
Non-relativistic Quantum-Electrodynamics 
and correspondence Principle 

by H. A. Kramers 

I. 

INTRODUCTION 

In Lorentz'theory of electrons we start by introducing some hypo­
thesis regarding the structure of the electron; at some later stage it 
is then found that many features of the interaction between electrons 
and radiation field involve only two constants characteriztng the 
electron, viz. its charge e and its mass m. This result is the fundament 
for the numerous classical applications of electron theory to actual 
problems and experiments. In all of these the electronic structure 
plays no explicit part; only e and m appear in the formulae and m 
which in the theory appears as the sum of the inertial and the electro­
magnetic mass, may therefore also be denoted as the experimental 
mass. It is of importance A : to find the simplest way in which the 
structure-independent part of the assertions of the electron theory 
can be mathematically expressed, and B : to bring these expressions 
in the form of canonical equations of motion. In fact, we will 
thereby have obtained a trustworthy basis for a quantum-theory 
of interaction between charged particles and field, i. e. for a quantum 
theory which shows the necessary correspondence with that part 
of the classical electron theory which is of physical importance. 

In literature, the structure-independent assertions of the electron 
theory are usually presented in a way which involves the application 
of retarded potentials (compare the well known expression 2e2/3c3."x 
for the radiation reaction), whereas for the solution of· problem 
A mentioned above it is preferable that no notions should be 
introduced which conceal the symmetry of time. This requirement 
can be fulfilled, however, in a natural way if we introduce the « pro­
per » field of an electron in the way in which it was done in my 
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monograph on quantum LhCllry ( 1) and in my paper delivered at the 
Galvani congress in Bologna 1937 (2). A definite solution of pro­
blem A has been proposed in these papers (in non-relativistic appro­
ximation), but the equations of motion were only discussed in some 
detail as far as the field equations are concerned 

The solution in question has been taken as a basis for two papers 
of 1941. In the first of these, Mr. Serpe (3) shows how it can be · 
used for correcting certain points in the quantum theory of a har­
monic oscillator emitting a light quantum. In the second Mr. Opech­
owski (4) succeeds in establishing to a certain approximation a Hamil­
tonian for the equations of motion, i. e. he gives an approximate 
solution for problem B mentioned above. 

In this report we will present an approximate treatment of A and B, 
i. e. of the problem of structure elimination and discuss, on this 
basis, certain problems of quantum electrodynamics. The appro­
ximations involved refer first of all to the use of Lorentz' old model 
of the rigid electron. Our treatment will therefore be non-relativistic 
in this sense that our formulae will only be valid in the region where 
the velocities of the electron are small compared to the velocity of 
light. A relativistic treatment would indeed hardly seem possible 
or promising : on the one hand there exists no relativistic classical 
electron theory which provides us with a precise and simple model ( *) 

of the contractile electron and its interaction with the radiation field, 
on the other hand the spin property of the electron and Dirac's 
theory of 1928 warn us that the requirements of relativity are met 
in nature in a way which is hardly properly reflected in any classical 
theory. Another approximation in our treatment will be that we 
restrict ourselves mostly to the interaction of the electron with the 
electric dipol.e radiation only; this means for instance the neglect of 
radiation pressure on the electron, which may be said to be due to the 
magnetic dipole radiation and which in quantum theory is reflected in 
the recoil of the electron from the incident and emitted light quanta. 

In several respects our treatment will show similarity with a well 
known paper by Bloch and Nordsieck (5). There, the « bound » 

light quanta carried along by the moving electron were eliminated 
by a proper transformation; they are practically identical with what 
we call the proper field of the electron. It will be seen, however, 

(*) The only precise model I know of would necessitate the conception of the 
electron as a relativistic elastic body along the lines of Herglotz' theory of 191 l, 
which would endow the electron with an infinite number of degrees of freedom. 
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that our discussion and results move along lines rather different 
from those followed by the mentioned authors. 

It would seem as if our treatment first of all allows an analysis of 
emission, absorption and scattering of light which supplements 
that hitherto presented in literature. In the second place it also 
throws some light on the problem of the divergencies in quantum 
electrodynamics and on the questions connected with the Lamb­
shift, although of course these problems, for their exact treatment 
require an analysis which goes beyond the approximations which 
we have imposed upon ourselves. 

II. 

ELIMINATION OF THE STRUCTURE FROM THE EQUATIONS 

OF MOTION 

Consider one electron in the E, H field, the latter satisfying every­
where the Lorentz equations (light velocity = 1) : 

rot H = 4 1t J + E , 
rotE = -H 

div H = 0 

div E = 4 1t p 

Take for the electron a rigid body of mass m0 and charge e. The 
mass distribution has central symmetry and extends over a region 
the linear dimensions of which are of the order of magnitude a 
(« electron radius »). If the wave lengths caracterizing the fields 
which affect the electron are large compared to a, a structure-inde­
pendent behaviour of the electron can be expected if its velocity 
stays small compared to that of light, and we may also assume that 
the electron does not rotate. 

The electron equations of motion are 

oU 
m

0 
R :::_-: e E + e R I\ H - --~­o R (1) 

R denotes · the position of the electron centre and U the potential 
energy of the electron in a fixed field of force such as might arise from 
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a fixed distribution of electric charges. If the latter is the case, 
our E does not include the field strenght due to these charges. The 
symbol Q is a mean value explained by 

e Q = J Q p dV 

With our model we have 

J=pR 
We introduce field potentials by 

H = rot A, E = -v cp-A, div A= o 
Thus 

~cp=-41tp 

~A-A = D A - = 4 1t Tr J = - 4 1t Tr p R = - 4 1t p R + v ~ (2) 

where Tr B stands as a symbol for the transversal or solenoidal part of 
a vector field B. 

The Coulomb potential cp is given by 

cpp = } (pQ/rpQ) dV Q 

At a distance r from the electronic centre large compared to a we 

have 
cp ~ e/r 

We now divide A into two parts 

A= A1 + A0 

where A0 is the divergence-free solution of 

rot rot A0 = 4 1t Tr p R 

(3) 

(4) 

Thus with neglect of terms of the relative order R.2, A.0 is the diver­
gence-free vector potential of a uniformly moving electron in radia-

tion-free space, which at time t has the same R and R as the actual 
electron. By definition we call A0 the vector potential of the « pro­
per » field of the electron; similarly we call A.1 the vector potential 
of the « external » field. 

The solution of ( 4) is 

A0 r = J Tr (]Q/rpQ)dVQ = J (JQ/2rPQ + rpQ(rpQ}Q)/2rt0 )dV0 (5) 
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At distances r » a this field reduces to 

Ao :: e (R/2r + ,c, R) /2r3) 

For Ao one finds 
= e _,_ 
Ao= 0- R 

a 

Tr (eR/r) 

(6) 

where the numerical factor 0 depends on the p distribution (for a 
surface-charged sphere of radius a we have 0 = 2/3). The same 
factor appears in the expression for the electromagnetic mass µ : 

e2 
µ = 0-

a 

The electric field strength can be written 

E = A1 - Ao - v cp 

Now Ao depends on t both through R and R . Hence 

-Ao= -CR o/o R)Ao + F 

(7) 

F =-(Ro/?> R)A0, Pp=~ S (R/2rp 0 + rp0 (rp0 .R)/2ri0 )p0 dV0 

At distances r » a, F reduces to 

F-=:: - Tr(eR/r) 

whereas for F we find 

(8) 

We now define the« proper» electric field as the sum of the Coulomb 
field -v cp and a transversal part E0 defined by 

E0 = - (R o/o R) A0, 

which at distances r » a reduces to 

Eo :: e ,. (R.2/2r3 - 3(R..r)2/2rs > 

The proper magnetic field is defined by 

Ho= rot Ao 

and reduces for distances r » a to 
- - ..:..... - 3 Ho = e RA r/r 
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Apart from terms of the relative order R.2, Eo and Ho are the (trans­
versal) electric and magnetic field of the uniformly moving electron 

mentionned above. The averages E0 and Ho both vanish; the same 

.holds for - v ep. 

The « external » electric and magnetic field are · defined by 

E1 = E + v ep - Eo == - A1 + F 
H1 = H-H 0 = rot A1 

(10) 

(11) 

Through F, E1 will behave like R/r in the neighbourhood of the 
electron. 

Introducing (lO) and (11) into (l) we get 

mo R = - e A 1 + e F + e R /, rot A1 - o U /;) R 

Using (8) and introducing the experimental mass m of the electron by 

m = mo + µ = m0 + 0e2/a 

the equations of motion take the simple form 

(12) 

m R = - e A 1 + e R /\ ~ 1 - o U/o R (13) 

For the field equation satisfied by A1 we get from (2) and (3) 

rot rot A1 + rot rot Ao = 4 1t p R - A1 - Ao - ov ep/;) t 

The second term on the left hand cancels against the first and the last 
term on the right, so we are left with 

c= A1 = Ao= l (R o/o R) + 2(R c)/o R) (R o/o R) + (R o/o R) 

+ (R o/c) R)2 (' Ao (14) 

where the symbolic notation in the last member will be easily under­

stood . . It shows that there are three types of terms in Ao, viz. terms .. . 
linear in R, terms linear in R and linear in R, and terms cubic in R, 
the coefficients being still functions of R (and x, y, z). 

Until now everything was purely formal. The physical question 
which arises is whether or - if not - to what approximation (13) 
and (14) together give us a structure-independent description of the 
system. Since in ( 13) the experimental mass itself occurs, the question 

refers clearly to the behaviour of A1. If A1 and A1 are prescribed 
at t = 0 in such a way as to present the necessary singularities (requir-
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ed by the form of Ao) but no infinities at the electrons position 
will they - at later times - behave in a way which does not depend 
on the particularities of the charge distribution, such that the motion 
of the electron and the evolution of the field can be said to depend 

only on e and m? First of all it is clear that A 1 and A I should be 
prescribed to be sufficiently smooth functions (characteristic wave-

lengths all large compared to a), so that the mean values A and rot A 
are equal to the values of A and rot A at the centre of the electron. 
But even so, we can be sure that - rigorously- A will in the course 
of time develop a structure-dependent singularity near the electron. 
In fact we know that - rigourously - the electromagneti~ momentum 

of the electron apart from the main term µR will contain structure­

dependent terms proportional to the higher odd powers of R. This 

means that A 1 and A 1 will in short time take such values that ( 13) 
accounts at least for this (from relativity point of view erroneous) 
dependency of momentum on velocity 

Still, within a certain approximation, (14) will certainly possess 
solutions with the structure-independent behaviour which we require. 
In fact, denoting by Hom. a smooth singularity-free solution of the 
homogeneous equation ~J A1 = 0 and by Inh. the well known time­
symmetrical solution of the inhomogeneous equation (5) (half sum 
of retarded and accelerated potential) 

Jnh,p = % f ([p0R/rPQ]
1
, = t ~ r + [p0 R/rp0 ]

1
, = 

1 
+ r) dV O (15) 

the transversal part of which, apart from relativistic corrections, 
behaves for near the electron like 

Tr Inh. ;;;; Tr [e R/r],, =, = Ao 

the required solutions of (14) will be 

A1 = -Ao + Tr Inh. + Tr Hom. (16) 

For later use it will be convenient here to introduce the (transver­
sal) Hertz vector z1 of the external field, defined by 

(17) 

Comparison with (14) gives 
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From this we find 
- - = _,_ (\_ -

rot ·rot 21 = - A 2 1 = - 2 1 - Ao -= - - (A1 + Ao) 
M 

= Tr E = E 1 + Eo (18) 

This shows that 21, and thereby A 1 will necessarily show singularities 
at the electron's position since E1 and E0 become infinite like 1/r and 
ljr2 respectively; at the same time we sec that 21 and A.1 stay finite 

and may be sufficiently smooth that 21 r ~ ,, =- 21 and A1, ,: 0 = A.1 
are fulfilled. ln the electric dipole radiation approximation discussed 
in the next paragraph E0 may be neglected. 

III. 

' 

ELECTRIC DIPOLE RADIATION ONLY 

Consider in particular the case where the influence of retardation 
and acceleration on p in (I 5) may be neglected, i. e. where as far as r 
is concerned we may reckon with a fixed position of the electron in 
space. In that case an analysis of Hom. in multipole radiations is 
indicated and we need only retain the electric dipole radiation. 
Then (16) assumes the form 

- 1_,__ 1...!_ ...,_ 1~ _,_ 
A1 =eTr(2 Rr' =t +r + .2 Rr' = r-,- R,.=,-2 S,. =1+, + S,. =1- ,)/r 

( 19) 

where S is the derivative of a vecto'r the components of which are 
arbitrary functions of an argument t'. We see that (19) is a solution 
of (14) in which Ao is considered independent of R. Developing 
in terms of powers of r we get 

- 1~ = 1= 
A 1 = e Tr( 2 R r + ... - S - 6 S ,2 - ... ) (20) 

In our particular case we may in the equations of motion ( 13) neglect 
the Lorentz force since the magnetic dipole radiation was neglected 

and we have to use (20) only in order to find the quantity A which 

- on our theory - should reduce to the value at the origin r = 0. 

Thus only the term S counts in (20), and we find for what from a 
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simplistic point of view may be called the external electric field acting 
on the electron ( *) 

...!... 2 !.!. 

- A 1 = - A lr=o = J e S 

Thus the equation of motion for the electron becomes 

.!.!. 2 - -
m R = 3 e2 S - o U /o R (21) 

where S is an arbitrary function of its argument t. 
As a first application consider the case where the E.H field does 

not contain a component of ingoing radiation [ represented by the 

terms R,+r and s,+r in(l9)]. ThenwehaveclearlyS=RandthetermS 
2 = 2 _ 

3 e2 Sin (21) becomes the well known radiation reaction term 3 e2 R. 

More precisely, the condition of no ingoing radiation only requires 
that R equals S for all values of the argument above a certain mini-

mum value; the R term will then be correct for all t-values larger 
than this minimum. We can also put the following problem : 

at t = 0 the quantities R and Rare prescribed and moreover no 
radiation field is present outside a sphere with radius r = r0• Then 
we must clearly put 

S (t') = R(t') fort'> r0 and R(t') = - S(t') fort'< -r 0. In the 
interval - ro< t' < 0 we can still choose R(t') and in the interval 

-r 0<t'<ro still choose S(t') as we like. From t>ro on the Swill 

anyhow be reduced to the R value. 
Next ask for solutions of our equations of motion which are 

purely harmonic in time. This will clearly require that - o U /o R 
in (21) is linear in R, i. e. that we have a harmonic oscillator or even 
a free electron. Considering for simplicity an isotropic oscillator 
with natural frequency k1, we put 

_R = Ro cos kt, S = So sin kt, - o U/o R = - mkf R 

:.:.. 2:.:. 
(•) We have made use of Tr S = 3 S. The following formulae allows us 

to find the transversal part of any vector field 1 (r) the components of which 
depend only on r. Introducing another vector field g (r) the second derivative 
of which with respect to r is equal to rf the formulae runs 

Tr f = Tr g" (r)/r = g/r3 - g'/r2 + g"/r + r(r, - 3g/rS + 3g'fr4- g"/rl) 
- --- d- --d--

= (g"/r- r(r g")/r3) - (r2dr(g/r) - 3 r(r, d/g/r)/r3 
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Then (19) reduces to 

A1 = k e sin kt Tr{Ro (1-cos kr) + S0 sin kr!fr (22) 

and (21) gives us the ratio between Ro and S0, - mk2R 0 
2 - 2-= - 3 e2k3S0 - mk 1R. 

Introducing a new vector To and a phase angle 'YJ by putting 

S0 = TO cos 'YJ Ro = TO sin 'YJ 

k3/K 
tg 'YJ = k2-k 2 harm. osc. 

t K-1 = 2e2 
(23) 

3m 
tg 'YJ = k/K free el. 

where K-1 is a length of the order of the conventional electronic 
.radius, (22) takes the form 

_ _ sin (kr-'Y)) + sin 'YJ 
A 1 = e k sin kt Tr TO (24) 

r 

The electromagnetic field thus behaves like a system of ingoing 
waves which are reflected at the electron and give rise to outgoing 
waves. In the wave zone the resulting standing waves are, due to 
the presence of the electron shifted by the angle 'YJ from the standing 
dipole waves in free space. Fig. 1 gives a sketch of the behaviour 
of 'YJ (k) for a free electron and for a harmonic oscillator. 

Fig. 

According to the assumptions in our theory, (24) can only be 
trusted as long ask is small compared to K (and as long as the am­
plitude To is sufficiently small). For any particular charge distri­
bution standing oscillations described by (24) will be possible, but 
the l) function will in general differ from (23) as soon as k is no longer 
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small compared to K. Only in the particular case where p is given by 

p = e K2 e·- Kr/4 ·r, r 

the 'YJ - function happens to remain unchanged. 
We haves till to investigate whether Rand Scan change exponent­

ially with time : 

- ;) U/;) R = - mk~ R 

Then (19) reduces to 

A 1 --"- K e e ±Kt Tr ) + Ro ( Ch K r - J) - So Sh K r:f r 

Since for physical reasons the field should not increase exponent­
ially with r we have clearly 

Ro= ± So 
On the other hand (21) gives us 

') 
-- .. --- 2-

m K2 Ro = ± 3 e2 K3 S0 - mk, Ro 

Therefore 
K ( K2 + kf) = K3 

This equation has one real root which for the free electron is K = K 
and for the harmonic oscillator still larger. This means that the 
field (25) 

Al = - Ke e±Kt Tr So (1 - e- Kr)/r (26) 

corresponds to a radiation field confined within a region of linear 
extension 1/K and cannot, from our point of view, be reckoned to 
belong to the features of the structure-independent theory looked 
for . It is of course connected with those well known solutions 
of the equations of motion with radiation reaction 

~ 2 - -
m R = J e2 R - I) U /~ R 

which give rise to an exponential behaviour of R with time and which 
are commonly rejected as non-physical. If in the model we let the 
electron radius go to zero. µ to + OC> and m0 to - r:x;. !l + -mo 

remaining constant, we create an infinite source of electric energy 
and solution (26)° becomes understandable. 

In this connection the following point h~h -.ome mathematical 
interest. For the free electron, tg ·r; = k/K. the functions 
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sin (kr -- '1)) form an orthogonal set but it is not complete, there 
being one function, viz. e-Kr orthogonal to them all. 

Having thus learnt that, in electric dipole approximation, the clas­
sical system : elastically bound electron + field, can be considered as 
a sum of structure-independent harmonic oscillators, at any rate if 
we restrict ourselves to states in which the frequencies characterizing 
the system are small compared to K, it is tempting to quantize the 
system by assigning to each of these three-dimensional oscillators 
an energy (1Jk + 3/2) h. In the ground state we find for the energy 
of the system 

3 
e: = l:-hk 

K2 
(27) 

We will surround the electron by a reflecting spherical shell of large 
radius L. The condition that at the wall the tangential component 
of E vanishes leads to 

kL - '1J (k) = 1t N (N = I, 2, 3 ... ) (28) 

The allowed k-values are characterized by the integer N and, since 

1 dr; 
~N=;(L-dk)~k 

the su~ (27) reduces to the integral. 

31z f d·'l e: = - (L- -)dk 
21t o dk 

For free space, 1l = 0, and we get as contribution of the electric 
dipole radiation to the zero point radiation energy in space 

which of course diverges for kmax ~ oo. 
The influence of the electron on e: adds the contribution 

3n skm d·fj 3n (km 
eel. :--::: -

2 
(- k dk dk + "'f'i,,,k,,,) = 

2
- 1 ·fjdk 

~ o 1t.o 
(29) 

if in the two cases -- electron absent and present - we sum over 
the same number of oscillators. This procedure is of course 
arbitrary, the difference between two divergent sums not being well 
defined, but it corresponds to the quantum mechanical formalism 
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by which contributions of this kind are customarily calculated (adia­
batic increase of e from zero to its actual value). 

For the « fluctuation » energy of a free electron we therefore get 

3/i (km 3/i l 
eel.free = l1t ..' 

0 
arctg k/K dk =-= l1t k. arctg k/K 

-~lg(I + k2/K2)/ k = km (30) 

For large k,,, this expression diverges as 
3 n km whereas for k

111 
« K it 

4 
behaves like 

Eel.free = : m ~ (km/K) 2 (31) 

This is the well known result (6) if, with customary perturbation 
methods, one asks for the contribution proportional to e2. There is 
no reason to assign structure-independent significance to the exact 
expression (30) for k-values of the order K or larger. Due to the 
smallness of e2/h we see from (31) that on quantum theory we would 
even have to take k/K small compared to e/\f ,i. Indeed, if for k 
we choose the inverse Compton wave lenght : Ac 1 = lf/m, e:e1. 

1 e2 
becomes 2 ,; m · and from relativity considerations one clearly 

hesitates to go far beyond this k value. The same caution is indicated 
by a consideration of the amplitude of the motion of the electron 
in a classical picture where the oscillators are each given the energy 
3 
2 l't-k. One finds that the mean square of the amplitude in a given 

direction is given by the formal integral 

-- 2 e2 ,, \dk 
ampl2 = - - A- -

7t h c .. k 

which, on closer investigation, shows that the electric dipole appro­
ximation will start to fail when the wave lengths of the radiation 
field become smaller than the Compton wave length Ac 

A consideration ~f the harmonic oscillator yields some poirrts 
of interest. First of all, the application of (29) leads formally to the 
energy increase 

3n •km 

e:harm. osc. = l1t J
O 

arctg k3/K(k2-kf)dk 
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which for km » K diverges in the same way as (30). The difference 
between (31) and (29) however converges. Indeed one finds 

_ ~-~ ckm _ ~ I ~ k1 ~ l 
~ E - 21t l (1Jharm. osc. -1Jrree)dk-;- 2 li.k1 l + 7t K (/g k + C) + ... 

1 .. 0 1 

where the terms neglected contain only the second and higher powers 
of k 1, and where the correction term depends on km and vanishes for 
km~ 00 : 

I 
C = - 2 /g(l + K2/k;,) 

3 
The main term 2 Ii k, is just what should , be expected, namely the 

energy in the ground state of a harmonic oscillator of natural fre­
quence k 1• It corresponds to the area of the shaded rectangle in 
Fig. I, multiplied by 3h/21t. The second term has almost the form 
which Bethe's original formula(?) gives for the Lamb shift of the levels 
of a harmonic oscillator (it is the same for all levels), the difference 
between that in Bethe's formula the K in the numerator of the 
argument of the logarithm is replaced by the inverse Compton wave 
length, which we will call kc. The terms left out are even small 
compared to the natural line breadth kf/K of the harmonic oscillator. 
The correction term C vanishes for km ~ oo but, if we dare not go 
beyond km ;; kc in the integration, it becomes pratically lg (kc/K) 
and we get precisely Bethe's result. In this connection we note that 
Bethe's formula for the Lamb shift in an arbitrary atom can be 
written as the sum 

3 hk~ 
~ e Lamb = 7 Jj 2 7t K' lg(kc/k_;) 

extended over all absorption and emission frequencies ki and where 
Jj if the corresponding oscillator strength. 

Another point which, this time, lies quite within the domain where 
our formulae are significant refers to the scattering of light by an 
elastically bound electron. Consider again our assembly of har­
monic oscillators of frequencies k which we may imagine to take 
the discrete but very finely distributed values determined by (28). 

3 
Let all of them be in the ground state (energy 2 ft k) with the excep-

5 
tion of one (frequency k') which has the energy 2 ft k', the vibration 
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parallel to - say - the x-axis being excited by one quantum Ii k '. 
In this situation light of frequency k' coming from all directions is 
continuously scattered by the electron. By the well known devices 
of collision theory we are then also able to describe the scattering 
of a plane wave (with its E-vector in the x-direction) by the electron. 
The phase shift l'J appears from the outset in our formulre; it is the 
same as that in classical theory but it is now naturally incorporated 
in a pure quantum theoretical treatment which - in contrast to the 
customary Dirac treatment however - corresponds exactly to the 
classical method where scattering is described as a steady state and 
no longer as a generation of light in other directions than the direc­
tion of incidence. In the theory of particle collisions these steady 
states never gave difficulties; in the quantum theory of light scattering 
it seemed difficult to handle them in a rigorous way. 

We will explain this steady-state quantum description in some 
detail. Describe an arbitrary situation of the classical system as a 
superposition of harmonic oscillations of frequencies by means of 
the Hertz vector and the vector potential of the external field [ compare 
(24) and (17)] 

_ _ sin (kr-11) + sin l) 
Z1 = - e ~ Tr T0 k cos kt 

k r 

_ _ sin (kr-11) + sin l) 
A 1 = e k ~ Tr Tok sin kt 

k . r 

(33) 

From this it will be possible to introduce pairs of canonical variables 
qk and Pk belonging to the x, y and z direction of every oscillator. 
Normalizing them in such a way that the Hamiltonian becomes 

we infer from (33) that we may put 

T0 k cos kt = - f (k) qk, T0 k sin kt = J (k) Pk 

(34) 

The factor f can be found by considering the total energy of the 
system 
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In deriving this structure-independent expression we have made 
use of (11), (9), (4) and -- as is permitted in electric dipole approxim­
ation-neglected £0 = E - E'. From [compare (23)] 

R = - r k T0 k sin 1l sin kt = - ~ kf(k) sin 1lPk 

R = - ~ f(k) sin 1J qk 
k 

(35) 

and expressing also H1 'and E1 in the p's and q's respectively by 
means of (33), (11), (32), a calculation shows that (34) is justified 
and that moreover 

The standard formulre for the field become therefore 

-2 ,.,.. ~ ~3 - sin (kr-1)) + sin.,, -E -2 1 = .1 r ~ - qk , 1 = rot rot 1 
k k3L r 

-A ,.,.. ~ /T - sin (kr-1)) + sin 1J -H A-
l= .1r ~"\:-Pk , 1 = rot 1 

k ~k3L r 

! (36) 

If now we promote Pk and 'lk to q-numbers satisfying the well known 
commutation properties, the formalism has become purely quantum 
mechanical. The q's and p's describe the light quanta in the external 
field, i. e. the free light quanta, which are affected by the presence of 
the electron through the appearance of the phase shift 1J, We might 
also call them phase shifted light quanta; the free electric dipole light 
quanta in empty space correspond to 1J=0. In the next paragraph we 
will give a more general quantum mechanical treatment which does not 
·primarily rest on an analysis of the system in harmonic components. 

Returning now to the state considered above where one p, q oscilla­
tor (frequency k') is in the first excited state, all the others in the 
ground state, we will consider what happens if k' is equal to the 
natural frequency k1 or differs from it by an amount small compared 
to the natural line · with kif K. The phase is then nearly rt/2 and 
from (23) or (35) we see that the amplitude of the electronic motion 
(classically or quantum mechanically considered) is much larger 
than when k' lies outside the line breadth. We have now, indeed, 
what in customary language would be called an electronic oscillator 
in its first excited state. It does not jump to the lowest because it is 
sustained so to say by an incoming -free space radiation. By an 
appropriate quantum mechanical superposition of states of this 
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kind, all with 'fJ very near to rt/2 we could, however, construct a 
situation in which at t = 0 the incoming radiation is zero beyond 
some distance from the electron, analogous to the choice of S dis­
cussed on p. 9 and where in the course of time the amplitude of the 
electronic motion falls exponentialiy off to zero. This description 
would be nearly related to the Weisskopf-Wigner treatment of a 
spontaneous Bohr transition. 

If we imagine k' to take successively increasing values and to pass 
through the region where 'fJ changes from rt to 0, the customary 
language which is so well adapted to most physical processes fails 
in the regions where 1l is neither near to rt or 0, nor to rt/2; there we 
can neither speak of light which is scattered from the ground state 
nor of an oscillator in its first excited state. The situation is of 
course exactly analogous to that in particle collisions but the present 
rigorous formalism in the case of light quanta which does not rest 
on development in powers of e2 fills a gap in the customary methods. 

IV. 

THE STRUCTURE-INDEPENDENT HAMILTONIAN 

It will clearly be of interest to bring the structure-independent 
classical equations of motion derived in § 2 in Hamiltonian form. 
We begin with the variational principle which leads to the equations 
of motion (1) and (2) from which we started in § 2 : 

o j L dt = 0 (37) 

L (R,R,A,A) = ~ m0 R2 + e (R A) - U (R) 

l - -- Srt 5 (H2 - (Tr E)2)dV (38) 

where R and A are arbitrarily varied subject to o div A = 0. The 
introduction (3) of a new field A1 is not immediately permitted 

since Ao depends both on R and R. This difficulty can be overcome 
if we replace L by a new Lagrangian 

M = L-P.V-P.R 
p = o L/<) R 

(39) 

(40) 
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where V is numerically equal to R but is expressed, just as M itself, 

in terms of R, P, P, A, A by means of (40). It is easily proved that 

a JM dt = 0 

leads to the same equations of motion as (37). Of course there 
now appears a redundant variable, the generalized momentum 

o L/ o R being identically zero. If Ao is now considered as a func­

tion of R, P, A instead of R, R the substitution A = A1 + Ao in (39) 
is permitted. 

From (40) and (38) we have 

P = moR+eA 
and therefore 

moV=P-eA 

The new Lagrangian takes the form 

(41) 

M - -1 ~o Y2 - U - P.R -L f (fi2 - (Tr E)2)dV (42) 

V being explained by ( 41 ). 
Introducing (6), (7), (12) in (42) we find 

m V = P - e Ai (43) 

Moreover we have from (I I), (10) 

H= H1 + H0 = rotA 1 +rotAo, TrE= E1 +Eo = - - A 1 +F+Eo 

For magnetic and electric field energy we thus get 

I J,. - I j. -2 I s-- I s-2 
S1t (Tr E)2dV = S1t E 1 dV + 41t E1 .Eo dV + S1t E0 dV 

As regards F and Eo we must be cautious . They are obtained by 
differentiating Ao with respect to time but Ao will now ( outside the 
electron) be expressed by 

Ao = Tr e V/r 
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V being explained by (43) as a function of P, A1 and R. Thus we 
have 

F = Tr v/r, (44) 

and F depends on P, A1, A1, R, R, being linear in all but R. Simi­
larly we have outside the electron 

_ _(_e. o \ 1 
Eo = e Tr V R -=, -

oR r 

showing that Eo depends on P, A1, R, R, linearly in all but R. 
The integral S E1 .E0 dV will be structure-independent in spite of 

the fact that £1 through F behaves like 1/r and E0 like l/r2. On 
the other hand J E~ dV diverges if ( 44) should hold down to r = 0 
and becomes finite but structure-dependent and proportional to the 
fourth power of the velocity if the charge-distribution is taken into 
account. This term must clearly be neglected; it refers to effects 
which anyhow only a true relativistic theory might describe rightly. 

We are thus left with the structure-independent Lagrangian 

M = -}mV2-e x •. V-U-P.R-8
1 

\<Hf-Ef-2E1.Eo)dV 
~ ~~ 

= -P2/2m + e2 A~/2,n- U-P. R- ~J(Hl-El- 2E\.E0)dV 

M depends on P, P, Ai, A,1 R, R, but because of the redundant 
variables we cannot use it immediately for bringing the equations 
of motion in canonical form since there exists an identical relation 
between the moments . 

From now on we will restrict ourselves to the electric dipole appro­
ximation. This means that we can take for A1 and F (in E1) 

their values for r = 0, i. e. neglect their dependency on R.1, and leave 

out E0 entirely. This means that M no longer depends on R 

oM 
-. =0 
o R 

and the canonical form is easily established. Indeed with Lagrangian 
M(xo; Xt, Xt; x2, x2 ... .x,i, .x") the equations of motion are: 

oM 
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Therefore 
n n n c>M n 

8 ( ~pkxk - M) = ~ xk 8pk - ~ -- 8xk = ~ (xk 'Spk-Pk hk) 
I 1 1 c) Xk 1 

If x0 , x1 .. xn can be expressed in terms of x1 ... xn, PJ ... Pn 
by mt:ans ofo L/<) Xo = 0, o L/o xk = I'k, the p/s and x/s (k = 1,2... n) 
should satisfy the canonical equations with the Hamiltonian 

n 

H = ~ PkXk - L = H (pI · · · Pn, X1 • • • xn) 
1 

Applying this to our case we have first of all to calculate the vector 
conjugate to P and the vector field conjugate to the vector field A.1• 

From ( 44) ana ( 45) we find : 

o M _ l ... _ <) F _ e .. E1 
y - = -:;: = - R + -J E1 -:_-;:-dV = - R - --J Tr - dV P <)p 41t c>P 41tm r 

Since rot rot 21 = E1 and div 21 = 0 (Z1 Hertz potential) the value 
of z1 in the origin is just given by the integral appearing in the fourth 
member, divided by 41t. Denoting the momentum conjugate to 
P by - R1 we have therefore 

(46) 

In order to find the momentum conjugate to A 1 in a certain point 

of space, we have to vary M with respect to A.1. There is a contri­

bution b9th from A1 and from F in E1 : 

1 J"-- 1 J- ) . 8M = - E18E1dV = - E1p - 8A 1 41t 41t 

+ ~ Tr f (PQ~AtQ/rPQ)dVQ l dVp = f Y At dV 

Representing the field r x by - E2/41t we have thus 

E2 E1 ep f _ E2 e2 == 
-- (_ _ y- )=--+ - Tr(E1/r)dV=--+ ~-Z1 (47) 

41t A1 41t 41tm 41t m 

where we have denoted the scalar field p by d/e. In structure­
independent applications we may take for ~ the Dirac function 
8 (x-X) o (y-Y) o (=-Z) where X, Y, Z is the position of the elec­
tron and x, y, = the position where E2 is required. The field E1 is 
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determined by the field E1 and reversely; E2 exibits both a 1/r and a 
~ singularity at the origin. 

The Hamiltonian is easily found from ( 45) by remarking that 

terms in M quadratic in P and A1 will stay the same, that the term 

linear in P will vanish and that the terms independent of P, A1 will 
change sign : 

H = - e 1 + U(R) + - (H 2 + E2)dV P' 2A2 1 J 
2m . 81t I 1 

canonical p-q pairs -.. P - R1 (= R + !!_ Z1) 
m 

e2 _, 
and A1 - E2/41t (= Ei/41t - ~ - Z1) 

m 

(48) 

The only canonical coordinates figuring explicitely in this expres­
sion are P and A1 ( = rot-1 H1). E1 is connected with the canonical 
field E2 through (47) and R with the canonical variable R1 through 
(46). We still remark that P, -R 1 is here treated as a q-p pair. 
Analysing the field in multipole components, only the electric dipole - -component appears in A 1 and Z1. For the other components we 
have so to say the ordinary A - E conjugation known from radiation­
free space. A direct check shows that the canonical equations 
resulting from (48) are identical with (14) and (13) (with Lorentz 
force neglected). 

We will now explicitely introduce the canonical variables Rt 
and E2 into ( 48). We will thereby formally develop in powers of e 
and reject all powers higher than the second : 

"'"""'2 
p2 - e2 A _ e ~ 1 f 

H = 
2 

1 + U(R 1 - - Z2) + 
8
- (Hf + E~ . m m 1t 

Omitting, for simplicity, all indices this gives 

p2 e m, o 1 e2 m, o e2 - --
H = 2m -;;;,zoR)U + 2; \Zo Ryu+ 2m (-A2 + 2E.z) 

+ 
8

1
1t f (rot A.2 + £2)dV 

Canonical p - q pairs ~ P - R and !_ _ A 
41t 

(49) 
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Let us compare this with the customary non-relativistic Hamilto­
nian in literature : 

p2 e=. -
H=----A.P 

2m m 

e2 -
+-A2 

2m 
+ 

8
~ f (rot X2 + F))dV (50) 

The term in ( 49) proportional to e was found by Opechowski in his 
1941 paper mentioned on page 1. If we consider it as a perturbation 
term, proceed in the usual Dirac way and ask for perturbation effects 
proportional to the first power of e, such as are sufficient for the 
calculation of emission and absorption of spectral lines (Einstein's 
A's and B's), it is easily seen that it gives exactly the same result 
as the corresponding term in (50). In fact, their matrix elements 
for energy-change zero are the same. This follows for instance 

1 oU 
from the fact that - -R in the unperturbed motion is equal to mo 

..::.. p .!... .!.- .!.. 

- R, - to R and A to Z. Therefore the e-proportional term in 
m 

,..,...,....,.. "'"-:-

(49) equals e Z.R and th,at in (50)- .e Z.R. The difference is a pure 
d.:::::'.-

time derivative d (Z. R.) which has no matrix elements for energy t . 

change zero. As a third possibility for an e-proportional term with 
w • 

the same matrix elements we mention e Z.R. = - e E.R (E = - A 
is the electric field in the unperturbed system) which was used by 
Kramers and Heisenberg in their 1925 work. 

For the scattering of light the Dirac perturbation calculus has to 
be extended to the second power of e2. The scattering of the free 

e2 ....J e2 """ 
electron is on (50) described by 

2
m A2 only, on (49) by 

2
m (-A2 + 

- ,-. 

2E.Z) and again the no-energy-change matrix elements are required. 
::::x- ~~ 

They are clearly equal in both cases since the difference A2 - E.Z 
..:.. 

= z2 + Z. Z is a pure time differential in the unperturbed state. 
For the scattering from a bound electron a second order calculation 

must be carried through as regards the term proportional to e. The 
results are of course not the same on (49) and on (50) but the dif­
ference is, as can easily be shown, just compensated by the first 
order effect of the e2 term in (49) which has no analogon in (50). 
Thus the Kramers-Heisenberg formulae result in both cases. 

The result of the second order calculation which would formally 
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lead to the (Lamb) shift of the energy levels is, however, different 
with the two Hamiltonians. Here we find that the use of ours gives 
a correction to the use of the customary one which is precisely the 
correction proposed by Bethe in his (first) derivation of the Lamb 
shift formula in order to eliminate the divergence introduced by the 
point model of the electron. This can easily be seen as follows. 
With (50) the shift of the level m wou'd be (we suppress certain 
trivial details) : 

""" p mn pnm/k f kdk 
= - const. ~ ~ k + k = - const. ~ p mn pnm k k 

bm nm n +nm 

Here a denotes the state of no light quantum in empty space, b the 
state of one light quantum (momentum k). The summation is 
over all states b and all other states n of the atom, hknm· being the 
energy difference between states n and m. Bethe corrects by sub­
tracting the same expression but with knm everywhere zero and gets 

f k f knm 
de = .. . (- k + k + I)dk = . . . k + k dk 

nm !!m. 

It was difficult to m~ke his argument quite rigorous but it had cer­
tainly physical plausability. 

With our Hamiltonian we get from the e-term 

From the e2-term we must ald 
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Together 

~e:=const ~ pmnpnm f ( k~m knm) JI" knm 
k(k _j_ . ) + k dk = . .. k + k d k , knm nm 

On the question of the upper limit of the logarithmically divergent 
integral this treatment throws of course as little light as Bethe's 
(first) treatment refered to, the theory being restricted to electric 
dipole radiation. 

V. 

FINAL REMARKS 

The theory given in the preceding paragraphs has not yet been 
developed much further. The extension to a system containing 
more than one electron (always in electric dipole approximation) is 
straightforward and consists chiefly in the addition of the Coulomb 
terms and Darwin terms describing the electric and magnetic inter­
actions respectively of the electrons due to the mutual influence of 
their proper fields. One can say, therefore, that a promising basis 
is given for a really rigorous scattering theory of atoms in the electric 
dipole radiation domain. This theory should tell us the exact 
behaviour of the atoms towards incident light, also within the natural 
breadths of the absorption and emission lines. We have seen how the 
notion of the phase shifted light quanta afforded the natural means 
for the solution of this problem in case of the harmonic oscillator. 
The problem of the states of steady scattering in arbitrary atoms is a 
good deal more complicated, of course, not at least due to the Raman 
effect, but an appropriate choice of phase-shifted light quanta will 
presumably be helpful also here. There should of course no longer 
be question of development in powers of e and thus an approximation 
of the kind involved in ( 49) will be no help. 

A second question is that of the extension of the theory to include 
also magnetic dipole radiation. Thereby the Compton recoil would 
be taken care of, be it only in non-relativistic approximation. 

In many problems the development of radiation in multipole 
components will certainly not be appropriate. An example is affor­
ded by the question of a rigorous quantum mechanical dispersion 
theory of extended matter Here the mathematical handling of 
the free light quanta will certainly be complicated, even if we restrict 
ourselves to the model of an assembly of harmonic oscillators. 
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The present theory shows how the spurious divergencies due to 
the point model of the electron may be removed to a certain extent. 
With respect to those due to the zero point fluctuation in the radia­
tion field the situation lies different; with Weisskopf one might say 
that this problem lies outside the domain of correspondence. The 
treatment of this question, as well as the establishment of a relati­
vistic theory of charged particles has hitherto been, and will perhaps 
remain so for some time, a story of artful and ingenious guessing. 

The results obtained in this way, from Dirac's theory of 1928 to 
the beautiful results of the very last year are certainly impressive. 
Still the fundaments on which they rest are naturally for a large 
deal derived from « correspondence », so first of all the device of 
introducing the interaction of radiation with a particle by adding 
to the momentum p the term - eA. Now, we have seen that, in 
non-relativistic approximation, the elimination of the structure by 
introducing a « proper » field of bound light quanta does not ·simply 
consist in changing this A in A 1, where A 1 represents the free radia­
tion, but involves a much profounder change in the form of the 
Hamiltonian. Thus one might say that the famous e a. A interaction 
in Dirac's theory does not even ensure that certain simple, unrela­
tivistic effects will be well rendered by the theory, although it is 
known to work for the very simplest effects like low energy scat­
tering. 

It may of course be that point-model and fluctuation-divergencies 
can and must ultimately be traced to the same source from the point 
of view of a future complete theory and that one therefore should 
not think to hard of the device : first quantizing a wrong Hamil­
tonian and trying to make amends later on. Still something might 
be learned from a theory of the sort to which the present paper aims 
and in which it is tried to analyse the structure-independent features 
of classical theory first and to see whether and to what extent quanti­
zation can learn us something new. 
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