Quantum Information: lecture 1

quantum bits

Preskill 2.1 and 2.2

quantum gates

Preskill 6.2

density matrix

Preskill 2.3

in this lecture, mainly a quantum primer

quantum states, Hilbert space, Hermitian and unitary operators, Schrödinger and Heisenberg equations, pure and mixed states

for a linear algebra reminder, see separate notes

Quantum primer 1: states & operators

state: complex N-dimensional vector row vector $\langle \psi |$, column vector $| \psi \rangle$ scalar product: $\langle \chi | \phi \rangle = \langle \phi | \chi \rangle^*$ only absolute value $|\langle \chi | \phi \rangle|$ is observable $| \psi \rangle$ and $e^{i\alpha} | \psi \rangle$ describe *the same* state

Hilbert space (N = 2 qubit) bra-ket normalization: $\langle \psi | \psi \rangle = 1$

operator: complex N × N matrix $|\phi\rangle \mapsto A|\phi\rangle$, $\langle \chi|\phi\rangle \mapsto \langle \chi|A|\phi\rangle = \langle \phi|A^{\dagger}|\chi\rangle^*$ Hermitian conjugate or adjoint operator: $(A^{\dagger})_{nm} = A_{mn}^*$ self-adjoint (*Hermitian*): $A^{\dagger} = A$ (real eigenvalues, observable)

change of basis: $|\phi\rangle \mapsto U|\phi\rangle$, $|\chi\rangle \mapsto U|\chi\rangle$, $\langle\chi|\phi\rangle \mapsto \langle\chi|U^{\dagger}U|\phi\rangle$, invariant if $U^{\dagger}U = 1$ or $U^{-1} = U^{\dagger}$ unitary operator examples: $u = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ Hadamard gate, $u = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ Pauli Z-gate

Quantum primer 2: time evolution

states evolve in time according to the Schrödinger equation:

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = H|\psi(t)\rangle \Rightarrow |\psi(t)\rangle = e^{-iHt/\hbar} |\psi(0)\rangle$$

the time evolution is a unitary transformation

 \Rightarrow quantum computations must be *reversible* — AND, OR operations forbidden, CNOT allowed

Schrödinger picture: time dependence in states

Heisenberg picture: time dependence in operators

$$\langle \phi(t)|O|\chi(t)\rangle = \langle \phi|O(t)|\chi\rangle$$

with $|\psi\rangle \equiv |\psi(0)\rangle$ and $O(t) = e^{iHt/\hbar}Oe^{-iHt/\hbar}$

$$i\hbar \frac{d}{dt}O = OH - HO \equiv [O, H]$$
 (commutator)

Heisenberg equation of motion

Pure & mixed states, density matrix

state $|\psi\rangle$ corresponds to operator $\rho=|\psi\rangle\langle\psi|$ (density matrix) ρ acting on a state produces a new state:

$$|\phi\rangle = \text{constant} \times |\psi\rangle$$
, where constant $= \langle \psi | \phi \rangle$

check that: Tr
$$\rho = 1$$
, $\rho = \rho^{\dagger}$, $\rho^2 = \rho$.

expectation value of operator M in state $|\psi\rangle$:

$$\langle M \rangle = \langle \psi | M | \psi \rangle = \text{Tr } M \rho.$$

why bother? because the density matrix is more general:

$$\rho = \sum_n p_n |\psi_n\rangle \langle \psi_n|, \ \ 0 \leqslant p_n \leqslant 1, \ \ \sum_n p_n = 1.$$

mixed state: mixture of pure states $|\psi_n\rangle$, appearing with weight p_n .

check that still: Tr $\rho = 1$, $\rho = \rho^{\dagger}$, but $\rho^2 \neq \rho$.

Evolution of the density matrix

Schrödinger equation:
$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = H|\psi(t)\rangle$$

$$\Rightarrow i\hbar \frac{\partial}{\partial t} \rho(t) = -[\rho(t), H].$$

note minus sign compared to Heisenberg equation.

solution:
$$\rho(t) = e^{-iHt/\hbar}\rho(0)e^{iHt/\hbar}$$
.

Implication: pure state at t = 0 remains pure for t > 0.

Q: in the laboratory we typically find mixed states, does this imply that the Universe was not in a pure state at the Big Bang?

A: no, partial observation converts a pure state into a mixed state

$$|\psi\rangle = \frac{1}{\sqrt{2}}|\uparrow_A\uparrow_B\rangle + \frac{1}{\sqrt{2}}|\downarrow_A\downarrow_B\rangle$$
, entangled pure state

$${\rm Tr}_{\rm B}|\psi\rangle\langle\psi|=\frac{1}{2}|\uparrow_{\rm A}\rangle\langle\uparrow_{\rm A}|+\frac{1}{2}|\downarrow_{\rm A}\rangle\langle\downarrow_{\rm A}|$$
 partial trace