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I. Introduction. In the course of the development of modern 
atomic theory the Zeeman-effect has repeatedly played a promi­
nent part: Two outstanding instances hereof may be briefly recalled 
in the following. Immediately after its discovery in 1896itproved:­
on the basis of L o r e n t z' analysis - to lend a most convincing 
support to the idea, that small, negatively charged particles> 
identical with those discovered in the cathode rays, were present 
inside the atom and constituted, through their vibrations, the source 
of the electro-magnetic disturbances giving rise to spectral lines. The 
fact, however, that many spectral lines show a Zeeman-effect of 
the so-called anomaJous type, remained for a long time a serious 
difficulty. On the one hand, Lorentz' and Vo i g t's formal 
treatments were far from satisfactory from a physical point of view. 
On the other hand, the development of Bohr's views on the origin 
spectral lines during the years l 913-l 925washardlyfit to encourage 
the optimistic view that the anomalous Zeeman-effect might be 
a simple consequence of the quantum laws governing the behaviour 
of electrons inside the atom. 

In 1925 a way out of this difficulty was off~red by Uh 1 en­
beck's and Goud s mi t's hypothesis of the electronic spin, 
according to which an electron should possess - besides its mass and 
charge - an intrinsic rotational moment accompanied by a magnetic 
moment. Among the experimental facts leading to this hypothesis, 
the laws of the anomalous Zeeman effect, as formulated by 
L a n d e , ranked first. 

II. Classical spin problem. Aim of this paper. A point-electron 
(mass m, charge -e), moving in a central field of force gives rise to 
a magnetic moment equal to its rotational moment multiplied by 
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-e/2mc. In order to explain the anomalous Zeeman-effect 
Uh 1 en beck and Goud s m it had to assume, that, the corre­
sponding ratio between magnetic and rotational moment of the 
electronic spin is twice as large, viz. ~efmc. The analysis of possible 
classical models of a rotating electro _n showed that - although a 
difference between the two said ratios was to be anticipated -
arguments along these lines would be insufficient to predict in an 
unambiguous way the factor 2 required by experiment. 

Di r ·a c's ingenious treatment of the relativistic . wave equation 
of the electron ( 1928), in which the idea of electronic spin was not 
primarily introduced, seems to have thoroughly changed the aspect 
of the theoretical problems involved. In fact, the physical content of 
Di r a c's linear equations - when interpreted in the limit of small 
velocities - reflects exactly all the properties of the electron . 
including those pertaining to the spin, both the factor 2 and the 
value h/2 for the spinmoment appearing automatically. Thus the 
optimistic view, to which we alluded in part I, appears to be justified 
after all, and one is tempted to adopt Di r a c's elegant formalism 
as a primary basis for our description of the electron's behaviour. 

Should therefore any investigation which approaches the spin 
properties from a purely classical point of view, such as for instance 
Uh 1 en be c k's and Goud s mi t's original treatment, be 
rejected as inappropriate? There are several reasons which urge us to 
be cautious with our answer. The famous difficulty of the negative 
mass - even though it be mitigated to a considerable extent by the 
hole theory - · shows us that even Di r a c's theory cannot be 
considered as a satisfactory foundation. Furthermore we may recall 
the anomalous value of the magnetic moment of the proton, which 
was recently discovered by Stern & Frisch. There is no a­
priori theoretical reason why the Dirac equations should apply 
to the electron and not to the proton. 

In view of this situation, it is perhaps not without interest that 
even a consideration, in which the idea of electronic spin is introduced 
in a purely classical way, affords a simple interpretation of the value 
of the ratio between the electrons magnetic and rotational moment 1). 

The argument rests uniquely on the principle that a consistent set of 
relativistically invariant equations of motion should be established, 

1) H. A. Kramer s. On th e classical theor_v' of the spinning electron. Physiea 1, 

825, 1934. 
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which - in a system of coordinates moving with the electron -
reduces to the well known laws, expressing ho\\r only the electric 
field (in first approximation) governs the acceleration and how o:r:ily 
the magnetic field governs / the precession of the spin-vector. 
Considerations pertaining to a detailed classical model of the electron 
do not enter at all. 

In this paper we will show that a classical spin theory developed 
along these lines is intimately connected with Di r a c's theory of 
the electron. In fact, if a process of quantization is applied in which 
the quantum-number of the spin -is put equal tot and if the classical 
hamiltonian is chosen in an appropriate way, the result will be 
identical with D i r a c's formalism. 

III. Equations of motion. In our paper cited above the equations 
governing the precession of the spin-vector were written in the 
relativistically invariant form: 

dS 
d-r = IX [SF], (1) 

where d-r denotes "the element of eigenzeit, whereas Sand Fare two 
complex vectors: 

S =A+ iB, F= H+ iE. (2) 

A and B, which characterize the spin, transform under a Lo­
rentz-transformation as H and E (magnetic and electric field 
strength). A Lorentz-transformation corresponds to a (generally 
complex) orthogonal transformation of the components of Sand F. 
The condition that B always vanishes in an inertial system moving 
with the electron leads to the relativistically invariant relation: 

1 
B = - [Av], 

C 
(3) 

where v is the velocity of the electron. 
In a system in which v = 0, the real part of ( 1) reduces, to the 

unrelativistic classical description of the behaviour of a spinning 
electron with spin-vector A (i.e. vector of rotational moment) in a 
magnetic field H, IX being the ratio between magnetic and rotational 
moment: 

(4} 
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The imaginary part of ( 1) reduces in the same system to : 

B = oc [AEJ (5) 

If the reaction of the spin on the orbital motion may be considered as· 
very small, this motio.n will- always for v = 0- obey the law: 

vm =-eE (61 

so that (5.) takes the form: 

(7) 

If, now, we derive (3) with respect to the time and put v = 0, we 
obtain a formula which, when comparing with (7), leads immediately 
to: 

e 
oc=-­

mc 
(8) 

If one wishes to take the reaction of the spin on the orbit into 
account without abandoning the rigorous validity of (3), equation ( 1) 
has to be considered as a first approximation only. The procedure to 
be followed in order to develop a more complete theory along these 
lines is not unambiguously prescribed. At present we will leave this 
question apart; we do not Know if its treatment will lead to results of 
physical interest 1). 

IV. Canonical form. Before quantizing the equations of motion 
(6) and (1), it will be necessary first to establish a hamiltonian 
equation, from which they both can be simultaneously clerived. For 
this purpose let us first consider the equations (4), in which only real 
vectors occur. They can be written in canonical form if - in 
agreement with the ordinary treatment of a dipole in a field · - the 
energy is taken to be : 

HA= -(I,. [AH) (9) 

1) The development of the theory to higher approximations seems to require that to 
the electron, besides an electrical charge (monopole) and a II}agnetic moment (dipole), 
should be attributerl also an electric3l quadrupole, a magnetic octopo!e, a.s.o. These poles 
of higher order disappear automatically if a quantization is applied which gives the .· 
e!ectron a spin-moment of only h/2. 
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There is only one degree of freedom, and for the canon1cal coordinates 
one may choose: 

This corresponds · to the following values for the Poisson­
brackets: 

The equations governing the change of A: 

are seen to be identical with (4) if the expression (9) for HA 1s 
adopted. 

The equations ( 1) can be treated in an exactly analogous way: 

H 5 = -(l (SF) 

{51 52} = - 53 , cycl. 
(10) 

d5k = _ ~ {5k Sz} oH~ 
d-r z o5z 

Formally we have still to do with a system of one degree of 
freedom, the canonical coordinates being ,for instance: 

52 p = 5 1, q = arc tg 
53 

, 

but these coordinates are complex and so is the hamiltonian H 5 . 

This circumstance need n.ot alarm us. Separating everywhere real 
and imaginary parts: 

p = P' + ip'', q = q' - iq", H = H' (P' p" q' q") + iH" (P' p" q' q"), 

it is easily verified that the complex equations of motion: 

dp oH dq 
d-r = - ~ , d-r (d:-Ie/iJ) 
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correspond to real canonical equations of a system of two degrees of 
freedom in which either H' or H" is taken as hamiltonian: 

dp' oH' dq' oH' dp' oH" dq" 
d-r -- oq' d-r op' d-r oq" d-r 

or (11) 
dp" oH' dq" oH' dp" oH" dq' _ oH" 
d-r: - oq" d-r op'' eh oq' d-r - op" 

This consideration shows that - besides (10) - two alternative 
ways of deriving the equations from a real hamiltonian offer 
themselves. For this purpose we have to introduce besides S its 
corn plex conjugate vector S * : 

H; = _ (I. (SF) + (S* F*) 
2· (10a) 

{51 52} = - - 25 3, cycl.; {Sf Sf}= - 2Sf, cycl.; {Sk Sr}= 0 
' -

H
" _ _ (SF) - (S* F*) 
s- Cl. 2i 

{51 52} = - 2i 5 3, cycl.; {Sf Sf}= - 2i5j {Sk St}= 0 

dSk*) = - ~ {S(*) s} oH s - ~ {S(*) S*} oH s 
d-r i k i oSi i k i oSt 

where Sk*) means either Sk or Sf. 

( 1 Ob) 

The system is now explicitely treated as one of two degrees of 
freedom; the expressions for the Poisson-brackets are found by 
taking the four real canonical variables (comp. ( 11)) explicitely into 
account. 

For completeness we might finally mention the alternative of (10) 
which arises when, in stead of S, its complex conjugate S* is 
introduced: 

From (2) we find: 

Hf = - (I. (S* F*) 

{St Sf} = - Sf, cycl. 

dSt = _ ~ {S* S*} oH! 
d-r i k i oSf 

(SF) = {(AH) - (BE)} + i {(AE) .+ (BH)} 

(10c) 
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It would therefore appear most natural to adopt the form H~ 
given by (10a): 

H~ = - rx { (AH) - (BE)} 

since, in an inertial system moving with the electron, it reduces to the 
familiar real energy expression (9). If we adopt the simpler form H 5 

or Hf given by ( 10) or ( 1 Oc) it looks at first sight as if we formally 
introduced an imaginary electrical moment of the electron equal to 
- irxA or + irxA respectively. 

The equations of motion (6), in which the spin is neglected, can be 
derived from the familiar hamiltonian equation: 

Ho == _1 {- (e: + e<l>)2 + (p + !_ U1\2} = - i. mc2 (12) 
2m c2 c • J 2 

de: oH0 dt oH0 --
d-r: ot ' d-r: oe: 

dpi oH0 dxi oH0 -- -
d-r: oxi ' d-r: opi ' 

, where e: is the energy and p the momentum of the system, <I> the 
scalar and 'I' the vector p9tential of the external field, while d-r: 
denotes again the element of eigenzeit. 

Within the limits of the validity of our classical analysis (i.e. S so 
small that the r~ction of the spin on the orbital motion is negligible) 
a hamiltonian H which simultaneously governs the orbital motion 
and the spin-precession will be simply obtained by replacing H 0 in 

. ( 12) by the sum of H O and the hamiltonian which governs the spin: 
. 2 

H == _l {- (e: + e<I>) + (p +~'I')~} + .!_ (SF) = 1'-nic2 , 
2m c2 c me 2 

or, multiplying by - 2m: 

- (e: + e<l>)2 e 2e 
- 2m H = H = - (p + - '1')2 - - (SF) = m2c2 (13) 

c2 C C 

Here we have based ourselves on (10). Using in stead (lOa), (10b) 
or (10c) we might replace (SF) in (13) by t {(SF)+ (S*F*)}, 
-ti{(SF)- (S*F*)} or (S*F*) respectively. In view of the approxi­
mation involved (S very small), either of these four expressions may 
be chosen, although the choice t{(SF) + (S*F*)} might seem the 
most natural one. 
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It appears difficult, if not impossible, to establish a hamiltonian 
equation, in virtue of which the condition (3), which has practically 
the effect of reducing the two degrees of freedom of the spin to only 
one, is automatically fulfilled 1). 

V. Quantization. In order to quantize the motion governed by the 
hamiltonian equation ( 13) or one of its alternatives, H must be 
considered as an operator H 0p acting on a wave function l.jJ: 

(14) 

If the spin is to be given a quantum number t and if we restrict 
ourselves to (13), the following familiar expressions will have to be 
adopted: 

"h 0 
E='t ~' 

"h 0 P·=-i -
i oXi' 

hlO 52 = 2 1 S =!!_I O -i I 3 2 i 0 

( 15) 

( 16) 

The commutation properties of these expressions satisfy the neces­
sary conditions corresponding to" the properties of the analogous 
Poisson-brackets. The introduction of the Pa u 1 i spm­
.matrices for S means that l.jJ, besides on x 1x2xi, depends on a spin 
variable which only can take two values, for in$tance the eigenvalues 
± h/2 of 5 1, so that l.jJ can be represented as a set of two wave 
components l.jJ+, l.jJ_. 

The relativistic invariance of this choice for Sis made clear by the 
investigations of We yl and van de r W a er den; it follows 
from the fact that to each Lorentz-transformation a unimodular 
transformation of the wave-components may be assigned in such a 
way that l.jJ~, l.jJ+l.jJ-and l.jJ:_ transform like - F 2 + iF 3 , F 1 and 
F 2 + iF 3 respectively. With this convention the Pa u 1 i matrix 
components will transform exactly like the components of F 
( = H + iE). It is interesting to note that the components of S 
remain hermitical even when they undergo a complex orthogonal 
transformation. 

1) This question cannot be settled, anyhow, before a cbss ica l system of equations of 
motion has been established, which allows the condition (3) to be rigorou~ly fulfilled, anrl 
not only approximately as in the ca$e of the hamiltonians considered above. 
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Introducing (15) and (16) into (13) in order to construct H 0p, the 
equation (14) assumes exactly the form which Dirac obtained by 
,,squaring"hislinearequations. The latter may be got back from (14) 
by observing that the H 0p thus constructed factorizes in the 
following way: 

H ={ ·e: + e<l> _3_ ( +!_'I' S)lfe: + e<l> + ~ ( +!!_'I' S)} 
op C hp C 'Jl C hp C'. 

Consequently, putting 

{ 
e: + e<l> 2 e l _ 

C + h(p + c'I', S)Jtj;- mcx, ( 17) 

x will satisfy the equation 

{
e:+e<l> 2 e l' 

c - h (p + c 'I', S) J x = me tjl. ( 18) 

Since tj; andx are both two-component wave funct~ons, ( 17) and ( 18) 
repi;-esent a system of four simultaneous equations. They are equi­
valent with D i r a c's equations. 

If, in ( 13), we had substituted (S*F*) for (SF), we should have had 
to introduce for the components of .S* exactly the same matrices ( 16) 
asgivenfor those of S, but the two-component wave function X+, X­
to be introduced now would have to be such that x2+, X+X.- and x~ 
transform like -F! + iFf, Ff and Ff + iF.f respectively. It is 
easily verified that the corresponding hamiltonian Htp factorizes as 
follows: 

H* = {e: + e<l> + ~ ( +!!_'I', S*)}{e: + e<l> - ~ ( + !_'I', S*)} 
op C hp C C /z.p 0 

and that we consequently are led precisely to the equations ( 17) and 
(18) again. Since x.2+, X.+x.- and:x.~ transform like-y;~, tj;!_tj;'!j_, - tj;~_2 
we see that X.+ and X.- transform like tj;!_ and -tj;'!j_ respectively; this 
result is well known from y an de r W a er den's analysis. 

VI. Concluding remark$. In the foregoing we have established the 
intimate connection between Di r a c's linear equations and a 
purely classical analysis. It would lead us too far to trace this 
connection in further detail. It may be pointed out, however, that it 
has been brought about by chosing for the spin-part of the Hamil-
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tonian the complex expression ( 10) or ( 1 Oc). It involves an imaginary 
electrical moment, but, from a formal point of view, it is much 
simpler than the real expressions H; in ( I Oa) and H; in ( I Ob). From 
a physical point of view it would perhaps be more natural to ~hose 
the hamiltonian (10a). This would correspond to the hamiltonian 
equation: 

H ~ (c: +t1>)
2 

- (p + ~ '11)2- ~ {(SF) + (S*F*)} = mh. 
C C C 

The straightforward quantization of this equation, however, leads 
not to the simple Dirac-theory, but to a Sc h to ding er 
equation of a more complicated type. It would, indeed, lead us to 
consider 'Yin (4) as depending on two spin-variables, both of which 
take only two values. Thus 'Y would now be a four-component wave 
function and its four components would satisfy four simultaneous 
differential equations of the second degree. 
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