EXAM QUANTUM INFORMATION, 16 NOVEMBER 2020, 13.30-17.00 HOURS.

- 1. *a*) Construct^{*} a unitary operation Ω on a two-qubit state, such that $\Omega|0\rangle|0\rangle = |0\rangle|0\rangle$ and $\Omega|1\rangle|0\rangle = |1\rangle|1\rangle$. Why can this operation not be used to copy an arbitrary state $\alpha|0\rangle + \beta|1\rangle$ of a single qubit onto a second qubit?
- *b*) Two qubits are initialized in the state |0⟩|0⟩. Construct^{*} a unitary operation *U* such that

$$U|0\rangle|0\rangle = \frac{1}{2}|0\rangle|0\rangle + \frac{1}{2}|0\rangle|1\rangle + \frac{1}{2}|1\rangle|0\rangle + \frac{1}{2}|1\rangle|1\rangle.$$

How would this same operation act on the state $|1\rangle|1\rangle$?

- *c)* Find out whether or not the two-qubit state U|0>|0> is entangled by calculating the concurrence. What is the state of the second qubit after the first qubit is measured? Does that state depend on the measurement outcome?
- 2. The states $|0\rangle$, $|1\rangle$, $|2\rangle$ denote orthonormal states of a quantum system, with density matrix $\hat{\rho}$.
- *a*) List three conditions that *any* valid density matrix should satisfy.
- *b*) Explain, for each of the matrices ρ̂₁, ρ̂₂, ρ̂₃, if it is a valid density matrix or not:

$$\hat{\rho}_{1} = \frac{1}{4}|0\rangle\langle 0| - \frac{1}{4}|0\rangle\langle 1| - \frac{1}{4}|1\rangle\langle 0| + \frac{1}{4}|1\rangle\langle 1| + \frac{1}{2}|2\rangle\langle 2|,$$

$$\hat{\rho}_2 = \frac{1}{2} |0\rangle \langle 0| - \frac{1}{2} |1\rangle \langle 1| + |2\rangle \langle 2|, \quad \hat{\rho}_3 = |0\rangle \langle 0| + |1\rangle \langle 1|,$$

c) Explain, for each of the density matrices ρ₄, ρ₅, ρ₆, if it represents a pure state or not:

$$\begin{split} \hat{\rho}_4 &= \frac{1}{3} |0\rangle \langle 0| + \frac{1}{3} |1\rangle \langle 1| + \frac{1}{3} |2\rangle \langle 2|, \ \hat{\rho}_5 &= \frac{1}{2} |0\rangle \langle 0| + \frac{1}{2} |0\rangle \langle 1| + \frac{1}{2} |1\rangle \langle 0| + \frac{1}{2} |1\rangle \langle 1|, \\ \hat{\rho}_6 &= \frac{1}{2} |0\rangle \langle 0| + \frac{1}{2} |1\rangle \langle 1|. \end{split}$$

- 3. A bit-flip operation is a single-qubit gate that switches 0 and 1. The unitary matrix for the bit-flip operation is the σ_x Pauli matrix.
- *a)* The state of a qubit can be represented by a point on the unit sphere, the Bloch sphere. The figure shows one such point in red, corresponding to a state |ψ⟩. Copy the figure and insert the point that corresponds to the state σ_x|ψ⟩. (Please mark the angles, such that the position of the new point can be uniquely identified.) Is the state σ_x|ψ⟩ orthogonal to |ψ⟩ or not? Explain your answer.

continued on second page

^{*}For the construction you can draw the circuit that represents the operation or you can give the corresponding unitary matrix.

- *b)* In a classical computer it makes no sense to talk of the "square-root" of a bit flip, but in a quantum computer such a gate exists. What are the elements of a unitary matrix that squares to a bit flip?
- *c)* The SWAP gate is a two-qubit gate that exchanges the states of the first and second qubit: $|01\rangle$ is transformed into $|10\rangle$ and vice versa, while $|00\rangle$ and $|11\rangle$ are unchanged. Can you construct a SWAP gate by combining three CNOT gates? Please show the circuit diagram.

- 4. Entanglement swapping is a procedure that entangles two distant qubits, qubit *A* with Alice and qubit *C* with Carol, without any direct interaction between Alice and Carol. The procedure is carried out by an intermediary, Bob, who has two qubits, B_1 and B_2 . In the first step of the procedure Bob interacts with Alice to entangle qubit B_1 with qubit *A* and he interacts with Carol to entangle qubit B_2 with qubit *C*.
- *a)* Explain how the Hadamard and CNOT gates in the figure entangle the qubits of Bob with those of Alice and Carol. Give the four-qubit state after the entanglement step.

In the second step of the procedure Bob measures both his qubits in the Bell basis, and he communicates the measurement outcomes p_1 , p_2 to Alice and Carol.

- *b*) Show that the qubits of Alice and Carol are entangled for each of the four measurement outcomes (*p*₁, *p*₂) = (0,0), (0,1), (1,0), (1,1).
- *c)* If Bob would not tell Alice and Carol what he had measured, the qubits *A* and *C* would be in a mixed state, without any entanglement. Calculate the density matrix of this mixed state.