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INTRODUCTION

The branch of theoretical physics investigating the foundations of
statistical physics, consists of two parts. The first part tries to explain
why it is permissible to use a statistical phase average of a relevant mechanical
quantity, instead of its time average (the ergodic problem). The second part
is interested in the existence and other properties of the so-called thermo­
dynamic limit of the functions of statistical thermodynamics (the asymptotic
problem). A treatment of these problems can be either classical or quantal,
but in this thesis only the first possibility comes up for discussion. As a
matter of fact, the theory of statistical physics can only be considered to
be founded in a satisfactory way, if the underlying properties of the inter­
action potential are in agreement with what is known from other fields of
molecular physics. Since at first this was found to be too hard a task,
simplifying potential models were introduced. Until almost half a century
after G ibbs’ rather intuitive ensemble theory (1902),the interaction had to
be even altogether neglected (separable system, e.g. the ideal gets) in order
to get any results. This period was closed in a brilliant way by the work
of K hinchin.

The asymptotic problem consists of at least three separate existence-of-a-
limit questions for each of the three formalisms of statistical thermo­
dynamics (microcanonical, canonical and grand canonical); the most
important properties to be established for the limit functions are the
equivalence relations (implying that each formalism generates the same
thermodynamics). Now for a separable system, the asymptotic problem
reduces to the equivalence question, and the method of proof developed by
K hinch in  is characterized by the application of the central limit theorem
of probability theory.

The investigation of real systems was opened by Van H ove’s paper on
the existence of the thermodynamic limit of the canonical free energy (1949).
The treatment of this limit and the corresponding one in the grand canonical
formalism (the pressure), has finally been drawn out of the stage of un­
satisfactory potential models by F ish e r and Ruelle, independently
(1963/64). About the same time Gri f f i ths  derived a remarkably simple



theorem with the consequence that actually five instead of two limits were
established definitely.

A crucial requirement of the pair potential, found in this recent work,
is the “stability” , which means the following. Taking into account only the
fact that the pair potential has a finite minimum, the minimum interaction
energy of N  particles is seen to satisfy the inequality “E ff  >  a negative
constant times N p ” with p  =  2. For 1 <  p  <  2, however, the free energy
per particle blows up for N  -> oo, whereas for 0 ^  p  ^  1, it may tend to
a finite limit. Therefore the potential is called stable if the inequality is
satisfied with p  =  1. The Lennard-Jones potential, for example, is shown
to be stable, and to accomplish actually the existence of the limits mentioned
above.

The object of investigation which has led to this thesis, has been the
extension of the asymptotic results for real systems to the equivalence
question, following up the ideas of K hinch in  concerning the use of proba­
bility theory. The derivation of the equivalence relations given in chapter I,
is based op a potential which is stable and “strongly tempered” (i.e. negative
at large enough distances). The method of proof is a synthesis of elements
due to K hinch in  (application of the central limit theorem) and F isher
(use of subadditivity). Moreover the number of functions for which the
thermodynamic limit is shown to exist, is increased with two microcanonical
ones: the entropy and the temperature.

Since this first chapter is written in the form of a research report (it will
appear as such in “Physica”), it is rather compact. Therefore a second
chapter is added which elaborates some points only referred to in chapter I.
The following scheme of correspondences should be noted:

Chapter I Chapter II

§ 2. thermodynamics
statistical functions
ergodic problem
stability of the interaction
Griffiths’ theorem

§ 6. phase transition problem
§ 4. Khinchin’s asymptotic results

§ 1 -
§3.
§ 2, § 5.
§ 6.
Appendix
§4, §5.
§ 6, Appendix



Chapter I

ON THE ASYMPTOTIC PROBLEM OF STATISTICAL
THERMODYNAMICS FOR A REAL SYSTEM

§ 1. Introduction. Statistical thermodynamics gives a prescription how to
determine “thermodynamic analogies” from a statistical function (canonical
or grand canonical partition function; in the microcanonical case there is
some ambiguity). These analogies are supposed to represent asymptotically
the corresponding thermodynamic functions in the “thermodynamic limit”.
The first question we encounter is therefore: (a) does the existence of such
limits indeed follow from the properties of the interaction entering in the
definition of the statistical functions? This question may be split into two
parts: (a') for those analogies which are simply proportional to the logarithm
of a statistical function (microcanonical entropy, canonical free energy,
and grand canonical pressure), (a") for all others. As is well-known, the limit
functions to which (a') refers, imply the knowledge of all other thermo­
dynamic functions, so that we may ask: (b) whether the latter determination
agrees with the limit functions to which (a") refers. Furthermore, there is the
important question concerning: (c) the equivalence of the various formalisms,
on the basis of the relations between any two of the statistical functions. All
this together constitutes the asymptotic problem of statistical thermo­
dynamics (for a detailed statement, and a survey of its treatment in sections
3-5, see section 2).

At first separable systems (for example the ideal gas) were considered.
Then the canonical and grand canonical partition functions factorize, so
that in these formalisms the questions (a) and (b) present no difficulty. The
treatment of the remaining problem for such systems in general (i.e. without
reference to the internal structure of the non-interacting components),
has been brought into its simplest form b y K h in c h in 1). The feature of his
approach is that the asymptotic evaluation of a statistical function (struc­
ture function or canonical partition function) is conceived as a limit problem
of probability theory, to which the so-called central limit theorem is appli­
cable.
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Then the way was paved for the consideration of nonseparable systems
where (a) and (b), in the canonical and the grand canonical formalisms, are
also problematic. The treatment of (a') in these cases has had an evolution
of its own: from the consideration of systems with hard core-finite range
interaction, to the latest developments on the basis of very general in­
teraction properties (a review of this has been given by R u elle2)). In its
earliest stage the approach to these existence problems has served as a basis
for Y am am oto and M atsu d a3) in extending K hinch in ’s work on the
equivalence problem, and in its recent stage it has done so again for us (for
a discussion of the various methods involved, including that of our previous
paper4), see section 6).

In dealing with (a") and (b), as well as with (c), we have also taken
advantage of the conditions on the interchangeability of the thermodynamic
limit and differentiation, found recently by G rif f ith s5) (in connection
with a treatment of the question (a') in the quantum canonical formalism
for a spin system).

§ 2. Statement of the asymptotic problem. In classical statistical thermo­
dynamics one determines from the Hamiltonian function of a system the
Gibbsian analogies of its thermodynamic functions. For a system of N
identical point particles with mass m and pair interaction, the Hamiltonian
function depends on the configuration rN =  (iq, ..., rN) and the set
of momenta p N =  (pi, ..., P n ) as follows,

(■0N) 2 *
Jr N{r*, p N) =  - V -  +  E *(|r< -  r,\). 0)

2m 1,1=1
i<1

where u is the pair potential. All positions rt(i =  1 ,...,N) are restricted to
the volume V of the system.

Besides N  and V, we will consider the following thermodynamic quanti­
ties: E, the internal energy, S, the entropy divided by k (Boltzmanns
constant), /S, the inverse absolute temperature divided by k, F, the free
energy multiplied by —/?, /.i, the chemical potential multiplied by ft, and
p, the pressure multiplied by /?. Instead of the extensive quantities V, E, S
and F, we will mostly use their specific values v =  V /N , e =  EfN, s =  S/N
and ƒ =  F/N.  Of the set of seven intensive quantities thus obtained, two
are independently variable. For any choice of them we have

f  =  s — fie, (2)

H =  /  — pv. (3)

There are three alternative ways in common use to determine thermo­
dynamic analogies from y,  each of which is based on one of the statistical
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functions En, On and Sy  given by

En {E, V) =  ~ j j d r N  dpNa{E -  Jt?N(r», p*)},

(E0{E, V) =  a{E)), - o o  <  E <  oo, (4)

where a denotes the unit-step function,

0v(/S, V) =  —  ƒ ƒ dr-^ dpN exp {—̂ N(rN, pN)},

(Ö>o(/S, V) =  1), 0 <  ft <  oo, (5)
and

OO

f*) =  El T), —OO <  n  <  oo. (6)
jv-o

According to the microcanonical formalism, the logarithm of the function
(4) is the analogy Sffl of S as a function of N, E and V, or written with
specific values,

f v) =  -jj- log EN(Ne,Nv)*). (7)

The analogies of the remaining thermodynamic functions are derived from
this basic one by means of “thermodynamic” formulae:tfe|g§Jĝ  m

(9)

and (2) and (3) applied to this formalism.
The connection of this theory with thermodynamics is based on two

suppositions. The first one is: the sequence of functions defined by (7) for
N  =  0, 1 , 2, 3, . . .  attains a finite limit s<m*,

lim s<“ > (e, v) =  s<®> (e, v), (10)
N -*co

which operation may be interchanged with differentiation so that for (8)
and (9)

lim P^\e, v) — v) as (e> v)  ̂ (i i)
jV ->oo 06

lim p(x \ e ,  v) =  p(m)(e, v) =  Ss ^  . (12)
V —oo ov

*) For our purpose this is the most convenient one of the two alternative microcanonical
entropy analogies; see furthermore section 5.
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The second supposition is that these limit functions are the true thermo­
dynamic functions. Then s fr \  f t ^ \  etc. are very good approximations for
macroscopic systems (N  1023) to s, ft, etc. as functions of e and v. If we
do not use specific quantities, we say that S f f \  ft(™], etc. are asymptotically
equal to S, ft, etc. as functions of N, E  and V in the thermodynamic limit.

The aim of the investigation of the foundations of statistical thermo­
dynamics is the reduction of the above suppositions (and others still to be
mentioned) to consequences of properties of the interaction between the
particles. The second of the above mentioned suppositions gives rise in this
way to the ergodic problem of statistical thermodynamics. This problem
has not yet been solved in a satisfactory way, and therefore it is of importance
already to establish, in addition to the existence of s<m>, its proper behaviour
with e and v, i.e. concavity in both variables. All questions concerning
existence and other properties of the different analogies, defined according
to the microcanonical as well as the other formalisms, in the thermodynamic
limit (including the equivalence question) constitute the asymptotic problem.

The other formalisms are the canonical one, according to which the
logarithm of (5) is the analogy F $  of A as a function of N , ft and V , and the
grand canonical one, relating the logarithm of (6) as analogy to the quantity
pV  as a function of V, ft and fx. Similar to (7), (8) and (9) we have, re­
spectively

The supposed (thermodynamic) limit properties of these functions are

/$(/?, v) —  log <Pnr(/S, Nv), (13)

Zf%\ft, v)
e%\ft, v)

¥ $ (ft, v)P W >  v)

(14)

(15)

and

p{f{ ft, (A =  - y  log 3v{ft, ft)> (16)

1 Spf{ft, fx) (17)
/A

e f \ f t ,  iA _  8p f ( f t ,  lA
vf f̂t, /A

(18)

hm fjf(ft, v) =  /«=)(/?, v) (19)
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with /(°> convex in /? and concave in v,

lim <#>(/?, v) = eW(p, v) =  -  ■'p ‘■ , (20)
iV-*x>

v' ■ a/(c),(ft v)
lim ^ { 0 ,  w) =  #<c)(/ï» w) = -----5------. (21)

W -o o  ÖW

and
lim p W . f i )  =  pM(P,fi) (22)
V -+ -0 0

with >̂<s) convex both in /5 and p,

hm v f t f ,  fi) =  »«) (p, p) =  — 1 /  , (23)
V—>oo I v p

. \ ■ dfiteHB, u)
lim ef{p, p) =  eM(p, p) =  -*>te>Q3, ,,) • (24)
F-*oo Op

Note that the above mentioned convexity properties follow at once from
the existence of (19) and (22), respectively, since according to (5) and (6)
we have

B W .  V) m  -8 8 l0 g - f - y )- >  0, (25)

(26)

B f (p ,  p) -  >  0. (27)

These inequalities state that before the limit of (13) or (16) is taken, the
(conserved) convexity properties are already present. If a function is convex
(or concave), it has to be continuous, whereas its derivative as a mono­
tonous function has only a countable number of jump discontinuities. In
the following we will have to take into account these jump discontinuities
for the limit functions (20) and (23). According to thermodynamics, they
are interpreted as first-order phase transitions in the e — p diagram at
constant v, and in the v — p diagram at constant p. For the sake of simplicity
we assume only one transition point fit where g(c> jumps from to et,2
(>  et,i) and one transition point pt where vte) jumps from »t,i to Vt,2 (>  &t,i)-

The concavity properties of (10) and (19) cannot be established for (7) and
(13), respectively (before the limit is taken). Moreover, according to the
thermodynamic interpretation, the limit functions (11), (12) and (21) have
to be monotonous without jump discontinuities, so that it is also a part
of the asymptotic problem to prove in addition to the existence of /hm> its
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continuity in e, and in addition to that of /><m> and£<c>, their continuity in v.
By equivalence of the various formalisms of statistical thermodynamics

in the thermodynamic limit, we mean the identity of the various limit
functions obtained for the same quantity if expressed in the same variables
by means of Legendre transformation. I t follows that the equivalence of the
microcanonical and the canonical formalisms is established by the relation
(cf- (2))

s<m>(e, v) =  /<°>(a(e, v), v) +  a(e, v) e, (28)

where the function a is defined by

e(°)(a(e, v),v) =  e. (29)

Likewise the canonical and the grand canonical formalisms are equivalent
if (cf. (3))

/<c> (p, v) =  pM(t3, X(p, v)) v +  A(jS, v) (30)
with

r<s>(/3, A(/3, v)) = v. (31)

The assumptions about the interaction, which will be made in this paper,
are those of stability and of strong tempering. The interaction is called
stable if there exists a finite positive number uq such that

N
<%n(rN) =  2  w(|r< -  f]\) > - N u 0 (32)

i ,f-1
i<i

for all N*). The application of this property is quite simple. Using (1), the
integration over momentum space in (4) and (5) may be performed, giving

Z n (E ,  V) '2 fa,» { E - W W ™ (33)

1 /  r m  \3W /2
4>n (P, v ) = ^ J  \ T ~ )  J drN exP {-P®N(rN)}.

Therefore, due to (32), we have the inequalities

Z n (E ,  V ) <

@n (P, V) <

VN {2nm(E +  Nu0)}3N/2

VN (  2 n rn \™ l\mua
N \ \ p )

(34)

(35)

(36)

*) According to Ruelle «) a sufficient condition for stability is the existence of a function
<p(|r|) <  «(|r|) with the properties: 0 <  <p(0) <  oo, ƒ dr exp(—*V*r),9 (|f’|) >  0 for any real vector t.
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and furthermore for (6)

Sy(P, fi) <  exp {(— )* V e - ^ J .  (37)

The interaction is called strongly tempered if there exists a finite positive
number ro such that

N i N
£  £  «(Ifi — *}\) <  0 whenever \r( — rt | >  r0,

i= 1 7=JVi+l

( i = l , . . . , N 1; j  =  N 1 + \ , . . . , N )  (38)

for any division of N  into N i and N  — iVi. A Lennard-Jones type potential,
for example, has both the properties (32)7) and (38).

On this basis we will achieve the following results:
1°. (in section 3) independent proofs of the existence of the limits (10),

(19) and (22) and their proper behaviour, elaborating and extending the
principle which F ish e r8) indicated for the case of (19). A theorem due to
G r i f f i th s5) states: if a sequence of functions with nondecreasing derivatives
converges, then the sequence of these derivatives tends to the derivative
of the limit function of the original sequence in points where the latter
derivative is continuous. Therefore, according to (25)-(27), we may, in that
section, consider also (20), (23) and (24) to be established outside phase
transitions. With all this knowledge as preparation, we come to our main
point:

2°. (in section 4) proofs of (28) and (30). The derivation of these equiva­
lence relations builds further on the work o fK h in c h in 1) for ideal systems.
Finally we discuss:

3°. (in section 5) remaining questions. In particular we prove (11) by
means of a certain generalization of the preceding treatment, but the
problems (12) and (21) are not solved.

§ 3, Proof of the existence of the functions s<m), /<c> and p^K Let the system
considered be enclosed in a cylinder with a cross section of arbitrary but
fixed shape and area A, and situated parallel to the z axis with lower and
upper surfaces at z =  H and z = H', respectively. The volume V is assumed
to change only by varying H' — H, i.e. at constant A . Hence, keeping V/N
constant in the thermodynamic limit means essentially that [H' — H)/N
and A are kept constant, and, furthermore, differentiations with respect to
V or v are performed at constant A. One has, therefore, a parametrical
dependence of the statistical thermodynamic functions on A, which is of
course also expected from thermodynamics: for instance p (divided by ft),
which is the pressure measured on the upper surface when the lower surface
is fixed, is not the same function of the specific volume v for a capillary and
for a cylinder with macroscopic cross section. Note that what in the latter
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case is usually called “the” pressure, is strictly speaking the limit for A
tending to infinity. The question of the dependence of the thermodynamic
limit functions on A (and in particular also whether they possess a finite
limit for A tending to infinity) is, however, outside the scope of our subject. As
we do not consider systems for different values of A, we shall not write the
dependence on A anywhere explicitly.

Corresponding to a volume V we introduce an extended volume V*
defined by x, y in A and H  — <  2 <  H' +  |ro. Then the domain of
each space integration in (4) and (5) may be taken to be V* instead of V, if
we add a “wall potential”,

[ 0 for x, y in A, and H  <  z <  H', (39)
w (t) =  {

100 for x, y in A , ^nd H — \r§ ^ . z ^ H , H ' ^ . z ^ H  +  \ro,

to the potential energy:

*N{rN) = WN{rN) "+ £  w(rt).
i - i

With the corresponding Hamiltonian function Jff’*N we have

n

n
N\

=  ----------

N\

J  d r ^  d pNa{E -  3T*N{rM, p N)} =  I n(E, V),

ƒ  ƒ  d r ^  d p N exp{—pj *̂N{rN, p N)} =  <Pn[P, V).

(40)

(41)

(42)

Obviously the difference r0A between V* and V becomes negligible in the
thermodynamic limit, in the sense that:

v V* i- v  +  r0Alim ----  =  In n -----—-----=  1, or hm V(N) =  v. (4o)
V->oo V V-*x> V N̂«x>

where v(N)(N =  1, 2, 3, ...) is the sequence v +  r0A, v +  \r$A, v +  \ tqA,  ...
The introduction of V* is, however, a device to derive, on the basis of (38),
some very useful inequalities for the statistical functions (see e.g. (49) and
(50)). This would not have been possible with the variable V.

It is the advantage of our assumption about varying the volume (in only
one dimension), that it makes possible a way of dividing a system into
subsystems which are determined by their volume alone. For a value H"
of z between H  and H' we obtain two subvolumes of V*: V\(H — |ro <
<2 <  H") and V* — V\{H" +  %r0). Then, if n ,  .... rNl lie in V\
and fWj+i, •••, rN in V* — V\, we have for (40)

®%{rN) <  W*Nl {r* 1) +  W*N- Nl (rW-NJ), (44)
where r(N~Ni> =  (fjy+1,..., rN). Indeed as far as u is concerned, the opposite
sign could according to (38) hold only for a configuration with at least one
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particle between z =  H" — \r Q and z =  H" +  %r0, but in that case the right-
hand side of the inequality is infinite due to w. Splitting each space integration
over V* in (41) into one over V\ and one over V* — V*, and using the fact
that Jt?*N is invariant with respect to particle permutation, we get a sum of
integrations over rN \ and r(N~Ni), (rj, rNl in F J ; rNl+1, r N in V* — F*;
N i =  0, 1, 2, N), each with its proper binomial coefficient. Then,
applying (44) for the different values of Ni, we find

 ̂ X,  ![.V '' .V,)l I f 'HJ d'W-J'-’ dPW-"'> •
• °{E -  pNi) -  y r N_m {r(N-Ni), pW-Nj)}t (45)

where p(N~NJ — (pNl+i, . . . ,P n).
Using the identity a(x) — J  dxi d(xi) a(x — xi), where d is the Dirac

function, we obtain, putting x =  E — Jf*Ni — and xi =  Ei —
^  Ni>

N  oo

Z*n {E, V*) >  £  ƒ  dE1Ü%i(E1, VI) E*N_N1(E -  Elt V* -  V\). (46)
N i =  0  —oo

Here the function Q*N is defined by

Q*n (E, V*) =  -L . j jd r * f 4 p N q E  -  J4?*N(rNtp N)}, {Q*{E, V*) =  3(E)), (47)

or equivalently

Q*n (E, V*) =
^ ( U ,  F*)

SE (48)

Result (46) is important for the development in the next section. An
inequality containing only the function S*N may be derived from (45) by
application of the following property of the unit-step function: a(x) >  o(xi) •
•o(x — xi), giving

Z*n (E, V*) >  £  Z*Nl(Ei, VI) Z*N_Nl(E -  E i,  F* -  V*). (49)
W i = 0

Since exp# =  exp #i-exp(# — #i), we have similarly for (42) on the basis
of (44),

n > s n, (p. v i )  (p, v * - v \) . (so)
iVi =  0

Now the inequalities (49) and (50) hold equally well, when all terms
except one on the right-hand side are dropped, and it is in this form that
(50) has been recognized by F is h e r8) to provide a way of proving (19) by
means of the limit theorem for subadditive functions9). In fact, for the
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sequence of functions (cf. (13))

/U M *) =  —  l°g Nv*), (51)

(N — 0, 1, 2, ...; v* independent of N) it thus follows that

NfyiP, v*) >  »*) +  (N -  N{j f*N-m(p, v*). (52)
This inequality expresses the fact that, at constant and v*, —N  times f*N
is a subadditive function of N, and therefore the application of the limit
theorem gives

lim f*N(p, v*) =  sup f*N(p, v*) =  f ( p ,  v*). (53)
N —>oo N -*oo

The possibility that the limit function /* is either — oo or +oo may be
excluded. Since &*N vanishes only for V* <  r0A, f*N =  — oo for N  <  r0A /v*,
and larger otherwise. Furthermore, according to (36) we have

/  2nm \* ’ .
f W ,  V*) < log ( - - ]  v* +  1 +  fiuo. (54)

Hence /* is finite for 0 <  /3 <  oo and 0 <  v* <  oo.
As already has been remarked, /* is convex in fi since f*N possesses this

property. The concavity of f* in v* follows from yet another inequality for
(51), (with N  even),

M P, m  +  vi)) > w t N(P> »ï) +  fu(P> »*)}. (55)
which may be derived from (50) by retaining again one special term on the
right-hand side. When we apply the limit (53) to this inequality, it reduces
to the definition of concavity for f* as a function of v*,

rip, i(»i +  «$» >  W %  vt) +  rip, »*)}• (56)
Consequently /* is also continuous in v*.

It appears that the limit function /* has all the desired properties, but
the limit (53) is not precisely the one we want to take (i.e. (19))*). In the
appendix we prove that (52) implies not only the existence of the limit (53),
but also its uniformity in a variable in which f*N and /* are both continuous,
and, moreover, f*N is increasing. The dependence of (51) and (53) on v*
meets these conditions, and consequently, using also (13), (42) and (43),
we may conclude that

/<c>(/3, v) =  lim /$  03, v) =  lim v(N)) =  /*(/?, v). (57)

*) F isher 8) considers a system including a wall potential, which in our language is equivalent
to calling V '  “the” volume. Then (53) is already the proper limit. This is also the case in his subse­
quent paper 10) on the same subject, where the treatment has been altered in order to deal with
volume increase in all three dimensions.
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This result confirms the idea that the difference between V* and V has no
effect on the thermodynamic limit functions, in the case of /<c>: it may be
determined either from (19) or from (53).

From (50) as the basic inequality, we have therefore derived the existence
and proper behaviour of the limit (19). It will be clear that the case of the
limit (10) may be treated in a similar way, starting from (49) instead of
from (50), by considering first the sequence of functions (cf. (7))

s%{e, v*) =  —  log Z%{Ne, Nv*), (58)

(N =  0, 1, 2, v* independent of N). It has the same property as ex­
pressed by (52) for the sequence of functions (51), so that in analogy to
(53) we have

lim Sy(e, v*) =  sup s%(e, v*) = s*(e, v*). (59)
N —*oo N -+oo

The question of the finiteness of the limit function s* is slightly more
complicated than in the foregoing case, since Z*N vanishes not only for
V* <  roA, but also for E <  E$*, where

£<<>>*(F*) =  min W*N{rN) =  min WN{r*) = E<g>(V). (60)
r N  -  f N

Let us examine what (44) means for this function (60). The minimum of the
right-hand side of (44) is equal to the sum of Effl* and E$*Ni, and larger
than the left-hand side for the configuration (s) in which this minimum is
reached. In its turn this value of the left-hand side is larger than E$*, so
that

-  v\). (6i)

We see that, for V* = Nv*, E ^*  is a subadditive function of N, and con­
clude therefore that the following limit exists,

lim —  E <̂)*(Nv*) =  inf — E^*{Nv*) =  ew *{v*). (62)
N-+oo N  N-+oo N

By iteration we obtain from (61) for N  ^  1,

E^*(Nv*) <  E (V*{v*) + E f i ^ N  -  1) v*) <  ... <  NE[0)*{v*), (63)

so that, since E 0̂)* =  0 and moreover, according to (32), Effl* >  — N u q ,

the limit function e(0)* is found to be finite. The inequality (61) may also be
used to show that e(0)* is convex, and consequently continuous. Then,
noting furthermore the fact that Effl* is decreasing in V* (the more room,
the less restrictions on the composition of a minimum configuration), we

11



have

«<°>(w) »  lim — E^(N v) =  lim 4-  E&*(Nvim) =  e<0» ,  (64)
N^oo Jy JV-»joo iV

just as in the case of /(®).
Now, according to (62), the condition e >  E^*JN  for s*N to be larger than

—oo, becomes e >  e(0)* for s*. Since furthermore, according to (35),

s*N{e, V1 < l°g(|nm(e +  u0))* v* +  f, (65)

the function s* is finite for e(0)* <  e <  oo and 0 <  v* <  oo. From (49) it
may also be derived that this limit function is concave in both e and v*,

s*(è(ei +  eA> Uvi + V*A) > é{s*(ei- vi) +  s*(e2, w|)}, (66)

implying its continuity, and, together with the fact that Sy is increasing,
the uniformity of the limit (59), all in both variables. On the grounds of this
uniformity in v*, we again conclude that the starred and the unstarred limit
function are indentical,

s<m>(<5, v) =s lim s{x \e ,  v) =  lim s*N(e, v ^ )  = s*(e, v). (67)
jV —>o o  JV-*oo

Finally we have for
OO

Sv-tf. A») =  S  V*) =  5 v{fi, fi), (68)
jv= o

according to (50), the inequality

a v*(P> /A S5 a Vi*(P> /A //A- (69)

Therefore the case of the limit (22) may also be treated similarly to that of
(19). The applications of the limit theorem and of (43) can be connected in
a simple way,

P(S)(P> lA =  lim - j r '- r lv  loë s v‘(P. /*) =  sup log S v'(P> tA- (70)
r*->oo V V r*->oo v

and the finiteness of the limit function for 0 <  /S <  oo and — oo <  /i <  oo,
follows easily from the inequalities By >  1 and (37).

With the results obtained so far, the possibilities for using (44) are by
no means exhausted yet, as will appear in the next section.

§ 4. Equivalence of the various formalisms. The inequalities based on a
division of V* into two parts, (e.g. (46) and (49)), may be generalized to a
division into n parts. Keeping in mind that the right-hand side of (46) is
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larger than that of (49), one obtains in this way the result
OO OO OO OO n —1

Z%(E, V*) >  S  ... S  ƒ d £ i ... /  cLEjj- i n  flfc, (£i, Ff)-
J V i= 0 J V # - i= 0  — oo —oo 2 = 1

oo oo n
■Z*N„(En, v*) >  S  ... 2  n  Ff).

iV i=0 iv „ - i= 0  2=1

w—1 Ti—l  n —1
(iV„ =  N  -  ^  N u E n ^ E -  S  £,, F* =  F* — £  Ff), (71)

i = i  i = i  i = i

which will be used here to prove the equivalence of the microcanonical and
canonical formalisms. To this end we may introduce „specific values”
defined per subsystem, as a halfway stage between the extensive quantities
of the whole system and their specific values defined per particle. Denoting
them by a bar over the symbol (N = N/n, E = Ejn, V =  V/n, 8  =  S/n
and F  =  F/n) we have e.g. (cf. (7)),

B g M  V) =  — log Znf)(nE, nV). (72)n

It may be seen from the way (71) is derived, that these inequalities still
hold if, for N  integer, only the term with Ny =  ... =  N n- i  = N  is retained
in the summations. Choosing, furthermore, FJ =  ... =  F*_j =  V* and in
the last member E\ =  ... =  E n-\  =  E , we find on taking logarithms and
dividing by n,

S'nMÊ, n  >  V*) > S},(E, F*)(= log Zl{E, F*)). (73)

Here the function to which (n)8* # is related by means of (72), is
given by

oo oo n —1

WZ%(E, V*) = / d £ i  ... f d E n^  n  OMEi, V*) Zf)(En, F*),
—oo — oo 2=  1

( S i ' i J \ l Ei). (74)
z = i

The inequalities (73) may be interpreted in the following way: in the
first step the interaction between the (identical) subsystems is neglected,
but not the existence of an energy distribution among them, whereas in the
second step the latter influence of this interaction is also omitted (i.e. the
subsystems are isolated). After the first step, the set of subsystems con­
stitutes an ideal system of n components. This kind of system has been
studied asymptotically for n tending to infinity by K h in ch in 1) with the
help of the central limit theorem of probability theory. Hence we will get
to know the asymptotic properties of ^Z*N and ^ for n tending to
infinity at constant N, E  and V*, by adopting K hinch in ’s treatment.
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With (47), the function (42) may also be written as

&*N(P, V*) =  f  d£ &~f>EQ*N{E, F*), (75)
—oo

which shows that the (positive) function exp(—jBE) Q*nI®n may be con­
sidered as the frequency function (or probabihty density) of a continuous
random variable £ , with parameters N, p and V*. Differentiating (74)
partially with respect to E,

oo oo

wq*n(e, n - v-- = fd£i... fd£„-i n n,
& JD  J J 1=1

—OO —OO

( £ „ = £ -  S  Ei), (76)
1=1

we then see that exp(—/3£)<B>£^/(0ff)B is the frequency function of the sum
£  of n identical (i.e. with the same N, P and F*) independent random
variables E\, ... E n. Now the central limit theorem states that such a
frequency function becomes, for large n, Gaussian in the variable

y/n
( £ - » £ * ) .  [ E W ,  F*) s 8 log V*

dp
(77)

with variance B so that, as a first result, we obtain

lim \ /n  exp{—P(\/n£ +  w£#)} ■ (n)fi^(V «£ +  nE^, V*)/{0}f(P, F*)}B
n->oo,=n, v*in=v* __/  _ 32 log 0 ^(0 , F*)
(2715^)-* exp(—| f 2/£/?), F ) = ----------^ > 0 (78)

In fact Khinchin has proved a more detailed version of the central limit
theorem, giving also the order of the remainder. With this, he derived a
second result, relating the asymptotic behaviour of to that of

^(nEU'p, n, n = j_
WQMnEM,  F*). F*) p '

NJn-N, F * /n -P *

The connection between (78) and (79) will become transparent from the
following considerations (not intended as a proof). According to (74) and
(76) (the latter equation with n — 1 instead of n), we have

OO __ __

<B>2^(£, V*) =  ƒ  d £ i <*~l)Qir-fi(E -  £ 1. — F‘) ^*). (80)
—00

Under certain conditions the limit (78) will also exist for a sequence of values
converging to £ as w tends to infinity, instead of for constant f. Applying
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this, in the case of n — 1 instead of n in (78), for the values £n- i  — {n — 1 )-* •
• (E*x — Ei), converging to f  =  0, we find

lim '-"Q N -A nE U P , V )  ~  Ei, V* -  F*) e~0Ei
co WQ*N(nE%(p, V*), V*) v *) ’ ( )

N/n.-N, V ' ln =V ‘

where (78) has been used also in a straightforward way for f =  0. Then,
multiplying both sides of this equation by Z*$ with Ë  =  Ei, and integrating
over Ei, it reduces to (79) if on the left-hand side the limit is interchanged
with the integration and (80) is used, whereas on the right-hand side an
integration by parts is performed and (48) and (75) are used.

The limit of ^ for n tending to infinity, following now from (72)
(for <*>27̂  instead of ZN), (79) and (78), is

lim W S lftiE W . F*), F*) =  lim — log WQ*N(nE*N(P, F*), F*) =
n—*oo fl—>oo W

N /n= ft ,  V*ln=V*

= log <w, f*) + mw, n .  (82)
Substituting E = E*$ into (73), we find therefore, for n tending to infinity,

+  v*) > SM E W , F*), F*), (83)

where in the left-hand member (58) and (59) have been applied for N  =  nN,
etc.

Introducing again the usual specific values, we may write (83) as

s*K(P, v*), v*) >  f W ,  v*) +  pe%(p, v*) >  s%(e*N(p, v*), v*), (84)

with N  changed formally into N  (the original N  = nN  has disappeared).
If we study now this result for N  tending to infinity, the limit (82) for an
infinite number of subsystems is succeeded by the thermodynamic limit
of a subsystem. The limit of the function f*N being given by (53), we may
conclude for the function e*N according to G r i f f i th s5) (whose theorem was
already quoted at the end of section 2) that, on the grounds of (25) (for <P*N
instead of 0 n),

lim eMP, v*) = — lim dp
8f*(p, v*)
—  -  e*{p, v*) for p ^  pt(v*).dp

(85)
The discontinuity point(s) pt of e*, where the existence of this limit cannot
be proved, are indeed the transition point(s) mentioned in the second section,
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because according to (57) we have

e*(p, v) =  -  *■' e (0 )(P- »)■ (86)dp

Using (85), the left-hand member of (84) (with s* continuous in e) and the
right-hand member of this inequality (with the limit (59) uniform in e, due to
the theorem of the appendix), appear to converge to the same limit function

s*{e*(p, v*), v*) = f*(p, v*) +  pe*{p, v*) for p ^  pt(v*). (87)

Hence, with (57), (67), (86) and (29), we have established the equivalence
relation (28), as yet only for e outside the interval et, i <  e < et, 2-

Differentiating (28) partially with respect to e, we find that

/?<m>(e, v) = oc(e, v). (88)

For all e in the interval et, l ^  e ^  et, 2. the function a has (as the
inverse function of e<°> at constant v), the value pt. Since we have shown
that s<m> is concave in e, the function /3<m> is nonincreasing in that variable.
Consequently the identity of /3<m> and a, which (88) establishes for e not in
the interval et, 1 <C e <  et, 2> must also hold within. Then we obtain by means
of integration the equivalence relation (28),

s<m>(e, v) =  pt(e — et, 1) +  s<m>(et,i, v) =
= Pt f  +  f (c)(Pt, v) for et, i  <  e <  et,2- (89)

With this result the equivalence of the microcanonical and the canonical
formalisms is completely proved.

Turning now to the case of the equivalence of the canonical and the
grand canonical formalisms, we generalize (50) to

00 00 n

&*n (p . n  2  n  & n , (p > v i)>
W l=0 N n - 1 = 0  1=1

n — 1  n — 1

(Nn = N -  S  Ni, V* = V* — S  Vf). (90)
z=i

The right-hand side of this inequality is of course again larger than one
of its terms, so that, in analogy to (73), we now have

K M P , F*) >  WF*nif)(P> F*) >  F'f,(P, F*)(= log m p ,  7*)), (91)

where <*>7* # is related to
OO OO Hi __  1

7*) == s  ... s  n  ® N t (P> H .  {Nn = N  -  S  N t), (92)
iV i=0 i f » - i= 0  1=1 *” 1

in the usual way (cf. (72)). This function may again be evaluated asymptotic­
ally for n tending to infinity, with the help of the central limit theorem of
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probability theory. In this case, in view of (6), functions of the form
exp(—/iN) &xl5y- are considered as the relative frequency of a discrete
random variable N, with parameters /?, fi and V*. The only result we need
here is that

lim y/n  exp(—/inNp.) <»>$^.(/J, V)/{S'p.(ft, /,)}» =  (2nB}.)-*,
n-*ooy*in=p*

i W ,  Brt  =  ■'?> > 0
dfj. d[i*

(93)

(corresponding to (78) for f  =  0), for integer values of Np*.
Now, to cope with the latter condition, we choose F* equal to that value

for which Np. =  N, or, if there are more of these values, to the largest
of them. Then it follows from (93) that (cf. 82))

lim M F lnW , V W .  V)) =  log lA +  fiN, (94)
n—xxj

and furthermore, with (91), that (cf. (84), and note that we write again N
instead of N)

f  (ft’ VN(ft’ tA) ^  P*N(ft> /A Vn (P’ lA I* ^  t*N(ft’ V%(ft> f1))’ (95)
where v*N =  V*NjN  and

Pn (P> fA =  ^  1°8 S v w .  *)(P> A*)- (96)

Since V*N tends with N  to infinity, the sequence of functions (96) converges
to the limit function (70), already established for V* tending to infinity
continuously. In the same way the application (23) of G r i f f i th s ’ theorem
to this case, implies that

lim v*N(p, fi) =  - \ l — ^  = v^(ft. n) for fi ^  fit(ft). (97)
'  N-+oo I

Using also the Hmit (53) and its uniformity in v*, we now obtain from (95)
the result

/<C>(/S, vM(ft, v)) =  P(g)(ft, H) v(%)(ft. lA  +  V  for ti ^  Mft). (98)

or with (31), the equivalence relation (30) for v not in the interval Vt,i  <
<  v <  Vt, 2-

This proof of the equivalence of the canonical and the grand canonical
formalisms may be completed in analogy to (88)-(89). Differentiating (30)
partially with respect to v, we find that

p«»(ft, v) =  pM(P, X (p, v)). (99)

Since the function >̂<c> is nondecreasing in v, and the function X has the value
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fit for all v in the interval vt, 1 <  v <  vt, 2, the relation (99) must hold as well
for these values of v. Consequently (30) also follows,

f (c)(P, v) =  p (e)(P, f* t){v  — v t , i )  + f (c){P> vt, 1) =
=  pW((i, j«t) v -(- i«t for i>t,i <  v <  wt,2- (100)

The equivalence relation (30) may also be established by means of a
maximum term evaluation 6>10), but the advantage of our approach is its
overall applicability and simplicity.

It will be clear that the two equivalences established above already imply
the equivalence of the microcanonical and grand canonical formalisms.
The latter could, however, also have been established directly from the in­
equality (71), with the help of the so-called two-dimensional central limit
theorem3). Note that then we need, in addition to the limit (23), the appli­
cation of G riffith s’ theorem to (70) on the grounds of (26), resulting
together in (24), (all this for v*N instead of vty etc.).

In the next section we will again pay attention to convergence problems
within each formalism, for the solution of which, the knowledge of the
equivalence of the various formalisms studied above, is of advantage.

§ 5. Remaining questions. We first consider the problem of proving (11),
where /?#*> is given by (8) and s<m> by (10). As we have shown in section 3
that s<m> is concave, or /S<m> nonincreasing in e, one could think of an appli­
cation of G riffith s’ theorem, this time to the sequence of functions —s#0.
It cannot be decided, however, that these functions are convex in e. Using
(33) we find

a3 log Zn (E, V)
8E*

3 N
~2~

r  - 1 —  fdr* ( _____ !_____ )\  2 / L Z n (E, V) J K E - V x W JL Zn (E, V)
{E -  <%N{rN)yNl*

( 3N \rh-+0
WN(rN)

o{E — ^N{rN)} +

■ ( ---- 1-----fdr*
\Z n (E, V) J

{E -  ^ (r^ )} W 2
Z n (E, V)J E -  WN(rN) 3 N

r (  2

a{E -  *jr(r*)}
21

+

2 /  d log Zn {E, V)
” W \  SËT

( 101)

and there is no reason why the first term on the right-hand side of this
equation (with, between square brackets, a positive quantity of the type
(25)-(27)) should be smaller than the absolute value of the last term. But
(101) also shows that, in order to apply Gri f f i ths ’ theorem, there is another
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possibility. Since this equation implies that

d*s$\e, v) , .
-  gg2 >  - W i ï \ e ,  v ))\ (102)

the function s#0 +  \Ce2 (C a positive constant) is convex in e, if UPn1) 2 <  C.
Hence we m ay state  as sufficient conditions for the sequence of functions

to converge to  £<m>, th a t this sequence m ust be bounded from above,
and /3<m) has to be continuous in e.

This continuity can be proved for all <  e <  oo, using the equivalence
expression (88). According to (13), (19) and (34) we have

1 /  2  TTffL
llm -Jjr log Qn {P, N v) =  /<c>(/3, v) -  log ( — — ) , (103)

N-*oo IV  \  p  /

where

Qn (P, V) =  ƒ dr-tf exp{—^ N(rN)}. (104)

I t  follows from this definition of the so-called configurational integral Qy
th a t its second partial logarithmic derivative with respect to /? is positive,
so th a t log Qn  is convex in this variable. The limit function (103) therefore
also has this property, whence

a2/ (c)Q3, v) 3
0/S2 2/92 >  ' (105)

(infinite for/3 =  /?t). The impossibility th a t de<c>/dyS =  — 02/(c>/0pi =  0 means
th a t the inverse function a of e<c> (at constant v) is continuous in e, and
according to (88), this is therefore also the case with /3<m>.

The existence of an upper bound to the sequence of functions \  we
have been able to prove only in a rather indirect way. Let us introduce the
function

A n (k, E, V) =  —  ƒƒ dr-tf dp Na{E — , ^ N(rN, p N)} e x p j — k ^ - J ,

{A0{k, E, V) = o(E)), —oo <  k  <  oo. (106)

For k =  0 this function reduces to E y, and for k ^  0 it still has the properties
we have already established for Zy. To begin with, A y  satisfies an equivalent
of the inequality (35). Furthermore, introducing A*N in the usual way, (46)
and (49) hold for A*N and SA^/dE instead of Z*N and Q*N respectively, since
the exponential in (106) factorizes. Consequently the existence of a finite
limit

1(k, e, v) =  lim ly(K, e, v), with In (k, e, v) =  —  log A n (k, Ne, Nv), (107)
N -+oo iV
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can be established for e >  e<°>, by means of another application of the limit
theorem for subadditive functions leading to (cf. (59) and (67)),

lim 1*n (k, e, v*) =  sup 1*n (k, e, v*) — 1(k, e, v*). (108)

Moreover, we may employ the relation (75) to define a generalization of
<pNt and with (106) and (104) we find that it is a trivial one,

P■— ƒ dEe~PE
8An (k, E, V)

—  ƒƒ dr^ dpN e:
N\

/  2:im  \<W2

\ P  +  K

xpj- -pjrN(rN, PN) -  *
(.PN)2 1

2m

Qn (P, V)
a \ Z N / 2

P + k)
-  $ n (P, V), (109)
K) /

assuming k >  —ft. Hence we have at once, using (13) and (19),

g(K, ft, v) =  lim gN{x, P, v) =  f(c)(P, v) +  log ( t t — ) >
N-xx>  \  p  K /

where gN{x, p,v) = —  log Wn (k, P.Nv). ( 110)

Note that this equation imphes that dg/sp is continuous in p except for pt.
Now the relation (75) is the basis for the derivation of the equivalence of

the microcanonical and canonical formalisms given in section 4. In a
completely analogous way we obtain here (cf. (87) and (86))

1 ( -  -  w ”)  - ei *-  w  ( -  “ ’ ’ +

4 l T ? )  for ï+ i ï  (m)
or, with y the inverse function of —dg/dp at constant k andü (cf. (28) and (89)),

1(k, e, v) =  g((f, y(K, e, v), v) +  y(ic, e,v) e (112)

for all e >  e<°>. The function y satisfies (cf. (29))

e(°>(y(K, e,v),v) —  ---- --------(7-7------r~:—r  =  e> 0' 2 y(x, e,v){y(K, e , v ) k)
or, according to (29),

y(i<, e, v) =  a (e ■+> — —-------rj—,-------r^ r r> v\  0 ^ )n  ' \  2 y(K, e, v){y(K, e, v) +  K) >

Furthermore one may verify that y >  P for e <  e<°) — f  and — P < k <  P2-
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As far as the dependence of the function (106) on E  is concerned, it
behaves in a „microcanonical” way. For k =  0 the new functions I, g and y
reduce to the old ones s<m>, /(®) and a, respectively. Obviously the dependence
of (106) on k has a “canonical” character, e.g. expressed by the inequality

82 log An (k, E, V)
— — F--------L > ° -  015)

which makes possible the application of G r i f f i th s ’ theorem to the case of
the limit (107), giving

81n (k , e, v) 81(k, e, v)h m --------------  ------------- -
iv-xio 8k 8k

(116)

if 8118k is continuous in k . Since it follows from (112) with (110) and (113),
that

81(k, e,v) 3 1
8k 2 y(ic, e, v) -f- k ’  ̂ ^

this function is continuous if y is continuous. We see from (114) that
limK_ 0 y — «, thanks to the continuity of a in e (following from (105)), so
that the condition on (116) is certainly satisfied for k =  0.

I t is precisely for the derivation of the limit (116) for k =  0 (actually
with, instead of e, a sequence of values e^ )  converging to e, but that is a
refinement) that we have introduced the above generalization. We will now
first put this result into a more convenient form, and then use it for the
final proof that the sequence of functions is bounded from above. The
function 81n /8k for k =  0 is most easily evaluated by writing (106) in the
form

A n (k, E, V) =
E\~,

=  ƒ  d £ ' ƒ ƒ  d r^  dpNd{E' — J t N(rN, p N)} exp[—«{£' — ^ N{rN)}] =
—oo

U j

j d E ' ~  Jdr^v exp[—«{£' -  ^jv(r^)}] ~  ƒ dpNa{E’
—  OO

E

ƒ  d £ , (2nm)^l2 ƒ  exp[_ K{£/ _  y N{rN)}].

n {tn , p N)} =

{£' -  WN{r*f)} a^/2-1
a{E’ ®N(rN)}, (118)
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using the fact that the derivative of a is the 0-function, and integrating over
the momenta just as in (33). Thus we find that —  (1/fN) 8An /8k for k =  0
is equal to the function

<9n (E, V)
(27m)3* /2 f  v {E -  ^ (r * ) } 3*/2+1 a{E ®N(rN)}, (119)

and therefore the limit (116) for k — 0 becomes

Urn 6ldNe' ^ _____— . (120)
N̂ oo'1 ZN(Ne, Nv) <x(e, v)

(An reducing to L'n  and y to a). Noting that, according to (33) and (119),
ZN =  89nI8E, and that a =  /9<m>, we may write this result also in the form

lim v}_ — with ty(e, v) — —  log &iv(Ne, Nv). (121)
N-~» Se N

As ÜN =  8InI8E =  82&nI8E2, and (for iV >  1) 0 N, ZN and 820 Nj8E2
are positive functions, we have

0 n {E +  d, V) >  \d2QN(E, V), or

(m, _  Qit(Ne, Nv) ^ 2 0 N(Ne +  <5, Nv)
Pn («.v) EN{Ne, Nv) Ö2 ZN{Ne, Nv) ’

where d is an arbitrary positive constant. Now we may write

<9v(Ne +  <5, Nv) =  exp N ty  (e -(- — , =  exp|iVijv(e, v) +

+ &rit(e+ Pn =  0iv(Ne, Nv) exp drN (e -f &N , vj,

( 122)

(123)

where r y  =  8tN\8e and 0 <  &n  <  1. Now the values e(N) =  e +  Pn P/N
(N — 1, 2, 3, ...) constitute a sequence converging to e, and we therefore
have for the function In that

lim In (k, 6(N), v) =  1(k, e, v), (124)
N-+oo

because the limit (108) is uniform in e (again using the theorem of the
appendix). The argument leading to (120) or (121) may therefore be repeated
on the basis of (124) giving

lim tjvfeiN), v) =  18(m) («, v), (125)
N-+oo
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whence, for N  large enough,

tn [&(N)> v) <  2/3<m> (e, v).

Since, moreover, according to (119), (32) and (33),

( 126)

0 N{Ne, Nv)
<  —  (e +  Mo),Ex{Ne, Nv) (127)

we conclude from (122), (123) and (126) that, for N  large enough,

4 e +  «ov) < exp{2ó/5<m>(e, v)}. (128)

As /?<m> is nonincreasing in e, the right-hand side of this inequality can be
bounded in any interval for e(°) <  e <  oo, and we have reached our goal.

The function On  is frequently used instead of Un  to determine thermo­
dynamic analogies for the microcanonical formalism, and indeed it is a
consequence of (10) and (11) (established just now) that

Then again it must be asked whether dojf/de and dojf/dv converge to /?<m>
and respectively. In the first case an affirmative answer can be given
at once for reasons similar to those above. Corresponding to (102), we have

and (for N  >  2) to (122),

dotf(e,v) ^  3 0jf[Ne +  d, Nv) / ioin

~8e W  QN{Ne, Nv) ’ ' 131^

so that the result (126) (with the analogue of (127) for @v/f2v) is conclusive
here too. Note that also &n  could play the role of ZV: according to (10) and
(120), tff (defined in (121)) converges to s(m>, whereas in (121) we have
already the property corresponding to (11).

I t is quite probable that the problems (12) and (21) are consequences of
(10) and (19), respectively, and G r i f f i th s ’ theorem. More in particular, the
latter should then be applied in the same way as in the case of (11), i.e. on
the basis of the properties: the sequences of functions d^sfflldv2 (or 82on/8v2)
and d^f^/dv2 are bounded from below, and the functions /><m) and are
continuous in v. Our attempts to prove these statements have as yet not
yielded any result. I t should be noted that the proofs can perhaps only be

lim ojf(e, v) =  s<m>(e, v) with o^(e, v) =  —  log Q^{Ne, Nv). (129)
V—X » N

d2Ofif(e, v) ^ doN(e, v) ^
(130)
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obtained on the basis of somewhat more specific properties of the interaction
than (32) and (38)*).

§ 6. Discussion. It will have become clear that the asymptotic problem
of statistical therm odynam ics m ay be indicated schem atically as
we have the statistical relation

fo llow s:

exp v(p* ip1)( x i) =  ƒ  e ~ VXlXt d  exp v<pl2)( x 2),

or =  2  e ~ VXlXl exp  v<pl2 * * * * *\ x 2),
Xi

(132)

and w e w ant to  derive from it, on the basis of certain assum ptions about the
system , the conjugate relations

d®<« /  dad) \
»,<»(*,) -  <bi +  V »  (  <bi )

d®<2> /  dop^l \
and yO K ** -  ^  +  C™ (  ^  ) - (133)

with
< pW (xi) =  hm  ( p ^ \ x  1),

V—XX>

(134)

9?(2) { x 2) =  hm <p(v2){ x 2),
v >00

(135)

dgpf1) d ^ 1’
=  h m ---------,

d x i  „ ^ 0 0  d x i
(136)

d<pW  d ^ 2)
---------=  hm  — ------ .

d x 2 v—>00 d x 2
(137)

In the various cases the pair of functions <p<1) and (p(2) represents: (I)
and s ™  (at constant v ) ,  (II) p {f  and f t y j v  (at constant /?; note th at here
x 2 =  ii-1 ), and (III) p y ] and s f f i j v  (if the problem is conceived as “tw o-
dimensional”). The treatment of the asymptotic problem developed in this

*) For instance we have made attempts with a replacement of (32) by
N
S  «(In — rj|) >  —«0,

i =2
for all N,  but again without useful results. It may be remarked that, on the other hand, (38) is too
strong for at least some of the proofs of this paper. The existence of the canonical free energy in the
thermodynamic limit can be shown 10) by taking instead

«(In — rgj) <  Dl\n — rg|3+c (D and e >  0) for |n  — r2| >  r0,

(weak tempering). We have not tried, however, to base our investigation throughout on this as­
sumption, because a potential, positive at arbitrarily large distances, seems to us to be a matter of
only academic interest.
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paper will now be discussed in connection with previous work, stressing the
methodological aspects.

K h in ch in 1) considered case I and proved for a system without in­
teraction, by means of the central limit theorem, (133) with ipW = <p[y),
and (135) simultaneously. Then a subsequent asymptotic evaluation led
to (137). This approach is also applicable to the other cases.

Y am am oto and M atsu d a3) (hard core-finite range interaction, case
III) constructed a “Tr-system” of n cells to which K hinch in ’s method may
be applied for n tending to infinity. Their aim was to show subsequently
that this 7r-system and the real system have common thermodynamic limit
properties, but their treatment of this part cannot be considered to be
satisfactory.

M azur and the present author4) (hard core-finite range interaction,
case I) started from (134), not bothering about its derivation. Then it was
shown that, outside phase transition points of any order,

d PmO) d ïtof1*
i < i38>

Using this result, (133) and (135) were established simultaneously by
applying more general limit theorems of probability theory than the central
limit theorem. The drawback of this approach is that an as yet unknown
aspect of the phase transition problem is involved: since the method breaks
down for an xi-interval consisting merely of phase transition points of
arbitrary orders, one should like to have the existence of such intervals
excluded. Moreover, the use of the property (105) prevents transposition
into the other cases.

The method of the present paper (stable and strongly tempered interac­
tion, case I, II and in principle also III) has again some relation to that of
Y am am oto and M atsuda. The difference in the construction of a “n-
system” is that ours does not contain the intercellular interaction, even as
an “external force”. Note that, according to our treatment, (135) is first
derived on the same footing as (134), and then used for the proof of (133).
As, moreover, we needed (138) only for p =  1 (i.e. (136)), the phase transition
points to be dealt with were those of first order, for which it is known that
they form a countable set.

APPENDIX

Consider a sequence of numbers cpu(N -> oo), which satisfy the inequality

N<pN >  Ni<pNl +  (N — Ni) tpN-N1 if N  >  N it (A 1)

and are finite for N  >  No- For any two integers p and f, (A 1) implies (by
iteration) that <pp q  >  q>g. Suppose that (p +  1) q <  N  <  (p 2) q (or
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q <  N  — pq <  2q — 1) and q >  N 0. Then, applying (A 1) once more with
N i — pq, we find that

pq N  — pq
<PN (pq H ^  (fN-pq

.  N  — p q .  . (A 2)> n ------------------------jj—  in  —  ni)’ v  '

where qi is an integer such that <pQl is the smallest of the q — 1 numbers
(Pq, ■■■, <pzq-i- With N  — pq <  2q, we therefore deduce the inequality

<PN ><pq — -j7- (<Pq — (Pqi) if N  ^ q ,  (A 3)

as a corollary of (A 1). The content of the limit theorem for subadditive
functions9) (in the case of a discrete variable), is that a sequence of numbers
<PN satisfying (A 3), (rather than (A 1)), possesses a finite limit if it is bounded
from above. This limit is equal to the least upper bound of the sequence,

lim (pN =  sup <pu =  <p. (A 4)
iV—>oo N->oo

Now let q>N be a function of x(x\ <  x <  x2), for which the above holds
at constant x (qi and <p becoming also functions of x, the first one integer­
valued) . Then we shall prove the following theorem: if <pn is a continuously
increasing function of x for each N, and cp is continuous in x, it follows that
the convergence of the sequence of functions <pn to q> is uniform in x.

Proof-. With <pq(x) <  <pQ(x2) ( ^  <p{x2) according to (A 4)) and <pqi(X)(x) >
> <pqi(x)(xi), (A 3) becomes

<Pn (x) >  <pq{x) — —  {(p{x2) — <pai(x)(xi)} if N  3* q. (A 5)

According to (A 4) it is possible to find for every e >  0 and x, a value
N(e, x) of N  such that

0 ^  (p(x) — (pN(e,x)(x) ^  (A 6)
and, moreover,

0 <  9?(*i) — yjv(«i) <  e for N  >  N(e, x). (A 7)

Furthermore, due to the continuity of both q>y and <p, there exists a
neighbourhood \x' — x\ <  d(e, x) of x, where

\<PN(e, x)(x') — <PN(e, z ) ( * ) l  <  i e  ® )
and

|<p(x') — 9 >(x)| <  Je. (A 9)
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Using (A 6), (A 8) and (A 9), we see that, for \x' — x\ <  <5(e, x),

0 ^  tp(x') — <pN(t,x)(x’) <  fe, (A 10)

and furthermore, using also (A 5) with x' instead of x and q equal to
N(e,x), that

2N(s x)
0 <  <p{x') — cpif(x') <  fe H------ ~ ----{99(*2) — <p(x 1) +  e}

if N > N (e ,x ) .. (Al l )

Here we have, moreover, applied (A 7), which is possible because
qi(x') >  q = N(e, x). From (A 11) it follows that

\<p{x') — <p n (%') K  e for \x' — x\ <  d(e, x) and N  >  N'(e, x), (A 12)

where N ' is given by 21V(e, x){q>{x2 ) — <p{x\) +  e}/Je. According to the
Heine-Borel theorem, it is possible to determine a finite number of
points X((xi <  Xi <  X2 , 3 <  i <  n) such that their neighbourhoods
\x' — Xi\ <  d(s, x^  cover the interval x\ <  x <  %2 - With A(e) the largest
of the integers N'(e, X3 ), N'(e, xn), we have therefore

\(p{x) — 99jv(9t)| for x% ^  x ^  x% and N  ~^N(e), (A 13)

i.e. <pn(x) tends to <p(x) uniformly in the given interval.
It may be remarked that the numbers of an increasing sequence satisfy

(A 3) in a trivial way (9 =  <pq gives <py ^  q>q if N  ^  q). Consequently the
statements of this appendix also apply in this special case: (A 4) is then
very well-known, and also the theorem about uniformity may be found in
some mathematical textbooks11), (the condition that <py must be increasing
in x being superfluous). In fact the above proof is an extension of that given
in the case of an increasing sequence of functions.
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Chapter II

SURVEY OF RELATED TOPICS

§ 1. The Legendre transformation in thermodynamics *). As a consequence
of the two basic laws of thermodynamics, there exists for a single-component
equilibrium system with mole number M, characterized by the volume V
as the only external parameter, a fundamental relation

AE — T  AS — p dV +  n AM. (1)

This equation expresses the fact that the change of the internal energy E
is entirely built up by the changes T  dS in the thermal energy, —p dV in
mechanical energy, and fi AM in the “chemical” energy. Here the absolute
temperature T  and the pressure p are, like V and M, positive quantities,
while the entropy S and the chemical potential /* may attain, like E, all
real values. Mathematically (1) says that E may be written as a function
of S, V and M  (the characteristic function), with the remaining thermo­
dynamic functions as its first order partial derivatives. Due to the fact
that E, S, V and M  are all extensive quantities, this characteristic function
has the property

E{S, V, M) = Me(s, v), (2)

where we have adopted the usual notation for specific values per mole (i.e.
extensive quantities divided by M ) : the same letter in small type. With
(2) we obtain from (1) the relations

de =  T  ds — p dv (3)
and

ya =  e — Ts +  pv, (4)

which show that the intensive quantities T, p and fi are functions of s and v.
If the system is in stable equilibrium, it satisfies the two stability criteria

/  d*E \  _  /  d T \
\  8S2 ) v ,m  ~ \ d s )
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and

(6)Y “ Cf ) r . » > °
The first one states that, at constant V and M, T is an increasing function
of S. Since this function is also continuous (dT/dS is equal to T\Cy, and it
is well-known that the heat capacity Cy never vanishes), there exists a one-
to-one correspondence between values of T and S, and therefore the set
T, V and M  describes the thermodynamic state just as well as the set S,
V and M . In fact, in (6) the independent variables are T, V, M.  Furthermore,
since p is a continuous function of V at constant T and M(—dp/dV is equal
to l/F/cy, with kt the nonvanishing compressibility), we see from (6) that
T, P  and M  is yet another equivalent set of variables.

Now a change of independent variables must be accompanied by a change
of characteristic function, and the appropriate way to do this is by means of a
Legendre transformation. The Legendre transform F of E with respect to S,

F = E —  TS,  (7)
is the Helmholtz free energy. From (1) and (7) we derive as the new funda­
mental relation

d F =  - S  dT -  p d V  + fxdM,  (8)
so that indeed F may be written as a function of T, V and M,  which is the
new characteristic function. Note that the function S determined by (8) is
the inverse (at constant V and M) of the function T determined by (1),
and therefore increasing, even if the system is not in stable equilibrium,
but in phase transition (of the first order, according to the classification of
E h re n fe s t2)) where

{§)vM =  °- <’>
(or Cy infinite). In both cases we have

(  d*F\ (  8S \
\  dT* )v ,tt  ~  ~  \ W / y , u  <  ° ' (10)

A phase transition at a certain value of T, is characterized by a jump
discontinuity of the function S (at constant V and M),  so that in this case
a whole range of S-values corresponds to one value of T.

Corresponding to the change from the set T, V, M  to the set T, p, M,
the Gibbs free energy is introduced as the Legendre transform of F with
respect to V, and is found to be equal, according to (4) and (7), to M/x.
The fundamental relation becomes

d(Mi«) =  - S  dT +  V dp +  n dM,  (11)
from which it follows that

M d/i =  —S dT +  V dp, or d/x =  —s dT +  v dp. (12)
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The latter (so-called Gibbs-Duhem) relation shows th a t p may be written
as a function of T and p, so th a t the dependence of the characteristic
function Mp on M is a mere proportionality. Here a phase transition a t a
certain value of p, is characterized by a jum p discontinuity of the function
V (at constant T and M), or a F-interval where

( — )  =  0, (13)\ d V  v '

(or kt infinite).
In  view of what is found in statistical thermodynamics, we also mention

the alternative possibility of transforming F with respect to M instead of
V, corresponding to  a change of the independent variables into the set T,
fi and V. Then the characteristic function obtained (which does not have
a name), is equal to — Vp, with p a function of T and p. In  this connection we
m ust consider in analogy to (6) or (13), the properties of the quantity

Bp \  =  / f y * \  /  Bp \  V2 /  Bp \
8M ) t ,v \  dp ) t ,v  \  dM ) t ,v M2 \  dV ) t ,m ’

(14)

which is seen to be positive for a system in stable equilibrium and to vanish
for one in phase transition. The evaluation of dp/dp in (14) is deduced from
(12), and furthermore use has been made of the fact th a t p as an intensive
quantity , can depend on V and M only through F/M . Indeed, from (3)
and (7) it follows th a t

df - —s dT — p du, (15)

and hence th a t /, s and p may be written as functions of T and v.
We will conclude this section with a systematic enumeration of the

im portant thermodynamic formulae. For a better connection with statistical
thermodynamics, the „entropy representation” is adopted, introducing the
quantity

P =  (kT)~ i, (16)

(k =  Boltzm ann’s constant), as a thermodynamic function instead of T , and
redefining S, p, p and F as follows:

* -iS  S
PP -+p

— Pp  - >  p
-P F  F

in the “entropy representation” . (17)

The Legendre transforms of S, such as (c/. (7) and (4))

F =  S -  pE (18)
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and
Vp =  F — [iM =  5 — 0E — fiM, (19)

are called in general Massieu functions.

1). E, V and M  independent variables:
characteristic function (cf. (2))

S{E, V, M) =  Ms(e, v), (20)
with partial derivatives of first order

( I f > 0 -- (21)

'• (w )* .*  -(£).-**?> >;* f22)
\ w )e,v = s{e’ ”)~ l>t‘-V) ‘ ”> »). (23)

and of second order (only relevant ones)

__L/S2s\ __L( w \
\  BE2 ) v , m  M  V Be* )v ~  M  \~Be)v -  ° ’ (24)

/ d2S \  =  1 /  a»s \ _  J _  /  Bp \
\  BV2 ) e ,m ~  M  \  Bv* ) e  ~  ~M \~0iT) e  ° ‘ ,  ^

2). F  and M independent variables (Legendre transformation (18) of

characteristic Massieu function
F(p, V, M) =  Mf(P, v), (26)

with partial derivatives

d r X . *  “  -  ~ Me<*• •) -  - £ (* r .  M), (27)

(2®)

(  aS“)«. r  “  *  •> -  •) •  =  M 0.•). (29)

\ 0 F 2/0,m M \ 8 v * ) n  M \ B v ) f t (31*
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3). (i, V and p independent variables (Legendre transformation (19) of
(26)):
characteristic Massieu function

(32)

with

= v (? f )  =  -V lvifi, p) =  —M(P, V, p), (33)
V dp h ,V  \  dp h

(̂ r L - * (£). - ~ v ^  * - -*«>■F' »■ (34>
( * £ )  - - ( S t )  > 0 ,  (35)
\  f y 2 Je.v \  dp h ,  V

( m . )  —  ( * ? )  > 0 .  (36)
\  dp2 Jv.n \  dp Jv,n

In section 3 it will be seen that these three choices of independent variable
sets correspond to the three important formalisms of statistical mechanics.
But first, in the next section, we will focus our attention on the problem of
the justification of statistical mechanics from general dynamics.

§2. Statement of the ergodic problem of statistical mechanics3). Given the
interaction of a system of N  particles, one can determine its “microscopic”
behaviour according to the laws of mechanics, and, if N  is supposed to be
very large (something in the order of 1020), also its “macroscopic” behaviour as
predicted by statistical mechanics. The question is: what is the relationship
between the two? We shall discuss this question by considering in particular
the concept of “pressure”.

For a classical system of N  identical particles with mass m and pair
interaction, confined in a volume V, the evolution in the time t of the
configuration r^  = (iq, ... Tn) is governed by the set of Newtonian e-
quations of motion

m —  =  s  ri) +  JV(r«). (*' =  1. •••> N). (37)at2 ,=i
i¥=i

Here F is the interparticle force, derivable from the pair potential u,
&

F(r, r') = -------u(\r — r'\), (r ^  r'), (38)
v dr

whereas Fv is the external force causing the particles to remain inside the
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volume V. The latter force has a singular character, as may be seen from its
derivation from the wall potential uy,

with

uv (r) =
f 0 for r inside V,
I oo otherwise.

(39)

(40)

Obviously Fy acts only at the wall, and is then infinite; averaged over the
time, however, the force between the system and the wall is finite, giving
rise to the pressure. Let us consider the simple case of a cylindrical container,
situated parallel to the z-axis, with lower and upper surfaces (of area A) at
z =  H  and z — H'  respectively. Then the pressure pN,v on these surfaces is
the average total reaction force per unit area,

Pn ,v
1 N

± y  S Fv;z(ri),
(+  sign at z =  H, and
— sign at z — H').

(41)

In order to define such averages over the evolution in time of the system
in a proper way, it is convenient to introduce the momenta

(» =  1, ...N), (42)

of the particles as independent variables in addition to their positions.
The set of momenta p N =  (pi, px)  and the configuration rN constitute
the “phase” of the system, which may be conceived as a point in a 6N-
dimensional Euclidian space. From (37) and (42) it follows with (38) and
(39) that

dpi
d t

d J ^ N , v  dr$ dJtf*u,v

8fi ’ d£ dpi
( i = l , . . . , N ) ,  (43)

where is the Hamiltonian function of the system, given by
N  I f t i |2  N  N

M n ,v (Pn > rN) =  S  +  £  u(\n -  r}\) +  £  uy(n). (44)
Am  i j ^ i  i=1

i<i
The 6N  Hamiltonian equations of motion (43) are of the first order (whereas
the 3N  Newtonian ones of the second order). Consequently the trajectory
of the representative point of the system in phase space (— oo <  t <  oo)
is uniquely determined by one phase (say p W N, r(°>N at t =  to):

pi  =  Pi,N,v(P(0)N. r ^ N, t -  to), u  =  rt>N,v (plow, r<oar, t -  t0),
( i = l , . . . , N ) .  (45)
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Hence we may define the time average, in general for a phase function
s#n  (not depending on t explicitly) as follows:

=  : , r<°>* t -  to), r%t r {p«»N, f<°>* t -  t0)). (46)

I t is easy to show that this definition is independent of to- Moreover, ac­
cording to B irk h o ff’s theorems4), if s /N is integrable over an invariantpart

Here the first step is the essential one, whereas the second step is a con­
sequence of Liouville’s theorem .which states that, on the basis of (43), the
Jacobian 8(pN, rN)/d(pWN, f<0)JV) =  1 for all t.

Now the time average (41) may be expressed in terms of the tune average
of a regular phase function by means of the so-called virial theorem. I t  is
obvious that

—  2 p u z Z i  = lim — {p i ,N , V ; z  {PWN, rMN, r) •
dr i T—*oo t

■zt,N,r(PWN, r ^ N, t) -  Pt i  -  0. (48)

On the other hand, (43) gives with (44), (39) and (42), that

Remembering that Fy,z acts only for Zi — H  and Zi — H , we see that the
time average of the middle term on the right-hand side of (49) is, according

j*N,v(PmN, r(0)N, to) = ^ n {Pn , rN) =

2  of phase space (i.e. a set of trajectories) with finite volume, then s/ir,v
exists for pWN, r ^ N “almost everywhere” in 2, and we have

Jfdp<0>^dr<o>^jv,v(P(0)iV, r(0)JV) =

ƒ  d* ƒ  ƒ  dpW* d r<°>*

-rfidpN.v  (P(0)N> ri0)N> t -  to), r%,v (P(0)N, r(0)N. t -  *o)) =

J ƒ  dp^ drN s /y (p N, rN). (47)

d N2 pi',zZt
"  M \ n  -  rf\)
f t  i 8zt

N
Zi -f- 2  Fv;z{fi) Zi -(-

i=l i,1= 1
i<i

+ 2 J^ L- (49)
i=l m
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to (41), equal to pn,r A(H  — H') = —pn,vV. Hence (48) states that

Pn ,vV = @n (Pn , rN), (50)
where

= s- s  (si)
i=l ^  i,/=l OZ\

i< j

If we relate to any phase function s in  another phase function s in ,v  in
such a way that it is equal to the time average (46) of s in  for all points of
the trajectory passing through p(°>N, r ^ N, then we obtain a so-called
constant of the motion. In general a constant of the motion is characterized
by a vanishing „substantial” time derivative. Therefore it follows from (43)
that also iffn,v  is a constant of the motion, or that 3 fn tv = ^ n ,v- If we
prescribe the value of this constant, which is the energy E  of the system, then
we know that the motion takes place in the (67V — 1)-dimensional hyper­
surface in phase space determined by J(?n,v = E. We calculate the "area”
Qn ,v  of this hypersurface as the limit, for s 0, of the volume of the part
of phase space for which E <  Ji’n.v  <  E  +  e, divided by e,

On,v(E) =  lim -  {EN,V(E + d) -  Zn,v(E)} m , (52)
«-►o £ d E

where En,v is the phase volume determined by n,v  <  E,

EN,v(E) — f f d p N drN a{E — Jf?n,v{PN, rN)}. (53)

Since the derivative of the unit step function a is the ó-function, (52) is
equivalent with

Qn,v{E) = f / d p N drN d{E — J^n,v{PN, rN)}. (54)

Now an obvious hypothesis is that the probability to hit upon a trajectory
with a value of &n,v between G and G +  e is equal to the fraction of the
area Qn,v for which G ^  &n,v ^ G  e. Hence we may speak of a distri­
bution of G-values, with distribution function

De ,n ,v(G) =  J J d p ^  dr* d{E -  J fn ,v(PN, r»)}-

■a{G -  Wn,v(PN. f " ) K ' (55)
and frequency function

Ae,n ,v(g ) =  DE,n,v{G) = fps ”d G iJN,v{E)

■ ƒ ƒ dp» drN 6{E -  J f y ,  v(pN, r*)} <5{G -  &N,v{PN. rN)}. (56)
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Applying (47) for 2  equal to the phase “shell” E <  n ,v  <  E +  e, and
=  9m, we find, for e -> 0, that

ƒƒ dp* dr*iFw,r(p*> rN) d{E -  J ^ n ,v{Pn , r11)} =
=  ƒƒ dp N drN%N(pN, rN) d{E -  Jtf’m,v(pN, *N)}> (57)

or, with (56), that
oo ' - ( m )

ƒ dG G Ae ,n ,v{G) =  Gm,v(E)- (̂ ®)
—  OO

Here we have introduced the so-called microcanonical phase average of a
phase function s&m'-

a T v (E) = ----- ------  f f dp* dr* s /y (pN, r*) d{E — n ,v {Pn , rN)}. (59)
Qm,v(E) J J

The equation (58) states that the mean value of the distribution de-
- ( m )  • I ,

termined by (55) or (56) is equal to Gm,v- N°w the ergodic problem, as
conceived by K h in ch in 5), is to prove on the basis of the properties of J f m,v
and that, for macroscopic systems, the frequency function Ae ,n ,v is
sharply peaked at this mean value. In that case the occurrence of G-values

differing much from Gm.v is highly improbable, and the use of the micro-
canonical formalism of statistical mechanics is justified. The smaller the
ratio is of a distribution’s variance to the square of its mean value, the sharper
its frequency function is peaked. For the variance corresponding to (56) we
have

JdG{G — Gn ,v[E)}2 Ae ,n ,v{G) qn  y(E) ,n  dr*

—(m>r
{9N v(PN, rN) -  Gn ,v{E)}2 0{E -  J f N,v(PN> rN)} -

_ •  f
&n .v {E) J •

dp* dr*

— ( m )  1

{9m(PN, rN) -  Gn ,v(E)}2 W  -  JTn M P ", rN)} = '
/» p — (m) , .
I dp* drN{9m(PN, r*) — GN,v{E)}2 d{E — n ,v(Pn - r ))> (60)

- 2  __
where the inequality is due to Schwarz’ inequality: s/m <  ^ n> for =
— cgN _  Gm, v, and the second equality is an application of (57) for (9m ~

- G n !v)2 instead of for 9 N. As the right-hand sides of (58) and (60) may be
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conceived as the mean value and the variance respectively of a distribution
with frequency function

G) =  dPN drN diE -  ^ n M P n - rN)}'
■d{G -  &n (Pn , rN)}, (61)

it follows that (56) is always more sharply peaked than this function A ^ v.
Hence for the ergodic theorem it suffices to study the properties of (61) for
macroscopic systems.

It may be remarked that the approach to the ergodic theorem on the basis
of metric indecomposability of the hypersurface J^n ,v =  E, is contained
as a special case in the above. The hypersurface M’n ,v =  E  is called
metrically indecomposable (or transitive), if it cannot be split into two
invariant parts of non-vanishing area. This means that any other constant
of the motion existing besides 3^n ,v must be constant almost everywhere
on this hypersurface (otherwise it would be possible to find two invariant
parts of non-vanishing area for values of this constant of the motion smaller
and larger respectively, than a certain number). Since @n ,v is such a

— ( m )

constant of the motion, it then follows from (57) that it is equal to Gn ,v
almost everywhere on the hypersurface J^n ,v =  E(i.e. ergodicity, inde­
pendent of the size of the system). The frequency function (56) is in this case

—(m)
equal to the (3-function of G — Gn ,v, and therefore as sharply peaked as
possible. This point is, however, not likely to be realized for nonvanishing
interaction, and not necessary anyway.

§ 3. The various formalisms of statistical physics6). In (classical) statistical
mechanics the phase average of a phase function is defined as

— (phase) ------------------- (phase)
A n <v =  j**(p* rN) =  ƒƒ dp* dr**/* (p* r*) pn,v(Pn > rN) (62)

with a normalized phase density Pn ,v '-

f  ƒ dp* dr* PN, V(PN, r*) =  1. (63)

Here and in the future we suppose each of the integrations over r<(i =  1, ...
..., N) to be restricted to the volume V. In (59) we met already the micro-
canonical phase average with density

P(̂ y ( E ; PN, r*) =  d{E -  J?n (Pn , r* )} /^ , V(E), (64)

(with we indicate the Hamiltonian function J^n ,v without the wall
potentials). The other possibility of interest is the canonical phase average
with density

P ttrtf) P", r*) =  exp{ - P ^ n (Pn , r»)}l0N,vm. (65)
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where /S is real and positive, and, according to (63),

®n ,v (P) — I f  dPN dfJV exp{—pJ^N(pN, rN)}. (66)

Using (54), we may derive the relationship
oo

®n ,v(P) =  / d £  £tf,v(£), (67)
— oo

and in the same way with (59),
OO

- ( c )  1 r _ - ( m )
A n ,v{P) =  - r --------d£ e pE Qn ,v (e ) a n ,v[E). (68)

*Pn ,v (p ) J
— oo

In this, section we will derive for these phase averages of the functions
/ j ,  and &n , some expressions which connect statistical mechanics with
statistical thermodynamics. Note that both and consist of a part
depending only on the momenta, and a part depending only on the con­
figuration. Thus n  =  y  +  where

N \pi\2
r N(p») =  s  — —1=1

(69)

is the kinetic energy, and

Wy{rN) =  S  “ (lr< -  rj\)
i.i-1i<1

(70)

the potential energy of the system in V. In the same way *&y =
where

^

& n (Pn ) =  X  —
i= i m

(71)

and
N 8u(\rf — fj  |)

r N{r») =  -  a  — 5— -----—  «1.
U - l  «*«
i<1

(72)

—(m)
Obviously HN,v =  E, so that (68) gives, with (67),

-<0) 1 f , _  , j7\ 77 d log &n ,v{P) /7ox
H n ' v W  ~  * M  — v— ' ( ’

— oo

Using the fact that pi;zlm =  d^y/dpi-^  for an integration by parts, we find
with (53), that

1 ~(m) f 8 log En ,v[E) l -1
—  Sn ,v( E ) = E n ,v(E)IÜn ,v(E) =  [ -----j • (74)
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Hence (68) gives, with (52) and (67),
• oo

= T(76)
The phase average of n  are equal to § times those of 5AN. In  order to deal
with &u, let us differentiate (53) with respect to V  (at constant area A of
the cylinder). This is best done as follows: first transform each ^-coordinate
in such a way th a t the integration volume becomes a cylinder of unit height,
then differentiate, and finally transform back. The result is

()£n ,v{E)
8V

N
—  Zn <v{E)

or, using also (74),

~  ƒ ƒ dpN drN d{E -  J?N{pN, rN)}-

" dJPN(p» ,r» )
■ S  -------5---------z i> (76)

1 ^ <m),ir\ 8Zn ,v(E) I tin a log Zn ,v(E) /8  log Zn ,v (E)T  G*’r(E) = gv~" I 0»ME) =  ------------Jy------------/ ------------ j g -

For the canonical phase average of we obtain therefore from (68), with
(75),

1 -(O )
~P~G N,v(P)

OO

1 f e - »  dZN’v ^
<Pn ,v (P) J dV

—oo

1 8 log &N,v(P)
~J 8V

Assuming the ergodicity of the phase function &N, statistical therm o­
dynamics starts with the identification, for macroscopic systems, of (77)
with the thermodynamic pressure as a function of E, V  and N  (N equals
the quantity  M  multiplied by Avogadro’s number.) Then, if we suppose the
“asymptotic problem” for the microcanonical and canonical formalisms to
be solved, also the identification of every other thermodynamic function
with its statistical “ analogies” m ay be made. The result is th a t the logarithms
of the statistical functions

Zn (E, V) «  Zn ,v(E)IN\ or Qy (E, V) =  Qs,v(E)INI (79)

and

&n (P, V) =  O s.viiP I  (80)

determine asymptotically, as characteristic functions, the descriptions 1)
and 2) respectively, given for a thermodynamic system in section 1. Note
th a t the first possibility in (79) is, in view of (77), more fundam ental than
the second one. For the choice of Un , moreover, the microcanonical phase

39



average (74) of SAn !N is identified with the thermodynamic quantity /S-1,
just like the canonical one (75).

We do not intend to go into the details of the asymptotic problem here,
but will only point out a particular aspect of it: the functions n , (or

N) and 9 N must be shown to belong to the class of phase functions stjt
with the property

j  —(m) i  —(o)
lim —  A N'Nv(Ne) =  lim —  ANtN-v (oc(e, v)), (81)

IV -* »  M  N —oo rV

(including the existence of the limits). The meaning of « in this equivalence
relation for phase averages follows for s/ n  =  with (74) and (75),

hm =  1 (82)
N —yoo &N,Nv(Ne) oc(e, v)

Taking s/ n  =  34?n , (81) becomes
J  - ( C )  :

e — lim —  N,Nv(<*{e> v))> (83)
N-+oo r v

so that, using (73), we may also say that a is the inverse function of

,„wo \ * Slog &n ,nv(P) ,aMe(c)(p, V) =  _  hm —  --------—-------- (84)
N -*o o  N  op

at constant v.

Repeating in an analogous way the transition from the microcanonical
to the canonical formalism as given by the relation (68), by defining

-(g) I °° -(c)

A V(P, p) =  6-To— r  S  e ^ ( ü ,  V) A n ,v(P), (85)
• s v(P> W  N = 0

where p is real, and
OO

Sv(P, p) =  s  e - ^ N(,3, V), (86)
N =  0

we arrive at the grand canonical formalism. If we suppose that the canonical-
grand canonical asymptotic problem is solved too, the new description
appears to be the third one of section 1, asymptotically determined by the
logarithm of the statistical function (86) as the characteristic function.

Corresponding to (81), we must have for the same class of phase functions,

i - ( c )  i - ( e )
lim —— A n ,nv(P) =  lim —  AV{P, A(0, t>)). (87)

Nv  V -*oo V

The grand canonical average of SAy is, according to (75), (85) and (86), given
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by
-(») i

Svffi, lA =  — -Z
8 log 5 V(P, n)

8ju
(88)

and hence we see that, similarly to the relationship between a and (84), A
in (87) is the inverse function of

u«h(/3, fi) ( Hm J _  g log Er(P, tA j,-1
I f—« o F  8 f i  J

(89)

a t constant (3. An expression for A directly in terms of a lim it (c/. (82)) may
be found by considering the statistical analogies of the thermodynamic
quantity  p. Since N  M, the differentiation with respect to M  m ay be
replaced by the computation of the difference for two successive values of N,
so th a t from (29) we obtain as a canonical analogue of (i the logarithm of

Treating 0 n - iI^ n  as a canonical average, (85) yields, with (86),
indeed or'1 as the appropriate grand canonical average. From these obser­
vations the existence of the following equivalence relation m ay be conjectured
[of- (87)),

.. & N -  l(P,Nv)hm —-—---------
j v - * »  & n ( f i ,  N v )

e -MP, v) (90)

Note that, since according to (78), (85) and (86),

V p dV (91)

there are two grand canonical pressure analogies, which m ust be asym ptoti­
cally equivalent.

lim 3 log Ev(P, ft)
f - x x j 3F

=  lim
V —>oo

1
V

log 5 V(P, fi). (92)

If the limit on the left-hand side is known to exist, then (92) holds according
to l’Hópital’s rule; the reverse is, however, not true in general. This question
together with (90) and its microcanonical-canonical counterpart

2 N-i(N e,N v) <PN-i(cc(e, v), Nv)
lim --------------------  =  lim ------------------------ . (93)

N-*oo Eiv{Ne,Nv) n-*oo ®iv(oc(e, v), Nv)

m ay be considered as supplementary to the asymptotic problem.
Note th a t all functions introduced above for a finite system, are con­

tinuous in their continuous variables. Discontinuities such as we expect
for some functions in phase transitions, can therefore be mathematically
sharp only in the thermodynamic limit.

§ 4. The limit theorems of probability theory'1). Any real function D of a
real variable f , which is nondecreasing, with values between 0 and 1, and
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normalized according to
£=oo
/dD (f) =  l. (94)

{ s :  --- OO

may be conceived as the distribution function of a random variable. Three
other ways are used to characterize a distribution, which in general are
equivalent to the knowledge of the distribution function:

1. by means of the characteristic function
|=0O

v (T) = / e w dD(f), (95)
f  =  — OO

2. by means of the set of moments
£=oo

fip =  ƒ gv dD(f), (P =  0, 1,2, ...), (96)
£ = *  — OO

3. if the random variable is continuous, by means of the frequency
function

4(f) -  —  >  $  (97)

and if the random variable is discrete with values £k(k =  0, 1,2, . . . ) ,  i.e.
if D is of the form

OO

Z)(f) =  2  — f*)> (co* >  0, £o <  f i <  £2 •••)> (9®)
*•= 0

(with a the unit-step function), by means of the set of relative frequencies
(Ok(k =  0, 1,2, ...). (Every distribution is a linear combination of these two
types, and therefore we will consider only the pure cases, the second one
in fact with I* a linear function of k).

The normalization (94) gives
OO 00

y>(0) =  /.to =  f  d£A (£) =  2  =  1 • (99)
—00 k *=0

Since, according to (95) and (96), we have

fip (100)

the numbers fiPlp\ are the coefficients in the series expansion of f  in powers
of It. Equivalently we may use the coefficients in the expansion of log y>,
the so-called cumulants:

_ (  log w(T) \
Kp \  d^V)*’ / t=o’

(p =  0, 1,2,...), ( 101)

42



(i.e. kq =  0, ki = /ui, the mean value, * 2  =  — /j\)  >  0, half the variance,
etc.). Furthermore we note that (95) may be written with (97) as

oo

y>(r) =  /d £ e <T*J(f), (102)
—  OO

and with (98) as
OO

v[ t)  =  z  e<T{*«*. (103)
fc**0

Now we are interested in the following question: if for a sequence of
distributions there exists a limit distribution according to one of the above
ways of determination, does this limit distribution also follow from the
other ways ? In particular we want to get from 2. (or rather the cumulants)
to 3. Two general limit theorems of probability theory7) enable us to go
from 2., via the distribution function description, to 1:

A) if a sequence of distribution functions Dn(n -> oo) tends to a conti­
nuous distribution function D, then the corresponding sequence of character­
istic functions ipn{n -*■ oo) tends to y> uniformly in any finite r-interval,
where ip is the characteristic function corresponding to D (First limit theorem),

B) if for a sequence of distributions all moments pip\n (or cumulants
KP\n) exist, and tend for n oo to limits /up(Kp) which are the moments
(cumulants) corresponding to a distribution function D, then the sequence
of distribution functions Dn(n -> oo) tends to D in all points of continuity,
provided that the limit distribution is uniquely determined by its set of
moments (cumulants) (converse of the Second limit theorem).

In view of the applications of probability theory in statistical physics, we
need not consider the last step, from 1. to 3., in general, but only for Gaussian
limit distributions (of sequences with pii\n s e  k i |„ =  0), most simply (and
uniquely) characterized by the set of cumulants

* 2  =  B, k p  =  0 for p >  3. (104)

On the basis of the above theorems we may therefore proceed from the
following property: given a positive number e, there is a value n0 of n such
that

lv«(T) — exp(— <  \e2 for |r| < — and n >  no(s), (105)
e

or
c/«
ƒ dr \ipnij) — exp(—jBt2) \ <  Ce for n >  «o(«). (106)

- c / «

where C is an arbitrary positive constant.
For a distribution of a continuous random variable, the frequency function

43



A is obtained from (102) by Fourier inversion:
oo

J(£) =  fd r  e~iri y>(r). (107)
2 n J

—  OO

Now in order to investigate whether
OO

lim d B(|) =  f dr e- <T{- iBT‘ =  (2nB)~i exp(—^ 2/5), (108)
iV-«x> 2 71  J

—oo

we may write
CIb

2n \An(£) -  (2tkB)-* e x p (-£ |2/B)| <  ƒ dr |V»(r) - e x p ( - |B r 2)| +
-c/«

+  ƒ d-r |v>„(t) | + .  ƒ dr exp(—JBt2). (109)
C /« <  |t | < oo C /« <  |t | < oo

Noting that (with transformation of r  into r -1),
oo » / c

J dr e - iST’ =  ƒ dr r - 2 e~iB,r' <  —  S, (110)
o/« o

we conclude from (109) and (106) that a sufficient condition to have (108)
is, that a value wi of n can be found such that

ƒ dr |v>»(t)1 <  C's for n ^ n i(e ) ,  (111)
C/e< (rl <°°

where C  is some positive number. This condition8) will appear to be
satisfied in our applications. Note that the limit (108) established in this
way is uniform in £.

An important special case of a sequence of distributions tending for
n ->■ oo to the Gaussian one, is that of the sum distribution of n independent
identical random variables with vanishing mean values, provided that this
sum is divided by y/n  (Central limit theorem, alternatively also for non­
identical random variables). The independence is expressed for continuous
variables by

oo oo n _ n 1

J „(£) =  V » ƒ d £ i... ƒ  df *-i n  M H ,  (£» *  -  S  ilh (112)
-OO -oo 1=1 1=1

and for discrete random variables (linear in k) by
] n oo oo n w —1

£*|»= — E £fc,|l> «*1» =  E  ••• 2  II «fc.ll. (kn = k  — '£l ki). (113)
f l  1 =  1 J C l  —  0 f c n - l  =  0 l = l  * 1
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From (102) and (112), as well as from (103) and (113), it follows that

’”w "  {w (t s  )}’• (U4)
and furthermore, according to (101), that

Kp\n =  P̂ Kp\l- (115)
Indeed these cumulants tend to (104) with B =  k z\i for » ^ o o  («m =  0).

The case of a sequence of distributions of a discrete random variable, we
will consider only for the above example (113). With

1*11 =  x(k — mi),

(so that /j,i\i =  0), we have

where m\ =  2  ku>k\i
*=o

1*1» =  x(k — nmi)l\/n,
and consequently, by inversion of (103),

”V n lx

g>*|» =  2n\/n ƒ
—n s/n ix

In analogy to (108)-(111) we find that
lim y/natkinlx — (2nB)~* exp(—^f2/5), (k =  l-y/n/x +  «mi),

n—voo

(116)

(117)

(118)

(119)

if for each positive number e a value n\ of n may be found such that

ƒ  dr |y>n(r)| <  C'e for n^tni(e), (120)
C /e <  |r |  < n y /n /x

which will appear to be possible merely as a consequence of (114) and (116)
K h in ch in 9) has shown that the characteristic function y> of any distri­
bution of the discrete random variable (116) has the property

|^i (t)| <  &, (0 <  & <  1), for 0 <  |r| <  ti/x. (121)
Hence we obtain, using also (116), the inequality

ƒ  dT |y>m(r)| =  y/n f  di-|yi(r)|n <  ny/n^ lx ,  (122)
C / e <  C/e\Zn<: \r\^n fx

which is certainly sufficient for having (120).
The theory of this section may be generalized to simultaneous distri­

butions of two (or more) random variables. Then we have, for continuous
random variables, the relations (c/. (107) and (101))

OO OO

A n) =  ƒ  ƒ dT dv e ' i(Tf+’”’) Y-(t , v), (123)

Kp,q
Z ^ l P ^ l o g ^ T ^ X

\  d(ir)v d(*©)* / T=»=o’ ’ ^ 0 , 1, 2 , . . . ) , (124)
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and we want to investigate, when (with ki,oi» =  *o,i|n =  0)

lim k2,oi« =  B\, hm *1,11» =  # 2, hm «0,21» =  B$,
n —>00 n -> 00 n-*oo

whether

lim An(ti, r])
n-* 00

with B1B3 — B | =  B2 >  0,
lim =  0 for c[ ^  3,

oo oo
J  j  f  d T  d u  e — « > ; ) — } ( - B i t 2+ 2 B 2 T U + b 3 « s )  —

(2tt)2 J J
—OO —OO

( 125)

=  (2*B)-i exp{-£ (£3!2 -  +  Si»?2)/# 2}, (126)

(“two-dimensional” Central limit theorem in the case of simultaneous sum
distributions of independent random variables).
Since the limit theorems >1) and B) may be applied here too, we generalize
(105)-(111). Noting that (cf. and use (110))

oo oo ®° ° °

ƒ  ƒ  dr dt> e ~ 2B,™+Baf*) <  ƒ  dr e~iBir' ƒ  dv el*i =
C /o - o o  C /«  - o o

_ oo

=  f dr <  V2nBa (127)
1 B$ J \B  0

c/«
we may require a property similar to (111) for the double integrals of \y>n\
(Ci/e <  |t | <  oo, —oo <  v <  oo and —oo <  t  <  oo, C2/e <  |«| <  °°)
for n large enough.

§ 5. The asymptotic properties of a separable system5). A separable system
of n identical components is characterized by a Hamiltonian function of
the form (with N  =  Nfn, V = V/n)

n

rN) =  S  *% .v. (128)l—l
where is the Hamiltonian function (44) for the particles numbered
from (I — i) N  +  1 till IN. Moreover, instead of the factor 1JN\ introduced
in (79) and (80), we use for a separable system the factor (1 /N\)n, e.g.

<~n)£2it(E, V) =  ƒ  J  dpN dr-^ d{E — n ,v(Pn > rN)}- *) (129)

*) K h in c h in  ») in fact considered an ideal system, the characterization of which one gets from
(128) and (129) by pu tting  n =  N,  and (in accordance) A' =  1, b u t V  =  V.  The asym ptotic evalu-
ations then are performed for N  -> oo [V constant).
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Any phase function of the same form as (128):
n

W sfN{pN, rN) =  2  (130)
i - i

is called a sum function of the phase function For such a function we
want to evaluate asymptotically for n -* oo (N and V constant), the
microcanonical phase average (59), which m ay be w ritten as

- ( m )

WANiV (£) =  nMQ^E, V)l(*>Qït(E, V), (131)
with

{h)®n (E, V) =  ■ 1 jj dpxV dr^v (*)j4N(pN, r*) 6{E -  (p*r, rN)},

(132)
(note th a t for =  1 we have =  <»)£#).

Using the identity for ó-functions

oo oo n—  1 n —1

d(x) = / d x i  ... ƒ  d*n_i n b(xi) d(x — 2  *z),
— OO — OO Z = 1  1= 1

(133)

we deduce from (132), with (128) and (130), th a t

MQUJB.'V) =  — — JJdp ^ dr^^ > 0{£ =

oo oo

=  I d £ i ... I dEn- i n W i ,  V) Qfi(E - £ e i , V), (134)
J J Ï& 1

—oo —oo

where

ü n (e > V) =  dp N d rNs / N(p*, rN) 6{E —  J f N{pN, r*)} =

- ( m )

=  A n ,v(E) Qn (E, V), (135)

Now in view of (67) and (73), the function

•nf)= r)

(136)

may be conceived as the frequency function determining the distribution
of a continuous random variable f  with vanishing mean value. Supposing
th a t the function (135) is positive, or th a t

—(m )

-4.zv,v(Zs) >  0, (137)
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we generalize (136) to a frequency function

( f  -  d^ ‘V\ , v)l*lt(P>V), (138)

where

v ) = ~ ^ v \ \ dpN drN^N(pN, rN) exp{ - p j r N{p*, rN)} =
—(c)

=  Ajfty((}) V), (139)

(the normalization being ensured by (68)). Then, on the basis of (134), we
conclude that the frequency function

•< »> flj,(v«  -  V), (140)

where
V) =  F)}»-1 V), (141)

determines the sum distribution of n independent continuous random
variables, of which n — 1 are identical (or all n if s/ n  =  1), with vanishing
mean values and their sum divided by y/n (cf. (112)). We now have, instead
of (114) and (115),

and
Kp\n = n~P/2{{n  — 1) k p | i  +  k J h } (143)

respectively, which again leads to the limit (108) with B =  k2 \i for n -> oo,
provided that we know the condition (111) to be satisfied.

In order to deal with this condition, let us extend the function @n (given
by (66) or (67)) to complex values s of its argument /S:

&n {s, V) =  ^f] - j j dPN dfN exP { ~ ^ n (Pn , rN)} =
OO

=  ƒ  d£ e~sE Q n {E, V), (144)
—  OO

(in absolute value smaller than when evaluated for the real part of s, and
hence finite for Re s >  0). Then the characteristic function corresponding
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to (136) may be written as

= «w ho J  “ exp fv (£ + el0ST r ) m\ 0ir<£' n  -
—oo

f . d log <£#(/?, V) |
=  exp I t r ---- 5 ■* * ’ 0 N{fi -  ir, V)l&N((i, V). (145)

Using the fact that J?$  =  3TN -\- we can perform the integration over
the momenta in (144), giving

1 /  2ntn r
^ jv(s, U) = —j  J d r^  exp{—s<%N(r*)}. (146)

Consequently we have, according to (145),
/  B \3N/2

Wt)i *  • <147)
and, furthermore, according to (142), noting that also |yj| <  1,

(7 b \i(n—i)l b2
’V-.WI ^ V S I)  } < ^ - f o r » > 3 ,  (148)

which inequality is certainly sufficient for having (111).
The above application of the central limit theorem yields for s/ n =  1

K h in c h in ’s5) first asymptotic result:

lim V » exp \ —f l ( y/wf — . I * * .» »  )]  •
n-*-oo I \  d fi /  J

N /n= ft ,  V/n= V

• <»>Ö* ( y i f f  -  n — F) , f )  ƒ  {<^(0, F)}» =

— (251*211)-* exp(—i l 8/^ ^ ) ,  (149)

with, using (145) and (66),

«211
/  a2 log yi(r) \
\  8(ir)2 )r=  0

a» iog< P ^, F)
ep*

---------------------------- (c)~(o)
=  (•** -  Hft.v)2-

According to (140) and (141) we have

lim y/n  exp { - f t  ( y/n^  -  n — ?g ^  \1 •
n—*oo I \  df$ /  J

N /n = ft ,  V jn= V

•(n)K  (y * £  -  n — g  V ) ,  v j f w l M ,  V) =

= lixn +  _L_ ( i - lQg F) _  j j gg « w
»̂ oo \  y »  \  . a/? dp

(150)

(151)
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Since the limit (108) is established to be uniform in f, the right-hand side
of (151) is equal to the limit of An when evaluated for f, (the difference in

values tending to zero for n -> oo). This limit is again the right-hand side
of (149), so that we obtain, using also (131), (139) and (141),

lim —
n —>oo ^

N ln = f i ,V ln = P

- ( m )  /
M A N'V \ y n £

8 log &N(P, V)
)/

- ( c )
A (152)

Here we may in conclusion choose I equal to zero, which yields K h inch in ’s5)
second asymptotic result

1 - ( m )  —(c) - ( c )
hm ^ A  nf)np(nH p(fi)) =  Aftp((i)

- ( c )
(n)A nft<nP(P), (153)

expressing (cf. (81)) the asymptotic equivalence for n oo(N and V
constant) of the microcanonical and the canonical phase averages, for a
separable system, of the sum function of any phase function with a finite
lower bound to its microcanonical phase average (for then the function
decreased by this bound has the property (137)).

Examples of phase functions for which (153) holds are: s/ n =  ^ n>
séft =  <&ft and s in  — Sf N (or ^m), and consequently also s / y  — and
séft = 'V'n - For 2^ft we have

^N ,v{P N.r N) >E%\V), (154)
— ( m )

and hence H ytv >  E(n ', the result (153), however, is in this case nothing
—(m )

but an identity. According to (77) we have Gn , v ^  0. The function SAft has
the property that its sum function is again the same phase function; with
(74) and (75), (153) yields in this case

hm
n-*oo

MZnft(nHft(f}, V), nV) 1

J (155)
{n)QndnHft(P, V), nV)

As regards @n , we are also interested in the asymptotic evaluation lor
n -*■ oo(N and V constant) of the frequency function (61) determining the
distribution of the values of W&n on the hypersurface (n)^ N , v  =  E,

(»)d<^V(E; G) =  WYft{E, G, V)I^£3N(E, V), (156)

where

<»>Ytf(£, G, V) (N\y ƒ / dpN drNd{E -  ^ J t N,v {pN, r*)}-

•<5{G -  ( ^ N{pN, rN)}. (157)

The asymptotic form of we already derived in (149), and <n> Y y  may be
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considered as a “two-dimensional” analogue of (»>.£?#. Hence we seek to
apply the two-dimensional central limit theorem on the basis of distributions
determined by a frequency function of the form (cf. (136))

- ( C )  - ( c )  - ( c )

ri) — exP{—£(£ +  Hn .v)} Y n (£ +  HNiv , rj +  Gif'V, V)I®n (P, V), (158)

where

Y n [E, G, V) =  Jd p ^  dr^<5{£ -  s r N{pN, r*)} <5{G -  9 N(p*, r*)}. (159)

The corresponding characteristic function is

- ( c )  - ( c )

Y>(r, v) =  exp(—irHNt v — ivGN, v) v, V)f&N(p, V), (160)

where, for complex s and real v,

@n (s , v, V) =  ƒ ƒ dpN drN exp{—s J f n {Pn , rN) -f iv ^ ^ ( p N, rN)} =

oo oo

=  ƒ ƒ dE dG e - aE+iv°  Y N(E, G, V), (161)
—OO —oo

(in absolute value smaller than when evaluated for the real part of s and
vanishing v, and hence finite for Re s >  0 and all v). Using the fact that

n  =  3Tn  +  and ^ n  +  T^n , we find that (cf. (146))

4>n (s , v, V) =

1 /  2nm \ N/  2nm \ iN f
■ m \ v J  ( 7 ^ a )  J d r » eXp ( - s«'„('-I ') +  » » ^ (> J')}. (162)

so that, according to (160),

lv(T. «)! '<
\ P -

P
\P — ir  — 2iv\

and, furthermore,

(163)

IVn(T, v)|
■\/n ’ -y/n +  /8-2r2

1
1 +  /8-»(r +  2«)2

for n >  2. (164)

Now, since (1 -f- x z)~2 integrated for —oo ^  x  ^  oo yields a constant (n),
(164) ascertains that |y>n| has the properties mentioned at the end of section
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4, and the central limit theorem (126) may be applied, giving
_  - (o )

lim n exp{— +  ftHft.v)}'
n—►oo

N/n==N, V In — V
- ( c )  _  - ( c )  _

■WYN(\/n£ +  nHft p, y/nrj +  nGf, v, V)I{<!>${$, V)}n =

=  (2 tiB ) -1 exp{—J(«ro,2|il2 — +  *2, Oil»?2) /# 2}.

B =  (*2,0|1*0,2|1 — *1,11*)*» 0^5)
with

---------------------------- (c) -------------------------------------------- — (c)
- ( c )  - ( c )  - ( c )

*2,011 =  { X R  —  H x p )2 =  #«2|i» *1,111 =  { X  ft — Hft,v)(&ft ~  Gft,p)>
------------------------:------------- (0 )

- ( c )

*0,2|1 =  (&ft — pft.v)2- 0^6)
Combining the results (149) and (165) for £ =  0, we obtain for (156) the
asymptotic evaluation

- ( o )  _  - ( O  /  B 2 \ - t  /  „ /  B 2 \

hm V n(n)Aï$,nAnHft,t>’ Vny +  nGft,v) =  \ 2n~ ^ )  exp^ - ^ 2/ —
(167)

- ( c )
i.e. the limit distribution is Gaussian in the variable (G — nG^^)l\/n, with
variance *0,211 — *i,ni/*2|ï- Now let us consider the consequences of the
assumption that this conclusion is also true from the description by the
corresponding sets of moments (the reverse of the problem treated in section
4). For the first moment this means that

1 -(m) - ( c )  - ( c )
lim —  {{n)Gnf)in? ( n H p(/3))' -  «%*(/?)} =  0, (168)
n—*oo \  W

which result imphes (153) for j/ n =  (but is stronger). For the second
- ( c )

moment we obtain in this way that (still for E =  nH$ $■)
-------------------------- ----------(m) --------------------------------------—  (m)

1 -(O) 1 -(m)
lim — (<»>̂ n* -  nGft^)2 =  lim — (< »> ^ -  (n)Gnf}>np)2 =
m-*oo f t »-*» f t

---------------------------(o) (------------------------------------------------ ( c ) l 2  ƒ -------------------- — ----- (°)
- ( c )  J  - ( c )  - ( c )  I /  - ( c )

=  (Vf, -  Gr s )2 -  \ { X S -  H n s W t,  -  Gs s ) J /  (X „  -  Hf}, p)2, (169)

where also (168) has been used. We see that
-------------------------------- -——(m)-(m)

lim (in)9n* Z ^ Gnft,n^  =  °> (170)
^  (<»>C!»r)2
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indicating that the frequency function (61) is, for a separable system of a
large number n of components, indeed very sharply peaked. On the basis
of a more detailed version of (149), giving also the order of the remainder,
K h in c h in 5) actually proved (168) and (169) for an arbitrary sum function
in a direct, but very laborious way (the remainder for both limits being of
the order n~i).

§ 6. Stability of the pair potential10). Suppose that we have a real function
<p of a real positive variable r, which is finite for all r. Then we may write

N  N
£ <p{\Ti — r,\) =  i  £  <p{\ri — T]I) — iN<p(0) =

i,1=li<j
=  i f f  dr drVflr

i,1= 1

-  r'\) vN(r, rN) vN(r’, rN) —  %N<p(0), (171)

where

VN{r, rN) =  S  ó(r — r<).
i= 1

(172)

Introducing the 3-dimensional Fourier transforms of (p and v,

4>{t) = / d r e  <*”X |f j) , (173)

we have
riV) =  /  dr e~U r M r ,  rN), (174)

ƒƒ dr dr'<p(\r — r'|) vjf(r, rN) vir(r’, rN) —

ƒ(2tt)3 dt$(t) vN{t, rN) vN(~ t,  rN). (175)

It follows from (173) that
-oo n oo

4>{t) =  2a j  j d r  ddr2 sin0 e~iWrooae <p(r) — ~ j~ jd r r  sin |f| r. <p(r), (176)
o o

which expression implies that $ is a real function q>\ of \t\. Furthermore we
conclude from (172) and (174) that

rN) =  S  e
i=l

-it'Ti _ A.* rN), (177)

(the star denoting complex conjugate). Now it is a consequence of (171),
(175) and (177) that

2  — »Vl) >  — ?N<p(0),
i,1= 1i<i

(178)
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whenever
(t) > 0  for all t (> 0 ) . (179)

Hence, if such a 9? has also the property that

(p{r) ^  u(r) for all r, (180)

then the pair potential u is stable:
N
2  w(|fi — f j I) >  — Nuo with «o =  i9>(0). (181)

i<i
It is possible to prove in this way that the Lennard-Jones type potential

u(r) ^  C\r~n for r <  a, u(r) —C2r-n for r ^  a, (182)

for certain positive constants C1, C2, « and a, is stable if n >  3. Consider

9»(r) =  Ci(r2 +  a2)- ”/2 -  (Ci 4- C2) 2»/2(r2 +  a2)-»/2, (183)

where a is an arbitrary positive number. We have (since r2 a2 >  r2)

<p(f) <  Cir~B for all r, (184)

and (with r2 -f- a2 <  2r2, or r ^  a)

<p(r) <  Cir~B — (Ci +  C2) r ” =  — C2r~” for r ^  a, (185)

so that (180) is satisfied. For (176) we get

0l(f) =  Cia3-B G(ai) — (Ci +  C2) 2»/2 a3~B G(a*), (186)

where (for p ^  0)

G(p)
An

0 0  0 0

■f dr r sin pr • (r2 +  l)~lB =  —- - - - f  dr cos pr • (r2 +  1)-*B+1.
J  h ï  —  1 J

Using the expression (valid for n >  2)
OO

C(Jw — 1) =  J  dx e~x xin~2,
0

we find by means of Poisson’s transformationu ) that

(187)

(188)

OO OOran)
G ( f l . - ~ dr I dx cos pr-(r2 -f- 1)~*B+1 e~x xin~2

0 0
OO  OO

f  1 >̂2dr j dy cos pr-e~v<’T'+1  ̂y*B_2 =  | dy exp j — —-----'ƒ<
0 0

yj> .y \ (n -b ) f

(189)
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by writing x =  y(r* 2 * * + 1 ) ,  and changing the order of the integrations. We
see that G is a positive and decreasing function of p, so that from (186) we
conclude that also (179) is satisfied:

<pi(t) >  (Cia3-« — (Ci +  C2) 2»/2 «3-»} G(at) >  0, (190)

provided that we choose (with n >  3)
f C l  1 1/(»—3)

“ <  I (Ci +  C2) 2»/2 } *' (191)

(implying that a <  a). Hence we obtain from (182) the result (181) with

, „  Tl (c i +  c 2) 2»/2li+(3/„-3) ,c + c v 2„/2 -]
| j i _ c T — I ~ ' U ± c r — J > a  (192)

Writing the stabihty property (181) as
N  N

Z  { 2  *(!»•< -  *•ƒ!)} ^  — 2N u o ,  ( 193)
i - i  i - 11*1

we see that, for each configuration r^,
N
S  M(lri — ril) ^  — 2mo for at least one index i*). (194)

l - i
l # i

On the basis of this consequence, R u e lle10) 13) has derived the thermody­
namic limit behaviour (for all-sided expansion of a spherical volume V) of
the grand canonical correlation functions p(m>v (M = 1 , 2 ,  ...), using the
Kirkwood-Salsburg integral equation for these functions, and the theory
of linear operators. The functions p%\ r  are defined by

1 oo 0 —/ i (M + N )  /•

Pm. vW, /C *m) =  --  , ,  , S  ----- -------- d rw  exp{ - ^ M+N(rM+N)},
^ v [ p >  f t)  N =  0 ! J

(195)

where fW  =  (fM+i,-.., Tm+n ), and Sy  is given by (87) with (85) and (67). It
follows that

<w //» . -X 3 log B y if i , /*)
J  dfi P i,r \P >  ri) = - - - - - - - - - - - g - - - - - - - - - , (196)

*) P e n r o s e 12) has shown for a hard core potential (a special case of (182)): u(r) =  oo for
r <  a, u(r) >  — Czr~» for r  >  a, w ith »  >  3, th a t there exists a constant «ó such th a t

N  N
2  «(In — Tj I) >  — 2«Ó if 2  «(In — rj,-|) <  oo.

1=1 1,k— 11*1 1***1
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and consequently R u elle13) has also been able to prove in this context
that — V~l 8 log Sy/S/t tends uniformly to a limit for V ->oo and ft >  2/Swo +
+  1 +  log C, where

C(p) =  / d r  |e- ^ |r|) -  1|. (197)

(According to R u e lle10), C is finite for a stable and strongly tempered
potential, i.e. with

u(r) <  0 for r >  ro, (198)

in addition to (181)). Two other conclusions may be drawn from this result:
for n >  2/Smo +  1 +  log C there are no first order phase transitions and
(integrating with respect to ft) F -1 log Ey tends for V -*■ oo uniformly to a
limit:

lim ~  log Ey(fi, ft) — (P, ft). (199)
F-x» v

The latter limit, however, can be established directly from (181) and (198)
for all [i, by means of the limit theorem for subadditive functions (see Ch. I
section 3; R u elle10) gives a derivation for all-sided expansion of a cubical
volume V). Then it is interesting to investigate whether both sides of (199)
may again be differentiated with respect to ft:

lim -L  a » l°g S rtf .r t  _ for p > h
F-*» F  8ft'p 8ftP

There exist two different approaches to this problem, both confirming (200),
except at phase transition points: one, due to G rif f ith s14), concerns the
case p =  1 and excludes only first order transitions, the other, due to
Y ang and Lee15) and improved by Lewis and S ie g e rt16) and P en ro se12),
establishes (200) for all p outside transitions of any order. The application
of Gri f f i ths ’ theorem (the proof of which is reproduced in the Appendix)
is based on the fact that (cf. (150))

------------------------------ (r )

_ (Jv _ sfi, > o, (Mu
8ft2

and is quite straightforward. According to the ideas of Yang and Lee,
we must study the intricate properties of the function

OO

Sy(p, /t — log (1 +  w e")) =  2  (e“" +  W)N V) (202)
iV=0

for complex w, using the fact that it is an entire function of w*).

*) In fact Yang and Lee16) considered the case of a hard-core potential, for which =  Ofor
N  larger than a certain value AV*11' satisfying JVv(0) <  F/(4ir/3) (Ja)s.
Then (202) is a polynomial in w, and can be treated in a more simple way than in the general case.
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Since we have, with (181),

the order of the entire function (202) is smaller than or equal to one. (Accord­
ing to R u elle17) the order is actually zero for potentials to which a function
<p may be found satisfying (180), and (179) with in particular $i(0) >  0.
This is indeed the case for the Lennard-Jones type potential (182) with (183)).
The partial derivative of the function (202) with respect to w at w =  0 is
found to be equal to exp fi times the function —8 log Sy/dfi, which is negative
and, noting (201), decreasing in f i .  Hence, choosing a value / i '  >  f j , in the
region where, according to the result stated above, (200) always holds for
p =  1, we may write for some e >  0 and V large enough, that

( 8  log S v(fi, fi — log(l +  w ef)) \  8 log Sy(p, p')u >  I --------------- ------------------I > — ------- —------>
\  GW /  ip=0 d/A

>  — e**F ^ 8Pig)(P- V ) + ^  (204)

Now we will prove in the appendix a theorem to the effect that, if we
consider a point fi with the property that a positive number R may be found
such that

3y((i, ^  — log(l -f- w e )̂) 4̂ 0 for \w\ <  R((}, fi) and all V, (205)

then we may conclude, on the basis of (199) and the inequalities 3y  >  1
for w =  0, (203) and (204), that

„ 1
hm —— log By(p, fi — log(l +  w e )̂) =  fi — log(l +  w e"))

F -K X 3  V
for \w\ <  R(p, fi), (206)

uniformly in w. This result implies that (200) holds for all p in such a point fi.
Note that the points fx with the property (205) are apparently not phase
transition points of any (finite) order, but on the other hand it is not
excluded that points where p(& is indefinitely differentiable with respect
to fi, yet do not have this property (205) (we should call this possibility
transitions of infinite order). Whereas we know from the convexity of p(&>
in fi that the first order transition points are only countable (i.e. finite or de­
numerable) in number, nothing of this kind is known for the higher order
transitions of a real system.

}. (203)
f  (  'Ztiwi

\Sy((i, fi — log(l +  w e^))| <  exp ------ J F(e~*t +  |w|) e^“o
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A P P E N D IX 14) 12)

When a sequence of real convex functions <pn(x) (n oo, x real) tends to
a limit

lim <pn(x) =  <p(x), (A 1)
n—*oo

then the limit function <p(x) is also convex, or, in other words, the first
derivatives <ph{x)(n —► oo) and 9/(2) are all increasing, each one with at most
a countable number of jump discontinuities. Moreover, as will be shown
here, we have

lim <ph(x) =  9/(2) (A 2)
n-+oo

at every point where (p'{x) is continuous (G riffiths’ theorem14); the dis­
creteness of the variable n in this appendix is not essential, it may be made
continuous without any restrictions).
Proof: Suppose that <p'(x) is continuous for x =  Xo, but that (A 2) does

not hold at this point: in particular, assume that there is a number
e >  0 such that

<p'{x0) — <pn(x0) > s (A3)

for arbitrarily large values of n. This assumption will appear to contra­
dict (A 1), Since <p'(x) is continuous at xq, we may find a number d >  0
such that

\q>'(x) — 9/(20) 1 <  if \x — *ol <  ó(e). (A 4)

Now, as 95» (2) is increasing, (A 3) and (A 4) imply that

9/(2) — 9^(2) >  9/(2) — <pn(x0) > for Xo — 6(e) < 2  <  20. (A 5)

Integration of both sides of this inequality from 20 — <5 to 20 yields

{91(20) — 9>n(*0)} — {9571(20 — <5) — 95(20 — (5)} >  P(e) e, (A 6)

(still for arbitrarily large values of n), so that <pn{x) does not converge
to 95(2) either at 20 or at 20 — <5. In the same way (considering 20 <  2 <
<  20 +  <3) the assumption that 95'(20) — <ph(x0) <  — e for arbitrarily
large values of n leads to a contradiction, and we conclude that (A 2)
is satisfied for 2 =  20.

The step from (A 5) to (A 6) uses the fact that a convex function is ab­
solutely continuous and hence equal to the primitive function of its first
derivative. A proof which does not invoke this absolute continuity property
has been found by F ish e r18).

Consider next a sequence of complex functions <pn[w){n 00, w complex)
which converges for real values of w. Let exp ncpn(w) be an entire function of
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order <  1, to which independent of n a positive constant R may be found
such that it does not vanish for \w\ < /?. From the theory of entire functions19)
we apply Hadamards’ factorization theorem and Jensen’s formula. If the
order of the entire function exp n<p„(w) is less than one, its factorization is

OO

exp n<pn(w) =  exp n<p„(0) • ]J 0 — w/w*,»), (A 7)
f c = t

where the Wk,n (k — \,2 , ...) are its zeros, with, as assumed,

|wic, n\ > R >  0 for all k and n. (A 8)

Comparing the power series expansion in w for 9on(w) following from (A 7),
with the Taylor expansion of <pn(w) around the origin,

OO

<Pn{w) =  Z wP<p^\0)lp\ (A 9)
p=0

(which has a radius of convergence at least equal to R), we find that

1 °°
<Pn\0)lp\ =  — —  S  P > 1. (A 10)pn fc=i

Using this relation for p =  1, (A 7) may also be written as
OO

exp tupn(w) =  exp n{<pn(0) + w<pn{ 0)}- II (1 — W®*,») exp (w/wn,»), (All)
* =  l

in which form it is also the proper factorization if the order is equal to one
(and (A 9) is only known to hold for p ^  2). From Jensen’s formula we
derive the inequality

FZ„(r')
—-— dr <  max log |exp n{<pn(w) — 9>„(0)}|, (A 12)

V |i» |=r

where Z n(r) is the number of the zeros Wk, n(k =  1,2, ...) with \wt, n\ ^  r
(and hence, according to (A 8), vanishing for r smaller than at least the value
R). Now if for positive constants C\, C2 and C3 we have that

|exp n{(pn(w) — 9?„(0)}| <  exp w(Ci +  C2 \w\) for all n and w (A 13)

(a more detailed statement of the fact that exp nq>n[w) is entire of order
^  1) and

l9?n(0)| <  C3 for all n, (A 14)
then the limit

lim cpn(w) =  cp{w) for real w (A 15)
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may be extended to complex values of w :
lim <pn{w) =  (p(w) for \w\ <  R, (A 16)
n-+oo

uniformly.
Proof'. From (A 12) and (A 13) it follows, using also the fact that Z n(r) is

positive and increasing in r, that
e r

„ , f dr'Zn[?) — Zn(?)J ~ r
r

er er

< J  Znjs  ̂ dr' <  ƒ Zn̂ ,  ̂ dr' <  n(c i +  c 2er). (A 17)
r R

For the absolute values of the coefficients in the power series (A 9) we
have, according to (A 10), the inequality

\<P%\0)lp\\ <  —  5  -  —  f r~P dZ n(r). (A 18)pn k=i pn J
R

Here the Stieltjes integral may be integrated by parts if p >  2 (then
the term at the upper boundary vanishes because of (A 17)), and with
(A 17) we obtain

K W  <  1 1 '" * ” 1 ¥ '>  *■ <  ^  +  (j, - Ci') V ^ ’ * *  2
B (A 19)

Consequently we have, using also (A 14),

00 f Ci C2 ei? 1 /  ltt'1 V  . , _
I<Pn{w) ~  <P»(0)| <  C3 |wj +  S  +  J — [ \ \ l t )  f°r |W| <  R ’

(A 20)
or choosing a number & between 0 and 1,

#2
\<PnM — 9?m(0)| <  C3&R +  (Ci +  C2 eR) -------  for \w\ (A 21)1 — if
Hence the sequence of functions cpn{w) — <fn(0){n -*■ 0 0 ),  which ac­
cording to (A 15) converges to <p(w) — q>(0) on the part of the real axis
contained in the circle \w\ =  R, is also uniformly bounded in the
interior of this circle. In these circumstances the Vitali convergence
theorem19) may be applied, giving

lim {(pn{w) — <Pm(0)} =  <p(w) — 99(0) for \w\ <  êR  (A 22)
n —*oo

uniformly, which result implies (A 16).

60



The step from (A 15) and (A 21) to (A 22) was performed explicitly in the
work of Y ang and L ee15). Then Lew is and S ieg er t16) realized that the
Vitali convergence theorem could be applied (their treatment, considering
the case of the “pressure” formalism, is, however, unsatisfactory). The use
of Jensen’s formula we owe to P en rose12).
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SAMENVATTING

In hoofdstuk I worden een aantal thermodynamische-limietproblemen
onderzocht op grond van zeer algemene veronderstellingen omtrent de
wisselwerking („stabiliteit” en „sterke afneming”). Hiermee wordt een bij­
drage geleverd tot de fundering van de statistische thermodynamica. Na
de inleidende paragrafen 1 en 2, volgt in 3 en 4 als belangrijkste onderdeel
het aantonen van de gelijkwaardigheid van het microkanonieke, het kano-
nieke en het grootkanonieke formalisme. De bewijsmethode is een synthese
van ideeën van Fisher (gebruikmaking van de limietstelling voor subaddi-
tieve functies) en Khinchin (toepassing van het centrale-limiettheorema
uit de waarschijnlijkheidstheorie). In gewijzigde vorm wordt deze methode
in paragraaf 5 aangewend voor het vaststellen van de asymptotische waarde
van de microkanonieke temperatuur. Paragraaf 6 geeft een terugblik op de
ontwikkeling van het onderwerp sinds Khinchin’s behandeling. In de
appendix wordt een hulpstelling bewezen.

In hoofdstuk II komen een aantal onderwerpen aan de orde die verband
houden met het in hoofdstuk I behandelde probleem. In paragraaf 1 wordt
de benodigde kennis van de thermodynamica uiteengezet. De paragrafen
2 en 3 dienen om het beeld van het vraagstuk omtrent de fundering van de
klassieke statistische physica volledig te maken. Paragraaf 4 geeft, op grond
van algemene limiettheorema’s uit de waarschijnlijkheidstheorie, de wis­
kundige voorbereiding op de (gedeeltelijk nieuwe) behandeling van Khin­
chin’s asymptotische resultaten voor een separabel systeem, die in paragraaf
5 volgt. In paragraaf 6 en de appendix worden enige resultaten van de
recente ontwikkeling op het gebied van thermodynamische-limietproblemen,
in min of meer bewerkte vorm weergegeven.
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Teneinde te voldoen aan het verzoek van de faculteit der Wiskunde en
Natuurwetenschappen, volgt hier een overzicht van mijn studie.

In 1952, na het behalen van het diploma H.B.S.-B aan het Groen van
Prinsterer Lyceum te Vlaardingen, begon ik mijn studie in de faculteit der
Wiskunde en Natuurwetenschappen aan de Rijksuniversitèit te Leiden. In
juli 1955 legde ik het candidaatsexamen (richting a) af, en in april 1958
slaagde ik voor het doctoraalexamen theoretische natuurkunde. In de
periode tussen beide examens deed ik ook praktisch werk, tot januari 1957
op het Kamerlingh Onnes Laboratorium, en daarna op het Instituut-
Lorentz. Dit betrof onderzoek op het gebied van, respectievelijk, de para-
magnetische relaxatie en de thermodynamica der irreversible processen.

Mijn werkzaamheden op het Instituut-Lorentz als wetenschappelijk
medewerker van de Stichting voor Fundamenteel Onderzoek der Materie
(F.O.M.-werkgroep M VI), zette ik sedertdien onder leiding van Prof. Dr.
P. M azur voort, met onderzoek omtrent de grondslagen van de statistische
physica. De recente resultaten hiervan werden beschreven in dit proefschrift.

Publicaties:
On the canonical distribution in quantum statistical mechanics

J. van der L inden and P. Mazur, Physica 27 (1961) 609.
Asymptotic form of the structure function for real systems

P. M azur and J. van der L inden, J. math. Phys. 4 (1963) 271.
On the asymptotic problem of statistical thermodynamics for a real system

J. van der L inden, Physica (wordt gepubliceerd).
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ST EL LIN G EN

I

De thermodynamische limiet van de mikrokanonieke temperatuur voor
nen reëel systeem bestaat, en heeft de vereiste eigenschappen.

Dit proefschrift, hoofdstuk I § 5.

II

De gelijkwaardigheid van het mikrokanonieke en het kanonieke phase-
gemiddelde van een somfunctie voor een separabel systeem, kan eenvoudig
aangetoond worden m.b.v. een generalisatie van K h in ch in ’s asympto-
tische evaluatie van de structuurfunctie van een dergelijk systeem.

A. I. K h in ch in , Mathematical Foundations of Statistica
Mechanics.
Dit proefschrift, hoofdstuk II § 5.

III

De stelling van D ini voor een monotone rij van functies geldt ook voor
een rij {<px(x)} met de eigenschap dat

N<pN(x) >  N l9Kl{x) +  (IV — Ni) (pn- n^x) als N  >  Ni.
Dit proefschrift, hoofdstuk I appendix.

IV

Grif f i th s ’ bewijs van de gelijkwaardigheid van het mikrokanonieke en het
kanonieke formalisme in de quantumstatistische thermodynamica voor een
reëel systeem, is gedeeltelijk onbevredigend. Het bezwaar ertegen kan echter
opgeheven worden door gebruik te maken van de voorgaande stelling.

R. B. G riffith s, J. math. Phys. 6 (1965) 1447.

V

De mogelijkheid van een pseudo-klassieke behandeling (m.b.v. Wigner-
distributiefuncties) van het asymptotische probleem in de quantumstatis-
tica, zoals verwezenlijkt voor een separabel systeem, komt niet in aanmerking
voor een reëel systeem.

J. van  der L inden  and P. Mazur, Physica 27 (1961) 609.





VI

De bewering van Münster  dat de door hem beschouwde statistische
functies Si+i{z) voor alle waarden van l gehele functies zijn, is onjuist.

A. M ü n s te r ,  Z. Physik 136 (1953) 179; zie ook p. 384 in:
S. F lü g g e , H andbuch der Physik III/2 .

VII

Het argument van Landau  en Lifshitz, dat in een 1-dimensionaal
systeem evenwicht tussen twee verschillende homogene fasen onmogelijk
zou zijn, is niet steekhoudend.

L. D. L a n d a u  en E. M. L i f s h i tz ,  S tatistical Physics
(p. 482).

VIII

De behandeling die Glarum geeft van de diëlectrische relaxatie in
polaire vloeistoffen bevat een verband tussen het in- en het uitwendige
macroscopische wisselveld, dat microscopisch gerechtvaardigd moet en kan
worden.

S. H. G la ru m , J . chem. Phys. 33 (1960) 1371.

IX

Symmetrie-overwegingen en Onsager-relaties sluiten een kruis-effect
tussen warmtegeleiding en viscositeit niet uit voor gassen bestaande uit
niet-bolvormige molekulen, geplaatst in een magneetveld. Om te zien of dit
effect een meetbare orde' van grootte heeft, is het van belang het werk van
Kagan en Maksimov uit te breiden.

S. R. d e  G ro o t  and P. M a zu r, Non-equilibrium  Therm o­
dynamics.
Y. K a g a n  and L. M a k s im o v , Soviet Phys. J .E .T .P .
14 (1962) 604.

X

Het door Van Leeuwen gegeven beeld van de wereldgeschiedenis is
verwant met de ideeën omtrent de algemene evolutie van Tei lhard  de
Chardin.

A. Th. v a n  L e e u w e n , C hristianity  in W orld H istory .
T e i lh a r d  d e  C h a rd in ,  H et verschijnsel mens.








