0/5

Quantum Theory lecture 2: Symmetry the force of symmetry

 conservation laws 	S-4.1
 unitary & anti-unitary symmetries 	S-4.4
• parity	S-4.2
• time-reversal & Kramers degeneracy	S-4.4
• Galilean invariance	
S — Sakurai (2nd edition)	

conservation laws

Hamiltonian invariant under a unitary transformation

 $\hat{\mathbf{U}}\hat{\mathbf{H}}\hat{\mathbf{U}}^{\dagger} = \hat{\mathbf{H}} \Rightarrow [\hat{\mathbf{U}}, \hat{\mathbf{H}}] = \mathbf{0}$ $\hat{\mathbf{U}} = e^{i\hat{\mathbf{A}}} \Rightarrow i\hbar \frac{d\hat{\mathbf{A}}}{dt} = [\hat{\mathbf{A}}, \hat{\mathbf{H}}] = \mathbf{0}$

observable corresponding to \widehat{A} is conserved (the Hermitian operator \widehat{A} is called the generator of the unitary symmetry \widehat{U})

translational symmetry: $\hat{U} = e^{i\hat{p}a/\hbar} \Rightarrow$ momentum conserved see exercise 1.2, or consider an infinitesimal translation over a: $\delta \hat{U} = 1 + \delta a \partial/\partial x$ with $\delta a = a/N$ then compose N such translations and take the limit N $\rightarrow \infty$

$$\widehat{\mathbf{U}} = \left(1 + \frac{\mathbf{a}}{\mathbf{N}}\frac{\partial}{\partial \mathbf{x}}\right)^{\mathbf{N}} = e^{\mathbf{a}\partial/\partial \mathbf{x}} = e^{\mathbf{i}\mathbf{a}\widehat{\mathbf{p}}/\hbar}$$

unitary & anti-unitary symmetries Wigner's theorem: every symmetry S is either a unitary operator or an anti-unitary operator.

Symmetry: $|\langle S\psi|S\chi\rangle|^2 = |\langle\psi|\chi\rangle|^2$ for all states ψ , χ . Unitary case: S = U, $UU^{\dagger} = U^{\dagger}U = 1$, Anti-unitary case: S = UK, with K = complex conjugation for example, time-reversal: $\psi^*(x, t) = \psi(x, -t)$

Sketch of a proof for a 2D Hilbert space (spin-1/2): $|\psi\rangle$ is associated with a vector \vec{n} on the Bloch sphere

$$|\langle \psi | \chi \rangle|^2 = \frac{1}{2}(1 + \vec{n}_1 \cdot \vec{n}_2).$$

symmetry is angle-preserving mapping of the unit sphere on itself: only rotations (S = U) or rotations + reflection (S = UK).

parity (= spatial inversion)

see exercise 2.1

 $\mathfrak{P}\hat{q}\mathfrak{P}^{-1}=-\hat{q} \ \text{and} \ \mathfrak{P}\hat{p}\mathfrak{P}^{-1}=-\hat{p}, \ \mathfrak{P}^2=1$

unitary operator, eigenvalues ± 1 (odd or even parity)

time-reversal

see exercise 2.2

$$\Im \widehat{q} \Im^{-1} = \widehat{q} \text{ and } \Im \widehat{p} \Im^{-1} = - \widehat{p}, \ \Im^2 = \pm 1.$$

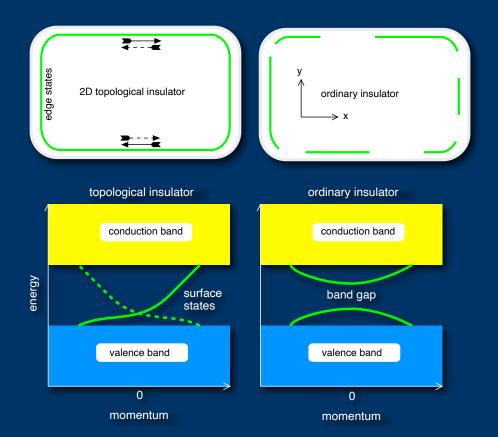
anti-unitary operator, examples: $\Im \Psi = \Psi^*$ or $\Im \Psi = \sigma_y \Psi^*$

Kramers degeneracy

if \mathcal{H} commutes with \mathcal{T} and $\mathcal{T}^2 = -1$, then for every eigenvalue there are at least two independent eigenvectors if $\mathcal{H}|\psi\rangle = E|\psi\rangle$ then also $\mathcal{H}|\psi'\rangle = E|\psi'\rangle$ with $|\psi'\rangle = \mathcal{T}|\psi\rangle$; use $\mathcal{T}^2 = -1$ to prove by contradiction that there cannot be a $\lambda \neq 0$ such that $|\psi\rangle = \lambda |\psi'\rangle$

quantum spin Hall effect

Charles Kane & Gene Mele (2004) — first observation by Laurens Molenkamp (2007)



Kramers degeneracy protects the crossing at zero momentum; mixing of left-movers and right-movers is forbidden Hellmann-Feynman: $\langle v \rangle = \langle \psi | \partial H / \partial p | \psi \rangle = dE/dp$