EXAM QUANTUM INFORMATION, 18 JANUARY 2023, 13.15-16.15 HOURS.

1. Consider the two-qubit operator

$$\rho = \frac{1}{4}(\sigma_z \otimes \sigma_z + I \otimes I).$$

The operator *I* is the single-qubit identity operator and σ_z is a Pauli matrix.

- *a*) Write ρ as a 4 × 4 matrix. What are its eigenvalues?
- *b*) Why is ρ a valid density matrix?
- *c*) Does ρ describe a pure state or a mixed state? Motivate your answer.
- 2. A single qubit with density matrix ρ may experience decoherence if it is coupled to an environment. The decoherence operation can be described by the mapping

$$\rho \mapsto (1-p)\rho + p\sigma_z \rho\sigma_z$$
,

for some constant $p \in (0, 1)$.

- *a*) A qubit is initially in the pure state $2^{-1/2}(|0\rangle + |1\rangle)$. What is the density matrix of the qubit in the final state, after the decoherence operation?
- *b*) The purity *P* of a state with density matrix ρ is defined by $P = \text{Tr } \rho^2$. Calculate the purity of the final state of the qubit.
- *c)* Is the decoherence operation a unitary transformation of the density matrix? Motivate your answer.
- 3. Consider a single-qubit operator U that is both Hermitian and unitary. You may assume U is not proportional to the identity operator I.
- *a*) Prove that $U^2 = I$.
- *b*) Take an arbitrary single-qubit state $|\Psi\rangle$. Show that $|\Psi_+\rangle = (I + U)|\Psi\rangle$ and $|\Psi_-\rangle = (I U)|\Psi\rangle$ are both eigenstates of *U*.

continued on second page

The above two-qubit circuit contains a pair of Hadamard gates (H) acting on the first qubit and a controlled-*U* operation, meaning that the operator *U* acts on the second qubit if and only if the first qubit is in the state $|1\rangle$. At the end of the circuit the first qubit is measured.

- *c)* Explain that the final state of the second qubit is an eigenstate of *U*. How do you find the corresponding eigenvalue?
- 4. The E91 protocol for quantum key distribution (developed by A. Ekert) uses quantum entanglement of photon pairs (each in a maximally entangled state) shared by two distant users (Alice and Bob) to allow them to exchange information securely — protected from eavesdropping by a third party (Eve). Alice measures each of her photons using some basis chosen randomly from the set Z_0 , $Z_{\pi/8}$, $Z_{\pi/4}$, and Bob does the same for the set Z_0 , $Z_{\pi/8}$, $Z_{-\pi/8}$. Here Z_{θ} is the polarization basis rotated by an angle θ . Alice and Bob keep their series of basis choices private until their measurements are completed. Then they use a classical communication channel to inform each other of the basis choices, without disclosing the measurement result.
- *a*) How can Alice and Bob use this information to establish a shared private key?
- *b)* How can Alice and Bob find out if some of their photons have been intercepted by Eve, and then retransmitted to Bob?
- *c)* Why is it important that the information on the basis choices is only exchanged *after* the measurements?