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systems 
complicated, 
thickness of

film covering 
difficulty. 

usually 
Furthermore

The theory is based 
small parameters. A

the amplitudes of the light reflected and 
perfectly flat substrate are given by the 

effects of a plane parallel 
incorporated without 

however, 
example the substrate can be rough, 
film may vary along the substrate, 
and the varying thickness of the 
considerably. In this 
The first

terms of

cases in detail.
thickness on a

Both the roughness of the substrate 
film modify the Fresnel formulae 

thesis we consider two special 
a continuous film of varying

rough surface. The second case concerns a discontinuous film consisting 
of identical truncated spherical particles on a flat substrate.

The theory for the continuous film of varying thickness on a rough 
is developed in chapter II. Both the roughness and the 

thickness of the film are supposed to be statistically homogeneous and 
isotropic along the surface. The amplitude of the roughness as well 
the thickness of the film are furthermore assumed to be small compared 

the incident light. The theory is based on this 
these

rough surface that
Gaussian height-height correlation function with 
much larger than the wavelength of light. The

case concerns

to the wavelength of 
fact and uses an expansion in these small parameters, 
assumption is furthermore that the normal on the curved surfaces of the 
film and the substrate has a direction which is everywhere close to its 
average direction. The optical properties are described by a small 
number of electromagnetic constitutive coefficients. Formulae for these 
coefficients are derived in terms of the height-height correlation 
functions of the upper and lower surfaces of the film, and its average

The reflectance, transmittance and the ellipsometric 
coefficient of the system are expressed in terms of the constitutive 
coefficients, for arbitrary angles of incidence.

In chapter III we apply this theory to 
characterized by a 
correlation length
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For the latter case
and

reflectance, 
in this limit

a general 
truncated

a truncated sphere on 
relations by means 
be obtained within

a square lattice on

on a

transmittance and ellipsometric coefficient are calculated 
and the results are compared with those obtained by 

limit. It is

electric field by these authors, 
an inconsistent approximation in 
the second order in the height are

In order to understand the optical properties of 
film consisting of truncated spheres we develop in chapter IV 
method for the calculation of the polarizability of 
spherical particle on a substrate, extending a method first developed by 
Berreman. We assume that the particle is much smaller than the 

neglect retardation and use static

assembly
the special 

a substrate.

and co-workers in the same limit. It is proved 
difference in results found is a direct consequence of the neglect of 
the influence of the local curvature of the rough surface on the local 

This, as is shown in this chapter, 
theory in which all contributions to 
systematically taken into account, 

a discontinuous

wavelength of light, so that we can 
dipole (and multipole) fields. The relation between the polarizability 
and the optical properties of an assembly of such particles is 
discussed. The method is applied to the special cases of a sphere, 
hemisphere and thin spherical cap 
agreement is found between the 
chapter IV of this thesis.

In chapter V we return to the general case of 
a substrate. We derive a complete set of recurrence 
of which approximate values of the polarizability can 
every desired degree of accuracy. We apply the method to the calculation 
of the normal and parallel polarizabilities of a truncated spherical 

sapphire substrate in the optical region. We then 
calculate for perpendicularly incident light in the optical region the 
transmittance of a system of such gold particles in 
a sapphire substrate. The results are found to be in good agreement with 
values experimentally obtained by Niklasson and Craighead.

in chapter II
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OPTICAL PROPERTIES OF THIN FILMS 
ON ROUGH SURFACES

Research of surfaces and thin films has grown strongly in the last decades. On 
the one hand this was a consequence of the improvement in high vacuum 
techniques. On the other hand the knowledge of the properties of these systems 
is very important for many practical applications. The results of this research have 
e.g. been used for the development of solar cells, anti-reflection coatings and 
magnetic memory devices. One of the methods to investigate the properties of 
surfaces is by making use of light. Generally, one measures the ellipsometric 
coefficient, the transmittance or reflectance. Furthermore, one can perform light 
scattering experiments. It was especially the introduction of the laser that was 
responsible for the fast growing interest in optical measuring methods.

More recently, also the theoretical research of surfaces of solids and liquids has 
been started. The optical properties are affected by the roughness of these surfaces, 
as well as by the presence of thin films (oxid layers on metals, contamination of 
fluids, etc ). For the calculation of the influence of surface roughness on these 
properties one often uses Kirchhoff’s theory of diffraction. The form of the 
electromagnetic field on the surface is then postulated (sec e.g. ref. 1). The film 
is usually assumed to be homogeneous and isotropic (dielectric constant c).

An alternative theory, appropriate for the description of the optical properties 
of both thin films and rough boundaries, has been developed by Albano, Bedeaux 
and Vlieger2). In this method a finite boundary layer between two dielectric media 
is replaced by a fictitious interface, situated somewhere within the original layer
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where z = (0, 0, 1) is the normal on the dividing surface and c is the velocity of 
light. The coefficients r'(v = + or —) couple P' to the time derivative of the bulk 
magnetic fields H' on both sides (v = + or —) of the dividing surface, and M' 
to the same derivatives of the bulk electric fields f. The interfacial dielectric 
susceptibility tensors couple P' to the parallel components of the bulk electric 
fields E' and the normal components of the bulk displacement fields D'. In general 
r' and are functions of frequency co and wave-vector A| = (Zr„ ky, 0) parallel to 
the x-y-plane. Because of the rotational symmetry around the z-axis and 
translational symmetry, is an isotropic tensor of the general form

£(*|. co) = |y[,(At|, eu)^ +1?co)(1 - - zz)

+ co)zz - |i<5’(*|, co)*|Z + |ir/'(*|, co)z*|, (1.2)

where /q = ]A|] and f. = kf/kf. (The subscripts 1 and tr of y' stand for longitudinal 
and transversal).

and separating directly the two media. If the electromagnetic fields are extended 
analytically to this new interface, they become in general discontinuous. The 
discontinuities of these fields can then be expressed in terms of fluctuating 
polarization and magnetization densities, located at the interface, by means of a 
set of boundary conditions. These surface polarization and magnetization densi­
ties, in their turn, can be related to the extended electromagnetic fields on both 
sides of the interface by means of fluctuating surface susceptibilities. This general 
method is applied in section 2 to a boundary layer, consisting of a thin isotropic 
film on top of a rough surface, and the calculation is carried out up to second 
order in the film thickness and surface roughness over the wavelength of light. It 
is assumed that the fictitious interface is flat and the x-y -plane is chosen to 
coincide with it. The idea to replace a boundary layer by an equivalent system with 
surface densities (or currents) originates from Kroger and Kretschmann’), who 
gave exact expressions for the surface polarization and magnetization densities in 
the case of a rough surface.

For the optical properties, which have to be calculated in the present paper, it 
is sufficient to know the average electro-magnetic fields (the bulk fields). These 
fields are related to the average surface polarization and magnetization densities 
P' and M' by a set of boundary conditions, whereas P' and M' can be expressed 
in terms of the fields by a set of constitutive equations. It will be shown in section 
4 that the latter equation has the form

£ I)-l£r’z-



(2.1)

(2.2)

</-(r|,/)> = 0, (2.3)

ambient

€

• For liquids/4 will be time dependent. For solids the time dependence of/4 may be neglected.
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2. Description of a thin film on a rough surface by means of fluctuating surface 
susceptibilities

In section 4 we shall derive general expressions for the surface constitutive 
coefficients t*, yr, y^, <5* and ?/* in terms of the four height-height correlation
functions of the upper and lower surfaces of the film, and its average thickness. 
In section 5 the transmittance, reflectance and ellipsometric coefficient, as well as 
the energy loss due to absorption within the film and scattering at its boundaries, 
are expressed in terms of these constitutive coefficients for light polarized parallel 
(p) and normal (s) to the plane of incidence and for arbitrary angles of incidence.

/+(r,.O.
where r= (x, y, 0). The upper surface of the film, i.e. the interface between the 
film and the ambient (dielectric constant e”), is also rough and characterised by 
the equation

f+(r„,t) 

substrate

Fig. 1. Cross section of thin film on rough surface.

♦-(?„,t)
film

z =/“('-|, t).

The substrate is supposed to fill the whole region of space where z >i), 
whereas the ambient fills the region where z </_(f|, r). Both dielectric constants 
c+ and c may generally be complex, whereas t* is real and usually =rl (ambient 
is vacuum or vapour). The averages of/+(r|, f) and /"(rp /) are assumed to be 
constant and given by

</ + ('|,')> = </,

We consider a thin isotropic film (solid or liquid, average thickness 
</ < wavelength 2 of incident light), with dielectric constant e, covering the rough 
surface of a substrate (solid or liquid) with dielectric constant c+ (see fig. 1). The 
instantaneous position of this surface is given by*



(2.4)

(2.5)

E
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iz
Fig. 2. Description of the system with plane parallel film and two surface polarization and 
magnetization densities.

/±(rp 0) = /)) are given by
-1/2

where d is the average film thickness. The symbol (. ..) stands for some ensemble 
average. The special form of this ensemble, which will strongly depend on the type 
of system under consideration, need not to be given here.

It is important to remark that, since the functions z =f +(q, t) and z = t) 
may partly coincide, the results of the present paper will in principle apply to both 
continuous and discontinuous films. It will be assumed that the functions 
z =/±(r|»z) are single valued and differentiable. The normals on these surfaces 
in the points (x,y,z =

,W^Y+^Y+11V dx' dy' \ sy J J
The boundary conditions for the electromagnetic fields 

displacement fields d and h at the interfaces are given by

v ±(rh t) • [d/), /) - rf(q,/*(q, /), /)] = 0,

(1 - v*(F|, /)] • fc±(q,/±(q, /), /) - /), /)] = 0,
v ±(q, t) • [b "(q./^qj), /) - *(q,/*(q, /),/)] = 0,
[1 - v*(rh /)v*(q, /)]• [A^q./^q,/), /) - A(q,/*(q, /), /)] = 0 .

The fields with superscripts 4- or — are the fields in the substrate and in the 
ambient respectively, whereas the fields without superscripts are those within the 
film.

In a previous paper4) we have seen, using an analysis first given by Kroger and 
Kretschmann3), that rough interfaces between dielectrics can be replaced by flat 
interfaces by introducing equivalent fluctuating surface polarization and mag­
netization densities. Generalizing this procedure to the present case, we may 
replace the system of fig. I by the system drawn in fig. 2: a plane parallel film of 
thickness d and with dielectric constant t between two media with dielectric 
constants c+ and c~. When the electromagnetic fields are analytically extended 
from the interfaces z = f~(ry t) and z = /+(q, /) (in fig. 1) to the new interfaces

e and b and the

PS", m

P5*, m



(2.6)

and

(2.7)

: = 0 and z = d (in fig. 2) respectively, the z components of z/and b and the v and 
y components of e and h arc no longer continuous at these new interfaces. The 
discontinuities of these fields can, however, be related to equivalent fluctuating 
surface polarization and magnetization densities p' , m' and p'*, m'* in the 
planes z = 0 and z = d:

1 d d
e,+(q. d, t) - ex(q, d, t) = - - - m'*(rv t) - faP'St'l-.

1 d de/fq, d, I) - e,(q, d, z) = () __p^(q, (),

d d
d*(r\, d, t) - d.(rx, d,t) = - — p'/^.t) - g~Pj+(q<'> •

1 d d
*/(rB. d, t) - A,(q, d, Z) = (rl- (rl>') ■

1 d d
A/(q, d,t) — h„{rv d,t)= "C (rl- '> ■

d d
b*(rf, d, r) - ft/q, d,t)= - — mi+(q, l) - — mj+(q, z)

(cf. eq. (1.1) of ref 4). The densities at the right-hand sides of these equations are

15

I d d
e,(r||, 0, z) — c, (r(, 0,1) = - ~ 0 >

1 d de,.(rj. 0, t) - e,. (!•(, 0, /) = - — z) - — p'; (q, z), 

d d
d:(ri’ o,') - d. (r)(0, z) = - — />’, (q.')_ gj;P'r(ry 0•

1 d d
M»-p 0, Z) - h, (rj, 0, z) = - - p'-(rv — (r(, z),

1 d dA,(r|, 0, z) - A, (q, 0, z) = - - — p\ (q, z) - — m'. (q, z),

d d
ft.(q.O, z)- b: (q, 0, Z)=



p' (q,1) = -

(2.8)

m' (q. I) = -

P'+(.r,, l)=-

(2.9)

m‘+(<'|’') =

(2.10)

16

i.I

+ z
Fig. 3. Description of the system with one polarization and magnetization density.

p5, ms

We can furthermore replace the system described above, with a plane parallel 
film and two fluctuating polarization and magnetization densities p'+, m'* and 
p'~, m'~, by the system, drawn in fig. 3, with only one equivalent surface 
polarization and magnetization densityp‘(r|>z) and m’(''|. 0 'n the .v-y-plane. The 
densities p' and m‘ must be chosen such that the electromagnetic fields for z < 0 
and z > d in fig. 3 are identical with those in fig. 2 for the same z-values. The 
parallel components p\ and p\. of this surface polarization density are found in 
the following way: the difference of rf.+(r|, d, t) and rf.~(r|, 0, z) in fig. 2 is given by 

d^rf, d,t)~ <-(r(, 0, Z) = - •£- p^r,, t)--?-p‘+(r|, Z)

5 d
~dxP‘ f'r,',^~dyP' (rl-') + rfr(»-|, d, tl-dd^, 0, z).

related to the fields by (cf. eqs. (2.8)—(2.11) of ref. 4)

/“(q.O

J [04> d,., -e.)(r, z) - (d~,d~, -e:)(r, z)] dz, 

0

/-(q.0
J [(*.<> z) - (b;, b~, -hr'ffr, Z)] dz ,

0

/*(q. /)
J [W, <+, -eJX'. z) - (rf„ d„ -e.)(r, z)J dz , 

d

/*(q.O
- J K*X . )(r. Z) - (ft,, ft,, - ft;)(r, Z)] dz .

-o------------

I
I

Td



rf:(r|, d,t) — d,(rt, 0, z) =

(2.11)

(2.12)

= dt(rf, d, t) + (2.13)

(2.14)

17

d_ 
dx

| d.(r,') dz 

0

Since d*(r, l) for z
drawn in figs. 2 and 3, the relation (2.12) must also hold for the latter system. The 
field J.+ (r, t) can again analytically be extended to the x-y-plane and we find

+ p\~(r\, ,y> +1^(r>')dz -10 dz J 
0 0

d 

j"rf,(r, Z) dz^| 

0

> d and d: (r, t) for z < 0 must be the same in the systems

|j>;+(«j, () + p‘-(rh Z) + jdy(r, z) dz - |</,+(r, z) dz j 

0 0

= ~i f

d?(rt, 0, z) = z/+(q, d, t) - z/*(r, z) dz
0

rf,(r, z) dz - ~ J d,(r, z) dz , 

0 0

so that eq. (2.10) can be written as

d*(rt,d, Z)-d7(rv0, t) = - pi+(r|, Z) + p‘"(r|, Z)

<+(r,, 0, Z) - <-(r(, 0, z) = - A ^l+(r,, 0

Jrf;(r,z)dz +^- jrf/(r,Z)dz, 

0 0

where we have used the Maxwell equation div d+ = 0. From the last two equations 
we obtain the following boundary conditions for d. at z = 0 for the system drawn 
in fig. 3:

where we have used the third boundary conditions in eqs.(2.6) and (2.7). Now it 
follows with Maxwell’s equation div</ = 0 that

0



(2.15)

(2.16)

[dy(r, t)-d,(r, Z)]dz,

[e/(r, Z)-e,(r, Z)] dz ,
0

18

Pj(rl- ') = Pj+(rl>') + P’> (rl> 0 + J d,(r, t) dz - Jj; (r, z) dz 

0 0

we find for the parallel components of the surface polarization density ps in z = 0

P‘(rt, l)=p’+(rt, t) + p‘~('i. 0 +J<('-. ')dz - J<+(r ')dz 

0 0

/+(q.O
| K+(r,z)-<(r,Z)]dz,

0

a a
b,*(q, 0, Z) - 6r(q, 0, Z) = - mi(q, z) - — m}(q, z),

Since the boundary conditions in z = 0 are given by (see eq. (1.1) of ref. 4)

i a a
(q. 0, z) - e;(q, 0, z) = - mj(q,0 - ') >

1 a 8 ■
A+(q,0, Z) - hy (q, 0, Z) = —/>)(q, Z) - — m!(q, z),

/-(q.0
J [<(r, Z) - d;(r, Z)] dz - 

o

1 8 8
e*(q, 0, Z) - e, (q, 0, Z) = - — znj(q, Z) - — pXq.').

8 8
d^rl,o,l')-d. (q,0,Z)= - —pj(q, Z) - ^pj(q, Z) ,

1 8 8by(rv 0, z) - hx (q, 0, z) = - — pj(q, z) - —

/+(q.O
= - | K(r,Z)-rf,-(r,Z)]dz- j 

o o
where we have used (2.8) and (2.9). The normal component of p' and the parallel 
and normal components of the surface magnetization density m‘ are obtained in 
an analogous way. One finds, using the other Maxwell equations 
rote= —(\lc)8bldt, rot h = (l/c)dd/8t and div A =0,

[q(r, Z)-<(r, z)]dz + J

0



(2.17)

[6/r, z) - b,(r, z)] dz -

"'!-(f|, 0 [*7(r, t) — h. (r, Z)]dz.

PlO’l.') !<A(r. Z) - c’<(r, z)] dz ,

p;(ri>')

pXq. 0 = -

(2.18)

">1(»’|>')

[6_.(r, Z) — h,+(r, Z)] dz ,

19

Z"('|.O

"'Uq.') = -

0

Z“(rl.')

= J le e-(r, t)-cey(r, z)]dz + 

0

J d; (r, Z) -1 ds(r, l)] dz
0

Z+(q.')
| Z)-^</,+(r, Z) |dz,

0 

Z_(q.O

= J [b~(r, t) - h,(r, t)}dz + 
0 

/-(q.O

mXr|- =

/*(q.r)

J [i;(r,z)-i,(r,z)]dz, 
0 

z+(q.o

J {by(r, t)-br(r, Z)]dz, 
0 0

Z_(q.O /+('|.O

= J [*•(’■.')- h:(r, z)]dz + J 
0 0

The equations (2.16) and (2.17) can alternatively be written as 
/-(q.o Z*(r|.O

(t ~e~(r,t) -eex(r, Z)]dz + J 

0

J [ee,(r, z)-£+e,+(r, z)]dz, 

0

Z*(q.O

J [Mr')-A;(r, z)]dz, 
0

[A, (r, z) - hy(r, z)] dz + 

0

Z-('|.O

"’Xq. 0 = - j 
o b

where we have used the relations dt = c±e±, d = ce, A±=4± and h = b, i.e. the 
magnetic permeability is assumed to be equal to unity everywhere in space.

In principle, eq. (2.18) gives the values of p'(r^ t) and m'(r\,t) exactly to all

[*,(»■>') - by (r, z)] dz -
0 

Z"(»-|.O

m;.(r|, z) = -

[A,(r,z)-A;(r,z)]dz, 

0 

Z+('|.O

[i,-('.z)-i,(r.z)]dz-



(2.19)

e/n, o, z) - e2(q, 0, Z)

(2.20)

20

- e+/>,.(ri, 0, z)]{/+(rt, Z)}2

orders inZ1^, z). In the following, however, we want to know the quantities p' 
and m' only up to the second order in f±. We therefore develop the integrands 
at the right-hand sides of eq. (2.18) into Taylor series of z around z = 0 and 
integrate over z. For p‘(r|, Z) we then obtain up to second order

/’x(r|>') = [c 0, z) - ce,(r,, 0, z)]/-(r(, z) + [eex(r|, 0, z)

-£+«x(»’|>0, Z)]/+(r|, z) -~yf (f 0, z) — chy(rt,0, z)]

x [cA,(r|, 0, z)

+ 2^ — <^(r|> 0, z){/~(r|, Z)}2

+ ~ K(q, 0, z) - d*(r,. 0, Z)]{/+(rt, Z)}2,

. To first order in/±(r|, /) one then obtains 

|^[/±(»’|,0<±(r|,0,Z)], 

l^[Z±(r,.Z)#(r|,0,Z)],

4(rj, 0, Z) - rf*(r,. 0, z) = (t - £*)[/^q, z)e ±(r,, 0, z)]

+ (t-£±)^;[Z±(»’|,z)e/(r|,0,Z)],

A,(r(, 0, Z)-A2(rf,0, z)= -(£ -e2)^ [Z1^- r)e*(r,,0, Z)],

A/q, 0, Z) - A 2(rj, 0, ') = <£ [/±(r|- ,)cx±(r|’0’0] •

A,(r|, 0, Z) - b*(rt, 0, Z) = 0 .

In the relations with the plus signs we have analytically extended the fields from 
z = d (in eq. (2.7)) to z = 0. If we use the first order relations (2.20) to eliminate 
e,, by and d, at the right-hand side of eq. (2.19), which is at least of the first order

where we have used Maxwell’s equation rot e = — (\lc)Sbldt and <Z±=£±e±, 
d = ee, h 2 = b 2, A = b. At the right-hand side of eq. (2.19) we can now eliminate 
the fields e, d and A by using the boundary conditions eqs. (2.6) and (2.7), together 
with the expressions eqs. (2.8) and (2.9) for the surface polarization and 
magnetization densities p'~ and m‘2

^(f|, 0, z) - e/(q, 0, z) = )



find the following result for p‘(r|, z), correct up to the second order

(2.21)

and (2.22)

0 0

%"-(r|,/) = v(£-c')/’(r|,r) 0 1 (2 23)

0 0

0 0

W|,') = v(r -£'){/'(n,0}2 0 0 (2.24)

0

00

{/'(«■!. 0}2&1,'('-|.') = iv(£ -£’) 00 (2.25)

0

21

0

1 d

1 £ 
c dy

C dx

1£ 
C dy

in/^q, z), we 
in/^r,, Z):

PKq. Z) = - (£ - £ ~)f~(rt, t)e-(r,, 0, Z) + (£ - £ +)/+(rh r)e^(rt, 0, Z)

- W t) £ [/-(q, Z)rf2-(rh 0, Z)]

£“){/“(q,')}2|jMri’0’')

- (£ -£ +){/+(’-i> 0}2*,*(n, o, z).

+ ^-(c- 
2c

in
\ t dx

* In the next section we shall see why it is convenient to introduce the fields nt and instead of 
e, d. A or A.

In a completely analogous way we can find second order expressions for p’, p! 
and the three components of m‘ from eq. (2.18), together with the Maxwell 
equations and the relations eq. (2.20). By introducing the fields*

ne = (e„ ey, <.) and nm = (A„ hy, b.) 

and the matrices (v = + or —)

/ 1

1£
£ dy

e dx
1£
edy



and

(2.26)

0. ').
(2.27)

»Xq. 0.').

div d = 0 ,rot e =

(3.1)
rot h = div 6 = 0.

The induced polarization and magnetization densities satisfy

(3.2)and m = b — h .

(3.3)

h
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3. Maxwell theory in the presence of induced surface polarization and 
magnetization densities

1
0
0

O' 
0 
0,

/ 0
&4,'(q. t) = - He - c'){/’(q, t)2I- 1

\ 0

i a2

In the last section we have seen that a thin film on a rough surface could be 
described by equivalent surface polarization and magnetization densities p’(q, t) 

e and b and the

p = d — e

From eqs. (3.1) and (3.2) we find the wave equations for e and A,

/ 1 d2'
(rotro,+Pd?

1 d2'r°trot + __

i a2 i a 
e = -?aP/,-ca;rotm’

i a 
cdtTOtp

and m5(q, /). The fluctuating electric and magnetic fields 
displacement fields d and A satisfy Maxwell’s equations,

1 8 
~cdtb’

1 d d
cdtd’

one then obtains the following result:

/>5(q,f) = E E^<b1'(q.')-nXq.o,r) + E^b,'(n>z)-^

where L, denotes summation over v = + and v = —. The quantities ^“’(q, l) are 
the fluctuating surface susceptibilities, describing in the equivalent surface polar­
ization and magnetization formalism the thin film on a rough surface up to second 
order in /’(q, r). One should note that for i = 1,3 and 4 these coefficients are 
ordinary functions of q and /, but for i = 2 they also contain differential operators 
d/dx and d/dy, describing the spatial dispersion of the fields along the x-y-plane. 
The subscript b stands for bare, denoting that we have here unaveraged fluctuating 
quantities.



a(k, a>) (3.4)

(3.5)

k a m ,

(3.6)
h = H,-F-

(3.7)

/>±(r, r) = (c* - l)e(r, /) and (3.8)

(3.9)
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a)
m-----k a p .

c

m±(r,l) = O,

since the magnetic permeability in both media was assumed to be unity. Due to 
the surface roughness and the presence of the film, one has a fluctuating excess 
polarization and magnetization density in this region of space2). As we have seen 
in section 2, these excess polarization and magnetization densities can be 
replaced2) by equivalent polarization and magnetization densitiesp‘(q, t)S(z) and 
ms(r|, 0<5(z), where p' and m! are given by eq. (2.27). The total polarization and 
magnetization densities are therefore given by

p(r, t)=p-(r, t')0(-z') + p\ri, t)6(z) + p+(r, t)B(z),

m(r, /) = ms(r|, /)<5(z) ,

where 0(z) is the Heaviside function.

co .p H— k a m , 
c

Defining the Fourier transform of a field a(r, t) by

= Jdr dz e“Mr, Z), 

the wave equation (3.3) may be written as

=-(?)■
The formal retarded solution of these wave equations is

e = £,-F-[j-0Q

["+(7) '*4
Here Ev and are the vacuum fields. F is the retarded dipole propagator, which 
is diagonal in k, co representation, with diagonal elements given by

F(k, co) = (“J \kk - k2 + + ioJJ '

Here iO is an infinitesimally small positive imaginary number.
In the regions occupied by the media with dielectric constants e+ and e", one 

has



(3.10)K(k,a>) = F(k,o>)-

(3.11)F(k, a>)-

Eq. (3.6) then yields

(3.12)

(3.13)

where

/-3(r./) = Ur)'A«(r,') (3.14)

and

(3.15)^-0(-z) + ^0(z),Uz) with §’=(£’- 1)

0 0

(3.16)

* The symbol ( )-1 means that one has the inverse operator.
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I
0

0
1

N?' = E.-KP0,

N^ = H,-L-P0,

'0 
0 
,0

0 
0
0

O’ 
0 
1.

0 
0
2 
£r

0 
k, 
-ky

~k._
0

k> \ 
-kx ■ 

0 /

Substituting eq. (3.14) into eq. (3.13) one finds*

/V?» = (l+K-W-,-£,,
(Vg> = Wv-4-§0-(l+K-^)-‘-£,.

In order to find the expressions for the fields nc and nm in the general case when

L(k, <») = (“)

n. = H,-K m -L p.

Ifp' = m' = 0, one finds from this equation the fields reflected and transmitted by 
the flat interface between the + and — medium.

As was discussed in refs. 5 and 2, the singular nature of p and m implies that 
d„ dy, e., bx, by and h. are also singular at z = 0. However, ex, ey, d., hx, hy and 
b. are not singular in z = 0. These fields only have discontinuities at z = 0 which 
are given by eq. (2.15). In our analysis it is most convenient to use the non-singular 
fields, which were already defined in section 2, eq. (2.22). In order to write the 
formal solution of Maxwell’s equations in terms of these non-singular fields, we 
define



(3.17)

(3.18)

(3.19)

4. Surface constitutive coefficients

and (4.1)

and (4.2)
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K0 = (l +KiM)-'K.

L0 = (l+K^)-'L.

In eq. (3.18) K„-p'6(z) is a short-hand notation for

| K0(r^ z, I I rj, z', t')-ps(r'p t')<5(z') dr[ dz' dr'

in coordinate representation, etc. Eqs. (3.18) with (3.19) give the fields nc and nm 
due to the surface polarization and magnetization densities />’ and m'.

p' and m’ are unequal to zero, we write eq. (3.9) in the following form: 

p(r, I) = ^j(z)-nt(r, /) + p’(rp t)6(z), 

m(r, I) = ms(rp t)<5(z).

Using this equation, together with eq. (3.16), one may write for eq. (3.12) 

nc = /V‘»> - Ko-p'6(z) + L,• m’<5(z),

nm = M’>-i-(l-^-/f0)-p!5(z)-(/C + £-^0-£l))-m‘5(z)> 

where we have introduced the following propagators:

In this section we shall derive expressions for the surface constitutive 
coefficients, describing the optical behaviour of the thin film on the rough surface. 
These coefficients can be found be expressing the average surface polarization and 
magnetization densities

/” = </»■>

in terms of the average fields

N, = <nc> and <Vm = <nm> .

It follows from eqs. (2.27) and (4.1) that

/”(>> /) = E E <«”(r|, O-Xq, o, t)> + E ^('l.') • ,
”/ 13 \’ (43)

') = E (&4”(»-|.') • °’')) ■

Since ^’’(rp t) is, for i = 2, 3 and 4, of second order in/’(rp /) (according to eqs. 
(2.24)-(2.26)), we can replace nc and nm by /V‘o) and /V™ in the corresponding terms



v 0, Z | r j, z', Z')»;(r|(o, z) = Mo,'(r|,0,/)-

vO, Z |rj,z' = O,z')-/ri(rj,Z-)drjdZ'

(4.6)
M'
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vO,z|rj,z' = O,Z')-^(rj,z')>

(4.5)

in eq.(4.3), as follows from eq. (3.18). Furthermore, since Z) is of first order 
in/’(q, Z) (according to eq. (2.23)), we can replace ne in the term with i = 1 in eq. 
(4.3) by TV'” — K0-p'8(z), as follows to the first order from eq. (3.18):

J *o(n, z =
•p'(rj, Z')<5(z') drjdz'dz'

= ^r(«’l,0,z)-j/f0(r,,z =

= /V?”(r|,0,Z)-£

•/V<°”(rj,0, z')drjdz', (4.4)

where we have used again eqs. (2.27) and (3.18). Up to second order eq. (4.3) 
therefore becomes

I) = S E <^”(r|, Z)> • 0, Z)

SS J<%'”(»-|.z)-*o('-|,z =

z = v0, Z |rj,z' = 0,Z')-^lx(r(,Z')

z = vO, z | rj, z‘ — 0, z')

Now it follows from eqs. (4.2) and (4.4) that, up to first order,

M0,'(r|, 0, Z) = /Ve’(r,, 0, Z) + E j/f0(r|,

• <%'”(rj, Z')> ■ 7VT(rj, 0, Z') drj dz', (4.7)

which may be used to replace /V’0)" by TV; in the first order term E, (Ijt,1’") • M01’ 
at the right-hand side of eq. (4.5) (or (4.6)). In all other terms in this equation we

0, z') drj dz' + £ z)> N^r,, 0, z),

M‘(rj, Z) = E <%4,(r|. ')> /V™’(r|, 0, Z),

or briefly

P‘ = E S <e> • Nr - E S <&'” • *0 • > • Nr + s <&4>> • 71 Nr,
i = I v v v' V



(4.8)

(4.9)

P'

(4.10)
M'

<^>'> = v(£-£’)</’>
(4.H)

0 0

/ 0 0

<&2”> = v(£ - £-){<r>2+ <m2» 0 0 (4.12)

\ 0 /
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0 
1

0 '
0

_1_
££*

£ dy
_1A '

£ dx

Cdy

Defining

£ = E <<r> - x <(«”' - <sr» ■ *o • &1” - <^i>»>, 
1-1 /

eq. (4.8) can be written in the form

cdtN'c’

may replace /V<0)v and /V£)v simply by /V* and N*m, since these terms are all of second 
order. We can then write for eq. (4.6)9)

Ps = E E <&Ov> • *; - E E <®>,)v - <&,)v» • Ko • (%,K - <&,)v»> •
i - I v v /

N’„

where is given by eq. (2.3). Furthermore, it follows with eqs. (2.24) and (2.26) 
that

Comparing the last equation with eq. (1.1), we see that eq. (4.9) will provide 
expressions for the surface constitutive coefficients describing the dielectric 
(optical) behaviour of the thin film on a rough surface.

It follows with eq. (2.23) that

1
0



(4.13)

(4.15)

0,1')

■ ®1”(r|, n - <&'>"»> = £ v'v(e -</)(£ - £>)

x

0 0

(4.18)

0 0
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0 
1

/!
5rt(r|-rj,/ -t') 0

0 
0

ec’

1
0 
0

O' 
0 
0,

0 
1

I 0
<^”> = - jv(e - £'){</’>2 + <(4T)2>} - 1

\ 0

0 \
0 I1 I

/I
v'O,z|rj,z- = O,z-)-/ 0•*o(r|,z =

where we have introduced the functions

d/>(r|,Z)=/’(r|,O-</’>, (4-14)

which describe the deviations of the surfaces/’(r|>z) w'th resPect to their averages. 
We now consider (Iji?1’), which according to eq. (2.25) will depend on (d(/')2/dx) 
and (dC/V/dy). Since

(5; 5
and since it follows from translational invariance in the x-y-plane that 
({/'(q, z)}2) does not depend on x and y, one finds that the averages, eq. (4.15) 
vanish, so that

<^”> = 0. (4.16)

We now define the following four correlation functions for the deviations 
zJ/v(r|, t) of the positions of the two surfaces /'(rp z) from their averages (/’):

5-(r, - rj, I - l') = (Af^, t)Af'(.r'v t')) , (4.17)

where we have used translational invariance in the x-j'-plane and stationarity. In 
terms of these correlation functions we can write for the Ko dependent term in eq. 
(4.9), using eqs. (2.23), (4.11) and (4.14),

E <(&'’'(q, t) - • /CoO-p z = v'0,1 | rj, z'



0 0

v'O, <u" | z'= 0)

(4.20)
0 0

(4.21)

«*l,<0)=v(e-£’)</’>

0 0

0 0

+ iv(£-£’){</->2+<(4r)2» 0 0

— -k 0 
e '
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1 
0

0 
1

E <(^y - • *0• (%'” - <«”»>(*|. " | k j, (O')

1 
0

0 
1

0
0

_1_
££’

0 \
0 I
1

w7/

Since6)

/C0(r|, z, l |rj,z', r') = /C0(q-r(,z, t - t' |z'), (4.19)

we find that the expression eq. (4.18) depends on q — rj and t — t‘ and therefore 
becomes diagonal after Fourier transformation, i.e. proportional to 
<5(*|-*[)<5(co — (o')

\-lk‘

- *j', (o - (o")K0(k'(, z =

= 6(kl-k'i)6((o -(o') £v'v(£ -£’)(£ -O 
v'

• Jd*j' do; "S’'(*|

/ 1 0 0 \
I 0 1 0 \

1
cF /

where S"'(*|, (o) is the Fourier transform of S/’(q, r), eq. (4.17), and 
/f0(A|, z, (o |z') the (partial) Fourier transform of /C0(q,z, t |z'), eq. (4.19). The 
other terms at the right-hand sides of eq. (4.9) are also diagonal in A|,a> 
representation and are easily found using eqs. (4.11), (4.12) and (4.13). One then 
obtains for eq. (4.9) in *|, co representation

t^kt, (o | * j, co') = £.„(*,, m)(2n)’5(*| - *j)5(u> - (o'),

with



~E v'v(£ -£’)(£ -£-) (4.22)
0 0

■(2n)

0 0

&(*|, co)=- |v(£ - £'){</'>2 + <(4T)2>}

It follows with eq. (4.17) that

(4.23)

zz

(4.24)

(4.25)

(4.26)
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1 
0

0
1

1 
0

0
1

0 
0
1 

££*

1
0 
0

O' 
0 
o.

1 
0
0

0
0
0

0
0

££’

0
-1

0

I 0
£n(*f, 0>) = |t’I - I

\ 0

*°(*b z = vO, co | z' = 0) = -i - Ml

£+*£ +£'*t

co — <o')/f0(*j,

i(co/c)2 „ rr ...1 £i-zz)-’

+ (£+ >

where k\ = {£’(co/c)2 — £|}1/2, if| = kj/kf. with £| = |A|| and z = (0, 0, 1). Using this 
expression in eq. (4.22) we find that one can write

W*l> co) = 57i(*|. co)M| + |K(1 - Ml - zz)

+ |^’(*J, co)zz -|i5v(*|, co)*||Z +|it/’(*], co)z*n

and (cf. eq. (1.1))

z = v'0, co' | z' = 0)

<(J/')2> = S’Vl = 0, t = 0) = (2n)-3 jd*| dcoS"(*j, co)

In ref. 7, eq. (2.2), we have found that

Jd*jdco'S’"’(A|-*j,



where

JdAjdco'

?? ?1

(4.27)

+ COS2 <t> (4.28)

— Aj, a) — co') (4.29)

</’)2 + (2ir)5’(*|,<u)= -2v

x

(4.30)

(4.31)
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(<a'/c)2 ]

?r((*|,co) = 2v(c - e')</’>+ 2i(27t)-3 £ v'v(£ -£')(£ -£>) 
v'

K(*|,co) = 2v(£ -£’)</’>+ 2i(2n) 3£v'v(£ -£’)(£ - c’) j"dA j dco'

x k j cos <p

x k j cos 4>

x S'"(kf — Aj, co

x S”(A| — Aj, co — co') ccos2 </>

f . 2 i 4i+ 91
- co H sin2 <t> . —z-77I « + ?l +£ ??

+ c <?1+

JdAj dco'S"(A[, co')

+ 2v(2n)-3/cj-X(t~t^~t’)t~/

j dA j dco 'S”(A( — A j, co — co')

■Zi

'/’(*!. co) = - 2v ^-7—+ (2")

-2v(2n)-3fe,-‘E(t~t'){(f ~t0

9'r' 
e*q'±- +e-q'^

o.,, x c -t’ / r.\ . T/n 3 V ■ (c -£')(£ -C')e+t^ )?’(*!, co) = 2v —— </’> + 2i(2n) £ v v---------- ------------------

x j"d*'| dco'S''(*|

|d*'| dco'S”(Arj, co')j

jd*j dco'S’X*! - *j, co - co')

■ 2 A ("Z/C)2 1 
+ sin2 (p ——----- — > ,^l+ + ^rj



(4.32)-v(e-

x

(4.34)

+ COS2 <f>X

(4.35)

(4.36)
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(<o/c)2 

91 + 91

(co/c)2

9i + 9l.

2k

x J*d/c j Jd<^/cj3S’’(K|) 
0 0

= 2v^^<r>+^(c>'(*|,cU),

*Thc subscripts I and tr of y' stand for longitudinal and transversal (see also section 1).

and

co) = r’

. + sin2 0
c 9i +£ 9i

c') {</y>2 + (2k)-’ Jdk j d<o'£"■(*(, co')|,

with = {cy(coy/c)2 — At[2}l/2 and </> the angle between kf and fcj (£|£j = cos </>)- 
(Note that </~) = 0).

The coefficients* yf, y„, /?’, 6" and rf can in principle be evaluated, using the 
formulae eqs. (4.27)-(4.32), if the 4 correlation function are known as
well as the average film thickness d = + ) and the dielectric constants c* and £.
In practice S”(k^,w) may be replaced by S”(A|) • 2tt5(co). For solids this is 
evident since S”(r|, z) = S"(r|). Since for fluids the typical velocities of the 
interfaces are much smaller than the velocity of light, one may also use the 
equilibrium correlation function in eqs. (4.27)—(4.32). We shall furthermore 
assume rotational symmetry of these correlation functions around the z-axis, so 
that S”(rj) = S"’(|r||) and therefore S"(k^ = S”(|A||). We may therefore put

Syy(*|,co) = 5*’(|*||) - 27t5(co) (4.33)

in eqs. (4.27)-(4.32). Introducing planar polar coordinates k\ and <f> (for Arj), one 
can then write for eqs. (4.27)-(4.32), after integration over co',

yr(*|,m) = 2v(£ -£')</’>+ 2i(2tt)-2£v'v(£ -£’)(£ -£’)

co 2k

JdArj |d<^jS''(Kp jcos2</>- 

0 0

= 2v(£-£’)</’>+ yfc”(*|,<u),

y^l, co) = 2v(£ -£’)</’> + 2i(2n)-2 £ v'v(e - cy )(c - £’)
v' 

co 2k

Jditj Jd</>A:jS''(K|) |sin2 <f> 
0 0

= 2v(c -£')</’> + y!?'(*|,co),

x o £-£'/r.\ , ->r-> x-2V ■ (c-£')(£-£’)«+c’ 
0 (*|. co) = 2v —— (f) + 2i(2k) £ v v---------- -------------------

oo



</'>2 + <5“”(k|,cu),= -2v (4.37)

»f(A:|,a>)= — 2v

= -2v (4.38)

and

(4.39)

with
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oo

|d/cjA:jS"(fcj)j
0

oo 2k 

jd/cj jd<Mf 
0 0

COS <t>S”(Kf)

cos ^>S' '(k|)

<5’(*|.a>)= -2v (^^V</'>2 + (2k)-'

<n

T'= -v(c-r)|<r>2 + (2n)-' jd^jS"^)} 

0

= — v(e — c')(/1”)2 + r,c)',

oo

</'>2 + (2n)-'JdfcjfcjS"(fcj)j 
0

oo 2k

Jd* j jd^fcj:
0 0

x__ _____
<+?± +£ <71

Kg = (Arj + kj2 — 2A|/cj cos and q\ = {c"(co/c)2 — k[2)l/2.

We find that the coefficients yf, y„, P\ !>' and rf are functions of kg and co, so that 
^(kg.co), eq. (4.25), is now exactly of the form expected on symmetry grounds, 
i.e. rotational symmetry around the z-axis and translational symmetry (see eq. 
(1.2)).

We see that the constitutive coefficients y,’, y,",, 0", 6", q' and r’ are the sums 
of two contributions: one from the fact that there is material in the form of a thin 
film (with average thickness d) on the rough surface, and the other (yjc)’, yS;1’, /J<c)", 

and r(c)") from the correlations of the roughnesses of the upper and lower 
surface of the film. For a further evaluation of the integrals in eqs. (4.34)-(4.39) 
one needs explicit expressions for the four correlation function S”(k|). Such 
calculations will be given in a future publication.

We finally want to remark that, by choosing e =e + and calling/* =/in eqs. 
(4.34)-(4.39), one must obtain the same results for y,(k|, co) = y£,y,'(k|, co),

+ 2v(2k)*2kj-' £t>)C

n x-2, -1V*(£ -«’)(« -£')
— 2v(2k) ------------------/ 6



5. Reflectance, transmittance and ellipsometric coefficient

ait)

(5.1)

(5.2)

34

= + E'” + E''' C E'* + l~E'J’

7<r(*|, ") = 2 E, K(^|> co), /7(£|,a>)ss|E,/?(A:|, <o) and r =!1, r’ as in ref. 7, eq. 
(1.4), whereas S(kt, co) = |X,5V(^|, co) and t/(*|,co) = | £,t?’(*|, co) must appear to 
be equal, and also given by eq. (1.4) of that reference. For y„ y„, fl and r this is 
immediately clear. One also easily proves the equality of <5 and c/. By considering 
a suitable linear combination of S and t/ one then proves the equivalence with the 
expression given for <5(/t|, co) in eq. (1.4) of ref. 7.

forz<0,

E,(r, <) = <s(0, 1,0)e**'-'—*>,

A(r, c) = n+G(~cosOu 0, sin flje**1 , for z > 0 , (5.3)

where n + = ^/c +, k, = n “co/c(sin 8„ 0, —cos 8,) is the wave-vector of the reflected 
wave (0, = angle of reflection) and k, = n +co/c(sin 0t, 0, cos 0J the wave-vector of 
the transmitted wave (8, — angle of transmission). Only in the case of real n * the 
angle 0, is real. The case of complex n + will be considered below after eq. (5.9).

Substituting

In this section we shall study how the optical properties of a surface are changed 
by roughness and the presence of a thin film. To this end we shall calculate the 
influence of the constitutive coefficients y,’, y,'„ fl', S', rj' and r‘, eqs. (4.34)—(4.39), 
on the reflection and transmission amplitudes of a light wave. We shall first 
consider the case where the polarization of the incident-beam is normal to the 
plane of incidence, which is chosen to be the x-z-plane. The incident fields are 
then given by

£,(r,r) = (O, 1,0) e**1

B,(r, l) = n~( — cos 0„ 0, sin 0,), for z < 0 ,

where n~ = y/e~ is the refractive index, co the frequency and 
k, = n “co/c(sin 0,, 0, cos 0,) the wave-vector of the incident light, whereas 8, is the 
angle of incidence. The amplitude has been set equal to unity, which obviously 
does not affect the values of the optical quantities, to be calculated. The reflected 
and transmitted fields are given by

E,(r, I) = r,(0, 1, 0) ei<‘>'-“>,

B,(r, t) = n ~r,(cos 0r, 0, sin 0,) e'(4'

and



n; (5.4)

(5.5)

n + sin 0, = n sin 0,0,= 0, = 0 and (5.6)

(5.7)
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and are consequently not affected by the constitutive coefficients y,', yj, fl", tp 
and t’. For r, and z, one finds, up to second order in the average film thickness 
and surface roughness,

r, = rj{ 1 + 2i(m/c)yl/z ~(c' - e + )-' cos 0
+ 4(o)/c)2rn “n+(c " — e+)_| cos 0 cos 0,
— 2(a>/c)!y2,(f — e+)-'n“ cos 0(n~ cos 0 + n + cos 0,)“'},

z, = zj{l + '(.oj/c')yu(,n~ cos 0 + n* cos 0,)-1
— (<u/c)2r(n“ cosS-n* cos 0,)(n" cos0 + n * cos0,)“‘
— (o)/c)2yi(n_ cos 0 + n* cos 0t)-2},

W- = lim(B, + B,), N* = lim B,. 
ITO x|0

1 d B
c dt By

hm(Et.x,E^KEJ, 
z|0

into the right-hand sides of the constitutive equations (4.10), we obtain, with eqs. 
(4.25), (4.26) and (5.1)—(5.3), the surface polarization and magnetization densities 
P' and M', induced by the plane wave. These densities can then be substituted 
into the right-hand sides of the equations for the discontinuities of the fields

1 B B
c dt dx

- N-.

Ntv ~ N-.; =

i a a
c 8t By

a aNZ-N^=- — P'x--P'f, dx By

i a a
m'-~c'aiP'>~axM'1’

By ■"

a a
~a-xM'-TyM-

which follow from eq. (2.15) together with eqs. (2.22), (4.1) and (4.2). Using again 
eq. (5.4), with eqs. (5.1)-(5.3), in the left-hand sides of eq. (5.5), one obtains a set 
of two independent equations to determine r„ z„ 0, and 0,. It then follows that 
0, and 0, are given as usual by Snell’s law



(5.8)

(5.9)

sin2 3 + (u + if)2n
(5.10)

(5.11)a + = Im £ + ,

(5.12)a* = 2uv,

so that

(5.13)

E.(r, t)
(5.14)

= 1,0) e**'

0„ 0, — sin 0,) ei(*' (Pt)

(5.15)

a>t)

(5.16)
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J-

Introducing

p+ = Re c+,

we get

p + = £ “ sin2 0 4- u2 — v2,

Er(r, z) = rp(—cos 

«,(r,t) = n-r„(0,l,0)e^

— £ sin2 0) + ^/(p2 — e sin2 0)2 + a

with the Fresnel amplitudes

r° = (n ~ cos 0 - n + cos 0J(n “ cos 0 + n + cos 0.)  1,

t° = 2n~ cos 0(n' cosS + n* cos 0,)~'

and t = J(r+ + t~) and y„ = |(y* + y,;), (see end of section 4).
For complex refractive index n + the angle of transmittance 9, is no longer real 

and n+ cos 0, has to be replaced by u + in in the above formulae, 

n + cos 0t = u + it>.

From eqs. (5.6) and (5.9) one then obtains 

£+ = n+2 = n +2sin20, + n +2 cos2 0, = 

= £ ~ sin2 0 + u2 — v2 + 2iuv .

E,(r, t) - rp(cos 0„ 0, - sin 0t) ei<4'

B,(r, r) = n+Zp(0, 1,0)ei(*' forz > 0, 

where the angles and wave-vectors are identical to those for the case of s-polarized 
light. Proceeding along the same lines as above, we again find the relation eq. (5.6), 
whereas the amplitudes rp and rp are, up to second order in the film thickness and

forz<0,

“>, for z < 0 ,

v = J ^2 >/ — (p + — £ sin2 0) + x/(p + — £ “ sin2 0)2 + <rt2.

Next we consider the case, where the incident wave is polarized parallel to the 
plane of incidence. Then the incident, reflected and transmitted fields are given by

(cos 0„O, -sinO^e"*' '-"’,



(5.17)

(5-18)

(5.19)

37

surface roughness, given by

rp = r°{ 1 + 2i(o>/c)y,n “ cos 0 cos2 0,(c “ cos2 0, — £ + cos2 0)~‘

— 2i(a>/c)/?n "£ +c “ cos 0 sin2 0(e ~ cos2 0, — e + cos2 0)“'

+ 4(co/c)2rn+n” cos 0 cos 0t(c “ cos2 0, — c 4 cos2 0)“'

— 2(a>/c)2(<5 + cos 0 cos 0, sin2 0(£“ cos2 0, — c + cos2 0)“l

— 2(m/c)2y2n” cos2 0 cos’ 0,(< “ cos2 0, — e + cos2 0)“'

x (n " cos 0, + n ~ cos 0)“’

+ 2(a>/c)2/?2n +t +(c “)3 sin4 0 cos 0(c “cos2 0, — e + cos2 0)“'

x (n “ cos 0, + n 4 cos 0)“'

— 2(a>/c)2y,/?n 4n “£“ cos 0 cos 0, sin2 0(n“ cos 0, + n 4 cos 0)“2},
i

rp = rj{l + i(aj/c)y, cos 0 cos 0,(n “ cos 0, + n 4 cos 0)“'

+ \(wlc)Pn *n~r sin2 0(n “ cos 0, + n + cos 0)“‘

— (a>/c)2t(n “ cos 0, — n + cos 0)(n“ cos 0, + n + cos 0)“'

— (a>/c)28c ~n 4 sin2 0 cos 0(n " cos 0, + n + cos 0)“' 

+ (a> /c )2r;c n “ sin2 0 cos 0,(n “ cos 0, + n 4 cos 0) “'

— (coIc)2y2cos2 0 cos2 0,(n~ cos 0, + n4 cos 0)“2

— (a>/c)2P2c 4(c“)’ sin4 0(n~ cos 0, + n4 cos 0)“2

— 2(cu/c)2yi/3n*n~c “ sin2 0 cos 0 cos 0,(n“ cos 0, + n+ cos 0)“2}, 

with the Fresnel amplitudes

r° = (n 4 cos 0 — n " cos 0,)(n 4 cos 0 + n “ cos 0,)“1,

/J = 2n " cos 0(n 4 cos 0 + n “ cos 0J-' .

One should note that only the symmetric combinations yb yu, p, <5, rj and r (see 
end of section 4) appear in the amplitudes r„ r„ eq. (5.7) and rp, rp, eq. (5.17).

If we use eqs. (4.34)-(4.39), the expressions eqs. (5.7) and (5.17) can be written 
as

r, = r“(d) + r°{2i(a>/c)y!;,n (£ — £ +) 1 cos 0

+ 4(co/c)2r(e,n”n+(£ “ — £+)“' cos 0 cos 0,}, 

rs = t°(d) + r?{i(a>/c)y!?(M“ cos 0 + n + cos 0,)“'

— (co/c)2r<c)(n “ cos 0 — n + cos 0,)(n “ cos 0 + n + cos 0,)“'}



and

(5.20)

Rp = lrPp >
(5.21)

e-2x>(w/c)r
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u
n ~ cos 0

rp = r?W) + r°{2i(a>/e)y(chi' cos 0 cos2 fl,(t ' cos2 0, — e + cos2 fl)'1
— 2i(a>/c)/?(cln 'e+t' cos 0 sin2 0(c " cos2 0, — £ + cos2 fl)"1
+ 4(a>/c)2(t(c| — <5,c|r ' sin2 fl)n + n ' cos 0 cos 0t
X (£" COS2 0, — £ + COS20)~‘} ,

lP — lp(d) + /?{i(co/c)y|c) cos 0 cos 0t(n “ cos 0t + n + cos 0)~‘
+ i(cu/e)/?(c)n +n ~€~ sin2 0(n ~ cos 0t + n + cos 0)_*
— (co/c)2(t(c) — <5(c,£ “ sin2 0)(h “ cos 0t — n + cos 0)
x (n~ cos 0t 4- n+ cos 0)-1},

where we have used the fact that the coefficients y(c), yf’, p(c\ <5(c) and t(c) are of 
second order in the surface roughness and that <5(c) = rj(c}. The latter equality can 
be proved in a completely analogous way as was indicated in the last paragraph 
of section 4 for a rough surface without film. The quantities rjGO an(^
tp(d) denote the reflection and transmission amplitudes for a plane parallel film 
of thickness d. One can easily check that one has here second order approxi­
mations of the exact expressions for these amplitudes, given e.g. in ref. 8.

The reflectance and transmittance can be found by dividing the normal 
component of the Poynting-vector of the reflected and the transmitted beam by 
the normal component of the Poynting-vector of the incident beam. In this way 
one obtains

= H2.
e-2r(w/£-);■ i2 (up+ + va+)

p l p| |£+|n-cos0

The attenuation of the transmitted waves is caused by the absorption in the 
substrate. The loss of energy from the beams, by absorption in the film and by 
scattering by the surfaces, is given by

^p=l-^p-T,p, (5.22)

where the value of z in the transmittance has to be set equal to d, the average 
position of the interface between the film and the substrate (see fig. 1).

The ellipsometric coefficient is defined by

r = rp/i\ = p exp id . (5.23)

Substituting the expressions, eqs. (5.19) and (5.20), for the amplitudes r„ /„ rf 
and rp into eqs. (5.21), (5.22) and (5.23), one obtains for the reflectances Rs and 
Rp, the transmittances Ts and Tp, the energy losses Qs and Qp, and the ellipsometric



(5.25)

(5.26)

+ 2

(5.29)

(530)
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— (e v — p*v + a*u) Im rlc)}],
(5.24)

!u

coefficient r,

Rs = R°(d) — 4(a)/c)n~ cos 0{(n~ cos 0 4- w)2 + t>2} 
X l(c “ - P +) Im y{? + a + Re yg> 
— 2(<o/c){(£“u — p+u — a+i>) Rer(c>

T, = T^(d) — 8(co/c)n" cos 0{(n “ cos 8 + u)2 + d2}
x [(,i “ cos 0 + u) Im yjj> — v Re yf’
+ (<o/c){(c “ — p + — 2d2) Re r<c) + 2n “ cos 8v Im t<c)}] ,

Q, = Q°,(d) + 4(o>/c)n ~ cos 0{(n “ cos 8 + u)2 + d2}"'
x {Im yj1 + 2(<o/c)d Im t<c>} ,

= R°(d) — 4(<o/c)n“ cos 0{(n~u + p + cos 0)2 + (n~v + a* cos#)2}
x [{c ~(u2 + d2)2 — cos2 0(u2 — u2)(p+2 — <r+2)
— 4 cos2 8uvp *<r+[Imy(‘)+ 2 cos2 8{(u2 — v2)p +<z +
— uv(p*2 - a*2)} Reyfc, + e“ sin2 8{(p +2 + <j+2)2 cos2 8
— £ “(p +2 — a *2)(u2 — d2) — 4c ~uvp +a + } Im P,c>
+ 2c~ sin2 0{(p +2 — a *2)uv — (u2 — v2)p +<7 + } Re /?(cl
+ 2(co/c){c ~(u2 + d2) — (p+2 + a+!) cos2 8}(up + + txr+)
x Re(c“ sin2 0<5(cl — t|c|) + 2(<j>/c){c“(u2 + v2)
+ (p *2 + a +2) cos2 0 }(up + - ua +) Im(t - sin2 0<5(c) - t(c))J , (5.27)

Tp = T°p(d) — 8(a)/c)n ~ cos 0{(n u + p + cos 0)2 + (n~v + a* cos 0)2}“2
x (up * + va +) e-2<<"/f);[cos 0{n “(u2 + d2)
+ cos 8(up + + va +)} Im yjc> + cos2 8(vp + — ua+) Re y|c)
+ n ~c ~ sin2 0{cos 0(p+2 + a+2) + zi “(up + + va + )} Im /?<c)
— (c “)2 sin2 8(vp + — ua*) Re Pfc> — (a)/c)n “ cos 0
x {c “(u2 + d2) — cos2 0(p +2 + a +2)} Re(t “sin2 Od10 — t<c))
+ 2(a>/c)n“ cos 8(vp + — ua*) Im(c “ sin2 86(c> — t<c’)] , (5.28)

2P = Cp0,(^) + 4(cojc)n “ cos 8{(n ~u + p* cos 0)2 + (n ~v + a* cos 0)2}“1

x {(u2 + v2) Im y[e) + £ “ sin2 8(p *2 + a *2) Im p^
+ 2(a>/c)(up* — ua*) Im(£“ sin2 05(c| — t(c))} ,

r = rQ(d) — 2(aj/c)n “ cos 0(n“ cos 0 + w)(n “ cos 0 — tv)*'

x (n “>v + £ + cos 0)-2[iH’2yfc) — i(£ “ — £ +)“'(£ ~w2 — e +2cos2 0)yf)

— i£ “£ +2 sin2 dp(ci — 2(a>/c) sin2 0>v{£ “£ +<5(c> — (£“ + £+)r(c)}],
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where »v = u + iv. The first terms at the right-hand sides of eqs. (5.24)-(5.30) 
denote the values of the various quantities for a parallel film of thickness d. They 
are found by substitution of the values of r°p(</) and into the right-hand 
sides of eqs. (5.21)—(5.23), retaining only terms up to second order in d. The other 
terms at the right-hand sides of eqs. (5.24)-(5.30) describe the influence of surface 
roughness on /?sp, Tsp, 0^p, and r by means of the coefficients yjc), /?<c), <5(c) and 
t(c). As we have seen in section 4, the latter quantities can in principle be evaluated, 
if the four height-height correlation functions S**', eq. (4.17), are known.

9) Note that in the above derivation of the average surface polarization 
and magnetization densities we have systematically replaced, up to 
second order in the amplitudes of the surface roughness and the 
average film thickness, fluctuating fields by average fields. In 
doing so, local field effects are taken into account only in an 
approximate way, cf. reference 6 for a detailed discussion of this 
point. One can demonstrate that this procedure is valid when the 
direction of the normal on the curved surfaces is everywhere close to 
its average direction. For random rough surfaces this means that the 
theory will be applicable when the amplitude of the surface roughness 
is much smaller than the correlation length of the roughness. For 
discontinuous films, however, the approach will in general not be 
useful.
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OPTICAL PROPERTIES OF THIN FILMS ON ROUGH SURFACES 
II. LONG CORRELATION LENGTH LIMIT; COMPARISON WITH EARLIER WORK

In a previous paper1), hereafter referred to as I, we have developed a theory 
of the optical properties of thin films on rough (i.e. non-planar) surfaces. This 
was done by applying a general method of Albano, Bedeaux and Vlieger2) to 
describe the electromagnetic properties of a finite boundary layer between two 
dielectric media by singular surface polarization and magnetization densities 
situated at a fictitious interface somewhere within this layer. These densities 
were calculated, up to second order in the film thickness and surface roughness 
over the wavelength of light, for a thin isotropic film covering the rough surface 
of a substrate (see paper I, fig. 1). The polarization and magnetization densities 
fluctuate due to the surface roughness of the film and the substrate. For the 
calculation of the optical properties, as the reflectance, transmittance and 
ellipsometric coefficient, it is sufficient to know the average electromagnetic 
fields. These fields are related to the average surface polarization and mag­
netization densities P$ and Afs by a set of boundary conditions, whereas Ps and 

are expressed in terms of the fields by a set of constitutive equations. 
Formulae for the constitutive coefficients, appearing in these equations, were 
derived in paper I in terms of the height-height correlation functions of the 
upper and lower surfaces of the film, and its average thickness. Finally the



42

reflectance, transmittance and ellipsometric coefficient were expressed in terms 
of the constitutive coefficients, for arbitrary angles of incidence.

In the present paper the above theory is applied in the case that the 
correlation length of the surface roughness is much larger than the wavelength 
of the light. In that case the surface roughness correlation functions simplify 
considerably. Since we will consider so-called identical films (the upper and 
lower surface of the film are identical), only one correlation function is left. With 
this auto-correlation function we calculate in section 2 the various surface 
constitutive coefficients and subsequently the reflectance, transmittance and 
ellipsometric coefficient of the film. These calculations are performed up to 
second order in the film thickness and surface roughness over the wavelength 
of light and the correlation length of the rough surface of the film.

As results we find that the calculated reflectance and transmittance of the 
film are the same as obtained by Ohlidal, Navratil and Lukes3) (for normally 
incident light) if we neglect rather small quadratic terms in the surface 
roughness over the correlation length. In the expression for the ellipsometic 
coefficient, however, these are the only second order terms contributing, and it 
is therefore important to compare our result for the ellipsometric coefficient 
with that obtained earlier by other authors. It appears that our result is 
different from that obtained by Ohlidal and Lukes4), using the Helmholtz- 
Kirchhoff integral, but also from the result obtained by the same authors5), 
using the Stratton-Chu-Silver integral. In the first case these authors obtain a 
contribution to the ellipsometric coefficient from surface roughness, which does 
not vanish for normally incident light, as it should do for isotropic surfaces. So, 
in fact, we only have to compare our result for the ellipsometric coefficient with 
that of ref. 5. It is then found that our result is fundamentally different from 
that of Ohlidal and Lukes5): according to our theory the effect of surface 
roughness on the ellipsometric coefficient changes sign when the light beam is 
reversed, which is not the case according to Ohlidal and Lukes5). In principle, 
this could be tested by experiment. Ohlidal and Lukes4) have performed an 
ellipsometric experiment on a rough silicon crystal, covered by a thin SiO2-film, 
however only with light incident from the ambient side. It seems to be a pure 
coincidence that for this system our formulae give, within a few per cents, the 
same results as theirs.

In section 3 we show that the difference in results for the ellipsometric 
coefficient obtained by Ohlidal and Lukes4,5) and in the present paper is due to 
an inconsistency in the assumptions made by those authors in order to calculate 
the electromagnetic field on a rough surface. To this end we first prove, by a 
direct calculation of this field, up to second order in the surface roughness that 
it differs from the field postulated by Ohlidal and Lukes4,5) according to the 
so-called tangent plane approximation. We furthermore prove that this latter



S-"(r,- rj) = (2.1)

S"(r,- rj) = o-L-expHr,- rf,|2//2_.), (2.2)

S"-(r1-ri) = Ort(l-|r|-ril2//L). (2.3)
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We consider a thin isotropic solid film, covering the rough surface of a solid 
substrate. This is a special case of that treated in paper I, where the functions 
/P(ry) = /*X*> y\ describing the positions of the upper (p = -) and lower (p = +) 
surface of the film, are independent of time (see paper I. section 2). The four 
correlation functions for the deviations of these functions from their
averages (/”),

2. Long correlation length limit of surface roughness; comparison with earlier 
work

(cf. eq. (1.4.17)), will be assumed to be differentiable functions, which can be 
developed into Taylor series around ry— rj = 0.

For solid films one usually supposes that these correlation functions are 
Gaussian:

It is, however, clear that, up to second order, every correlation function of the 
type described above, which is rotationally symmetric in the x-y plane, may be 
written in the form eq. (2.3). (Note that the auto-correlation function for a 
fluid-fluid interface, eq. (3.40) of ref. 6, does not satisfy this condition.)

field can be obtained by neglecting the curvature of the rough surface in our 
calculations. We show, however, that this is an inconsistent approximation in 
the second order calculation of the field.

We know from the calculations of Ohlidal and Lukes that the Helmholtz- 
Kirchhoff integral4) leads to a different result for the ellipsometric coefficient as 
the Stratton-Chu-Silver integral5), if in both cases the electromagnetic field on 
the rough surface of the film is calculated by means of the tangent plane 
approximation. In section 4 we prove that, if the correct second order field, 
calculated in section 3, is used, both the Helmholtz-Kirchhoff and the Stratton- 
Chu-Silver integral lead to the same far field and to our expression for the 
ellipsometric coefficient of a thin film on a rough surface, as calculated in 
section 2.

where characterize the surface roughness and are four
correlation lengths. For large values of one may write for these functions



(2.4)

and we obtain, in the long correlation length limit (I > wavelength A)

5(rj) = cr2(l - r2//2). (2.5)

Fourier transformation of this auto-correlation function gives

(2.6)S(k,^ (2tt)2o-2{5(JI||)+ r28"(k:,)8(ky)+ r28(k,)8"(ky)},

(2.8)
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= i(e* - e')2<z2(c/a))[(<u/c)2(n“ cos 0 + n* cos 0,)“' 

+ r2 sin2 0(e*n*n~ cos3 0 cos3 fl,)-1

x {2n*n~ cos2 fl cos2 fl,(n4 cos fl + n~ cos fl,)-1 

+ (e* cos2 fl, + e~ cos2 fl + n*n~ cos 0 cos fl,)

x (n- cos 0 + n* cos fl,)-1}],

y[c) = i(e* - e~)2<r2(c/a>)[(a>/c)2 cos 0 cos fl,(n + cos 0 + n~ cos fl,)-'

+ C2 sin2 0(n* cos 0 + n~ cos fl,)-3(e+n+n" cos3 0 cos3 fl,)-1

x {-n-n+e- cos6 0 - 3(e-)2 cos5 0 cos fl, - 2n+n-(e- - e*)cos4 fl cos2 fl, 

+ 2(4e*e- - (e*)2 - (e-)2) cos3 fl cos3 0, + 2n+n-(e" - e+) cos2 fl cos4 fl,

- 3(e*)2 cos 0 cos5 fl, - n-n4«+ cos6 fl,}], (~?)

where 8 is the Dirac S-function and 8" denotes the second derivative of this 
function.

Substituting the expression eq. (2.6) for the correlation functions S"(k|, w) = 
S" (Ar|)2rrS(<u) into the right-hand sides of eqs. (I.4.27)-(I.4.32), we can evaluate 
the constitutive coefficients •y}'1*’, /3<c)*', 8,c>“, and r<c)l', defined by eqs.
(I.4.34)-(I.4.39). In the expressions for the reflectance, transmittance and 
ellipsometric coefficient only the symmetric combinations y*c) = yf4’1', y[,
jS.yS”, /3<4) = 1S„/3<C>", 5lc) = iS„5(c)- = v<‘> and r(4) = 1Sappear, and 
only as functions of *( = (n-sin fl a>/c, 0) and a>, where 0 is the angle of inci­
dence of the light beam, a> its frequency, c the velocity of light in vacuum and 
n~ the refractive index of the ambient. One obtains:

S” = S

In the following we shall, for simplicity’s sake, only consider the case of 
identical films. Then all four correlation functions are the same:



(2.9)

,<c)

T<'> = l(e4-e')a2, (2.11)

e.r3
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= l?°(d)[ 1 - 4e (<u/c)V cos2 8 + 4(e" - e')/"2<z2 sin2 0 cos 2 6(n* cos

x(2n4n cos2 8 cos2 8,(n* cos 6 + n cos fl,)'1

+ (c* cos2 fl,+ e" cos2 fl + n*n' cos fl cos fl,)(n“ cos fl + n* cos fl,)"'}],

(2.12)

/3le, = i(et-f-)2(e,6-)-|<z2(c/a,)

x [(w/c)2n" sin2 fl(n')''(n' cos fl + n~ cos fl,)"'

+ /"2(n4n")"'(n4 cos fl + n~ cos fl,)-1

x {4 + 6 sin2 6(eV cos 0, + e“n“ cos fl)

x (n' cos 0 + n~ cos fl,)"'(e4 cos fl cos fl,)"'

+ sin4 fl(n4 cos fl + n~ cos fl,)~2(€4)"2(cos 0 cos fl,)"3

x (n*n"(€-)2 cos4 8 + 3(e" cos fl)3 cos fl,

+ 4n*n~e*e~ cos2 fl cos2 fl, + 3(e4 cos fl,)3 cos fl

+ n4n"(e4)2cos4 fl,)}],

«(e,= (e4-e")o-2(c/<u)2

x [(a>/c)2(n“ cos fl + n* cos fl,)(n4 cos fl + n~ cos fl,)“'(«*n")"'

+/"2(e4 — e")2(n4 cos 0 + n cos 0,)"3(h + m cos 0 cos 0X) 3

x (n + cos3 0 + 3n~ cos2 0 cos 0t + 3n + cos 0 cos2 0t + n~ cos3 0,)] = t)1

(2.10)

where 0t is the angle of transmittance, n+ the refractive index of the substrate, 
whereas e+ = (n+)2 and e” = (n-)2 are the dielectric constants of the substrate 
and the ambient, respectively. For complex refractive index n+ this angle of 
transmittance is no longer real and is then given by eqs. (1.5.9)-(1.5.13). To 
simplify calculations, however, we shall assume here that n+ is real. Substitut­
ing expressions (2.7)—(2.11) into the right-hand sides of eqs. (I.5.24)-(I.5.30), 
with u = n+ cos 0t, v = 0, p+ = e+ and <r+ = Im e+ = 0, we find, up to second 
order in the average film thickness d and the surface roughness a over the 
wavelength A and the correlation length /,



fl,)2[(a,/c)2(„

R„ = R“(d)( 1 - 4c’(a>/c)2o-2 cos2 0 + (e* - e’)/’2.

(2.16)

(2.17)

ey'
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Tp = T°(J)[1 - (a>/c)2(n~ cos 6 - n* cos fl,)2o-2 

+ (e+ - e~)2l~2a2 sin2 0 g (0, 0„ e4, e')],

e.r'ii.
(2.14)

cos 0 + n* cos #,) 1

sin2 fl /(fl,fl„e4,c’)h

(2.15)

Qp = <?p(rf) + 4(e4 - e )2(a>/c)2a2n cos 0

x (n* cos 0 cos3 0, + n~ sin4 fl)(n4)“‘(n’ cos 0, + n* cos 0) 3 

+ (e* - e“)2/~2<r2 sin2 0 h (0, 0„ e*, e~),

r = r°(d)[ 1 + 2/'2<z2(e4 - c“)2 sin2 0 cos’2 0

x (n* cos fl, )“’(«* cos 0 + n~ cos 0,)~4(n~ cos 0,- n* cos

x {cos2 0,[n~n*e~ cos6 0 + 3(c’)2cos5 0 cos 0,
+ 2n*n~(e~- e4) cos4 0 cos2 0, - 2(4e4e’ - (e*)2 - (c’)2) cos’ 0 cos’ 0,

- 2n*n~(e~ - e4)cos2 0 cos4 0, + 3(e4)2 cos 0 cos5 fl, + n~n*e* cos6 fl,]

+ (cos2 0, - sin2 0)(n* cos 0 + n" cos 0,)2

x [2n4n' cos2 0 cos2 0, + (cos 0 cos 0, + sin 0 sin fl,)

x (e4 cos2 0, + e“ cos2 0 + n*n~ cos 0 cos #,)]

O, = Q°(d) + 4a2>r cos 0(n~ cos 0 — n* cos

+ /-2sin2 #(«’ cos’ 0)~'(n* cos fl,)’3

x {2n*n~ cos2 fl cos2 0,(n* cos fl + n~ cos fl,)’1

+ (e* cos2 fl, + e“ cos2 fl + n*n‘ cos fl cos fl,)(« cos fl + n* cos

Tf = 7^(</)[l - (co/c)2a2(n cos fl -n* cos fl,)2

-2(e*-e-)2r2a2 sin2 fl

x (n- cos3 0y'(n* cos fl,)’3(n“ cos fl + n* cos fl,)’1

x {2n*n~ cos2 fl cos2 fl,(n4 cos fl + n~ cos fl,)’1

+ (e* cos2 0, + e“ cos2 fl + n*n~ cos fl cos #,)(«’ cos fl + n* cos fl,)’1}],

(2.13)



(2.18)
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Here Rs and Rp are the reflectances of the film for s- and p-polarized light, 
which are expressed in terms of the reflectances R°t(d) and Rp(d) of a plane 
parallel film of the same material with thickness d (the average film thickness), 
and contributions due to surface roughness. The same is done for the trans- 
mittances Ts and Tp and the ellipsometric coefficient r = rp/rs, where rp and rs 
are the amplitudes of p- and s-polarized light (cf. eq. (1.5.23)). The losses of 
energy from the beams Qs and Qp are split up into contributions Q°(d) and 
Qp(d), due to absorption in the film, and contributions due to the loss of energy 
by scattering by the rough surfaces. The functions /. g and h are complicated 
functions of the angles 0 and 0{ and the dielectric constants e" and e+, which 
will not be given here explicitly (see later). The terms with cr2(<u/c)2 in eqs. 
(2.12)—(2.17) have been derived earlier3-7). It is interesting to note that the 
relative reflectivities RJR°s(d) and Rp/Rp(d), as well as the relative trans- 
mittivities TS/7^(J) and Tp/Tp(d), are equal, as long as these terms are only 
considered. Note that in expression (2.18) for the ellipsometric coefficient r the 
term with cr2(co/c)2 is lacking. From'eqs. (2.12)-(2.18) one can see that the long 
correlation length limit leads to a series expansion in terms of the quantity 
(c/a>)2/"2. Therefore a necessary condition for this expansion to hold is / > 
(c/w) = A/2-jt. In refs. 3 and 7 an alternative condition was given, namely 
4irrc cos 0] A, where rc denotes the radius of curvature and 0X is the angle 
between the local normal and the direction of the incident beam. For very 
smooth surfaces 0X is approximately equal to the angle of incidence, and the 
average magnitude of the radius of curvature is roughly /2/<r. It follows that for 
small surface roughness (i.e. a < A/2ir) this condition is not stringent enough, 
since it also allows / « A/2-rr, in which case the above mentioned expansion 
breaks down. As we have seen above I > c/oj = A/2tt, so that in general the 
terms with a2/I2 are much smaller than the terms with <r2(a>/c)2. Experimentally 
it will therefore be very difficult, if possible at all, to detect the effect of the 
(a2/12) terms on the reflectance, transmittance and the energy loss in the film. 
For that reason we have not given the explicit forms of the functions/, g and h. 
(For s-polarized light the a2//2 terms are much simpler, since only the

+ 4c+ cos3 0 cos3 0,(n* cos 0 + n~ cos 0t)2

+ 6 sin2 0(e+zi* cos 0X + en" cos 0)(?i + cos + n cos 0.)

x cos2 0 cos2 0X + (e+)-1 sin4 0[n+n"(e”)2 c°s4 + ^(e cos cos 

+ 4n + n‘ e+e~ cos2 0 cos2 0{ + 3(c+ cos 0,)3 cos 0 + n+n"(e+)2 cos4 0,] 

+ 2(e~ — e+)n + cos 0,(m + cos3 0 + 3n~ cos2 0 cos 0t 

+ 3n+ cos 0 cos2 0X+ n~ cos3 0,)}] .



o,Y2

(2.20)
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r =r0(J)[l-2/"V(c+-€’)«’

x (n* cos 0,)-3(n + cos 0 + n~ cos 0,)"2(n* cos 0 - n~ cos 0,)"

x {2e* cos 0 cos2 0,(n+ cos 0 + n~ cos 0,)(cos2 0 + cos2 0,)

4- sin2 0(n*6- cos2 0(cos2 0 + cos2 0,) + 3n~e~ cos 0 cos 0,

+ n~(e~ + e+) cos 0 cos 0f(cos2 0, - sin2 0) + 2n+(e“ + e+) cos4 0t)}] ■
(2.19)

coefficient ytr contributes.) In expression (2.18) for the ellipsometric coefficient, 
however, the term with a2(aj/c)2 vanishes, so that the relative difference 
[r- r°(J)]/r°(</) of the ellipsometric coefficient of the rough and the flat film is 
proportional to a2/l2. From this difference the <r2//2 term can therefore in 
principle be measured experimentally.

We shall now compare our result (2.18) for the ellipsometric coefficient with 
results obtained previously by Ohlfdal and Lukes4’5). In ref. 4 these authors 
have used the Helmholtz-Kirchhoff integral in order to evaluate the far-away 
electric fields of electromagnetic waves, reflected and scattered by a rough 
surface, from the local electric field on this surface. This local electric field, on 
its turn, is calculated by supposing the validity of the so-called tangent plane 
approximation. In this approximation it is assumed that the local electric field 
on a rough surface may be calculated in every point, by approximating this 
surface in that point by an infinitely flat surface coinciding with the local tangent 
plane and using Fresnel’s laws of reflection and transmission of light. The result 
of Ohlfdal and Lukes4) for identical films, their eq. (34) together with eqs. (45), 
(51)-(54), can be written, up to second order in the average film thickness d 
and the surface roughness a, as

r°(J)[l - 2/’2(t2(6+ - €~)n~ sin2 0 (n + cos 0,)'3(n* cos 0 + n~ cos 

x (n* cos 0 - n~ cos 0,)"1 {2 cos 0(n* cos 0 + n~ cos 0,) 

x (e“ cos2 0 + e+ cos2 0,) cos2 0, + n+€~ cos2 0(cos2 0 + cos2 0,) 

+ 3n~e~ cos 0 cos 0t + n~(e+ + e“) cos 0 cos 0t(cos2 0, — sin2 0) 

+ 2zi*(e+ + e”) cos4 0,}] .

In ref. 5 Ohlfdal and Lukes also use the tangent plane approximation in 
order to calculate the local electromagnetic field on the rough surface, but the 
far-away electromagnetic field is calculated with the help of the so-called 
Stratton-Chu-Silver integral. Their result, eq. (14) of ref. 5, can be written for 
thin films on rough surfaces, up to second order in d and a, as



-1 + 8/ Vn ■(«*)■'. (2.21)

Re r(0B) 0. (2.22)

For a plane substrate, without film, this angle is given by

O'b = arccos{n (c* + e )~l/2}. (2.23)

(2.24)

-(a>/c)dn~ n*e*(e* + €’)'"(«* - e-)-'e"(e+e*|e|'2- 1). (2.25)

For non-absorbing films, eq. (2.24) becomes

(2.26)
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One can immediately see that expression (2.19) cannot be correct, since in 
the case of normal incidence (6 = 0) one would find:

For absorbing films (e" * 0) 
in this expression, so that

instead of the correct value r = -1. Note that eqs. (2.18) and (2.20) do fulfil this 
condition. We therefore only need to compare these two equations. Since both 
are complicated expressions, this will be done only for special angles 0. In fact 
we will examine here how the so-called Brewster angle 0B >s changed by the 
(<r2//2) terms in both expressions, eqs. (2.18) and (2.20). This Brewster angle 
will be defined by the equation

40(B = |(a>/c)2<i2n+n‘e‘(e+- e)(e - e )(e* + e”)"2(e* - e )"' 

x {e*e-(€)-2 - (e* + €-)(€)-’ + 4e>-(e)-'(e+ - e’)'1 

+ 1 - 2(e* + e-)(e‘ - <)"}.

d0g)=-(<u/c)<in-n‘e*(e> + eT’'2(e*-eT'e"(«+<|er2- 1) 

+ (a>/c)2a2„’n e*(e* + TjV - e")*'

x |e'{e4 + e- - 2e*e’(e‘ - e-)’1 - (e* + e’)2(e+ - e’)'1

+ e‘e(e* + e-)|e|-2- 2(etf-)2(e+ - eT'kl"2}

- J(e'2- e"2){l - 2(e+ + e~)(^ - <)'’ + («*<)2kl'4}

- le"2(€* + €-)-'(£* - e-)-'e‘(€‘ - 3e')(e‘<l«l’2- I)2

- J{(e‘ + c )2 + 2e‘e“ - 6(e’ + e - <)-'}] ■

one may neglect in general the second order terms

If a plane parallel film with dielectric constant e = e’ + ie" and thickness d is 
present on top of this substrate, the Brewster angle is changed by the amount



40^ = -/ V(e‘ - «“)(e+ + e”)’1(n'n’e*)“'{(e*)2 + 2(e’)2+ 4e*e’}. (2.27)

AeB = Ae"' + Ae$. (2.28)

(2.29)

Aelr = - l~2a2(n~ n* e*)~'{(e*)2 + 2(e“)2 + 2e+<}. (2.30)

3. The electromagnetic field on the rough surface
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In the previous section we have seen that our calculation of the influence of 
surface roughness on the optical properties leads for the ellipsometric

Let us now compare with the change in Brewster angle, due to surface 
roughness, found from expression (2.20), of Ohlidal and Lukes:

The change of the Brewster angle by the surface roughness follows from eqs.
(2.22) and (2.18):

= -P2a2(^ + e")"2^-/!^*)-1

x {(e+)4 + 4(6*)36" + 3(e+e-)2 + 6e+(e-)3 + 2(e')4} .

We see that this expression differs qualitatively from ours, eq. (2.27), in the 
sense that changes sign, when the light is incident from the substrate into 
the ambient, instead of from the ambient into the substrate, whereas the sign of 
A 6^ remains unaffected under this operation. This is also the case with the 
change in Brewster angle, due to the surface roughness, obtained from the 
incorrect expression (2.19), which angle is given by

The total change of the Brewster angle, due to the film and roughness is, up to 
second order in (a>lc)d and a/l, equal to the sum of the contributions, eqs. 
(2.24) and (2.27):

Now it is in fact this last formula which has been tested experimentally by 
Ohlidal and Lukes4) on rough silicon crystals (covered with a thin SiO2 film). 
Since e* is rather large for Si and e — 1, we find that all expressions, eqs. 
(2.27), (2.29) and (2.30), yield approximately the same result. Their experiment 
is therefore not conclusive for the correctness of their theory.

In the next section we shall show that the difference in results obtained by 
Ohlidal and Lukes4'5) and in the present paper is due to an inconsistency in the 
assumptions made by these authors in order to calculate the local electromag­
netic field on the rough surface.



(3.1)

<A = (4ttR) 1 exp(i«pa>/?/c)exp(-iJt2-r). (3.2)

(3.3)
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coefficient to an equation (cf. eq. (2.27)) that differs from the results obtained 
by Ohlidal and Lukes45) (cf. eqs. (2.29) and (2.30)). We shall now examine the 
origin of this difference. In ref. 4 Ohlidal and Lukes calculate the ellipsometric 
coefficient of a rough surface, or of a system substrate-thin film with rough 
boundaries, using the Helmholtz-Kirchhoff integral*

where R is the distance from P to the origin, situated at the surface. k2 is the 
wave vector of the diffracted light, with length |k,| = npn>/c, and np is the 
refractive index of the medium in which P is situated (i.e. for reflected light 
nP = n~ and for transmitted light nP = n’j.

In ref. 5 the Stratton-Chu-Silver integral was used. Here the electric field at 
P is given by

* In formulae related to the work of Ohlidal and Lukes we shall adopt their notation of capital 
letters for the fields. Otherwise, however, we shall use our convention of denoting fluctuating 
unaveraged fields by lower case letters and bulk fields by capital letters.

a E - (nP) ‘n2 a (n a H)]i/» dS,

where Ep is the electric field of the wave, reflected and diffracted by this 
surface, at a point P, situated inside the Fraunhofer diffraction zone. In eq. 
(3.1) E and dE/Sn are the electric field on the surface and its derivative, normal 
to the surface, whereas is the illuminated part of this surface. The function V' 
is defined by

£<• = / / [E a-~ - <A“-] dS, 
s

with n2 = lt2/|k2| the unit vector in the direction of the diffracted light, n the 
local normal unit vector and E and H the electric and magnetic fields at the 
rough surface.

To calculate Ep, using either eq. (3.1) or eq. (3.3), requires knowledge of the 
electromagnetic field at (in fact just above) the rough surface. The exact form 
of this field is, however, in general unknown, so that one has to make certain 
approximations. A usual assumption, made e g. by Beckmann7) and by Ohlidal 
and Lukes45), is that, in the case the radius of curvature of the rough surface is

£, = i*2A I J [n 
s

<90
dn



F - [(1 + /?s)(a • t)t + (1 - Ap)(a ■ d)d + 27?p(a d)(d ■ n)n]B0 , (3.4)

(3.5)
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much larger than the wavelength of the incident light, one may use the 
so-called tangent plane approximation (Kirchhoff). In this approximation the 
electromagnetic field on the surface is expressed in terms of the local Fresnel 
coefficients 7?s and Rp for s- and p-polarized light (see e.g. ref. 4 eqs. (6) and 
(7)). For the electric field E one so finds:

where a is the unit polarization 
(n, a /i)[l - (n, • n)2]"1/2, d = 7if a t, with 
incident wave (see ref. 5).

In our theory we have consistently taken into account all contributions up till 
second order in the film thickness d and the root mean square value a of the 
surface roughness over the wavelength A and the correlation length /. The long 
correlation length limit (see section 2) was also considered by Ohlidal and 
Lukes4-5). We therefore expect that the tangent plane approximation is the 
cause of the difference between eqs. (2.29) and (2.30), obtained by Ohlidal and 
Lukes, and our equation (2.27). We have the possibility to verify this, because 
in paper I, eq. (3.18), we have found a general expression for the electromag­
netic fields nc = (ex, er dz) and nm = (hx, hy, bx), valid up to second order in d/A 
and cr/A:

nc = 7V*0>- Ko • p'S(z) + Lo ■ m 7>(z),

nm = <°> - L ■ (1 - ■ Ko) • p'S(z) - (K + L ■ & ■ Lo) • m s6 (z).

vector of the incident light Eo, t — 
i zij the unit vector in the direction of the

Here and are the fields that would be present in space in the absence 
of surface roughness and film, i.e. in the case of a perfect flat substrate. The 
propagators Ko and Lo are given by eqs. (1.3.19) in terms of the propagators K 
and L, which are defined by eqs. (1.3.10) and (1.3.11), together with eq. (1.3.7); 
£o is given by eq. (1.3.15). In eq. (3.5) K0-ps8(z) is a short-hand notation for 
f *o(F|, z» zlri> z» l')‘Ps(rj, t)8(z') dr'ndz' dr' in coordinate representation, etc. 
The surface polarization and magnetization densities ps(ri|, an^ /n (rii’/) are 
given by eq. (1.2.27). Eq. (3.5) gives the correct electromagnetic fields every­
where in space, except in the region where min[/^(F||), 0] < z </+(Fy) (see fig. 1: 
shaded area). This is a consequence of the fact that p* and ms were constructed 
by analytic extension of the electromagnetic fields from the surfaces /±(f|) 10 
the plane z = 0. With eq. (3.5) we can therefore evaluate the electromagnetic 
field, up to second order in d/X and cr/A, on the upper surface of the shaded 
region in fig. 1, more precisely, on z = 0, if /“(r^cO, and on z = -0, if
f (rj)> 0. By analytic extension (see below) we then easily find also the field on 
z - /"(ry) - 0, if /"(rj) > 0. Substituting the electromagnetic fields on z =



ambient

<(%)

fi Im

(3.6)/■(rh) = /’(ry)-d.

(3.7)
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Using this relation in eqs. (1.2.23)—(1.2.27) the expressions for the polarization 
and magnetization densities simplify considerably, after application of the 
boundary conditions (1.2.15). Omitting terms with the average film thickness d, 
and replacing /“(ry) by one obtains

substrate
I

tz
Fig. 1. Cross section of a thin film on a rough surface.

where n" and n"m are the fields on both sides (i/ = + or -) of the plane z - 0 
(see paper I) and where the susceptibilities are given by

(7<

1

at

f”(*j)-0, calculated in this way. into the right-hand side of the Helmholtz- 
Kirchhoff integral, eq. (3.1), or the Stratton-Chu-Silver integral, eq. (3.3), one 
finds the correct second order expression for the electric field Ep at an arbitrary 
point P in the ambient. We will follow this procedure in the next section to 
calculate the reflected amplitude in the case of s-polarized light. It is found that 
the results, obtained from the Helmholtz-Kirchhoff integral and the Stratton- 
Chu-Silver integral, are identical to those obtained by the method of section 2. 
The extension to the more complicated case of p-polarized light is straightfor­
ward but, since the calculations are lengthy and the results again identical to 
those obtained in section 2, this will not be given here.

For the identical film the upper and lower surface are related by



0
(3.8)

0

| «7V,) (3.9}

(3.11)

(3.12)
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1
0
0

0
0
0

for
/")•

0
-1

0

0
0 

-1/e”
0
0

notation 
z"=0,

(fl

(3.10)

a short-hand 
z' = SO,

where Ko ■ ■ n ' is a short-hand notation for f Ko(r0, z, r|rj, z' = 0,t')-
€b>P(ri) ‘ nc(ri’ r) drt dretc. Up to second order in f one may now replace and 
n“c by N^“ and TV'0”, respectively, in the third and fourth term at the right-hand 
side of eq. (3.10), because is already of second order (cf. eq. (3.9)). Up to first 
order in f one obtains from eq. (3.10):

where Ko • • Ko ■ S„ ■ N?' is
J K0(ri, z, r|r;, z' = 0, /') • S„. (rj) • K^,

which may be used to replace n" in the second term at the right-hand side of 
eq. (3.10). In this way one obtains, correct up to second order in f, for eq. 
(3.10):

„e = Nf>-Ko-Z SL’’- ‘ 2V'°” + Ko • 2 J'1”' • Ko ■ S J • /V<°”

-'£^” + z.0.Sg!,2”-c-'£/v<->”.

Note that eqs. (3.7)-(3.9) are identical with eqs. (4.6) and (4.7) of ref. 8 for a 
rough surface without a film. We have not given the mixed terms, with both d 
and /, since these vanish upon averaging and therefore do not contribute to the 
reflection amplitudes. The terms with only d will lead to a contribution of the 
average film thickness on the amplitudes. The omission of these terms is 
motivated by the fact that we are here only interested in the influence of 
surface roughness on the electromagnetic field. (Note that in section 2 there 
was no ambiguity in the value of A6q found by Ohlidal and Lukes45) and by us. 
It was the value of 40^ which was different in the various methods.)

Substituting eq. (3.7) into eq. (3.5) for the ne field, one finds

nc = N™ - S Ko • «<■” • < - S K„ ■ • c- | „
p >> fft



(3.13)

(3.14)

(3.15)

and

i(Al-r-wf)

(3.16)for z > 0 ,

(3.17)

Therefore the first term at the right-hand side of eq. (3.12) is given by

(3.18)

(3.19)
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We choose for the plane of incidence the x-z plane. For s-polarized light the 
incident fields are then given by

S, Sb*’ (ri) • N'01' (r'|, t") drj dr' dr J dr". For convenience we shall denote the five 
terms on the right-hand side of eq. (3.12) by n*° (r = 1, 2, 3, 4, 5), so that

where k, = n (w/c)(sin 0, 0, cos 0). The fields reflected and transmitted by the 
flat interface are given by

where k, = n'(w/c)(sin 0, 0, -cos 0), k, = n*(o>/c)(sin 8,, 0, cos 8,) and where r° 
and r° are the Fresnel amplitudes

This expression is, of course, also valid for z =
In the other terms at the right-hand side of eq. (3.12) the fields at z = ±0 are 

appearing. Using eqs. (3.14)—(3.17) we find

E,(r, r) = r°(0, 1,0) e

B,(r, t) = n r°(cos 0, 0, sin 0) e

j.0 gi(*rT-

r° = (n~ cos 0 - n* cos 8,)(n cos 0 + n* cos 0,) 1, 

r° = 2n~ cos 8(n~ cos 0 + n* cos ft)*1.

{•> = ^<“>=(0, l.OMe1

N®1* = n(oh = ,o(0j j 0) eK»rn-«) _

= n’r°(-cos 0„ 0, sin 0,) ,

£,(r. r) = rJ(O, 1,0) e

B,(r, t) = n’t0,(-cos 0„ 0, sin ft) e1'*1’*"'1

for z < 0 ,

E,(r, r)= (0, 1,0)
for z < 0 ,

Bi(r, r) = n (-cos ft 0, sin 6)



have also applied Snell's law

(3.20)n sin 6 = n‘ sin 0,.

the right-hand side of eq. (3.12)

0
/(rj) e,(*,’T“,',drjd»’.

0
(3.21)

(3.22)
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/ °
= (e4 - <)/? I K„(r,- rj, z, t - t'\zl = 0) • 1

\ 0

z, o>') = J n®(r,, z, r)e’,<‘l'r-'>dr|dr

x eKM-q--) e-K»rn--'O dr|dl dr, dl,

where Alg — n (<u/c)(sin 0, 0, 0) and where we

+ *o(r|. z, r|rj, z' = 0, r') •

Using eqs. (3.8) and (3.19), the second term at 
can be written explicitly as

x {/('■i)+(n - z)) ■ +|(ri - ri)(ri - ri):

the expansion (3.22). Substituting eq. (3.22) into eq. 
(1.4.19), we find, after partial Fourier transformation.

/(«■;) = /(r,) + (rj - r,) ~/(r|) + ; (rj - r,)(r; - rD): 
dr’ll Z

We do not consider higher order terms in the expansion since these cannot 
contribute to terms proportional to <r2(a>/c)2 or a2H2 in r,. As we shall see 
below, the tangent plane approximation is obtained by omitting the last term in 

(3.21) and using eq.

We first consider the case that f(rt)<0, so that n'2,(r(, z, r) for z = /(f|)-0 is 
simply obtained by substitution of z = f(rt) into the right-hand side of eq- 
(3.21). In order to be able to compare our results with those obtained by means 
of the tangent plane approximation, we also assume that the rough surface is 
very smooth, so that we can expand /(rj) in eq. (3.21) into a Taylor series 
around r.:

d2 
dri <?rn



= (e’-<)/“/ z,Z-r'|z' = 0).

(3.23)

(3.24)

*„(*,, z, <u|z'= 0) = i e"‘I;
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0
1
0

n®(r,0=(e‘-e’)<“[{/(r1)

-4„
A2I
a3,

-4,2
An

An

x Ko(*,. z, <u[z' = 0)1 ■

xK„(*,,z,a>'|z' = 0)-

x <„(*,, z, cu|z' = 0)

-4,3

-423

-433

x j Z('j) + (rj - r„) • /(ry) +1 (r[ - r,)(rj - r,): /(r,)|
* dry z arydru >

x e-i«*l-<-r-i>-~'0-n> e>«»,,-d(rg - rj) d(r - t’) dr; dr'

I <9r,i 2 c?F||<9f"|| dfcydAj|J

.a/(r,) a ia7(r;) a1 ■>
c?F|| <?A(|| 2 dr||d/-||

ei(*iJ-q|-<u7)

A„ = -k'jc^k- + f-ktlY'k]k-2-(o>lc)2(k* + k-y'k2yk~2,

A,2 = -{klk-^k; + e-fci)-' - (ro/c)2^: + k^k^k-2,

The explicit form of the propagator K0(kti, z. <a|z' = 0) for z < 0 is found from 
eq. (B.17). together with eqs. (B.15), (B. 16), (B. 18) and (B. 19)-(B.28) of ref. 9:

. VW
ar,|

/o
1 laUqu-fcnWw-a/)
o'

= (e*-e)r”[!f(r)--i^.^-l^—l
< e 3ri 2 artart' aktdk,f

/ °\
1 j 6(4,|- 4|)6(<u - <u').
0'

Fourier transforming back to the original variables q, z and r one obtains



(3.25)

where

(3.26)

Substitution of eq. (3.25) into eq. (3.24) gives

(3.27)x

*r*n

find after substitution of

, (3.28)

where

(3.29)
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/A, 
e - ct)} I Ay 

'a,

n?(r, t) = i(e* - e)r» |/(r,)

n®(r,z) = («’ - e )<° exp{i(a>/c)(n x sin 6 - n z cos

Carrying out the differentiations with respect to kt. we 
4il= n'(a>/c)(sin 0,0,0), with eq. (3.26),

A12
A22

A 32

df
A. = sin ff(n*)~'(n* cos 8 + n~ cos 8.) — ,

<7y

Ay = -i(<u/c)(rT cos 8 + n* cos 8,y'f(rt)

- sin 0(1 + \(a>!c)zn* cos 0,)(n“ cos 0 + n* cos 0,)"'

x (n+ cos 0 cos 0.)"1 —
ax

A l3 = -e*k-ky(e*k- + e'*})'1,

A2i = - {k*k-(.e*k~ + - (<u/c)2(itl + k-Ly'}kxkyk-2,

A22 = -kyk~(e'k- + (Tkyy'k'k-2 - (a>/c)2(k* + kyy'k2^2,

A23 = -e*k~ky(e*ky + e~k*y',

A3, = -e~kykx(.e*k- + c~k*y',

A32= -e-k*ky(e*k- + e-k*y‘,

A33= -ec-k2(e*k- + <rkyy',

k* = (e*a>2/c2 - k2)'n, k3 = (e~a>2/c2 - fcj)1'2 .

. 8f(r,) 0 1 82f(r,) a2
drB dkt 2 dr^dr^ ’



*.)-

- (1 + i(a>/c)zn* cos 0,)(n

(3.30)

(3.31)

(3.32)

0
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i

+ i(co/c)zn+n cos 0 cos 0t sin2 0)(n + n cos3 0 cos

- |i(c/co)(n*n") ‘{2(n+ cos 0 + n cos

In the above expressions we have omitted terms proportional to d2f/dxdy, since 
such terms will not contribute to the reflection amplitude rs, as we shall see 
below.

The value of n{2\r, t) for z = if /(ru)<0, is obtained from eq. (3.28),
together with eqs. (3.29)—(3.31), by substitution of z = /(ru). It will, however, 
immediately be clear that, since the functions appearing in these equations are 
analytic in z, the above value for f(rn)>0 is found in the same way. The value 
of «?(r, t) on the upper surface of the (identical) film in the ambient (see fig. 1) 
is therefore found by substitution of z = f(r^ into eqs. (3.28)-(3.31).

In an analogous way one can calculate the other terms in the right-hand side 
of eq. (3.12). For the third term we find with eq. (3.13)

a2/ 
cos 0 + n+ cos 0,)-1(cos 0 cos 0t)-1}

- J(/T cos 0 + n* cos 0t)-,[—i(c/aj){e* cos2 0 cos2 0t 

+ sin2 0(e + cos2 0, + c~ cos2 0 + n+n“ cos 0 cos 0,)} 

x (n")"’(n* cos 0 cos fl,)-3 + z(n+ cos 0t + 2n~ cos 0 sin2 0

ne3)(r< 0 =(€*-€ )2/°(rt COS 0 + H+ COS 0{) 'f(r^)

x exp{i(<u/c)(n"x sin 0 — n~z cos 0 — c/)}

x [-(a>/c)2(n cos 0 + n' cos 0,) '/(rn)

- j(n*n“)“'{2(n4 cos 0 + n cos 0,)’1
, d2f- (n cos 0 + n cos 0.) (cos 0 cos 0.) } —;

0y
+ cos2 0 cos2 0, + sin2 0(e* cos2 0, + e" cos2 0

+ n’n' cos 0 cos 0,)}(n“ cos 0 + n* cos 0,)“'

02fi Z°\
X («-)-'(«* cos 0 cos 0,)-’—L2 1 ,

0x J \ /\o/

Az = -n~ cos 0t(n* cos 0 + n cos 0.)"' —
<9y



(3.33)

£„(*,, z, o»|z'= 0) = i(a»/c) e"1*1'

I

(3.34)

With this expression we find

f),(n cos s + n" cos 0,y'

(3.35)x
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where we have neglected all derivatives of second order terms, since they will 
not contribute to r,. In the same way one has

ZO \ 
/2(r|) exp{i(<u/c)(n"x sin 6 - n~z cos 0 - cz)} I I I .

\ o'

"®(r,z) = j(cu/c)2(e* - * )t°n* cos

From eqs. (3.13), (3.18), (3.28}-(3.31), (3.32), (3.33) and (3.35) we finally 
obtain the following second order expression for the electric field at the 
ambient side of the rough surface of an identical film:

&\2

®2I ®22 ®23 I •
^32 B»

B„ = -{*!(*: + *!)-■ - e*k-(ek- + (-ky'}k,kyk~2.

B,2 = -k{(.k* + k-y'k2yk~2-e*k-(^k-2 + e k{Y'k2k~2, 

B,3 =-ky(k* + <)-,

B2, = k*(k* + k-y'k2k-2 + e*k-(e*k- + ek'y'k2  ̂2, 

Bn = {*!(*! + k-y' - ewk~ + e~k\)-'}kykyk-2. 

bb‘W3 + k-y',

B}1 = e*e~ky(e*k~ + e~k*y',

B32 = -e*e~k,(e*k~ + e~k2y', 

b33 = o.

* cos 0,(n cos 8 + n‘ cos fl,)"1

/°
x f2(rt) exp{i(ai/c)(n"x sin fl - n~z cos 0 - cr)} I 1

\o

For the fifth term at the right-hand side of eq. (3.12) we need the explicit form 
of the propagator Lo. eq. (1.3.19). In appendix A we find, for z <0,



= exp{i(a>/c)(,rx sin 0 - n z cos 0 - cz)} (3.36)

with

-(**“« )»°sin 0(n*) '(n*cos0+n (3.37)

n

(3.38)
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Or./)=f
n*?,(r,0 '
O, 0 

(<)-'„« (r, t).

A'y •
A'J

- i(c/a>)(e* - e ) cos 

x {2(n * cos 0 + n “

+ 2n cos 0 sin2 0 + i(<o/c)zn*n

x (n cos0 + n*cos

-((*-€ )!cos8(n‘) '(it cos 0 + n* cos 0,)2

x {2(n* cos 0 + n~ cos 0,)“‘ - (n“ cos 0 + n* cos 0,)“'

d2f
x (cos 0 cos 0,)■'}/(r,) —2

+ (e* - e’)2{e‘ cos2 0 cos2 0C + sin2 0(e* cos2 0, + e~ cos2 0

+ n*n~ cos 0 cos 0,)}(n" cos 0 + n* cos 0,)“3(cos 0)“2

02fx(n‘cos 0,)-7(r,)^,

cos©,)'1^,

0y

A'r = cxp{2i(<u/c)»i~z cos 0}+ r“{l + 2i(w/c)n~ cos 0f(rt)

- 2(a>/c)2e~ cos2 0 /2(r()} - 2(.et - e )n~ sin 0(n* cos 0,)"1

* 0/0,) 2(1 + \(a>/c)zn cos 0,) — 
dx

0(n*)~'(n~ cos 0 + n+ cos 0,)”'

cos 0,)“' — (1 + i(<o/c)zn* cos 0,)

02f
x (n‘ cos 0 + n* cos 0,)''(cos 0 cos 0.) '} —;

~ (e* - «")(«“ cos 0 + zi* cos 0,)’2(n‘ cos2 0 cos3 0,)-1

x [-i(c/<u)(e*)''{e‘ cos2 0 cos2 0, + sin2 0(6* cos2 0,

+ e" cos2 0 + n*n~ cos 0 cos 0,)} + z cos2 0,(n* cos 0,

, 02f
cos 0 cos 0, sin 0)] yj



(3.39)

(3.40)

with

(3.41)

A"y

(3.42)

(3.43)
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where z = fir,). The above expression for the electric field will be used in the 
next section for the evaluation of the Helmholtz-Kirchhoff and Stratton-Chu- 
Silver integrals.

In order to compare the electric field obtained above with that found by 
means of the tangent plane approximation we substitute z = f(rt) into eqs. 
(3.36)-(3.39). One then obtains

/A;\ 
e 0= r°exp{i(a>/c)(n‘x sin 6 + n~f cos 8 - cr)} I A" I ,

\a;/

)t° cos

+ y(e‘- e“)2 sin2 6(n* cos

0,(n ) '(/i*cos0 + zt cosA' = —(e* — «

af 28 cos 8,Y2 (n~ cos 0 + n' cos 0,)“2(—) ■

, <5/ 
a’ ay

A" = -(e*- e ) cos 0,(n ) '(n* cos 8 + n cos 8,) ' — .
8y

A"=(e* —e )sin 8(n*y'(n* cos 8 + n cos 8,) ' —
8y

df
1 - (e* - e~) sin 8(n~ cos 8 + n* cos 8.)~' (n* cos 8 cos 0.)'1 — 

dx

+ (f* — e“)cos 0,(n )~'(n* cos 8 + n cos 8.) 1 )
\dy/

Note that in eq. (3.40) exp{i(<u/c)n~f cos 0} appears, instead of 
exp{-i(a>/c)n"/c°s 0} which would follow from direct substitution of z = f(rt) 
into eq. (3.36). We have furthermore replaced f(a2fldx2) by -(aflax)2 and 
/(02//0y2) by — (df/dy)2 in the derivation of the above equations, omitting the 
differences a(fafl8x)ldx and a(fdflay)/dy which again do not contribute to r, 
(see below).

In order to calculate the electric field, as given by the tangent plane 
approximation, we must make the following substitutions in eq. (3.4) (see ref. 
10):



n =

=(-
<>y'

d

2

(3.45)E (r|./('■))■ <) = exp{i(w/c)(zi x sin 8 + n'/cos 8 - c/)}

where A" and A"

- n («" cos 8 + n* cos 8,) '} (n*n

(3.46)
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I

Substituting these second order expressions into the right-hand side of eq. (3.4), 
we find

(3.44)

2-

A"y 
a-; 
■Ay

= (cose

/8f\2 
cos 0 — I ,

\8y/

are given respectively by eqs. (3.41) and (3.43), whereas

5/ i 
cos ip = n • n. = cos 8 - sin 8------? cos 8

8x

COS(P, = (n*)~’(f‘ - e“ + e“ cos2 <p')'n ,

Ea = exp{i(cu/c)(n'x sin 6 + n f cos 8 — c/)}o .

a = (0, 1,0),

i1+O+© 1 ("S’S1
ax' 8y' 2\dx/ 2\dy//’

nl = (sin 8, 0, cos 8),

A" = 1 - (r* - e■) sin 8(n cos 6 + n* cos 8,) 1 (n* cos 8 cos fl,) — 
OX

+ j(e+ - e~){2 cos 0t(n cos + ,,+ cos ^t)(zl+ cos + n~ cos ^i) ' cose')"©
- |(e+ - e~)(n+ cos 0 + 2n~ cos 0t sin2 0)

x (n~ cos 0 + n* cos 0t)-,(€+ cos 0 cos3 0()"’ (■”) •

^(cos9(sine)-‘J,-l+Ksine)-’@V-^)l

-1cos 0(sin ' (s’n ~s’n + l(s’n 0)”' ’

= (ZI cos ip - n* cos ip,)(n cos ip + n* cos y,) 1, 

(n* cos <p - n~ cos p,)(n‘ cos <p + n' cos ip,)-1 .

Ux/ 2



(3.47)

. (3.48)

whereas with eqs. (3.45), (3.46), (3.41) and (3.43) we find
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0 
1
0

x (n*n~ cos 0,)-'(n + cos 0 + n ’ cos

component of that field. As we 
tangent plane approximation 
the expansion

(£’ exp{i(a>/c)nf cos 3}) = |1 - 2(a>/c)2e cos2 fl(/2) + !(f’ - €-) 

x [cos fl,(2c4 cos2 ff, + 2e~ cos2 6 - e ) + cos f)n*n~(4 cos2 6,- 1)]

(e exp{i(a>/c)n-/ cos 0}) = { 1 - 2(<u/c)2e- cos2 3{f2) + j(e* - e") 

x [n*n“ cos fl - (c- - 2e*)cos fl,) (n- cos fl + n* cos fl,)-1

x (2 cos2 fl, sin2 fl + cos2 fl)(n- cos fl + n’ cos fl,)-1

/('■i) = /('-1) + (r;-r,)-^-/(r,).

In appendix B we demonstrate that, if we use this expansion and consistent^ 
neglect all terms with second and higher derivatives of f, we find an expression 
for the electric field identical to eq. (3.45). Comparing eqs. (3.45) and (3.40). or 
rather eqs. (3.46) and (3.42), one sees that the electric field on the rough 
surface, as given by the tangent plane approximation, is equal to the rigorous 
second order electric field except for the terms proportional to (dfldx)' and 
(df/dy)2. From the previous arguments it will be clear that this difference is a 
direct consequence of the neglect of surface curvature. One can easily demon­
strate that the neglected terms do contribute to the reflection amplitude rs by 
examining (e(r, t) exp{ - i(w/c)n"(x sin 0 - /cos 0)}), which is proporational to 
the first term in the Helmholtz-Kirchhoff integral, eq. (3.1). Using eqs. (3.36)- 
(3.39) we find

x (zCn cos0,)‘’(m cos 0 + n+ cos 0t)~'(n + cos 0 + n~ cos

As we see the y-component of the electric field in the tangent plane 
approximation is in second order different from our expression for the y- 

have already mentioned (after eq. (3.22)). the 
can be obtained by using, instead of eq. (3.22).

X (n* cos2 fl cos3 fl,)-'((^) )p?exp{i(<u/c)n-x sin fl}e-1"'



(3.49)
0

(3.50)

O-O- ('X)’)

4. The far field
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In the above derivations use has been made of the following relations, which 
follow by differentiation of (/> = 0 and </2) = const, with respect to x and y 
and from isotropy in the x-y plane:

8, sin2 8)(n cos 8 + n* cos 0,) 1

0'

allowed to omit terms proportional to 
to replace f(d2fldx2) and

cos 6 + 2n cos
2 /0\

cos 6 cos3 exp{i(cu/c)n"x sin 0}e“,w' I 1 i

A Vo/

It is evident from eq. (3.50) why it was
d2fldxdy in the above calculations of the fields, and 
/(d!//dy2) by —(df/dx)2 and ~(df!<?y)2, respectively.

The terms with {(dfldx)2) and ((df/dy)2) in eqs. (3.48) and (3.49) are clearly 
different. It follows that, even for very smooth surfaces, the curvature may not 
be neglected in a second order calculation of the electromagnetic field. There­
fore it is not surprising that, using the incomplete field on the surface, as given 
by the tangent plane approximation, one finds results with the Helmholtz- 
Kirchhoff and the Stratton-Chu-Silver integral that are different from ours.

In the next section we shall prove that, using the correct second order 
expressions (3.36)-(3.39) in the Helmholtz-Kirchhoff integral, eq. (3.1), and in 
the Stratton-Chu-Silver integral, eq. (3.3), one finds in both cases the same 
values for r, and R, = |r,|2 as obtained in section 2 (eq. (2.12)).

' a2f\ —^-) = 0, 
\dxdy!

In this section we will calculate the reflection amplitude rt using the Helm­
holtz-Kirchhoff and Stratton-Chu-Silver integrals. In fact, now that we have 
derived the explicit expression for the electric field on the rough surface, eqs.



Ep

(4.1)

given by

1/2

(4.2)

(4.3)
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-df/dx
— df/dy

1

- df/dx
-df/dy

1

d 
dr

d 
dr

(4tt7?)'’e“'“ J J 
s

a;
A',1

(3.36)-(3.39), the evaluation of these integrals is straightforward. Therefore we 
will not give these calculations in every detail. First we consider the Helm­
holtz-Kirchhoff integral, eq. (3.1). Using eqs. (3.2), (3.36) and (3.44) one finds 
in the direction of specular reflection:

(Ep) = - (4ttR)~1 ein~Mc*

dx dy,

2=f(q)

where we have also used that the surface elements are

<Ep ,) = - i(w/c)n’ cos 0L2(2TrR)-'r° e‘"'<-'c)* e’,“' | 1 - 2(a>/c)2e~ cos2 S(f2)

- (e+ - €~) cos 0(n+)-,{2(n + cos 0 + n~ cos 0,)'*

2i(a>/c)n~ (cos 0 + — sin 0 
dx

I df2i(a)/c)n (cos 0 + —sin 0 
\ dx

where L is the linear dimension of the illuminated area.
Let us first consider the x- and z-components of the far field (EP). From eqs. 

(3.37) and (3.39) one sees that both A'x and A’z are proportional to df/dy. The 
only non-vanishing contributions are therefore of the form (df/dy)2, as follows 
from the relations (3.50). One easily verifies, however, that no such terms will 
appear in eq. (4.3). It follows that the x- and z-component of (EP) are equal to 
zero.

To find the y-component of (EP) we substitute A'y, eq. (3.38), into eq. (4.3). 
After some algebra one finds

= dx dy l + i(—) + j(—) .
t \dx/ \dy/ J

In order to calculate r, one must average the field Ep. One then obtains

e‘“'L2 /

o >\ A'J J



(4.4)

(4.5)

4-(e* cos2 0,4-6 cos2 6 4- n'n
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\
I

/0
,( 1

\0

where we have also used the fact that the point P is situated in the direction of 
specular reflection. This expression for the field is in agreement with eq. (1.5.2), 
except for the factor i(<u/c)n" cos 0L2(2ttR)’1 in eq. (4.5). The usual way to 
overcome this difficulty is to compare the obtained field with that reflected by 
the flat surface, see e.g. ref. 7. One so finds

To calculate the far field with the Stratton-Chu-Silver integral, eq. (3.3), one 
requires the explicit form of the magnetic field H at the rough surface. This 
field is most easily obtained from the electric field E, eqs. (3.36)-(3.39), by. 
applying Maxwell’s equation (d/dr) a E = i(<u/c)B. Having thus found the mag­
netic field, the evaluation of the Stratton-Chu-Silver integral is mathematically 
very similar to that of the Helmholtz-Kirchhoff integral; for that reason we do

- (n~ cos 0 4- n + cos 0,) ‘(cos 0 cos 0,) )

4- (c+ - €~){e* cos2 0 cos2 0, 4- sin2 0(e+ cos2 0,

4- e" cos2 0 4- n*n~ cos 0 cos 0,)}(n” cos 0 4- n+ cos 0,)-1

x (n* cos 0,)’’(cos e))] •

cos 9 cos 0,)(n cos 9 + n* cos 0,) ’}).
(4.6)

x [ 1 - 2e’(a>/c)2<r2 cos2 9 + 2(e* - e~)r2a2 sin2 9

x cos’2 9(n' cos 0,)’’{2n‘n’ cos2 9 cos2 0,

x (n* cos 0 + n~ cos 0,)’1 + (t* cos2 0, + e“ cos2 0 
+ n*n~ cos 9 cos 0,)(n“ cos 0 + n* cos 0,)“'}],

r,~ r°[l - 2e’(a>/c)2<r2 cos2 0 + 2(e* - e')/ 2a2 sin2 0

x cos’2 0(n* cos 0,)’3{2m'n cos2 0 cos2 0,(n‘ cos 9 + n~ cos 0,)’1

(£p(r))= - i(w/c)n-cos 0L\2-nR)“1 r°

We now substitute </2) = <z2 and ((0//0x)2) = <(0//0y)2> = 2a2//2. which follows 
by evaluating -a2S(r)/dx2\,.o, where the correlation function is given by eqs. 
(2.2) and (2.4). We finally obtain



(4.7)

5. Discussion
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»,)-’})•
(4.8)

not give the explicit calculation here. The final expression for the far away field 
one obtains is identical to eq. (4.5). Also the corresponding expression for 

the amplitude rt is therefore identical to eq. (4.6). We want to stress that it is by 
no means obvious that these two integrals should lead to the same result, since 
the terms that appear in the calculation of these integrals are quite different. 
Whereas in the Helmholtz-Kirchhoff integral (EP y) is determined solely by A'f, 
one finds that in the Stratton-Chu-Silver integral also terms originating from 
A'x and A' contribute to (Ep y).

We will now apply the method of section 2 to the calculation of the reflection 
amplitude r$, in order to be able to compare the results. According to eq 
(1.5.19) we have

A major conclusion to be drawn from this paper is that the tangent plane 
approximation, though intuitively appealing, cannot lead to correct results for 
the reflection and transmission amplitudes. Our objection against the tangent 
plane approximation is based on the simple equations ((dfldx)2} = - (fd2fldx2) 
and ((df/dy)2) = - {fd2f/dy2)> which hold for illuminated surfaces of which the 
linear dimension is much larger than the correlation length. These relations

r, = rj{l + 2i(Wc)yJ)n (c - e+) 1 cos 0

+ 4(&/c)2rMn~n*(€~ — e*)'1 cos 0 cos 0,},

r, = r°[l - 2e"(a»/c)2cr2 cos2 0 + 2(e+ - €')/"2cr2 sin2 0

x cos-2 0(n‘ cos 0ty3{2n*n~ cos2 0 cos2 0t(n + cos 0 + n~ cos

+ (e+ cos2 0, + cos2 0 + cos 0 cos 0l)(n~ cos 0 + n* cos

since we consider here only the influence of surface roughness. Substituting the 
expressions found in section 2 for the coefficients and r(c), eqs. (2.8) and 
(2.11), one finds

which is identical to eq. (4.6). Thus we have demonstrated the equivalency of 
the different methods. On the other hand, when we consider the length and 
intricacy of the calculations, the advantage of using our method of the 
constitutive coefficients instead of the Helmholtz-Kirchhoff or Stratton-Chu- 
Silver integral is obvious.



0/}>

I

2i(o»/c)?» cos 0((d//dx)2 exp{2i(cu/c)n cos 

= ~{d2fldx2 exp{2i(w/c)n" cos 0 f}) •

An interesting point to observe is that in the analysis of Ohlidal and Lukes4,5) 
the Helmholtz-Kirchhoff integral and the Stratton-Chu-Silver integral lead to 
different results, whereas we find that the integrals lead to identical results. In 
principle both integrals give exact results when the field is exactly known over 
the whole surface. Since this is in general not the case one can obtain an 
approximate solution by calculating the field in the directly illuminated area, 
neglecting the secondary field on the remaining part of the surface. In this 
approximation the Stratton-Chu-Silver integral will lead to better results than 
the Helmholtz-Kirchhoff integral, since it compensates the discontinuity in the 
field by charge densities on the contour of the irradiated area11). The Stratton- 
Chu-Silver integral can be expressed in the Helmholtz-Kirchhoff integral with 
additional contour integrals, see eq. (8.15.30) of ref. 11. Now for illuminated 
surfaces of which the linear dimension is much larger than the wavelength of 
light the contribution of these contour integrals to the reflection and trans­
mission amplitudes is negligible compared with the surface integral. One 
should therefore expect that the two integrals give the same result. The remark 
of Ohlidal and Lukes5), when discussing the difference in their results, that the 
expression for the ellipsometric coefficient obtained with the Stratton-Chu- 
Silver integral is more general than that obtained with the Helmholtz-Kirch­
hoff integral seems therefore out of place. The difference in results indicates 
an inconsistency in their approach. In this connection we also want to point 
once more at the wrong result, obtained by Ohlidal and Lukes ) with the 
Helmholtz-Kirchhoff integral, that the ellipsometric coefficient for normally 
incident light is not equal to -1 (see also eq. (2.21) of the present paper).

We have demonstrated in section 4 that the two integrals both lead to the 
same result as obtained with our method of the constitutive coefficients in 
Section 2. The advantage of using the latter method is clear, when one 
considers its simplicity in contrast to the long and complicated calculation of
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demonstrate that the curvature terms with d2fldx2 and d2fldy2 are just as 
important in the local field as the terms with (d//dx)2 and (d/7<9y)2. Therefore 
even for rough surfaces where the radius of curvature is extremely large one 
may not neglect the curvature terms. Since in the tangent plane approximation 
these terms are neglected one can expect to obtain correctly only the (/2)/A 
terms in the reflection and transmission amplitudes, which are almost trivial. 
The above argument was given for the case of small surface roughness 
(o-<A/2'tt). It is easily extended to the case of moderately rough surfaces 
(tr^A/Zir) by using the relation



Appendix A

K0=(l + K-^y'-K, (A.l)LQ=(l + K-&)-'-L,

from which one immediately obtains the relation

L0=K0/C’L. (A.2)

Using the expressions for the propagators K and L in k, co representation, eqs.
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The construction of the propagator Lo

In this appendix we shall derive the explicit expression for the propagator Lo. 
To this end it is most convenient to express Lo in terms of the propagator Ko, 
which was explicitly constructed in appendix B of ref. 9. We start with the 
definitions of these two propagators, eq. (1.3.19),

the local electromagnetic field on the rough surface, necessary for the evalua­
tion of the integrals. This basic simplicity allows one to extend the analysis to 
more complicated systems without difficulty. One can study films where the 
four correlation functions of the upper and lower surface are no longer equal 
and where the substrate is absorbing. One can also, in principle, evaluate the 
next term in the expression for the coefficients, proportional to a2(c/a>)2/’4.

An advantage of the approach with the tangent plane approximation is that 
it allows one to study surfaces which are moderately rough (a < A/2tt). whereas 
our theory is restricted to small surface roughness (a « A/2tt). Since the two 
conditions a < A/2tt and A/2ir<^ / in our theory will be limiting to the practical 
applications of the theory (how stringent these conditions are in practice will 
also depend on the different dielectric constants), one would prefer to extend 
our theory to moderate surface roughness. This would, however, require a 
reformulation of the theory, since the surface polarization and magnetization 
densities ps and can no longer be constructed by analytic extension of the 
electromagnetic fields to the plane z = 0. One possibility would be to define 
these densities with respect to local planes in surface areas large compared with 
the wavelength and small compared with the correlation length.



(1.3.10), (1.3.11) and (1.3.7), we obtain after some calculation

(A.3)t04, w) = (c/ai')kf 2K0(k, a>) •

one-dimensional Fourier

dz"K0(kl, z.

where we have introduced the matrices

(A.5)A =

and

(A.6)8 =

(A.7)
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0
0

-k2k, 
k,krk,

a>\z") ■ {8(z"~z')A - \8'(z"~z')BJ,
(A.4)

k\k, \

0 /

k}k>\
■ 

o /

In

-k,kf -k2 0
k2

0

0
0

~(a)/c)2ky (<i)/cYky

where the various quantities in this formula 
(B.28) of ref. 9. Eq. (3.34) follows now s 
by taking the limit z'-»0 (the results for the limits z'->

-k,kyk, 
k2,k,

~(a>lc)2ky (atlcYk,

As already indicated in appendix B of ref. 9 it is more convenient to have these 
propagators in the (*,, z, a>) representation. After a c---------------------
transformation we find

t0(*,. z, wlz') = (c/ru)*-2 2 ^(z^Xz')

z - z', a>) • [4 + k‘ sign(z - z')B]

z + z', o>) • ■ [4 - k [ sign(z + z'~)B]}S(,v - v')

L0(k|, z, <u|z')= (c/at)/^

We can now substitute the expression for the propagator K0(k|, z, a>|z ), which 
is given by eq. (B.17) of ref. 9, but where the coefficients y± and /3~ tn the 
reflection and transmission tensors R* and T~ must be omitted. Thus we find 

the general expression for Lo:

k,ky o
0 0

- k-'z'lk^, <u)• T" • [4 + k~± sign(z - z')B]«(a + p')],

-i are given by eqs. (B.3), (B.15)- 
straightforwardly from this expression 

-0 and z'-»+0 are
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(rl'f(rt< t), r) — t° exp{i(*>/c)(n x sin 8 + / cos 8 — cl)} (B.l)

(B.2)

W'X

(B.3)
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a,
a,

The langent plane approximation

We will prove in this appendix that the electric field

- e‘)2sin2 S(n* cos 6 + n cos

cos e,y2

c<;> = Cf > = 0 ,
C™ = [(e* - e“)2sin2 8(n~ cos 8 + n* cos 8,)~2(n* cos 8 cos 0,)2 

+ (e* - e’)2(e* cos2 8 cos2 8, + sin2 8(e* cos2 0, + e~ cos2 8 

+ n*n' cos 8 cos 0,)}(n“ cos 8 + n* cos 8,)~2(n* cos 8 cos 0,) 3

+ (e* - e")cos 8(n~ cos 8 + n* cos 0,)(n* cos 8 + n~

X (»')'* - (e+ - e“)2{2(n* cos 8 + n~ cos 0,)'1

— (n“ cos 8 + n* cos 0,)-1(cos 8 cos 0,)-'}(n *«")"'

/ df\
x (n~ cos 8 + n* cos 0,)-1] j ,

Cj,4) = - j(e*  e'X€* cos2 8 cos2 0, + sin2 0(e+ cos2 0, 

+ e~ cos2 0 + n*n~ cos 0 cos 0,)}(n‘ cos 0 + n cos 0,)’1

identical, as a consequence of the continuity of the nm-field). and carrying out 
the matrix multiplications.

one obtains using expansion (3.47) is identical to that found with the tangent 
plane approximation, eq. (3.45). As we have seen in section 3 (see text after eq
(3.47) ) we therefore have to demonstrate only that the terms with (0//0x)2 and 
(df/dy)2 in ay are equal to those in A"y, eq. (3.46). Let us denote by a1,'1 
(< = 1,2, 3,4, 5) the contributions of the fields n*'1, eq. (3.13), to ay, and fur­
thermore by Cj," the terms with (df/dx)2 and (af/ay)2 in af. We then obtain, in 
an analogous way as in section 3, from eq. (3.12) in the approximation eq.
(3.47)



2

(B.4)

x (n* cos 0 cos

x (cos 0 cos (B.5)

C, —- e )(n* cos 0 + 2n

(B.6)

identical to those in eq. (3.46).
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statistical theory was 
island films.

developed for the 
Local field

constants 
dielectric

curves
the dielectric 

inter-island

and compared with the experimental 

films was good, if the average of 

substrate and the

In a previous paper 

surface dielectric susceptibilities of 

effects, due to the interaction of 
2)

ON A SUBSTRATE I

to a

on a

parallel to the surface of the substrate, 
images in the substrate were taken into account 
Furthermore the polarizability density auto 
determined for the films, from which 
evaluated, using the 
transmittance curves were

the particles, 
account. The theory was applied to discontinuous gold films 
glass substrate. Using the electron micrographs of the films studied 
experimentally by Norrman, Andersson, Granqvist and Hunderi ^), 
determined the average polarizability of the Islands, assuming that they 

good approximation prolate spheroids with their long axes 
The effects due to the mirror 

in dipole approximation.
correlation functions were 

optical thickness could be 
theory developed in the first paper.

calculated in the optical and infra red region 
The agreement for all

In the present paper we shall study the optical properties 
particles of different shapes, namely truncated spheres on a substrate. 
As in reference 2, the particles are assumed to be much smaller than the 
wavelength of light, so that they can be considered as point dipoles for 
the calculation of the far field, but, in contrast with ref. 2, mirror

average
used
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method to calculate the 
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frequency 
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THE POLARIZABILITY OF A TRUNCATED SPHERE
We

paper 
extend

sphere small compared 
dielectric constant that

general case of a truncated sphere on a substrate 
evaluation of the above mentioned matrix elements is more complicated. 
In a future paper we shall develop a systematic method to perform this

inhomogeneous linear equations for 
derived, where the matrix elements 
Approximate

Since he uses

sphere 
constant e^(w) on

pits in 
section 2 we

i very thin spherical cap on a substrate 
in lowest order the polarizabilities parallel 
are independent of the dielectric constant of

image effects due to the substrate will be taken into account rigorously 
to arbitrary order in the multipole

In reference 4 Berreman has introduced a 
of hemispherical bumps 

a crystal surface. 1 
general 

wavelength 
from those

may differ

the multipole

given in the form of integrals- 
can be obtained by truncating this set- 

Expressions for the resulting polarizabilities of the particle, parallel 
and normal to the surface, and the optical properties for a distribution 
of truncated spheres on the surface are given.

In sections 3 to 5 we shall examine a number of special cases, 
where the integrals can easily be evaluated analytically.
we treat the case of a sphere on (or above) a substrate. This system has 
also been considered by Ruppin Since he uses blspherlcal coordinates 
he finds a set of linear equations which differs from ours, but gives

on a

paper we shall develop a 
calculation analytically.

a set

to the

from ours, 
numerical results. In section 4 we consider 

hemisphere on a substrate. For a particle with dielectric constant equal 
to that of the substrate this is identical to the system considered by 

4). The more general case of a hemispherical particle on a 
treated by Chauvaux and Meessen ^), Finally in 
of a very thin spherical can on a substrate is

truncated
dependent dielectric
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Cross section of a truncated sphere on 
(a) with D>0 and (b) with D<0.

e4

: material 
the two situations

In fig. la we have drawn a

a substrate,

as we

£2

one interchanges 
(particle and 

0 < D < R, as we will
and

may choose

replace the 
dielectric constant 
drawn in fig.
E| and (ambient and substrate) 
substrate). In view of the above 
further proceed to do.

constant ^^(w) and surrounded by an ambient with a dielectric constant 
C|(w) • The surface of the substrate is planar. See also figures la and 
lb for a cross section of the system normal to the substrate and through 
the centre of the sphere. The centre of the sphere is chosen as the 
origin of our coordinate system. The positive z axis is chosen normal to 
the surface in the direction of the substrate. The surface of the 
substrate is given by z=D where | D | <R •

situation where the centre of the sphere 
lies above the substrate (D>0) and in fig. lb the case that the centre 
lies below the substrate (D<0). In the analysis it 

substrate in region 4 by a different
e^(u>) . It is then clear that t 

and lb are in fact identical if

lb the case
is convenient
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Choice of the coordinate system for a truncated sphere 
on a substrate.

the Laplace
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wavelength of the 

become

may
the Laplace equation for the

the particle.
to be homogeneous and

image dipoles 
field due

z

A(p(r) = 0

particle, 
operator). At of the particle and the substrate 
potential and the dielectric constant times the normal derivative of the 
potential must be continuous.

Since the centre of the sphere coincides with the ambient-substrate 
interface only for the special case of a hemispherical particle, we have 
to extend Berreman's method of constructing the potentials. For this 

and multipoles situated in (0,0,2D) to 
surface charge distribution on the 

the potential will be 
introduces a reduced

see fig.
in the

charge 

In view of the fact that 
field L, 

potential 47 = -V/(EQR), where EQ = | EQ | . 

spherical coordinates (p,0,4>) and a 

origin r = p/R = |r|/R . The reduced potential of a homogeneous external 

field Eq = EQ(sin0Q,O,cos0Q) , see also fig. 2, may then be written as 

4> = rcos0cos0Q + rsin0sin0QCOs<t> • A possible constant (and E

compared
the 

unimportant in and around 
Incident field
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(tn = 0,D ,
(2.3)

+ E r 1 {a. .pO(cos0) + B. ,P1.(cos0)cos4>} 
j.l J ij J

+ I U:(V°(r ,cos0) + B' V^.(r,cos0)cos4>} j«l LJ J LJ J

where we

x P®((rcos0 - 2rQ)(r2 - 4rrQcos0 + 4r(

V^(r,cos0) = (r2 - 4rrgCOS0 + 4r(

- n2)m/2 d*4™ 

2*1! dr/4™
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functions:

Independent) contribution to this incident potential has 
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-1/
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associated Legendre functions P™(cos0) in eq. (2.2). The symmetry 
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For the potentials in 
expressions:

terms of the 
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convention of
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contributions to the reduced potential in region 1 due to 
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z. Eqs. (2.10) 

the following
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E1 + e2 

el ~ E2 

E1 + e2
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the boundary 
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vector
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The prime In V™’ denotes differentiation with respect to 
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2(j + m)! 
(2j + l)(j - m) !

1 KF 4'1 “ c3 I? ^3^r“lPk(t)cos'*’

Ckj e2)(2k + 1)

4e36k1 

+ e4)(2k + 1)

no 
order Legendre 
functions
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C3 + E4 -1

+ J dt J d$(e2 57 *2 " e4 If 4'4>r=lPk( 
r0 °

result of 
spherical harmonics. For the 
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orthogonality relations 
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1 K J J
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1 * J J

are defined by
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1 2n
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eq. (2.14) the following set of equations 
multipole coefficients corresponding with the the normal component 
the external field

Eqs. (2.14) and (2.15) hold for k = 0,1,2,3... Upon substitution of the 
potentials, eqs. (2.2), (2.6)-(2.8), into eqs. (2.14) and (2.15) one 
finds that no coupling occurs between contributions containing zeroth 

functions and contributions with first order Legendre 
orthogonality of the corresponding 

do not need equations like 
Using eqs. (2.12), (2.13) and also the 

the associated Legendre functions on
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determine the 
Since we are 

simply discard that 
for k=0 the second 

present in the 
to the 

and the free charge density. The equation for 
to the total free charge in the system. In 

case, where we do not consider free charges and have set 
A10 = 0 * th® e9uatl°n vanishes Identically. We shall therefore use eq.

(2.17) for k = 1,2,3, .... only.

From eq. (2.15) one finds for the coefficients 

parallel component of the external field

The first equation of eq. (2.17) for k=0 should be used to 

unknown quantity 4>^ in terms of the multipole coefficients, 

only Interested In the multipole coefficients we can 

equation for k=0. It is also possible to show that 

equation of eq. (2.17) is redundant. If free charge were 
systen eq. (2.17) would contain additional terms proportional 

oonopole coefficient , 

k=0 would then relate 

the present case, where



(2.20)

(2.18)
can

a we
relations for

cases,

0

(2.21)
0

of

84

0 
ffe

To obtain the relationship between the parallel and normal component 
this tensor and the dipole coefficients 
(la) and (lb) by 
and 6«R, i.e.

pk5

aw1:

46klLkE --F1

'o , . av1
I + l)Pj(t) + <-l)J ,

+ 1)6,

aeI
0

0 
ae
0

4E1e2k(k + l)26k1 
(«! + e2)(2k + 1) 

r°
E1 +,E2 -1 

4E3E4k <k + l)6k1 
(e3 + ^X2k + 1) 
E3(e3 ~ 0

E3 + e4 -{ 
4e26k!

3

I dtPk(t){jPj(t) - (-l)j 
r° 1 1

- (Ej - £2) f dtPk(t)pJ(t) .

Clearly, once the integrals in the matrixelements in eqs. 
and (2.20) have been evaluated the dipole coefficients A^ and 
be obtained in principle. The usual technique is to truncate the set of 
equations at a sufficiently large value, say M, of k and j and to solve 
the finite set of Inhomogeneous linear equations. This yields values for 
the first M multipole coefficients . and which are found to be a 
good approximation if M is sufficiently large compared to j. One simply 
increases M until the value becomes stable within the desired accuracy. 
^or M=32 is usually sufficient, depending somewhat on the dielectric 
constants and r^. In a future paper we shall derive recurrence 

these integrals, with which the matrix elements can be 
evaluated analytically. In this paper, in the following three sections, 
we shall consider some special cases, where these integrals can be 
calculated more easily.

The polarizability tensor of 
flat substrate is given by

in the matrixelements

we replace the particle in figs.
a point dipole situated in (0,0,D-6) with 6 positive 

in the ambient just above the substrate. The dipole

a rotationally symmetric particle on a



is

The

«:• Bu ’

(2.22)’I' A11 •

and if the centre is in the substrate, D<0 (fig- lb),

(2.23)■ - 4«(e12/e2)R3(cos0o) 1All

Using the fact that

(2.24)
‘1

(2.25)
'l

One

(2.26)
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one finds that the polarizability

parallel to the surface of

In D=0. For the polarizability normal to 

one has

continuous
Dz rather than Ez

- Aiu^CsinOg)

■ - 4K£2R3(sln0o) 1BU

strength is chosen such that for 

asymptotically equal to the multipole fields, eqs. 

polarizability is then obtained by dividing this 

external field in the ambient- For the case that 

truncated sphere is in the ambient, D>0 (fig- la)»

lim a®
6+0

- 4it€1R3(cos0o)

£1“2 lim a' - e’2
610 1

lim A..(D) - e, 
DtO

we find

the electric field 

continuous function of D 

surface of the substrate

u(D>

is also a 

dipole in the substrate 

To obtain

divide the dipole strength by the electric i 

the fact that E and E are continuous on 
x y

one may show that a® is a continuous function of 

direction normal to the substrate 

as a consequence one may show that

field of this dipole

(2.2) and (2.6).

dipole strength by the 
the centre of the 

we thus obtain

lim B (D) » e lira B 
IHO 11 2 D+0

a® with respect to 
the substrate is a 

the

lim A (D)
D+0

and as a consequence 
can also place the 
rather than positive.

continuous function of D in D=0.
by choosing 6 negative 

the polarizability one then has to 
field in the substrate- Using 

i the surface of the substrate
6 for 6=0. In the 
is continuous and

r»R the



In fact it is appropriate defineto

and 8.

(2.27)

factor (e^)

0
(2.28)

0

see appendix B of reference 1. Similarly finds for 6<0one

(2.29)

To6=0.6 in

of and
theat

eq.

eq.

low densityone a
ofsystem identical surfacetheone

thethe toare
Forarea
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In a

in a

E 
y

Y - paj = pay

more

normal direction with
If one defines the polarizabilities

correctly. His expression for px , 
pz ’

0
0 
^e
0

fl = (E ,X

0
“lel

then for 6>0 the 
(2.21) by a

susceptibilities with respect to 
polarizabilities per unit surface 
6>0 one thus finds

particle. For 
finds that 
i? field equal 

with respect to this field.

a continuous function ofand in particular is 
obtain the polarizabilities 
substrate Berreman^) 
interface

2e2/(el+ e2)- 
have considered only 

particles

polarizability tensor differs from that given by eq­
in the normal component, so that

the polarizability in the 
respect to the displacement field Dz, see refs. 1 

with respect to

not take the

on ahemispherical bumps and pits 
uses point dipoles located precisely 

between ambient and substrate (6-0). This choice has the 
disadvantage that the distinction between direct and image dipoles is no 
longer clear. As a result Berreman does not take the influence of the 
image dipoles into account correctly. His expression for px , eq. (56), 
must be divided by 2e^/(e^+ and the expression for p_ , eq. (58), 
must be divided by 

So far we



(2.30)

6<0where

surfaceby the

Y •

(2.31)

and

were
with the

and
by

(2.33)tg ■ 23^3050/(3^0030 + n2cos0t - 1 (io/c)y!

(2.34)

t - 2^3030(1 + (o/2c)2e1YPsln20)/{(n2cos0 + r^cos©^

X (1 - (oi/2c)2e1tPsln2e] - l(u/e)Ycos0cos0t
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- 1(w/c)y} ,

(2.32)

pg?
1 ■ rX

1 n
■ riP’i

The parameters

are related

3
1

rg - {n^cos© - n2cos©t + 1 (oj/c)y} / {n^cosO + n2cos0(

3 - pa; - pa;c;

+ l(w/c)n1n2e1Psin^0}/{(n2cos0 + n^cosO^fl

- I(u)/c)ycos0cos0t - l(u)/c)n1n2e1psin20)

*1
to some

tp - {(n2cos0 - n1cos0t)(l - (u>/2c)2e1v3sln20) - l(w/c)YCO30cosSt

with

average distance

and inexpressions for and in terms of 

the surface densities of the particles 

nay identify (e^k^) with the often used optical 

film, see ref. 1.
The amplitudes for the reflected and transmitted s 

polarized electromagnetic fields are given In terms of Y and 0

the dimensionality of an inverse length, 

between the particles. Explicit 

the autocorrelation function of 

derived in reference 2. One 

thickness of the

p is the number of particles per unit of surface area, 

one finds a similar expression. For higher particle densities 

field effects have to be taken into account Such a system ca 

described macroscopically by the following electrical 

susceptibilities:

(u)/2c)2e1Y0sin20)

For

local



- i(u)/c)n1n2e1psin20| (2.35)

and the refractive andindices of ambient

the of

were

term

Thesame

be

3.

acase

substrate. This 1.to
identity

(3.1)

so
are

we

■}%■

DkJ'-
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substrate

of

2 
polarizabilities

2 
2k + 1

of a sphere on
The following

a

(59) must be 

of the

SPHERE ON (OR ABOVE) A SUBSTRATE 

In this section we

2Vj 
2k + 1

+ 61 ~ (fc + J)i 
E1 + E2 k!j!2k+d+1

o-
the right hand side of eqs. 

the special case of a 
coefficients are independent of the 
property to make the convenient choice 
obtain for eq. (2.18):

j 1-m (Z + m)!(j - m)!(2r0/+j+1

which is valid for r < 2r^, is very useful for evaluating the integrals 
on the right hand side of eqs. (2.18) and (2.20). We also know that for 

sphere region 4 disappears, so that the multipole 
of the value of . We can use this 

. Using also eq. (2.16)

term in

shall consider the special 
corresponds to setting rQ equal

Y = Y and 3 = P+ = p. (See also ref. 1).
In ref. 4 Berreman incorrectly used the free dipole propagator to 

calculate the far field, which resulted in the omission of certain 
Fresnel factors in the amplitudes. In eq. (48) of ref. 4 the second tern 
on the r.h.s. must be multiplied by a factor
- 2n^cos0/(n^cos0 + n^cosO^), the second term in eq. 

multiplied by - 2n^cos0t/(n2cos0 + n^cos0 ) and the last
equation must be multiplied by 2n2cos0/(n2cos0 + n^cos0t). 

above mentioned corrections for the polarizabilities must also 
incorporated in these equations.

where n^ and n2 are 
respectively. 0 is the angle of incidence and 0t the angle 
transmittance. These equations were first derived in reference 9 and can 
be obtained from eqs. (3.11) and (3.12) of that reference by putting
Y



FM-

(3.2)V
(2.20):

"kJ- 'kj

kj

(3.3)v-

- £1>k(E1 " e3> (k + j)!2 ) ATj

(3.4)

(3.5)
sln0O6kl
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i (6 
j-1

l6kj

(e2 - e1)k(e1 - 5) (k +
jk (e2 + Ej)((k + 1)E1 + ke3) k!j!2k+3+1

C1 - E3
2e1 + e3

a substrate10^
limit of the

h____ *2 k(k + j)!__________ )
E1 + E2 (k + l)!(j - l)!2j+k+1

{- (j + D6kj
5.____5 k(k 9- j)! 1
E1 + e2 k!j!23+k+1

E1 ' E2 (k + j)!__________ )
E1 + E2 (k + l)!(j - l)!2j+k+1

cosS06kl ’

r (e2 ~ El)k(El ~ e3) _________(k + j)l_________ }B
j-1 M U2 + ‘Pitt + O'! + kE3) (k + l)l(j - l)!23+k+1 13

. E1 * e3

2el + e3

E -Ek 3

2E1

2k + 1

2e,k6. ,

2El6kl

3

{- (j + 1)6, 

3k2(k + 1)6, 

2k + 1 

4El6kl 

3

One can now eliminate the coefficients and 83j, describing the 

potential inside the sphere, by multiplying the first equation of eqs. 

(2.17) and (2.19) by e^k and substracting from this the second equation. 

After rearranging terms we obtain

Similarly we obtain for eq.

2k(k + 1)
" (2k + 1)

2k(k + 1)6. ,
- - ~(2k V IF1

2t^k(k + 1)

(2k + 1)

2e

% - - -

In a recent paper on the light scattering by a sphere on 

these equations have also been obtained as the static



a

(3.6)

(3.7)sineo6ki
where given butas

we andcoefficients A11 B11

(3.8)

sin©.

(3.9)

1 +

90

the distance between 

easily generalize eqs- 

distance D above

___________ (k + j)!
(k + l)!(j - l)!(2r0)'

~ E3>

. - CjHCj - e3) 

+ e1)(2«1 + e3)
’ e3>

COS0Q

Au------
1 +

now rQ

two

k+j+r*Bij

> 1. These 

of two identical 

multipole coefficients 

to the line connecting 

- 1 in 

to the normal

■lAlj

(E1

1 (e2

(E1
+ e3) sin°0 

3 (e2 ~ el)(el ~ e3> 
8 (e2 + El)(2el + e3>

Thus, one finds for the polarizabilities in dipole approximation, using 
eq. (2.22),

B11

we truncate

i <6kj +

(k 4- .1)1 
k!j!(2r0)k+j+1

Tq is given by eq. (2.4) 
equations are very similar to those for 
spheres in a homogeneous external field, 
induced by the component of 
the centres of the spheres 
eq. (3.6), and for the 
component one has to put

In the following we shall restrict ourself 
substrate, eqs. (3.4) and (3.5). If 
at M=1, we obtain the dipole 
approximation

dynamic solution.
Since the quantity 2r^ in eq. (3.1) is just 

the origin of the sphere and its image, one can 
(3.4) and (3.5) to the case of a sphere of radius R 
the substrate. One then obtains

usual, 
a system 

For the 
the field parallel 

one merely has to put (e2~e 
coefficients corresponding 

(e2-ei)/(e2+el) = -1 in eq’ (3*7)* 
to a sphere touching the 

the sets of equations 
in dipole

(e2 - E1)k(E1 - e3)
■2 + E1)((k + l)£r + ks3) 
ei " e3

' 2FX'~+ e3 cosS06kl •

(e2 " E1,k(£1 " e3>
(E2 + cl?(<k + + kejJ
E1 ~ e3 
2e1 + e3
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3 Contours of constant 6. as a function of for a perfectly 
conducting substrate, defining the four regions 6.<1Z, 
lZ<6i<2Z, 2Z<6i<5Z and 6j>5Z.

zr> 
CU 2

fig- 4 Contours of constant 6. as a function of Cor a perfectly 
conducting substrate, defining the four regions 6|<0.5Z, 
O-SZCJjClZ, 1Z<6||<2Z and 6(>2Z.

6|

2

102

2
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Fig. 5

RE (E3)
Fig. 6
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10,

8

6

5 4

21

2

m 
U)

m 
Cl)

2 4
RE (E3)

Contours of constant 6. as a function of e_ for a dielectric 
substrate (e = 3), defining the four regions 6.<1Z, 
1Z<61<2.38Z,Z2.38%<6±<5Z and 6±>5Z. 1

Contours of constant 6 as a function of for a dielectric 
substrate (e_- 3), defining the four regions 6_<0.3Z, 
0.3Z<6| <0.72Z, 0.72Z<6|<1.5Z and Spi.SZ.

0.3°/o < 6N <0.72%



(3.10)

«;<<•>. (3.11)

arethe

(3.12)

ll 'll1 " (3.13)

(3.14)4l,l £

to

theaas

oftheinconstant
aconducting

4. hemispherical
we
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complex

where

and (3.11), 

of

e1(e3 ~ E1)V

E1+L1(e3 - E?
Ei<5 - E1>V

C1 + L|(E3 ’ El>

B11 
account.

HEMISPHERE ON SUBSTRATE

In this section we shall consider

where V is the volume of 

depolarization factors given by

- jKR’

and ( 

(3.4), 

have
eqs-

> 6 we

where and 

follow from 

(3.5), taking all multipoles 

plotted contours of 

dielectric constant

I«(£j)>0 for both a 

dielectric substrate (e^ 

Trom figs. 3 and 4 one 

percent for dielectric particles on a 

The approximation breaks down for metal particles, 

substrate, figs. 5 and 6, the approximation is better.

: particles it is excellent, but even for metal particles not 

resonance the deviation is just a few percent. One also sees 
graphs that the dipole approximation for the parallel polarizability 

roughly a factor 3 better than that for the normal polarizability-

l3 . and L(

are given by eqs.
eq. (2.22) with and 

into

particle, V

1 E2 - Eli

1 E2 - E11
8 e2 + E1

deviates a few 
conducting substrate.

For a dielectric 
For dielectric 

too close to 
from these 

is

the case of a

(3.10) 
the solutions < 

In figs. 3 
constant 6^ |( as a function of 

region of the complex plane 
perfectly conducting substrate (£2 * •) and 

, = 3). We have chosen » 1.
sees that the dipole approximation 

perfectly

Since the dipole approximation for a sphere on a substrate is us 

by several authors, see e.g. references 2, 11 and 12, it is worthwhil 

examining its validity for different values of an<^ e3 ’ ^et us define 

the relative deviation of the exact value from the dipole approxlmati



j

(4.1)

(2.18) can be written as

E1 - Z2- (1 - (-l)j)

Ek - - (1 - -i)R,
1<1

" (1 + (-l)j)FkJ *- e/l + DR^ .

- (1 + (-l)j)%

Hk ’ - (4.2)

<J + 1’Rk?lJ

k = odd

Vij

(4.3)k = even

13elements of

94

Here 0 refers to odd values of j and k and E to even values. The matrix 
in eq. (4.3) are most easily derived from the relation

5 - e2 
e3 + e2

E1 - e2
E1 + e2
E3 ~ e2
E3 + C2

B _/ dtP°(t)P°(t)

\k + h i-2

ElAlk " e2 j^°>1

Using the properties 
multipole coefficients

Dkj " (e3 + e2)(2k + 1)

_______ Ei- 
3e2_________ e2'-’
4elE2(k + D^ki 
(ex + e2)(2k + 1)

4E3E2k6ki
(e3 + e2)(2k + 1) 

2El6kl
3

the functions 
rjp“(cose),

4£l5ki
CkJ ’ (e3 + e*)(2k + 1) 

4E36kj

E3JRkj

E1 + E2 Rkj 

+ (1 -

(k + l)e1(e2 + e 
(2k + 1)(e

particle on a substrate. This case can be obtained by putting Tq = 0 and 
e*-n general formulae eqs. (2.17) - (2.20). Setting first 
rQ = 0 e9s* (2.3) and (2.9) one finds that
Vj(r,cos0) and Wj(r,cos0) reduce to r 1P™(cos0) and

respectively. We will follow Berreman’s procedure and introduce the 
matrix

so that the coefficients in eq.

of the functions one can eliminate the 
and obtain the following equations

:3) + ke3(e1 + e2)
1 - E3)

- I(E1 + e2)6klcos®0
(k + l)(e1 + e2) + k(e2 + e3>

k(2k + l)(ex - e3)

" 2(e1 + E2)Rklco8°0



V (4.4)k * J

Similarly we introduce the matrix

(4.6)

- (i + (-uh

- (1 - (-D3) el<3v

(4.7)

following set of
B3j

(k + l)hBlk - e2 J OkjBu

k = odd
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E1 ~ C2

E1 + E2

(-l)^(k+i~13kl j!______________

(k - j)(k + j + (Jy-)!!2 ’

0
'u = {dtpi<t)pj(t) .

+ 1)Ukj

k = even, j ■ odd.
(4.5)

and are found to be

we obtain theAfter eliminating the coefficients 

equations for the coefficients

+ e3)

’ 2k+j-l

el ’ E2 

^Vk3

£<”>() . 
j-1

4c.c k2(k + 1)6. . e, - e,

SM ’ ’ U3 + e2)(2k + 1) " t1 ' (-1) ) e3 + e2 E3jUkj 

p * 4E26kl ,
Pk 3 ‘ (el " E2)Ukl

and we find for eq. (2.20):

4tlk(k + 1)6kl

+ e2)(2k + 1) '

_ 4e3k(k+l)6k1

M (e3 + e2)(2k + 1)

1^ = --^

4e e k(k + 1)26

-(?7+e2)(2k+l3)

p°(°) -gfo) - p°(0) ^<o) 
k(k + 1) - j(j + 1)

k(k + i)Blk + 5

(k + 1)(e2 + e2) + k(e2

(2k + 1)(C1 - e3)

' 1<E1 + E2)6kl81n0O ’

(k + l)c1(e2 + e3) + kt3(e1 + e2)

(2k + 1)(E1 - e3)

y(E),

j-2



(4.8)

U*j '

dP1,

■ (4.10)k * j

5.

are

e2<

the usefulIt is to

(5.1)

so

we use

(-1)
(5.2)(m - 0,1)

eq-
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Together with the orthogonality relations 
eq. (2.18) In the form

3’ 
etc.

pk<°> -di<0> - pi<°> 
k(k + 1) - j(J + 1)

k = even, j “ odd ,

(4.9)

’ 2<el + c2)Uklsln0O

dPk ^<°>

on a

J+*(j + m)!(2r0)J Vp“(t) 
(X + m)!(j - A)!

ambient is, as
(reduced) height of the particle

where h « 1, so that one can expand the multipole coefficients in this 
parameter. To transform the integrals in eqs. (2.18) and (2.20), 
eq. (3.1) and also the identities

Jw"(r,t) - I
J Jt-m

that one can

For a

k = even

(2.16) we can now write

h H 1 - r0

discussion of the properties of the solutions of eqs. (4.3) 
and (4.8) we refer to Chauvaux and Meessen an(j Berreman ^).

THIN SPHERICAL CAP ON SUBSTRATE
The third application we shall consider in this article is that of 

a very thin cap on a substrate. This geometry can be obtained from the 
general case of section 2 by setting and taking 1 - tg « !•
Since the dielectric constants of ambient, substrate and particle 
now equal to and respectively, it is convenient to make the
substitutions E2*E]_* ei*e2 an^ e4*e3’ SO t^iat t^ie di®lectrlc constant of 

is, as usual, e etc. It is useful to introduce the

where the elements of are given by

_______ (~l)^(k+J~1)(k + 1)! j!_________
2k+j'3k(k - j)(k + j + 1){(—(Jy-)!}2 ’ 

which result can be obtained from the relation^)



2

%

(5.3)

. We have

Jkj 2k + 1

f dtp^(t){p1(t) + (-DJv\i,t)} 
e2 1-h 3 J
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J

used the convention that l/(j - k)! 
eq. (2.20)

where we have divided the second equation of eq. (2.17) by
= 0 for k > j. Similarly we find for

' C2 + e3 ^hdtPk(t),Pj(t)

kj+___
(el

+ !C_£ 
Ei+ f

-2k(k + l)6kj 2(e2 - E1)k(k + l)(j + k)!
k + 1 (Cj + e2)(2k + l)(k + l)!(j - l)!(2r0)1

e, - c, 1 . „ J aw°
+ t +C3 / + (-1)J g-i(l, t)}

2 3 1-h “j or

\ ■ - Aj 
kJ 2k + 1 (?:

- (-l)JW°(t)}

. 2k6kJ
2k + 1

26kl S 1 n
Ek " * ~3~ + (1 - —) j dtP°(t)(t - 1 + h) 

1 1-h K

2(k + 1 >6) 
Fkj " " ~2k + 1

H. . ““
\ —

2(e2 - e3)(-l)kkjl(2r0)J"k 

(e2 + e3)(2k + l)kl(j - k)!

2(e2 - e3)(j + k)!

(e3 + e2)(2k + l)j!k!(2r0)k+J+1

2(e2 - e3)(-l)kj!(2r0)J k 

+ e3)(2k + l)k!(j - k)!

2(e2 - E1)k(j + k)!

+ e2)(2k + l)j!k!(2r0)k+j+1

+ F~+ e- ! dtP°(t){(j + l)P°(t) - (-l)j 
1 2 1-h * J Or

e1 J dtP°(t)|p°(t) - (-l)3V°(l,t)}
1 2 1-h k 3 j



'kl (5.4)

A31

(5.5)A31 "

(5.6)B31 ’

Therefore it is convenient to introduce new coefficients, defined by

(5.7)A3J '= A3J -
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2<£2
(e2 + e3)(2k + l)(k + l)!(j - 1)!

c2 + E3 
2e3

COS0Q

COS0Q

, 46kl
Lk ' " ~

slnS0

e2 + e3
2e3

e2 + e3
2e2

I2- + -3 I dtPk(t)(p*(t) + (-l)V(l,t)}
2 e3 1-h k J 3

aw1, ^1.0)

2(e2 ’ e3)(-l)kk(k + l)(j + l)!(2r0)J k 
(e2 + e3)(2k + l)(k + l)!(j - k)l

e2 1 1 1+ . + . I dtp^ofjp^t) - (-i)2 e3 1-h K 3

e3)(-l)kk2(k + 1)(J + l)l(2r0)j k

+ r-M-'e1 I dtp\t){(j + l)p‘(t) + (-1)3
1 2 1-h “ j

2k2(k + 1)6
NkJ - —2kVl J +

+ (1 " I1) } dtpl(t)pj(t)
2 1-h

Again, the second equation of eq. (2.19) has been divided by ^2’
In the limit h •* 0 the particle disappears and the only non-zero 

multipole coefficients are and B^, corresponding to the external 
field:

2k(k + 1)6
V — _ ________________K J ■
icj 2k + 1

2k(k + l)26kj 2(e2 - e3)k2(k + l)(j + k)!
2k + 1 + (eL + e2)(2k + l)(k + l)!(j - l)!(2r0)k+j+1

8vi
3^(1.t)l •



(5.8)JI'

tn terns of these coefficients

H?os0o • (k = 1,2,3 ) (5.9)

Lk81nS0

pkslnSo • (k = 1,2,3 ) (5.10)

(5.4)

Ek-

\ - 0

(5.11)

are

■*lk (5.12)

’n (5.13)
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_ ^(tj - e3)k

VT~
. (E1 ‘

2e2k(k + 1) 1

are
these integrals 

and
correct up to second order

Pi’’ViJhdtP'‘(t)pll<t)
Expanding and 

order, and therefore 
h. The Integrals 
linear in h.
■ultlpole coefficients 
fro*
in h,

eqs. (2.17) and (2.19) can be written as

sln0o

cos00

Sln60

(2-20), (5.3),

Pk are 8iven by

/ dtP°(t)(t - 1 + h) 
1-h *

= 0

J dtP°(t)(t - 1 + h)
1-h K
1 1 1
J dtPE(t)pJ(t)

1-h

and (5.7)-(5.10) it follows

jWlJ + XVjj ' Ekcose0 

+ £GkjSj - 
and

Eeob eqs. (2.18), 
that E£, H£, l; and

EZ<E1 ~ e3>

E1E3

into powers of h one finds that they are of second 
all multipole coefficients are of second order In 

on the r.h.s. of eqs. (5.3) and (5.4) are at least 
Neglecting the contributions of these integrals to the 

we can eliminate the coefficients and 
eqs. (5.9) and (5.10). We then obtain,



E2(E1
(5.14)

B11 * (5.15)

and the corresponding polarizabilities, eq. (2.23), are
E1<E

(5.16)V

(5.17)3

where V, the volume of the particle, is given by

(5.18)

- < f >P - (5.19)

(5.20)- ep < f >

where < f > is the average film thickness, given by

< f > = pV (5.21)

It is arethatto thesenote

theare to

constant In ref.

we
theforsystem in lowest orderwe same
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In fact
the

A system of these particles in the low density limit, eq. (2.30), 
is characterized by the surface susceptibilities

- e1)V

3 ~ El) 
e3

e3 - E 
E3e1

cos0o

V - aR3h2(l

Y - (5

For the dipole coefficients we thus find 
e2(ei - E3>h2<1 - y> 

11
<C1 - E3>h2<1 - _
------- 7--------  sin©_.4e2 0

interesting 
independent of the dielectric 
they are equal 
presence of a

«E - (e

surface susceptibilities 
constant of the substrate, Ej- 

surface susceptibilities which describe 
thin homogeneous film of thickness < f > and dielectric 

e3 on top of a substrate. In ref. 14, an article on the optical 
properties of thin films on rough surfaces, we derived expressions for 
the surface susceptibilities in terms of the average film thickness and 
height-height correlation functions. If we apply that model to the 
present system we obtain in lowest order the same result



coefficients y and 0.
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THE POLARIZABILITY OF A TRUNCATED SPHERE

ON A SUBSTRATE II

1. INTRODUCTION
In

cap

consider casewe
we

of

102

paper 
substrate.

a previous paper LJ, hereafter referred to as I, we 
general method for the calculation of the polarizability of 
spherical particle on a substrate, assuming that 
smaller than the wavelength of the incident

on a

of a

hereafter referred to developed a 
a truncated 

a substrate, assuming that this particle is much 
of the incident light. By choosing the 

method of image multipoles we Incorporated all effects of the particle­
substrate interaction. The boundary conditions for the potential and the 
normal component of the displacement vector at the surface of the sphere 
then yielded an infinite set of inhomogeneous linear equations for the 
multipole coefficients. The matrixelements in these equations contained 
integrals Involving Legendre functions. In paper I we demonstrated that 
for the special cases of a sphere, hemisphere and thin cap these 
integrals could be evaluated easily.

In the present paper we shall consider the general 
truncated sphere on a substrate. In section 2 we show that the above 
mentioned integrals are polynomials in the truncation parameter (the 
distance of the centre of the truncated sphere to the substrate divided 
by its radius). We derive a complete set of recurrence relations for 
these integrals, by means of which all matrixelements can be evaluated 
explicitly. At the end of section 2 we give a summary of the evaluation 
of the coefficients in the polynomials for those who want to skip the 
details of the derivation. In section 3 we apply the method to the 
calculation of the parallel and normal components of the polarizability 
of a truncated spherical gold particle on a sapphire substrate in the



calculate thethenWe

of
are

thea

2- recurrence relations

a
in aon a

rathercontainedthesein
In this section we

recurrence

Let us

(2-1)

Skj(r'rO> (2.2)

Tkj<r>rO> (2.3)

the

or

The functionscase •
as
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and j 
external
parallel
(1.2.3), (1.2.9)

r0
/ dtP®(t)p”(t)
•1 K 3

r0
‘ J dtP"(t)v“(r,t)
'*0

: / dtp”(t)w"(r,t)

v"(r,t)

compared with 
for the

j > m and 
perpendicular 

v“(r,t) and

. 2 -(j+l)/2 
0 ■'

set of equations for the multipole 
scalar electric potential in and around 

external electrichomogeneous 
equations 

complicated integrals involving Legendre functions, 
shall derive a complete set of recurrence relations by means of which 
these Integrals can be evaluated explicitly. Let us first define the 
Integrals Involved:

= (r2 - 4rrQt + 4r(

Qkj(rO5 -

the distance of

In paper I we derived a linear 
coefficients describing the 
truncated sphere on a substrate 
field. The matrixeleraents

optical region and discuss the results-
transmittance for perpendicularly Incident light in the optical region 

a system consisting of such gold particles in a two-dimensional 
square lattice on a sapphire substrate. The results 
values obtained experimentally by Nlklasson and Craighead 
transmittance of square arrays of small gold particles on sapphire. The 
agreement between the theoretical and experimental curves is very good, 
though a discrepancy between the observed and fitted particle size 
remains to be explained.

where r^ is the truncation parameter, defined as
centre of the truncated sphere to the substrate divided by the radius; k 

are Integers with k > m, j > m and m is 0, corresponding to an 
electric field perpendicular to the substrate, or 1, the 

W“(r,t) were defined in eqs.



P”((rc - 2r0)(r2 - ) .X (2.4)+ (m - 0,1)

P"((re - 2r.)(r2 - ) .X (2.5)(m - 0,1)0

we

(2.6)

4x2)-<J«)/2

(2.7)

(2.8)

(2.9)

" - r0
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> - (J + DS^(l,r0) - r0 ^d(l.r0)

[3FT"j<r,r0)}

(1.2.18) and 

holds for

4rroc

now differentiates 

r equal to 1, one

Wj(r,t) = (r2 -

eqs.

The same

S"j(r,xr) -

4rr0t + 4rl

4rrot + 4r(

x = r0/r

xr
J dtP”(t)(l - 4xt +

x P”((t - 2x)(l - 4xt + 4x2)~1/2)

. 2.-1/2 
0 ’

xr
T^Cr.xr) - rj / dtP®(t)(l - 4xt + 4x2)j/2

relations for these 

are polynomials 

then allow one to 

the relationship 

between T” (l.r^) and 
KJ u

X p“((t - 2x)(l - 4xt + 4x2)-1/2)

. 2'j/2 
0 ’

. 2.-1/2 
0 '

eqs. (2.2), (2.3) can be written alternatively as

The functions sJ\(r,rQ) 
(1.2.20), only as J *" 
the functions Tj\(r,rg).

We shall now proceed to derive recurrence 
functions. The remarkable fact that all these functions 
in Tq , a result that we shall prove below, will 
determine the functions explicitly. First we derive 
between S® (l,rnj a a „ Kj u '3FT”j(r-r0»r=l •

>r0Tkj(1'r0)

where we have also used eqs. (2.4), 
these expressions with respect to r 
obtains the recurrence relations

(2.5). If one 
and then sets

result that we shall prove 
the functions explicitly.

■0) and [^S"j(r,ro)]r=1 and also
. If one introduces the variable

) appear in the matrixelements, 
S"“(l,ro) and [^(r.r,)]



(2.10)+ ro(~l)
functions

oncecan

attention onwe

r0 > • (2-11)J

(2.12), r0 < \ .

(2.13)
(X + n)!(j - X)!

find for the derivative of

r0
j+m(r0) - P"(r0)p"(-r0) - 2(-l)

(2.14)

and(2.1),have used
can

(2.15)(-D
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all 
determined

.m
kj

(X - m)!(2r0)X JP”(t)

(X - j)l(j - m)!

(X + j + l)!Q“x(r0)
Jl+j+2

(1.3.1), (1.5.2).
be verified by 

|q| <1 , summing

j+m d
dr0

2(3 - . + l)s"jj+i(r0) -^j(r0) -

(ro’

d om 

dro kJ

the same 

of eq. (2.14)

(2.11). Using 

the r.h.s.

s“j(1>r0) and

S”j(ro) and

(2.2) < 

term on

J+™<£)<ro’

[^Skj(r'rO)’r.l andWith these equations 

(8FTkj(r-r0)!r-l can be 

and ^icj(rQ) are known.

Since

Two of these expansions where also used in I, cf.
The validity of these three relations can

IX-n (X + m)!(j - m)!(2rQ)

to use

it is

One easily verifies that the case r^ < ^ , where one has to use eq. 
(2.12) instead of eq. (2.11), yields the same recurrence relation, which

_ j (-l)J+X(j + m)!(2r )j M(t)
W“(l,t) = I OX

Jt=m

V"(l,t) - I 
x-j

can now focus our 
convenient to denote these quantities by 

T^) • For the following step we shall use the identities

,.,.r.J A=m (JI + m)!(j - m)!(2rQ) J

eqs.
validity of these three relations can easily 

multiplying both sides of the equations by q^ , with 
over j and using the generating function of the Legendre polynomials. 
Assuming for the moment that r^ > \ , we
Skj(r(P with respect to

where we have used eqs.
equations we can simplify the second 
and after rearranging terms we find



is therefore valid values Note
insert marks between

eqs.

(2.16)

case
careful.

term cannot be determined

(2.17)

areon a

^(k+j-1)

Note that thethe functions symmetric ineqs. are

Q“ (°) - (2.19)'kJ
We now have to evaluate the functions

means
evaluation one
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eqs.
and

0
/ dCP®(t)p”(t)

k, j-1 
For

'k,j-l
) to

dJoTkj(ro) ■ 2(j + j+tn d
dr0 <r0>(r0) + (-1)

- Q"j(O) -

QkJ<°>

punctuation 
similarly obtains from 
relation for T®j(Tq) :

S"j(r0> a”d 
(Tq) respectively, assuming 
the case of the T“j(rg) 
there has to integrate, a 
this way. Using eqs. (2.1) 

easily verifies that this constant term should be chosen

this expression already in the discussion of 
substrate. Explicit expressions for Q®j(O)

(1.4.5) for m=0 and eq. (1.4.9)

In paper I we encountered 
the hemisphere 
given for the case k=even, j=odd by eq. 
for m=l. Combining these results into a single equation one finds

QkJ(r0) , eqs. (2.1), 
indices k and j. For k+j-even one easily finds

s"j(ro) and Tkj(ro) for che 
lowest value of the index j, i.e. for j«m, since all functions of higher 
index j can then be evaluated by means of eqs. (2.15) - (2.19). 
For T”m(rQ) this evaluation is straightforward, and one finds, using 
eqs. (2.3) and (2.13), the simple result

possible constant 
and (2.3) one 
such that

______(-l)*kK~rj x/(k 4- 1)! j!
;k+J-2B-l(k . „ + 1)(k _ j)(k + J + !)({■£*). {^1)1 )2 ’

(2.18)

Since one

k = even, j = odd •

(k + m)! 6(2k + l)(k - m) ! kj

of r0 . 

indices to avoid confusion.

(2.3) and (2.13) the following recurrence

Eqs. (2.15) and (2.16) can be used to express the functions 
T”j(r0) in terms of S®^^) and T® 

the functions to be known-

has to be

that we occasionally

One

functions one

for all



Ov ■ (2.20)

r0
Sk0(r0> - dcPk(t>(1 - 4rQt (2.21)+ 4r,

We first differentiate

3/2

(2.22)

’k0(r<? “ Pk( 15r0

l<‘ - 2rn£ (2.23)

(k - 2)S° (2.24)+ r0

(t) - (2k + l)P"(t) (2-25)
k

and

(2.26)
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.0
k-2,0

For

two cases

’k-2,0<r0) + 6k0 " 6kl '

d pin 
dt k-1

d .
dr0

the more

m=0 and m=l separately.

(2.2) and (2.4) one finds

Integration by parts and multiplication of both sides of this equation 
by Tq yields

<ro> -

(2k + l)tp£(t) - (k - m + l)P"+1(t) + (k + ■”)P"_1(t)

d , 
dr0

a^sko(ro) " pk(ro) + 2

. 2.-1/2 
0 ’

Using eq. (2.24) it follows by induction that S°0(rQ) Is a polynomial of

J dt(l - 4rQt + 4rQ2)-1/2

complicated s”ffl(rQ) functions we shall consider the 
Let us first examine m=0. From eqs.

+ p°(c’i

In deriving eq. (2.24) we have also used the following well known 
recurrence relations for the Legendre functions (see e.g. reference 4)

Substracting from this equation the same equation with k-2 instead of k 
we obtain after some rearrangement of terms

eq. (2.21) with respect to rQ :

r° 0 2J dtp“(t)(t - 2rQ)(l - 4rQt + 4rQ

r0 Br^kO^O^ + + 1^Sk0^r0^ 2)r0Sk-l,(/r(P



the fact

of

in

(2.27)

andwith by partsintegratingto ro •

<rn> + S?r0 (t - 2r0)0

X {(1 - t2)^(t) - tpl(t))(l - t2)'l/2 (2.28)

relations for the Legendre

(2.29)

and

(2.30)

now

k (r0)} (2.31)

The results (2.24) and (2.31) singleeqs. be combinedcan
equation:
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d pl ^-2,1

Differentiating 
multiplying with

.1
'kl

eq. I 

suitable

- ktP^(t) + (k + m)Pj_1(t)

At this point we need another 
functions *)

S°0(r0> °f the forB 
the left hand side 

singular behaviour 

is a polynomial

respect
Tq we obtain

* ■ 

dr0

m + l)P£+1(t)

(1 - t2)^(t) -

(rQ) - (k - 3)si_2>1

r0
/ dt(l - 4rQt + 4r(

4r0t + 4r,

we now verify that

. 2-3/2 
0 '

o2>-3/2

two recurrence

(2.29) to eq. (2.28) with k-2 

linear combination of the 

(2.26). The

We apply eq. 

instead of

E-FT <r0 a^\l<ro> + <k + 2>sii<ro» - <4k - 2)r0Sk-l,l(r0)

1 r0
Skl(r0) ■ { - t2)1/2(l -

(2.30) to eq. (2.28) and 
k. We now choose a 

equation for k and that for k-2 so that we can use eq. 
equation then simplifies considerably and we finally obtain

into a

degree k. Note the fact that additional terms in
CTq k 1 (C a constant), which do not contribute to

eq. (2.24), can be excluded because of their
Tq = 0 . From eq. (2.15) we now verify that S^j(Tq)

of degree k + j - 1 + t
For m=l we proceed along the same lines. The functions 

given by

’ki(ro> - -

(1 " t2)arI>k(t) " <k + OtPj(t) - (k -



k - m r
k + m lr0 + <k +

■=4 .(ro>l

+ (6, (2.32)6kl)6m0 (m = 0,1)kO

thatused after cansame weas

forwe

12 2 (2.33)

a
a

> 0 in paper I

It is obvious that these
(2.25) twice to eq. (2.1)

(2.34)
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d d

By the 

sii<ro> 
k=l and

1 r0 ‘ sh<ro>

J + m 
2j + 1

j - m + 1
2j + 1

argument 
is a polynomial in 
k=2 we evaluate $

Qk,j+1 (rQ) -

Finally we have to derive recurrence relations for these functions for 
the case j=m. For m=0 one easily finds, using eq. (2.25), the relation

Qk,j-1 (rQ)

2k' + T $k-l,j(r(P

„0 9k+l

. d .0 dro'

(rQ) +

" + - <4k - 2)r0Sk-l,n<r0>

s121

- 2>Sk-2,m<

,0(r0) - (2k + l)Q°0(r0) +

-
(2.15) it

It is

d , 
dro

- % , and therefore the results above 
rQ < - Because we have chosen 1 > rQ 

these discontinuities cause no inconveniences.
9kj(r<P ’ 

are polynomials of degree k+j+1. Applying eq. 
we obtain the recurrence relation

. k + m 
k - m

k - m + 1 nm 
21m- yk+l, j

^k-l.O^O5 + ^,-1 " ®k0
(2.35)

>-2,m<r0> " <k - "

We now turn to the functions

Consequently ^^l^r0^ a P°^ynom^a^ degree k. From eq. 
then follows that a Po^ynorn^a^ °f degree k+j-1.
interesting to point out that the functions in eq. (2.33) are unequal to 
zero for rn = -1 , contradictory to what follows from eq. (2.2). The 

functions

eq. (2.26) we can prove
Since eq. (2.31) yields no results for 

these two values of k by simply 
performing the integrations in eq. (2.27). This yields

Tq = -1 , contradictory to what follows from eq. 
reason for this is that the first derivative of the
Skj(r(P is discontinuous in Cq = 
are not valid for

. 2 1
hi^o' “ T " T r0

 3 12 _ 3 .3’ + T O 2 r0



For the slightly more complicated m=l

0 (2.36)

(r0) - (2k + l)Q"m(r0) + Qk-l,m(r0>

(2.37)

C(r0>

3 (2.38)

Since has theone (2.37)in to

constant

to
that

We

one

for

r0

are

110

,(0) .

Qk+l,m

<r0) +
k d _1 1

k + 2 drQ Qk+l,l<r(P “ (2k + 1><?kl

)6mo-\o

case one obtains

+ (V1

For m-1 we give the functions Q™m(r0) for the values k-1 and k-2, since 
these cannot be obtained from eq. (2.36):

k - m + 1 d 
k + m + 1 3?^

k + 1 d 
k - I dr,

Combination of eqs. (2.35) and (2.36) yields

we 
second equation of 
derived in this 
One can prove 
identical to zero, 

shall

2.34I 4" r0

k + m d
k - m dr^

 3 3 r :2> 7 r0

Qu(ro) ~ y + r0 y ro3

Jkj''‘O' --
Q™m(0) and next e9s’

Tq * 0 . The functions 
(2.34). To obtain the 

^km^r0^ wft-h tbe help of eqs. 
j>m are then found using eq.

^kj^rO^ are flrst evaluated for j=m by means of 
j>m with eqs. (2.17), (2.18) and (2.19) for 
for Tq # 0 . Finally the functions
[3FTkj(r,r0^

to integrate in eq. (2.37) to obtain Q®+1 
term will be undetermined. This term is equal to Q°+i 

which is just a special case of eqs. (2.18) and (2.19).
In paper I we gave a physical argument to demonstrate that the 

eq. (1.2.17) for k=0 is redundant. Using the results 
section it is possible to verify this mathematically* 

the matrixelements F^ . and Gqj in this equation are 
and thus the equation is trivially satisfied- 

now briefly summarize those results of this section 
required to evaluate the integrals in the matrixelements explicitly* 
First one should evaluate the functions Q™j(r0) • This can be done by 
using eqs. (2.18) and (2.19) to find Q™m(0) and next eqs. (2.37) and 
(2.38) to obtain the Q“m(rQ) for rQ * 0 . The functions Q® (rQ) for 
j>m then follow from eq. (2.34). To obtain the polynomials s™j(r0) 
first evaluates S™m(rQ) with the help of eqs. (2.32) and (2.33); the 
Skj^rO^ for are then found using eq. (2.15). The functions
t \ a ----1 - • - - eq. (2.20) and next for

= 0 and with eq. (2.16) 
the functions ['5rSkj^r*r0^r-l and 

found using eqs. (2.9) and (2.10).



is to

we
such

particles in

we

and lesscase
normalthanlessis

deviation reaches

resonance
thetowe

we
r0

of thenormaland theFor both the
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component 
figs. 2 and 4,

r0 
relative

parallel 
polarizability the main feature of the imaginary parts,

as a

recurrence relations derived in the previous section it 
evaluate numerically the parallel and normal 

a truncated sphere on a substrate. In this section 
application of our model. We calculate the parallel 

truncated spherical gold particle on a

3- APPLICATION: GOLD PARTICLES ON SAPPHIRE
Using the 

relatively easy 
polarizabilities of 
we shall consider an 
and normal polarizability of a 
sapphire substrate in the region of optical wavelengths (400 - 750 nm). 
Using the values for the polarizability we then calculate the 
transmittance for perpendicularly incident light of 

a square lattice and compare the 
obtained experimentally by Niklasson and Craighead

For the dielectric constant of gold we use the bulk values from 
Johnson and Christy ^). The refractive index of sapphire shows a little 
dispersion in the optical region, but for simplicity we shall use the 
value n£ ■ 1.77 throughout. For the ambient we take = 1 • In figure 1

have plotted the real part of the parallel component of the 
polarizability divided by the volume of the particle as a function of 
the wavelength for six values of the parameter rQ • (sphere), 0.8, 
0.6, 0.4, 0.2 and 0.0 (hemisphere). In figures 2, 3 and 4 similar plots 
are made for the imaginary part of the parallel polarizability and the 
real and imaginary parts of the normal polarizability. The convergence 
as a function of M, the number of multipoles taken into account in the 
particle-substrate interaction (see paper I), is found to be good for 
all the above values of r^ in the whole wavelength region. In fact, the 
absolute value of the relative deviation between the polarizability 
calculated with M=16 and that with M=8 is for the sphere less than 0.4Z 
for the normal case and less than 0.1Z for the parallel case. For the 

3.5Z for thehemisphere the relative deviation 
polarizability; for the parallel polarizability the 
values as high as 13.3Z near resonance, but this is mainly a result of a 
slight shift of the sharp resonance peak towards longer wavelengths as M 
is increased. If we decrease r^ further, to negative values,

For this reason we restrict ourselves 
. Figures 1-4 show the polarizability

convergence becomes even worse, 
here to positives values of 
calculated for M=16.

a system of 
results with values 
2,3).
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eqs.

the

on a

very 

rQ has 

For
effect on

one finds that for a 

for a® occurs

nm • Finally we note that an 

normal polarizability per unit of volume is 

part, figs. 3 and 4, for r^ = 0.8 are 

rQ = 1*0 and for r^ = 0.6 over a wide wavelength region, 

shows that the maximum occurs around 0.94. 

turn to the transmission for perpendicularly incident light 

a system of identical truncated spherical gold 

square lattice on a sapphire substrate.

resonance peak. The real parts, figs. 1 and 3, 

typical behaviour associated with a single resonance. This 

can be attributed to the rather large value of the imaginary part 

the dielectric constant of gold in the optical region 

( 1.03 < Im£0(u)) < 5.75 ). For a metal particle of which the dielectric 

very small imaginary part in the resonance region the 

quite different, now showing several resonance 

a system also the convergence of the polarizability 

worse, confer e.g. in paper I the discussion on the 

approximation for a metal sphere on a dielectric 

see figs. 5 and 6 of that paper.

there is some secondary structure in the 

is most clearly visible in figures 3 and 4 for the 

polarizability of the hemisphere.

a sphere, r^ = 1 , the parallel 
similar, both real and 
very different 
parallel < 
from 516 nm 

r0 ” 0 ■ and also che magnitude increases 
polarizability we observe 
shorter wavelengths, from 
hemisphere. The direction of 
obtained in paper I. 
thin spherical 
gold particle 
X ■* «o

dielectric 
Ime^(to) < 5.75 ). 

constant has a 
polarizability would be 
peaks 6,7). For such 
upon increasing M is 
validity of the dipole 
substrate, and in particular 
that even for gold 
polarizability. This 
normal component of the 

For the case 
polarizabilities are 
However, decreasing 
normal components. For the 

longer wavelengths,

is the strong isolated 
also show the 
effect

imaginary parts, 
the parallel and 

peak shifts 
for Tq = 1 to 589 nm for 

drastically. For the normal 
slight shift of the resonance peak towards 
515 nm for a sphere to 509 nm for a 
these shifts is in agreement with results 

From the expressions for the polarizability of 
cap, eqs. (1.5.16) and (1.5.17), 
in the limit r^ 4- -1 the 

, whereas Ima^ is maximal at X = 490 
interesting property of the 
that both real and imaginary 
larger than for 
A more precise calculation 

We now 
in the optical region of 
particles in a two-dimensional
Since we shall compare the results with experimentally obtained values 
by Niklasson and Craighead 2,3) we mention some properties of their 
system. The lattice constant is 50 nm. When the system is observed from



above haveto

case

(3.1)

theTherefore thethe i.e.relative

transmittance

(3.2)T(Z) = 100/1 1 - l(M/c)Y(l + n2)"l|

y , related

(3.3)Y =

where L is

(3.4)F(x)

11 =

transmittance, 
system with gold particles divided by the 
substrate, is, in percents, given by

F(2rQR/L))

the lattice constant, 1 
and F(x) is the following function:

Ts,P-"2 'Vpl2

or a 
perpendicularly Incident light the

(1.2.33) or eq. (1.2.35) for

- I' [w2 + n2 + x2r3/2 - 3x2 f (m2 + n2 + x2}’5'2 

m,n m,n

to the parallel polarizability, 
the relationship between y and 
is rather high we cannot apply eq. 
must

by electron microscopy the gold particles appear 
rotational symmetry and a diameter of 32 nm with an uncertainty of 2.5 
nm. The axial ratio of the particles, defined as the diameter divided by 
the height, is estimated to be between 1.3 and 1.7. From the observed 
shape of the particle it is not clear whether an oblate spheroid model, 
as used by these authors, or a truncated sphere model Is more realistic.

For perpendicularly Incident light the transmission amplitude is 
given by eq. (1.2.33) or eq. (1.2.35) for 0 - 0 . The relationship 
between the transmittance and this amplitude is in this

Note that for perpendicular incidence only the coefficient 
is induced by the light. We now derive 
a® . Since the density of the particles 

we cannot apply eq. (1.2.30), the low density limit, but 
incorporate local field effects due to inter-particle interactions 

in the theory, cf. eq. (1.2.31). By far the most important contribution 
to this interaction is the static dipole-dipole term. We shall take only 
this term into account and neglect higher order multipole interactions 
and retardation effects. Following a local field analysis for the square 
lattice analogous to that developed in reference 8 for general island 
films one obtains

______ _________ </l2
1 - (a®/8xL3) (F(0) - (e2 - l)(e2 + 1)

R the radius of the truncated sphere

transmittance of
of the bare
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30 500

P 
, and 

is clear 
influenced by

Position and depth of the absorption peak, calculated with 
bulk values for gold for different values of R and 
Also shown Is the minimum of the experimental 
transmittance.

540 560
A.min Inm)

70

S
J 60

0>WL IS just

to its image in the substrate, divided by the lattice 
verifies that eq. (3.3) is indeed of the type of eq.

, the number of particles per unit surface area, is 
<1 differs not much from L .

from eq. (3.2) that the transmittance will be mainly 
Imy , which in its turn is roughly related to Imct| . One

summations are over all pairs (m,n) in the lattice except (0,0). 
F(x) is maximal for x-0, where it has the value 9.0336. For x>0 the 
function decreases monotonically and reaches half this value at x-0.565. 
The term with F(0) represents the interaction of the particle with the 
direct static dipole fields of the other particles, whereas the other 
erm represents the interaction with the images of these dipoles. Note 

the quantity 2TqR/L Is just the distance of the centre of the 
truncated sphere 
constant. One ’ 
(1.2.31), since 
equal to
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calculate, using
(3.3) and (3.4), 

function of

' r0 
are i

30 500

Position and depth of the absorption peak, calculated for 
different values of R and r^ with finite size 
corrections incorporated. Also shown is the minimum of the 
experimental transmittance.
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therefore expects the strong isolated resonance peak in 
to be present in the transmittance as 
representing the experimental 
one sees

a mapping between every pair » ^rain on
Tq , R on the other. As one would expect

Ima® , fig. 2, 
an absorption peak. From the curve 

values for the transmittance in fig. 7, 
that this peak is indeed present. Since the absorption peak is 
feature of the transmittance we first

as a
eqs. (3.2), 

this peak
j and the radius R of the particles. The results 
represented in fig. 5. One sees that this yields 

the one hand and the pair 
from fig. 2 for Ima® the

for the polarizability and 
position and depth of the minimum of 
truncation parameter 
of this calculation «



position of Since

thewe relative
withthis theoretical

a
The width of the band too

are
an

mean
in

(3.5)e(“) - eB(“) + -j- 
U)

thethe takebulk dielectric for

, given by

(3.6)+ vpR'’ XB

is the relaxation time corrected for
the Fermi R’ effectiveis some

For a
that

(3.7)R'

andthe values
correct

ofsize the particles with weeqs.
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hTB 
constant

2 
WP

+ iU)TB

Using

= 0.903 eV*nm we

constant, 
the plasma frequency, 

9)

parameter 
experimental one 
the data.

hVF 
finite

There are a

curve
good fit to 
small, and

’ 1 (1 + r0)R

However, 
half the short axis of the particle, 
for a truncated sphere yields

it does not represent 
absorption band is 

consequently both flanks are too high after fitting the minimum.
few possible causes for an increase of the width of the 

absorption band. The most important one results from the small size of 
the particles. Since the conduction electrons scatter at the surface of 
the particle the mean free path of the electrons is shorter than in the 
bulk. A qualitative way to incorporate this effect in the dielectric 
constant of gold is the following construction ^);

2
“p

b? + iOJT

hcop = 8.99 eV , 

the dielectric

5, u)p is 
time in the bulk metal and

where eg(w) is 
values of ref.

= 0.027 eV 
of gold for the 

(3.5)-(3.7). Once again

vF is 
particle.

tb is

experimentally found peak position and depth 
corresponds in our mapping to the values 
In fig. 7 we have plotted 
these parameter values.

velocity and I 
truncated sphere 

in reference 9 it

the absorption peak is mainly determined by r^ •
Y is approximately proportional to the volume of the particles the 
depth of the minimum is dominated by R. Also presented in fig. 5 is the 

from fig. 7. This point 
tg = 0.65 and R = 12.7 nm • 
transmittance calculated for 

the

no expression for R’ is yet known, 
was found that a good candidate for R’ is 

We shall adopt this choice, which

which we

Comparing 

it is clear that

the finite size of the particle, 

radius of the

the relaxation



minima are
which is near

■ 0.65 anddata valuesthenow

7.

X (nml

Fig- 7

nm,
nm,

value. In for thethe

11 =

calculate the 
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figure 6, 
positions of 
have

Experimental relative transmittance as a function of 
wavelength (solid line). Theoretical curves without 
(dotted; R=12.7 nm, rQ=0.65 ) and with (dashed; R=13.4 

rg=0.65 ) finite size correction after fitting the 
minimum in the absorption peak. The error bar denotes the 
experimental uncertainty.

It Is clear that the new curve presents 
corresponds quite good with the observed

as a

hardly affected.
especially clear near r^ 

correspond with the values r^
. The full transmittance curve calculated for these values

position and depth of the minimum of the absorption peak 
transmittance as a function of r^ and R. The results, drawn In 

are quite similar to those found without the correction. The 
the minima are hardly affected. The depths of the peaks 

decreased, which Is especially clear near rn = 0.0 . The 
experimental 
R = 13.4 nm
Is drawn In fig. 7. Comparing this theoretical curve and the previous 
one with the experimental data, 
a much better fit. The width

fact, the only discrepancies appear for the longer- 
wavelengths. The origin of this effect is not clear to us. One notes the=
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7.between the intheoreticaltwo curves
(3.7) e-g-a

axis of in

radius•

to

the1.85. Inofrationm an

our on
intointeractiontake thewe can

ro

M

1 520 83.4
2 531 81.3
4 536 82.2
8 539 81.9

16 542 81.7
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Table 1. Position and depth of the absorption 
peak as a function of M, the number of multipoles.

fig.
different choice for R'» 

minor

a long

Let us finally discuss our results, based on the truncated sphere 
model, and the results of Niklasson and Craighead ^,3), using the oblate 
spheroid model, in relation to the experimental data. Niklasson and 
Craighead modeled the gold particles as oblate spheroids with 
axis of 32 nm and an axial ratio of 1.5. They found that this yields a 
curve which is considerably lower than the experimental one. Also the 
position of the minimum in the absorption peak was found to be at a too 
short wavelength. In fact, if one fits the position and depth of the 
minimum, as we have done for truncated spheres, one obtains a value of 
26.6 nm for the long axis and an axial 
calculations based on the oblate spheroid model the particle-substrate 
interaction is taken into account in dipole approximation. Niklasson and 
Craighead argued that for axial ratios of the order of 1.5 higher order 
multipole interactions could be important, shifting the absorption peak 
towards longer wavelengths and possibly also yielding higher values for 
the transmittance. Since in our calculations, based on the truncated 
sphere model, we can take the particle-substrate 
account up to arbitrary order, we can examine these hypotheses. In table 
1 we present the position and depth of the minimum of the absorption 
peak, calculated for the values rn = 0.65 and R = 13.4 nm as a function

strong similarity 
Therefore using instead of eq. 
half the long axis of the 
modifications of the curve and a

particle, will only result
slightly different fitted value for the
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the transmittance towards 

So it is

system
the absorption peak in

higher order multipole interactions.
shift also occurs for oblate spheroids. The

the number of multipoles 
sees that for a system of 

considerable shift of 
longer wavelengths due 
very likely that 
other suggestion,

one to overestimate their sizes, 
size discrepancy one is led to 
particle is closer to an 
This is because the value 
the truncated spheres,

such a shift also occurs 
that the relative transmittance possibly increases 

result of these higher order multipole interactions, is not supported 
by the results in table 1. Therefore we must consider the sizeable 
discrepancy between the magnitudes of the experimental and theoretical 
transmlttances, or, equivalently, between the observed and fitted values 
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precise determination of the particle size will be attempted.
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worden volstaan.
In hoofdstuk II ontwlkkelen we een theorie voor de beschrijving van

golflengte, 
worden

gevoelig voor de structuur 
van de laser

van licht.
elllpsometrische coefficient of men doet lichtverstrooilngs- 
experimenten. Deze methode heeft als voordelen dat zij niet-destructief 
is en gevoelig voor de structuur van het oppervlak. Door de ontwikkeling 

is de meetnauwkeurigheid van dit soort experimenten sterk

dat de amplituden van licht gereflecteerd of 
getransmltteerd door een perfect glad oppervlak gegeven worden door de 
Fresnel vergelijkingen. De effecten van homogene films die een dergelijk 
oppervlak bedekken kunnen ook eenvoudlg beschreven worden. In de 
prakttjk zijn de systemen echter vaak gecompliceerder. Oppervlakte 
ruwheid kan aanwezig zijn, of men is gelnteresseerd in discontinue films 
bestaande uit kleine metalen deeltjes. In dit proefschrift worden twee 
zeer verschillende theorieen ontwikkeld om de optische eigenschappen van 
dergelijke systemen te beschrijven. In het eerste gedeelte, bestaande 
uit hoofdstukken II en III, wordt een ruw oppervlak bedekt

homogene film bestudeerd. Het tweede gedeelte, hoofdstukken 
beschrijft de optische eigenschappen van dunne discontinue 

films bestaande uit kleine afgeknotte bollen. In de eerste 
de correlatielengte van de oppervlakteruwheid van de orde van grootte of 
langer dan de golflengte van het invallende licht zijn. Het golfkarakter 
van het licht is hier derhalve belangrijk en de ontwikkelde theorie is 
electrodynamisch. In de tweede theorie nemen we aan dat de deeltjes veel 
klelner zijn dan de golflengte, zodat lokaal retardatie— effecten

continue en

zijn
verwaarloosd kunnen

eigenschappen te 
meet dan de ref lectivitelt,

en V,

electromagnetische eigenschappen van oppervlakken en dunne films 
momenteel sterk in de belangstelling. Voor veel toepassingen, 

zoals zonnecellen, anti-reflectiecoatings, magnetlsche geheugensystemen 
en halfgeleiders, is het onderzoek naar deze eigenschappen van groot 
belang. E6n methode om deze eigenschappen te onderzoeken is gebruik 
maken van licht. Men meet dan de ref lectivitelt, transmittiviteit of

met een
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onderoppervlakken 
gepolariseerd licht

magnetisatiedichtheden berekend, 
constitutieve coefficienten 
kunnen

laagste orde 
echter

vervangt 
fictief

de optische eigenschappen 
films

constitutieve
De reflectiviteit,

Bij de 
door

, oorspronkelijk 
ontwikkeld door

van dunne, 
op ruwe oppervlakken. 

filmdikte als de amplitude 
dan de golflengte 
theorie, 
verder <

transmissieamplituden
willekeurige hoek

transmittiviteit

electromagnetische 
de

van de boven-

Krbger

Vlieger.

dielectrische
ergens in de oorspronkelijke laag. De 

analytisch uitgebreid tot het nieuwe 

de gebruikelijke randcondities. De 

uitgedrukt worden in termen van fictieve,

een dunne film op een

statistisch isotrope en homogene, 

We nemen aan dat zowel de gemiddelde 

de oppervlakte ruwheid veel kleiner zijn 

licht. Als uitgangspunt is gekozen voor een 

geformuleerd door Kroger en Kretschmann en 

Albano, Bedeaux en Vlieger. In deze methode 

grenslaag 

gesitueerd

gemiddelde filmdikte en de hoogte-hoogtecorrelatfefunctles 

de ruwe film. Voor parallel 

de reflectie- en

uitdrukking verschilt zowel van

passen we de algemene 

op een ruw oppervlak dat gekarakteriseerd wordt door een 

Gaussische correlatiefunctie met een correlatielengte veel groter dan de 

golflengte van licht. In deze limiet kunnen de constitutieve 

coSfficife'nten expliciet berekend worden. De optische grootheden worden 

hiermee berekend en vergeleken met de resultaten verkregen met een 

theorie van Ohlfdal, NavrStil en Lukes, die gebaseerd is op het gebruik 

van diffractie-integralen. Voor de reflectiviteit en de transmittiviteit 

zijn de resultaten in laagste orde gelijk. Bij de ellipsometrische 

afwijkingen op. De door ons gevonden 

het door hen met de Helmholtz-Kirchhoff-

grensvlak, 

electromagnetische velden, 

grensvlak, voldoen daar niet meer aan 

nieuwe randcondities kunnen 

fluctuerende

toe op het
passen 

systeem van een dunne film op een ruw oppervlak en 
uitdrukkingen af voor de fluctuerende polarisatle- 

magnetisat iedichtheden, correct tot op tweede orde in de gemiddelde 
filmdikte en de amplitude van de ruwheid. Hiermee worden de gemiddelde 
polarisatie- en magnetisatiedichtheden berekend. die m.b.v. een klein

leiden we

die m.b.v.
in de gemiddelde

coeff icientenuitgedrukt.
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aandacht
polarlseerbaarheid
uitwendig electrisch 

de electrostatlsche

van een

op
e£n deeltje

volgen 
potentiaal in 

het substraat eenvoudig
beeldmultipolen.

oneindig stelsel 
waarbij de 
Hieruit kan

quasi-statische
in een homogeeneen substraat

integraal gevonden resultaat als van het daarvan afwijkende door hen met 
de Stratton-Chu-Silver—integraal gevonden resultaat. Om de oorzaak van 
deze verschillen te achterhalen analyseren we het electromagnetische 
veld op het ruwe oppervlak in detail. We tonen aan dat de door Ohlfdal, 
Navratil en Lukes?' gebruikte tangentiSlevlakbenaderlng , waarin lokaal de 
kromming van het ruwe oppervlak wordt verwaarloosd, Inconsistent is en 
dat voor een correcte beschrijving de krommingstermen in het lokale 
electromagnetische veld moeten worden meegenomen. Substitueert men het 
julste electromagnetische veld in de Helmholtz-Kirchhoff- of Stratton— 
Chu-Silver-integraal , dan vindt men dezelfde uitdrukkingen voor 
reflectie- en transmissieamplituden als met de methode 

cogfficienten. Dit isconstitutieve coSfficiSnten. Dit is bevredigend aangezien 
Maxwell-vergelijkingen volgt dat de Helmholtz-Kirchhoff-integraal en de 
Stratton-Chu-Silver-integraal zonder benadering hetzelfde resultaat 
geven voor deze amplituden.

In hoofdstuk IV wordt een methode ontwikkeld voor de berekening van 
de optische eigenschappen van dunne discontinue films, bestaande uit 
kleine afgeknotte bolvormige deeltjes. We nemen aan dat deze deeltjes 
voldoende klein zijn ten opzichte van de golflengte van het licht, zodat 
in en rond elk deeltje het golfkarakter van de electromagnetische velden 
verwaarloosbaar is. In die limiet kunnen we lokaal de quasi-statische 
benadering gebruiken. Wanneer de oppervlaktedichtheid van de deeltjes 
niet al te groot is wordt de respons van een deeltje op het uitwendige 
veld gedomineerd door de Interactie met het substraat. Derhalve richten 

berekenen van de

multipolen.
beschrijven 
randcondities op het boloppervlak leiden dan tot 
lineatre vergeli jkingen voor de multipoolcob’f f iciSnten, 
matrixeleraenten tamelijk gecompliceerde integralen bevatten.

benaderde oplossingen voor de polarlseerbaarheid vinden 
elndig aantal multipolen in de interactie mee te nemen 
asymptotische gedrag als functie van dit aantal te berekenen. Voor drie 
speciale gevallen, een bol, een halve bol en een dun kapje, kunnen we de

methode 
rond elk deeltje in 

te kunnen



derhalve de moelteveelzonderen

aan

van

aantalbeschreven kleindoor een

In hoofdstuk V keren terug totwe

stelsel derecursierelaties inaf allewaarmee
matrixelementen dezesystematise!! berekend kunnen worden.
recursierelaties is het niet
afgeknotte bol numeriek te tot op

We de theoriepassen toe van
saffieren substraateen voor

in dit geval

en
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het gecompliceerdere algemene

We leiden een voiledig

integralen
M.b.v.

optische eigenschappen 
constitutieve co^fficienten.

moeilijk de polariseerbaarheid
• berekenen tot op elke gewenste 

nauwkeurigheid. We passen de theorie toe op het geval van een good 
deeltje op een saffieren substraat voor frequenties in het optische 
gebied. De methode blijkt in dit geval tot goede convergentie voor de 
polariseerbaarheid te leiden. Tenslotte berekenen we de transmittiviteit

van een systeem van gouddeeltjes in een 
vierkant rooster op het saffieren substraat. De resultaten zijn in goede 
overeenstemming met door Niklasson en Craighead experimenteel gevonden 
waarden van deze optische grootheid.

voor loodrecht invallend licht

van een

geval van een afgeknotte bol op een substraat.

integralen, en derhalve de matrixelementen, 
berekenen. Voor het laatste geval tonen we aan dat de methode consistent 
is met die van hoofdstuk II. Verder laten we zien hoe, uitgaande van de 
polariseerbaarheid, de optische eigenschappen berekend kunnen worden van 
een systeem bestaande uit een groot aantal afgeknotte bolvormige 
deeltjes op een substraat. Evenals in de theorie van hoofdstuk II worden 
deze
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1.
een

2. bollenWanneer eenmen
het

van
van

singulierevaneen

3. voor

wordenScharlfker4. De en

verdundeen

B.

verdient
polairehet hoeken

= j e2/R >
D.M. Wood, Phys. Rev. Lett. 46 (1981) 749

van een homogene 
dikte berelkt

systeem van 
fysisch onrealistisch.

Scharlfker en G. Hills, Electrochim. Acta 28 (1983) 879

diffusiezones, zoals die door Hills
gelntroduceerd om de tijdsafhankelijke diffusiestroom te berekenen naar 

groeiende deeltjes op een substraat, zijn

Het quasi-stat1sche concentratieveld van een puntbron temidden van 
twee-dimensionale verdeling van absorberende deeltjes is zowel in 

het vlak van de deeltjes als loodrecht daarop gescreend, echter zwakker 
dan in de analoge drie-dimensionale verdeling.

gevonden resultaat voor de energie E nodig om een 
over te brengen van een oneindig reservoir op een

E = ^- e^/R , is onjuist en dient vervangen 
de energie van een geladen bolcondensator.

6. De theorie, dat de vestiging van Germaanse stammen in de vijfde eeuw 
in Engeland en de daarop volgende onderwerping van het land gepaard ging

5. Wanneer men met behulp van 
zwak absorberende film op een 
heeft van

geleidende bollen een homogeen 
parallel aan het lijnstuk dat de 

zijn, in de limiet van rakende bollen, de 
de polarizeerbaarheid en de slechte convergentie van 
als functie van het aantal multipolen dat men in de 
rekening brengt, een gevolg van de 

oppervlakteladingsdichtheid die bij het contactpunt ontstaat.

ellipsometrie de groei 
substraat volgt tot deze een 

enige malen de golflengte van het gebruikte licht, 
overweging de ellipsometrische hoeken <|> en A in een 

representatie weer te geven.
R. Greef en M.M. Wind, Appl. Optics 25 (1986) 1627

Het door Wood 
elementaire lading e 
ongeladen bol van straal R, 
te worden door E

over twee perfect 
uitwendig electrisch veld aanlegt, 
centra van de bollen verbindt, 
hoge waarde 
deze grootheid, 
interactie in



met

7. kunnenDe van ruwe op
en van

8. Uitgaande van de statische dipoolcofe’fficiSnten van halvebolvormige

9. laat
en

van
reflectie-van en

de Fresnelwaarden slechts de

10.

Dit proefschrift, hoofdstuk V

22 januari 1987M.M. Wind

het op grote schaal afslachten of verjagen 
Keltische bewoners, dient bijgesteld te worden.

onregelmatigheden op een kristaloppervlak, berekent Berreman op onjuiste 
wijze het electromagnetische veld dat door dit oppervlak wordt 
gereflecteerd.

D.W. Berreman, Phys. Rev. 163 (1967) 855
Dit proefschrift, hoofdstuk IV

mee te nemen.

optische eigenschappen van ruwe oppervlakken 
systematische en overzichtelijke wijze beschreven worden in termen 
oppervlaktesusceptibiliteiten.

Dit proefschrift, hoofdstukken II en III

van de geromaniseerde

Voor de berekening van de polariseerbaarheid van een metaaldeeltje 
op een diSlectrisch substraat is het in het algemeen onvoldoende de 
wisselwerking tussen deeltje en substraat slechts in dipoolbenadering

invallen op een ruw oppervlak, waarvan de 
spreiding in de hoogteverdeling veel kleiner en de correlatielengte 
langs het oppervlak veel groter is dan de golflengte van dit licht, 
worden de laagste orde correcties van de 
transmissieamplituden op de Fresnelwaarden slechts bepaald door 
hoogteverdeling van het oppervlak. Voor de berekening van de tweede orde 
correctietermen dient men in het lokale veld naast de termen ten gevolge 
van de hoogte van het oppervlak zowel die ten gevolge van de orientatie 
van het raakvlak als krommingstermen in beschouwing te nemen.

Dit proefschrift, hoofdstuk III

Wanneer men licht


