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§ 1. Introduction. 
As well known, the properties of the atoms cannot be accoun-

. ted for on the basis of the classical theory of electrons. Still they 
exhibit in many respects a great similarity with the properties 
which, on the classical theory, systems consisting of small · elec­
trically charged particles would possess. One of the main pro­
blems in the modern theory of atoms is therefore to find to what 
extent and in what manner the conceptions and the laws of clas­
sical electrodynamics can be used in order to establish a descrip­
tion of the actual properties of atoms. Now, an outstanding non­
classical feature of these properties is a certain element of dis­
continuity which finds an appropriate expression in Bohr's po­
stulate of the ~xistence of discrete stationary states of an atom, 
and in the application of the ideas of Planc'k's quantum-theory 
to the closer description of the laws governing these states and 
the transitions between them. Thus many atomic properties may 
be expressed by laws which roughly spoken are a translation into 
a »discontinuous language« of laws which, being derived by 
means of classical electrodynamics, are formulated in a »conti­
nuous language<<. The object of this lecture is to show in the 
case of a special problem of physical int~rest in what way such 
a translation can ·be effected, and it will be seen, how a cha­
racteristic feature of the mathematical formulation consists in 
the substistutio11 of the »differentials« occurring in the formulre 
of the classical theory, by finite »differences«, referring to the 
discrete stationary states or the transitions between them. 

§ 2. The quantum theory of periodic systems. 
Consider an atomic system consisting of one or more elec­

trified particles, and having the property that its motion, when 
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calculated by means of classical mechanics, is always periodic, 
independent of the initial positions and velocities of the par­
ticles. Let T be the kinetic energy of the system and w the 
frequency of the motion, i.e. the number of periods pro sec., 
and let the. quantity J be defined by the time integral of 2T 
taken over one period: 

(1/ro 
J= Jo 2 Tdt. (1) 

It is easily proved, e.g .. by means of the theorem of least action, 
that the energy E of the system can be considered as a function 
of J alone, and that the following relation holds: 

dE 
dJ =W. (2) 

The Cartesian coordinates of the particles can, considered as a 
function of the time be developed in Fourier series of period 
1 The same will therefore hold for the components of the 

U) 

electrical moment of the system. If ~ is one of these components 
we will therefore have: 

00 

~ = ~1: C1: cos (2mwt + y1: ), (3) 
0 

where the summation has to be extended over integer values of 
r, and where the amplitudes C1: and phase-constants Y1: may be 
considered as functions of J. According to the classical electron 
theory of radiation, the periodically changing electrical moment 
( 3) will give rise to the emission of a set of monochromatic elec­
tro-magnetic waves, of frequencies w, 2 w, 3 w a.s.o. and of 
intensities proportional to the square of the amplitudes charac­
terising the corresponding Fourier components of the electrical 
moment. Due to this radiation the energy of the system would 
continually decrease. 

In the quantum theory of spectra, the behaviour of the pe­
riodic system under consideration is described in the following 
way. The system possesses a set of stationary states, which may 
be characterised by the integer values 0,1,2,3, ... , which a »quan­
tum number« n may take, and the energy En in the nth state 
is the same as the energy in a mechanical state of motion for 
which the following relation holds: 

J = n h (4) 

where h is Planck's constant. 



The emission of the spectrum of the atom is brought about 
by transitions of the atom from one state n' to another state 
n" of lower energy; the waves corresponding to such a transi-

tion are monochromatic, the frequency v n' being given by 
n" 

Bohr's frequency. relation: 

{5) 

This relation can also be written in the following form. 

n' , ") En' - En" , ,, A E v ,, = (n ~ n -
1 

-,--
1 

,, = (n - n ) AJ 
n lil - ln LI 

(6) 

where .d E and .d J design the difference of the values of E and 
J in the two states involved in the transition. 

When we corn pare the expression ( 6) with the expression for 
one of the frequencies · which, . on the classical theory, would be 
involved in the radiation from the system: 

dE 
V='lW=TdJ (7) 

where -r is an integer, we see at once that Bohr's frequency con­
dition may be considered as the »translation« of a classical for­
mula into a formula which takes account of the discontinuities 
of the quantum theory, the quotient of two differentials being 
replaced by the quotient of two differences, referring to a pair 
of stationary states. 

If we suppose h to converge to zero, and if at the same time 
we keep (n'-n") = -r and E constant, the formula (6) will in the 
limit be identical with ( 7). But even if h remains finite the 
value of ,, expressed by (6) will still tend to coincide asymp­
totically with that given by ( 7) for -r = n'-n", if we go to the 
limit of very great values of n, i.e. if we consider transitions 
for which n'-n" is small compared with the values of n' and n" 
themselves. Bohr has postulated that this asymptotic, coinci­
dence of the res~Hs of the quantum theory with those of the 
classical theory not only is restricted to the frequencies of the 
spectral lines, but also to the intensities with which these lines 
appear and to their state of polarisation, and he considers the 
coincidence in question as evidence of a general law or feature, 
l1roper to the behaviour of atomic systems, which is called the 
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correspondence principle. In the terminology of this principle, 
the appearance of a spectral line originating from a transition 
of the n' th to the n"th state is said to »correspond« to the pre .. 
sence of the _ harmonic of frequency (n'-n") w in the motion, 
which the system would perform according to the classical elec­
trodynamical laws. 

As an example of the application of (4) of (5) and of the 
corresponde~e<~ principle we may mention the quantum theory 
of the hydrogen spectrum. In the hydrogen atom the electron 
would, according to the classical theory, describe a closed Keple­
rian orbit round the nucleus as centre. The dependency between 
E and J is for this system expressed by: 

2n 2 e4 m 
E '- - J2 (8) 

where e and m represent the charge and mass of an electron. 
After the introduction of ( 4), the frequencies of the lines of the 
hydrogen spectrum are directly obtained by means of ( 5). The 
fact that lines are observed corresponding to all possible values 
of the difference n'-n" is, according to the correspondence prin­
ciple, connected with the circumstance, that in the Fourier re­
solution of a Keplerian motion harmonics occur corre..;ponding 
to any integer value of -r. 

The intensity with which a given spectral line appears is 

often expressed by means of a coefficient an' introduced by 
n" 

Einstein in 1917, which has such a value that an, dt denotes 
n" 

the probability that, in a time interval dt, an atom in the state 
n' shall spontaneously perform a transition to the state n". If 

y n:, is the frequency of the corr,esponding spectral line,· the mean 
n 

energy emitted per second ·in the form of radiation of this fre-

quency by an atom in the state n' will then be given by an' h y n' . 
n" n" 

At present the theory has not yet ' succeeded, however, in 
finding the exact mathematical expressions for the coefficients 

an' . . from a consideration of the behaviour of the atom ac-
n"' 

cording to the classical theory we can, however, derive expres-
sions, which by the correspondence-principle allow to calculate 
these coefficients in the limit of high quantum numbers. If we, 
especially, consider a system of one degree of freedom in which 



an electrical particle can perform oscillations along a straight 
line, the electrical moment can, on the classical theory, be re­
presented by a formula of the type (3). According to the clas­
sical theory of radiation, the electromagnetic energy radiated 
pro sec. in the form of waves of frequency -r w will be given 
by (21r-rw 14 C~/ 3 cs. where c is the velocity of light. The 
asymptotical relations for frequency and intensity holding in 
the limit of high quantum numbers can then be expressed by: 

- n' 
v n" N (n' - n") ro, (9) 

n' n' (2n-(n' - n' .') w)' C!'-n" 
a,,hV,,N 

3 
S , 

n n c (10) 

It will be convenient for the following to introduce the concep­
tion of virtual oscillator, i. e. of an electrical dipole which har-

monically oscillates with frequency ,, n' and with such an am-
n"' 

plitudee An' that the classical radiation from it would exactly 
n" 

correspond with the radiation of that frequency which in the 
mean can be ascribed to each atom in the initial state n'. These 

quantities An' which we will call the characteristic amplitudes 
n"' 

of the transitions, will thus in the case of a linear oscillator be 
defined by 

( 
n' )4 n' 2 

n' n' 2n Yn" An" 
a,,hv,,= 

3 8 n n C 
(11) 

and the asymptotical relation (10) takes the form 

(12) 

§ 3. The action ofmonochromatic light on an atomic system. 

In this paragraph we proceed to the problem which forms 
the proper subject of _ our lecture, viz. the problem of the reac­
tion of an atom when exposed to an electromagnetic wave field. 
For the sake of simplicity we will, just as in the end of the 
former paragraph, consider an afomic system consisting of an 
electrified particle which can perform oscillations along a straight 
line, and moreover we will assume that the light waves falling 
on the atom are monochromatic and linearly polarised, the elec­
trical vector being parallel to the direction in which the particle 
moves. From the analysis of optical phenomena we know, that 
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under the influence of the light, the atom will become a secon­
dary source of radiation; in the language of the classical theory 
of radiation it will act as a dipole which oscillates with the same 
frequency as that of the incident light. The amplitude of this 
oscillation will be proportional to the amplitude of the elec­
trical vector of the incident light, and its phase will directly 
depend on the phase of this vector, i.e. the secondary radiation 
will be coh,erent with the primary radiation. If the electrical 
light-vector at the position of the atom is presented by 

@ = E cos 2nvt (13) 

the oscillating dipole»induced«in the atom can be represented by 

~ - = P cos (2 nvt - 97). (14) 

The ratio PIE and the phase difference 97 are the determining· 
factors for the dispersion, absorption and scattering of the in­
cident light by a gas consisting of atoms of the kind described. 
In fact, if N ~e the nuniber of atoms per ccm., the index of refrac­
tion n will be given by 

2 - 1 - 4 N p cos 'P n . - n E . (15) 

The energy' absorbed from the incident beam will be equal to 
n v NP £ "sin 97 pro sec., _ ~orresponding to an effective absorbing 

11 P sin 97 cross section equal to 8 n2 - - - pro atom. The energy 
C E 

scattered by the atoms i~ all directions in the form of radiation 
· · N {2 nv) 4 P2 

of frequency v will finally be equal to pro sec. 
· 3 c3 

If v does not lie in the immediate neighbourhood of one of the 
absorption lines of the atoms, sin 97 will be very small, and the 
problem of the reaction of the atom on the light will primarily 
consist in finding which function can represent the values of the 
scattering electrical moment P of the atom as a function of the 
frequency v of the incident light; P being reckoned positive or 
negative according as the value of 97 is very nearly equal to 0, 
or to n. 

In order to establish the form of the function P, we will first 
investigate the influence which, on the classical theory, the light 
will have on the motion of the atomic system. Let the electrical 



moment of the atom be ~, and let us assume that in the un­
disturbed motion, ~ is represented by the series: 

+ 00 1 . 
~o = R .Ii- - Ci-e2nr-rrot. 

-00 2 
(16) 

The symbol R means, that the real part has to be taken. The 
summation has to be extented over positive and negative integer 
values of T: zero included. The amplitudes C's are in general 

· complex · quantities, satisfying the relation 

C-i-=C-r. (17) 

These amplitudes, as well as the frequency w, may be considered 
as functions of the quantity J defined by ( 1). Then, writing 

~ = ~o + ~1 (18) 

we find, by means of the theory of perturbations, that when the 
atoms is exposed to the periodical field of force (13), and when 
second and higher powers of E are neglected,· ~ 1 will be given 
by the double infinite series: 

. _ ( _ ) (19) 
... - R E ~ oo ~ oo { ) d C-r C.r--ro C d C-r--ro } e2ni(v I- i- ro)t 
~1 - - ~TI) ~l' -:r-To -- -Ti-- 0 • 

4 -oo -oo · dJ -(r-T 0)w+v dJ -(T-T 0)w+v . 

From ( 19) we see that the light has induced in the atom not 
only a »forced vibration« of frequency v, but also vibrations 
the frequencies of which are of the type v + T0w. Only in the 
case of a harmonic oscillator (all C's zero except C±

1 
) these 

»compound« frequencies will not appear. 
Consider first that part of (19), which corresponds to a dipole 

of frequency v, and for which consequently r 0 = 0. Representing 

it by ~, we can .write it in the form 

~ .=RE ]i- T !!_ (~~) e2nivt. (20) 
't' 2 1 d J (rw)2_,_,2 

Now this expression can be transformed so as to refer to the 
actual properties of the atom, by replacing the differential coeffi­
cients in an adequate way by quotients of differentials. In the 
case of the formulre (7) and (6) such a transformation was 
brought about by letting the differences on the right hand term 
refer to two stationary states, while the left hand term referred 
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to a transition between these two states. Such a thing is not 
possible here, however, since the expression for the scattering 
electrical momentum .of the atom, · which appears on the left 
hand side of (20), necessarily must represent a property of a 
given stationary state of the atom. In agreement with this, the 
differences appearing when transforming the right hand side 
will refer to two transitions; the stationary state in question 
being the final state for the one and the initial state for the 
other. In fact, the asymptotical relations (9) and (12) suggest 
directly that we must transform (20) in the following way: ' 

where the left member refers to the scattering momentum in the 
nth stationary state. There has been no question of a rigid de­
duction of (21) from (20), but there are several reasons which 
make it possible for us to believe that formula (21) is right. 
First of all, it is easily proved, that in .agreement with the cor­
respondenc~ principle, the formulre (21) and (20) become as­
symptotically identical in the limit of high quantum numbers. 
Further the formula (21) contains only quantities which are 
directly measurable by experiment, viz. the frequencies of the 
light which the atoms may radiate and the quantities A which 
govern the intensity of these radiations. 

A peculiar consequence follows from the circumstance that 
there do not exist stationary states co.rresponding to all posi­
tive and negative values of n. If, for instance, only such states 
exist for which n=0,1,2 . .. , a great number of terms appeari _ng 
in (21) have to be left out. Denoting by the index abs any quan­
tity r~f erring to transitions which the atom in a given state may 
perform by absorption of light to a state of greater energy, and 
by the index em a quantity referring to a transition to a state 
of less energy, (21) may also be given the form: 

m = ~ { ~ A;b, Vaf,s _ ~ A;~ ;,,m }· 2 t 1" 2 h ~ 2 , ~ , 2 cos nv 
absVab,-V em v,.m-V 

{22) 

where the summations have to be extented to all the absorption 
and all the emission lines of the atom in · the state under conside­
ration. 



In the special case where the atom is in its normal state, 
viz. the state of smallest energy, no emission of ·radiation is pos­
sible, and no terms exist belonging to the second summation . 
inside the brackets. In other words the subtrahends appearing 
in the »differences« by which the classical differentials were 
replaced, disappear; a feature which illustrates very clearly the 
profound difference between the quantum theory of atoms and 
the classical theory of electrons. Formally, the formula thus ob­
tained for the scattering momentum in the normal state of an 
atom, coincides with the classical formula for ·the scattering from 
an atomic system in which the particles can perform harmonic 
oscillations of frequencies v ~bs round their positions of equili­
brium. It leads immediately to a dispersion formula of the Helm­
holtz-Ketteler type, which has been confirmed by experiments 
on dispersion in gases and vapours, not only in frequency re­
gions far from the frequencies of the absorption lines which 

form singular points for the function ~, but also in the neigh­

bourhood of these ·lines, where ~ assumes very large values 
giving rise to the so-called anomalous dispersion. In the 
immediate neighbourhood of an absorption line, formula (22) 

must be expected to fail. This is connected with the fact, that 
even the classical formula (19) only holds if vis different from 
any of the natural frequencies 1:w of the system, since in case 
of coincidence the change of the motion of the eJectron due to 
the external wave field would, . due to resonance, no longer be 
small. The problem of the corrections to be applied to (22) . in 
order to represent the scattering also inside the absorption lines 
has not yet found a satisfactory solution. 

If the atom is in one of its higher states, also terms belonging . 
to the second sum inside the brackets of (22) .appear. In the 
neighbourhood of the frequency Yem of an emission line, the atoni 
will then give rise to an anomalous dispersion of similar kind 
as in the case of an absorption line, with the difference that the 

sign of ~~ is reversed. This socalled »negative dispersion« is 
closely connected · with the prediction made by Einstein, that 

. the atom for such a frequency will exhibit a »negative absorp­
tion«, i.e. light waves of this frequency, passing through a great 
number of atoms in the state under consideration, will increase 
in intensity. 

Until now we have only considered those terms in the ex-



152 

pression (19) which·correspond to To= 0, i.e. we have investigated 
that part of the classical sca~tering which has the same frequency 
as the incident light and is coherent with it, and we have 
established the analogon of those terms in the quantum theory. 
To the other terms in (19), there correspond, however, also well 
defined mathematical expressions in the quantum . theory; . these 
expressions mean that the atom, under the influence of the light, 
will not only scatter radiation of the same frequency, but also 
radiation of other frequencies, the intensity of which, however, 
is again proportional to the intensity of the incident light. The 
classical frequencies of these radiations being of the form Iv+ Tow!, 
we are, from the correspondence principle, naturaUy led to ex­
pect that in the nth state of the atom these frequencies will be of 

the form I v + v: _ 1:0 I or j v + v: + 1:0./ , where· v; should be put equal 

to - vb if b should be larger than a. It would lead us too far to 
a 

give in detail the transformation of ( 19) which in these cases 
leads to an expression of the amplitudes of the scattering mo­
mentum of the atom, and the reader is referred to the second 
paper cited in the literature reference . . We will only add a few 
remarks regarding the finite results. 

If To is positive the scattered frequencies are· of the type 

v + v: _ -r
0 

and their amplitudes will contain terms of the type 

E n+-r n+1:( 1 1 ) 
4 h An - l' An v" + -r_ v + v" + -r + v 

n n - -r0 . 
(23) 

where -r represents some whole number. Besides these terms 
also other terms of similar structure appear. In order to obtain 
these expressions, it is ~ecessary not only to replace the differen­
tial coefficients in (19) by the quotients of differences, but also 
to replace the factors which contain the amplitudes C in a non 
differentiated form by half the sum of two quantities referring 
to two definite transitions. It is interesting in this connection 
to remember that also in the mathematical theory of difference 
equations, one is lead from the very beginning not only to con-

sider differences of the type_!_ [{ (x + ro)- f (x)], but also sums 
w 

of t~e type ! [f <x + w) + {(x] (Comp. N. E. N~rlund, Diffe­

renzenrechnung). 



If To is negative, the scattered frequencies are partly of the 

type v + v: _ 7
0 

= v - v:-7o, corresponding to values of To for 

which this expression is posmve; partly of the type I V + v: + 7o I = 

v~ + i-
0
--v, again corresponding to values of To for which the last 

expression is positive. In both cases the amplitudes are again 
expressed by sums of terms, the structure ·of each of which is 
.similar to that of the expression (23). -

The generalization of our considerations to systems of more 
degrees of freedom, the motion of which is not of a simply pe­
riodic, but of a so"'."called multiple periodic type, and the sta­
tionary states of which are determined by more than one quan­
tum number, does not involve any difficulty, and no new features 
are brought to light by its results. An exception is f ornied, 
however, by systems for which the number of quantum numbers 
determining the stationary states is less than that of degrees of 
freedom. In the case of such systems, which often are called 
»degenerate«, and of which the undisturbed hydrogen atom forms 
an important example, it has not yet been possible to solve the 
problem of the amplitudes of the scattered radiation in a satis­
factory way, the difficulty being mainly that of determining the 
character of the polarisation of the scattered rays. 

The results of which I have tried to give you some idea in this 
lecture suggest the possibility of a theoretical treatment of atomic 
properties, in which from the outset all formula referring directly 
to the classical theory of electrons are banished, and in which 
only formulre having a direct meaning in the sense of the quan­
tum theory are allowed. Although it is uncertain on what lines 
such a program can be worked out and carried through, interest~ 
ing and promising results have already been obtained -in the 
papers ( 3) and ( 4) mentioned in the literature · list, which 
contain an audacious attempt of developing a new »quantum 
mechanics«. 
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