
THE MOTION OF ELECTRICITY IN METALS1)

When I had the honour to be invited to deliver this May Lecture 
I, of course, thought that it would be appropriate to choose for 
my subject some of the phenomena that occur in metallic sub
stances. However, as I know much less than you of the consti
tution of metals, and of the properties which depend on it, I felt 
that I should have to confine myself to questions of a somewhat 
general character. Fortunately, in the remarks which I am going 
to make about the motion of electricity in metals, my ignorance 
— so, at least, I hope — will not become too apparent.

To begin with, I may say that, whenever physicists have tried to 
form a picture of a current of conduction, there has been a tend
ency to consider it as the motion of something material, compa
rable to the flow of water through a tube. It is true that some 
had doubts about this point, and we read, for example, in Max
well’s Treatise: „It appears to me that, while we derive great 
advantage from the recognition of the many analogies between the 
electric current and a current of a material fluid, we must carefully 
avoid making any assumption not warranted by experimental 
evidence, and that there is, as yet, no experimental evidence to 
show whether the electric current is really a current of a material 
substance or a double current, or whether its velocity is great or 
small as measured in feet per second.” This was very cautious in
deed. Other physicists, however, less prudent than Maxwell or 
more anxious to understand what goes on in the interior of a 
conductor, had not shrunk from developing a truly „material” 
theory. According to them a metal contains, in the interstices 
between its atoms, one or two electric fluids, and it was supposed 
that, under the action of an electric or electromotive force, the 
electricity can move forward, overcoming the resistance that is
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caused by the atoms, and that is similar to the force which the 
walls of a tube oppose to a current of fluid. In those old theories 
there was no question of any definite assumption as to the consti
tution of the atoms themselves. If the two electricities were 
thought to be free, the atoms were considered as small neutral 
particles, and if one movable fluid only was preferred, the other 
electricity was supposed to be fixed to the atoms, giving them a 
definite charge.

Further, in order to account for the electrodynamic and electro
magnetic actions, different laws, such as those of Wilhelm We
ber, Riemann and Clausius, had been proposed, all agreeing in 
so far as the mutual action of two particles of electricity was made 
to depend not only on their relative position, in the way expressed 
by Coulomb’s law, but also on their state of motion. The conse
quences that can be drawn from these laws were worked out to a 
considerable extent, and many attempts were made to decide 
between the conflicting views and to ascertain whether in a 
current both electricities are moving, or one of them only. It 
should be noted also that the conception of a granular or atomic 
constitution of electricity was not wholly wanting. The theories 
to which I referred always spoke of the mutual action between 
two „particles” of electricity, but the magnitude of their indi
vidual charges was left wholly undeterminate.

Now, since Wilhelm Weber’s days great and rapid progress 
has been made, and our present ideas about the constitution of a 
metal and the phenomena of which it is the seat are incomparably 
more definite and detailed than these old views which I recalled 
to you. I dare say that nowadays no physicist has any doubts 
about the structure of the atom; we have become quite familiar 
with the positively charged nucleus and the electrons surrounding 
it. The number of these electrons is known with certainty for all 
atoms. In the case of copper 29, for iron 26, for silver 47; it is 
simply what we call the „atomic number” of the element, i.e. 
the number that determines its place in a natural arrangement 
such as is given in Mendelejeff’s table.

This number also determines the positive charge of the nucleus. 
For, since the electrons all have equal negative charges, say, each 
a unit of negative electricity, and since in its natural state with 
29 electrons the copper atom as a whole has no charge, the charge
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of the nucleus must be 29 positive units. Similarly for other metals. 
I must add that nearly the whole mass of a body is concentrated 
in the nuclei and that, in the solid state, they occupy definite 
positions, in which they are maintained by certain forces which 
manifest themselves in the elastic properties of the metal. We 
may further be sure that over ranges many times longer than the 
molecular distances, the arrangement of the nuclei is perfectly 
regular. In other words, the metal is made up of crystals, very 
minute in most cases, but yet each containing millions and mil
lions of atoms. The special features of this crystalline structure 
are found out by means of X-rays, but we need not speak of this 
now. It will be sufficient to know that the nuclei form, so to 
speak, the rigid framework of the metal. The motion of heat may 
slightly displace them from their positions of equilibrium, but the 
progressive motion of electricity which we call a current can only 
be a motion of the negative electrons. In this sense modem 
theory has decided in the old dilemma of one or two movable 
electricities.

To complete our picture I must remark that in the natural state 
of the metal, and apart from the agitation of heat, the electrons 
may already perform very rapid motions. You all know Bohr’s. 
theory, according to which the electrons of an atom are revolving 
about the nucleus with speeds that may be an appreciable fraction 
of the velocity of light. It is true that other models of the atom, 
with a static arrangement of the electrons, have been proposed by 
Lewis and Langmuir, and that these have been found very 
serviceable for the understanding of chemical phenomena; but, 
especially in the fields of spectral lines and Rontgen rays, the 
success of Bohr’s theory has been so wonderful that I think we 
may safely trust to it.

The intensity and further peculiarities of the internal motions 
which we have now to imagine are inexorably determined by the 
conditions imposed by the theory of quanta; so these motions 
constitute an unalterable and fundamental feature of the chemical 
element, and without them our nucleus with its charge 29 and its 
29 electrons would not form a system having the properties of a 
copper atom. Compared to these „constituent” motions heat is 
only a slight tremor of the nuclei, and the strongest electric 
current is probably but a comparatively unimportant additional
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phenomenon. It should finally be noted that metals belong to the 
electro-positive elements whose atoms easily lose one of their 
outer electrons. So we can understand that a certain number of 
these particles — a small fraction, however, of the total number 
— are set free; these may serve as the vehicle for the electric 
current.

There is a simple relation between the strength of a current and 
the mean velocity of the electrons, if by „mean velocity" we 
understand that of all the electrons together, free or otherwise. 
Indeed, we can fix our attention on an element of volume whose 
dimensions are a very small part only of a centimetre, but which 
nevertheless is large enough to contain an immense number of 
atoms. At a definite instant each electron present in it will have a 
definite velocity which we may decompose into components 
having the directions of the axes of coordinates. We may then 
take the mean value of all the components parallel to OX, with 
due regard to their positive or negative signs. Similarly, we may 
calculate the mean values of the velocities in the directions of 
OY and OZ. Finally, compounding the three results, we shall find, 
in direction and magnitude, the mean velocity of which I spoke. It 
will be zero, so long as there is no predominant direction of motion; 
this will be the case when the metal is in its natural state. On the 
other hand, the mean velocity will differ from zero whenever there 
is a general progressive motion, and then it will be a measure of 
the current of electricity. It is easily seen that the strength of the 
current, per unit area of a plane at right angles to it, is equal to the 
product of the mean velocity by the total charge of the electrons 
contained in unit of volume. This total charge is known, and so 
the mean velocity can be calculated for a given current intensity.

Take, for example, the case of a copper wire whose section is 
1 mm2 and in which there is a current of 1 amp. The number of 
atoms in a cm3 may be taken to be 8,52 X 1022, and the number 
of electrons is therefore 29 x 8,52 x 1022 = 2,47 X 1024. The 
electronic charge being 1,59 x lO"20 electromagnetic units, the 
total negative charge per unit of volume amounts to 3,93 X 104. 
On the other hand, expressed in the same electromagnetic units, 
the strength of the current per cm2 is 10. From these data one 
finds for the mean velocity of the electrons 2,5 X 10"4 cm per 
second.
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Now, the mean distance between neighbouring atoms is about 
2,3 x 10-8 cm, and we see therefore that, if all the electrons had 
the mean velocity, each of them would pass along many thousands 
of atoms in a second. If the circuit had a length of 10 cm it would 
take the electrons eleven hours to go all round it. Of course, when 
the free electrons form only a small fraction of the total number, 
some individual particles must have performed the journey long 
before that time.

I do not mean to say that they have done so quite undisturb
edly, nor that the same electrons remain free for a considerable 
length of time. In all probability the metal is the seat of a great 
variety of changes. While some electrons are set free, maybe by 
collisions of the atoms with moving particles, by a kind of dis
sociation due to the heat motion, or perhaps by radiations due to 
the transition of an atom from one stationary state to another, 
other electrons are recaptured by an atom; and if we could watch 
an individual particle we should probably see it freely moving fora 
short time, and then for a while imprisoned in an atom, moving 
in a Bohr orbit, until it is its turn again to be involved in the 
progressive motion.

Though all this may be extremely complicated, it is not difficult 
to account for Ohm’s law, the fundamental law of electrical con
duction. To see this we may take the simplest case of all, a uniform 
steady current in a straight wire. As the state is stationary the 
resulting momentum G of all the electrons contained in the space 
between two sections Sj and S2 will not change in course of time, 
we may say so, even though the electrons that contribute to G 
are not the same at all instants, some particles leaving the space 
considered while others enter it. Hence, the different causes which 
tend to change the momentum G must counterbalance each 
other. As there is no reason why the transfer of momentum should 
be different at the sections Sx and S2, this means that the forces 
acting on the system of electrons must be in equilibrium. One 
force is due to the electric force acting along the wire, and there 
must therefore be another force equal and opposite to it; this 
action can only be exerted by the fixed nuclei.

It is clear that, so long as there is no mean velocity of pro
gressive motion, a resulting force of this kind cannot exist. Though 
each electron belonging to an atom is attracted by its nucleus, and
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though there are similar forces acting on free electrons that come 
near a nucleus, yet these innumerable elementary actions will be 
directed indiscriminately towards all sides. So soon however as, 
in addition to these intrinsic motions, there is a small velocity of 
flow, it may well be that the actions of the nuclei on the electrons 
are somewhat stronger in one direction than in the other. It is 
natural to suppose that the force thus produced is opposed to the 
mean velocity of the electrons, so that it truly is a “resistance”, 
and, inasmuch as we may expect that effects caused by small 
changes in the state of motion are proportional to these changes, 
we are led to a force of resistance proportional to the current, and 
thereby to an explanation of Ohm’s law. At all events it would 
be more difficult not to find this law.

The foregoing general considerations also suffice for the expla
nation of Tolman and Stewart’s beautiful experiments on 
the currents produced by the acceleration or the retardation of a 
conductor, by which it was proved directly that the current 
consists in a motion of negative electrons. A similar experiment 
which we can make with a fluid may serve as an illustration. Let 
us take a closed circular tube filled with water and suddenly set it 
in rotation about its geometrical axis, the velocity becoming 
constant after a certain time. On account of the friction at the 
walls the fluid will at the end move with the same velocity as the 
tube; but it will require some time to be set in motion, so that at 
first the water will lag more or less behind. Conversely, when, 
beginning with a common motion of the tube and the water, the 
tube is suddenly brought to rest, the water will continue to move 
for a certain length of time.

It is very easy to calculate these relative motions of the water 
with respect to the walls. Let the tube be so narrow that all its 
points may be said to have the same velocity v, and let w be the 
relative velocity of the water in the tube. Both v and w are directed 
along the circle, and are positive or negative according to their 
direction. Now consider the force acting on the water per unit of 
length of the tube. Since all is the same at all points of the circle 
there can be no differences of pressure, and the only force will be 
the friction, which we may assume to be proportional to the rela
tive velocity w and opposite to it, so that it may be represented
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by — qw, where q is a constant. Thus, since the velocity of the 
water is v -f- w and its acceleration along the circle

d(v -f- w) 
dt

we have the equation

dv dw

if m is the mass of the water per unit of length. By this formula 
the velocity w can be calculated for any instant, when v is given in 
function of the time.

It will be sufficient for our purpose to consider the transition 
during an interval of time extending from t± to t2, from one steady 
state to another, in both of which the water has the velocity of 
the tube, so that at the beginning and at the end w = 0. Multiply 
the equation by dt and integrate from / = tx to t = t2. The second 
term disappears and the first gives m (v2 — Vj), if vx and v2 are the 
initial and the final velocity of the tube. Thus

it
m (v2 — Vj) = — q f wdt.

h
If the section of the tube is denoted by co, the volume of water 
that has flowed through a section is given by

Ur COW , .
co J wdt — —---- (v2 — v^j.

h <1
We shall have the two cases of which I spoke, if we put either 
vx = 0 or v2 = 0.

The electric currents observed by Tolman and Stewart can be 
calculated in nearly the same way, the only difference being that 
we have to introduce the force of self-induction. We now take a 
circular metallic wire rotating about its geometrical axis with the 
velocity v. Let w be the mean velocity relatively to the wire of the 
electrons, both free and otherwise. Then, if N is the total number 
of electrons per unit of volume, e the charge of each of them, and 
co the section of the wire, the current will be

i — Noew.
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The forces acting on the electrons, per unit of length, are: first a 
resistance — qw, and in the second place a force due to the self- 
induction. It is well known that this latter force is proportional 
to — dijdt, so that we may write for it

with a constant coefficient p. Thus, the equation of motion 
becomes

d(v -j- w) di
A'com----- ------= — qw — p —

dt dt

where m is the mass of an electron.
Now, let the wire with the electrons contained in it first have 

the constant velocity vv and suppose that, after a certain time, the 
velocity of the wire is v2, which again is kept constant. During the 
acceleration or retardation of the wire the electrons will have a 
velocity different from v, lagging behind or shooting forward, as 
the case may be; but, if we wait long enough, the „friction" will 
cause them again to move with the velocity of the wire. Thus, if 
the transition from one state to the other is made during the 
period from tx to t2, we shall have, both for t — tx and for t = t2, 
w = 0 and i = 0, and we find by the same integration which we 
used in the former case

t*
Nam (v2 — z/J = — qf wdt, 

h
the terms with dwjdt and dijdt disappearing.

The total strength of the transient electric current that has 
been produced in the wire by the transition from the velocity vx 
to v2 is given by

I — J idt = Nae f wdt,
ti t\

so that we have

I = N2a2em
—-—K — ©J-
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In order to see the meaning of the coefficient we shall consider 
the constant current set up in the metal by an electric force E. 
There will be equilibrium between the forces Nu>eE and — qw, if 
we denote again by w the mean velocity of the electrons. Thus

Nuew =------E,
9

so that the current per unit of area of the section of the wire is 
given by

NI 2coe2 ^
--------E,

<1
showing that

N2 oe2
<j =--------

is the coefficient of conductivity. Hence, if l is the length of the 
wire and r its resistance in the ordinary sense of the word.

and

l _ ql
(lia N2u?e2

I = —(y—v). 
re

If the conductor is first moving with the velocity v and then 
brought to rest, the current will be

re

The experiment was made with a coil of many windings (about 
600), the ends of which were connected with a galvanometer, and 
whose motion of rotation about the axis was suddenly stopped by 
means of a brake. The direction of the current showed that the 
moving electricity really is the negative pne, and that it is 
concentrated in electrons of the same kind as those that exist in 
cathode rays could be deduced from the value found for e\m, a 
ratio that can be calculated from the above formula if we take for 
l the total length of the coil and for r the resistance of the circuit.
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the galvanometer included. If the number thus obtained is 
divided by the value of e/m for cathode rays, the result is 0,89 for 
copper, 0,86 for aluminium, and 0,83 for silver.

It is interesting to apply to Tolman and Stewart’s experiment 
the mode of reasoning set forth in the chapter on the „Dynamical 
theory of electromagnetism” of Maxwell’s Treatise, a chapter 
that will always remain remarkable for the way in which the 
general equations of dynamics were applied to electromagnetic 
phenomena. In these equations all is made to depend on the 
expressions for the potential and the kinetic energy, and Max
well showed how the laws of ponderomotive forces and induced 
currents can be derived on the assumption that the energy of the 
magnetic field plays the part of the kinetic energy. He remarks 
that, in the case of moving bodies carrying electric currents, the 
kinetic energy may be conceived as made up of three parts. The 
first of these, which he calls Tm, is the ordinary kinetic energy of 
the matter of the conductors, the second, Te, is due to the electric 
currents taken by themselves, and the third part, Tme, arises 
from the combination of the motion of the conductors with the 
motion relatively to them of the electricity which they contain. 
Maxwell was especially interested in the question whether this 
third part of the kinetic energy really exists, and he thoroughly 
discussed the effects that might be expected from it. He also tried 
to observe some of them, for which, however, his instruments 
were not sufficiently sensitive.

It is worthy of remark that the currents observed by Tolman 
and Stewart have their origin in this third part of the kinetic 

. energy. Indeed, in addition to the ordinary kinetic energy of the 
coil, we have in the first place the energy of the electromagnetic 
field, for which we may write \Li2, if L is the coefficient of self- 
induction, and in the second place the kinetic energy of the elec
trons. In order to find an expression for this latter energy we shall 
henceforth understand by N the number of free electrons only, and 
by w their mean velocity, and we shall suppose that each of them 
has this velocity w added to the velocity v of the wire. By this 
change of meaning of N and w their product is not altered.

We may now write for the kinetic energy of the free electrons

—Nlu>m {y + w)2,
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or, using the relation between w and i,

1 „ lm . lm
—Nlumv2 -|----- vt -{- ---------i2,
2 * 2Nue2

so that the expression for the total kinetic energy takes the form

1 _ . lm-Qv2 -\----- vi
2 e

2{L +
Nae2)

Having got thus far one can easily deduce the formula for the 
Tolman-Stewart effect by means of Lagrange’s equations, and 
then it is found to arise from the second term, which, as you see, 
is of the kind of Maxwell’s Tme.

I may perhaps mention here that the mass m of the electrons 
will also make itself felt when the conductor is left at rest. Our last 
formula shows that, on account of it, the coefficient of self- 
induction is augmented by an amount

lm
N^e2 '

If, in our measurements of the currents produced by self-induction 
and in the calculation of L in terms of the geometrical dimensions 
of the circuit, we could attain a sufficient precision, the influence 
of the additional term ought to become apparent. In one of the 
first papers of Heinrich Hertz, published in 1880, an account 
is given of an attempt he had made in this direction. But Hertz 
was no more successful than Maxwell. He could only fix an 
upper limit for the kinetic energy of the moving electricity. 
According to our equation this means a lower limit for the 
number N, and, indeed, applying the formula to the numbers 
given by Hertz, I find that in his copper wire the number of free 
electrons per cm8 must have been more than about 2,2 X 1016. 
As the total number of electrons is 2,47 X 1024, you will not 
object to this result.

Thus far we have followed rather general ideas only. One must 
go farther than this, and try to make more definite assumptions 
concerning the behaviour of the free electrons and their inter
actions with the metallic atoms, if one wants to understand the
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causes that determine the degree of conductivity of a metal and 
the relations between the electric current and other phenomena. 
A vast amount of experimental evidence has accumulated in this 
field, and many interesting and beautiful theories have been 
proposed; a full account of all this may be found in a report 
presented by Professor Bridgman to the Solvay meeting of 1924.

It would be impossible for me now to speak of all this, and I 
think I had better confine myself to a small number of questions. 
Allow me therefore to devote the remaining part of my lecture to 
some considerations in connection with the theory that was 
developed a quarter of a century ago by Drude, and to a dis
cussion of one of the experiments which Professor Kamerlingh 
Onnes has made with supraconductive metals.

Drude’s fundamental ideas were that the free electrons in a 
metal have their share in the thermal agitation, moving at such 
speeds that their mean kinetic energy is equal to that of the 
molecules of a gas, and that their paths of undisturbed motion are 
limited by their encounters with the atoms. I shall now show how 
a theory of electric conduction can be based on these assumptions. 
In doing so I shall begin without any special assumption con
cerning the mutual action of an electron and an atom near which it 
comes. Our general formula will hold whatever be the precise 
nature of this action. It may be applied, for example, when the 
atoms are considered as solid spheres from which the electrons 
rebound according to the laws of elastic impact, but also when 
the electrons can pass right through the atoms, suffering perhaps 
only a slight deflexion from their original path.

Let us consider a group of free electrons, possibly moving in 
many different directions, but having at a definite time t a certain 
mean or common velocity w; this group may, for example, consist 
of the N free electrons which are found in unit of volume. At all 
events, we shall suppose it to be so numerous that in an interval 
of time dt — that is but a very small fraction of a second — a great 
number of encounters take place. At the end of this lapse of time 
we may again fix our attention on the velocities of the particles 
and take the mean of them all; we may do so even when not 
exactly the same electrons constitute the group at the two 
instants, i.e. if some free electrons have been captured by the 
atoms and have been replaced by an equal number of new ones.
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Now, I think you will find no difficulty in making the following 
assumptions:

1. The new mean velocity w' has the same direction as the origi
nal one w\ indeed, there is no reason why, of two directions 
equally inclined to w, one should predominate over the other.

2. The new velocity w' is smaller than w. This means that the 
irregular actions exerted by the atoms tend to obliterate a 
common progressive motion of the electrons.

3. The change w — w' is proportional to the time dt.
4. It is likewise proportional to w itself. This follows from the 

remark already made, that the progressive motion of the electrons 
constitutes only a very slight departure from the natural state of 
things. Inasmuch as small deviations of this kind generally obey 
linear equations, we may say that w, w’, and therefore also their 
difference, may be altered in the same ratio.

What precedes leads us to the equation
wr — w = — a wdt,

where a is a constant. Or, if we write dw instead of w' — w,

dw = — oLwdt,
and on integration

W =

where w0 is the mean velocity of the group at the instant t = 0. 
This velocity is thus seen to die out at a rate determined by the 
factor e~a*.

Now, let the metal be subjected to an electric force E, so that in 
unit of time a velocity eE/m is communicated to each free electron, 
and let us try to determine the mean velocity of flow of a numer
ous group at a definite instant t0. For this purpose we have only 
to see what are at this instant the parts that remain of the 
velocities acquired by the electrons in the intervals of time 
previous to t0.

Consider an instant a time t before t0 and the element of 
time corresponding to dr, i.e. the interval that extends from 
t0 — (t -j- dr) to t0 — t. The velocity imparted to the electrons 
during this time is

m
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and this has decayed to

eE
m

e-0CT d'z

at the instant t0. Thus the mean velocity of the free electrons is

eE r
mj e~aT d'z =

eE
a m

The current is therefore

Ne2E 
a m

and we find for the coefficient of conductivity

Ne2
CT = --------- .

a m

The mean velocity is the same as would be produced if the effect 
of the electric force had accumulated without being disturbed 
during a time 1/a. This interval 1 /a also has the meaning that, in 
the course of it, a mean velocity previously existing diminishes 
in the ratio of 1 to 1 /e.

The value of a will, of course, depend on the nature of the 
.encounters.

Suppose, for example, that the atoms act as perfectly elastic 
spheres. Then, according to a theorem proved by Maxwell in 
1860, in his first paper on the kinetic theory of gases, the mean 
velocity of a group of electrons will be wholly lost as soon as each 
of them has experienced one encounter.

The part of our group of electrons N that strike against an 
atom between t and t -j- dt may be represented by

$Ndt,

where p is a coefficient depending on the size and the number of 
the atoms, and if we suppose that initially this sub-group $Ndt 
had exactly the same mean velocity as the general group N, we 
shall have, at the instant t + dt, $Ndt electrons deprived of their
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mean velocity, and 2V(1 — $dt) particles for which it is still w. 
Thus, the new mean velocity is

w' = (1 — $dt)w,
showing that in this case a has the value p.

Introducing a properly chosen mean velocity of heat motion u, 
we may also say that in a time during which, in this motion, the 
electrons travel over a path ds,

N , 6 — ds 
u

electrons, out of the whole number N, will hit an atom. From this 
we may infer that, if we first fix our attention on the positions of 
the electrons at some definite instant t0, the mean length of the 
paths which they describe between this instant and the encounter 
following it will be «/p. Of course, the mean length of the paths 
described in the intervals of time between t0 and the encounter 
preceding it has this same value, and the mean length of the paths, 
reckoned from one encounter to the next, which the electrons are 
describing at the moment t0, is twice as great. Thus, if this latter 
mean length is denoted by l,

and

u 1 2u
- = a = p = T

NeH
a =----- .

2mu
This is Drude’s formula for the electrical conductivity. We 

could have found it directly by remarking that, at a definite time, 
the velocities of the electrons, so far as they are due to the electric 
force, are those that have been acquired since the last encounter, 
i.e. during a lapse of time, the mean value of which is

1
2 u

If R is the radius of an atom, and if there are n of them in unit 
of volume, the length of l is given by

7_ 2(1-jnnR*)
7znR2

Lorentz VIII 21
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Comparing this with the distance A of neighbouring atoms (the 
atoms being supposed to have a cubical arrangement) one finds

l
- = 1,65 X
A

1 —s
~W

if $ is the part of the whole volume occupied by the atoms.

Drude was led to a most remarkable result by combining the 
above formula with a similar one for the thermal conductivity. 
The explanation which he gave of this latter phenomenon is much 
like that which is current in the theory of gases. Indeed, the free 
electrons in a metal may in a sense be considered as forming a gas, 
whose mobility, however, is limited, not by the mutual encounters 
between the particles, but by those with fixed obstacles; it is as if 
we had an ultra-rarefied gas enclosed in a porous substance. It is 
easy to calculate the kinetic energy carried by the electrons from 
a place of higher to one of lower temperature; this will give us the 
conductivity of the metal for heat if we assume that there is no 
other mode of conduction, and, in particular, no appreciable 
transfer of heat through the framework constituted by the atoms 
or the nuclei.

Drude finds that the coefficient of thermal conductivity x 
depends in the same way as that of electrical conductivity a on 
the mean length of free path l and on the number of electrons N, 
so that these quantities disappear from the ratio between the 
two conductivities. His formula for the ratio is

where T is the absolute temperature and k the well-known coef
ficient that determines the mean kinetic energy of a particle at 
the temperature T, this energy being \kT.

Thus Drude was able to account for the fundamental fact that 
metals are at the same time the best conductors for heat and for 
electricity, and for Wiedemann and Franz’s law, according to 
which the ratio between the two conductivities is the same for all 
metals. The theoretical conclusion that the ratio should be 
proportional to the absolute temperature is verified fairly well by
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the experimental values. Jaeger and Diesselhorst found that, 
when the temperature is raised from 18° C to 100° C, i.e. when 
the absolute temperature is changed in the ratio of 1 to 1,28, the 
value of x/cj increases in a ratio varying for different metals 
between 1,25 and 1,12. Moreover, the absolute value of the ratio 
x/<j as deduced from the observations, which in the case of silver, 
for example, at 18° C is 686 X 108 (electromagnetic units), is 
nearly equal to the theoretical number. If, in Drude’s formula, 
we substitute the known values of k and e, viz. k — 1,37 X 10-18 
and e = 1,59 X 10~20, we find

- = 648 X 108.
G

In a theory which has given results like these, there must 
certainly be a good deal of truth. Yet, there are serious difficulties 
which I must now, in part at least, point out to you.

The formula for the electrical conductivity shows that it 
depends on the number of free electrons and on the length of free 
path. Now, in our assumptions about N, we are limited by what 
we know about the specific heat of metals. At temperatures that 
are not too low the values found for the specific heat conform to 
Dulong and Petit’s law, and may be accounted for by attributing 
to each atom a mean kinetic energy \kT and an equal amount of 
potential energy; we are justified to make this latter addition by 
the theorem that in a system performing harmonic vibrations 
about a position of equilibrium the mean values of the kinetic and 
the potential energy are equal. Now, it is clear that this expla
nation leaves no room for any appreciable contribution to the 
specific heat that could be due to the electrons.

If all the electrons contained in the copper had their share in the 
thermal agitation, it would be as if we had thirty atoms instead of 
one, and, even if for the 29 electrons we reckoned only with the 
kinetic energy, we should find for the specific heat a value about 
fifteen times too great. In so far as we are concerned with the 
electrons belonging to the constitution of an atom, we escape from 
this difficulty by the hypothesis that their motion relatively to 
the nucleus is inexorably prescribed by quantum conditions. No 
change of temperature can alter it, and in all questions of heat
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motion we may regard the nucleus with its system of electrons as 
a single particle having, as we say, no more than three degrees of 
liberty. For the free electrons, however, to which we have ex
pressly assigned the kinetic energy \kT} the trouble remains. If 
the specific heat shall not become too great, the number of free 
electrons must be small in comparison with the number of 
atoms, and, as the conductivity depends on the product Nl, the 
smaller we make N, the longer must be the free paths. Suppose, 
for example, that N is the twentieth part of the number of atoms. 
I then find that l must be about 500 times the distance between 
neighbouring atoms, and our formula for l/\ would require a value 
of 8, the ratio between the volume of the atoms and the total 
volume, smaller than 0,0002. As the atomic volume is certainly 
much greater than this, we must give up the idea of atoms into 
which the electrons cannot penetrate and revert to the general 
formula for the conductivity which made it depend on the 
coefficient a. If we like, we may still use Drude’s formula, but 
then we must define l by

meaning that it is the length of path corresponding to a time 
during which an initial mean velocity has fallen off in the ratio of 
1 to 1/e2.

I may here remark that probably not only Drude’s formula 
for a, but also his equation for the thermal conductivity would 
remain valid, so that his conclusion about the ratio x/c would 
remain unchanged, if this new and longer „free path” were a 
straight line. This might be the case if an electron could pass 
through many atoms without having its velocity sensibly changed 
until it comes very near a nucleus. But when each encounter with, 
or passage through an atom is attended by an appreciable 
deflexion, our new path l is curved, and then it becomes very 
difficult to calculate exactly the conductivity for heat.

These remarks may suffice to show that we are still far from a 
satisfactory solution of these problems. Many modifications of 
Drude’s theory have already been proposed, especially with a 
view to the phenomena observed at low temperatures. It may 
very well be that, when we come to these, the theorem of equi-
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partition of energy, requiring the mean kinetic energy \kT for 
each particle, which we had previously to abandon for the atoms, 
will also fail to hold for the free electrons, so that they also have 
to be subjected to the rules of the quantum theory. The great 
problem will be to reconcile the heat motion of the free electrons 
with the immunity for thermal agitation of the electrons inside 
the atoms, and clearly to understand the mechanism of the 
encounters and the partition of the energy of heat between the 
atoms and the free electrons.

I now come to the experiment with a supra-conducting metal to 
which I have previously alluded. You know the beautiful dis
covery made by Kamerlingh Onnes in his cryogenic laboratory; 
several metals completely, or almost completely, lose their resist
ance when by means of liquid helium they are cooled below a 
certain temperature, 4,2° K in the case of mercury, 3° K for tin, 
and 7,3° K for lead.

Below this point of discontinuity currents can persist in the 
metal for hours and days, and it seems that practically the body 
may in many cases be regarded as a perfect conductor with no 
resistance at all.

The existence of the currents can be shown either by their action 
on a small magnet or by the ponderomotive forces exerted on the 
body by an external magnetic field. I choose an experiment in 
which this ponderomotive force was observed; it is particularly 
interesting, because it can give us some indications about the 
degree of freedom of motion which we may ascribe to the electrons.

Allow me, by way of introduction, to recall to you that an 
electromagnetic field is characterized by the electric force E and 
the magnetic force H, which in the cases to be considered we need 
not distinguish from the magnetic induction, and that between 
these forces there is always the connection that is expressed by 
Maxwell’s equations. If a unit of electricity is made to move 
around a closed line, the work of the force E acting on it is given 
by the rate of change, taken with the negative sign, of the 
magnetic induction through a surface having the line for its 
boundary. Instead of „work of the electric force” we may also say 
„line integral of the force”, meaning by this that each element 
of the line is multiplied by the component of the force along it.
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and that the products thus obtained, with due regard to their 
signs, are added.

The action of the field on a charge e that is at rest is simply 
given by the product eE, but there is an additional force when the 
charge moves. This new force is perpendicular to the plane passing 
through the direction of the velocity v and that of the magnetic 
force H; in the case of a positive charge the force is directed 
towards that side of the plane from where a rotation from the 
direction of v towards that of H is seen as counter-clockwise. For 
a negative charge the force has the opposite direction and it is 
proportional in any case to the magnitude of the charge. The 
force acting on unit of electricity is determined by the product 
of the velocity v, the magnetic force H, and the sine of the 
angle between them.

In what follows I shall speak of £ as the „electric force”, and of 
the force depending on v and H as the „transverse” one, because 
it is at right angles to the line of motion.

The effect of the transverse force is observed in the magnetic 
deflexion of cathode rays and of other rays that consist of moving 
charged corpuscles. It also gives rise to the ponderomotive force 
acting on a wire through which a current is passed and which is 
placed in a magnetic field. This force, which is perpendicular to 
the length of the wire, must be understood to act primarily on the 
electrons moving in the wire; it is transmitted to the metal in a 
way which we can easily imagine in simple cases.

In the experiment made by Kamerlingh Onnes a thin spheric
al shell of lead was used; it was suspended by a torsion spring, so 
that it could rotate about its vertical diameter. We shall suppose 
it to be so thin that we may think of currents flowing in a 
„surface”.

It will be convenient in our discussion to consider the system as 
made up of two parts, viz. the free electrons or the „moving 
electricity” and the totality of nuclei with the electrons connected 
with them. This second part may be called the „framework”, or 
simply the „metal”; it has a positive charge equal to the negative 
charge of the free electrons.

Some remarks may also be made here about the way in which 
currents can be set up in the sphere. You can easily imagine forces 
so distributed that they can produce no continual circulation of
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electricity, but only movements of short duration, giving rise to a 
distribution of electric charges by whose reaction the moving 
forces are soon counterbalanced. We have an example of an 
equilibrium of this kind when we suppose the electricity to be 
acted on by forces directed towards a fixed point P of the sphere 
along great circles passing through that point and having the 
same intensity at all points equally distant from P. Distributions 
of this kind are called „ irrotational”; their line-integral is zero for 
any closed line on the sphere, and this is the reason why they do 
not tend to give a circulating motion to the electricity. In our 
problem any irrotational distribution of forces may simply be 
regarded as ineffective. We may add that the effect of forces that 
are not irrotationally distributed is wholly determined by their 
line-integrals for different closed lines. Two different distributions 
of such a kind, that, for any closed line on the sphere, the line- 
integral has the same value in the two cases, are equivalent, for 
one of them can be obtained from the other by compounding it 
with an irrotational distribution, for which the line-integral is zero 
and which is ineffective.

In the case of a body in which the electricity can move with 
absolute freedom there is a very simple rule. The slightest cause 
which tends to make the electricity circulate would produce a very 
strong current, and therefore things arrange themselves in such a 
way that the line-integral of the forces that are at play is zero for 
any closed curve.

I shall now, in the first place, try to explain in what way 
persistent currents can be set up in the supra-conducting shell. I 
shall next examine the action of an external field on these currents; 
we shall find that, even if the moving electrons are perfectly free, 
the transverse force which they experience is transferred to the 
metal, thus producing a deflecting ponderomotive couple such as 
has been observed. We shall be able to specify the way in which 
the transmission is effected. Finally, however, it will appear that, 
under the circumstances of the experiment, the transmission must 
have taken place by some more direct action between the free 
electrons and the framework.

1. Currents are set up in the sphere by exciting an external 
magnetic field H. If this be uniform, say, in the direction of a line
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OL drawn from the centre, the lines of flow will be circles, having 
OL for their axis. The intensity of the current will be greatest at 
the equator, i.e. in a plane passing through the centre at right 
angles to OL, and it will decrease towards the poles, according 
to a simple law. In fact, you may get an idea of the system of 
currents by imagining the shell to be replaced by a spherical 
surface uniformly charged with negative electricity and free to 
move as a whole while the charge is fixed to it. If the external 
field is started such a sphere will be set rotating about OL, so that 
we have a system of convection currents. The currents produced 
in the perfectly conducting shell are distributed in exactly the 
same way as these convection currents; it is as if the movable 
electricity were attached to a spherical surface free to move in the 
metal.

All this may be inferred from the rule which I mentioned just 
now. The line-integral of the electric force along any closed line on 
the sphere must constantly be zero. This means that the magnetic 
induction through a part of the sphere must remain unaltered, 
and from this we deduce that at any point of the sphere the normal 
component Hn of the magnetic force does not change in course of 
time. In our experiment we began with Hn = 0, as, initially, we 
had neither currents in the shell nor an external field. Conse
quently, Hn must remain zero. If we excite an external magnetic 
force H in the direction of OL, having at any point P a normal 
component H cos 8, where 0 is the angle LOP, the induced 
currents must be such that they give rise to a normal component 
of magnetic force opposite and equal to H cos 0. This is mathe
matically equivalent to the condition that at all internal points 
the field H is exactly compensated by the field arising from the 
induced currents, and from this the currents are found by an easy 
calculation. The result is that at any point P of the surface the 
electrons will move along the parallel circle with a velocity

whose direction, when the coefficient is positive, corresponds (in 
the sense generally given to this word in electromagnetic theory) 
to the direction of the magnetic force H. By N I have now 
denoted the number of free electrons per unit area of the shell, e is
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again the charge of an electron and c the velocity of light; this 
latter factor appears in the formula because H and e have been 
expressed in so-called rational units.

It can further be shown that, in virtue of the currents produced 
in it, the sphere has become equivalent to a magnet of small size 
placed at the centre and having a moment

— 2nR3H.

R is the radius of the shell, and the negative sign means that the 
moment has a direction opposite to that of the external field.

The induced currents will persist so long as the external field 
remains unaltered. Any change of the field, either in intensity or 
in direction, will, however, be attended by a new induction, and 
we have the theorem that,whatever be the course of these changes, 
the motion of electricity is at any moment exactly such as would 
have been produced if the field had at once been started with the 
direction and the intensity which it has at the instant considered. 
Thus, in a variable uniform field, the magnetic moment of the 
shell will at any time be such as we have specified.

When the field is made to disappear the currents vanish at the 
same time.

Thus far we had only systems of currents, for which the axis 
— i.e. the line around which the electricity is circulating has 
the direction of the external field. By appropriate devices it may, 
however, be made to deviate from this direction. Suppose, for 
example, that before cooling the sphere we apply a magnetic 
field Hv which is thereupon maintained constant. As the metal is 
still an ordinary conductor, the induction currents that have been 
excited by the introduction of the field will die out in a short time. 
Let the next step be to lower the temperature, so that the sphere 
becomes supra-conductive. This operation will not give rise to 
any motion of electricity, and after it we shall therefore have 
a sphere without currents placed in the field Hv If, finally, we 
apply a field H2 which makes an angle with Hv we shall obtain 
circular currents whose axis does not coincide with the direction 
of the external field, which we find by compounding H1 and H2.

2. This, a spherical shell in which there are circular currents 
around an axis OL, and which is placed in a field H making an
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angle with OL, is the case that has now to be examined. The 
motion of the free electrons will be determined not only by the 
electric force, but also by the transverse force, and the funda
mental condition will be that for any closed line on the surface the 
line-integral of the two forces taken together must be zero.

Now, this condition would not be fulfilled if the system of 
currents for ever remained as it is at first. For then there would be 
no changes of magnetic force, and consequently no electric force E, 
whereas it is easy to find closed lines on the sphere for which the 
line-integral of the transverse force is not zero. So the problem 
is to determine the changes of the current system.

It is found that there is but one solution. The axis OL rotates 
with constant velocity about a diameter having the direction of 
the external field, and while it does so, the currents around it are 
at any moment such as they were first. In other terms, the system 
of currents has a precessional motion comparable to that of a 
spinning-top, whose axis is in an inclined position. The angular 
velocity of precession is given by the expression

3 c H 
2 NeR '

As e is negative, the rotation has a direction corresponding to that 
of H.

The calculation is too long to be worked out here, but you can 
easily understand how it comes about that the fundamental 
condition is now fulfilled. When the system of currents rotates, 
the magnetic field belonging to it does so likewise. Thus at a point 
of the shell the normal component of this field changes, and this 
gives rise to inductive forces E, whose line-integral has a definite 
value, in general different from zero, for any closed curve. When 
the precession goes on in the direction and with the velocity just 
indicated, this line-integral is exactly equal and opposite to that 
of the transverse force. In this sense the inductive forces E and 
the transverse ones, acting on the movable electricity, may be 
said to counterbalance each other. 3

3. I have next to show you the origin of the ponderomotive 
forces acting on the substance of the sphere. This is speedily done. 
The transverse forces acting on the negative electrons produce a
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certain resulting couple; let this be C. Similarly, the forces E 
acting on these same electrons give rise to a couple Cf, and from 
what we have just seen we infer that C — — C.

As I have previously remarked, the framework of the metal has 
a positive charge equal to the negative charge of the electrons. 
Consequently, the forces E drive it forward in directions opposite 
to their action on the electrons, thus producing a couple C" equal 
and opposite to C'. On the other hand, since the framework is at 
rest, it is insensible to the transverse forces, and so the couple C" 
remains uncompensated. As it has the same direction and magni
tude as C, we may say that this latter couple, resulting from the 
action of the transverse forces on the electrons, is transmitted to 
the metal. This is not done by any direct interaction, but this 
time the connecting-link is to be looked for in the variable 
magnetic field in which the inductive forces E have their origin.

As to the direction and magnitude of the ponderomotive 
couple, these are exactly such as they would be if the external 
field acted on the magnetic moment of which I previously spoke, 
and to which the shell is equivalent.

4. Professor Kamerlingh Onnes has observed and measured 
the ponderomotive couple, and so far all is satisfactory. But, 
unfortunately, there is the motion of precession, and on account 
of this the equivalent magnet also must be imagined to rotate.

In the experiments the external field had a horizontal direction, 
say OX, and the sphere could rotate about a vertical line, say OY. 
Under these circumstances the couple that is observed depends on 
the component of the magnetic moment in the direction OZ 
perpendicular both to the suspension and to the magnetic field. 
One sees immediately that, when a constant magnetic moment 
making an angle with OX turns about that line, its component 
along OZ changes continually, vanishing at certain instants and 
passing from one direction to the other. Thus, if the precession 
exists, there ought to be corresponding changes in the couple. 
Nothing of the kind has, however, been observed.

In order to account for this, one might think that perhaps the 
precession is so slow that in the course of the observations the 
direction of the axis of the currents is not sensibly altered. This is 
a supposition that can be tested by means of the expression which
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we found for the speed of rotation. If this is to be small, the number 
N must be sufficiently large, and the question is, whether the 
value that is required for it can be considered as admissible.

The couple was found not to change appreciably in about six 
hours. From this we may safely conclude that the angle over which 
the precession took place during this lapse of time has been 
smaller than, say, 20°. This means that the velocity of the pre- 
cessional rotation,

2 NeR H,

has been less than 1,62 X 10“5. From this I infer that the ratio 
between the number of free electrons and that of the atoms ought 
to be greater than

H
5,4 RS’

where H is the strength of the magnetic field in gauss and S the 
thickness of the shell.

This condition has certainly not been fulfilled, for H has been 
some tens of gauss and the number of free electrons can be no 
more than a small fraction of that of the atoms.

So, after all, our conclusion must be that in the supra-conductive 
metal the electrons are not wholly free. It seems as if definite paths 
were prescribed them along which they can move without en
countering a resistance, but which they cannot freely leave 
sideways. A precessional motion would be excluded by this, and 
the transverse actions would be transmitted to the metal by the 
intervention of the forces which prevent the electrons deviating 
from their prescribed trajectories.

I hope that I have given you the impression that the phe
nomena which we observe in supra-conductors are well worth 
dose and careful examination. But we must not forget that a 
simple copper wire at ordinary temperatures, traversed by a 
current, is no less a world full of mystery.


