condition follows from the unitarity of the S-matrix or - é

equivalently - from conservation of probability. ^

In the last chapter we shall study again the amplitude t?rt both in the

massive and in the massless case. There we shall discuss whether or not the

massless amplitude can be obtained from the massive amplitude by taking the

;i- m>0 limit.

\ri The problem of constructing field equations for higher spins was first

considered by Dirac fit] in trying to generalize his well-known spin-! equation.

A field theoretical appoach of this problem was undertaken by Fierz and Pauli

(5J. They tried to get a field equation from a Lagrangian in order to

introduce interactions in a more consistent way. They also noted that in order

to get equations (1.5), (1.8), (1.11) and (1.12) from a Lagrangian one needs,

besides the original tensor field, a set of auxiliary fields. A procedure for

,*• introducing auxiliary fields was developed by Chang [6]. However, he only

' constructed Lagrangians for the cases s=2,3 and h. '

Finally Hagen and Singh [7] constructed massive field equations for 1

I arbitrary s, which were derivable from a Lagrangian. Their field equations

were, however, not homogeneous in second order derivatives, if integer spin

was considered. Their work formed the starting point for Fronsdal [8], who

constructed Lagrangians for massless particles with arbitrary spin. Here the

interesting point was that auxiliary fields no longer were necessary in order

"; to describe massless particles with spin s.

In the following section we shall describe a different method to construct

higher spin field theories. We shall use there the root method, developed by

Ogievetski and Sokatchev [9] • This approach has already been used for the

construction of a spin-fj free field theory [10].

2. The root method

In this section we shall first discuss the main characteristics of the

root method. It will be shown that with this method a field equation can be ~

obtained, which describes free massive particles with arbitrary spin. '>

Moreover we shall show that, if a field satisfies this equation, it also -";"!

satisfies the Klein-Gordon equation plus the set of subsidiary conditions .-:'•;

which were mentioned in the previous section. '.•£

Then we shall consider the problems which arise when one wants to construct jl|

a Lagrangian from which this field equation can be derived. ',-?̂ ,
• ïiïi
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It should be stressed again that we restrict ourselves to the case of

integer spin and uncharged particles.

For the presentation of the root method it is useful to introduce a set of

spin projection and spin transition operators P.. which act on the field and

satisfy

The superscripts J and L denote the spin subspace in which these operators act £.

and the subscripts i,j and k, refer to the number of independent spins in one t

subspace. The operator P.. is a projection operator if i=j and will be called ;-

a transition operator if i?Ej. jb

In cases where only one projection operator exists, we sometimes omit the

subscripts like in the spin-1 case. *

This case can be described by a vector field i(> (x). As is well known the i-

spin content of this field is both spin-1 and spin-0 once. Consequently we •';

have only two projection operators P and P , which are defined as follows if

P 1 = 6 =<5 - - 8 9 , ?'"
\1\) fiv PV D H V

(2.2) £
yv |jv D ]x v ,'-

One can easily verify that these operators satisfy relation (2.1). ?

By going to the rest frame in the k-representation as in equation (1.11) {'_

one sees that (2.2) projects out <j>. and <(> from <|> . For higher spins the •'

projection and transition operator are combinations of products of the f ;

quantities e and o> . !

An advantage of the use of projection and transition operators is, that ; :

many algebraic manipulations simplify, since (2.1) is satisfied. If we, for

instance, multiply the operators

;l

B = I I K JT ,

we get

A-B = I' I (aVjyPjj . (2.3)

Consequently the new coefficients are simply the matrix products of the U

original matrices a., and t>, .. jd
1J KJt *|

The projection and transition operators form a complete set in which any '$

\i
Lorentz invariant differential operator, acting on the field, can be expanded. |

More specifically, a differential operator of even order can be written as j:.J
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— V V " t T^ \

«•),(•)' " J: A aij ij\o,co' '

where (u stands for a set of indices depending on the kind of tensor field on

which A , acts.
(0,(0

The coefficients can generally be expressed as a power series in the

d' Alembertion o. But since we are only interested in an operator of second

degree we take these coefficients as constant multiples of D.

In order to construct a theory for massive particles with integer spin s

we first choose a symmetric tensor field of rank s $_ _ ^ , or simply1 s

When the spin content of this field is determined, one can construct the

complete set of projection and transition operators P... According to the

spin content of $ we always have one spin-s and one spin-(s-i) projection

operator.

Since the lower spin sectors (s-2, s-3, etc.) are higher dimensional there

exist more projection and transition operators in those cases. Then the most

general homogeneous, second order field equation can be written as

{0 - m2t5 ,
(0,0)' (0,to'

where

0=

. = 0 ,
0'

J<s-2 i,j

and where the a.. are real numbers.

However, because the projection and transition operators contain terms

proportional to a s, • etc., eq.. (2.h) contains singular expressions
(

Since the field equation (2.U) is required to be regular, we have to

eliminate these terms which of course imposes a set of conditions on the

parameters a...

The wave equation (2.1») has to describe massive particles with spin s.

According to the root method developed by Ogievetsky and Sokatchev [9], a

certain power of the wave operator should be proportional to the highest

projection operator. If

0» = p SD N , (2.5)

then the corresponding field equation describes spin s alone. Note, that if

(2.5) holds for some integer N, it is automatically satisfied for larger N

values.

*) Repeated indices denote summation over these indices.
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Equation (1.5) implies that the Klein Gordon equation plus subsidiary '£

conditions must be a consequence of condition (2-5)- To show this, we note

that from (2.1») and (2.5) follows J"

(0*) ,* , = m2N* = Ps , D % , . (2.6)

w,(i)' T w ' (i) b>,(o' u ' ;

Prom the last identity in (2.6) we get:

. _s _N. 2N. i

which implies

P S ,* , « * • (2-7)
01,(1)' (l> ' (l>

From (2.7) it follows

PJ ,é , = 0 , for J<s . (2.8)

When one substitutes (2.7) and (2.8) in the general field equation (2.1*), one

gets the Klein Gordon equation

(D-m2)(f. = 0 , (2.9)
b>

whereas (2.8) is equivalent to ihe subsidiary conditions

and (2.10)

3 * = (3-()>) = 0 .

Thus it is shown, that condition (2.5) from the root method guarantees

description of spin s alone. i

However, if one applies this method for spin s>2, some difficulties ^ '

arise. When we first consider condition (2.5), realizing that P contains ^

terms proportional to D~ , then the regularity of 0 implies that at least ;

M> s , (2.11) r
m a-.

in order to make the right-hand side of (2.5) regular as well. If (2.5) is

satisfied for some N, N>s, then

(aJ)N = 0 for all J (J<s) , (2.12A) ~

but V

(aJ)H~1 4 0 for at least one J value , (2.12B) •
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., since otherwise (2-5) would hold for a smaller H-value. Therefore a matrix,

a , which satisfies the condition (2.12) should be at least a IfxH-matrix.

On the other hand if we determine directly the dimension of a in 0 ,

'' a0 turns out to be the largest matii.x since the spins-0 sector has the highest

dimension. More specifically, a0 is a

(gs+1)x(gs+1) -matrix, if s is even, and a
(2.13)

i(s+1) x j(s+1) -matrix, if s is odd.

Clearly the dimension of a0 and therefore of all a is too small (i.e. smaller

than a HxN-matrix, with H>s) and condition (2.12)- cannot be satisfied.

I One possibility to solve this problem is to allow higher order derivatives

in the field equation. However, as was mentioned before, we only consider

! differential operators of second degree. Instead we can solve this problem by

. ' enlarging the dimension of the lower spin matrices a • This can be done by

introducing additional field quantities, which we call auxiliary fields.

In order to satisfy the root method conditon (2.25) for a certain smallest

N-value (N>s) we have to enlarge the dimension of the matrices a until there

'"•; exists at least one matrix a for which (2.12) holds:
i

(aJ)H = 0, but (aJ)N"1 * 0.

, . Then the difficulty which arose from (2.13) is solved.

It should be noted here that in general there is a certain arbitrariness

- in choosing the auxiliary fields, since there are different ways to enlarge

' the matrices a in order to satisfy (2.12).

In case we started with a symmetric tensor field of rank s the only

possible auxiliary fields are tensor fields of rank s-2, s-\, s-6, etc.,

since the projection and transition operators are always combinations of

products of 6 and u (see (2.2) ).

, The new wave operator 0 acts on the field configurations

Of course the introduction of auxiliary fields leads to an additional set of

; projection and transition operators. The field equation can still be written

as

(0 , + m26 ,)<(>,= 0
{1)9(1) (1)9(1) (l)

with (2.15)

J< S-2 i,j lj lj
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Here we used the fact tbJt, according to (2.5), we get as~1=0-

Concerning the terminology we define here auxiliary fields as the

additional fields besides the originally choosen symmetric tensor field. This

implies that for a different original choice (for instance fields with

spinorial instead of tensorial indices) different auxiliary fields will be

required. The auxiliary fields introduce more spin degrees of freedom, just

like the original tensor field also contains more spin degrees of freedom than

the components of the highest spin. However, the wave equation will eliminate

all those superfluous degrees of freedom as is demonstrated by eq. (2.8).

Thus a field equation (2.15) can be obtained, not containing negative

powers of d'Alembertian a, and which describes massive particles with spin s

only. This field equation, however, is in general not symmetric in the tensor

indices u and ID', in contradistinction to field equations derived from

Lagrangian.

So one tries to symmetrize the field equation with a non-singular

symmetric transformation V, which does not contain derivatives and terms
—k

proportional to G . With this transformation the field and auxiliary fields

are redefined as follows

I

I
v ,<t>' . (2.16)

Since V acts in the spin-s and spin-(s-i) sector as unity the relations (2.7)

and (2.8) s t i l l hold with respect to (j>1 . Therefore the physical content of

<f> and (j>' is s t i l l the same. After redefining the fields, the field equation

reads

( OV - m2V) ,(fr' = 0 .

Expanding V in terms of projection and transition operators

V = PS + PS"1 +
J < s-2 i j

equation (2.17) becomes:

10

(2.17)

(2.18)

(ps+ y aJvJ

J<a-1
y ( a J v J ) . . p J . - m 2 y y v ? . * ? .
ij 1 J 1 J i j 1 J 1J

). .
1 J J ij 1 J

(2.19)

The matrix v being symmetrie we only have to require a = a v to be symmetric

for all J. Obviously the mass term has become more complicated now.

The symmetrized field equation (2.19) can be derived from a Lagrange

function

£



£ = <|>T(5v-m2V)* . (2.20)

i
Summarizing, a field equation has been constructed which takes the j£

general form given by equation (2.19).

This equation satisfies three requirements

1. the wave operator is regular, i.e. it does not contain terms proportional

to D-k; J;
2. the root method condition (2.5) for 0 is satisfied; i,;

3- the wave operator is symmetric in w and w'.

These requirements lead to a set of equations for the coefficients a., and v...
IJ K.X, t

For each case one has to look for a solution of this set of equations. If ;~

such a solution exists, then the field equation according to the root method

is equivalent to the Klein Gordon equation (2.9) plus the subsidiary conditions *

(2.10). Thus a theory has been constructed describing massive particles with

spin s only. \

As was mentioned in the previous section we still have to discuss a £
è

condition on the propagator. When the propagator is evaluated in the k- ^

; representation it should only have a first order pole in k2+m2. Moreover, due

to the unitarity of the S-matrix the residue of this pole should be positive J

definite. J:.

For our purposes the propagator is defined as an inverse of the operator :

( 0-m2 A.). When we first consider the case of a non-symmetric field equation

(2.It)

( 0 , - m26 ,)$ , = 0

the propagator is given by

f.
One easily verifies that k

Tr(m)(0-m24 ) = 1 (2.22) &

holds. - -,

In case of the symmetrized field equation (2.17) ?":

(( 0V) , - m2V ,)(()•, = 0

the symmetric propagator 7r(m) is related to the former in the following way
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Ti(m) = V"
1
ir(m) . (2.23)

IJ In this case we obviously have

/! ff(m)( 0Vna
2
V) = 1 . (2.2U)

•J If we sandwich the propagator (2.23) between two external sources, T H ,(m)T ,,

j we can determine the poles and the corresponding residues of this expression.

,, 'f We first decompose the non-symmetric wave operator 0 ;

''••) 0 = p
( s )

n
 +.5 (2.25)

where 0 is the part of the field operator, affecting only the lower spin

sectors.

Then the propagator 7r(m) can be written as follows:

α-m
2
 m

(2.26)

From (2.26) one immediately observes that the expression Tï(m)T has a fiPst

order pole in (o-m2) or in k2+m2. Furthermore presence of P in this pole

part guarantees that propagation of only the highest spin part has this pole.

Finally we show that the residue TV~ PST = T P S T = (PST) is a positive

definite expression.

It is shown by Chang [6] that in general the highest spin projection P

consists of a product of s times 6 , where e = 6 — . This

expression has the property that 9 6 = 0 . Therefore, if we introduce the

quantity

J = fps T ) (2.27)

the following property is obvious:

3 J = O«J) = 0 . (2.28)

When we evaluate (2.28) in the momentum representation, we get

k„J„ + k,J, = 0 , :

o r ";
kA,2...Ms

=koJoy2...us '
 (2'29) J

J
i

Here repeated latin indices denote a summation over the space components alone, i
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whereas repeated greek indices always denote a summation of all space and

time components. The residue TP T can be expressed as follows

S /

s

( SSL

h

mi

k. m. \

k„ k
%• m .

k2

0

(2.30)

s / JC. m. \
Since each factor in II (6 - — % x I represents a positive' definite

i-A *imi ko *
matrix, TP T is also a positive definite expression. This can easily been

understood, by going to a frame in which k is given by ki = k2 = k3 =-r-/3k
2

In this case (2.30) turns into

TPST = J! „ n 6„ (1 JJ' > (2.31)

V"*si=1 v A ^-i-..».
which is clearly positive definite, since k 2>k 2.

3. Field equations for massless particles

In the previous section we discussed the construction of field equations and

Lagrangians for massive particles with integer spin s. These field equations

were obtained by using the root method and a set of projection operators.

Since in the massless case the operators are not projection operators, it is

not possible to construct a theory for massless particles by the method

discussed before. Instead, as a starting point, we shall use the massive

field equation (2.19):

(ps + I J a^.vj.Pf. - m2 7 F v?.P?.) ,* , = 0 .
\ J<s-2 i'i l k ^ ^ J ij ^ U M » 1 * » 1

Here the coefficients a., and v.. are subjected to a number of conditions, the
ij ij

origin of which has been discussed in the previous section.

In the m-M3 limit equation (2.19) should lead to the two highest helicity

states ± s only. The degrees of freedom which are associated with other

helicities must vanish. The transition to the m=0 theory becomes more

convenient, if a solution of the coefficients a.. and v.. exists such that the
ij ij

conditions mentioned before are satisfied and such that the coupling between

the original field and the auxiliary fields takes place only through the mass

term. If in this case the m-*0 limit is taken the equations for the original
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field and the auxiliary fields will decouple directly. By taking the

auxiliary fields zero, one gets an equation in terms of the original field

$ (x). The wave operator, thus obtained, is determined by the remaining
Mj...u

s

matrices

S
J
 = aV, (3.1)

which are only related to the projection and transition operators of the

original field <j> (x). The field equation reads, in presence of an
Vl-'-Ms

external source T

(P
s
 + I &

J
..P

J
..) ,*(x) , - T . (3.2)

J<s-2
 1 J 1 J

 "^
 M w

In the next chapter we shall show for the case s=1, 2 and 3, that the

field equation (3.2) in the presence of an external source takes the following

form, (see also [11]) :

V - i I 6 V = T , (3.3)

where

W = n* - I 3 (3-<f>) + I 3 3 *' , (3.1+)

and where <j> is a symmetric tensor field of rank s.

The summations are made over all independent permutations of the indices

*) . . .

y....y . For some contractions a short-hand notation is used, i.e.

(3*<l>) = 3,*, .^ μ ...U
s
 A

v
Ay

2
...p

s
 '

(3.5)

The fields in (3-3) and (3-
1
*) are chosen such that their double trace vanishes,

i.e.

•Ü ...v = ° " (3>6)

'.' Obviously this condition is only important in case s>k. The equations (3.3),

(3.U) and (3-6) were originally found by Fronsdal [8]. He showed that they

V. give a correct description of massless particles with integer spin. These

IJ equations were also discussed by de Wit and Freedman [11].

è It should be noted that the matrices a in equation (3-2) have zero eigen-

i*

V *) In particular \ denotes a sum of s, and £ denotes a sum of is(s-i)

I' independent permutations of the indices Pj...pg.
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values. The singularity of the matrices a follows from the nilpotency of the '{

matrices a , which in turn is a consequence of the root method.

Such a singular matrix a gives use to a certain number of left and right

null vectors, which are automatically null vectors of the wave operator 0. : ,

In the presence of a source T, the field equation (3-2) can be written as j

0 ,<J> , = T . (3.7) f

Suppose we transform <J> according to £_.

,,, _». $ + [I x JP J ) ,4> , , (3.8)

* "'" £
where x = (xj x. ) is a right null vector of a . It can easily be t

verified that the field equation (3.7) remains unchanged under the trans-

formation of (3.8). Thus every right null vector gives rise to a gauge t<

invariance of the massless field equation (3.7)-

In the next chapter we shall show that for the case s=1,2 and 3 the £

various gauge transformations (3.8) can be combined in the following one 'fs

5*U = £ 3w £M ' (3'9) "

where e is a symmetric traceless tensor of rank s-1. .'•

In the same way it can be understood that each left null vector y of a ! •

causes a source constraint

Again for the cases s=1,2,3 it will be shown that the various source

constraints (3.10) can be put in the form

0 . (3.11)

%
Sources obeying these constraints are called physical sources. Also the gauge '.},<

invariance (3.9) and the source constraint (3.11) were found for the general in-

case by Fronsdal [8 ]. ;

If physical sources are absent, the free field equation turns out to be - ,

o<f> - t 3 O'<t>) + J" 3 3 <f>' = 0 , (3.12) ^V

with $ symmetric, K'-^

•ys...u.-°-
 (3-6)
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-f,
• i

v'f. and with gauge invariance under

., ' 6<|> = l 3 e ; e1 = O . (3-9)

;• We shall show for this general case that the system of equations (3.12), (3.6)

and (3.9) describes massless particles with only two helicity states ±s. By

'(. using gauge transformations the field <J> can be transformed such that it

/•' satisfies the following Lorentz covariant condition:

(3-$) = 1 I 3 •; „ • (3.13)

Note Laat for fields, satisfying (3.13) the gauge invariance (3-9) still

exists, but with an e such that oe=0. For fields satisfying this condition

the field equation turns into the massless Klein Gordon equation

f Q ^ v (x) = 0 , (3.11»)

Ï: the general solution of which can then be written as

( V . . u (X) = i "~~ (a" •••'Js(k) eik<X + a* •••^s(k) e'iK'X] • (3-15)

Here the a (k) are complex functions of k which aceoding to (3.1*0

satisfy

k2=-k2 + £*2 = 0 . (3.16)

Of course the double trace of a vanishes, i.e.

a" = 0 . (3.17)

Vs..-Va

Clearly the functions a have too many components; we need only two components

for the description of two helicity states. As we shall see gauge invariance

can again he used to eliminate these superfluous components as well.

From the gauge invariance (3.9) it follows that the functions a can
lV-.üs

be redefined

a •* a + J" k x (k) ,

1with (3.18)

X' (k) = 0 . I
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Obviously a also satisfies the gauge condition (3.13)

k,a, = 77 F k a' . (3.19)

The set of functions a (k), satisfying (3.17)» forms an infinite
yx...Us

dimensional space A . We consider the following Lorentz invariant subspaces

of A:

Xo consisting of all elements of A, which have the form 7 k x (k), with
1 Uj U2..«US

Kj consisting of all elements of A, which satisfy (3.19).

Clearly 3f0 is a linear subspace of Jfj, since each a£X0 satisfies (3-19).

We consider the following hermitian form on X j:

* ^ .(3.20)(a,b) = I fa* b - •£ s(s-1)a*x
2kg 1 S 1 3 !

The following properties can easily be proved.

(i) for all a£ Jfj we have

(a,a)>0 , (3.21)

(ii) but (a,a) = 0

if and only if a€3C0 (3.22)

( i i i ) for a l l a,b€Xi and CEXQ we have

(a,b+c) = (a,b) . (3.23)

So it follows from (3.21) that the hermitian form (3.20) is positive but,

according to (3.22), it is not positive definite. However, as a consequence . :

of property (3.23), it is possible to define the hermitian form (3.20) on the -]

quotient space X-^/XQ . On this quotient space the expression (3.20) is £ A

positive definite and consequently it gives a well defined inner product on K\

XI/XQ. With this inner product X-^/XQ is an infinitely dimensional Hubert $-•''[

space. This space can be considered to consist of infinitely many spaces V, [• ̂
. . . . t

of finite dimension. Here the label k represents a point on the light-cone. : .

A simple counting argument shows V. to be two-dimensional for any k on

the light-cone. Or stated in other words: any function a (k), •,

representing an element of 3fj/3f0 , has only two independent components for any V j

k with k2=0. Indeed any symmetric s rank tensor, the double trace of which } -̂

vanishes, has 2s2+2 components. If we restrict ourselves to 3C], a has to

satisfy (3.19)» which corresponds to s2 conditions. So s2+2 components are
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left. The a can be redefined - still representing the same element of
Uj•••Vg

X\/Xo ~ **y using a gauge transformation (3.18). By redefining a again

s' components can be eliminated and therefore two independent components are

left. This shows that the many different components of a (k) are reduced
Uj...vs

to two by using the gauge invariance of the theory for any k on the light cone.

In order to understand that these two components describe the two helicity

states ± s, it must be shown that the quotient space X^fX0 carries an

irreducible lightlike representation of the Poincaré group associated with the

two spin components ± s.

From the way the field function $ transforms under an element a, of

the Poincare group, it follows that the functions ati ti (k) transform

according to:

IV

a (k) = e-ik*aA A a (A"1k) (3.24)
" l - ^ k P1A1 Vs V s

where A is an element of the proper Lorentz group and a is a translation

parameter. According to the theory of induced representations [2,3] the

irreducible unitary representations of the Poincari group correspond uniquely

to the irreducible representations of its little groups. For some fixed k the

little group L. associated with k is defined as the subgroup of elements

of the Lorentz group leaving k invariant. Equivalent little groups give rise

to equivalent representations if they are related to k-values on the same

mass shell (light cone).

Written in a short-hand notation equation (3.24) reads

a(k) = D(a,A)a(k) . (3-25)

Since Xγ and XQ are Lorentz invariant subspaces of A, the representation

(3«25) gives a representation of the Poincaré group on X^/XQ as follows.

Let P represent the natural surjection from Wj onto WJ/WQ . Let a be a

representative of an equivalence class [a]€ (#i/fo)» so P ( a ) = M > then

U(A)[a] = PD(A)a (3-26)

defines a representation of the Poincaré group on X^ /Xo . This representation

U(A) is unitary with respect to the inner product on X^ /Xo .

According to the theory of induced representations, the representation

(3.26) is irreducible if and only if its corresponding representation of the

little group L, for some fixed k is irreducible.

We choose~k = (0,0,1 ,i). The restriction of all elements a(k) of
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to the k-value k forms a space V. which can be proved to consist of elements

ai,...i <k)' V ^ i s = 1 ' 2 "

+ a22i3...is " ° (3.27)

Consequently V, is spanned by the two independent elements a.- -(k) and
K I I • » » I ~

a.. .(k). This agrees with the fact that the dimension of V and therefore

of V. is two. We consider the two independent combinations

e(k,±) = -p (a 1 + ia21 ^ . (3.28)

Then it can be shown that the e(k,±) transform under elements A of the little

group L , according to

U(A)e(k,±) = e±is*e(k,±) . (3.29)

CA

A

Here <f> represents the angle of rotation around the k3-axis. Clearly the

representation of the little group (3.29) is reducible. However, in case one

includes space reflections, the representation is not reducible, since space

reflections transform different elements e(k,+) and e(k,-) into each other.

Note that the elements e(k,±) are eigen vectors under infinitesimal elements

of the little group at eigenvalues ± s, Therefore only two helicity states

±s are described.

It has been shown that the original free field equation (3-12) with gauge

invariance (3.9) describes massless particles with only helicities ±s.

In the next chapter we shall show, at least for the case s=1,2,3, that

field equations of the form (3.2) and (3.12) can be obtained by taking the m->0

limit in the massive theory.

We shall also study the propagator for zero mass. However, the definition

of the propagator is more complicated than it was in the massive case, since

inversion of the wave operator 0 is no longer possible. It has been shown in

ref. [10], that a suitable propagator can be obtained. There it was proved

that the propagator, corresponding to (2.32) sandwiched between two physical

sources, equals the inverse of a regular submatrix of 0 , sandwiched between

two physical sources. Construction of such a propagator shall be done

explicitly in the next chapter for the case s=1,2,3.

When we evaluate the propagator (still sandwiched between two physical

sources) in the k-representation it should have a single pole in k2. Due to

the unitarity of the s-matrix, the corresponding residue should be positive

definite.
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Finally from the form of this residue it can also he seen whether or not

only helicity states ± s propagate.

'I
--3.

.')
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CHAPTER VI

FIELD THEORIES FOR PARTICLES WITH SPIH 1, 2 AMD 3 I

1. Introduction

In this chapter we shall discuss the construction of free field theories

for the case of spin s=1, 2 and 3. First field equations representing the

massive particles will be obtained using the root method, explained in the

previous chapter. We shall also discuss the problem how to construct a :

Lagrangian from which this field equation can be derived. Then we study the

properties of the propagator. When the propagator is given in the k- .

representation it should have a first order pole in k2+m2. Moreover, the

corresponding residue should be positive definite.

Attention will be paid to the transition to the massless theory. We shall -'

discuss the various gauge invariances and source constraints, which will

arise. We have already shown that the gauge invariances must be used to

verify that only highest helicities are present in the massless theory.

2. Spin-1 free field theory

In order to construct a field equation for massive particles with spin 1,

we first introduce the spin projection operators

P° = u> = - 3 3 ,
yiv uv o u v

P* = 8 v = 6 v - u . (2.1)

They satisfy ^

PJPL = 6JLPJ . (2.2) I

For the description of spin 1 we choose a vector field $ (x). 1;

The wave operator should be a homogeneous second order differential .

operator. Such an operator can be expressed in terms of the projection

operators P . Therefore the most general wave operator 0 can be written as

follows

0 = (aP1 + bP° ) D . (2.3) i
pv uv vv I

Clearly 0 does not contain negative powers of the d'Alembertian o. According

to the root method we have to find the smallest N-value, for which
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0* - P1!^ (2.1») '4

holds. Since P1 contains a term proportional to o~ , whereas 0 does not, jj

(2.1») might be satisfied by putting H«1. Clearly (2.1») holds for H*1, if ve ?-

put a>1, b=0. Here ve also used property (2.2). Thus the massive field

equation for spin 1 particles reads i

PJv°*v - m \ * ° • (2-5A) •"'
{

or using (2.1) '.-,

- 3 3 4 = 0 , (2.5B)
which is the well-known Proca equation.

The Lagrangian from which this equation can be obtained is given by

" The propagator of a massive particle with spin 1 can be found by inverting

(2.5A)

ï
(m) = P1 - — P° = Yβ - — 3 3 ) .

7 9 2 V PV P V V /
*(.) P

1
 - - PO -{6 - - KK. ) - (2.7)

α-m
2
 m

2
 m n

2 v M
 m

2

When the propagator is studied in the k-representation it has only a single

pole at k
2
+m

z
. Moreover, when the propagator is sandwiched between two

 ;

external sources T the corresponding residue of the expression T it(ni) T is .

positive definite as was shown for the general case in the previous chapter.

This fact can directly be proved for the case of spin 1. According to (2.7)

the residue of T i T is given by ~
V pv v

 e

(pl
T
)2 _ J J ^ ^ j j J « p l

T
 . I

V V
 i

Since P°J=0, we have in k-representation r
In particular Toy choosing kj^kfc*

0
» k

3
*k » we get *:

J|+j2
 e

f



'• The aassless theory can be obtained by taking the m*0 limit in the

'Jf massive field equation. In presence of an external source T the field

•• equation then becomes

or

o* - 3 3 4> = T . (2.8B)

The resulting wave operator, 0=P 1o, has a left and a right null vector,

both proportional to P°. Consequently the field equation remains unchanged if

one changes the vector field 4 by adding a right null vector:

A •*• è + P° Dr
ji jj pv v

for some arbitrary vector field t, . Thus a gauge invariance of the massless

theory is caused by the right null vectors of the wave operator.
: The gauge transformation (2.9) can be written in the following form:

• "*• • + 3 X > (2.10)
11 11 P

where x is an arbitrary scalar field.

In a similar way left null vectors give rise to a source constraint. By

multiplying eq. (2.8A) on both sides with a left null vector we get

Pjv"*Tv = 0 , 12.U).

: from which follows

n 3 T = 0 . (2.12)

Thus in the massless spin-1 theory physical sources must be divergenceless.

Clearly the field equation (2.8B) with gauge invariance (2.10) is a

/ special case of the general massless spin-s field equation discussed in the

previous chapter (section 3). By using the gauge transformation (2.10) a class

of field functions can be obtained, satisfying

3p*j,(x) = 0 (2.13)

and the field equation (2.8B) turns into themassless Klein-Gordon equation

a* (x) * T (x) . (2.11»)

As was shown generally in the previous chapter the solution of (2.lh)
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When this propagator is sandwiched between two physical sources it is

possible to show that only helicity ± 1 modes propagate. According to eq.

(2.17) we get

VnvTv"nVu * (2'18)

We shall evaluate th i s expression in k-representation. In momentum
representation the source constraint reads

k l = 0 . (2.19)

The most general decomposition of the source T on-shell (i.e. k2=0) can be

written in terms of the polarization vectors ea (i=1,2) and the vectors

k = (k\k,,).= (k,ikQ) and k = (k,-ik0) (see App. C)

T = I e 1 T 1 + k A + k B . (2.20)

Due to the source constraint (2.19) we get, after contracting (2.19) with

k , the restriction B*0, or

describes only two helicity states ± s.

In this section ve shall also study the propagator. In order to define a

propagator the wave operator should be invertible. However, since it has a

null vector it cannot be inverted. The gauge condition (2.13), which in terms

of projection operators reads ,

P° o> = o , (2.15) T
U V V r

J

can be used to make the wave operator regular. »-*

In fact we shall add equation (2.15) to the original field equation. In- *
stead of equations (2.8) we shall study *jr

(pl + p0) o^ = a? (2.16) f

pv v v

together with condition (2.15). f"

Indeed, from (2.15) we obviously get (2.1U).. \

Since we can invert the wave operator in (2.16) the massless propagator fe

IT can be obtained *



Since e terms give rise to belicities ±1, vhere

(2.22)

J

the ±1 belicity source combinations are

T~ = -==• (+T1 + iT2) .
/2

With (2.21) and (2.23) the expression (2.18) becomes

WE = ̂  TpTp = ̂  (|T+|2 + |T-|2) + |A|2 .

(2.23)

Note the single pole in k2 . Further the residue of this pole is positive

definite and its form guarantees propagation of only the higher helicity modes

±1.

• • • i

3. Spin-2 free field theory

In this section we shall first construct a field equation for massive

particles with spin 2. Then we shall discuss the massless case. For the

description of particles with spin 2 we choose a symmetric tensor field of

second rank <f> (x). The field equation for massive particles can "be

constructed "by using the root method. The projection and transition operators-

which we need are listed in appendix B. They satisfy the relation

ij k* jk il ' (3.1)

We start with the most general homogeneous second order differential operator

0 . When we expand this operator in projection and transition operators,

it takes the following form

O = (aP2 + "bP1 + cP°j + dP2 2 +

-1 .
12

+ f^P?, ) . (3.2)

Terms proportional to a in (2.2) are eliminated if the following condition is

satisfied

| a - 2 b + j c - (e+f) = O . (3.3)

The root method which guarantees description of spin 2 alone implies that

ON = P V (3.1.)
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holds for some integer N. Since P
2
 contains terms proportional to a" ana o~ ,

whereas 0 does not, the lowest N-value for which [3.k) is satisfied eust be

N=2. For higher N-values it is then automatically satisfied.

The consequences of equation (3-
1
*) can easily be understood if we use the

matrix representation of 0 which follows from (3.2):

t/3
d

Since,according to (3.U), 0 squared nust be proportional to P
2
, we

find:

a=1, b=0,

(3-5)

(3.6)

cd-3ef * 0.

The last two conditions correspond to the nilpoteney of the spin-0 submatrix

of 0.

Thus a massive spin-2 field equation has been constructed

O i m
2
* = O ,

uv,po
T
po uu

(3.7)

where 0 is given by (3.2).

The coefficients in (3.2) have to satisfy the conditions (3.3) and (3.6). As

was explained before (3-7) is equivalent to the Klein-Gordon equation

(α-m
2
)* = O ,

and the subsidiary condition

p 2
v a*

 =
 *uv '

which is equivalent to

3 è = è = 0 .
u
T
Vv

 Tvu

(3.8)

(3.9)

(3.10)

However, the solution of (3.3) and (3.6) does not lead to a symmetric wave

operator in (3.7)- Therefore equation (3-7) cannot directly be obtained from

a Lagrangian.

In order to symmetrize the wave operator we redefine the field by using

a symmetric non singular transformation V:

V *' = «t1 + p6 6 4'
pv,pa pa uv uv pa pa (3.11)

h
•of**

'K'

I
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In terms of the projection and transition operator V reads:

K

V - (p2 + pi + J v?.P?.) . (3-12)

In general a redefinition like (3-11) does not change the physical context of

the theory. In particular it follows from (3.12) that the new field 4' still

satisfies the subsidiary condition (3.9).

(0 - m2V) 0 , (3.13)

where

0 = OV (3.11»)

is required to be symmetric in (yv) and {pa). The coefficient matrix v° in

(3.12) is given by

f 1+3p pi/3 )
v° = . (3.15)

[ p/§" 1+p J

Note that for v" to be non singular we should have 1+Up#O.

Then the requirement that 0 is symmetric leads to the following condition

p(c-d) + (e-f) + p(e-3f) = 0 . <3-i6)

From the conditions (3,3), (3.6) and (3-16) all the coefficients can be

calculated. Some of them depend on the variable p alone.

a=1, b=0 ,

"' ^ ' (3.17)

with

s 2 =

Then the spin-0 sector of the symmetrized wave operator 0 reads

a c (3.18)

By choosing the upper sign in (3-18) and by putting p=-1 a special solution is

obtained

a° =
-2 0

0 0
(3.19)
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The general solution can be obtained by redefining tbe field in the Lagrangian, jjj

with general transformation V. The wave operator vhich corresponds to (3-19) f.

reads H

0 = (P
2
 + I S?.P?.)D , (3.20) I

ij
 1J a

° y
and it leads to the following field equation i-

a($ - 6 ft-.) - O 3,*, + 3 3,*, ) + 3 3 *.. + *
T
pv pv

T
XX u X

T
Xv v X

T
Au v v AA ?*-:

i
r

This field equation can be obtained from the following Lagrangian '•

£
 * * * * ^ n > , A "

 2
* p v , v * u A , A

 + 2
*Mv,v*XX,ji " * A A , *

)
 "

- *
2
 ) . (3.22)

The propagator of the massive theory can be found by inverting the field

equation (3-20). Using the representation of a
0
 , given by (3.19)> we get

/ P
2
 P

1
 o-m

2
 •J \

v(m) = [ — + 2 pO + (P^+PS,) ) - (3.23)

^o-m
2
 m

2
 3m"

 2 2
 3m

2 1 2 21
 7

One immediately observes the first order pole in (α-m
2
). The P

2
 projection

operator in the pole part guarantees propagation of the highest spin modes

only. As was already shown for the general case in the previous chapter, if

the propagator is sandwiched between two sources, the corresponding residue

T v (m)T is positive definite.

Thus a massive spin-2 field theory satisfying the earlier mentioned

conditions is obtained.

In the rest of this section we shall investigate whether the field

equation (3.21) for vanishing mass will give a correct field equation -'

describing massless spin 2-particles. By putting m=0, equation (3-21), in »L

presence of a source T , reads

0 * = T (3.21»)

yv,po pa yv
where

O - 5(6 6 +66 - 26 6 ) + u> 6 - u 6
ï pv,pa L w va pa vp pv pa uv po pa yv
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Explicitly the field equation (3.2U) reads

- 6$ -3 ( ) - 3v v C3.26)
'v p V W lav^AA " " *' pv •

The operator 0 can also be expressed in terms of spin projection operators:

0 = (P2 - 2 P J 1 ) D (3.27)

and consequently it takes the following matrix form with respect to these

spin projection operators:

0
-2 0

0 0

(3.28)

From (3.28) it is easily seen that 0 possesses two left and two right null

vectors:

in the spin-1 sector x1 = a, and

in the spin-0 sector x2 = (0,0), a and 6 real. (3.29)

The right null vectors expressed in terms of projection operators of 0 defines

the following gauge transformation

(3.30)

with J=0, and Xpa arbitrary. Clearly the field equation (3.2^) is invariant

under transformation (3-30).

The various gauge transformations for different J and m can be combined

in order to eliminate singular terms, proportional to n . Thus the

transformations (3.30) turn into

*pv * V> + V v + 3vS » (3-3i)

where t. denotes an arbitrary vector field.

On the other hand constraints on the source T are defined by the left

null vectors of 0.

For J=0,1

J~J(I XJPJ
OD) T = 0 .Ll ml pv,pa pa

(3-32)

Again a convenient combination of these source constraints leads to a form of

the source constraint that does not contain negative powers of a -• is
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«3.33)

We shall consider nov the field equation, given by (3.2fc) and (3-27) or

by (3.26) in absence of external sources.

After contraction of the indices v and v we have

(p2 _ 2p )
 +

11 uu,per pa

or (3.31»)

a
hx -

 33
'* • ° '

Therefore the field equation (3.26) becomes

°*PV - \^*K - V
3
*^

 +
 Wn

 =
 °

 (3
-
35)

Like the spin-1 case the wave operator in (3-35) is not invertible since it

has null vectors. In order to construct a propagator we shall use a gauge

condition. We choose a gauge condition such that the field equation turns into

the massless Klein-Gordon equation

% v
( x ) =

 °'
 (3

-
36)

In the last chapter we noticed that gauge transformations (3-31) can be used,

in order to obtain a class of field functions $ (x), which satisfy such a

gauge condition.

Here we choose the gauge condition to be

fpl + 1 pO + 1 pO _ 1 /3(pO +p0 )) A = 0 ,
l r 2 ^11 2 22 2 J V r i 2 r21 j ;uv,po*po '

p
 +
 p _

2 ^11 2 22 2

or equivalently (3-37)

1
 r

: a (a**) + 3 0«<j>) - 3 a <j>' - & (3-a«* -^α*,,) = 0 i

• *̂

Clearly from (3.37) one obtains a simpler form of the covariant gauge condition

(usually called the harmonic gauge)

L V V M - i Vxx • ° •
 (3

-
38)
 I

i- Inserting (3.38) in the free field equation (3.35) leads indeed to the Maxwell -'

\ equation (3-36).

=. Obviously the free field equation (3.35) together with the gauge \

\ invariance (3.31) and the gauge condition (3-38) forms a special case of the fj

I set of equations that was discussed in general in section 3 of the previous ^

|- chapter. Prom this discussion it follows that the solution of {3-35) describes

f



only the highest helicity modes ±2.

The fact that this theory describes only the highest belicity nodes can j

also be seen by studying the propagator. The propagator cannot be obtained by *

inverting the wave operator in (3-27) since the latter has null vectors.

However, by using the gauge condition the wave operator can be brought into

the form

O = (p2 + Pl _ 1 P 0 i + 1 P 0 2 _ 1 ̂ ( P ^ + P ^ ))o . (3-39)

The inverse of this expression defines a propagator •

¥ = 1 (P2 + pi _ 1 P o i + 1 P o 2 _ 1 ̂ (P^-ffOj)) (3-Uo)

which can be written as

V,pa = a [ ̂ Syp6va + Vu* 5 " 2 \ ^ ' {3M >

More generally a propagator is obtained by choosing a gauge condition.

With this gauge condition the wave operator 0 can be made invertible [1J. Its

inverse gives a propagator, which consists of two parts

V = TTx + 7T2 (3.U2)

iti corresponds to the inverse of the regular part of 0. For the case of

spin-2

The second part, depending on the choice of the gauge condition, is

proportional to the null vectors of 0:

n 2 = l ( I «Jxj«fpf,). (3.M0
2 J=01 X d 1J

It should be noted that, due to the source constraint, the expression TJT2T

always vanishes. Consequently the expression TirT = ÏV T is only determined

by the regular part of 0.

In case the gauge condition (3.38) is chosen n turns out to be

*2 - i (
pl + \ P L - \ ̂(piVp2i >) - (

and we find the massless propagator as given by (3.1(1).

We shall study the expression TnT, where T is a physical source. In order
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to evaluate this expression in momentum space we shall give a decomposition of

i
the source in terms of the polarization vectors e (i=1,2) and the vectors

k = (%,\) * (k,ik
0
) and ic = (k,-ik

0
). (See also App. C). On-shell these

vectors satisfy the following relations

k.2 = £2 = o ,

k e
1
 = it e

1
 - 0 ,

k k +k k

e V = 6 - V v V v
v v w v

 (k,k)

The most general decomposition of Tμ
V
 in terms of these vectors:

T = e V T i < j + ( e ^ + e ^ JA1 + ( e ^ + 6% JB1 +
yv pv liv Vμ yv Vμ

+ k
u
k

v
A + (k

u
k

v
 + kk

v
)B + k

p
k

v
C . (3-U7)

Since physical sources satisfy source constraints, which in momentum

representation are given by

Vyv = o , (3-U8)

we get

B
1
 = B = C = 0.

Thus the source T can be written as

— E £ J, T l £ J\. ~ fc, JS. y Ji ~ fi, &. h • yj» *»if / * - «

uv y v ]i v v ii yv t~
f;

We can evaluate the expression TnT now. •"•

1
 /- 1 - , , ^

T I T T • "I
 (T
uv

T
uv - 2 V v . ' '

 ( 3
'

5 0 )
 t

k

Using the fact that terms with e e correspond to helicity modes ±2, where

(±) - + _L 1 + 2) -

we find as ± 2 helicity parts in the source decomposition ''• ;
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T* :* \ (T n-T 2 2) ±iT 1 2 . (3-52)

Then one easily shows that the residue of the pole — in (3-50) is given by

fiJTiJ _ 1 jiijM , |T+j2 + jT-|2 . (3.53)

Thus the following has been shown:

i) The expression TirT has a single pole in k2 .

ii) The corresponding residue is positive definite.

iii) The form of the residue shows propagation of only the helicities ±2.

A massive field theory for spin-2 particles has been constructed by using

the root method. The corresponding massless theory followed from the massive

theory by putting m=0. It was verified that this theory describes only two

helicity states ±2.

The massive and massless free field theories constructed here were

earlier obtained by van Nieuwenhuizen [21. He also proved the uniqueness of

both the massive and massless Lagrangian for the case of spin 2. In particular

the massless spin-2 theory is equivalent to the linearized version of

Einstein's theory of gravity. This so-called linearized theory of gravitation

forms a starting point for the construction of a quantum theory of gravitation.

The particles associated with the field + are, after quantization, called

gravitons.

k. Spin-3 free field theory

In this section we shall first discuss the construction of a field theory

for massive spin-3 particles. Then we shall pay attention to the transition ^

to the massless case.

For the description of massive particles with spin 3 we use a synmetric

tensor field of rank 3: $, (x). Again we shall make use of spin projection

operators and transition operators P... For the spin-3 case these operators
ij

are listed in appendix B. The operators given there form a complete set and

moreover they satisfy

The field equation can be written as "
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where u is a shorthand notation for the three It-indices Ajiv, and where 0 is

a second order differential operator. The most general second order

differential operator can be expanded in the operators P.- as follows:

O = (a3P3 + a2!»2* I I af.pf.) D . (U.3)
J«0,1 i.j-1,2 1J 1 J

The coefficients a.. have to be chosen in such a way that 0 does not contain

negative powers of o.

Clearly the matrices a of the spin-J sector have dimension 1, if J=2,3,

and dimension 2 if j=0,1. According the root method the differential operator

0 has to satisfy

(P = P 3n H (fc.fc)

* for some integer N.

Since 0 does not contain negative powers of o, whereas P3 contains terms

proportional to D , the smallest N-value, for which {**-**> can be satisfied,
i

' is N=3- Then it automatically holds for greater H-values.

Because the matrices a0 and a1 both are 2x2 matrices, eq. (k.U) is

satisfied for H = 2 , which is smaller than the minimal value 11=3, mentioned

above. Consequently, the dimension of at least one of the matrices a0 or a1

should be enlarged. This can be done by introducing an auxiliary field. In

this case the only possibility is addition of an auxiliary vector field

A {x) (see the previous chapter, section 2). Accordingly, the set of spin

projection and transition operators is extended with the set of projection

and transition operators associated with the vector field A (x). These

operators can also be found in appendix B. Therefore, eq. (l*-3) should be

modified as follows

(a 3P 3 I
J=0,1

In contrast to (U.3) the i,j-summation now runs over 1,2 and 3, because of

the enlargement of the spin-0 and spin-1 sectors.

Our field configuration can be represented symbolically as

k (U.6)
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Wow che necessity of an auxiliary field has been demonstrated, ve can give a ;'

wave operator in which negative powers of o do not appear. With respect to

the original tensor field 4. six,in this sense regular,second order |

differential operators can be found, and ve directly expand them in spin «_

projection and transition operators P.. :

I
ctpy

Associated with the auxiliary vector field A we have eight other

regular second order differential operators, not containing negative powers

of a.

(6pa - V ) D = P33 D ; upaD = P33° '

4 I a. -Ö a = (P° +pO )D ,
3 A£ v pX pv 31 32'

Therefore, the most general wave operator, homogeneous in second order
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J..

y ~

wave operator, homogeneous in second order partial derivatives and not

containing negative powers of a, will become a linear combination of the

differential operators, listed in (U-T). With respect to the set of spin

projection operators 0 takes the following fora

3{P°DK 11
P +P22 21 )12'

+M(P3l+P32) +KP33]

Thus, 0 has become a 1U parameter dependent differential operator.

Hote that in eq. (U.9) the part with coefficients A-F is related to the

original tensor field . , the other part being related to the auxiliary

fields. Equivalently 0 can be represented by its coefficient matrices a..

from (U.5)- From the last eq. (1*.9) it follows that these matrices are given

by

a 3 = A

a 2 = A+B

A+2B+C+E+F

(C+F)*^

1/3

A+3(B+C+E+F)+D

D+3{C+F)

M»-3I

(C+E)v^

A+5C

Q/iT

D+3(C+E)

A+B+3C+D

W-3Q

H/3

P/ÏJ
G

L+3H

Lt3P

K

(U.10)

f
* • .

0 has to be satisfied forAccording to the root method the condition (a )*

all J, but for at least one J value

(a J) 2 i> 0 .

This leads to a number of restrictions on the coefficients a...
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A = 1 ,

And for J = 0,1 :

Tr(a") .

J J
a n a i 2

aJ aJ

Det(aJ)

= o,

= 0 ,

44

J J
a22a23

44
= 0 ,

where the matrix elements a., are given by (U.11).

In general the field equation

0 ,• , - 0 ,

obtained by using the root method, does not follow directly from a Lagrangian,

since the wave operator O is not symmetric in <•> and «a1. It is possible,

however, to redefine the field

non vanishing determinant

• = V ...*•. ,

ÜJ
by means of a local transformation V with

or explicitly

"Xyv

A = (1+s)6 A1 + r J" 6 ,6
pa a pX

Xpv

If V is expressed in terms of projection and transition operators, V turns

out to act as an identity in the spin-3 and spin-2 sector. Therefore,

condition (U.U) is still satisfied.

In the lower spin sectors the matrix representation of V with respect to

the projection and transition operators is given by
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V1 =

. • 1 ,

1 + 1 p

r/Ï5 1+S

1+P

p

3r

P
1+p

3r

3q

1+S

In order V to lie invertible we must have

I8qr-(1+s)(1+2p) ^ 0 .

By (4.15) or (4.16) the original field equation (4.11») turns into

(OV) - m 2 v ) W } U , ^ , * 0 .

The operator 0V-m2V is symmetrie if

i) V is symmetrie; this implies

q=r ,

ii) 0 — OV is synmetric, or

(4.18)

(l*.2O)

0 0 , t.21)

a vAs a consequence of (It.21) the submatrices a = a v (J=O,1) of Ö have to

be symmetric, i.e.

aJ , = aJ,
0),U (d ,Id

Further, by imposing the additional requirements

0 , for J=0,1 ,-J ~J
ai3 = a23

(It .22)

(lt-23)

a convenient transition to the massless theory becomes possible.

The conditions (U.12), (U.13), ('t.20), (it.22) and (It.23) lead to a number

of equations for the original parameters A, B, etc. These equations are

solvable, as can be shown by giving one particular solution:

A = 1 , B = -1 (U.2U)
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The matrices a and a are then given by:

3 -1

a" = T

3 * " 1

,1 « JΓ

-3

0

0

1

1 3 0

3 9 0

0 0 0

-1

; S i = - 1 »

0

0

0

0

1

0

0

0

- I - 2

It is easily verified that (a
1
)

3
 = 0, whereas (a

1
)

2
 j

6
 0, which was required

in (U.11). Furthermore, the matrices a are symmetric.

The solution given above corresponds to the following field equation

(n-m
2
)(<fr,

Xμv

.<• X μ ^ ' .*• '
Xμv Xμv

^3 (
2 v

- m
2
r Ï 6. A = 0 ,

*' Xμ v

- 9
p
O-A)) - m

2
(-i8A

p

Xμv

= 0 .

. A
Xμ v

(U.26)

Here again 3«A and $' denote contractions.

The Lagrangian, from which this field equation follows is given by

£
 - - i (

V X
) 2 + 1 (*-*w»-*\v

+
1 <v;

) 2

- f r
2
[ (

3 ) j
A

v
)

2
- (3-A)

2
] -

' ) 2 + 6r<|>'A - i 8 r 2 ( A ) 2

V V V V

As indicated by the parameter r, we have obtained a family of Lagrangians.

In fact this family of Lagrangians is larger, since it is possible to redefine
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the field in the Lagrangian by using a symmetric transformation V:

The original Lagrangian

t= f^Ö-m2) ,4 , (U.28)

then turns into

, ^ , . (U.29)

Clearly VOV is again symnetric for arbitrary p', r' and s' (p1, r' and s'

being the parameters which determine V). Moreover, for arbitrary p' and s'

but r'=0, the new field operator V0V still satisfies condition (U.23).

The propagator of the massive theory is given by

ir(m) = I - — ) (02 + m20 + m1*) . (^>30)
^ iu \ w —ui / ill

ji As we proved for the general case it has the following properties:

>j i) ir(m)(0-m2) = i

? ii) w(m) has a first order pole at α-m2
 .

•: F rther its residue is positive definite, if ir(m) is sandwiched between

!•••' two sources.

:'"•• A massless field equation can be obtained by taking m=0 in the massive

/ field equation (It.26). Due to the special choice of the coefficients a.. (see

; ('t.23)) we obtain two equations: one for the original field $. and one for

the auxiliary field A . The fields decouple, such that we can take the

?'. auxiliary field to be zero.

We shall show that the field equation for the original field describes .̂

massless spin-3 particles. For this field equation we use the short-hand [•

' - notation ...

Here the wave operator 0 is still expressed in terms of projection and

transition operators

0 = (P
3
 - te>

2
 - 1 PJJ - f P

2
°

2
 - f (P?

2
+P2I)) « . (U.33)

The wave equation takes the explicit form:



where the sum is taken over all independent permutations of the indices X, i>

and v.

The spin-1 and spin-0 sector of the wave operator O can be represented by-

coefficient matrices O1 and 0° , as was done before (see eq- (U-25) )

<" - ( ? . ! ) • - • -<J I) • «•»>

Obviously 0 possesses a set of right and left null vectors

i) in the spin—2 sector x 2 = a ,

ii) in the spin-1 sector x 1 = g(i,O) , (U.36)

iii) in the spin-0 sector x 2 = Y ( 3 , - 1 ) ,

with a, 3 and y real.

One can redefine the field by the following gauge transformation for j=0,1 and

2

P

with x an arbitrary rank 3 tensor. r,"
" J 3

Here the x represent the right null vectors of 0 and consequently the >

field equation remains invariant under (U.3T). Thus a gauge invariance of the r

theory is caused by the right null vector of the corresponding wave operator 0. !"

Again it is possible to combine the gauge transformations (U.37) such that <-i
-2 -1 f

terms with Q , • cancel and the gauge transformation takes the form:

•i •+ *y + I 8,e • (U.38) f
"Xyv vXpv x^v X yv I

where e. is an arbitrary traceless rank 2 tensor, i.e. fc

I
e u = 0 . (U.39) £

In case the field $x is coupled to an external source T. the field |.

equation takes the form: f

0 6 = T . (U.Uo) "• :

Xyv,apy apY \vv

Multiplying both sides with a combination of left null vectors of 0 and

projection operators gives
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A

P .) O (U.U1)

for j=0,1,2.

Clearly left null vectors of 0 cause source constraints. Again the

various source constraints (U.i+1) can be combined such that terms proportional

The source constraint can then be written as
-2 -1

to o , D cancel.

= 0
Xpv MV

which is equivalent to

X Xpv S 3.T. = 0uv X Xpp

Like the spin-1 and spin-2 case it should be noticed that the field

equation (h.3h) and the gauge transformation (U.38) are a special case of the

set of equations discussed in the previous chapter, section 3. From the

general consideration given there it follows that this system of equations

(U.3M and (̂ .38) describes massless particles with only two helicity modes

± 3- There it was also shown that the field equation could be brought into

the simpler form of the massless Klein-Cordon equation

:) = 0 , (U.U1+)

by using the gauge condition

(9 • d») = 5 ) 9.. *fr •

ïó
Instead of the free field equation, we can consider the field equation in

presence of a physical source Ct.ltO). In this case we shall study the

propagator n and in particular we shall show that the pole part of TTTT (the

propagator sandwiched between two physical sources) gives rise to propagation

of only helicity modes ± 3. However, due to its null vector, it is no longer

possible to define the massless propagator as the inverse of the wave operator

0.

By using a gauge condition, like for instance (U.l*5), it is possible to

make the operator 0 regular. The propagator is defined by the inverse of the

wave operstor:

TT2 (k.k6)

Here irj is the inverse of the regular part of 0. In particular inverting the
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regular submatrices O1 and 0° of 0 gives

The second term in (h.k6) depends on the choice of the gauge condition. But

in any case it turns out to be proportional to a number of left null vectors

of 0:

± (<xF2
11

+ pi ) +5 (gpO _pO .
21 12' V 11 12 21'

(U.U8)

Therefore this last term, sandwiched between two physical sources, always

vanishes due to the source constraints (U.U1) and we get

TITT = TITJT . C».U9]

Thus the expression TTTT appears to be uniquely determined by the regular part

of the wave operator 0.

If we put o=1, e=-| , Y = - £ » 6 = | and e — ^ i n e q . (U.U8), the

massless propagator (U.U6) can be written as follows:

*=±[± 12

It can thus be shown that this form of the propagator corresponds to the

choice of the gauge condition given by (^.^5).

We shall evaluate now the expression TTTT. in order to show that only

helicity modes +3 propagate between the sources T^ . From (̂ .50) we find

Like we did in the spin-1 and spin-2 case we shall decompose the source in

terms of the polarization vectors e1 •> i=1 >2, and the vectors k = (k,ik )

and k = (k,-ikQ) (see also app. C).

The decomposition of T is done in momentum space. Furthermore we use the

on-shell relations which are satisfied by e1, k and k .

The most general decomposition of the source
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Ayv

will be restricted by the source constraint.

In momentum space the source constraint reads (see (It. 1*3) )

i k, ( T . - - f 6 T. l = 0 . ('t.53)
.J A v X\xv 4 uv Aoecr

•_ j It is rather easy to show that due to this source constraint the following

;', identities hold

.'•I B l j " 0, Vi * j ,

B1 = C1 = B = D = 0 , (U.5U)

I (k,k)C = \ B 1 1 ; B U = B22 = C-(k.k) .

. :i T. turns into

K T. = e f c W j k + I (ejejk A1-5 + ejk k A1) +
;;, Apv X y v xJjv

 l A v v A p v '
I + C I (k .e 1 e 1 (k ,k) + k.k k } + k.k k A . (U.55)

i

j Now we find as ± 3 helicity source combinations

!? . 1
; ar = — (+ T 1 1 1 ± 3 T 1 2 2 + i(3T112 - T 2 2 2 ) ) . (it.56)

(+) (+) (+)
Here we used the fact that e^ e e terms give ripe to helicity ±3S where

We a l r e a d y found t h a t TirT i s given by ( s ee (U.51) ) :

TifT = ]• 'fï, T, - r T , T. ) .
• v Apv Apv 't A^μ \wJ

Using the source decomposition (U.55) and the properties of the polarization

vectors ê  an(

A

following form

vectors e* and k , k (see app. C) the pole part of TwT takes the

118



2 j i i l y j k j = _Jp ( ( T m . 3T122)2
 + (3Ï112 _ T222)2)

J

2

From eq. (U.58) follows immediately that

(a) the residue of the rg pole is positive definite and

(b) only ±3 helicity modes do propagate, since the residue equals the sum of

the moduli of the ± 3 helicity combinations T and T .

In this section we have constructed field equations and Lagrangians for

massive and massless particles with spin-3. In both cases the field equations

are homogeneous second order differential equations. The corresponding

propagators turned out to have the required properties.

Lagrangians for massive spin-3 particles have also been constructed by

Hagen and Singh [3]. However, their field equations are not homogeneous,

since they contain also first order partial derivatives.

By using the root method for the case of spin-1, 2 and 3, we were able to

eliminate all superfluous spin components in a systematic way in order to

obtain the correct massive field equation. The massless field equation could

be obtained by putting m=0 in the corresponding massive equation. In the cases

considered here they agreed with the equations found by Fronsdal [UJ. The mass-

less theories exhibit gauge invariances, leading to source constraints. An

advantage of the root method is that the origin of this phenomenon can be

clearly understood, at least after performing the m-*0 limit. However, it

seems rather difficult to generalize the root method to the case of arbitrary

spin. This is due in particular to the fact that a systematic way to choose

the field and auxiliary fields has not yet been found.

However, this approach has general features which are useful in the next

chapter. There we shall study the problem of the zero mass limit in more detail.
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CHAPTER VII

OE THE ZERO MASS LIMIT OF HIGHER SPIM THEORIES

j 1• Introduction

In this chapter the higher spin field equations, constructed according to

* the root method will be considered from a different point of view. We shall

first repeat the main features of the way in which these equations have been

' • derived. Then it is possible to sketch the problems which we shall discuss

• i here in more detail.

( A massive spin-s particle can be described by a symmetric rank s tensor

field <|> (x), or yS\ and a number of auxiliary fields <TS~2 , <TS~ ,
i. Pi' • 'Vs

etc. The complete field configuration is denoted by <|> . In the following we

assume that a massive field equation can be derived by using the root method,

y< t -

i ' 0 ,4> , - m24> = 0 , {\.\)

where the wave operator 0 satisfies

d1 = PSon, for some n>s . (1.2)In general (1.1) does not immediately follow from a Lagrangian. Therefore it

is also assumed that the field <f> can be redefined by a symmetric, nonsingular

transformation V

<f> = V A' , , (1-3)

such, that the new wave operator

o = ov (i.U)

satisfies certain symmetry conditions, necessary for a derivation from a

Lagrangian. Then the massive field equation turns into

(0 . - m2V ,)•',= 0 . (1.5)

As was discussed before, the massless theory can be obtained from (1-5) t>y

putting m*0. In particular, if one makes a suitable choice for V, one obtains

a convenient transition to the m=0 theory: then the auxiliary fields decouple
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directly and can be set equal to zero.

In both the massive and the massless case the fields 4 are now supposed

to be coupled to a similar external source T . The simplest sources are

considered, i.e. it is assumed that they do not depend on the mass of the

particle.

We shall study the exchange of a spin-s particle between two sources. In

lowest order, the amplitude A(m) for the exchange of a massive particle is

given by

:i

A(m) = Tw(m)T, (1-6)

where ir(m) is the propagator obtained from (1-5).

A similar expression can be given for the exchange of a massless particle

between the same sources

B = Tir0T (1.7)

where ir0 represents the massless propagator.

The aim of this chapter is to compare A(m) with 3 for arbitrary small mass.

In other words, we shall study the existence of lim A(m), and we shall

investigate whether or not this limit equals B.

This problem has already been studied by van Dam and Veltman for the case

of spin 1 and 2. Whereas for the spin-1 case the m-»0 limit does not pose a

problem for the particle exchange, they showed that for spin 2 the zero mass

limit (1.6) is different from (1.7). We shall show that for spin 3 one cannot

even take the m-K) limit of A(m).

In the next section we shall make some general statements concerning the

amplitude A(m). In the third section the special cases of spin 1,2 and 3

will be considered. Throughout both sections we shall again make use of

projection and transition operators. In the final section the results of

section 3 will be briefly discussed.

tr

i.

J

2. The amplitude A(m)

In this section we shall consider the amplitude A(m) from a rather general

point of view. The question whether lim A(m) exists and whether it equals the

massless amplitude B can then be answered in a systematic way.

We should stress again here, that in both amplitudes the sane sources are

used. Consequently the sources in the massive and in the massless case both
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satisfy the constraints which follow from the gauge invariances of the massless i

theory. It is also assumed that these sources are independent of the mass of

the particle. 1

Our starting point is the massive free field equation (1.1). For the non- %:~

symmetric wave operator 0, which occurs in (1.1), we give the following

decomposition

0 , = Ps ,a + 0 , , (2.1)
(a,o) ÜI,(Ü o>,«

where Ö is related to the lower spin sectors, i.e. -

Ps0 = 0 . (2.2)

As a consequence of condition (1.2), 0 satisfies

0 s = 0, but 0s"1 # 0 . (2.3)

For at least one spin sector (2.3) must he satisfied.

In order to evaluate the amplitude A(m) we give the general expression for ~;

the propagator in terms of

Ps 1
w(a) = - - 5 - V~1 (O8"1 +m 2Ö s~ 2 + ... + m2(s"1 }(i-Ps)) . (2.U)

o-m m

This propagator is obtained from the symmetric field equation (1.5)- Then the

amplitude A(m) is given by

1 Q

A(m) = TP T - A ,
2 c

TP T A
•-m2 c

with

c i
m

/"•'• Clearly, lim A(m) exists if A vanishes for any value of the mass m.
- : m+0 C

j\ In the following we shall only consider the particular spin-J sector for

£-..' which (2.3) is satisfied. The corresponding part of 0 in this sector is given

I O • i f-, eijpi»-.-« • <2-6)

;̂  N denotes the dimension of the matrix a (K>s).

y
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According to (2.3) we must have

as = 0 and as~1 * 0. (2.7)

The spin-J part of the sources can be represented as follows

N
T = Y T.e. . (2.8)

Here {e.=e. } represents an orthonormal set of vectors defined toy

I By using (2.6) and (2.8) we get for A in momentum representation

.-v m k,£,n

7 From (2.10) it is clear that A vanishes, only if the numbers T. , which
* — C £

' ^ determine the source T , satisfy the following n conditions
Co

;'., Or, in other words, lim A(m) exists, if the numbers T satisfy (2.11).
[.•< m-»0 K

• On the other hand, as already was stressed, we used the same sources in

?-.-.' the massive and massless theory. Therefore the massive source must obey the

f j constraints of the massless theory. Such source constraints are caused by

i • left null vectors x- of a, as was demonstrated in the previous chapter.

'f • By using the representation (2.8) for the massive source, it is easy to

f' '; see that source constraints must have the following form

•'- H

''•] k=1 XL'kTk

i^ In case of higher spin auxiliary fields have to be introduced. In the mass-

less limit these auxiliary fields decouple. Therefore the source components,

'3 associated with these auxiliary fields, vanish. Suppose that in the spin-J

Vi sector k components correspond to the original field i.e. T,,...,Tk, then the

s'?- remaining N-k components are zero in the massless theory
fi'
f;
ft T k + 1 ~ T k + 2 ~ ""* T N ~ "
I I
f- We summarize this discussion as follows. ""-t
'p. J?*

y In both the massive and the massless case we used the same, mass
£- independent, sources in order to evaluate the amplitudes A(m) and B. Therefore
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in both cases the sources must satisfy (2.12) and (2.13).

On the other hand, the existence of lim A(m) leads to an additional set of
'• ar»O

!; requirements (2.11). Thus is can be understood that lira A(m) - evaluated with

f J sources from the massless theory - exists, if the conditions (2.11) follow

i from (2.12) and (2.13).

In the next section we shall investigate whether massless sources give rise

to existence of this limit in case of spin 1,2 and 3.

3. The massless limit in case of spin 1,2 and 3

A. Spin-1

The spin-1 case is the simplest case. Condition (2.7) is satisfied in the

spin-0 sector which has dimension N=1. With the results of chapter 6, section

2 we find for the massive and massless amplitude A(m) and B

A(m)
1 1 _

_ _ tnpiiTi — ___ rrr

o-nr

B = - T(P1+P°)T .
•

In both cases the source satisfies the massless source constraint

P°T = 0 .

(3.1)

(3.2)

(3.3)

Since there are no auxiliary fields in the spin-1 case we do not have conditions

of the type (2.13). Clearly lim A(m) exists, and moreover we get
m-H)

lim A(m) = B = ̂  TPXT (3.10

i>

B. Spin-2

For the main features of spin-2 field theory we refer to chapter 6, section

3. There it can be checked that condition (2.7) is satisfies in the spin-0

sector, which has dimension K=2.

Firstly we evaluate the source in the spin-0 sector, which in this case is

determined by two real numbers TJ and xg (see (2.8) ). The spin-0 part of the

wave operator is given by
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I

a = ( ) . (3.5) L
00 §

Its left null vector x, = (0, A) leads to the following source constraint (see

(2.12) ): i)

PljjjT = 0 , or T 2 = 0 . (3-6) ^
I-j

This is the only condition on the massless source since there are no auxiliary ••

fields in case of spin-2. p

Secondly we investigate whether lim A(m) exists. If this limit exists, the I"'

requirements (2.11) must be satisfied. Since Tj = 0 ve get from (2.11):

and (3-7) j.

Here a represents the spin-0 component of the massive wave operator

2

and V" is given by

J' (3-9)

The expression for V~ can be obtained directly by inverting V, which has been

determined in the previous chapter. With (3.8) and (3.9) it can easily be

verified that (3.7) is satisfied. Consequently lim A(m) exists.
m-*0

Finally we check whether lim A(m) equals B.

By using the massive and massless propagator we find for the amplitudes

A(m) and B

TP2T 1 1
A(m) - — TP1! - — T (| (q2-Hn2)P°2 - \J1 m^P^+P^)) T , (3.10)

i 1
B = ̂ T(P2-^pJa)T . (3.11)

Note that one can add combinations of P1, Pj o and PjJo to the massless

propagator, without modifying B. This fact is a consequence of the source

constraint (3.6). Of course another consequence of (3.6) is that A(m) reduces



1 ';/
A(m) = ÏP2T , (3-12) '

o-m2

from which one can understand that lim A(m) never equals B.
nnO

C. Spin-3

'•-• In this part we investigate the zero mass limit for the spin-3 case. Here

we shall use some of the results which were found in chapter 6, section h. One

of these results for instance is the fact that condition (2.7) is satisfied in

the spin-1 sector which has dimension W=3.

Consequently the spin-1 component of the source, given by (2.8), is

determined by 3 real numbers TJ, T2 and T3.

First we evaluate this source in the massless case. The spin-1 part of

the wave operator is given by

/0 Ox
j S1 = ( } . (3.13)

\ 0 -k '

'i The left null vector x, = (A,0) leads to the following source constraint (see

\ (2.12) ):

PJJT = 0, or TJ = 0 . (3-11*)

In the massive spin-3 case we introduced a spin-1 auxiliary field. As a

\'? consequence of the decoupling of this field in the massless case, the

corresponding source component must be set equal to zero, i.e.

T 3 = 0 . (3.15)

;- Thus the spin-1 part of the source T is determined by the vector (TJ,T2,T3) =

f (0,T,0).

j. .' Then we can answer the question whether this source leads to a vanishing

j__ A . As was explained in the previous chapter this leads to new conditions

S (2.11).

;• Since we use the same source (0,T 2,0) in the massive case, the conditions

y (2.11) reduce to the following set

f 'C2(V'1)22T2 = 0 >
I 2 22 2 (3>16)

Here a represents the spin-1 part of the wave operator which, according to the
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previous chapter, is given by

0 0 0
1

-1

(3.17)

Then

15

0 0

0 0

0 0

(3.18)

From (3-17) and (3.18) one immediately sees that the second requirement of

(3-l6) is satisfied. According to chapter 6,V is given by

0 -fi r^3
-U r/ij
r/TJ -I8r2

(3.19)

Then

2U

-19

5/5

5/5 £
1 — (3.20)

..-1.Since (V~ )22 ̂  0, the first condition of (3-16) is not satisfied and lim A(m)

does not exist.

The only possibility for lim A(m) to exist is to take i\ = TJ = T3 = 0,

which implies that the spin-1 components of T are aero. Clearly a source

satisfying only the constraints of the massless theory does a priori not lead

to a well defined limit of A(m) for vanishing mass. A source which only has a

contribution in the highest spin sector makes the zero mass limit possible.

For this limit, however, one is again faced with the inequality lim A(m) -̂  B,

which arises in the same way as in the spin-2 case.

k. Conclusions and summary

In the previous two chapters we showed the construction of field theories

for massive particles with arbitrary spin by using the root method and ths

formalism of projection operators. This has been done explicitly for the case

of spin 1,2 and 3-
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fr-
it one compares the massive and massless field theory for a particle with i

spin s, some discontinuities between both theories can be observed.

First if the spin value is greater than two, there is a discontinuity on

the level of the Lagrangian. In this case a massive particle is associated

ith an s rank
(s-2) (s-k)

with an s rank symmetric tensor field • and a set of auxiliary fields
( ) (k)

I
etc. These fields have been transformed in such a way that the

coupling between this field and the auxiliary fields takes place only in the

mass term. By putting m=0 in this Lagrangian, the massless Lagrangian is
(s)

obtained, which consists of two terms, one Lagrangian for the field $ and

one for the auxiliary fields.

By taking the auxiliary fields to be zero a suitable massless Lagrangian
(s)

in terms of the original field <(> has been obtained. This phenomenon has

been explicitly demonstrated for the case of spin 3.

Another type of discontinuity between the massive and the massless theory

arises if one compares the amplitudes describing exchange of a spin-s particle

between two external sources. In both the massive and the massless case the

same sources, obeying only the constraints from the massless theory, are used.

It was first noticed by van Dam and Veltman [1 ] that the m=0 limit of the j--;

amplitude in the massive case does not lead to a corresponding amplitude for a '.•

massless particle. They have demonstrated this discontinuity for the case of

spin 2. The same discontinuity, however, «arises also in the case of spin p :i"

[2]. As was shown in the previous section, the origin of these dis- |

continuities can be easily understood by using the formalism of projection

operators.

For higher spin one can in general not even take the zero mass limit of

the amplitude in the massive theory. In the previous section we showed that

for the case of spin 3 the massive amplitude becomes infinite for vanishing

mass, if a general source of the massless theory is taken. However, if this

source satisfies more restrictions than only the massless source constraint,

the zero mass limit becomes possible. This can easily be verified for sources

containing only the highest spin.

Throughout this chapter it was assumed that the external sources were

independent -of the mass of the particle. However, others [3] have studied the

same problem, making use of sources which do depend on the particle's mass.
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Appendix A. Conventions and metric 11

Units .*

Throughout this thesis we use units in which h = c = 1 . jf

Metric

A four-vector &. is given by r̂T

' a = (a,a4) = (a,ia0) (A.1) j

In particular: x = (x,Xi,) = {x,it) , L

k = (k,kij = (k",iE). -;-'•

We use a metric which is given by tC;

<5 = diag (+1,+1,+1,+1) . <A.2)

't
Also the Einstein summation convention is used, i.e. instead of ^

> if \
I. ) a b we write a b . :..

V P U U V'

s
: Thus the scalar product of two four-vectors a and b is given by ['

a»b = a b = (a,b) - a b . (A.3)

It should be stressed that the factor i in the fourth component is only useful

;.. for ease of notation and it should not be reversed when one takes the complex

*;•'' conjugate of a four vector i.e.

[i: if a = (a,iaQ) ,

f5 then a* = (a*,ia*) = (a*,-a*) (A.U)

[- Appendix B. Projection and transition operators

In this appendix we list the projection and transition operators for £;

j spin 1,2 and 3- In all these cases the operators are combinations of the „ ;

;': following basic quantities ;-.-
t • ' -

\c "uv ~ a \i v ' .-••

I- and (B.1)
fe 6 = 6 - ca ;
W. uv pv pv
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1
Spin-1

The spin-1 projection operators are given by

P1 = 6 : P° = (e
JJV }JV ' \iV pV

(B.2)

Spin-2

The spin-2 projection and transition operators are given by

p 2 = | J e e - ̂ e e
pv,pa 2 *• pp va 3 vv po

^ y y e (o ,
2 MP VffVff

p ° = — e e P ° = w w .
11,Uv pa 3 uv pa 22 uv,pa yv pa

(B.3)

P° = P° = \ /3~ 6 ai
12 yv.pa 21 pa,yv 3 pv pa

•'•"A'

Here the summations denote summations over all independent permutations of

l»»v,p and a. For instance P1 reads explicitly
uvpa

p1 = - (e u + 6 Ü ) + e « + 6 ( ü ) .
pvpa 2 v up va vp ua \ia vp va pp7

(B.I*)

f

'.I,. 1

Here we give the projection and transition operators for a field configuration

$ consisting of the original field (j>, and an auxiliary field A .
Ap v O

From the number of indices one can see whether the operator works on the
ij>, or the A part of $.
Xpv a r T

Again the summations below are performed over all independent permutations

of the indices, which in this case are cyclic permutations.

Vrn)] -

WaXl Bμ yv
 +
 6v y»' ~ 22

P
22

P
2 !
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I
pi

S'

pO
M l

P2l

p1 = e ,
33 p,a pa '

P33 p,a ~ wpa *

pi = — /T
r3l a,Xuv 3

32 C,XMV 15

P3I

P332 a,Xuv " 3

«a*

e.e

(B.5)

As an example P^ is also given explicitly

P32 - I Kx\v + "WeAv + uavex J •

The remaining transition operators follow from

(B.6)

(B.7)
IJ «,(!)' Jl U' ,0)

where u and u' denote the 3- or 1-index set in eq. (B.5).

In all these cases it can be shown that the set of projection and transition

operators have the following properties:

and
ij

s L

L=Oj "

where S is the highest spin present.

(B.8)

(B.9)
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Appendix C. Polarization vectors

In this appendix we summarize the definition and the main properties of

polarizaiton vectors e (k) in the massless case. To a four-momentum 'vector

k = (it,ik0) are assigned four polarization vectors e , A = 1,2,3,** .

ej(k) = £!(£),0)

ef(k) = (e2(£),o)
V (C.1
ej(k) =

ej(k) = (3, i) .

The three-vectors e. (i=1,2,3) form an orthonormal set vith e3
1 x

The polarization vectors E satisfy the following relations

k ) = 6 W • (C'3)

;V Instead of e1 and e2 one may use e corresponding to states with helicity

eigenvalues ±1

e ( ± ) = + — (e1 ± ie2) . (C.lt

v J v v

(+1) .Products of s times e i.e.

correspond to states with helicity eigenvalue ±s .
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SAMENVATTING

In de elementaire deeltjes fysica houdt men zich onder meer bezig met de

volgende twee problemen.

1) het langs experimentele weg verkrijgen van inzicht in het bestaan van di-

verse deeltjes en hun eigenschappen,

2} het construeren van theorieën - bekend onder de naam quantumveldentneo-

rieën - waarmee bekende deeltjes kunnen worden beschreven en waarmee moge-

lijkerwijs ook het bestaan van nieuwe deeltjes kan worden voorspeld.

In dit proefschrift worden enige aspecten, die op beide problemen betrek-

king hebben, behandeld.

Veel informatie in de elementaire deeltjes fysica wordt verkregen uit expe-

rimenten, waarbij men bundels deeltjes op elkaar laat botsen. Bij dergelijke

verstrooiingsexperimenten meet men hoe grootheden als differentiële werkzame

doorsnede en polarisatie afhangen van de energie en de verstrooiingshoek van

deze deeltjes. Anderzijds staan deze grootheden in betrekking tot theoretisch

belangrijke grootheden zoals de botsingsamplitude. De botsingsamplitude is

een complexe functie en de differentiële werkzame doorsnede en de polarisatie

zijn te schrijven als kwadratische combinaties ervan. Daar kennis van de ampli-

tude informatie levert omtrent het bestaan van deeltjes en hun onderlinge wis-

selwerking, tracht men deze amplitude te bepalen uit de experimenteel be-

paalde grootheden.

Een belangrijke vraag bij deze procedure is, in hoeverre de amplitude een-

duidig is bepaald door differentiële werkzame doorsnede, polarisatie en

unitariteitseisen. Zelfs als men hierbij uitgaat van de ideale situatie, dat

experimentele fouten kunnen worden verwaarloosd, blijkt dat de amplitude

niet altijd uniek is bepaald. In een dergelijk geval spreekt men van een

faseverschuivingsmeerduidigheid.

Nadat in hoofdstuk II de voornaamste resultaten met betrekking tot deze

problematiek zijn samengevat, worden in de daaropvolgende twee hoofdstukken

dergelijke faseverschuivingsmeerduidigheden geconstrueerd. In hoofdstuk III

wordt dit gedaan voor elastische verstrooiing van deeltjes met spin 0 en in

hoofdstuk IV wordt het geval behandeld van elastische verstrooiing van deeltjes

met spin 0 aan deeltjes met spin 5. Het uitgangspunt in beide hoofdstukken is

dat de amplitude afhangt van een willekeurig, maar eindig aantal partiële gol-

ven.

Het tweede hierboven genoemde probleem is, om voor de nu bekende deeltjes
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theorieën te construeren, die de eigenschappen van deze deeltjes en hun onder-

linge wisselwerkingen bevredigend beschrijven. In dergelijke, zo geheten

quantumveldentheorieën, wordt een deeltje beschreven door een veld, dat voldoet

aan een zekere differentiaalvergelijking of veldvergelijking.

In het geval dat men deeltjes zonder wisselwerking beschouwt spreekt men

van een vrije veldentheorie en van vrije veldvergelijkingen. In dit proef-

schrift wordt de constructie van dergelijke vrije veldvergelijkingen besproken

voor deeltjes met hogere spin en met massa ongelijk aan nul. Het is bekend

dat deze deeltjes worden beschreven door een tensorveld, dat voldoet aan de

Klein-Gordon vergelijking.

Aangezien dit tensorveld meer vrijheidsgraden bevat dan nodig zijn voor de

beschrijving van een deeltje met spin s, voldoet het veld aan een aantal aan-

vullende vergelijkingen, waardoor de overtollige vrijheidsgraden kunnen worden

geëlimineerd.

Op theoretische gronden is het gewenst de genoemde vergelijkingen af te

leiden uitgaande van het actie principe. Een centrale rol wordt hierbij ge-

speeld door de Lagrangiaan, een Lorentz covariante functie, die afhankelijk i=;

van het veld en zijn eerste orde partiële afgeleiden. De Lagrangiaan moet zó

geconstrueerd zijn, dat de vergelijkingen die daar volgens het actie principe

uit volgen, gelijkwaardig zijn met de eerder genoemde Klein-Gordon vergelij-

king en de aanvullende eisen.

Hoewel dezelfde vergelijkingen worden verkregen, kan kennis van de La-

grangiaan waardevol zijn om diverse redenen, zoals het uitvoeren van quantisa-

tieprocedures en het invoeren van interactie.

Na een inleiding in deze problematiek in hoofdstuk 5 worden in hoofdstuk 6

vrije veldvergelijkingen en de bijbehorende Lagrangiaan geconstrueerd voor

deeltjes met spin 1, 2 en 3. Bovendien wordt aangetoond hoe uit de verkregen

veldvergelijking voor massieve deeltjes de veldvergelijking voor massaloze

deeltjes volgt. In hoofdstuk 7 worden de theorieën voor massieve en massaloze

deeltjes in meer detail bekeken. In het bijzonder wordt de uitdrukking verge-

leken voor de amplitude die uitwisseling van een deeltje tussen twee uitwen-

dige bronnen beschrijft. Aangetoond wordt dat het nemen van de m=0 limiet in

de uitdrukking zoals die verkregen is in de massieve theorie, aanleiding geeft

tot problemen: in bepaalde gevallen kunnen discontinuïteiten optreden en in

andere gevallen blijkt de limiet niet te bestaan.
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'. Met een methode, die verschilt van de in dit proefschrift behandelde

'root method', kan een acceptabele Lagrangiaan worden gecor-struserd voor

een deeltje met spin h en massa ongeliji: nul.

2. Het uitgangspunt dat veidvergelijkingen voor massieve deeltjes met spin s

in de limiet m-K) overgaan in de door Fronsdal gevonden veidvergelijkingen

voor overeenkomstige massaloze deeltjes, suggereert de mogelijkheid om voor

massieve deeltjes met heelfcallige spin een Lagrangiaan te construeren in ter-

men van symmetrische tensorvelden, waarvan het 2-voudige spoor nul is. Een

dergelijke Lagrangiaan zal echter niet het resultaat kunnen zijn van de

in dit proefschrift behandelde 'root method'.

C. Fronsdal, Phys.Eev. Djjj (1978).

3- Voor een ferromagnetisch Ising model5 gedefinieerd op een planaire graaf,

geldt voor een randrij (v1,V2,v3,vit) de volgende correlatiefunctie-

ongelijkheid:

V1°V2 V3°V|» ~ V1°V3 V2°v'»

h. In de hieronder vermelde referentie is voor een Ising model op een pla-

naire graaf een correlatiefunctie-identiteit afgeleid voor een randrij

(v ,...,vn) met n even.

Deze identiteit is als volgt uit te breiden voor een willekeurige deel-

verzameling A van de vertexverzameling van de graaf:

(~if(a a oj(a
n

n
k=1

J. Groeneveld, R.J. Boel and P.W. Kasteleyn, Physica 93A (1978).

I
f

Fr

5- Bij systemen, bestaande uit alleen bosonen of alleen f ermionen, bestaat

een natuurlijk verband tussen de representaties van een Lie algebra in de

1-deeltjes ruimte en in de Jock-ruimte. Bij gemengde systemen komt daar-

voor in de plaats een dergelijk natuurlijk verband van 'graded' represen-

taties van 'graded' Lie algebras.

6. Stel aCM en b£Z, dan is bekend, dat voor ieder polynoom P(x) met gehele

coëfficiënten geldt, dat P(b+a) - P(b) deelbaar is door a.

Voor het Legendre polynoom P (x) = -7 f-r-j xn(i-x)n, n€2J , geldt zelfs

dat P (b+a) - P (b) deelbaar is door 2a.
n n



7. Met de huidige kennis van de werkzame doorsnede voor het proces e e -*

hadronen, is het niet mogelijk om massa's van quarks saet acceptabele

nauwkeurigheid te bepalen.

ö. Met behulp van het door Dirac ontwikkelde formalisme voor mechanische

systemen met restricties, kan een expliciete reductie worden verkregen

van het 0(K) niet-lineaire α-model, waarbij het aantal vrijheidsgraden

met 1 is teruggebracht.

9- Het manipuleren met Grassmann-variabelen in een theorie met supersymmetria

krijgt een duidelijke wiskundige betekenis, vanneer men de fysische

Hilbert-ruimte uitbreidt tot een moduul over een Grassmann algebra. Dix

kan worden geïllustreerd aan de hand van een door van Hove behandeld een-

voudig supersymmetrisch model.

L. van Hove, Nucl. Phys. B207 (1982).

10. Het door ÏÏ.A. Dyson gepubliceerde boek over toepassing van kernfysica ir.

de geneeskunde, dient over de diagnostische methoden met radio-actieve

nucliden informatie te verschaffen overeenkomstig de meest recente inzich-

ten en technische verworvenheden op dit terrein.

N.A. Dyson, Nuclear Physics with applications of radioisotopes in

Medicine and Biology (Ellis Horwood Ltd. Chichester 1981).

11. In het onderwij s is het plan ontwikkeld om in de toekomst leerlingen

langer in heterogeen klasseverband bijeen te houden. Een maatregel, waar-

door het aantal leerlingen per klas wordt vergroot heeft echter een nega-

tief effect op de gewenste succesvolle uitwerking van dit plan.
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